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ABSTRACT 
 
Software modernization remains a difficult, highly intellectual, labor-intensive, collaborative, and risky 
undertaking involving software engineers interacting in knowledge-centric processes. While many tools 
and several methodologies are available, current modernization projects lack adequate automated and 
systematic operational process support. This chapter provides an introduction to the topic of automated 
process and knowledge assistance for software modernization, giving background information on related 
work in this area, and then expounds on various problems. To address these, a holistic solution approach 
and guidance framework called the Context-aware Software Engineering Environment Event-driven 
framework (CoSEEEK) is described, which can support developers on software modernization projects, 
addressing such aspects as process dynamicity, extrinsic processes, process exception handling, coordi-
nation, quality assurance, and knowledge provisioning.  Subsequently, future research directions are dis-
cussed and a conclusion is drawn.  
 
 
INTRODUCTION 
 
Software applications are continuing to grow in size, with one recent study indicating that applications 
typically double in size as measured in lines of code every 4-5 years (van Genuchten & Hatton, 2012). 
Size growth results in increasing complexity and an increase in the total number of defects (Koru, Zhang, 
El Emam, & Liu, 2009). Over time, legacy applications continue to face additional challenges (Mens et 
al., 2005), including increasing software maintenance costs, quality assurance issues, and architectural 
and technological erosion (Ducasse & Pollet, 2009; Tan & Mookerjee, 2005). Software modernization is 
challenged with modernizing the language and/or technologies used in a legacy application, while 
retaining its previous functionality, and as such has a key place within the Software Maintenance 
knowledge area of the Software Engineering Body of Knowledge (SWEBOK) (Abran & Bourque, 2004). 
Yet many reengineering efforts fail because they are unsystematically executed using ad-hoc processes 
(Weiderman, Bergey, Smith, & Tilley, 1997). Various software modernization strategies, processes, 
methodologies, and techniques have been developed over the years, and the appropriate selection, 



 

tailoring, and application to a given modernization situation is dependent on many factors, including orga-
nizational constraints, budget, time, and resource constraints, experience, available competencies, risk, ur-
gency, criticality, etc. (ISO/IEC 14764, 2006). Aspects involved in modernization can include business 
process archaeology, process mining, business process modeling, reverse engineering, software architec-
ture, model-driven software engineering, knowledge management, and static and dynamic code analysis. 
 
Software modernization remains a risky, difficult, and highly intellectual process incorporating various 
automated and manual tasks performed by specialized knowledge workers. The process lacks sufficient 
automated and systematic operational process support. The intangibility of the product represented in its 
source code artifacts poses a significant comprehension challenge to software engineers. To support the 
latter in their modernization tasks, various tools such as tools related to Model-Driven Architecture™ 
(MDA) (Mukerji & Miller, 2003) from the Object Management Group (OMG), and various processes 
such as the (ISO/IEC 14764, 2006), Service-Oriented Migration and Reuse Technique (SMART) (Lewis, 
Morris, & Smith, 2005), and eXtreme end-User dRiven Process (XIRUP) ("D31b", 2008) from the 
MOdel driven MOdernisation of Complex Systems (MOMOCS)i project. Mostly, the former are utilized 
for supporting the project participants’ individual tasks while the latter aim to help organize the necessary 
collaboration and sequencing of work. However, this lack of integration may also be a crucial obstacle for 
holistic and technically supported process enactment in the software engineering (SE) domain: On the one 
hand, projects and their processes are planned using abstract process models, on the other hand the 
concrete tasks are executed by different people working with different software tools and techniques in 
order to manipulate a large number of different artifacts (e.g., specifications, user documents, source code 
artifacts, or tests). The tools are crucial for the successful completion of the different tasks, yet their usage 
is neither directly connected to the process nor to each other. This promotes an ever-growing gap between 
the planned and the actually executed process. This disparity has negative effects for modernization 
projects and their produced software: First of all, proactive and reactive software quality techniques are 
often not systematically and satisfactorily integrated, since the actually executed operation process is 
unknown. Project planning with management tools (e.g., in visual form such as a Gantt chart) typically 
does not provide process governance nor process execution support. Since quality assurance is not 
systematically and automatically integrated, important quality actions (perhaps involving tools for static 
code analysis, profiling, or test remediation) may not be executed in a timely fashion, and quality 
deterioration may go undetected. 
 
An important part of modernization is recovering specific knowledge from existing software assets. 
Business Process Archeology (Pérez-Castillo, de Guzmán, Piattini, & Ebert, 2011) extracts abstract 
models of these legacy systems, including the company and the company operation supported by this 
system. For example, business process models, which can be quite complex and be tied to various 
artifacts and should be well understood during the modernization effort by the software engineers. For 
this, knowledge management and provisioning is also a crucial factor for successful modernization, yet it 
is rarely if ever systematically integrated at the operational level. E.g., knowledge may be recorded in 
wikis or documents, but since it is not automatically situationally associated with source code, tools, and 
processes, it must currently be manually retrieved by a software engineer when he or she perceives the 
need and triggers a search or retrieval, and effective and timely situational knowledge dissemination 
opportunities are missed. 
 
Besides these concrete problems, more general issues exist caused by disparity of the abstractly planned 
process and the actually executed process incorporating various humans, activities, tools, and artifacts. 
Some important tasks executed within a modernization project may not be explicitly covered by the pro-
cess (e.g., debugging) and therefore remain neither planned nor traced. The same applies for dependencies 
between activities that are part of the process and others that are extrinsic to the process (e.g., open issues 
or questions). This also has an impact on the ability of the projects or organizations to cope with process-
related exceptions. These can be of complex nature involving multiple actors, tools and artifacts, thus 



 

concealing the relation between cause and effect. Additionally, for cost and resource availability reasons, 
the trend towards global software development may also affect modernization projects, which could 
benefit from automated support for global collaboration in the modernization processes. 
 
Towards addressing the aforementioned challenges, a tighter connection between the planned process and 
concrete tooling and artifacts is desirable. To achieve this, we pursue an abstract holistic concept and 
implementation framework named CoSEEEK (Context-aware Software Engineering Environment Event-
driven frameworK). Its main idea is the contextual, semantic extension of adaptable operational 
processes, collaboration support, and the automatic integration of SE tools, knowledge, and guidance to 
be able to consistently manage how people execute this process and manipulate various artifacts via tools. 
This is illustrated in Figure 1: 
 
 

 

Figure 1. Connection of abstract and operational processes 
 

 
On the abstract level, processes are specified by the role of a process engineer by means of process 
models. These models contain the processes to be executed as well as specifications of utilized artifacts, 
tools, roles, and additional support information such as checklists. On the operational level, there are 
users utilizing SE tools such as IDEs, configuration management tools, static code analysis tools, and 
artifacts like specifications, source code, or checklists. Our concept and system enable a direct connection 
of the abstract and the operational areas, integrating knowledge such as process guidance with SE tools 
and artifacts for concrete projects and organizations. This is achieved by contextually extending a 
Process-Aware Information System (PAIS), which not only enables the explicit modeling of artifacts, 
tools and users, but also their direct connection to the activities governed by the PAIS (Reichert & Weber, 
2012). Furthermore, via a sensor framework, the actual SE tools in use are integrated together with target 
artifacts connected to the model in the contextually extended PAIS. 
 
Overall, this chapter demonstrates an approach to automatically, dynamically, and systematically support 
modernization process execution and collaboration. Required tools, knowledge, and artifacts are directly 
interwoven within abstractly defined processes and, in turn, operationally governed and supported by our 



 

framework. Various publications from the authors and a forthcoming doctoral thesis of Gregor Grambow 
are utilized, summarized and applied to the software modernization domain. 
 
 
BACKGROUND 
 
State-of-the-Art  
 
Modernization as a form of software evolution is differentiated from maintenance and from replacement 
in (Comella-Dorda, Wallnau, Seacord, & Robert, 2000b), which describes various modernization tech-
niques for user interfaces, logic, and data. Software engineers involved in modernization projects typic-
ally utilize a potpourri of various methodologies, processes, tools, and techniques. To provide an overall 
understanding of the modernization undertaking, various modernization-related approaches and aspects 
are described.  
 
Model-centric standards and associated model and code-generation tooling can support modernization.  
MDA (Mukerji & Miller, 2003) seeks to standardize portable and interchangeable design models that can 
be technology and platform independent. To support model transformations, a Meta-Object Facility 
(MOF) is specified. According to the MDA approach, legacy systems would have a platform-independent 
model (PIM) of the application or specification's business functionality and behavior that could be more 
easily modernized by transforming this PIM to newer platform-specific models (PSM) for new platforms 
and technologies. Model-Driven Software Development (MDSD) is broader, including both additional 
alternative approaches to MDA and various MDSD tooling, for instance the Eclipse Modeling Framework 
(EMF) projectii. 
 
Various approaches to modernization include Software Evolution, Refactoring and Improvement of 
Operational & Usable Systems (SERIOUS)iii, which studied evolutionary software development 
techniques, tools and processes. Additional model-driven approaches include Risk-Managed Moderni-
zation (RMM) (Seacord, Plakosh, & Lewis, 2003) and XIRUP from the MOMOCS project. 
 
Knowledge acquisition during modernization typically encompasses various analysis techniques. One 
form of categorization that distinguishes the degree of internal knowledge required is black-box vs. white-
box recovery and transformation. Black-box (Comella-Dorda, Wallnau, Seacord, & Robert, 2000a) focu-
ses on awareness of the external component properties and interfaces while white-box recovery includes 
awareness and analysis of internal structures and possibly code source when available (Weiderman, 
Bergey, Smith, & Tilley, 1997).  
 
Various types of tools support knowledge acquisition during modernization as described in (Pérez-
Castillo, de Guzmán, Piattini, & Ebert, 2011). To facilitate modernization tool interoperability and data 
interchange, the OMG's Architecture Driven Modernization (ADM)iv initiative standardizes metamodels 
in seven modernization-related areas. (Pérez-Castillo, de Guzman, Piattini, & Avila-Garcia, 2009) makes 
use of ADM to contextualize the data about legacy source code. MARBLE (Pérez-Castillo, 2012; Pérez-
Castillo, de Guzman, & Piattini, 2011) is an example of a tool that supports business process model 
recovery while (Putrycz & Kark, 2007) addresses recovery of business rules. For extracting models, the 
use of domain-specific programming languages such as Gra2MoL (Cánovas Izquierdo & Molina, 2009; 
Izquierdo, Cuadrado, & Molina, 2008) has been proposed. The proper utilization of acquired knowledge 
plays a key role in decision-making during modernization (Koskinen et al., 2005; Koskinen, Lintinen, 
Ahonen, Tilus, & Sivula, 2005). 
 



 

For building an environment supporting collaborative work, CASDE (Jiang, Ying, & Wu, 2007) and 
CooLDev (Lewandowski & Bourguin, 2007) utilize activity theory. CASDE features a role-based 
awareness module managing mutual awareness of different roles. CooLDev is an Eclipse IDE plug-in that 
manages activities performed with other plug-ins in the context of global cooperative activities. CAISE 
(Cook, Churcher, & Irwin, 2004) is a collaborative SE framework with the ability to integrate SE tools 
and develop new SE tools based on collaboration patterns. 
 
The aforementioned approaches and tools primarily focus on knowledge extraction within modernization, 
and lack holistic, process-oriented, and collaborative knowledge and quality assurance support for the 
entire modernization lifecycle. 
 
 
Terminology 
 
This section discusses and clarifies important terms and basic concepts that will be used throughout the 
chapter. 
 
Process and Workflow. By process we mean a systematic series of actions or steps, which can involve 
one or more workflows, taken towards achieving some end state or result that adds value to an 
organization. By workflow we mean a more detailed series of related tasks required to complete some 
portion of a process, usually detailing the concrete tasks, procedures, steps, knowledge, inputs, outputs, 
people, and organizations involved to process a piece of work. It can be viewed as the partial or complete 
technical implementation of a process.  
 
Context / Contextual Integration. The notion of context, as used in this chapter, refers to the various 
facts, events, and entities that are part of a software project. They have in common that the projects 
participants have to interact with them and that they have an impact on each task a human conducts as 
part of the process and using specific tools. Contextual integration refers to an integration of these tasks, 
the process, the tools, and the humans with the context to be able to incorporate all necessary and 
important information in process execution and make the whole project more effective and efficient. 
 
Knowledge. In this chapter it refers to project-, company-, or technology-specific facts and information 
needed to effectively and efficiently complete the tasks a person must conduct during a project. Examples 
include information about the applied development process, the concretely used tooling, or specifics of 
the technology used. 
 
Holistic. In the context of this chapter, the term holistic is to be understood in relation to the entirety of a 
software project. Holistic project support means support that incorporates different areas of such a project 
as, e.g., knowledge management, quality management, or software development. Furthermore, holistic 
support means that it also incorporates the abstract planned process as well as the concretely executed 
activities. 
 
 



 

MAIN FOCUS OF THE CHAPTER 
 
Issues, Controversies, Problems  
 
Software modernization and business process archeology are complex undertakings. Software tools such 
as those previously mentioned support many of the related tasks. Yet two crucial issues remain: The first 
is that support provided by these tools focuses primarily on automating certain modernization tasks such 
as transformation. However, despite advances, in our opinion major software modernization projects 
cannot yet be fully automated and thus various manual tasks remain to be executed by software engineers 
like coding, bug fixing, and adjusting tests for the modernization to succeed. While advanced tools are 
available, contextual support and guidance in congruence with knowledge and process awareness remains 
unaddressed. The second crucial issue is that tools that support various tasks are typically specialized for 
these tasks. What is still missing is a holistically supportive system that unites the various aspects of a 
project with the related tasks, tools, artifacts, knowledge, operative processes, and software engineers. 
This section identifies different problem areas of these crucial issues and elicits requirements for each 
area. To illustrate these different problems, a practical example from a software project is applied in the 
following: 
 
Example 1 (Software Project Problems): Imagine a company producing software. This company suffers 
from problems that many companies in this domain share: the do not have real control over the approach 
and process of their projects, be they software development, modernization, or other maintenance 
projects. Projects can thus not be sufficiently monitored and controlled, resulting in budget, schedule, or 
quality deficiencies. To counteract these problems, the company has introduced the usage of process 
models for all projects to make them more controllable and repeatable. However, as these high-level 
process models have shown to have relatively little impact on the actual operational activities conducted 
in the projects, the company has introduced a PAIS to implement and support the process models 
automatically. Yet the success of this approach was also limited. Parts of the process models could be 
automatically executed using workflows in the PAIS, but these workflows were still too far removed from 
the concrete tasks conducted in the projects. The project participants (e.g., software engineers or require-
ments analysts) reported various issues: The activities in the PAIS were too abstract and had no real 
relation to the real tasks conducted with their real SE tools. Furthermore, the workflows were too rigid 
and didn’t allow for as hoc deviations that are usual in such a dynamic domain. This also applied to 
problems resulting in exceptional situations during project execution. Therefore, the prescribed 
workflows were more and more disregarded by the participants and even viewed as burdensome rather 
than helpful. The workflows could also cover only a small part of the work done in the projects. Many 
activities remained unmodeled and unsupported. In addition to this, the participants reported other 
remaining issues: Often multiple people from multiple departments worked on artifacts that related to 
each other (like an architecture specification and the source code), but this relation was not properly 
managed and inconsistencies emerged. The same applied to the knowledge needed for each project. 
Besides some project specific wikis, there was no management of such information and people often had 
to spend much time in gathering or developing it. Finally, as the quality of the source code was not 
continuously managed and quality management was not tightly integrated with the process, the 
participants complained that they often had to apply bug fixes or software quality measures under high 
time pressure at the end of a project. 
 
In the following, concrete problem areas are elicited for these common problems, Therefore, Figure 2 
depicts these problem areas abstractly: 
 



 

 

Figure 2. Problem areas in contemporary projects 
 
 
Automated Process Governance. One problem area is process tracking and guidance, referred to here as 
automated process governance (cf. Figure 2-1). If a project is to be executed in an effective, efficient, and 
repeatable manner, studies have shown that it should be based on a defined process (Gibson, Goldenson, 
& Kost, 2006). Many process models have been developed, some specifically for software modernization 
projects like XIRUP, or other common SE process models such as Scrum (Schwaber & Beedle, 2001), the 
Unified Process (Jacobson, Booch, & Rumbaugh, 1999), or the V-Model XT (Rausch, Bartelt, Ternité, & 
Kuhrmann, 2005). The problem with these models is that they typically exist only on paper or web pages 
and are only used for process specification and documentation. Their impact on actors and concrete 
activities remains low (Wallmüller, 2007). Automated support for executing such process models is 
desirable. There are numerous tools capable of automated workflow governance, but the automatically-
assisted implementation of a whole process model with such tools remains a challenge. Requirements for 
automated process support include the following: 
 

 A tool or framework must be in place that governs the process. In order to assist and not interfere, 
the tool user interface should remain on the sideline, not require extra effort, and not be 
cumbersome to use. This should be supported by easily accessible user interfaces that are well 
integrated with everyday work.  

 The ability to cover the utilized SE process models like those previously mentioned. These 
processes have many different special properties that represent the nature of each process. A tool 
or framework that aims at providing automated process enactment support must thus be capable 
of modeling these properties and cover the processes to a large extent.  

 The automatic distribution of human tasks to the respective persons.  

 The correct execution of the modeled workflows must be guaranteed by the system executing 
them.  



 

 Process implementation requires that an arbitrary number of sub-workflows can be connected to 
the activities of a workflow, e.g., to model a number of different guided activities by different 
people that are part of a development iteration of a process.  

 A system providing comprehensive support for the SE process must implement the process in a 
consistent way, including the connection of the abstract process areas (e.g., project, phase, 
iteration) with the operational workflows that directly concern the executing persons. 

 Automated process support should not create cumbersome extra work for the persons involved. 
Therefore, a tool aiming at comprehensive process support should be capable of easily executing 
automatisms to support repetitive tasks associated with process execution. These automatisms 
should, if possible, be easily configurable for the users to avoid ‘hard coding’ procedures and its 
associated inflexibility.  

 The process of creating software is very dynamic and many factors in SE projects are not easily 
foreseeable. Therefore, a tool supporting that process should be able to deal with dynamic 
situations to a reasonable extent. 

  
Context Integration. A second important problem area is contextual integration: Even if some automated 
process implementation and guidance is present in a project, this does not necessarily mean that the 
specified and actually executing processes align. The latter relies mainly on different actors using 
different tools (e.g., requirement management tools or IDEs) to manipulate various artifacts that are 
crucial for the process. These activities and tool interactions are not directly modeled in the process 
models since they are too fine-grained. Thus, a dichotomy between the planned and actually executed 
process may exist. Therefore a tool or system enabling automated process support must be able to deal 
with such contextual information with the following requirements:  
 

 To have access to contextual information, a tool should be able to gather and integrate 
information from various sources in its environment. This should be possible in an automated 
fashion and without disturbing users or other tools. 

 The contextual information must be processed and combined to be able to gain viable information 
from data that is gathered in the SE environment. 

 To enable comprehensive process implementation support for SE, a system should be able to 
integrate the process contextually into the project. Therefore, contextual data should be made 
available to the system. However, this data must be usable for process execution, and thus the 
specification of the implementing workflows should support the connection to and integration 
with contextual data. 

 To support the software development process as it is actually executed, while mapping the 
various interconnected types of human activities that appear both in reality and in the SE process 
models, a system should support activities with different granularities and properties.  

 
Process Dynamicity. Reality has shown that project execution often does not go exactly as planned. A 
planned process is a start, but to bring this process together with the real issues occurring in everyday 
project work remains a more difficult issue. A tool or system seeking to provide holistic process support 
must thus be capable of coping with dynamic changes to the process (Reichert & Weber, 2012): 
 

 To be able to react to the changing situations in the dynamic software development area, a system 
should be able to incorporate changes to workflows implementing the process. These changes 



 

should be possible while the workflows are executed, since the need for these changes will not 
always be known prior to workflow initiation. 

 As SE project execution involves many different factors, not all information necessary to adapt a 
workflow with maximum effectiveness might be available to an individual. Therefore, a system 
should support automatic adaptations to running workflows dependent on contextual factors 
(Grambow, 2013; Grambow, Oberhauser, & Reichert, 2011a). 

 
The above three areas deal with general problems and basic requirements to a system that seeks to solve 
them. All of the three areas are covered by the section ‘Approach and Framework to support Software 
Modernization Projects’ that introduces the foundations of our solution. In the following, more specific 
problem areas are described, which are then dealt with in separate sections. 
 
Extrinsic Process Coverage. One crucial problem with process models is the fact that they cannot cover 
all workflows that are actually executed in a project. Hence, we distinguish between intrinsic workflows 
(part of the process) and extrinsic workflows (unforeseen in the process, cf. Figure 2-4). The latter can be 
executed based on exceptional situations, but can also be recurring common tasks (e.g., bug fixing or 
technology evaluation). These activities rely heavily on the properties of the current situation, remain 
mostly unplanned and untraced, and may impact timely process execution. Concrete requirements as well 
as our proposed solution are discussed in the section ‘Extended Process Support’. 
 
Process Exception Handling. During the execution of a complex project, many unforeseen and 
exceptional situations occur. This poses a big challenge to any tool seeking to provide holistic process 
support for such projects. Contemporary workflow management technology has limited capabilities in 
this area, only dealing with exceptions directly relating to activities (Reichert & Weber, 2012). In reality, 
process exceptions are often not that simple and also not easily detectable. Further, they may relate to 
processed artifacts even without the introducing person noticing them. Furthermore, to select an exception 
handling suitable for both the situation and person is challenging. Concrete requirements as well as our 
proposed solution are shown in the section ‘Exception Handling’.  
 
Collaboration and Coordination. In a complex project, there are always activities and artifacts that 
relate to each other. That implies that one activity a person executes to change an artifact can have an 
impact on other artifacts, which again has an impact on the activities of other persons. An example of a 
relation specifically affecting modernization projects includes architectural specifications and relating 
source code artifacts. As some of these activities may be covered by the process while others are not, this 
might result in problematic artifact states if many related adaptations by different people are applied in an 
uncoordinated manner. Concrete requirements as well as our proposed solution are shown in the section 
‘Tasks Coordination’. 
 
Quality Assurance. One problem affecting many SE projects is the quality of the software produced (cf. 
Figure 2-7). Hence, quality assurance is a crucial factor for any SE project. However, in many projects 
quality assurance is understood as applying some bug fixes at the end of the project when time allows. 
Studies have shown that this is very ineffective and that quality measures should be applied 
systematically during project execution (Slaughter, Harter, & Krishnan, 1998). This involves proactive as 
well as reactive quality measures. The challenge in this area is to effectively and efficiently integrate the 
application of these quality measures with the development process. Concrete requirements as well as our 
proposed solution are discussed in the section ‘Quality Assurance’.  
 
Knowledge Provisioning. The creation and modification of software is a complex and knowledge-inten-
sive task since software is an intangible asset. It involves knowledge from different sources, all of which 
are crucial for the success of the task. This includes information on the process, the coding style and other 



 

specifics of the company, the used framework or area (frontend or backend development), etc. Companies 
often neglect this fact and do not implement proper knowledge management. This often leaves software 
engineers without all required knowledge and thus makes their work ineffective and error prone. Concrete 
requirements as well as our proposed solution are shown in the section ‘Knowledge Provisioning’. 
 
Approach and Framework to support Software Modernization Projects 
 
To achieve the connection of abstract and operational processes and holistic project support for software 
modernization projects (and SE projects in general), we propose the following concept and framework. 
The concept is centered on a contextual extension of applied process management in conjunction with 
facilities to automatically gather and process contextual data. The idea is realized within a modular 
framework called CoSEEEK (Context-aware Software Engineering Environment Event-driven 
frameworK). In the following, the concept as well as the realization within CoSEEEK will be briefly 
explained and illustrated (cf. Figure 3). For further reading, see (Grambow, 2013; Grambow, Oberhauser, 
& Reichert, 2011a; Grambow, Oberhauser, & Reichert, 2012a; Oberhauser, 2010). 
 
 

 

Figure 3. Conceptual architecture and implementation 



 

 
The concept consists of a set of loosely coupled components targeting different requirements. 
Communication between the different components is event-based. These events are stored and distributed 
by a Data Storage component organizing the events in different collections for different topics. Each 
component may register for these collections to automatically receive events of other components relating 
to that topic. That type of communication is realized by an implementation of the tuple space paradigm 
(Gelernter, 1985). Event communication is realized with XML events with the tuple space utilizing the 
native XML database eXist (Meier, 2009). 
 
Basic process implementation and automation is realized via the Process Management component. The 
latter is in charge of managing and executing workflows that are part of a process. As this component is 
implemented utilizing the AristaFlow BPM Suite (Dadam & Reichert, 2009; Lanz, Reichert, & Dadam, 
2010), it is capable of addressing many basic requirements. AristaFlow provides process management 
technology that is notable with respect to the flexible support of adaptive and dynamic workflows. New 
workflow templates can be composed out of existing application services in a plug-&-play like fashion, 
and then serve as schema for the robust and flexible execution of related workflow instances. In 
particular, during run-time, selected workflow instances can be dynamically and individually adapted in a 
correct and secure way; e.g., to deal with exceptional situations or evolving business needs (Reichert, 
Rinderle-Ma, & Dadam, 2009). Examples of workflow instance changes supported by AristaFlow include 
the dynamic insertion, deletion, or movement of single workflow activities or entire workflow fragments 
respectively (for a discussion of the adaptation patterns supported by AristaFlow, see (Weber, Reichert, & 
Rinderle-Ma, 2008)). For integrating these change functions and other AristaFlow services (e.g., for 
managing user work lists or for defining workflow templates) with a domain- or application-specific 
PAIS as in our case, the AristaFlow Open Application Program Interface (Open API) can be utilized 
(Reichert et al., 2009). For example, for dynamically inserting activities at the workflow instance level, 
the application developer can make use of the following system functions provided by the Open API:  
 

 Querying the activity repository for available activity templates, 

 Marking those activities of the workflow instance after which the selected activity shall be 
inserted (i.e., after completing these activities the newly added one shall be enabled), 

 Retrieving the set of activities selectable as “end” activities for this insertion, 

 Marking the activity (or set of activities) which shall serve as end activity (activities), 

 Performing (tentatively) the insertion based on this information, 

 Checking the AristaFlow report on detected errors (e.g., missing values for input parameters), and 

 Making the instance change persistent. 

 
Note that dynamic workflow instance changes can be conducted at a high level of abstraction. In particu-
lar, all complexity relating to dynamic workflow instance changes (e.g., correct transformations of the 
workflow schema, correct mapping of activity parameters, state adaptations) are hidden to a large degree 
from end users and application developers respectively (Reichert & Dadam, 1998). Further, AristaFlow 
provides techniques for learning from past experiences and workflow instance adaptations, respectively, 
and for evolving workflow schemes accordingly (Weber, Reichert, Wild, & Rinderle-Ma, 2009). 
 
The second core component of the concept is the Context Management component. The latter is the 
central information management and coordination component of the concept. It realizes the integration of 
process execution with contextual data acquired from the project environment. To support a high degree 
of automated and context-aware assistance, a tight coupling of the Context Management and the Process 



 

Management component is required, which we refer to as Context-aware Process Management (CPM). 
Fundamentally, process management concepts are enhanced with semantic information. This additional 
information is stored in the Context Management component, while the workflows are managed by the 
Process Management module. Since Context Management unifies all project knowledge, it can also be 
used as a management layer around the Process Management component, facilitating context-based 
process management. Thus, all process-related actions are addressed by the Context Management 
component, which, in turn, manages the actions of the Process Management module. Figure 3 illustrates 
these extensions to process management. The Process Management component governs the workflows 
and their activities. These two concepts are mirrored in the Context Management component: the activity 
by the Work Unit and the workflow by the Work Unit Container. Thus, process management is separated 
into two areas. On the one hand,  the governing of the different activities of one workflow (also denoted 
as process orchestration) utilizing well-established workflow patterns like AND, SPLIT, or LOOP. This is 
done within the Process Management module. The Context Management component, in turn, is in charge 
of extending process management concepts with various other concepts supporting users and project 
execution. One example is activity-related concepts: Work Units are connected to three other concepts, 
enabling advanced task management. The Assignment is used as a coarse-grained top-level task, which is 
also estimated and scheduled from the business side in a project. The Assignment Activity then describes 
the tasks that are necessary to accomplish the Assignment. The most fine-grained level is described by 
Atomic Tasks that denote low-level tasks a person conducts, e.g., using a SE tool. Various tasks can be 
automatically detected by the Event Extraction component, which is described later in this section. Com-
bining the Context Management and the Process Management modules enables the automatic adaptation 
of running workflows based on the current context. The application of this capability will be shown in the 
section explaining quality assurance integration. Since total automated process governance is not viable 
for all situations, a user-centric abstraction of workflow logic provides users a capability to provide neces-
sary inputs that influence the workflow (Grambow, 2013; Grambow, Oberhauser, & Reichert, 2012d). 
 
The Context Management module employs semantic technology to enable high-level utilization of all 
project knowledge. This technology has several advantages, including enhanced interoperability between 
different applications, extending reuse possibilities, and the option for advanced content consistency 
checking (Gasevic, Djuric, & Devedzic, 2006). It also provides a vocabulary for the modeled entities 
including taxonomies and logical statements about the entities. Ontologies also provide the capability of 
reasoning about the contained data and inferring new facts. As an ontology language, OWL-DL (Web 
Ontology Language Description Logic) is used due to its proliferation and standardization (World Wide 
Web Consortium, 2004b). For simple RDF-based (World Wide Web Consortium, 2004a) queries to the 
ontology, SPARQL (Prud’hommeaux & Seaborne, 2006) is used. Operations that are more complex are 
executed using the reasoner Pellet (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007) that also executes 
SWRL (Horrocks et al., 2004) based rules. Programmatic access via DAO objects to the ontology is 
provided by the Jena framework (McBride, 2002). Thus, different semantic concepts can be created and 
manipulated as needed.  
 
A crucial part of the utilized context knowledge comes from the Event Extraction and Event Processing 
components. The Event Extraction component utilizes the Hackystat framework (Johnson, 2007), which 
provides a rich set of sensors that can be integrated into various SE tools. The sensors enable the Event 
Extraction component to automatically generate events in different situations, as, e.g., checking in a 
source code file in Subversion or switching to the debug perspective in Eclipse. The events generated and 
collected in the Event Extraction component are basic and low-level. The Event Processing component, in 
turn, utilizes complex event processing (CEP) (Luckham, 2001) to process these events, providing high-
level events with enriched semantic value. This is done utilizing the framework Esperv. The latter 
provides a facility to define patterns that govern how certain events are combined to derive other higher-
level events, which are then again written to the Data Storage component as all other events. 
 



 

The final two components are the Rules Processing and the Agent System components. The former 
enables the automatic execution of simple automatisms and is based on the framework JBoss Droolsvi. 
The latter has been applied for enabling automated decisions for dynamic situations during project 
execution. It employs a multi-agent system (MAS) with different behavior agents. It is implemented 
utilizing the FIPA- compliant (O'Brien & Nicol, 1998) JADE framework (Bellifemine, Poggi, & Rimassa, 
1999). The usage of both of these components will be illustrated in detail in the section discussing 
automated quality assurance integration. 
 
 
Extended Process Support 
 
This section deals with small workflows not covered by process models. These workflows are often dyna-
mic and are highly dependent on the context of a particular situation. We call them extrinsic workflows. 
This is further described in (Grambow, 2013; Grambow, Oberhauser, & Reichert, 2010b; Grambow, 
Oberhauser, & Reichert, 2011c; Grambow, Oberhauser, & Reichert, 2012a). As mentioned in the problem 
statement, such workflows can have negative effects on project and process execution, since they are dy-
namically executed during project execution without prior planning and without traceability. Furthermore, 
they are difficult to model with the capabilities of imperative workflow technology. A system that aims 
for holistic process support should include a means for consistently integrating such workflows: 
 

 There should be a facility to support both intrinsic and extrinsic activities by an automated system 
or framework. 

 Both intrinsic and extrinsic activities should be executed in a uniform way to support uniform 
assistance for the user and to enable easy tracking and analysis of executed workflows. 

 Compared to intrinsic workflows, extrinsic workflows are more dynamic and less foreseeable. 
Their modeling should enable coverage of various possible situations without bloating process 
models or making them too complex. 

 The workflow modeling itself should remain easy and foster the reuse of modeled solutions or the 
parts thereof. 

 The workflow modeling should hide the inherent complexity of the workflow models to assist the 
user with problem-oriented creation of the models. 

 There should be facilities to automatically gather information on the current situation from users 
or the development environment. 

 The modeling environment should be capable of modeling contextual influences to be able to use 
situational information directly. 

 A facility to model the connections of contextual properties to workflow activities is required to 
enable their automated situational selection. 

 
To illustrate the SE requirements, we apply the following example: 
 
Example 2a (Extrinsic Workflows): As aforementioned, SE issues arise that are not modeled in the 
standard process flow of defined SE processes. This includes bug fixing, refactoring, technology 
versioning, or infrastructural issues. Since there are so many different kinds of issues with ambiguous and 
subjective delineation, it is difficult and burdensome to universally and correctly model them in advance 
for acceptability and practicality. Many activities may appear in multiple issues but are not necessarily 
required, bloating different SE issue workflows with many conditional activities if pre-modeled. Figure 4a 



 

shows such a workflow for bug fixing that contains nearly 30 activities (i.e., steps), many of these being 
conditionally executed for accomplishing different tasks like testing or documentation. One example is 
static analysis activities that are eventually omitted for very urgent use cases. Furthermore, there are 
various reviewing activities with different parameters (such as effectiveness or efficiency), where the 
choice can be based on certain project parameters (e.g., risk or urgency). The same applies to different 
testing activities. Moreover, it has to be determined if a bug fix should be merged into various other 
version control branches. 
 

 

Figure 4. Imperative modeling (a) vs. declarative modeling (b) 



 

 
 
This solution incorporates a set of sensors that enable the automatic gathering of contextual information; 
e.g., state transitions of certain SE tools or SE artifacts that can be recognized as properties of situations. 
In this section, facilities to model contextual properties that can be used to describe a situation are shown, 
e.g., ‘Risk’ or ‘Complexity’. In turn, these properties have calculated values that may be derived from 
various sources as the skill level of a user executing an activity or the measured code complexity of a 
processed source code artifact. To be able to contextually integrate process execution into the projects and 
thus enable the process to be influenced by the properties of various situations, explicit connections of 
process management concepts to context properties are introduced.  
 
As concrete workflow execution is often relatively dynamic in SE, a rigid pre-planning of activity 
sequences is not always advantageous. Therefore, this section shows a means of declaratively modeling 
candidate activities for a workflow at build-time that enables a system to automatically select appropriate 
activities for various situations at run-time. The modeling is designed to be hierarchical, separating 
workflow models into several nestable blocks. These blocks can be modularized and be logically treated 
as simple activities, fostering their reuse in multiple workflow models and simplifying these. To support 
process engineers in modeling declarative context-dependent workflows, an easy way of specifying 
context properties, workflows, contained blocks, and activities is provided. 
 
Utilizing this modeling method, extrinsic workflows can be addressed. To unite this with traditional 
imperative process modeling, which is still useful for more predictable processes (Reichert & Weber, 
2012), our approach unites both ways of modeling under a common process management concept. In the 
following, different parts of the concept will be illustrated: modeling of contextual influences, gathering 
of contextual information, and declaratively modeling processes. 
 
Contextual Properties. To integrate situational influences, Situational Method Engineering (SME) is 
applied, which adapts generic methods to the actual situation of a project (Ralyté, Brinkkemper, & 
Henderson-Sellers, 2007). We used two different influence factors: process properties, which capture the 
impact of the current situation; and product properties, which realize the impact of the product currently 
being processed (in this context the type of component, e.g., a GUI or database component). To strike a 
balance between rigidly pre-specified workflows and the absence of process guidance, the idea is to have 
a basic workflow for each use case, which is then dynamically extended with activities matching the 
current situation. The construction of the workflows utilizes a so-called case base as well as a method 
repository. The case base contains a workflow skeleton of each of the use cases. In the following, these 
use cases, which are associated to an SE issue and have an attributed workflow, will simply be called 
cases. The workflow skeleton belonging to a case only contains the fundamental activities always being 
executed for that case. The method repository contains all other activities whose execution is possible 
according to the case. To be able to choose the appropriate activities for the current artifact and situation, 
the activities are connected to properties that realize product and process properties of SME.  
 
Each SE issue, such as refactoring or bug fixing, is mapped to exactly one case relating to exactly one 
workflow skeleton. To realize a pre-selection of activities (e.g., 'Create Branch' or 'Code Review') which 
semantically match a case, the case is connected to the activity via an n-to-m relation. The activities are 
connected, in turn, to properties. The latter are concepts used to explicitly model contextual properties of 
the current situation and case (e.g., Complexity=high, Urgency=low). The selection of an activity can 
depend on various process as well as product properties. To model the characteristic of a case leading to 
the selection of concrete activities, the case is also connected to various properties. The properties have a 
computed value indicating the degree in which they apply to the current situation. Utilizing the 
connection of activity and property, selection rules for activities based on the values of the properties can 
be specified.  



 

 
Information Gathering. To leverage the automatic support for extrinsic workflows, the computation of 
the property values constitutes a key factor. Our approach unifies process and product properties in the 
concept of the property, which can be influenced by various factors. On the one hand, tool integration can 
provide meaningful information about the artifact being processed in the current case. For example, if the 
artifact is a source code file, static code analysis tools (such as PMDvii) can be used to execute various 
measurements on that file, revealing various potential problems. This aspect deals with implicit 
information gathering. Since not all aspects of a case are necessarily covered by implicit information, and 
not all options for gaining knowledge about the case are always present, the system utilizes explicit 
information gathering from the user processing the case. To enable and encourage the user to provide 
meaningful information, a simple response mechanism is integrated into the user interface. Via this 
mechanism, the user can directly influence process as well as product properties. To enable the system to 
utilize explicitly gathered information for workflow generation, the workflow skeletons of the cases 
always start with an activity ‘Analyze Issue’. The latter lets the user gain awareness about the issue and 
the current situation and set the properties accordingly. To keep the number of adjustable parameters 
small, the concept of a product category was introduced. The product category unites the product 
properties in a pre-specified way. The influence of the product categories on the different properties is 
specified in advance and can be adapted to fit various projects.  
 
Declarative Workflow Modeling. After completing the computation of the property values, activities 
must be selected and correctly sequenced to enable dynamic construction of the workflow for an SE issue. 
This is done utilizing the connection between properties and activities. An activity can depend on one or 
more properties. Examples include selection rules such as: 
 

 ‘Choose activity code inspection if risk is very high, criticality is high, and urgency is low’ or  

 ‘Choose activity code review if risk and criticality are both high’. 

 
Declarative workflow modeling approaches incorporate a certain amount of flexibility in the workflow 
models (Pichler et al., 2011) and thus enable the latter to be applicable for different situations. However, 
the declarative way of modeling can be difficult to understand (Zugal, Pinggera, & Weber, 2011a) and 
can produce models that are hard to maintain (Zugal, Pinggera, & Weber, 2011b). Therefore, this 
declarative workflow modeling approach is based on very simple constraints and so-called Building 
Blocks that enable further structuring of the workflow and structural nesting.  
 
This modeling type is illustrated and compared to classical workflow modeling in Figure 5. The figure 
shows the modeling of the Work Unit Containers above and the derived workflows for execution below. 
‘Work Unit Container 1’ shows a simple, imperatively modeled workflow that is also executed in that 
form (as ‘Workflow 1’). ‘Work Unit Container 2’ illustrates declarative modeling of the same workflow: 
the exact structure of the workflow is not rigidly pre-specified. There are only simple constraints 
connecting activities in the workflow. Examples in Figure 5 are ‘Requires’, expressing that one activity 
requires the presence of another, and ‘Parallel’, expressing that both activities should be executed in 
parallel. The generated workflow for these constraints looks exactly like the imperatively modeled ‘Work 
Unit Container 1’. Activities in the declarative approach also have relations to contextual properties in 
order to enable the system to select a subset of the pre-specified activities for the execution workflow. 
Finally, ‘Work Unit Container 3’ demonstrates the use of Building Blocks. These are used for further 
structuring the workflow to enable complex workflow structures. Three Building Blocks are shown for 
sequential, parallel, and repeated execution of the contained elements in Figure 5. ‘Workflow 3’ shows 
how a workflow is built based on constraints and the Building Blocks. Furthermore, it demonstrates 
contextual relations, in this case assuming that the contextual properties of the situation led the system to 
the selection of activities ‘1’, ‘2’, ‘3’, and ‘5’ while omitting activities ‘4’ and ‘6’. Building Blocks enable 



 

hierarchical structuring of activities contained in workflows and can be reused in different Work Unit 
Containers easily, where they can be treated like simple activities hiding the complexity of the contained 
activity structure. That way, simple basic modeling is enabled while retaining the ability to model 
complex structures. One example for this can be activities related to software creation like coding, testing, 
or documenting. These can be structured by the Building Blocks, e.g., in a Loop enabling multiple 
iterations of coding, documenting, and testing the new code combined in one Building Block. The latter 
can, e.g., be called ‘Software Development Loop’ and then easily be reused as a single activity. This, in 
conjunction with the simple basic constraints, supports simple and understandable workflow models. 
Finally, the advantages of imperative and declarative modeling approaches are combined: The imperative 
workflows generated for execution ensure that users follow the predefined procedures and also aid the 
users with workflow guidance. However, by declaratively specifying various candidate activities for these 
workflows and connecting them to situational properties, the system retains the ability to choose the right 
activities for the users’ concrete situation. More information of the concrete concepts involved is shown 
in (Grambow, 2013; Grambow, Oberhauser, & Reichert, 2010b; Grambow, Oberhauser, & Reichert, 
2011c; Grambow, Oberhauser, & Reichert, 2012a). 
 
 

 
Figure 5. Imperative vs. declarative modeling 

 
 
The basic sequencing constraints enable easy modeling of simple activity structures that can be enhanced 
with more complexity utilizing the different Building Block Template types. However, these constraints 
enable the modeling of structures that endanger the ability to convert them to block structured workflows. 
Furthermore, as the declarative activity specification only contains candidate activities, several of the 
latter could be omitted for an executable workflow. This could also create structures that are not 
convertible to a block structured workflow. Therefore, the so-called auto completion feature is introduced 
that enables the automatic extension via additional connections between the activities. This is explained 
and illustrated in the following example. 
 
Example 2b (Extrinsic Workflows): Figure 4b shows how a bug fixing workflow can be simply yet 
dynamically modeled using the shown declarative approach: The workflow shown at the top (‘Case’) 
contains various Building Blocks out of a Building Block library. One example is the Development Cycle 
Building Block: It contains various other activities like Implement Solution, Developer Test or Review 
activities that are executed in a Loop. It is a standard set of activities that can be reused in various 



 

workflows. To match different situations, the Building Blocks are connected to situational properties, 
enabling the system to automatically tailor them to various situations. One example is the Review 
activities that are part of the Development Cycle: According to the situation, a Code Review activity 
could be chosen, or a Code Inspection or even none at all. All this complexity is hidden from the user and 
managed by the system, leaving a simple sequential but tailored workflow for the bug fixing issue. 
 
As with most SE projects, software modernization projects suffer from a high complexity and large 
number of different tasks. Often the latter are executed without awareness of the process and might thus 
negatively impact it The approach shown in this section satisfies three categories of requirements: 
Generally, it enables the unification of intrinsic and extrinsic workflows, it supports and simplifies 
extrinsic workflow modeling, and it offers automation and execution support for these in alignment with 
properties of various situations. The first of the three is enabled by not only being able to model and 
execute intrinsic as well as extrinsic workflows, but also by uniformly realizing them as they are 
executed. The higher level of dynamicity that is inherent to extrinsic workflows is accommodated by a 
declarative, problem-oriented method of modeling. The hierarchical structure of the declarative modeling 
approach featuring the concept of the Building Blocks supports the modeling in many ways: complexity 
is hidden at build-time as well as at run-time. Reuse is fostered since process models can be separated not 
only by sub-processes but also by logical blocks. Finally, effective as well as efficient execution of 
extrinsic workflows is fostered by automated contextual governance of these: The properties of various 
situations are automatically detected by the system and are used to select a subset of activities that match 
that situation. This is enabled by the explicit modeling of these situational properties and their influences 
on the workflow models. 
 
 
Task Coordination 
 
SE projects feature a very collaborative process where the communication of various individuals is crucial 
for project success. In multi-project and multi-team environments, this can be a challenge as there are 
many diverse information channels and many dependencies. Much of the coordination effort that results 
from this is manually coped with by the individuals working on the projects. This can result in additional 
effort for each individual, in confusion, or in missed coordination activities. Thus, automated coordination 
and collaboration support is desirable. Many different activities by different individuals affect different 
artifacts. Some of these activities may be included in the process and some not. Some activities may be 
tool-supported and others may not. This can lead to situations in modernization projects where activities 
and artifacts are no longer synchronized, such as an architecture specification and the relating source 
code. As already stated, a system aiming for comprehensive process support should be able to counteract 
such situations (Grambow, 2013; Grambow, Oberhauser, & Reichert, 2011d; Grambow, Oberhauser, & 
Reichert, 2012b). To achieve this, an automatic system or tool should satisfy a number of requirements: 
 

 The system shall enable automatic notifications about activities and activity effects. These 
notifications shall be automatically distributed to the concerned users and be presented to them 
seamlessly so as not to distract them from their present activity. It shall be flexibly configurable 
what causes such notifications for whom. 

 The system shall be able to automatically determine possible effects of activity execution. This 
includes finding out which project areas and maybe which artifacts in a SE project are affected 
indirectly by these activities. 

 The system shall be able to automatically determine responsible persons for follow up activities 
concerning changes needed as result of indirect activity outcomes. 



 

 The system shall be capable of automatically initiating follow up activities for indirect activity 
outcomes. These follow-up activities shall be automatically distributed to the responsible persons. 

 The system shall enable configuration of the way follow-up activities are provided. Users shall 
not be overwhelmed by numerous micro-activities. Activities of the same type shall be groupable. 
Thresholds shall be in place for the number of follow-up activities per user to enable collection 
and consolidated provisioning of the activities. 

 
The following example illustrates the problem and requirements: 
 
Example 3 (Activity coordination): This example deals with a source code artifact that is part of an 
interface component: since the file belongs to an interface component, the applied changes possibly not 
only affect the unit tests of the file, but also other artifacts such as the architecture specification or 
integration tests. These additional activities are usually neither covered by the SE process nor governed 
by workflows; manual coordination can lead to impacts being forgotten and result in inconsistencies, 
e.g., between the source code and the tests or specifications. The fact that these activities belong to 
different project areas with often also different responsible persons makes this even more difficult. Even if 
not forgotten, follow-up actions could benefit from automated governance and support. Furthermore, it 
can be difficult to determine which stakeholder should be informed about which change and when, 
especially considering the dynamic and diverse nature of the artifact-to-stakeholder relationship and 
various information needs. 
 
 
Support for two different ways of coordinating tasks is desirable, passive and active. Both are elaborated 
in the following. 
 
Passive Coordination Support. The passive coordination ability provided by the system deals with 
configurable user notifications. To support users in their collaboration and to counteract forgetfulness, 
automatic notifications can be beneficial for two situations in SE projects: first, when events happen that 
relate to activities or artifacts, and second, when status changes occur to the artifacts. For these two cases, 
different components of our approach are utilized: On the one hand, the Context Management component 
contains information relevant to the process and the project (such as users, roles, activities, artifacts). On 
the other hand, the Event Extraction component automatically forwards events relating to the 
aforementioned concepts. Examples include the start and end of an activity or a change of the status of an 
artifact. Based on these facts and an explicit Notification Template concept, notifications both for general 
and individual cases can be easily configured. The Notification Template has three main properties: 
‘source’ can be connected to arbitrary concepts that shall be monitored by that Notification Template. 
This can relate, for example, to an individual artifact or even to all artifacts of a specific type. ‘trigger’ 
captures an event relating to the source or a particular state of the source, so that a concrete notification 
can be created when a particular event occurs relating to the source or when it enters a particular state. 
The third property ‘target’ describes who shall receive the notification. It can be configured for roles to 
create more general notification but also for individual persons. The process for such notification works 
as follows: 
 

 Notification registration: The system has general pre-configured Notification Templates to which 
the user can add new personalized ones. This is done by the user creating a new Notification 
Template. 

 Event detection: As project execution progresses, various events happen and various entities 
change their state. Some of these events and changes can be relevant for notifications: some of 



 

them are explicitly triggered by users interacting with the system and others are detectable by the 
Event Management component sensors. 

 Notification generation: The Context Management component uses the information in the 
Notification Template concepts to create concrete notifications for the users and assigns these to 
them. 

 Notification distribution: The information is displayed to the users via an integrated GUI 
component. 

 
Active Coordination Support. To support automated active coordination support, a system must be 
capable of automatically identifying different areas of interest in a project, such as ‘Implementation’ or 
‘Architecture’. Therefore, an explicit Area concept has been added that, in turn, can be further segregated 
into so-called Sections that enable logical partitioning of an Area (e.g., Area: Implementation – Section 1: 
GUI Development – Section 1.1: Source code package xy). These definitions can be tailored for projects 
and automatically supported. For example, to split up the ‘Implementation’ Area, the structures of the 
source code can be scanned, creating sub-Sections of the Area alongside the package structure of the 
source code. Automated active coordination comprises a four-phased approach: 
 

1. Determine projects Areas that are affected by an activity: The first step is configurable and can 
take into account various facts to determine which Areas are affected. For the scenario shown in 
Example 3, such a configuration can be ‘Search for affected areas in case of technical issues if an 
activity implies a change to an artifact and the artifact is a source code artifact and belongs to an 
interface component’. 

2. Determine the concrete target affected within the Area: The second step takes the selected 
Areas and the target of the applied activity as input. This target can be a concrete artifact as in the 
given scenario or a more abstract Section of the project as, e.g., a module. The concrete target is 
then determined via relations of the different Sections. An example for this can be implementation 
and testing: the testing (structural or retesting) of a module relates to its implementation. In the 
given example, the relation does not need to be in place for the concretely processed component, 
but can also be found if one exists elsewhere in the hierarchy. If there is no direct relation from the 
processed source code artifact, the system looks for other components the file belongs to, e.g., the 
module. 

3. Determine the Person responsible for the chosen target: Once the target for the follow-up 
action is determined, the responsible persons or teams must be discovered. For example, if the 
target of the follow-up action is a source code file with no direct responsible party defined, the 
overlying Sections are also taken into account, e.g., the encapsulating module. If a team is 
responsible, the information is referred to the designated contact of that team for further 
distribution. 

4. Determine the concrete activity to be issued: After the target and the responsible have been 
determined, a concrete activity has to be chosen. This is done using properties of the involved 
artifacts, areas, sections and the activity that was the trigger. 

 



 

To enable a system to realize automated detection of follow-up actions, different concepts have to be in 
place in the Context Management component to be aware of them: 
 

(1) The project must be hierarchically split up into components like areas or modules. 

(2) Connections of different relating components must be established as, e.g., the fact that testing a 
module relies on implementing that module. 

(3) Information that may be used to clarify under which circumstances one area affects another 
must exist. 

(4) Different components must be classified, as, e.g., a package in the source code that realizes the 
interface of a component. 

 
The high degree of dynamic collaboration in SE raises challenges for automated support of process 
awareness and guidance in SEEs. Currently, SEEs lack contextual information and integration, especially 
with regard to adaptive collaboration and workflows. The approach presented in this section enables 
explicit modeling and management of intrinsic as well as extrinsic activities. Active and passive 
collaboration support is provided for software development. This incorporates two different types of 
support: Communication and collaboration of different individuals is supported by passive information 
distribution that is automatically conducted by the system. Configurable mechanisms are in place to 
enable a wide scope of notifications concerning various events or state changes of various entities or 
activities. Furthermore, notifications can be general, pre-configured, user-specific, and/or dynamically 
added by concerned individuals. Additionally, the system enables the fully automatic initiation and 
governance of related follow-up activities caused by other activities. A dynamic information distribution 
strategy enables related components to be associated even if no direct relations between the source 
component and the target component exist. 
 
 
Exception Handling 
 
To increase the level of standardization (i.e., usage, repeatability, conformance, etc.) of process execution, 
automated support for SE processes is desirable. To enable this in a holistic way, an automated solution 
should be capable of some kind of process exception handling so that the occurrence of exceptions does 
not deteriorate process performance. This is further described in (Grambow, 2013; Grambow, 
Oberhauser, & Reichert, 2011b). Automated process exception support will only be acceptable if it is not 
too complex or more cumbersome than manual handling (Ellis, Keddara, & Rozenberg, 1995). 
Automated handling implies automated detection of exceptions that depends on the capabilities of the 
system managing the processes (Luo, Sheth, Kochut, & Miller, 2000). However, existing PAIS are still 
rather limited regarding detection and handling of exceptions (Russel, van der Aalst, & ter Hofstede, 
2006). Exceptions can arise for reasons such as constraint violations, deadline expiration, activity failures, 
or discrepancies between the real world and the modeled process (Russel, Ter Hofstede, Edmond, & van 
der Aalst, 2004). Especially in the highly dynamic SE process domain, exceptions can arise from various 
sources, and it can be difficult to distinguish between anticipated and unanticipated exceptions. Even if 
they are detected, it can be difficult to directly correlate them to a simple exception handler. Exceptions 
can arise relating to various items such as activities, artifacts, or the process itself. To incorporate 
automated support for such exceptions into a system, the following requirements should be satisfied at 
least to some extent: 
 



 

 The system shall enable automatic detection of the occurrence of various exceptions. This 
comprises the ability to automatically infer the occurrence of an exception based on various 
events acquired from the environment of the system. 

 The system shall be able to determine situationally appropriate exception handlings. On the 
one hand, this depends on the correct classification of the exception. On the other hand, it 
depends on contextual factors the system must incorporate like properties of the current 
project or situation. 

 The system shall be able to automatically determine the person responsible for an exception 
handling. This is no trivial task since according to the situation it could be a person responsible 
for an activity, or for an artifact, or perhaps the principal of a person. 

 The system shall be able to automatically initiate and govern exception handlings. As all 
parameters of the exception and the planned handling are determined, the system must have 
access to the process as it is enacted to automatically initiate a handling, distribute it to the 
responsible person, and govern its execution. 

 The system shall be able to deal with incomplete knowledge about exceptions. In many 
situations, not all needed data relating to an occurred exception may be in place. The system 
shall be capable of taking action in these situations as well, utilizing the incomplete 
knowledge. 

 
Again, to illustrate the requirements, we apply a concrete example: 
 
Example 4a (Exception): Exceptions can occur that relate directly to executed activities, to artifacts, or 
to future scheduled activities. In the following, a concrete scenario is presented illustrating such 
exceptions in practice: In applying a bug fix to a source code file, the removal of a known defect might 
unintentionally introduce other problems to that file. E.g., source code complexity might increase if 
multiple people applied “quick and dirty” fixes. Thus, the understandability and maintainability of that 
file might drop dramatically and raise the probability of further defects. 
 
Many of these exceptions may be difficult to detect, especially for a PAIS without direct knowledge of 
the environment. It may also be unclear when exactly to handle the exception and who should be 
responsible. Generally, the knowledge about the exception can vary greatly, making unified handling 
difficult and the application of standardized exception handlers unsuitable. To enable a system to 
automatically deal with such exceptions and satisfy the requirements already elicited regarding exception 
detection, exception handling, and the distribution of the handling to a matching human agent, our 
concept relies chiefly on contextual information, its modeling in the system, and its detection by sensors. 
To apply a unified and repeatable approach to automated exception handling, we apply a set of concepts 
and a well-defined procedure. The latter can be roughly understood as an extended flexible variant of 
ECA (Event-Condition-Action) (Paton, 1999). The three phases are called Recognition, Processing, and 
Action here. In the following, the involved abstract concepts for exception handling are elaborated. 
 
Exception: The notion of Exception is utilized to classify a deviation from the planned procedure that was 
recognized to have a potential negative impact on the process, and thus should be dealt with to avoid such 
an impact. According to (Reichert & Weber, 2012), typically there is a distinction between anticipated 
exceptions, whose occurrence can be easily foreseen, and unanticipated ones. For anticipated exceptions, 
standard exception handlers can be defined. Usually, this is not possible for unanticipated ones. Since SE 
projects typically feature a dynamic process and it might be difficult so foresee a multitude of possible 
exceptions, our approach does not discriminate between anticipated and unanticipated exceptions. It also 
does not use standard exception handlers tied to specific exceptions. Flexibility is improved through the 



 

explicit separation of events, exceptions, handling of the exceptions, responsible persons, and the point in 
the process where a handling is invoked. Thus, occurring events can be classified and it can be separately 
determined whether exceptions shall be raised, what to do with them, when to do it, and who shall do that. 
Additionally, the approach manages different levels of knowledge about occurring events. Depending on 
that level of event knowledge, it can be decided whether a more generic exception shall be raised or rather 
a specialized one. As stated in (Russel, Ter Hofstede, Edmond, & van der Aalst, 2004), anticipated 
exceptions occurring during the execution of pre-specified workflows include the following categories: 
activity failures, deadline expiration, resource unavailability, discrepancies (between a real-world process 
and its computerized counterpart), and constraint violations. These can be covered by various exception 
types like Activity-related Exception, Artifact-related Exception, and Process-related Exception that can 
be explicitly modeled. The included exception hierarchy is not intended to cover every possible exception 
in every project. It rather presents a basis for frequent exceptions and can be extended: 
 
Handling: The notion of Handling is used to describe activities executed as countermeasures for a 
triggered exception. Since SE exceptions are usually complex and of semantic nature, no simple rollback 
of the activities that caused the exception can be done. As an example, consider the activity of bug fixing 
(as shown in Example 4a): While fixing a bug, this activity can also introduce additional problems to the 
code such as increased code complexity. This can happen when the person applying the bug fix is not the 
one responsible for the processed artifact. As a countermeasure, an explicit refactoring can become 
necessary. Handling neither comprises the person to execute these activities nor the time or point in the 
process where they are to be executed.  
 
Responsible: Responsible captures the responsible person for a Handling. As in Example 4, this can be 
the one who executed an activity introducing the exception or the one responsible for an artifact related to 
an exception. 
 
Target: Target is the point in the process where the Handling is executed. For certain exceptions, it can 
be suitable to integrate Handling directly into the workflow where the exception occurred, whereas in 
other cases a separate exception handling workflow has to be executed. 
 
Exception Handling Procedure. The procedure enabling automated exception handling is separated into 
three phases named recognition, processing, and action phase. Each of these comprises several activities 
conducted by the system. The procedure is illustrated in the following, beginning with the activities of the 
recognition phase. 
 

 Event Detection: To enable automated assistance for exception handling, the detection of events 
related to exceptions must be automated. In a SE project, these events relate to processed 
activities and artifacts and thus also to supporting tools. Therefore, the Event Management 
component gathers a multitude of events from various tools like IDEs or source control 
management tools. 

 Event Aggregation: Automatically recognized events relating to the tools in an SE project provide 
information about currently executed activities. Nevertheless, these events are often of rather 
atomic nature (like saving file) and provide no information about the complex activity a person is 
performing. Therefore, these atomic events need to be processed and aggregated to derive higher-
level events of more semantic value (like the application of a bug fix). 

 
The processing phase comprises a set of activities, differentiating between immediate and deferred 
exception handling cases: 
 



 

 Event Classification: Event classification can be used to gain more knowledge about events or 
other new information to be able to find a specific handling later. The new information can also 
be related to the current project and its properties, like e.g., its quality goals or properties of the 
current situation. 

 Handling Determination: When an exception has occurred, it has to be decided when and how to 
take countermeasures, which also depends on the current project situation. The situation can be 
classified using different parameters like risk or urgency. If urgency is high, meaning there is a 
high schedule pressure on the project, one might decide not to address the exception immediately 
but to retain it for deferred handling. Since this approach, using event classification, can cope 
with different levels of knowledge about events, it might also be decided to retain an exception if 
the knowledge about it does not suffice for immediate automatically-supported handling. 
Furthermore, different types of exceptions with different handlings can be connected to different 
events relating to different levels of knowledge. Thus, relative generalized exception handlings 
are also possible for situations in which only a small amount of knowledge about the exception is 
present. 

 Responsible Determination: If it is decided to take immediate action in case of an exception, the 
person responsible for that action has to be determined. There can be different possibilities: For 
example, if an exception relating to an activity occurred, the processor of that activity can be 
responsible or, if an exception occurred relating to an artifact, the responsible person for that 
artifact (or, e.g., source code package) can also be responsible for handling the exception. There 
may not be a direct party responsible for each processed artifact, but responsibilities can be 
hierarchically structured to simplify determination of the responsible party. 

 Target Determination: When the responsible party for handling the exception is determined, the 
concrete point in the process has to be determined where the handling is applied. In certain 
situations it may be appropriate to directly integrate a handling in a running workflow. In other 
cases a new workflow would be initiated. 

 Exception Retainment: If, due to various parameters of the situation, no immediate handling is 
favored, the exception is retained in an exception list. That list can be analyzed, e.g., at the end of 
an iteration by the project manager. 

 
The final phase is called action phase and comprises the following activities: 
 

 Handling Preparation: After all parameters for the handling of an exception are determined, the 
concrete handling has to be prepared, i.e., a new workflow instance has to be created or the 
handling has to be integrated seamlessly into a running workflow instance. 

 Handling Execution: Finally, the prescribed handling is executed by the chosen person. 

 Deferred Handling: When exceptions are retained, a human can decide for which exceptions a 
deferred handling is preferred. Therefore, an additional GUI is needed, presenting a list of 
retained exceptions and enabling manual determination of a handling or discarding of the 
exception. 

 
To illustrate the practical application of this approach to exception handling, Example 4a is reconsidered 
in the following example: 
 
Example 4b (Exception handling): As aforementioned, consider the following scenario: the code 
complexity of a source code artifact is very high and was introduced by some activity. The problem may 



 

be detected much later and relate more to the artifact than to the activity in that case. Furthermore, the 
appropriate person to deal with the problem could be the one responsible for the entire artifact rather 
than the last person who worked on it. To counteract the new problem, an explicit refactoring can become 
necessary. Automatic detection of the deterioration of the state of this artifact is possible in the approach 
via static analysis tool reports, which can cause a process exception to be raised. A context-matching 
handling can then be automatically chosen (the appropriate refactoring). If the person is still working on 
that artifact, the handling can be directly integrated with his work. If not, the handling is forwarded to the 
person responsible for the artifact and can be queued as a work item.  
 
The approach explained in this section enables a higher level of automatism and support relating to 
exception handling. It can deal with different levels of knowledge concerning events and exceptions and 
thus does not require the separation between anticipated and unanticipated exceptions. The combination 
of environmental awareness with the semantic capabilities also enables the discovery of links between 
activities and exceptions that have no direct connection. These features also support the determination of 
a situationally matching handling for an exception. Finally, the flexibility of the handling is enhanced by 
separating the determination of the handling, the responsible party, and the target of the handling. 
 
 
Quality Assurance 
 
As described in (Grambow, 2013; Grambow & Oberhauser 2010; Grambow, Oberhauser, & Reichert, 
2010a; Grambow, Oberhauser, & Reichert, 2011a), software quality assurance (SQA) is a crucial 
component for every SE project, and various studies (Brooks, 1987; Glass, 1997; Naur & Randell, 1968; 
Jones, 2010) show that the quality of software systems has been and remains a significant problem. 
Automated guidance for combining SQA with SEPM (Software Engineering Process Management) is not 
yet prevalent. Challenges in software development projects are presented at both the product and process 
levels based on the nature of software artifacts and manually-driven processes. Product intangibility 
hinders effective retrieval of timely information about its product quality status. At times, software quality 
measures come into focus and are applied close to release, or, when the project is behind schedule, they 
may be jettisoned altogether; however, it is generally acknowledged that their application in earlier 
development stages saves time as well as money (Abdel-Hamid, 1988; Slaughter, Harter, & Krishnan, 
1998). The proper application of quality measures is also problematic, since their effectiveness and 
efficiency depend on many factors, such as the applicability of the measure, the project timing, worker 
competency, and correct fulfillment (Abdel-Hamid, 1988). Furthermore, quality goals can be conflicting 
(like e.g., performance and reliability) and the measures must match the goals of the project. If a system 
or tool aims to provide holistic process support for SE projects, integration of quality assurance must also 
be taken into account and satisfy the following requirements: 
 

 To be aware of problems in the SE project, the system must have a facility to integrate 
information on SE process or product problems from various sources (e.g., external tools 
measuring the state of the source code, bug tracking systems). 

 To enable automated integration of quality measures at run-time, the system must be aware of 
quality opportunities, meaning time points when a user can cope with a quality measure. This 
requires knowledge about the users' schedule, meaning the abstract activities that have been 
scheduled and estimated for the user. 

 Applied quality measures should be automatically chosen during run-time in alignment with 
project goals in order to match the defined strategy of the project. 



 

 Quality measures should not only rely on detected problems, but also consider common quality 
enhancement. Thus, proactive and reactive measures should be available. 

 Context-sensitive tailoring of proposed measures is desirable considering different factors of the 
actual situation, e.g., properties of the applying person and application time point. 

 The selection of measures should be aware of their effectiveness to optimally match specific 
environments or situations in different organizations. Therefore, continuous monitoring of the 
quality of the source code is essential to detect potential impacts of applied measures on the 
overall quality. In particular, a relation between the application of SQA measures and the 
evolution of source code quality should be established to assess the effectiveness of the measures. 

 The automated distribution of quality measures should not interfere with standard development 
process execution. It should be rather seamlessly integrated with other workflows that are part of 
the process. That way, an enhanced traceability of quality measure application can be fostered. 

 The quality measure integration should also not interfere with the users. They should not be 
disturbed by quality measure proposals. 

 
To counteract these problems and to satisfy these requirements regarding the automatic detection of 
quality problems and opportunities and the automatic contextual integration of software quality measures 
in the users' process, we propose the following approach, which has also been implemented in the 
CoSEEEK framework. The approach features three phases: detection, process, and post-processing, as 
illustrated in the following figure and explained afterwards: 
 
 

 

Figure 6. Processing for Automated Quality Assurance 
 
 
Detection Phase. The Detection Phase continuously enables an awareness of the current project situation. 
For integrating quality measures, two factors are of particular interest: the first is the presence of 
problems - recognized via the ‘Problem Detection’. This considers primarily problems in the source code 
like unacceptably high complexity. The second is the availability of opportunities for quality measures 
(actions) in the users’ schedule - recognized via ‘Quality Opportunity Detection’. The former comprises 
the following steps: 
 

 Test Analysis: The quality of the source code is measured by static analysis tools that produce 
reports. These reports are analyzed to gain an awareness of problems and the affected artifacts. 



 

 Rules Processing: In this step automatic rules are applied that specify thresholds for the metrics 
applied on the code. For all artifacts where a threshold is exceeded, a quality measure is applied 
automatically. 

 
When a user finishes an activity, the detection for quality opportunities can be started. We call that step 
‘Q-Slot Detection’. If a Q-Slot is available, an ordered list of proposed measures is generated. This list is 
used by a tailoring process to select a measure that contextually matches the current situation and user. 
That measure is then automatically integrated into a workflow. The steps are further described in the 
following:  
 

 Workflow estimation: The different user activities of a project have to be estimated concerning 
their time consumption.  

 Workflow enactment: As the workflows are executed by users, the planned activities are 
completed. 

 Q-Slot detection: Based on the planned activity times and their real values, it can be determined 
when a quality measure can be proposed without delaying the process. 

 
Processing Phase. The Processing Phase deals with the selection and proposal of the quality measures 
and involves four steps. Utilizing the Goal-Question-Metric (GQM) technique (Basili, Caldiera, & 
Rombach, 1994), quality measures are initially proposed in alignment with project goals. To prepare these 
measures for their automated application, ‘Measure Tailoring’ incorporates information about the 
applying persons and the possible points in the users' schedule in which to apply the measure. This leads 
to a selection of appropriate points (so-called Extension Points) and to an automated integration of the 
quality measures into the concrete workflow of the chosen person.  
 
Post-Processing Phase. Finally, to be able to track the quality of the project continuously, in the Post-
Processing Phase, a ‘Measure Assessment’ is performed utilizing the quality trend analysis. This analysis 
supports an awareness and automatic assessment of the potential utility of the applied measures, fostering 
quality. Since each project is unique, the applicability and effectiveness of measures can vary with respect 
to different projects. Therefore, the system executes an assessment phase to rate the applied measures and 
to incorporate their impact in the given project. 
 
SQA should be aligned to the SE process being used, and be relevant and applicable at the operation 
level. The manual combination of SQA with SEPM requires constant vigilance and associated labor in 
order to avoid missing quality opportunities, to continuously monitor quality goal states, and to adapt 
measure and measure utility to new quality situations. The application of BPM in SE environments has 
been sparse due, among other factors, to a lack of contextual adaptability. Automated quality guidance 
support could assist developers by providing SQA triggering that is based on current and factual data, 
continuously monitoring quality goal states and trends, and selecting and tailoring measure selection to 
that being most appropriate in the current situation. This section presented such an automated solution to 
support the integration of process management and quality assurance in SE, utilizing contextual 
awareness and dynamic processes to automatically insert suitable quality measures into the SE process. 
 
 
Knowledge Provisioning 
 
Modernization projects are - as all other SE projects - complex and involve highly knowledge-dependent 
work, since software development processes are mostly knowledge processes (Kess & Haapasalo, 2002). 



 

Software engineering (SE) and especially software modernization are still relatively new and immature 
disciplines, and while work has gone into integrating knowledge and process management to support SE, 
a comprehensive and viable solution is elusive. Currently, process management is typically done in a 
documentation–centric or agile fashion and lacks automated process support. Knowledge provisioning, in 
turn, is crucial to enable the distribution of knowledge among different people and to keep and exploit 
experience gained in various projects. Supporting this with an automated system can be very beneficial 
(Teigland, Fey, & Birkinshaw, 2000), and important capabilities of such a system are capturing, 
maintaining, reusing, and transferring knowledge. Wikis are often used for SE knowledge management 
because of the easy creation and access of information (Schaffert, Bry, Baumeister, & Kiesel, 2008). 
However, retrieval of contextually relevant information from Wikis remains difficult (Schaffert, Bry, 
Baumeister, & Kiesel, 2008). Thus, information is captured and stored but its reuse is still problematic. 
This could be facilitated if knowledge use was connected with process execution (Grambow, 2013; 
Grambow, Oberhauser, & Reichert, 2011e; Grambow, Oberhauser, & Reichert, 2012c). A framework or 
system providing holistic process support can achieve this if basic requirements are satisfied: 
 

 To be able to use and disseminate knowledge in a project, the presence of some facility to store 
knowledge is required. The storage and management of knowledge for users shall not be 
cumbersome. Additionally, to enable an automated system to access and utilize this information, 
machine-readable semantic annotation shall be supported. 

 Since not all the information users require is stored locally in the system, a facility to integrate 
external information sources is required. Examples of such information include process 
documentation or external web pages. 

 The knowledge entered by users should be available to an automated system to be able to 
automatically use it. This includes automatic access to the knowledge store and semantic 
enhancements to the knowledge structure to enable automatic selection of the suitable knowledge. 

 There should be a means to utilize contextual information for knowledge selection. Only that way 
can it be assured that the automatically provided information matches the current situation of the 
individual and is therefore more likely to be applicable. 

 There shall be a facility to automatically inject the selected knowledge into the standard SE 
process execution. Users should not be distracted or bothered with additional effort access the 
knowledge. Seamless integration with everyday work is crucial. 

 Certain process information may be specialized and not generally applicable. Furthermore, the 
amount of information provided must not exceed certain thresholds, so that users are not 
subjected to information overload and thus overlook important information. Therefore, the 
provisioning of information should be configurable, e.g., based on the needs or preferences of 
projects, processes, or users. 

 
In the following we present how knowledge is automatically integrated in a system supporting a project 
and how it is concretely provided to the users, featuring a concrete example from the software 
modernization domain. 
 
Knowledge Integration. To provide the user with a consistent knowledge provisioning system (KPS) 
that realizes holistic information support for the SE process, a set of components have to interact as 
illustrated by Figure 7. The central component of the KPS is the Context Management component, which 
stores, aggregates, and processes all high-level project information relevant to the KPS. It incorporates 
context information about users, artifacts, and various events as well as information from process 
execution. It receives context information from the Event Management component (1), whose 
responsibility is the acquisition and aggregation of events from the SE environment (2). This is realized 



 

by a set of sensors integrated in external tools, such as IDEs or source control systems used within a SE 
project. The Process Management component enables a SE process model implementation as well as 
operational process support. This is done by means of automated workflows actively governed by that 
component. The Context and Process Management components work together to enable the usage of 
context information in the process and to better align process execution with reality. 
 
 

 

Figure 7. Knowledge provisioning automation 

 
 
Knowledge provisioning is realized by a Knowledge Store and a Knowledge Provider. The former is 
utilized to store user-relevant SE information and to make it available to the KPS via supplementary 
machine-readable semantics. The Knowledge Provider, in turn, coordinates that information (4) and 
provides it to the Context Management component (5) to be injected into the users’ workflows (3) in the 
appropriate context. The Knowledge Provider is also responsible for the abstract definition of user 
relevant information within the KPS (called Guidance Items), which is referenced by the Context 
Management component, as well as for the integration of external information resources (6). 
 
User communication is realized as follows: The user can enter relevant project or SE information (e.g., 
best practices) using the Knowledge Collection GUI (7). That information is stored in the Knowledge 
Store (8). The Knowledge Management GUI (9) allows users to integrate external information (e.g., 



 

process documentation at an external web location) or configure the way the information is provided (e.g., 
‘This guidance is applicable to this role at that point in the process’). The configuration for information 
provisioning is stored directly in the Knowledge Provider (10). All support and guidance is then 
distributed to the user by the Process Support GUI (11). That GUI receives its information from the 
Context Management component (12), which unites information on the activity and workflow from the 
Process Management component (3) with additional user-relevant SE information from the Knowledge 
Provider (5). 
 
Process-centered Knowledge Support. The storage and management of user-related information is 
realized using the Knowledge Provider and Knowledge Store as well as the two knowledge management 
GUIs. As already mentioned, information can be collected and stored within the KPS (internal 
information) and be integrated from other sources (external information). Internal information is collected 
via the Knowledge Collection GUI that enables users to annotate that information with tags. Examples for 
tags are ‘junior engineer’, ‘front end development’, or ‘high risk’ that can then be used to automatically 
and appropriately select the information to support the users in their context. This is accomplished by the 
Knowledge Provider that also manages the integration of external information sources. For the 
organization of information in the KPS, the concept of a Guidance Item (GI) is utilized. All guidance the 
KPS can distribute to users is defined by the GIs created with the Knowledge Management GUI and 
stored within the Knowledge Provider. GIs are shown to the users as lists (plain lists or checklists). Each 
GI has a set of tags that are used to describe the information for the KPS as well as for the users entering 
and managing it. Tags can be any type of identifying property indicating to what the GI applies, like 
‘Activity’, ‘Junior Engineer’, or ‘High Risk Artifact’. A GI is an abstract unit of guidance information 
that may contain an arbitrary number of positions or sub-items. The information defined by it can be static 
or dynamically compiled by the Knowledge Provider. The latter is only possible for internal information 
stored in the Knowledge Store. If a GI is internal and dynamic, the Knowledge Provider will use the tags 
of the GI to query the Knowledge Store for items that are tagged in the same way, creating the GI out of 
these. Based on its type, a GI will be treated differently by the KPS. For example, a checklist will have a 
check mark for each sub-item, while plain information will just be shown to the user. 
 
Automatic knowledge support must necessarily be aligned to a person’s context and intent, otherwise it is 
likely to be irrelevant and the tool rejected. Therefore, the activities performed by the users and governed 
by the Context Management component are the initiators for GI provisioning. For these activities, four 
properties decide how the Context Management component presents GIs to the user: These properties are 
called GI alignment, target obligation, GI usage, and item compilation: 
 

 GI alignment governs when a GI (such as a checklist) is shown to the user in relation to the 
activity that is the target of the GI. There are three options: ‘Pre’ GIs are shown at the beginning 
of the activity. ‘Post’ GIs are shown at the end of an activity. ‘Pre/Post’ GIs incorporate both of 
the aforementioned, allowing, e.g., a checklist to be updated with additional items at the end of 
the activity. 

 Target obligation associates the connection to the target activity. Some GIs like checklists may be 
directly tied to a target activity. These are called ‘Synchronous’ and their lifecycle depends 
directly on the target activity. Other GIs may be shown based on certain events (including, e.g., 
activity termination). These are called ‘Asynchronous’. They are independent of the activities and 
can have a pre-defined lifetime. 

 GI usage provides additional optional information or important information whose incorporation 
may be required. Therefore, this property distinguishes between ‘Required’ and ‘Optional’ GIs. 
Using ‘Required’ GIs, the target activity will not be marked complete without also 
acknowledging the GI. 



 

 Item compilation defines how the items of a GI are compiled: ‘Static’ GIs are pre-defined with a 
static set of items. ‘Dynamic’ GIs are dynamically built by the system at the time they shall be 
shown. For these GIs, context properties are incorporated: The GIs can have various tags, like, 
e.g., ‘Development’. The same applies to information stored in the knowledge store. Consider 
tags like ‘Development’, ‘Junior Engineer’ and ‘Database’ here. At runtime the system has access 
to that context information, like who is executing an activity (and, e.g., his skill level, like junior 
engineer) or in what area the activity is executed (e.g., relating to database coding). So the system 
can compile, for example, a dynamic database development checklist for junior engineers. As 
already mentioned, GIs can only be dynamic when they are internal, as the system has no 
influence on GIs stored in external information sources like web pages. 

 
Utilizing these properties, different types of GIs (e.g., checklists) are possible. In the following, three 
prominent types are presented for illustration: 
 

 'Asynchronous static optional assignment pre checklist': This type of checklist is intended for a 
high-level user Assignment like, for example, ‘Develop a new GUI feature’. Being static, the 
checklist has a pre-configured set of checklist items that is defined in the Knowledge Base. The 
checklist is configured to be a pre checklist, meaning that is shown to the user when the 
Assignment is started in order to provide information to the user that is to be considered before he 
starts working on the Assignment. As this can be relatively general information (as, e.g., to check 
the requirements specification for the assignment), the checklist is also configured to be 
asynchronous and optional. This means the information is shown at the beginning, but it is not 
required to complete the checklist for the completion of the Assignment, and the information does 
not disappear when the Assignment is completed. The checklists persists for a defined time 
interval, giving the user the option to review the checklist at a later time point, e.g., when he has 
some time left waiting for a build to complete. 

 'Synchronous dynamic required activity combined checklist': This type of checklist relates to a 
more concrete Assignment Activity that is executed to complete an Assignment, as, e.g., the 
creation and execution of developer tests. The checklist is dynamic, meaning the system will 
compile its items dynamically at run time depending on context information, as, e.g., the skill 
level of the user. As it is a synchronous checklist, its lifecycle is tied to the target Assignment 
Activity. In this case it is also required and the user can thus not complete the activity without 
having completed the checklist beforehand. As a combined checklist, it accompanies the activity 
during its entire processing time: As the activity gets started, initial pre checklist items are shown, 
helping the user to prepare for the activity. When the user tries to complete the activity, new post 
checklist items get added, helping the user to not forget important things concerning the activity. 

 'Asynchronous dynamic optional task post checklist': This type of checklist is intended for Atomic 
Tasks that are performed to complete Assignment Activities. Examples for this are ‘Coding’, 
‘Debugging’, or ‘Checking in’. In this concrete case, the checklist is asynchronous and optional in 
order to just give the user the option to consider additional information for the tasks he is 
performing. Being an asynchronous post checklist, it is shown to the user when he switches tasks, 
and thus the considered task provides a reminder for things that should be considered at this 
completion of this task (e.g., at the task ‘Unit test creation’, if all functionality of the class to be 
tested has been covered). As Atomic Task switches frequently occur and one task might be 
executed multiple times in the context of an Assignment Activity, it can be configured to only 
show the checklist the first time the task ends, so as not to distract or annoy the user. 

 



 

We have now presented tree different types of generic automatically distributed checklists. To make the 
picture of this kind of knowledge provision more vivid, we elucidate a concrete example from the 
software modernization domain in the following. 
 
Example 5 (Knowledge provisioning): Figure 8 abstractly illustrates what different actors in the 
scenario do and how they cooperate to achieve automatic knowledge provisioning support via checklists. 
(A) During the execution of modernization projects, developers can add knowledge to the knowledge 
store, e.g., when encountering problems and finding solutions for them. This could be a hint to consider 
applying the Model-View-Controller (MVC) pattern for an existing GUI component that was not 
constructed according to the pattern. Developers can tag this GI to support later discovery by humans or 
by some model-based modernization tool. Other possible tags on a GI could include ‘junior’ to indicate 
applicability for junior engineers or ‘backend’ or ‘frontend’ to relate them to a specific implementation 
area. Checklists items specific to the support of modernization can also be included. (B) Project execution 
is managed and governed automatically by the system by means of different workflows belonging to the 
development process. (C) These workflows can be annotated, e.g., by a process engineer at specific points 
to use GIs (e.g., requirements or testing checklists). The GIs can be easily pre-defined in the Knowledge 
Provider: On the one hand, they can be explicitly and statically pre-defined. On the other hand, all 
information entered can be tagged to be useable for GIs. (D) The system continuously detects new facts 
about the current situation and stores them in the context base. This is enabled by a set of sensors 
integrated in various SE tools that automatically provide information about tool and artifact usage. An 
example for such a detected event can be the modification of a source code artifact in an IDE or a check-
in to a version control system. Utilizing this situational information, dynamic GIs are supported - 
workflows can be annotated to include GIs at certain points, but these do not have to be predefined. Such 
a dynamic GI is automatically generated by the system matching information of the current situation as, 
e.g., the skill level of the user or the time and quality constraints of the project using tags on information 
in the Knowledge Provider.  
 
 

 
Figure 8. Knowledge provisioning automation 

 
 
Providing knowledge-based context-aware support for the operational process for the dynamic SE domain 
remains challenging. In this area, this section contributes an approach for connecting and automating 
knowledge and process management. Semantic technology is used as link between automatically gathered 
context information, knowledge resources, and process execution. Thus, it becomes possible to 
dynamically assemble knowledge relevant to the executing user and to automatically and seamlessly 
integrate this knowledge with the users’ current workflow. 
 



 

This approach encompasses a set of features to explicitly support knowledge management: A Knowledge 
Store is integrated as well as GUIs for collecting and managing knowledge. This supports the user while 
entering knowledge and enables him to configure the way in which it is later automatically provisioned. 
Automatic access to the Knowledge Store has been enabled by the system. Having structured knowledge 
that is enhanced with machine readable semantics allows the system can automatically gather and 
disseminate that knowledge. The management of the knowledge is done via a separate active component, 
the Knowledge Provider. The latter also enables integration and management of external knowledge 
sources. Furthermore, the system can utilize contextual information that is automatically gathered and 
processed to query knowledge from the Knowledge Store that matches the situation of the user with 
properties, like the user skill, the project goals, or the implementation area. Finally, the information 
gathered for the user is provided in a way that is seamlessly integrated with the user’s workflow. This 
supports the use of the knowledge since the information not only fits the user’s current needs, but also 
does not require cumbersome extra work to manually acquire that knowledge. 
 
 
Process Implementation 
 
This section shows the application of our approach and framework to software modernization projects. 
Therefore, the modernization process XIRUP was applied to demonstrate these abilities. XIRUP defines 
four main activities for software modernization. All of these are further refined via separate workflows. 
That way, the modernization process is separated into four main phases: Preliminary Evaluation, 
Understanding, Building, and Migration. These four phases contain different activities as described in the 
following: 
 

 Preliminary Evaluation: In this phase, the architecture of the system to be modernized is 
recovered. Furthermore a preliminary analysis of the system is conducted, which can also 
influence the modernization decision. 

 Understanding: In this phase, the architecture recovery is continued to build a model of the 
system to enable further analysis. Furthermore, a modernization and transformation definition is 
created to enable the creation of a component model of the system. On this model, an in-depth 
analysis is conducted. Finally, code generation for prototypes takes place. 

 Building: In this phase, code is generated for all required components. To be able to test these, 
model evaluation is continued. 

 Migration: In this phase, concrete code generation for specific platforms takes place. To test the 
latter, model evaluation is continued once more. 

 
XIRUP was tailored to include a manual development activity, since we assume that any non-trivial 
transformation and generation to a modernized system will not be accomplished fully automatically 
without some manual coding involvement. The following figure shows the XIRUP implementation 
including the four main activities and their sub-processes. 
 



 

 

Figure 9. XIRUP process model tailored with manual non-model-based development  
 



 

Having integrated XIRUP into the CoSEEEK framework, the various features for holistic process 
and project support can be utilized for the execution of this process. In the following on concrete example 
from the knowledge management area is shown: 
 
Example 6 (Knowledge provisioning for modernization): For example, a junior engineer could be 
provided a GI containing appropriate checklist items as shown in Figure 10 when the ‘Programming’ 
activity is detected to be completed via a commit event for a backend component within the Code 
Generation step of ‘XIRUP Migration’. A senior engineer might be bothered by some of the “obvious” 
checklist items, and some items are not applicable to GUIs or databases. 
 
 

 

Figure 10. Example contextual checklist provisioned during a software modernization task 
 
 
FUTURE RESEARCH DIRECTIONS 
 

Towards a more seamless interaction with and automated holistic support of software modernization 
engineers in their SE environment, including their tool chain, artifacts, knowledge, standards, and 
processes, much remains to be done. For software modernization projects, the growing size, complexity, 
and interdependency of software applications and services in addition to the dynamicity of the tools, 
platforms, languages, processes, and required knowledge will provide continual challenges.  

Emergent software archeology tooling is a promising and dynamic area for assisting software engineers 
with the analysis of legacy systems, including various artifacts and aspects such as business process 
archeology. As general and project-specific knowledge bases are created (automatically and manually), 



 

this know-how can be automatically and contextually provisioned with the approach described in this 
chapter. 

In the area of software engineering environments, there is an industry trend toward enabling easier 
integration of heterogeneous tools and data, as evidenced by the Open Services for Lifecycle 
Collaboration (OSLC) communityviii, which can ease the access to and integration of operational data 
relevant to the SE process. Also, homogeneous tool chains and Application Lifecycle Management 
(ALM) and Product Lifecycle Management (PLM) products will play an increasingly important role with 
a tendency towards an expanded holistic view, including support for software maintenance and 
modernization efforts. Subsequently, one future research direction is the automated analysis and 
utilization of the available operational data during a modernization project. Also, the automated discovery 
and orchestration of tool chains, for instance (Biehl, 2012), will help to reduce the effort associated with 
configuring and integrating SEEs, enabling greater availability of tooling infrastructures that can be 
utilized by systems like CoSEEEK. 

Another interesting emerging trend is the development of software engineering recommender systems -  
see (Happel & Maalej, 2008), which could also provide guidance for software engineers during their 
modernization tasks. 

Software modernization has unfortunately received less attention among common software development 
process models, leaving a disparity. E.g., XIRUP is model-centric and doesn’t integrate leftover manual 
SE tasks, while common SE processes are mostly model- and modernization- oblivious. Future research 
into software process models should consider the complete long-term lifecycle including modernization 
and/or provide practical and viable ways for process engineers to consolidate the various needs on 
modernization projects. This includes a tighter integration of PAIS to support software modernization. 
Future research opportunities include the automated specification and tailoring of enactable software 
process models. 

 

CONCLUSION 
 
This chapter described the importance, background, and current issues regarding automated holistic 
support of software engineers during software modernization projects. With CoSEEEK, a solution 
approach and implementation was presented that automatically, dynamically, and systematically supports 
modernization process execution and collaboration. 

Various current problem areas in software modernization were outlined, including automated process 
governance, context integration, process dynamicity, extrinsic process coverage, process exception 
handling, collaboration and coordination, quality assurance, and knowledge provisioning. 

The CoSEEEK solution approach was described, elucidating how it addresses these problem areas to 
support software modernization holistically. The process implementation mapping from the abstract 
XIRUP to an operationally enactable workflow was described. This was followed by showing how 
extended process support for unforeseen extrinsic activities is achieved. Contextual properties were then 
considered to integrate situational influences into the workflows by applying SME. The section on 
information gathering described how the user can supply process and product properties that influence the 
workflow generation. Declarative workflow modeling then described how these properties are used to 
automatically generate workflows. Task coordination with passive and active collaborative support was 
discussed. Exception handling then dealt with activity-, process-, and artifact-related exceptions and the 
automated selection and incorporation of its handling. Quality assurance described the automated support 
for the selection and management of quality assurance measures. Then knowledge provisioning 
expounded on the integration of knowledge and process-centered knowledge support. 



 

In conclusion, software modernization remains a high-risk undertaking, especially since the original 
requirements are being changed dramatically, often the original team members in their original 
constellation with their original accumulated knowledge and intentions are no longer accessible, and any 
human knowledge is subject to temporal decay. A holistic approach such as CoSEEEK can mitigate or 
address a number the larger challenges that software modernization projects currently face. 
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