
Providing Automated Holistic Process
and Knowledge Assistance during
Software Modernization

Gregor Grambow
Ulm University, Germany

Roy Oberhauser
Aalen University, Germany

Manfred Reichert
Ulm University, Germany

ABSTRACT

Software modernization remains a difficult, highly intellectual, labor-intensive, collaborative, and risky
undertaking involving software engineers interacting in knowledge-centric processes. While many tools
and several methodologies are available, current modernization projects lack adequate automated and
systematic operational process support. This chapter provides an introduction to the topic of automated
process and knowledge assistance for software modernization, giving background information on related
work in this area, and then expounds on various problems. To address these, a holistic solution approach
and guidance framework called the Context-aware Software Engineering Environment Event-driven
framework (CoSEEEK) is described, which can support developers on software modernization projects,
addressing such aspects as process dynamicity, extrinsic processes, process exception handling, coordi-
nation, quality assurance, and knowledge provisioning. Subsequently, future research directions are dis-
cussed and a conclusion is drawn.

INTRODUCTION

Software applications are continuing to grow in size, with one recent study indicating that applications
typically double in size as measured in lines of code every 4-5 years (van Genuchten & Hatton, 2012).
Size growth results in increasing complexity and an increase in the total number of defects (Koru, Zhang,
El Emam, & Liu, 2009). Over time, legacy applications continue to face additional challenges (Mens et
al., 2005), including increasing software maintenance costs, quality assurance issues, and architectural
and technological erosion (Ducasse & Pollet, 2009; Tan & Mookerjee, 2005). Software modernization is
challenged with modernizing the language and/or technologies used in a legacy application, while
retaining its previous functionality, and as such has a key place within the Software Maintenance
knowledge area of the Software Engineering Body of Knowledge (SWEBOK) (Abran & Bourque, 2004).
Yet many reengineering efforts fail because they are unsystematically executed using ad-hoc processes
(Weiderman, Bergey, Smith, & Tilley, 1997). Various software modernization strategies, processes,
methodologies, and techniques have been developed over the years, and the appropriate selection,

tailoring, and application to a given modernization situation is dependent on many factors, including orga-
nizational constraints, budget, time, and resource constraints, experience, available competencies, risk, ur-
gency, criticality, etc. (ISO/IEC 14764, 2006). Aspects involved in modernization can include business
process archaeology, process mining, business process modeling, reverse engineering, software architec-
ture, model-driven software engineering, knowledge management, and static and dynamic code analysis.

Software modernization remains a risky, difficult, and highly intellectual process incorporating various
automated and manual tasks performed by specialized knowledge workers. The process lacks sufficient
automated and systematic operational process support. The intangibility of the product represented in its
source code artifacts poses a significant comprehension challenge to software engineers. To support the
latter in their modernization tasks, various tools such as tools related to Model-Driven Architecture™
(MDA) (Mukerji & Miller, 2003) from the Object Management Group (OMG), and various processes
such as the (ISO/IEC 14764, 2006), Service-Oriented Migration and Reuse Technique (SMART) (Lewis,
Morris, & Smith, 2005), and eXtreme end-User dRiven Process (XIRUP) ("D31b", 2008) from the
MOdel driven MOdernisation of Complex Systems (MOMOCS)i project. Mostly, the former are utilized
for supporting the project participants’ individual tasks while the latter aim to help organize the necessary
collaboration and sequencing of work. However, this lack of integration may also be a crucial obstacle for
holistic and technically supported process enactment in the software engineering (SE) domain: On the one
hand, projects and their processes are planned using abstract process models, on the other hand the
concrete tasks are executed by different people working with different software tools and techniques in
order to manipulate a large number of different artifacts (e.g., specifications, user documents, source code
artifacts, or tests). The tools are crucial for the successful completion of the different tasks, yet their usage
is neither directly connected to the process nor to each other. This promotes an ever-growing gap between
the planned and the actually executed process. This disparity has negative effects for modernization
projects and their produced software: First of all, proactive and reactive software quality techniques are
often not systematically and satisfactorily integrated, since the actually executed operation process is
unknown. Project planning with management tools (e.g., in visual form such as a Gantt chart) typically
does not provide process governance nor process execution support. Since quality assurance is not
systematically and automatically integrated, important quality actions (perhaps involving tools for static
code analysis, profiling, or test remediation) may not be executed in a timely fashion, and quality
deterioration may go undetected.

An important part of modernization is recovering specific knowledge from existing software assets.
Business Process Archeology (Pérez-Castillo, de Guzmán, Piattini, & Ebert, 2011) extracts abstract
models of these legacy systems, including the company and the company operation supported by this
system. For example, business process models, which can be quite complex and be tied to various
artifacts and should be well understood during the modernization effort by the software engineers. For
this, knowledge management and provisioning is also a crucial factor for successful modernization, yet it
is rarely if ever systematically integrated at the operational level. E.g., knowledge may be recorded in
wikis or documents, but since it is not automatically situationally associated with source code, tools, and
processes, it must currently be manually retrieved by a software engineer when he or she perceives the
need and triggers a search or retrieval, and effective and timely situational knowledge dissemination
opportunities are missed.

Besides these concrete problems, more general issues exist caused by disparity of the abstractly planned
process and the actually executed process incorporating various humans, activities, tools, and artifacts.
Some important tasks executed within a modernization project may not be explicitly covered by the pro-
cess (e.g., debugging) and therefore remain neither planned nor traced. The same applies for dependencies
between activities that are part of the process and others that are extrinsic to the process (e.g., open issues
or questions). This also has an impact on the ability of the projects or organizations to cope with process-
related exceptions. These can be of complex nature involving multiple actors, tools and artifacts, thus

concealing the relation between cause and effect. Additionally, for cost and resource availability reasons,
the trend towards global software development may also affect modernization projects, which could
benefit from automated support for global collaboration in the modernization processes.

Towards addressing the aforementioned challenges, a tighter connection between the planned process and
concrete tooling and artifacts is desirable. To achieve this, we pursue an abstract holistic concept and
implementation framework named CoSEEEK (Context-aware Software Engineering Environment Event-
driven frameworK). Its main idea is the contextual, semantic extension of adaptable operational
processes, collaboration support, and the automatic integration of SE tools, knowledge, and guidance to
be able to consistently manage how people execute this process and manipulate various artifacts via tools.
This is illustrated in Figure 1:

Figure 1. Connection of abstract and operational processes

On the abstract level, processes are specified by the role of a process engineer by means of process
models. These models contain the processes to be executed as well as specifications of utilized artifacts,
tools, roles, and additional support information such as checklists. On the operational level, there are
users utilizing SE tools such as IDEs, configuration management tools, static code analysis tools, and
artifacts like specifications, source code, or checklists. Our concept and system enable a direct connection
of the abstract and the operational areas, integrating knowledge such as process guidance with SE tools
and artifacts for concrete projects and organizations. This is achieved by contextually extending a
Process-Aware Information System (PAIS), which not only enables the explicit modeling of artifacts,
tools and users, but also their direct connection to the activities governed by the PAIS (Reichert & Weber,
2012). Furthermore, via a sensor framework, the actual SE tools in use are integrated together with target
artifacts connected to the model in the contextually extended PAIS.

Overall, this chapter demonstrates an approach to automatically, dynamically, and systematically support
modernization process execution and collaboration. Required tools, knowledge, and artifacts are directly
interwoven within abstractly defined processes and, in turn, operationally governed and supported by our

framework. Various publications from the authors and a forthcoming doctoral thesis of Gregor Grambow
are utilized, summarized and applied to the software modernization domain.

BACKGROUND

State-of-the-Art

Modernization as a form of software evolution is differentiated from maintenance and from replacement
in (Comella-Dorda, Wallnau, Seacord, & Robert, 2000b), which describes various modernization tech-
niques for user interfaces, logic, and data. Software engineers involved in modernization projects typic-
ally utilize a potpourri of various methodologies, processes, tools, and techniques. To provide an overall
understanding of the modernization undertaking, various modernization-related approaches and aspects
are described.

Model-centric standards and associated model and code-generation tooling can support modernization.
MDA (Mukerji & Miller, 2003) seeks to standardize portable and interchangeable design models that can
be technology and platform independent. To support model transformations, a Meta-Object Facility
(MOF) is specified. According to the MDA approach, legacy systems would have a platform-independent
model (PIM) of the application or specification's business functionality and behavior that could be more
easily modernized by transforming this PIM to newer platform-specific models (PSM) for new platforms
and technologies. Model-Driven Software Development (MDSD) is broader, including both additional
alternative approaches to MDA and various MDSD tooling, for instance the Eclipse Modeling Framework
(EMF) projectii.

Various approaches to modernization include Software Evolution, Refactoring and Improvement of
Operational & Usable Systems (SERIOUS)iii, which studied evolutionary software development
techniques, tools and processes. Additional model-driven approaches include Risk-Managed Moderni-
zation (RMM) (Seacord, Plakosh, & Lewis, 2003) and XIRUP from the MOMOCS project.

Knowledge acquisition during modernization typically encompasses various analysis techniques. One
form of categorization that distinguishes the degree of internal knowledge required is black-box vs. white-
box recovery and transformation. Black-box (Comella-Dorda, Wallnau, Seacord, & Robert, 2000a) focu-
ses on awareness of the external component properties and interfaces while white-box recovery includes
awareness and analysis of internal structures and possibly code source when available (Weiderman,
Bergey, Smith, & Tilley, 1997).

Various types of tools support knowledge acquisition during modernization as described in (Pérez-
Castillo, de Guzmán, Piattini, & Ebert, 2011). To facilitate modernization tool interoperability and data
interchange, the OMG's Architecture Driven Modernization (ADM)iv initiative standardizes metamodels
in seven modernization-related areas. (Pérez-Castillo, de Guzman, Piattini, & Avila-Garcia, 2009) makes
use of ADM to contextualize the data about legacy source code. MARBLE (Pérez-Castillo, 2012; Pérez-
Castillo, de Guzman, & Piattini, 2011) is an example of a tool that supports business process model
recovery while (Putrycz & Kark, 2007) addresses recovery of business rules. For extracting models, the
use of domain-specific programming languages such as Gra2MoL (Cánovas Izquierdo & Molina, 2009;
Izquierdo, Cuadrado, & Molina, 2008) has been proposed. The proper utilization of acquired knowledge
plays a key role in decision-making during modernization (Koskinen et al., 2005; Koskinen, Lintinen,
Ahonen, Tilus, & Sivula, 2005).

For building an environment supporting collaborative work, CASDE (Jiang, Ying, & Wu, 2007) and
CooLDev (Lewandowski & Bourguin, 2007) utilize activity theory. CASDE features a role-based
awareness module managing mutual awareness of different roles. CooLDev is an Eclipse IDE plug-in that
manages activities performed with other plug-ins in the context of global cooperative activities. CAISE
(Cook, Churcher, & Irwin, 2004) is a collaborative SE framework with the ability to integrate SE tools
and develop new SE tools based on collaboration patterns.

The aforementioned approaches and tools primarily focus on knowledge extraction within modernization,
and lack holistic, process-oriented, and collaborative knowledge and quality assurance support for the
entire modernization lifecycle.

Terminology

This section discusses and clarifies important terms and basic concepts that will be used throughout the
chapter.

Process and Workflow. By process we mean a systematic series of actions or steps, which can involve
one or more workflows, taken towards achieving some end state or result that adds value to an
organization. By workflow we mean a more detailed series of related tasks required to complete some
portion of a process, usually detailing the concrete tasks, procedures, steps, knowledge, inputs, outputs,
people, and organizations involved to process a piece of work. It can be viewed as the partial or complete
technical implementation of a process.

Context / Contextual Integration. The notion of context, as used in this chapter, refers to the various
facts, events, and entities that are part of a software project. They have in common that the projects
participants have to interact with them and that they have an impact on each task a human conducts as
part of the process and using specific tools. Contextual integration refers to an integration of these tasks,
the process, the tools, and the humans with the context to be able to incorporate all necessary and
important information in process execution and make the whole project more effective and efficient.

Knowledge. In this chapter it refers to project-, company-, or technology-specific facts and information
needed to effectively and efficiently complete the tasks a person must conduct during a project. Examples
include information about the applied development process, the concretely used tooling, or specifics of
the technology used.

Holistic. In the context of this chapter, the term holistic is to be understood in relation to the entirety of a
software project. Holistic project support means support that incorporates different areas of such a project
as, e.g., knowledge management, quality management, or software development. Furthermore, holistic
support means that it also incorporates the abstract planned process as well as the concretely executed
activities.

MAIN FOCUS OF THE CHAPTER

Issues, Controversies, Problems

Software modernization and business process archeology are complex undertakings. Software tools such
as those previously mentioned support many of the related tasks. Yet two crucial issues remain: The first
is that support provided by these tools focuses primarily on automating certain modernization tasks such
as transformation. However, despite advances, in our opinion major software modernization projects
cannot yet be fully automated and thus various manual tasks remain to be executed by software engineers
like coding, bug fixing, and adjusting tests for the modernization to succeed. While advanced tools are
available, contextual support and guidance in congruence with knowledge and process awareness remains
unaddressed. The second crucial issue is that tools that support various tasks are typically specialized for
these tasks. What is still missing is a holistically supportive system that unites the various aspects of a
project with the related tasks, tools, artifacts, knowledge, operative processes, and software engineers.
This section identifies different problem areas of these crucial issues and elicits requirements for each
area. To illustrate these different problems, a practical example from a software project is applied in the
following:

Example 1 (Software Project Problems): Imagine a company producing software. This company suffers
from problems that many companies in this domain share: the do not have real control over the approach
and process of their projects, be they software development, modernization, or other maintenance
projects. Projects can thus not be sufficiently monitored and controlled, resulting in budget, schedule, or
quality deficiencies. To counteract these problems, the company has introduced the usage of process
models for all projects to make them more controllable and repeatable. However, as these high-level
process models have shown to have relatively little impact on the actual operational activities conducted
in the projects, the company has introduced a PAIS to implement and support the process models
automatically. Yet the success of this approach was also limited. Parts of the process models could be
automatically executed using workflows in the PAIS, but these workflows were still too far removed from
the concrete tasks conducted in the projects. The project participants (e.g., software engineers or require-
ments analysts) reported various issues: The activities in the PAIS were too abstract and had no real
relation to the real tasks conducted with their real SE tools. Furthermore, the workflows were too rigid
and didn’t allow for as hoc deviations that are usual in such a dynamic domain. This also applied to
problems resulting in exceptional situations during project execution. Therefore, the prescribed
workflows were more and more disregarded by the participants and even viewed as burdensome rather
than helpful. The workflows could also cover only a small part of the work done in the projects. Many
activities remained unmodeled and unsupported. In addition to this, the participants reported other
remaining issues: Often multiple people from multiple departments worked on artifacts that related to
each other (like an architecture specification and the source code), but this relation was not properly
managed and inconsistencies emerged. The same applied to the knowledge needed for each project.
Besides some project specific wikis, there was no management of such information and people often had
to spend much time in gathering or developing it. Finally, as the quality of the source code was not
continuously managed and quality management was not tightly integrated with the process, the
participants complained that they often had to apply bug fixes or software quality measures under high
time pressure at the end of a project.

In the following, concrete problem areas are elicited for these common problems, Therefore, Figure 2
depicts these problem areas abstractly:

Figure 2. Problem areas in contemporary projects

Automated Process Governance. One problem area is process tracking and guidance, referred to here as
automated process governance (cf. Figure 2-1). If a project is to be executed in an effective, efficient, and
repeatable manner, studies have shown that it should be based on a defined process (Gibson, Goldenson,
& Kost, 2006). Many process models have been developed, some specifically for software modernization
projects like XIRUP, or other common SE process models such as Scrum (Schwaber & Beedle, 2001), the
Unified Process (Jacobson, Booch, & Rumbaugh, 1999), or the V-Model XT (Rausch, Bartelt, Ternité, &
Kuhrmann, 2005). The problem with these models is that they typically exist only on paper or web pages
and are only used for process specification and documentation. Their impact on actors and concrete
activities remains low (Wallmüller, 2007). Automated support for executing such process models is
desirable. There are numerous tools capable of automated workflow governance, but the automatically-
assisted implementation of a whole process model with such tools remains a challenge. Requirements for
automated process support include the following:

 A tool or framework must be in place that governs the process. In order to assist and not interfere,
the tool user interface should remain on the sideline, not require extra effort, and not be
cumbersome to use. This should be supported by easily accessible user interfaces that are well
integrated with everyday work.

 The ability to cover the utilized SE process models like those previously mentioned. These
processes have many different special properties that represent the nature of each process. A tool
or framework that aims at providing automated process enactment support must thus be capable
of modeling these properties and cover the processes to a large extent.

 The automatic distribution of human tasks to the respective persons.

 The correct execution of the modeled workflows must be guaranteed by the system executing
them.

 Process implementation requires that an arbitrary number of sub-workflows can be connected to
the activities of a workflow, e.g., to model a number of different guided activities by different
people that are part of a development iteration of a process.

 A system providing comprehensive support for the SE process must implement the process in a
consistent way, including the connection of the abstract process areas (e.g., project, phase,
iteration) with the operational workflows that directly concern the executing persons.

 Automated process support should not create cumbersome extra work for the persons involved.
Therefore, a tool aiming at comprehensive process support should be capable of easily executing
automatisms to support repetitive tasks associated with process execution. These automatisms
should, if possible, be easily configurable for the users to avoid ‘hard coding’ procedures and its
associated inflexibility.

 The process of creating software is very dynamic and many factors in SE projects are not easily
foreseeable. Therefore, a tool supporting that process should be able to deal with dynamic
situations to a reasonable extent.

Context Integration. A second important problem area is contextual integration: Even if some automated
process implementation and guidance is present in a project, this does not necessarily mean that the
specified and actually executing processes align. The latter relies mainly on different actors using
different tools (e.g., requirement management tools or IDEs) to manipulate various artifacts that are
crucial for the process. These activities and tool interactions are not directly modeled in the process
models since they are too fine-grained. Thus, a dichotomy between the planned and actually executed
process may exist. Therefore a tool or system enabling automated process support must be able to deal
with such contextual information with the following requirements:

 To have access to contextual information, a tool should be able to gather and integrate
information from various sources in its environment. This should be possible in an automated
fashion and without disturbing users or other tools.

 The contextual information must be processed and combined to be able to gain viable information
from data that is gathered in the SE environment.

 To enable comprehensive process implementation support for SE, a system should be able to
integrate the process contextually into the project. Therefore, contextual data should be made
available to the system. However, this data must be usable for process execution, and thus the
specification of the implementing workflows should support the connection to and integration
with contextual data.

 To support the software development process as it is actually executed, while mapping the
various interconnected types of human activities that appear both in reality and in the SE process
models, a system should support activities with different granularities and properties.

Process Dynamicity. Reality has shown that project execution often does not go exactly as planned. A
planned process is a start, but to bring this process together with the real issues occurring in everyday
project work remains a more difficult issue. A tool or system seeking to provide holistic process support
must thus be capable of coping with dynamic changes to the process (Reichert & Weber, 2012):

 To be able to react to the changing situations in the dynamic software development area, a system
should be able to incorporate changes to workflows implementing the process. These changes

should be possible while the workflows are executed, since the need for these changes will not
always be known prior to workflow initiation.

 As SE project execution involves many different factors, not all information necessary to adapt a
workflow with maximum effectiveness might be available to an individual. Therefore, a system
should support automatic adaptations to running workflows dependent on contextual factors
(Grambow, 2013; Grambow, Oberhauser, & Reichert, 2011a).

The above three areas deal with general problems and basic requirements to a system that seeks to solve
them. All of the three areas are covered by the section ‘Approach and Framework to support Software
Modernization Projects’ that introduces the foundations of our solution. In the following, more specific
problem areas are described, which are then dealt with in separate sections.

Extrinsic Process Coverage. One crucial problem with process models is the fact that they cannot cover
all workflows that are actually executed in a project. Hence, we distinguish between intrinsic workflows
(part of the process) and extrinsic workflows (unforeseen in the process, cf. Figure 2-4). The latter can be
executed based on exceptional situations, but can also be recurring common tasks (e.g., bug fixing or
technology evaluation). These activities rely heavily on the properties of the current situation, remain
mostly unplanned and untraced, and may impact timely process execution. Concrete requirements as well
as our proposed solution are discussed in the section ‘Extended Process Support’.

Process Exception Handling. During the execution of a complex project, many unforeseen and
exceptional situations occur. This poses a big challenge to any tool seeking to provide holistic process
support for such projects. Contemporary workflow management technology has limited capabilities in
this area, only dealing with exceptions directly relating to activities (Reichert & Weber, 2012). In reality,
process exceptions are often not that simple and also not easily detectable. Further, they may relate to
processed artifacts even without the introducing person noticing them. Furthermore, to select an exception
handling suitable for both the situation and person is challenging. Concrete requirements as well as our
proposed solution are shown in the section ‘Exception Handling’.

Collaboration and Coordination. In a complex project, there are always activities and artifacts that
relate to each other. That implies that one activity a person executes to change an artifact can have an
impact on other artifacts, which again has an impact on the activities of other persons. An example of a
relation specifically affecting modernization projects includes architectural specifications and relating
source code artifacts. As some of these activities may be covered by the process while others are not, this
might result in problematic artifact states if many related adaptations by different people are applied in an
uncoordinated manner. Concrete requirements as well as our proposed solution are shown in the section
‘Tasks Coordination’.

Quality Assurance. One problem affecting many SE projects is the quality of the software produced (cf.
Figure 2-7). Hence, quality assurance is a crucial factor for any SE project. However, in many projects
quality assurance is understood as applying some bug fixes at the end of the project when time allows.
Studies have shown that this is very ineffective and that quality measures should be applied
systematically during project execution (Slaughter, Harter, & Krishnan, 1998). This involves proactive as
well as reactive quality measures. The challenge in this area is to effectively and efficiently integrate the
application of these quality measures with the development process. Concrete requirements as well as our
proposed solution are discussed in the section ‘Quality Assurance’.

Knowledge Provisioning. The creation and modification of software is a complex and knowledge-inten-
sive task since software is an intangible asset. It involves knowledge from different sources, all of which
are crucial for the success of the task. This includes information on the process, the coding style and other

specifics of the company, the used framework or area (frontend or backend development), etc. Companies
often neglect this fact and do not implement proper knowledge management. This often leaves software
engineers without all required knowledge and thus makes their work ineffective and error prone. Concrete
requirements as well as our proposed solution are shown in the section ‘Knowledge Provisioning’.

Approach and Framework to support Software Modernization Projects

To achieve the connection of abstract and operational processes and holistic project support for software
modernization projects (and SE projects in general), we propose the following concept and framework.
The concept is centered on a contextual extension of applied process management in conjunction with
facilities to automatically gather and process contextual data. The idea is realized within a modular
framework called CoSEEEK (Context-aware Software Engineering Environment Event-driven
frameworK). In the following, the concept as well as the realization within CoSEEEK will be briefly
explained and illustrated (cf. Figure 3). For further reading, see (Grambow, 2013; Grambow, Oberhauser,
& Reichert, 2011a; Grambow, Oberhauser, & Reichert, 2012a; Oberhauser, 2010).

Figure 3. Conceptual architecture and implementation

The concept consists of a set of loosely coupled components targeting different requirements.
Communication between the different components is event-based. These events are stored and distributed
by a Data Storage component organizing the events in different collections for different topics. Each
component may register for these collections to automatically receive events of other components relating
to that topic. That type of communication is realized by an implementation of the tuple space paradigm
(Gelernter, 1985). Event communication is realized with XML events with the tuple space utilizing the
native XML database eXist (Meier, 2009).

Basic process implementation and automation is realized via the Process Management component. The
latter is in charge of managing and executing workflows that are part of a process. As this component is
implemented utilizing the AristaFlow BPM Suite (Dadam & Reichert, 2009; Lanz, Reichert, & Dadam,
2010), it is capable of addressing many basic requirements. AristaFlow provides process management
technology that is notable with respect to the flexible support of adaptive and dynamic workflows. New
workflow templates can be composed out of existing application services in a plug-&-play like fashion,
and then serve as schema for the robust and flexible execution of related workflow instances. In
particular, during run-time, selected workflow instances can be dynamically and individually adapted in a
correct and secure way; e.g., to deal with exceptional situations or evolving business needs (Reichert,
Rinderle-Ma, & Dadam, 2009). Examples of workflow instance changes supported by AristaFlow include
the dynamic insertion, deletion, or movement of single workflow activities or entire workflow fragments
respectively (for a discussion of the adaptation patterns supported by AristaFlow, see (Weber, Reichert, &
Rinderle-Ma, 2008)). For integrating these change functions and other AristaFlow services (e.g., for
managing user work lists or for defining workflow templates) with a domain- or application-specific
PAIS as in our case, the AristaFlow Open Application Program Interface (Open API) can be utilized
(Reichert et al., 2009). For example, for dynamically inserting activities at the workflow instance level,
the application developer can make use of the following system functions provided by the Open API:

 Querying the activity repository for available activity templates,

 Marking those activities of the workflow instance after which the selected activity shall be
inserted (i.e., after completing these activities the newly added one shall be enabled),

 Retrieving the set of activities selectable as “end” activities for this insertion,

 Marking the activity (or set of activities) which shall serve as end activity (activities),

 Performing (tentatively) the insertion based on this information,

 Checking the AristaFlow report on detected errors (e.g., missing values for input parameters), and

 Making the instance change persistent.

Note that dynamic workflow instance changes can be conducted at a high level of abstraction. In particu-
lar, all complexity relating to dynamic workflow instance changes (e.g., correct transformations of the
workflow schema, correct mapping of activity parameters, state adaptations) are hidden to a large degree
from end users and application developers respectively (Reichert & Dadam, 1998). Further, AristaFlow
provides techniques for learning from past experiences and workflow instance adaptations, respectively,
and for evolving workflow schemes accordingly (Weber, Reichert, Wild, & Rinderle-Ma, 2009).

The second core component of the concept is the Context Management component. The latter is the
central information management and coordination component of the concept. It realizes the integration of
process execution with contextual data acquired from the project environment. To support a high degree
of automated and context-aware assistance, a tight coupling of the Context Management and the Process

Management component is required, which we refer to as Context-aware Process Management (CPM).
Fundamentally, process management concepts are enhanced with semantic information. This additional
information is stored in the Context Management component, while the workflows are managed by the
Process Management module. Since Context Management unifies all project knowledge, it can also be
used as a management layer around the Process Management component, facilitating context-based
process management. Thus, all process-related actions are addressed by the Context Management
component, which, in turn, manages the actions of the Process Management module. Figure 3 illustrates
these extensions to process management. The Process Management component governs the workflows
and their activities. These two concepts are mirrored in the Context Management component: the activity
by the Work Unit and the workflow by the Work Unit Container. Thus, process management is separated
into two areas. On the one hand, the governing of the different activities of one workflow (also denoted
as process orchestration) utilizing well-established workflow patterns like AND, SPLIT, or LOOP. This is
done within the Process Management module. The Context Management component, in turn, is in charge
of extending process management concepts with various other concepts supporting users and project
execution. One example is activity-related concepts: Work Units are connected to three other concepts,
enabling advanced task management. The Assignment is used as a coarse-grained top-level task, which is
also estimated and scheduled from the business side in a project. The Assignment Activity then describes
the tasks that are necessary to accomplish the Assignment. The most fine-grained level is described by
Atomic Tasks that denote low-level tasks a person conducts, e.g., using a SE tool. Various tasks can be
automatically detected by the Event Extraction component, which is described later in this section. Com-
bining the Context Management and the Process Management modules enables the automatic adaptation
of running workflows based on the current context. The application of this capability will be shown in the
section explaining quality assurance integration. Since total automated process governance is not viable
for all situations, a user-centric abstraction of workflow logic provides users a capability to provide neces-
sary inputs that influence the workflow (Grambow, 2013; Grambow, Oberhauser, & Reichert, 2012d).

The Context Management module employs semantic technology to enable high-level utilization of all
project knowledge. This technology has several advantages, including enhanced interoperability between
different applications, extending reuse possibilities, and the option for advanced content consistency
checking (Gasevic, Djuric, & Devedzic, 2006). It also provides a vocabulary for the modeled entities
including taxonomies and logical statements about the entities. Ontologies also provide the capability of
reasoning about the contained data and inferring new facts. As an ontology language, OWL-DL (Web
Ontology Language Description Logic) is used due to its proliferation and standardization (World Wide
Web Consortium, 2004b). For simple RDF-based (World Wide Web Consortium, 2004a) queries to the
ontology, SPARQL (Prud’hommeaux & Seaborne, 2006) is used. Operations that are more complex are
executed using the reasoner Pellet (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007) that also executes
SWRL (Horrocks et al., 2004) based rules. Programmatic access via DAO objects to the ontology is
provided by the Jena framework (McBride, 2002). Thus, different semantic concepts can be created and
manipulated as needed.

A crucial part of the utilized context knowledge comes from the Event Extraction and Event Processing
components. The Event Extraction component utilizes the Hackystat framework (Johnson, 2007), which
provides a rich set of sensors that can be integrated into various SE tools. The sensors enable the Event
Extraction component to automatically generate events in different situations, as, e.g., checking in a
source code file in Subversion or switching to the debug perspective in Eclipse. The events generated and
collected in the Event Extraction component are basic and low-level. The Event Processing component, in
turn, utilizes complex event processing (CEP) (Luckham, 2001) to process these events, providing high-
level events with enriched semantic value. This is done utilizing the framework Esperv. The latter
provides a facility to define patterns that govern how certain events are combined to derive other higher-
level events, which are then again written to the Data Storage component as all other events.

The final two components are the Rules Processing and the Agent System components. The former
enables the automatic execution of simple automatisms and is based on the framework JBoss Droolsvi.
The latter has been applied for enabling automated decisions for dynamic situations during project
execution. It employs a multi-agent system (MAS) with different behavior agents. It is implemented
utilizing the FIPA- compliant (O'Brien & Nicol, 1998) JADE framework (Bellifemine, Poggi, & Rimassa,
1999). The usage of both of these components will be illustrated in detail in the section discussing
automated quality assurance integration.

Extended Process Support

This section deals with small workflows not covered by process models. These workflows are often dyna-
mic and are highly dependent on the context of a particular situation. We call them extrinsic workflows.
This is further described in (Grambow, 2013; Grambow, Oberhauser, & Reichert, 2010b; Grambow,
Oberhauser, & Reichert, 2011c; Grambow, Oberhauser, & Reichert, 2012a). As mentioned in the problem
statement, such workflows can have negative effects on project and process execution, since they are dy-
namically executed during project execution without prior planning and without traceability. Furthermore,
they are difficult to model with the capabilities of imperative workflow technology. A system that aims
for holistic process support should include a means for consistently integrating such workflows:

 There should be a facility to support both intrinsic and extrinsic activities by an automated system
or framework.

 Both intrinsic and extrinsic activities should be executed in a uniform way to support uniform
assistance for the user and to enable easy tracking and analysis of executed workflows.

 Compared to intrinsic workflows, extrinsic workflows are more dynamic and less foreseeable.
Their modeling should enable coverage of various possible situations without bloating process
models or making them too complex.

 The workflow modeling itself should remain easy and foster the reuse of modeled solutions or the
parts thereof.

 The workflow modeling should hide the inherent complexity of the workflow models to assist the
user with problem-oriented creation of the models.

 There should be facilities to automatically gather information on the current situation from users
or the development environment.

 The modeling environment should be capable of modeling contextual influences to be able to use
situational information directly.

 A facility to model the connections of contextual properties to workflow activities is required to
enable their automated situational selection.

To illustrate the SE requirements, we apply the following example:

Example 2a (Extrinsic Workflows): As aforementioned, SE issues arise that are not modeled in the
standard process flow of defined SE processes. This includes bug fixing, refactoring, technology
versioning, or infrastructural issues. Since there are so many different kinds of issues with ambiguous and
subjective delineation, it is difficult and burdensome to universally and correctly model them in advance
for acceptability and practicality. Many activities may appear in multiple issues but are not necessarily
required, bloating different SE issue workflows with many conditional activities if pre-modeled. Figure 4a

shows such a workflow for bug fixing that contains nearly 30 activities (i.e., steps), many of these being
conditionally executed for accomplishing different tasks like testing or documentation. One example is
static analysis activities that are eventually omitted for very urgent use cases. Furthermore, there are
various reviewing activities with different parameters (such as effectiveness or efficiency), where the
choice can be based on certain project parameters (e.g., risk or urgency). The same applies to different
testing activities. Moreover, it has to be determined if a bug fix should be merged into various other
version control branches.

Figure 4. Imperative modeling (a) vs. declarative modeling (b)

This solution incorporates a set of sensors that enable the automatic gathering of contextual information;
e.g., state transitions of certain SE tools or SE artifacts that can be recognized as properties of situations.
In this section, facilities to model contextual properties that can be used to describe a situation are shown,
e.g., ‘Risk’ or ‘Complexity’. In turn, these properties have calculated values that may be derived from
various sources as the skill level of a user executing an activity or the measured code complexity of a
processed source code artifact. To be able to contextually integrate process execution into the projects and
thus enable the process to be influenced by the properties of various situations, explicit connections of
process management concepts to context properties are introduced.

As concrete workflow execution is often relatively dynamic in SE, a rigid pre-planning of activity
sequences is not always advantageous. Therefore, this section shows a means of declaratively modeling
candidate activities for a workflow at build-time that enables a system to automatically select appropriate
activities for various situations at run-time. The modeling is designed to be hierarchical, separating
workflow models into several nestable blocks. These blocks can be modularized and be logically treated
as simple activities, fostering their reuse in multiple workflow models and simplifying these. To support
process engineers in modeling declarative context-dependent workflows, an easy way of specifying
context properties, workflows, contained blocks, and activities is provided.

Utilizing this modeling method, extrinsic workflows can be addressed. To unite this with traditional
imperative process modeling, which is still useful for more predictable processes (Reichert & Weber,
2012), our approach unites both ways of modeling under a common process management concept. In the
following, different parts of the concept will be illustrated: modeling of contextual influences, gathering
of contextual information, and declaratively modeling processes.

Contextual Properties. To integrate situational influences, Situational Method Engineering (SME) is
applied, which adapts generic methods to the actual situation of a project (Ralyté, Brinkkemper, &
Henderson-Sellers, 2007). We used two different influence factors: process properties, which capture the
impact of the current situation; and product properties, which realize the impact of the product currently
being processed (in this context the type of component, e.g., a GUI or database component). To strike a
balance between rigidly pre-specified workflows and the absence of process guidance, the idea is to have
a basic workflow for each use case, which is then dynamically extended with activities matching the
current situation. The construction of the workflows utilizes a so-called case base as well as a method
repository. The case base contains a workflow skeleton of each of the use cases. In the following, these
use cases, which are associated to an SE issue and have an attributed workflow, will simply be called
cases. The workflow skeleton belonging to a case only contains the fundamental activities always being
executed for that case. The method repository contains all other activities whose execution is possible
according to the case. To be able to choose the appropriate activities for the current artifact and situation,
the activities are connected to properties that realize product and process properties of SME.

Each SE issue, such as refactoring or bug fixing, is mapped to exactly one case relating to exactly one
workflow skeleton. To realize a pre-selection of activities (e.g., 'Create Branch' or 'Code Review') which
semantically match a case, the case is connected to the activity via an n-to-m relation. The activities are
connected, in turn, to properties. The latter are concepts used to explicitly model contextual properties of
the current situation and case (e.g., Complexity=high, Urgency=low). The selection of an activity can
depend on various process as well as product properties. To model the characteristic of a case leading to
the selection of concrete activities, the case is also connected to various properties. The properties have a
computed value indicating the degree in which they apply to the current situation. Utilizing the
connection of activity and property, selection rules for activities based on the values of the properties can
be specified.

Information Gathering. To leverage the automatic support for extrinsic workflows, the computation of
the property values constitutes a key factor. Our approach unifies process and product properties in the
concept of the property, which can be influenced by various factors. On the one hand, tool integration can
provide meaningful information about the artifact being processed in the current case. For example, if the
artifact is a source code file, static code analysis tools (such as PMDvii) can be used to execute various
measurements on that file, revealing various potential problems. This aspect deals with implicit
information gathering. Since not all aspects of a case are necessarily covered by implicit information, and
not all options for gaining knowledge about the case are always present, the system utilizes explicit
information gathering from the user processing the case. To enable and encourage the user to provide
meaningful information, a simple response mechanism is integrated into the user interface. Via this
mechanism, the user can directly influence process as well as product properties. To enable the system to
utilize explicitly gathered information for workflow generation, the workflow skeletons of the cases
always start with an activity ‘Analyze Issue’. The latter lets the user gain awareness about the issue and
the current situation and set the properties accordingly. To keep the number of adjustable parameters
small, the concept of a product category was introduced. The product category unites the product
properties in a pre-specified way. The influence of the product categories on the different properties is
specified in advance and can be adapted to fit various projects.

Declarative Workflow Modeling. After completing the computation of the property values, activities
must be selected and correctly sequenced to enable dynamic construction of the workflow for an SE issue.
This is done utilizing the connection between properties and activities. An activity can depend on one or
more properties. Examples include selection rules such as:

 ‘Choose activity code inspection if risk is very high, criticality is high, and urgency is low’ or

 ‘Choose activity code review if risk and criticality are both high’.

Declarative workflow modeling approaches incorporate a certain amount of flexibility in the workflow
models (Pichler et al., 2011) and thus enable the latter to be applicable for different situations. However,
the declarative way of modeling can be difficult to understand (Zugal, Pinggera, & Weber, 2011a) and
can produce models that are hard to maintain (Zugal, Pinggera, & Weber, 2011b). Therefore, this
declarative workflow modeling approach is based on very simple constraints and so-called Building
Blocks that enable further structuring of the workflow and structural nesting.

This modeling type is illustrated and compared to classical workflow modeling in Figure 5. The figure
shows the modeling of the Work Unit Containers above and the derived workflows for execution below.
‘Work Unit Container 1’ shows a simple, imperatively modeled workflow that is also executed in that
form (as ‘Workflow 1’). ‘Work Unit Container 2’ illustrates declarative modeling of the same workflow:
the exact structure of the workflow is not rigidly pre-specified. There are only simple constraints
connecting activities in the workflow. Examples in Figure 5 are ‘Requires’, expressing that one activity
requires the presence of another, and ‘Parallel’, expressing that both activities should be executed in
parallel. The generated workflow for these constraints looks exactly like the imperatively modeled ‘Work
Unit Container 1’. Activities in the declarative approach also have relations to contextual properties in
order to enable the system to select a subset of the pre-specified activities for the execution workflow.
Finally, ‘Work Unit Container 3’ demonstrates the use of Building Blocks. These are used for further
structuring the workflow to enable complex workflow structures. Three Building Blocks are shown for
sequential, parallel, and repeated execution of the contained elements in Figure 5. ‘Workflow 3’ shows
how a workflow is built based on constraints and the Building Blocks. Furthermore, it demonstrates
contextual relations, in this case assuming that the contextual properties of the situation led the system to
the selection of activities ‘1’, ‘2’, ‘3’, and ‘5’ while omitting activities ‘4’ and ‘6’. Building Blocks enable

hierarchical structuring of activities contained in workflows and can be reused in different Work Unit
Containers easily, where they can be treated like simple activities hiding the complexity of the contained
activity structure. That way, simple basic modeling is enabled while retaining the ability to model
complex structures. One example for this can be activities related to software creation like coding, testing,
or documenting. These can be structured by the Building Blocks, e.g., in a Loop enabling multiple
iterations of coding, documenting, and testing the new code combined in one Building Block. The latter
can, e.g., be called ‘Software Development Loop’ and then easily be reused as a single activity. This, in
conjunction with the simple basic constraints, supports simple and understandable workflow models.
Finally, the advantages of imperative and declarative modeling approaches are combined: The imperative
workflows generated for execution ensure that users follow the predefined procedures and also aid the
users with workflow guidance. However, by declaratively specifying various candidate activities for these
workflows and connecting them to situational properties, the system retains the ability to choose the right
activities for the users’ concrete situation. More information of the concrete concepts involved is shown
in (Grambow, 2013; Grambow, Oberhauser, & Reichert, 2010b; Grambow, Oberhauser, & Reichert,
2011c; Grambow, Oberhauser, & Reichert, 2012a).

Figure 5. Imperative vs. declarative modeling

The basic sequencing constraints enable easy modeling of simple activity structures that can be enhanced
with more complexity utilizing the different Building Block Template types. However, these constraints
enable the modeling of structures that endanger the ability to convert them to block structured workflows.
Furthermore, as the declarative activity specification only contains candidate activities, several of the
latter could be omitted for an executable workflow. This could also create structures that are not
convertible to a block structured workflow. Therefore, the so-called auto completion feature is introduced
that enables the automatic extension via additional connections between the activities. This is explained
and illustrated in the following example.

Example 2b (Extrinsic Workflows): Figure 4b shows how a bug fixing workflow can be simply yet
dynamically modeled using the shown declarative approach: The workflow shown at the top (‘Case’)
contains various Building Blocks out of a Building Block library. One example is the Development Cycle
Building Block: It contains various other activities like Implement Solution, Developer Test or Review
activities that are executed in a Loop. It is a standard set of activities that can be reused in various

workflows. To match different situations, the Building Blocks are connected to situational properties,
enabling the system to automatically tailor them to various situations. One example is the Review
activities that are part of the Development Cycle: According to the situation, a Code Review activity
could be chosen, or a Code Inspection or even none at all. All this complexity is hidden from the user and
managed by the system, leaving a simple sequential but tailored workflow for the bug fixing issue.

As with most SE projects, software modernization projects suffer from a high complexity and large
number of different tasks. Often the latter are executed without awareness of the process and might thus
negatively impact it The approach shown in this section satisfies three categories of requirements:
Generally, it enables the unification of intrinsic and extrinsic workflows, it supports and simplifies
extrinsic workflow modeling, and it offers automation and execution support for these in alignment with
properties of various situations. The first of the three is enabled by not only being able to model and
execute intrinsic as well as extrinsic workflows, but also by uniformly realizing them as they are
executed. The higher level of dynamicity that is inherent to extrinsic workflows is accommodated by a
declarative, problem-oriented method of modeling. The hierarchical structure of the declarative modeling
approach featuring the concept of the Building Blocks supports the modeling in many ways: complexity
is hidden at build-time as well as at run-time. Reuse is fostered since process models can be separated not
only by sub-processes but also by logical blocks. Finally, effective as well as efficient execution of
extrinsic workflows is fostered by automated contextual governance of these: The properties of various
situations are automatically detected by the system and are used to select a subset of activities that match
that situation. This is enabled by the explicit modeling of these situational properties and their influences
on the workflow models.

Task Coordination

SE projects feature a very collaborative process where the communication of various individuals is crucial
for project success. In multi-project and multi-team environments, this can be a challenge as there are
many diverse information channels and many dependencies. Much of the coordination effort that results
from this is manually coped with by the individuals working on the projects. This can result in additional
effort for each individual, in confusion, or in missed coordination activities. Thus, automated coordination
and collaboration support is desirable. Many different activities by different individuals affect different
artifacts. Some of these activities may be included in the process and some not. Some activities may be
tool-supported and others may not. This can lead to situations in modernization projects where activities
and artifacts are no longer synchronized, such as an architecture specification and the relating source
code. As already stated, a system aiming for comprehensive process support should be able to counteract
such situations (Grambow, 2013; Grambow, Oberhauser, & Reichert, 2011d; Grambow, Oberhauser, &
Reichert, 2012b). To achieve this, an automatic system or tool should satisfy a number of requirements:

 The system shall enable automatic notifications about activities and activity effects. These
notifications shall be automatically distributed to the concerned users and be presented to them
seamlessly so as not to distract them from their present activity. It shall be flexibly configurable
what causes such notifications for whom.

 The system shall be able to automatically determine possible effects of activity execution. This
includes finding out which project areas and maybe which artifacts in a SE project are affected
indirectly by these activities.

 The system shall be able to automatically determine responsible persons for follow up activities
concerning changes needed as result of indirect activity outcomes.

 The system shall be capable of automatically initiating follow up activities for indirect activity
outcomes. These follow-up activities shall be automatically distributed to the responsible persons.

 The system shall enable configuration of the way follow-up activities are provided. Users shall
not be overwhelmed by numerous micro-activities. Activities of the same type shall be groupable.
Thresholds shall be in place for the number of follow-up activities per user to enable collection
and consolidated provisioning of the activities.

The following example illustrates the problem and requirements:

Example 3 (Activity coordination): This example deals with a source code artifact that is part of an
interface component: since the file belongs to an interface component, the applied changes possibly not
only affect the unit tests of the file, but also other artifacts such as the architecture specification or
integration tests. These additional activities are usually neither covered by the SE process nor governed
by workflows; manual coordination can lead to impacts being forgotten and result in inconsistencies,
e.g., between the source code and the tests or specifications. The fact that these activities belong to
different project areas with often also different responsible persons makes this even more difficult. Even if
not forgotten, follow-up actions could benefit from automated governance and support. Furthermore, it
can be difficult to determine which stakeholder should be informed about which change and when,
especially considering the dynamic and diverse nature of the artifact-to-stakeholder relationship and
various information needs.

Support for two different ways of coordinating tasks is desirable, passive and active. Both are elaborated
in the following.

Passive Coordination Support. The passive coordination ability provided by the system deals with
configurable user notifications. To support users in their collaboration and to counteract forgetfulness,
automatic notifications can be beneficial for two situations in SE projects: first, when events happen that
relate to activities or artifacts, and second, when status changes occur to the artifacts. For these two cases,
different components of our approach are utilized: On the one hand, the Context Management component
contains information relevant to the process and the project (such as users, roles, activities, artifacts). On
the other hand, the Event Extraction component automatically forwards events relating to the
aforementioned concepts. Examples include the start and end of an activity or a change of the status of an
artifact. Based on these facts and an explicit Notification Template concept, notifications both for general
and individual cases can be easily configured. The Notification Template has three main properties:
‘source’ can be connected to arbitrary concepts that shall be monitored by that Notification Template.
This can relate, for example, to an individual artifact or even to all artifacts of a specific type. ‘trigger’
captures an event relating to the source or a particular state of the source, so that a concrete notification
can be created when a particular event occurs relating to the source or when it enters a particular state.
The third property ‘target’ describes who shall receive the notification. It can be configured for roles to
create more general notification but also for individual persons. The process for such notification works
as follows:

 Notification registration: The system has general pre-configured Notification Templates to which
the user can add new personalized ones. This is done by the user creating a new Notification
Template.

 Event detection: As project execution progresses, various events happen and various entities
change their state. Some of these events and changes can be relevant for notifications: some of

them are explicitly triggered by users interacting with the system and others are detectable by the
Event Management component sensors.

 Notification generation: The Context Management component uses the information in the
Notification Template concepts to create concrete notifications for the users and assigns these to
them.

 Notification distribution: The information is displayed to the users via an integrated GUI
component.

Active Coordination Support. To support automated active coordination support, a system must be
capable of automatically identifying different areas of interest in a project, such as ‘Implementation’ or
‘Architecture’. Therefore, an explicit Area concept has been added that, in turn, can be further segregated
into so-called Sections that enable logical partitioning of an Area (e.g., Area: Implementation – Section 1:
GUI Development – Section 1.1: Source code package xy). These definitions can be tailored for projects
and automatically supported. For example, to split up the ‘Implementation’ Area, the structures of the
source code can be scanned, creating sub-Sections of the Area alongside the package structure of the
source code. Automated active coordination comprises a four-phased approach:

1. Determine projects Areas that are affected by an activity: The first step is configurable and can
take into account various facts to determine which Areas are affected. For the scenario shown in
Example 3, such a configuration can be ‘Search for affected areas in case of technical issues if an
activity implies a change to an artifact and the artifact is a source code artifact and belongs to an
interface component’.

2. Determine the concrete target affected within the Area: The second step takes the selected
Areas and the target of the applied activity as input. This target can be a concrete artifact as in the
given scenario or a more abstract Section of the project as, e.g., a module. The concrete target is
then determined via relations of the different Sections. An example for this can be implementation
and testing: the testing (structural or retesting) of a module relates to its implementation. In the
given example, the relation does not need to be in place for the concretely processed component,
but can also be found if one exists elsewhere in the hierarchy. If there is no direct relation from the
processed source code artifact, the system looks for other components the file belongs to, e.g., the
module.

3. Determine the Person responsible for the chosen target: Once the target for the follow-up
action is determined, the responsible persons or teams must be discovered. For example, if the
target of the follow-up action is a source code file with no direct responsible party defined, the
overlying Sections are also taken into account, e.g., the encapsulating module. If a team is
responsible, the information is referred to the designated contact of that team for further
distribution.

4. Determine the concrete activity to be issued: After the target and the responsible have been
determined, a concrete activity has to be chosen. This is done using properties of the involved
artifacts, areas, sections and the activity that was the trigger.

To enable a system to realize automated detection of follow-up actions, different concepts have to be in
place in the Context Management component to be aware of them:

(1) The project must be hierarchically split up into components like areas or modules.

(2) Connections of different relating components must be established as, e.g., the fact that testing a
module relies on implementing that module.

(3) Information that may be used to clarify under which circumstances one area affects another
must exist.

(4) Different components must be classified, as, e.g., a package in the source code that realizes the
interface of a component.

The high degree of dynamic collaboration in SE raises challenges for automated support of process
awareness and guidance in SEEs. Currently, SEEs lack contextual information and integration, especially
with regard to adaptive collaboration and workflows. The approach presented in this section enables
explicit modeling and management of intrinsic as well as extrinsic activities. Active and passive
collaboration support is provided for software development. This incorporates two different types of
support: Communication and collaboration of different individuals is supported by passive information
distribution that is automatically conducted by the system. Configurable mechanisms are in place to
enable a wide scope of notifications concerning various events or state changes of various entities or
activities. Furthermore, notifications can be general, pre-configured, user-specific, and/or dynamically
added by concerned individuals. Additionally, the system enables the fully automatic initiation and
governance of related follow-up activities caused by other activities. A dynamic information distribution
strategy enables related components to be associated even if no direct relations between the source
component and the target component exist.

Exception Handling

To increase the level of standardization (i.e., usage, repeatability, conformance, etc.) of process execution,
automated support for SE processes is desirable. To enable this in a holistic way, an automated solution
should be capable of some kind of process exception handling so that the occurrence of exceptions does
not deteriorate process performance. This is further described in (Grambow, 2013; Grambow,
Oberhauser, & Reichert, 2011b). Automated process exception support will only be acceptable if it is not
too complex or more cumbersome than manual handling (Ellis, Keddara, & Rozenberg, 1995).
Automated handling implies automated detection of exceptions that depends on the capabilities of the
system managing the processes (Luo, Sheth, Kochut, & Miller, 2000). However, existing PAIS are still
rather limited regarding detection and handling of exceptions (Russel, van der Aalst, & ter Hofstede,
2006). Exceptions can arise for reasons such as constraint violations, deadline expiration, activity failures,
or discrepancies between the real world and the modeled process (Russel, Ter Hofstede, Edmond, & van
der Aalst, 2004). Especially in the highly dynamic SE process domain, exceptions can arise from various
sources, and it can be difficult to distinguish between anticipated and unanticipated exceptions. Even if
they are detected, it can be difficult to directly correlate them to a simple exception handler. Exceptions
can arise relating to various items such as activities, artifacts, or the process itself. To incorporate
automated support for such exceptions into a system, the following requirements should be satisfied at
least to some extent:

 The system shall enable automatic detection of the occurrence of various exceptions. This
comprises the ability to automatically infer the occurrence of an exception based on various
events acquired from the environment of the system.

 The system shall be able to determine situationally appropriate exception handlings. On the
one hand, this depends on the correct classification of the exception. On the other hand, it
depends on contextual factors the system must incorporate like properties of the current
project or situation.

 The system shall be able to automatically determine the person responsible for an exception
handling. This is no trivial task since according to the situation it could be a person responsible
for an activity, or for an artifact, or perhaps the principal of a person.

 The system shall be able to automatically initiate and govern exception handlings. As all
parameters of the exception and the planned handling are determined, the system must have
access to the process as it is enacted to automatically initiate a handling, distribute it to the
responsible person, and govern its execution.

 The system shall be able to deal with incomplete knowledge about exceptions. In many
situations, not all needed data relating to an occurred exception may be in place. The system
shall be capable of taking action in these situations as well, utilizing the incomplete
knowledge.

Again, to illustrate the requirements, we apply a concrete example:

Example 4a (Exception): Exceptions can occur that relate directly to executed activities, to artifacts, or
to future scheduled activities. In the following, a concrete scenario is presented illustrating such
exceptions in practice: In applying a bug fix to a source code file, the removal of a known defect might
unintentionally introduce other problems to that file. E.g., source code complexity might increase if
multiple people applied “quick and dirty” fixes. Thus, the understandability and maintainability of that
file might drop dramatically and raise the probability of further defects.

Many of these exceptions may be difficult to detect, especially for a PAIS without direct knowledge of
the environment. It may also be unclear when exactly to handle the exception and who should be
responsible. Generally, the knowledge about the exception can vary greatly, making unified handling
difficult and the application of standardized exception handlers unsuitable. To enable a system to
automatically deal with such exceptions and satisfy the requirements already elicited regarding exception
detection, exception handling, and the distribution of the handling to a matching human agent, our
concept relies chiefly on contextual information, its modeling in the system, and its detection by sensors.
To apply a unified and repeatable approach to automated exception handling, we apply a set of concepts
and a well-defined procedure. The latter can be roughly understood as an extended flexible variant of
ECA (Event-Condition-Action) (Paton, 1999). The three phases are called Recognition, Processing, and
Action here. In the following, the involved abstract concepts for exception handling are elaborated.

Exception: The notion of Exception is utilized to classify a deviation from the planned procedure that was
recognized to have a potential negative impact on the process, and thus should be dealt with to avoid such
an impact. According to (Reichert & Weber, 2012), typically there is a distinction between anticipated
exceptions, whose occurrence can be easily foreseen, and unanticipated ones. For anticipated exceptions,
standard exception handlers can be defined. Usually, this is not possible for unanticipated ones. Since SE
projects typically feature a dynamic process and it might be difficult so foresee a multitude of possible
exceptions, our approach does not discriminate between anticipated and unanticipated exceptions. It also
does not use standard exception handlers tied to specific exceptions. Flexibility is improved through the

explicit separation of events, exceptions, handling of the exceptions, responsible persons, and the point in
the process where a handling is invoked. Thus, occurring events can be classified and it can be separately
determined whether exceptions shall be raised, what to do with them, when to do it, and who shall do that.
Additionally, the approach manages different levels of knowledge about occurring events. Depending on
that level of event knowledge, it can be decided whether a more generic exception shall be raised or rather
a specialized one. As stated in (Russel, Ter Hofstede, Edmond, & van der Aalst, 2004), anticipated
exceptions occurring during the execution of pre-specified workflows include the following categories:
activity failures, deadline expiration, resource unavailability, discrepancies (between a real-world process
and its computerized counterpart), and constraint violations. These can be covered by various exception
types like Activity-related Exception, Artifact-related Exception, and Process-related Exception that can
be explicitly modeled. The included exception hierarchy is not intended to cover every possible exception
in every project. It rather presents a basis for frequent exceptions and can be extended:

Handling: The notion of Handling is used to describe activities executed as countermeasures for a
triggered exception. Since SE exceptions are usually complex and of semantic nature, no simple rollback
of the activities that caused the exception can be done. As an example, consider the activity of bug fixing
(as shown in Example 4a): While fixing a bug, this activity can also introduce additional problems to the
code such as increased code complexity. This can happen when the person applying the bug fix is not the
one responsible for the processed artifact. As a countermeasure, an explicit refactoring can become
necessary. Handling neither comprises the person to execute these activities nor the time or point in the
process where they are to be executed.

Responsible: Responsible captures the responsible person for a Handling. As in Example 4, this can be
the one who executed an activity introducing the exception or the one responsible for an artifact related to
an exception.

Target: Target is the point in the process where the Handling is executed. For certain exceptions, it can
be suitable to integrate Handling directly into the workflow where the exception occurred, whereas in
other cases a separate exception handling workflow has to be executed.

Exception Handling Procedure. The procedure enabling automated exception handling is separated into
three phases named recognition, processing, and action phase. Each of these comprises several activities
conducted by the system. The procedure is illustrated in the following, beginning with the activities of the
recognition phase.

 Event Detection: To enable automated assistance for exception handling, the detection of events
related to exceptions must be automated. In a SE project, these events relate to processed
activities and artifacts and thus also to supporting tools. Therefore, the Event Management
component gathers a multitude of events from various tools like IDEs or source control
management tools.

 Event Aggregation: Automatically recognized events relating to the tools in an SE project provide
information about currently executed activities. Nevertheless, these events are often of rather
atomic nature (like saving file) and provide no information about the complex activity a person is
performing. Therefore, these atomic events need to be processed and aggregated to derive higher-
level events of more semantic value (like the application of a bug fix).

The processing phase comprises a set of activities, differentiating between immediate and deferred
exception handling cases:

 Event Classification: Event classification can be used to gain more knowledge about events or
other new information to be able to find a specific handling later. The new information can also
be related to the current project and its properties, like e.g., its quality goals or properties of the
current situation.

 Handling Determination: When an exception has occurred, it has to be decided when and how to
take countermeasures, which also depends on the current project situation. The situation can be
classified using different parameters like risk or urgency. If urgency is high, meaning there is a
high schedule pressure on the project, one might decide not to address the exception immediately
but to retain it for deferred handling. Since this approach, using event classification, can cope
with different levels of knowledge about events, it might also be decided to retain an exception if
the knowledge about it does not suffice for immediate automatically-supported handling.
Furthermore, different types of exceptions with different handlings can be connected to different
events relating to different levels of knowledge. Thus, relative generalized exception handlings
are also possible for situations in which only a small amount of knowledge about the exception is
present.

 Responsible Determination: If it is decided to take immediate action in case of an exception, the
person responsible for that action has to be determined. There can be different possibilities: For
example, if an exception relating to an activity occurred, the processor of that activity can be
responsible or, if an exception occurred relating to an artifact, the responsible person for that
artifact (or, e.g., source code package) can also be responsible for handling the exception. There
may not be a direct party responsible for each processed artifact, but responsibilities can be
hierarchically structured to simplify determination of the responsible party.

 Target Determination: When the responsible party for handling the exception is determined, the
concrete point in the process has to be determined where the handling is applied. In certain
situations it may be appropriate to directly integrate a handling in a running workflow. In other
cases a new workflow would be initiated.

 Exception Retainment: If, due to various parameters of the situation, no immediate handling is
favored, the exception is retained in an exception list. That list can be analyzed, e.g., at the end of
an iteration by the project manager.

The final phase is called action phase and comprises the following activities:

 Handling Preparation: After all parameters for the handling of an exception are determined, the
concrete handling has to be prepared, i.e., a new workflow instance has to be created or the
handling has to be integrated seamlessly into a running workflow instance.

 Handling Execution: Finally, the prescribed handling is executed by the chosen person.

 Deferred Handling: When exceptions are retained, a human can decide for which exceptions a
deferred handling is preferred. Therefore, an additional GUI is needed, presenting a list of
retained exceptions and enabling manual determination of a handling or discarding of the
exception.

To illustrate the practical application of this approach to exception handling, Example 4a is reconsidered
in the following example:

Example 4b (Exception handling): As aforementioned, consider the following scenario: the code
complexity of a source code artifact is very high and was introduced by some activity. The problem may

be detected much later and relate more to the artifact than to the activity in that case. Furthermore, the
appropriate person to deal with the problem could be the one responsible for the entire artifact rather
than the last person who worked on it. To counteract the new problem, an explicit refactoring can become
necessary. Automatic detection of the deterioration of the state of this artifact is possible in the approach
via static analysis tool reports, which can cause a process exception to be raised. A context-matching
handling can then be automatically chosen (the appropriate refactoring). If the person is still working on
that artifact, the handling can be directly integrated with his work. If not, the handling is forwarded to the
person responsible for the artifact and can be queued as a work item.

The approach explained in this section enables a higher level of automatism and support relating to
exception handling. It can deal with different levels of knowledge concerning events and exceptions and
thus does not require the separation between anticipated and unanticipated exceptions. The combination
of environmental awareness with the semantic capabilities also enables the discovery of links between
activities and exceptions that have no direct connection. These features also support the determination of
a situationally matching handling for an exception. Finally, the flexibility of the handling is enhanced by
separating the determination of the handling, the responsible party, and the target of the handling.

Quality Assurance

As described in (Grambow, 2013; Grambow & Oberhauser 2010; Grambow, Oberhauser, & Reichert,
2010a; Grambow, Oberhauser, & Reichert, 2011a), software quality assurance (SQA) is a crucial
component for every SE project, and various studies (Brooks, 1987; Glass, 1997; Naur & Randell, 1968;
Jones, 2010) show that the quality of software systems has been and remains a significant problem.
Automated guidance for combining SQA with SEPM (Software Engineering Process Management) is not
yet prevalent. Challenges in software development projects are presented at both the product and process
levels based on the nature of software artifacts and manually-driven processes. Product intangibility
hinders effective retrieval of timely information about its product quality status. At times, software quality
measures come into focus and are applied close to release, or, when the project is behind schedule, they
may be jettisoned altogether; however, it is generally acknowledged that their application in earlier
development stages saves time as well as money (Abdel-Hamid, 1988; Slaughter, Harter, & Krishnan,
1998). The proper application of quality measures is also problematic, since their effectiveness and
efficiency depend on many factors, such as the applicability of the measure, the project timing, worker
competency, and correct fulfillment (Abdel-Hamid, 1988). Furthermore, quality goals can be conflicting
(like e.g., performance and reliability) and the measures must match the goals of the project. If a system
or tool aims to provide holistic process support for SE projects, integration of quality assurance must also
be taken into account and satisfy the following requirements:

 To be aware of problems in the SE project, the system must have a facility to integrate
information on SE process or product problems from various sources (e.g., external tools
measuring the state of the source code, bug tracking systems).

 To enable automated integration of quality measures at run-time, the system must be aware of
quality opportunities, meaning time points when a user can cope with a quality measure. This
requires knowledge about the users' schedule, meaning the abstract activities that have been
scheduled and estimated for the user.

 Applied quality measures should be automatically chosen during run-time in alignment with
project goals in order to match the defined strategy of the project.

 Quality measures should not only rely on detected problems, but also consider common quality
enhancement. Thus, proactive and reactive measures should be available.

 Context-sensitive tailoring of proposed measures is desirable considering different factors of the
actual situation, e.g., properties of the applying person and application time point.

 The selection of measures should be aware of their effectiveness to optimally match specific
environments or situations in different organizations. Therefore, continuous monitoring of the
quality of the source code is essential to detect potential impacts of applied measures on the
overall quality. In particular, a relation between the application of SQA measures and the
evolution of source code quality should be established to assess the effectiveness of the measures.

 The automated distribution of quality measures should not interfere with standard development
process execution. It should be rather seamlessly integrated with other workflows that are part of
the process. That way, an enhanced traceability of quality measure application can be fostered.

 The quality measure integration should also not interfere with the users. They should not be
disturbed by quality measure proposals.

To counteract these problems and to satisfy these requirements regarding the automatic detection of
quality problems and opportunities and the automatic contextual integration of software quality measures
in the users' process, we propose the following approach, which has also been implemented in the
CoSEEEK framework. The approach features three phases: detection, process, and post-processing, as
illustrated in the following figure and explained afterwards:

Figure 6. Processing for Automated Quality Assurance

Detection Phase. The Detection Phase continuously enables an awareness of the current project situation.
For integrating quality measures, two factors are of particular interest: the first is the presence of
problems - recognized via the ‘Problem Detection’. This considers primarily problems in the source code
like unacceptably high complexity. The second is the availability of opportunities for quality measures
(actions) in the users’ schedule - recognized via ‘Quality Opportunity Detection’. The former comprises
the following steps:

 Test Analysis: The quality of the source code is measured by static analysis tools that produce
reports. These reports are analyzed to gain an awareness of problems and the affected artifacts.

 Rules Processing: In this step automatic rules are applied that specify thresholds for the metrics
applied on the code. For all artifacts where a threshold is exceeded, a quality measure is applied
automatically.

When a user finishes an activity, the detection for quality opportunities can be started. We call that step
‘Q-Slot Detection’. If a Q-Slot is available, an ordered list of proposed measures is generated. This list is
used by a tailoring process to select a measure that contextually matches the current situation and user.
That measure is then automatically integrated into a workflow. The steps are further described in the
following:

 Workflow estimation: The different user activities of a project have to be estimated concerning
their time consumption.

 Workflow enactment: As the workflows are executed by users, the planned activities are
completed.

 Q-Slot detection: Based on the planned activity times and their real values, it can be determined
when a quality measure can be proposed without delaying the process.

Processing Phase. The Processing Phase deals with the selection and proposal of the quality measures
and involves four steps. Utilizing the Goal-Question-Metric (GQM) technique (Basili, Caldiera, &
Rombach, 1994), quality measures are initially proposed in alignment with project goals. To prepare these
measures for their automated application, ‘Measure Tailoring’ incorporates information about the
applying persons and the possible points in the users' schedule in which to apply the measure. This leads
to a selection of appropriate points (so-called Extension Points) and to an automated integration of the
quality measures into the concrete workflow of the chosen person.

Post-Processing Phase. Finally, to be able to track the quality of the project continuously, in the Post-
Processing Phase, a ‘Measure Assessment’ is performed utilizing the quality trend analysis. This analysis
supports an awareness and automatic assessment of the potential utility of the applied measures, fostering
quality. Since each project is unique, the applicability and effectiveness of measures can vary with respect
to different projects. Therefore, the system executes an assessment phase to rate the applied measures and
to incorporate their impact in the given project.

SQA should be aligned to the SE process being used, and be relevant and applicable at the operation
level. The manual combination of SQA with SEPM requires constant vigilance and associated labor in
order to avoid missing quality opportunities, to continuously monitor quality goal states, and to adapt
measure and measure utility to new quality situations. The application of BPM in SE environments has
been sparse due, among other factors, to a lack of contextual adaptability. Automated quality guidance
support could assist developers by providing SQA triggering that is based on current and factual data,
continuously monitoring quality goal states and trends, and selecting and tailoring measure selection to
that being most appropriate in the current situation. This section presented such an automated solution to
support the integration of process management and quality assurance in SE, utilizing contextual
awareness and dynamic processes to automatically insert suitable quality measures into the SE process.

Knowledge Provisioning

Modernization projects are - as all other SE projects - complex and involve highly knowledge-dependent
work, since software development processes are mostly knowledge processes (Kess & Haapasalo, 2002).

Software engineering (SE) and especially software modernization are still relatively new and immature
disciplines, and while work has gone into integrating knowledge and process management to support SE,
a comprehensive and viable solution is elusive. Currently, process management is typically done in a
documentation–centric or agile fashion and lacks automated process support. Knowledge provisioning, in
turn, is crucial to enable the distribution of knowledge among different people and to keep and exploit
experience gained in various projects. Supporting this with an automated system can be very beneficial
(Teigland, Fey, & Birkinshaw, 2000), and important capabilities of such a system are capturing,
maintaining, reusing, and transferring knowledge. Wikis are often used for SE knowledge management
because of the easy creation and access of information (Schaffert, Bry, Baumeister, & Kiesel, 2008).
However, retrieval of contextually relevant information from Wikis remains difficult (Schaffert, Bry,
Baumeister, & Kiesel, 2008). Thus, information is captured and stored but its reuse is still problematic.
This could be facilitated if knowledge use was connected with process execution (Grambow, 2013;
Grambow, Oberhauser, & Reichert, 2011e; Grambow, Oberhauser, & Reichert, 2012c). A framework or
system providing holistic process support can achieve this if basic requirements are satisfied:

 To be able to use and disseminate knowledge in a project, the presence of some facility to store
knowledge is required. The storage and management of knowledge for users shall not be
cumbersome. Additionally, to enable an automated system to access and utilize this information,
machine-readable semantic annotation shall be supported.

 Since not all the information users require is stored locally in the system, a facility to integrate
external information sources is required. Examples of such information include process
documentation or external web pages.

 The knowledge entered by users should be available to an automated system to be able to
automatically use it. This includes automatic access to the knowledge store and semantic
enhancements to the knowledge structure to enable automatic selection of the suitable knowledge.

 There should be a means to utilize contextual information for knowledge selection. Only that way
can it be assured that the automatically provided information matches the current situation of the
individual and is therefore more likely to be applicable.

 There shall be a facility to automatically inject the selected knowledge into the standard SE
process execution. Users should not be distracted or bothered with additional effort access the
knowledge. Seamless integration with everyday work is crucial.

 Certain process information may be specialized and not generally applicable. Furthermore, the
amount of information provided must not exceed certain thresholds, so that users are not
subjected to information overload and thus overlook important information. Therefore, the
provisioning of information should be configurable, e.g., based on the needs or preferences of
projects, processes, or users.

In the following we present how knowledge is automatically integrated in a system supporting a project
and how it is concretely provided to the users, featuring a concrete example from the software
modernization domain.

Knowledge Integration. To provide the user with a consistent knowledge provisioning system (KPS)
that realizes holistic information support for the SE process, a set of components have to interact as
illustrated by Figure 7. The central component of the KPS is the Context Management component, which
stores, aggregates, and processes all high-level project information relevant to the KPS. It incorporates
context information about users, artifacts, and various events as well as information from process
execution. It receives context information from the Event Management component (1), whose
responsibility is the acquisition and aggregation of events from the SE environment (2). This is realized

by a set of sensors integrated in external tools, such as IDEs or source control systems used within a SE
project. The Process Management component enables a SE process model implementation as well as
operational process support. This is done by means of automated workflows actively governed by that
component. The Context and Process Management components work together to enable the usage of
context information in the process and to better align process execution with reality.

Figure 7. Knowledge provisioning automation

Knowledge provisioning is realized by a Knowledge Store and a Knowledge Provider. The former is
utilized to store user-relevant SE information and to make it available to the KPS via supplementary
machine-readable semantics. The Knowledge Provider, in turn, coordinates that information (4) and
provides it to the Context Management component (5) to be injected into the users’ workflows (3) in the
appropriate context. The Knowledge Provider is also responsible for the abstract definition of user
relevant information within the KPS (called Guidance Items), which is referenced by the Context
Management component, as well as for the integration of external information resources (6).

User communication is realized as follows: The user can enter relevant project or SE information (e.g.,
best practices) using the Knowledge Collection GUI (7). That information is stored in the Knowledge
Store (8). The Knowledge Management GUI (9) allows users to integrate external information (e.g.,

process documentation at an external web location) or configure the way the information is provided (e.g.,
‘This guidance is applicable to this role at that point in the process’). The configuration for information
provisioning is stored directly in the Knowledge Provider (10). All support and guidance is then
distributed to the user by the Process Support GUI (11). That GUI receives its information from the
Context Management component (12), which unites information on the activity and workflow from the
Process Management component (3) with additional user-relevant SE information from the Knowledge
Provider (5).

Process-centered Knowledge Support. The storage and management of user-related information is
realized using the Knowledge Provider and Knowledge Store as well as the two knowledge management
GUIs. As already mentioned, information can be collected and stored within the KPS (internal
information) and be integrated from other sources (external information). Internal information is collected
via the Knowledge Collection GUI that enables users to annotate that information with tags. Examples for
tags are ‘junior engineer’, ‘front end development’, or ‘high risk’ that can then be used to automatically
and appropriately select the information to support the users in their context. This is accomplished by the
Knowledge Provider that also manages the integration of external information sources. For the
organization of information in the KPS, the concept of a Guidance Item (GI) is utilized. All guidance the
KPS can distribute to users is defined by the GIs created with the Knowledge Management GUI and
stored within the Knowledge Provider. GIs are shown to the users as lists (plain lists or checklists). Each
GI has a set of tags that are used to describe the information for the KPS as well as for the users entering
and managing it. Tags can be any type of identifying property indicating to what the GI applies, like
‘Activity’, ‘Junior Engineer’, or ‘High Risk Artifact’. A GI is an abstract unit of guidance information
that may contain an arbitrary number of positions or sub-items. The information defined by it can be static
or dynamically compiled by the Knowledge Provider. The latter is only possible for internal information
stored in the Knowledge Store. If a GI is internal and dynamic, the Knowledge Provider will use the tags
of the GI to query the Knowledge Store for items that are tagged in the same way, creating the GI out of
these. Based on its type, a GI will be treated differently by the KPS. For example, a checklist will have a
check mark for each sub-item, while plain information will just be shown to the user.

Automatic knowledge support must necessarily be aligned to a person’s context and intent, otherwise it is
likely to be irrelevant and the tool rejected. Therefore, the activities performed by the users and governed
by the Context Management component are the initiators for GI provisioning. For these activities, four
properties decide how the Context Management component presents GIs to the user: These properties are
called GI alignment, target obligation, GI usage, and item compilation:

 GI alignment governs when a GI (such as a checklist) is shown to the user in relation to the
activity that is the target of the GI. There are three options: ‘Pre’ GIs are shown at the beginning
of the activity. ‘Post’ GIs are shown at the end of an activity. ‘Pre/Post’ GIs incorporate both of
the aforementioned, allowing, e.g., a checklist to be updated with additional items at the end of
the activity.

 Target obligation associates the connection to the target activity. Some GIs like checklists may be
directly tied to a target activity. These are called ‘Synchronous’ and their lifecycle depends
directly on the target activity. Other GIs may be shown based on certain events (including, e.g.,
activity termination). These are called ‘Asynchronous’. They are independent of the activities and
can have a pre-defined lifetime.

 GI usage provides additional optional information or important information whose incorporation
may be required. Therefore, this property distinguishes between ‘Required’ and ‘Optional’ GIs.
Using ‘Required’ GIs, the target activity will not be marked complete without also
acknowledging the GI.

 Item compilation defines how the items of a GI are compiled: ‘Static’ GIs are pre-defined with a
static set of items. ‘Dynamic’ GIs are dynamically built by the system at the time they shall be
shown. For these GIs, context properties are incorporated: The GIs can have various tags, like,
e.g., ‘Development’. The same applies to information stored in the knowledge store. Consider
tags like ‘Development’, ‘Junior Engineer’ and ‘Database’ here. At runtime the system has access
to that context information, like who is executing an activity (and, e.g., his skill level, like junior
engineer) or in what area the activity is executed (e.g., relating to database coding). So the system
can compile, for example, a dynamic database development checklist for junior engineers. As
already mentioned, GIs can only be dynamic when they are internal, as the system has no
influence on GIs stored in external information sources like web pages.

Utilizing these properties, different types of GIs (e.g., checklists) are possible. In the following, three
prominent types are presented for illustration:

 'Asynchronous static optional assignment pre checklist': This type of checklist is intended for a
high-level user Assignment like, for example, ‘Develop a new GUI feature’. Being static, the
checklist has a pre-configured set of checklist items that is defined in the Knowledge Base. The
checklist is configured to be a pre checklist, meaning that is shown to the user when the
Assignment is started in order to provide information to the user that is to be considered before he
starts working on the Assignment. As this can be relatively general information (as, e.g., to check
the requirements specification for the assignment), the checklist is also configured to be
asynchronous and optional. This means the information is shown at the beginning, but it is not
required to complete the checklist for the completion of the Assignment, and the information does
not disappear when the Assignment is completed. The checklists persists for a defined time
interval, giving the user the option to review the checklist at a later time point, e.g., when he has
some time left waiting for a build to complete.

 'Synchronous dynamic required activity combined checklist': This type of checklist relates to a
more concrete Assignment Activity that is executed to complete an Assignment, as, e.g., the
creation and execution of developer tests. The checklist is dynamic, meaning the system will
compile its items dynamically at run time depending on context information, as, e.g., the skill
level of the user. As it is a synchronous checklist, its lifecycle is tied to the target Assignment
Activity. In this case it is also required and the user can thus not complete the activity without
having completed the checklist beforehand. As a combined checklist, it accompanies the activity
during its entire processing time: As the activity gets started, initial pre checklist items are shown,
helping the user to prepare for the activity. When the user tries to complete the activity, new post
checklist items get added, helping the user to not forget important things concerning the activity.

 'Asynchronous dynamic optional task post checklist': This type of checklist is intended for Atomic
Tasks that are performed to complete Assignment Activities. Examples for this are ‘Coding’,
‘Debugging’, or ‘Checking in’. In this concrete case, the checklist is asynchronous and optional in
order to just give the user the option to consider additional information for the tasks he is
performing. Being an asynchronous post checklist, it is shown to the user when he switches tasks,
and thus the considered task provides a reminder for things that should be considered at this
completion of this task (e.g., at the task ‘Unit test creation’, if all functionality of the class to be
tested has been covered). As Atomic Task switches frequently occur and one task might be
executed multiple times in the context of an Assignment Activity, it can be configured to only
show the checklist the first time the task ends, so as not to distract or annoy the user.

We have now presented tree different types of generic automatically distributed checklists. To make the
picture of this kind of knowledge provision more vivid, we elucidate a concrete example from the
software modernization domain in the following.

Example 5 (Knowledge provisioning): Figure 8 abstractly illustrates what different actors in the
scenario do and how they cooperate to achieve automatic knowledge provisioning support via checklists.
(A) During the execution of modernization projects, developers can add knowledge to the knowledge
store, e.g., when encountering problems and finding solutions for them. This could be a hint to consider
applying the Model-View-Controller (MVC) pattern for an existing GUI component that was not
constructed according to the pattern. Developers can tag this GI to support later discovery by humans or
by some model-based modernization tool. Other possible tags on a GI could include ‘junior’ to indicate
applicability for junior engineers or ‘backend’ or ‘frontend’ to relate them to a specific implementation
area. Checklists items specific to the support of modernization can also be included. (B) Project execution
is managed and governed automatically by the system by means of different workflows belonging to the
development process. (C) These workflows can be annotated, e.g., by a process engineer at specific points
to use GIs (e.g., requirements or testing checklists). The GIs can be easily pre-defined in the Knowledge
Provider: On the one hand, they can be explicitly and statically pre-defined. On the other hand, all
information entered can be tagged to be useable for GIs. (D) The system continuously detects new facts
about the current situation and stores them in the context base. This is enabled by a set of sensors
integrated in various SE tools that automatically provide information about tool and artifact usage. An
example for such a detected event can be the modification of a source code artifact in an IDE or a check-
in to a version control system. Utilizing this situational information, dynamic GIs are supported -
workflows can be annotated to include GIs at certain points, but these do not have to be predefined. Such
a dynamic GI is automatically generated by the system matching information of the current situation as,
e.g., the skill level of the user or the time and quality constraints of the project using tags on information
in the Knowledge Provider.

Figure 8. Knowledge provisioning automation

Providing knowledge-based context-aware support for the operational process for the dynamic SE domain
remains challenging. In this area, this section contributes an approach for connecting and automating
knowledge and process management. Semantic technology is used as link between automatically gathered
context information, knowledge resources, and process execution. Thus, it becomes possible to
dynamically assemble knowledge relevant to the executing user and to automatically and seamlessly
integrate this knowledge with the users’ current workflow.

This approach encompasses a set of features to explicitly support knowledge management: A Knowledge
Store is integrated as well as GUIs for collecting and managing knowledge. This supports the user while
entering knowledge and enables him to configure the way in which it is later automatically provisioned.
Automatic access to the Knowledge Store has been enabled by the system. Having structured knowledge
that is enhanced with machine readable semantics allows the system can automatically gather and
disseminate that knowledge. The management of the knowledge is done via a separate active component,
the Knowledge Provider. The latter also enables integration and management of external knowledge
sources. Furthermore, the system can utilize contextual information that is automatically gathered and
processed to query knowledge from the Knowledge Store that matches the situation of the user with
properties, like the user skill, the project goals, or the implementation area. Finally, the information
gathered for the user is provided in a way that is seamlessly integrated with the user’s workflow. This
supports the use of the knowledge since the information not only fits the user’s current needs, but also
does not require cumbersome extra work to manually acquire that knowledge.

Process Implementation

This section shows the application of our approach and framework to software modernization projects.
Therefore, the modernization process XIRUP was applied to demonstrate these abilities. XIRUP defines
four main activities for software modernization. All of these are further refined via separate workflows.
That way, the modernization process is separated into four main phases: Preliminary Evaluation,
Understanding, Building, and Migration. These four phases contain different activities as described in the
following:

 Preliminary Evaluation: In this phase, the architecture of the system to be modernized is
recovered. Furthermore a preliminary analysis of the system is conducted, which can also
influence the modernization decision.

 Understanding: In this phase, the architecture recovery is continued to build a model of the
system to enable further analysis. Furthermore, a modernization and transformation definition is
created to enable the creation of a component model of the system. On this model, an in-depth
analysis is conducted. Finally, code generation for prototypes takes place.

 Building: In this phase, code is generated for all required components. To be able to test these,
model evaluation is continued.

 Migration: In this phase, concrete code generation for specific platforms takes place. To test the
latter, model evaluation is continued once more.

XIRUP was tailored to include a manual development activity, since we assume that any non-trivial
transformation and generation to a modernized system will not be accomplished fully automatically
without some manual coding involvement. The following figure shows the XIRUP implementation
including the four main activities and their sub-processes.

Figure 9. XIRUP process model tailored with manual non-model-based development

Having integrated XIRUP into the CoSEEEK framework, the various features for holistic process
and project support can be utilized for the execution of this process. In the following on concrete example
from the knowledge management area is shown:

Example 6 (Knowledge provisioning for modernization): For example, a junior engineer could be
provided a GI containing appropriate checklist items as shown in Figure 10 when the ‘Programming’
activity is detected to be completed via a commit event for a backend component within the Code
Generation step of ‘XIRUP Migration’. A senior engineer might be bothered by some of the “obvious”
checklist items, and some items are not applicable to GUIs or databases.

Figure 10. Example contextual checklist provisioned during a software modernization task

FUTURE RESEARCH DIRECTIONS

Towards a more seamless interaction with and automated holistic support of software modernization
engineers in their SE environment, including their tool chain, artifacts, knowledge, standards, and
processes, much remains to be done. For software modernization projects, the growing size, complexity,
and interdependency of software applications and services in addition to the dynamicity of the tools,
platforms, languages, processes, and required knowledge will provide continual challenges.

Emergent software archeology tooling is a promising and dynamic area for assisting software engineers
with the analysis of legacy systems, including various artifacts and aspects such as business process
archeology. As general and project-specific knowledge bases are created (automatically and manually),

this know-how can be automatically and contextually provisioned with the approach described in this
chapter.

In the area of software engineering environments, there is an industry trend toward enabling easier
integration of heterogeneous tools and data, as evidenced by the Open Services for Lifecycle
Collaboration (OSLC) communityviii, which can ease the access to and integration of operational data
relevant to the SE process. Also, homogeneous tool chains and Application Lifecycle Management
(ALM) and Product Lifecycle Management (PLM) products will play an increasingly important role with
a tendency towards an expanded holistic view, including support for software maintenance and
modernization efforts. Subsequently, one future research direction is the automated analysis and
utilization of the available operational data during a modernization project. Also, the automated discovery
and orchestration of tool chains, for instance (Biehl, 2012), will help to reduce the effort associated with
configuring and integrating SEEs, enabling greater availability of tooling infrastructures that can be
utilized by systems like CoSEEEK.

Another interesting emerging trend is the development of software engineering recommender systems -
see (Happel & Maalej, 2008), which could also provide guidance for software engineers during their
modernization tasks.

Software modernization has unfortunately received less attention among common software development
process models, leaving a disparity. E.g., XIRUP is model-centric and doesn’t integrate leftover manual
SE tasks, while common SE processes are mostly model- and modernization- oblivious. Future research
into software process models should consider the complete long-term lifecycle including modernization
and/or provide practical and viable ways for process engineers to consolidate the various needs on
modernization projects. This includes a tighter integration of PAIS to support software modernization.
Future research opportunities include the automated specification and tailoring of enactable software
process models.

CONCLUSION

This chapter described the importance, background, and current issues regarding automated holistic
support of software engineers during software modernization projects. With CoSEEEK, a solution
approach and implementation was presented that automatically, dynamically, and systematically supports
modernization process execution and collaboration.

Various current problem areas in software modernization were outlined, including automated process
governance, context integration, process dynamicity, extrinsic process coverage, process exception
handling, collaboration and coordination, quality assurance, and knowledge provisioning.

The CoSEEEK solution approach was described, elucidating how it addresses these problem areas to
support software modernization holistically. The process implementation mapping from the abstract
XIRUP to an operationally enactable workflow was described. This was followed by showing how
extended process support for unforeseen extrinsic activities is achieved. Contextual properties were then
considered to integrate situational influences into the workflows by applying SME. The section on
information gathering described how the user can supply process and product properties that influence the
workflow generation. Declarative workflow modeling then described how these properties are used to
automatically generate workflows. Task coordination with passive and active collaborative support was
discussed. Exception handling then dealt with activity-, process-, and artifact-related exceptions and the
automated selection and incorporation of its handling. Quality assurance described the automated support
for the selection and management of quality assurance measures. Then knowledge provisioning
expounded on the integration of knowledge and process-centered knowledge support.

In conclusion, software modernization remains a high-risk undertaking, especially since the original
requirements are being changed dramatically, often the original team members in their original
constellation with their original accumulated knowledge and intentions are no longer accessible, and any
human knowledge is subject to temporal decay. A holistic approach such as CoSEEEK can mitigate or
address a number the larger challenges that software modernization projects currently face.

REFERENCES

Abdel-Hamid, T. K. (1988). The economics of software quality assurance: A simulation-based case study.
MIS Quarterly, 12(3), 395-411.

Abran, A., & Bourque, P. (2004). SWEBOK: Guide to the Software Engineering Body of Knowledge.
IEEE Computer Society.

Basili, V. R., Caldiera, V. R., & Rombach, H. D. (1994). The goal question metric approach.
Encyclopedia of Software Engineering, 2, 528-532.

Bellifemine, F., Poggi, A., & Rimassa, G. (1999). JADE – A FIPA-compliant agent framework. Proc 4th
Int’l Conf and Exhibition on the Practical Application of Intelligent Agents and Multi-Agents.

Biehl, M., Gu, W., & Loiret, F. (2012). Model-based service discovery and orchestration for OSLC
services in tool chains. Web Engineering, 283-290.

Brooks, F. P., Jr. (1987). No silver bullet: essence and accidents of software engineering. Computer,
20(4), 10-19.

Cánovas Izquierdo, J., & Molina, J. (2009). A domain specific language for extracting models in software
modernization. In: R. Paige, A. Hartman & A. Rensink (Eds.), Model Driven Architecture - Foundations
and Applications, Springer, pp. 82-97.

Comella-Dorda, S., Wallnau, K., Seacord, R., & Robert, J. (2000a). A survey of black-box modernization
approaches for information systems. Proc Int’l Conf on Software Maintenance.

Comella-Dorda, S., Wallnau, K., Seacord, R., & Robert, J. (2000b). A survey of legacy system
modernization approaches, Technical Report, No. CMU/SEI-2000-TN-003, Software Engineering
Institute, Carnegie Mellon University.

Cook, C., Churcher, N., & Irwin, W. (2004). Towards synchronous collaborative software engineering.
Proc 11th Asia-Pacific Software Engineering Conf (pp. 230-239).

D31b - Methodology Specification. (2008). MOMOCS (FP6-2005-5) Deliverable d31b. Available at
http://www.momocs.org (Accessed 2/28/2012).

Dadam, P., & Reichert, M. (2009). The ADEPT project: a decade of research and development for robust
and flexible process support. Computer Science-Research and Development, 23(2), 81-97.

Ducasse, S., & Pollet, D. (2009). Software architecture reconstruction: a process-oriented taxonomy.
IEEE Transactions on Software Engineering, 35(4), 573-591.

Ellis, C., Keddara, K., & Rozenberg, G. (1995). Dynamic change within workflow systems. Proc ACM
Conf on Organizational Computing Systems.

Gasevic, D., Djuric, D., & Devedzic, V. (2006). Model driven architecture and ontology development.
Springer-Verlag.

Gelernter, D. (1985). Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1), 80-112.

Gibson, D. L., Goldenson, D. R., & Kost, K. (2006). Performance results of CMMI-based process
improvement, Technical Report, No. CMU/SEI-2006-TR-004, Software Engineering Institute, Carnegie-
Mellon University.

Glass, R. L. (1997). Software runaways: monumental software disasters. Prentice Hall.

Grambow, G. (2013), Context-aware process management for the software engineering domain. PhD
Thesis, Ulm University, Germany (to appear)

Grambow, G., & Oberhauser, R. (2010). Towards automated context-aware selection of software quality
measures. Proc 5th Int’l Conf on Software Engineering Advances.

Grambow, G., Oberhauser, R., & Reichert, M. (2010a). Employing semantically driven adaptation for
amalgamating software quality assurance with process management. Proc 2nd Int’l Conf on Adaptive
and Self-adaptive Systems and Applications.

Grambow, G., Oberhauser, R., & Reichert, M. (2010b). Semantic workflow adaption in support of
workflow diversity. Proc 4th Int'l Conf on Advances in Semantic Processing, Florence, Italy.

Grambow, G., Oberhauser, R., & Reichert, M. (2011a). Contextual injection of quality measures into
software engineering processes. Int'l Journal on Advances in Software, 4(1 & 2), 76-99.

Grambow, G., Oberhauser, R., & Reichert, M. (2011b). Event-driven exception handling for software
engineering processes. Proc 5th Int’l Workshop on Event-driven Business Process Management,
Springer, LNBIP 99.

Grambow, G., Oberhauser, R., & Reichert, M. (2011c). Semantically-driven workflow generation using
declarative modeling for processes in software engineering. Proc 4th Int'l Workshop on Evolutionary
Business Processes.

Grambow, G., Oberhauser, R., & Reichert, M. (2011d). Towards automatic process-aware coordination
in collaborative software engineering. Proc 6th Int’l Conf on Software and Data Technologies.

Grambow, G., Oberhauser, R., & Reichert, M. (2011e). Towards dynamic knowledge support in software
engineering processes. Proc 6th Int'l Workshop on Applications of Semantic Technologies, held in
conjunction with INFORMATIK'11, Koellen, LNI 192.

Grambow, G., Oberhauser, R., & Reichert, M. (2012a). Contextual generation of declarative workflows
and their application to software engineering processes. Int'l Journal on Advances in Intelligent Systems,
4(3 & 4), 158-179.

Grambow, G., Oberhauser, R., & Reichert, M. (2012b). Enabling automatic process-aware collaboration
support in software engineering projects. Communications in Computer and Information Science (CCIS)
303, 73-89.

Grambow, G., Oberhauser, R., & Reichert, M. (2012c). Knowledge provisioning: a context-sensitive
process-oriented approach applied to software engineering environments. Proc 7th Int’l Conf on
Software and Data Technologies.

Grambow, G., Oberhauser, R., & Reichert, M. (2012d). User-centric abstraction of workflow logic
applied to software engineering processes. Proc Advanced Information Systems Engineering Workshops,
Springer, pp. 307-321.

Happel, H.-J., & Maalej, W. (2008). Potentials and challenges of recommendation systems for software
development. Proc Int’l Workshop on Recommendation Systems for Software Engineering.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., & Dean, M. (2004). SWRL: a
semantic web rule language combining OWL and RuleML. W3C Member submission, 21, 79.

ISO/IEC 14764. (2006). Software engineering--software life cycle processes--maintenance. Geneva,
(Switzerland): International Organization for Standardization.

Izquierdo, J. L. C., Cuadrado, J. S., & Molina, J. G. (2008). Gra2MoL: A domain specific transformation
language for bridging grammarware to modelware in software modernization. Proc Workshop on Model-
Driven Software Evolution.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified software development process: Addison-
Wesley.

Jiang, T., Ying, J., & Wu, M. (2007). CASDE: an environment for collaborative software development.
Computer Supported Cooperative Work in Design III, 367-376.

Johnson, P. M. (2007). Requirement and design trade-offs in Hackystat: An in-process software
engineering measurement and analysis system. Proc 1st Int. Symp. on Empirical Software Engineering
and Measurement.

Jones, C. (2010). Get Software Quality Right. Dr Dobb's Journal.

Kess, P., & Haapasalo, H. (2002). Knowledge creation through a project review process in software
production. Int’l Journal of Production Economics, 80(1), 49-55.

Koru, A. G., Zhang, D., El Emam, K., & Liu, H. (2009). An investigation into the functional form of the
size-defect relationship for software modules. IEEE Transactions on Software Engineering, 35(2), 293-
304.

Koskinen, J., Ahonen, J. J., Sivula, H., Tilus, T., Lintinen, H., & Kankaanpaa, I. (2005). Software
modernization decision criteria: an empirical study. Proc 9th European Confe on Software Maintenance
and Reengineering.

Koskinen, J., Lintinen, H., Ahonen, J. J., Tilus, T., & Sivula, H. (2005). Empirical study of industrial
decision making for software modernizations. Proc Int’l Symposium on Empirical Software Engineering.

Lanz, A., Reichert, M., & Dadam, P. (2010). Making business process implementations flexible and
robust: error handling in the AristaFlow BPM Suite. Proc CAiSE'10 Forum.

Lewandowski, A., & Bourguin, G. (2007). Enhancing support for collaboration in software development
environments. Computer Supported Cooperative Work in Design III, 160-169.

Lewis, G., Morris, E., & Smith, D. (2005). Service-oriented migration and reuse technique (smart). Proc
13th IEEE Int’l Workshop on Software Technology and Engineering Practice, pp. 222-229.

Luckham, D. C. (2001). The power of events: an introduction to complex event processing in distributed
enterprise systems. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.

Luo, Z., Sheth, A., Kochut, K., & Miller, J. (2000). Exception handling in workflow systems. Applied
Intelligence, 13(2), 125-147.

McBride, B. (2002). Jena: A semantic web toolkit. IEEE Internet Computing, 6(6), 55-59.

Meier, W. (2009). eXist: An open source native XML database. Web, Web-Services, and Database
Systems, Springer, LNCS, 2593, 169-183.

Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., & Jazayeri, M. (2005). Challenges
in software evolution. Proc 8th Int’l Workshop on Principles of Software Evolution, pp. 13-22.

Mukerji, J., & Miller, J. (2003). MDA Guide Version 1.0.1. Object Management Group.

Naur, P., & Randell, B. (1969). Software engineering: report on a conference sponsored by the NATO
Science Committee. Scientific Affairs Division, NATO.

Oberhauser, R. (2010). Leveraging semantic web computing for context-aware software engineering
environments. Semantic Web, Gang Wu (ed.), In-Tech, Vienna, Austria.

O'Brien, P. D., & Nicol, R. C. (1998). FIPA—towards a standard for software agents. BT Technology
Journal, 16(3), 51-59.

Paton, N. W. (1999). Active rules in database systems. Springer Verlag.

Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., & Reijers, H. A. (2011). Imperative versus
declarative process modeling languages: an empirical investigation. Proc 2nd Int'l Workshop on
Empirical Research in Business Process Management.

Pérez-Castillo, R. (2012). MARBLE: Modernization approach for recovering business processes from
legacy information systems. Proc 28th IEEE Int’l Conf on Software Maintenance.

Pérez-Castillo, R., de Guzman, I. R., & Piattini, M. (2011). Business process archeology using MARBLE.
Information and Software Technology, 53(10), 1023-1044.

Perez-Castillo, R., de Guzman, I. R., Piattini, M., & Avila-Garcia, O. (2009). On the use of ADM to
contextualize data on legacy source code for software modernization. Proc 16th Working Conf on
Reverse Engineering, pp. 128-132.

Pérez-Castillo, R., de Guzman, I. R., Piattini, M., & Ebert, C. (2011). Reengineering technologies. IEEE
Software, 28(6), 13-17.

Prud’hommeaux, E., & Seaborne, A. (2006). SPARQL query language for RDF. W3C WD 4.

Putrycz, E., & Kark, A. (2007). Recovering business rules from legacy source code for system
modernization. In: A. Paschke & Y. Biletskiy (Eds.), Advances in Rule Interchange and Applications, pp.
107-118.

Rausch, A., Bartelt, C., Ternité, T., & Kuhrmann, M. (2005). The V-model XT applied–model-driven and
document-centric development. Proc 3rd World Congress for Software Quality, Vol. III.

Ralyté, J., Brinkkemper, S., & Henderson-Sellers, B. (2007). Situational method engineering:
Fundamentals and experiences. Springer.

Reichert, M., & Dadam, P. (1998). ADEPTflex—supporting dynamic changes of workflows without losing
control. Journal of Intelligent Information Systems, 10(2), 93-129.

Reichert, M., & Dadam, P. (2009). Enabling adaptive process-aware information systems with ADEPT2
Handbook of Research on Business Process Modeling, New York: Information Science Reference,
Hershey, pp. 173-203.

Reichert, M., Dadam, P., Rinderle-Ma, S., Jurisch, M., Kreher, U., & Göser, K. (2009). Architectural
principles and components of adaptive process management technology. PRIMIUM - Process Innovation
for Enterprise Software, Koellen, LNI, P-151, 81-97.

Reichert, M., Rinderle-Ma, S., & Dadam, P. (2009). Flexibility in process-aware information systems.
Transactions on Petri Nets and Other Models of Concurrency II, LNCS, 5460, 115-135.

Reichert, M., & Weber, B. (2012). Enabling Flexibility in Process-aware Information Systems –
Challenges, Methods, Technologies. Springer.

Russell, N., ter Hofstede, A. H. M., Edmond, D., & van der Aalst, W. M. P. (2004). Workflow resource
patterns. Eindhoven Univ. of Technology.

Russell, N., van der Aalst, W. M. P., & ter Hofstede, A. H. M. (2006). Exception handling patterns in
process-aware information systems. Proc 23rd Int'l Conf. on Advanced Information Systems Engineering.

Schaffert, S., Bry, F., Baumeister, J., & Kiesel, M. (2008). Semantic wikis. IEEE Software, 25(4), 8-11.

Schwaber, K., & Beedle, M. (2001). Agile software development with Scrum (Vol. 18): Prentice Hall.

Seacord, R. C., Plakosh, D., & Lewis, G. A. (2003). Modernizing legacy systems: software technologies,
engineering processes, and business practices: Addison-Wesley Professional.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL-DL reasoner.
Web Semantics: Science, Services and Agents on the World Wide Web, 5(2), 51-53.

Slaughter, S. A., Harter, D. E., & Krishnan, M. S. (1998). Evaluating the cost of software quality.
Communications of the ACM, 41(8), 67-73.

Tan, Y., & Mookerjee, V. S. (2005). Comparing uniform and flexible policies for software maintenance
and replacement. IEEE Transactions on Software Engineering, 31(3), 238-255.

Teigland, R., Fey, C. F., & Birkinshaw, J. (2000). Knowledge dissemination in global R&D operations:
an empirical study of multinationals in the high technology electronics industry. MIR: Management
International Review, 49-77.

van Genuchten, M., & Hatton, L. (2012). Compound annual growth rate for software. IEEE Software, 19-
21.

Wallmüller, E. (2007). SPI-Software Process Improvement mit Cmmi und ISO 15504. Hanser Verlag.

Weber, B., Reichert, M., & Rinderle-Ma, S. (2008). Change patterns and change support features-
enhancing flexibility in process-aware information systems. Data & Knowledge Engineering, 66(3), 438-
466.

Weber, B., Reichert, M., Wild, W., & Rinderle-Ma, S. (2009). Providing integrated life cycle support in
process-aware information systems. Int’l Journal of Cooperative Information Systems, 18(1), 115-165.

Weber, B., Sadiq, S., & Reichert, M. (2009). Beyond rigidity–dynamic process lifecycle support.
Computer Science-Research and Development, 23(2), 47-65.

Weiderman, N. H., Bergey, J. K., Smith, D. B., & Tilley, S. R. (1997). Approaches to legacy system
evolution, TR No. CMU/SEI-97-TR-014, Software Engineering Institute, Carnegie Mellon University.

Weiderman, N., Northrop, L., Smith, D., Tilley, S., & Wallnau, K. (1997). Implications of distributed
object technology for reengineering, TR No. CMU/SEI-97-TR-005, Software Engineering Institute,
Carnegie Mellon University.

World Wide Web Consortium (2004a). Resource Description Framework (RDF) Concepts and Abstract
Syntax.

World Wide Web Consortium (2004b). OWL Web Ontology Language Semantics and Abstract Syntax.

Zugal, S., Pinggera, J., & Weber, B. (2011a). Creating declarative process models using test driven
modeling suite. Proc CAiSE Forum.

Zugal, S., Pinggera, J., & Weber, B. (2011b). The impact of testcases on the maintainability of declarative
process models. Proc Int'l Working Conf on Enterprise, Business-Process and Inf Systems Modeling.

i http://www.momocs.org/
ii http://www.eclipse.org/modeling/emf/
iii http://www.hitech-projects.com/euprojects/serious/
iv http://adm.omg.org/
v http://esper.codehaus.org/
vi http://www.jboss.org/drools/
vii http://pmd.sourceforge.net/
viii http://open-services.net/

