
Universität Ulm
Institut für Datenbanken und Informationssysteme

(Leiter: Prof. Dr. P. Dadam)

OBJECT-AWARE PROCESS MANAGEMENT

DISSERTATION

zur Erlangung des Doktorgrades Dr. rer. nat.
der Fakultät für Ingenieurwissenschaften und Informatik

der Universität Ulm

vorgelegt von

VERA KÜNZLE (GEB. PFEIFFER)
aus Herbrechtingen

APRIL 2013

Amtierender Dekan: Prof. Dr.-Ing. K. Dietmayer
Gutachter: Prof. Dr. M. Reichert

Prof. Dr. H. Partsch
Prof. Dr. S. Rinderle-Ma

Tag der Promotion: 16. Juli 2013

Vorwort

Diese Dissertation entstand im Rahmen einer Kooperation der Abteilung Datenbanken und In-
formationssysteme (DBIS) der Universität Ulm mit der Persis GmbH in Heidenheim, bei der
ich seit 2005 angestellt bin. Parallel zu dieser Anstellung habe ich 2008 meine Promotion be-
gonnen. Die Ausgangsmotivation dafür fand ich im Rahmen meiner praktischen Tätigkeit als
Softwareentwicklerin. An dieser Stelle möchte ich mich nun bei allen Personen bedanken, die
mich während meiner Promotionszeit unterstützt haben.

Mein größter Dank gilt meinem Doktorvater Prof. Dr. Manfred Reichert, der schon zu Studien-
zeiten mein Interesse am wissenschaftlichen Arbeiten geweckt hat. Er hat diese Arbeit mit ei-
nem außerordentlich tatkräftigen Einsatz unterstützt. Die zahlreichen fachlichen Diskussionen
gaben mir stets wertvolle Anregungen und haben maßgeblich zum erfolgreichen Abschluss
dieser Arbeit beigetragen. Sein akribisches und zeitaufwendiges Lesen meiner Schriftstücke
war unentbehrlich für den Erfolg meiner wissenschaftlichen Publikationen und Vorträge.

Ebenso bedanke ich mich sehr herzlich bei den Geschäftsführern der Persis GmbH Detlef
Hergesell, Rainer Kolb und Michael Barth, die mir die Promotion parallel zu meiner praktischen
Tätigkeit ermöglicht und finanziell unterstützt haben. Auch danke ich Adrian Kluge, der als
Entwicklungsleiter mit das Ziel verfolgt, dass die erarbeiteten Konzepte produktiv zum Einsatz
kommen werden.

Weiter danke ich Prof. Dr. Helmut Partsch und Prof. Dr. Stefanie Rinderle-Ma für die Über-
nahme der Zweitgutachten und ihr Interesse am Thema. Prof. Dr. Peter Dadam danke ich für
seine Unterstützung bei Vorträgen und die Übernahme von Gutachten für die von mir betreuten
Abschlussarbeiten.

Ferner danke ich allen DBIS-Mitarbeitern für das tolle Arbeitsumfeld, das ich als Externe dort
vorgefunden habe. Die Diskussionen mit Euch waren nicht nur sehr hilfreich und motivierend,
sondern haben auch enorm großen Spaß gemacht. Erwähnen möchte ich Rüdiger Pryss für
die wegweisenden, freundschaftlichen Ratschläge, Andreas Lanz, der als Tex-Profi mit sei-
nen Tipps eine große Hilfe war, sowie Carolina Chiao, die das Thema weiter bearbeitet. Des
Weiteren möchte ich mich bei Julian Tiedeken sowie bei meinen studentischen Hilfskräften Ni-
cole Wagner, Christian Scheb, Andreas Pröbstle, Hannes Beck, Stefan Schultz und Thomas
Spindler für ihre Unterstützung bei der prototypischen Realisierung der Konzepte bedanken.
Gleichermaßen danke ich jedoch auch meinen Kollegen bei der Persis GmbH. Ihre Rücksicht-
nahme war sehr wertvoll, damit ich die Promotion mit meiner Arbeit dort vereinbaren konnte.

Zu guter Letzt bedanke ich mich bei meiner Familie. Meinem Mann Oliver danke ich für seine
Unterstützung, sein Verständnis und seine Geduld. Ohne diesen Rückhalt hätte ich die notwen-
dige Motivation und Disziplin über diesen Zeitraum hinweg nicht aufbringen können. Wesent-
liche Teile dieser Dissertation sind während meiner Elternzeit - im ersten Lebensjahr meiner
Tochter Madita - entstanden. Ich danke von ganzem Herzen meinen Eltern und Schwiegerel-
tern Anneliese Pfeiffer, Hannelore Künzle, Stephan Pfeiffer und Gerd Künzle für die ausdau-
ernde, flexible und vor allem liebevolle Betreuung von Madita. Ebenso danke ich meiner Oma
Anna Mäule für ihre tatkräftige Unterstützung seit ich auf der Welt bin. Ihr alle habt es mir er-
möglicht, trotz der vielen Arbeit immer bei Madita sein zu können, wenn sie mich gebraucht
hat. Dadurch konnte diese Arbeit überhaupt erst fertig gestellt werden. Madita - Dein erstes
Lebensjahr war mit Sicherheit das anstrengendste in meinem bisherigen Leben - aber zugleich
das wunderschönste!

Abstract

Companies increasingly adopt process management systems (PrMS), which offer promising
perspectives for a more flexible and efficient process execution. However, for many process-
aware application systems (e.g., ERP or CRM systems), the underlying process logic is still
hard-coded. As a consequence, these business applications are both complex to design and
costly to maintain; i.e., they require long development cycles, and even simple process changes
might result in costly code adaptions and high efforts for testing.

One reason for this situation stems from the fact that contemporary PrMS were primarily
designed for the support of highly structured, repetitive business processes. By contrast,
many processes found in practice are rather unstructured or semi-structured, i.e., they are
knowledge-intensive and driven by user decisions. In addition, the business functions to be
integrated with these processes usually cannot be straight-jacketed into activities. For all these
reasons, the activity-centered paradigm of contemporary PrMS is by far too inflexible for realiz-
ing more advanced business applications. This deficiency mainly stems from the unsatisfactory
integration of processes and data in existing PrMS. Despite emerging approaches, which target
at a tighter integration of process and data, a unified and comprehensive understanding of the
relationships between them is still missing.

This thesis first analyzes real processes not adequately supported by existing PrMS and elabo-
rates their characteristic properties. As a major insight it became clear that in many application
scenarios comprehensive process support requires both object- and process-awareness. This
means, business processes and business data must not be treated independently from each
other. Instead, business processes must comply with the underlying data structure. In partic-
ular, in accordance to the given data model comprising object types and object relations, the
modeling, execution and monitoring of processes must be based on two levels of granularity:
object behavior and object interactions. Further, the individual processes, coordinating the be-
havior of single object instances, must be coordinated with the ones of related object instances.
Opposed to these well-defined process support granularity levels, activities must be executable
at different levels of granularity. In particular, while a particular user may only want to work
on a particular object instance, another one may want to process a number of related object
instances in one go. Furthermore, process execution must be accomplished in a data-driven
manner; i.e., the progress of a process instance mainly depends on available business objects
and on value changes of their attributes. Finally, authorized users must be able to access and
manage process-related objects at any point in time.

Based on the properties identified, this thesis elaborates major requirements for enabling
object-awareness in processes management systems. The major contribution of the thesis is
the PHILharmonicFlows framework, which addresses these requirements and enables object-
aware process management in a comprehensive manner. In particular, the framework not only
provides a new process modeling approach, but also establishes a well-defined operational
semantics enabling the automatic and dynamic generation of end-user components for object-
and process-aware business applications at run-time (e.g., overview tables and user forms).

Overall, a holistic framework integrating data, processes and users offers promising perspec-
tives in order to overcome the numerous limitations of contemporary PrMS. This thesis consid-
ers research in this area as fundamental maturation of process management technology.

Kurzfassung

Trotz der Mächtigkeit heutiger Prozess-Management-Systeme (PrMS) gibt es in Unternehmen
noch zahlreiche Prozesse, die technologisch nicht adäquat unterstützt werden. Existierende
PrMS basieren auf einem aktivitätsorientierten Paradigma, bei dem Prozesse anhand von Ak-
tivitäten modelliert werden, die dann mit bestehenden Anwendungen zu verknüpfen sind. Die
Verwaltung der Anwendungsdaten dagegen erfolgt dabei allerdings außerhalb des PrMS in den
integrierten Anwendungen.

Diese strikte Trennung von Prozessen und Daten hat sich für viele prozessorientierte Anwen-
dungen jedoch als zu inflexibel und eingeschränkt erwiesen. Insbesondere fehlt ein Verständnis
der inhärenten Zusammenhänge dieser beiden Perspektiven eines Informationssystems. Der
erste Teil dieser Dissertation beinhaltet eine detaillierte Untersuchung der grundlegenden Be-
ziehungen zwischen Prozessen, Daten, Funktionen und Benutzern. Diese hat gezeigt, dass
viele Prozesse objektzentriert (engl. object-aware) sind. Objekte besitzen Bearbeitungsprozes-
se, die koordiniert werden müssen und eine datengetriebene Ausführung erfordern. Letzte-
res bedeutet, dass der Bearbeitungsfortschritt zur Laufzeit nicht von den ausgeführten Ak-
tivitäten, sondern von den jeweiligen Attributwerten eines Objekts abhängt. Innerhalb eines
Geschäftsprozesses müssen dann zahlreiche solcher objektspezifischen Prozesse koordiniert
werden, wobei die unterschiedlichen Beziehungen der Objekte zueinander zu berücksichtigen
sind. Dadurch entsteht zur Laufzeit, analog zur Datenstruktur, eine komplexe Prozessstruk-
tur. Bei der Ausführung von Aktivitäten dagegen können einzelne Objekte oder ganze Objekt-
mengen gleichzeitig bearbeitet werden. Somit ist eine Aktivität nicht mehr notwendigerweise
eindeutig einer bestimmten Prozessinstanz zuzuordnen und dadurch flexibler ausführbar.

Die mangelnde Kontrolle heutiger PrMS über die Anwendungsdaten hat zwei grundlegende
Nachteile. Erstens bietet das ausschließlich aktivitätsorientierte Paradigma nicht die Mächtig-
keit, objektzentrierte Prozesse adäquat zu unterstützen. Zweitens bieten PrMS den Endbenut-
zern zur Laufzeit lediglich eine prozessorientierte Sicht mittels Arbeitslisten. Eine daten- und
funktionsorientierte Sicht dagegen fehlt. Dadurch ist es nicht möglich, Daten unabhängig vom
Prozessstatus zu beliebigen Zeitpunkten einzugeben, einzusehen oder zu ändern. Die Fol-
ge ist, dass bestehende daten- und funktionsorientierte Anwendungen oftmals durch eine fest
kodierte Prozesslogik erweitert werden, was den Anwendungscode unnötig komplex und nur
schwer wartbar macht.

Im zweiten Teil der Arbeit wird ein ganzheitlicher, generischer Ansatz beschrieben, der die
komplexen Zusammenhänge zwischen Prozessen, Daten, Funktionen und Benutzern innerhalb
von Informationssystemen berücksichtigt. Dies bildet die Basis für eine flexiblere Ausführung
zur Laufzeit. Dadurch werden viele Limitationen heutiger PrMS überwunden. Das vorgestellte
Rahmenwerk basiert auf einem weitreichenden, konzeptionellen Modell mit präziser operatio-
naler Semantik. Es ermöglicht eine datengetriebene Prozesssteuerung, ohne jedoch das ak-
tivitätsorientierte Paradigma vollständig aufzugeben. Zur Laufzeit wird dem Benutzer sowohl
eine prozess- als auch eine daten- und funktionsorientierte Perspektive zur Verfügung gestellt.
Hierbei steht nicht nur für die Prozesslogik, sondern auch für die Daten- und Funktionslogik ei-
ne generische Implementierung zur Verfügung. Dadurch sind Anwendungskomponenten (z.B.
Arbeits- und Übersichtslisten, Formulare) zur Laufzeit automatisch aus den Modellbeschrei-
bungen generierbar.

Im Gegensatz zu existierenden Prozess-Management-Paradigmen, bei denen die Granularität
von Prozessen und Aktivitäten frei wählbar ist, basiert dieser Ansatz auf einer klaren Metho-
dik. Hierzu wird eindeutig zwischen Objektverhalten und Objektinteraktionen differenziert. Exis-
tierende Ansätze zur Beschreibung von Objektverhalten können in zwei Kategorien eingeteilt
werden. Ansätze der ersten Kategorie beschreiben eine zustandsbasierte Modellierung, de-
ren Ausführungssemantik rein auf Aktivitäten basiert. Im Gegensatz dazu ermöglichen andere
Ansätze zunehmend eine datengetriebene Ausführung, jedoch fehlt eine Berücksichtigung der
jeweils zugehörigen Datenzustände. Der in dieser Dissertation entwickelte Ansatz dagegen
verbindet erstmalig eine zustandsbasierte Beschreibung von Prozessen mit einer datengetrie-
benen Ausführungssemantik. Dadurch wird eine Konsistenz zwischen Prozess- und Daten-
Zustand gewährleistet. Durch die Berücksichtigung objektspezifischer Prozesse entsteht zur
Laufzeit eine sehr komplexe Prozessstruktur, für welche die Anzahl der laufenden Instanzen
variabel ist und sich dynamisch verändern kann. In diesem Zusammenhang werden adäquate
Abstraktionsmechanismen zur Verfügung gestellt. Betrachtet man in diesem Zusammenhang
die Prozesskoordination zur Beschreibung von Objektinteraktionen, bietet das entwickelte Rah-
menwerk auch hier bahnbrechende Konzepte. Die Prozesssynchronisation erfolgt nicht mehr
über den Austausch von Nachrichten, sondern basiert auf den definierten Bearbeitungszustän-
den der involvierten Objekte. Dadurch wird einerseits eine weitgehend asynchrone Ausführung
einzelner Prozessinstanzen ermöglicht, andererseits stehen weitreichende Konzepte zur Ver-
fügung, die es erlauben, Prozessinstanzen geeignet zu aggregieren. Hierbei wird auch die
Kardinalität zwischen den zugehörigen Objektinstanzen berücksichtigt.

Zur Evaluation werden sowohl die Konzepte für die Modellierung als auch Ausführung prototy-
pisch implementiert und anhand von Fallstudien validiert.

Parts of this thesis have been published in the following referred papers:

[KR09b] V. Künzle and M. Reichert. Integrating Users in Object-Aware Process Man-
agement Systems: Issues and Challenges. In Business Process Management
Workshops (Proc. BPD’09), volume 43 of LNBIP, pages 29–41. Springer Berlin
Heidelberg, 2009

[KR09c] V. Künzle and M. Reichert. Towards Object-aware Process Management Sys-
tems: Issues, Challenges, Benefits. In Enterprise, Business-Process and Infor-
mation Systems Modeling (BPMDS’09), volume 29 of LNBIP, pages 197–210.
Springer Berlin Heidelberg, 2009

[KR11b] V. Künzle and M. Reichert. PHILharmonicFlows : Towards a Framework for
Object-Aware Process Management. Journal of Software Maintenance and
Evolution: Research and Practice, 23(4):205–244, 2011

[KR11a] V. Künzle and M. Reichert. A Modeling Paradigm for Integrating Processes and
Data at the Micro Level. In Enterprise, Business-Process and Information Sys-
tems Modeling (BPMDS’11), volume 81 of LNBIP, pages 201–215. Springer,
2011

[KR11c] V. Künzle and M. Reichert. PHILharmonicFlows: Research an Design Method-
ology. Technical Report, 2011

[KR11d] V. Künzle and M. Reichert. Striving for Object-Aware Process Support: How
Existing Approaches Fit Together. In 1st Int’l Symposium on Data-driven Pro-
cess Discovery and Analysis (SIMPDA’11), 2011

[K1̈1] V. Künzle. Towards a Framework for Object-Aware Process Management. In
1st Int’l Symposium on Data-driven Process Discovery and Analysis (SIM-
PDA’11), PhD Seminar, 2011

[KWR10b] V. Künzle, B. Weber, and M. Reichert. Object-aware Business Processes:
Properties, Requirements, Existing Approaches. Technical Report, 2010

[KWR10a] V. Künzle, B. Weber, and M. Reichert. Object-aware Business Processes:
Fundamental Requirements and their Support in Existing Approaches. Inter-
national Journal of Information System Modeling and Design (IJISM), 2(2):9–
46, 2010

Contents

I Motivation 1

1 Introduction 3
1.1 Context of Object-Aware Processes . 4
1.2 Problem Statement . 8
1.3 Contribution . 11
1.4 Outline . 13

2 Research Methodology 15
2.1 Research Questions . 16
2.2 Doing Natural Research . 16

2.2.1 Process Analysis . 16
2.2.2 Literature Study . 17

2.3 Requirements Elicitation . 18
2.4 Doing Design Research . 18

II Object-Aware Processes 19

3 Properties of Object-Aware Processes 21
3.1 Property Identification . 22

3.1.1 Data Integration . 23
3.1.2 Process Granularity . 25
3.1.3 Process Modeling and Execution . 27
3.1.4 Activities . 31
3.1.5 User Integration . 34

3.2 Property Verification . 37
3.2.1 Relevance and Completeness . 38
3.2.2 Relatedness and Generalisation . 40

4 State-of-the-Art 43
4.1 Imperative Paradigms . 43

4.1.1 Hidden Information Flows . 44
4.1.2 Flow-based Triggering of Activities 45
4.1.3 Actor Expressions . 47
4.1.4 Fixed Activity Granularity . 48
4.1.5 Arbitrary Process Granularity . 48

4.2 Declarative Paradigms . 50
4.2.1 Constraint-based Coordination of Activities 50

xi

4.2.2 Arbitrary Process Granularity . 52
4.3 Extensions of Traditional Approaches . 52

4.3.1 Case Handling . 52
4.3.2 Artifact-centric Modeling . 56
4.3.3 Product-based Workflow Support . 57
4.3.4 Data-driven Process Coordination 59
4.3.5 Proclets . 60
4.3.6 Object-centric Processes . 61
4.3.7 Other Approaches . 62

4.4 Approaches for User Integration . 63
4.4.1 Instance-specificity . 63
4.4.2 Consistency . 64
4.4.3 Relationships . 64
4.4.4 Differentiation . 64

5 Requirements 65
5.1 End-User Requirements . 66

5.1.1 Integrated Access . 66
5.1.2 Monitoring . 67

5.2 Process Support Requirements . 67
5.2.1 Process Modeling Methodology . 67
5.2.2 Process Modeling Paradigm . 68

5.3 System Requirements . 69
5.3.1 Generic End-User Components . 69
5.3.2 New Architecture . 69

III PHILharmonicFlows 71

6 Data Integration 75
6.1 Object Attributes . 76
6.2 Object Types and Instances . 77
6.3 Predefined Attribute Values . 79
6.4 Data Model and Data Structure . 80
6.5 Data-oriented User View . 82
6.6 Summary . 84

7 Micro Process Modeling 85
7.1 Micro Process Types . 87

7.1.1 Micro Step Types . 88
7.1.2 Value Step Types . 89
7.1.3 Micro Transition Types . 92
7.1.4 Formal Definition of Micro Process Types 95

7.2 State Types . 97
7.3 External Micro Transition Types . 101
7.4 User Assignment . 103
7.5 Backward Jumps . 104
7.6 Reducing Administrative Efforts . 106

7.6.1 Minimal Micro Process Types . 106

7.6.2 Default User Assignment . 106
7.7 Summary . 108

8 Micro Process Execution 109
8.1 Micro Process Instances . 111

8.1.1 State Markings . 113
8.1.2 Micro Step and Value Step Markings 114
8.1.3 Micro Transitions Markings . 118
8.1.4 Backward Transition Markings . 120
8.1.5 Micro Process Instance Markings . 122

8.2 Creating Object Instances . 122
8.3 Initializing Micro Process Instances . 123
8.4 State-internal Execution . 125

8.4.1 Deterministic Execution . 126
8.4.2 Handling Value-specific Micro Steps 133
8.4.3 Non-deterministic Execution . 142
8.4.4 Internal Dead-path Elimination . 146
8.4.5 Handling Empty Micro Steps . 149
8.4.6 Re-assigning . 150

8.5 State Changes . 155
8.5.1 Implicit Micro Transitions . 157
8.5.2 Explicit Micro Transitions . 159
8.5.3 User Decisions . 162
8.5.4 External Dead-path Elimination . 165

8.6 Backward Jumps . 169
8.6.1 Committing Backward Jumps . 171
8.6.2 Backward Transitions during an External Dead-path Elimination . . . 175
8.6.3 Executing Backward Jumps . 176
8.6.4 Re-setting Micro Process Instances 179
8.6.5 Re-executing Micro Process Instances 183

8.7 Terminating Micro Process Instances . 191
8.8 Task-oriented User View . 192
8.9 Summary . 196

9 Activities 197
9.1 Generic Activities . 198

9.1.1 Editing Object Instances . 199
9.1.2 Creating Object Instances . 207
9.1.3 User Commitments and Decisions 213
9.1.4 Backward Jumps . 214

9.2 Black-box Activities . 214
9.2.1 Defining a black-box activity . 215
9.2.2 User Assignment and Authorization 217
9.2.3 Execution of Black-box Activities . 218

9.3 Batch Execution . 224
9.4 Further Issues . 226
9.5 Summary . 227

10 Macro Process Modeling 229
10.1 State-based View . 230
10.2 Complex Process Structure . 231
10.3 Macro Process Types . 232
10.4 Summary . 244

11 Coordination Components 245
11.1 Process Contexts . 248
11.2 Aggregations . 252
11.3 Transverse . 256
11.4 Summary . 260

12 Macro Process Execution 261
12.1 States as Interface between Micro and Macro Processes 262
12.2 Macro Process Instances . 263

12.2.1 Markings for Process Context Instances 265
12.2.2 Markings for Aggregation and Transverse Instances 266
12.2.3 Markings for Ports . 267
12.2.4 Additional Markings for Micro Process Instances 267

12.3 Initializing of Coordination Components . 269
12.4 Composing Micro Process Instances . 272

12.4.1 Updating Process Context Instances 273
12.4.2 Updating Aggregation Instances . 275
12.4.3 Updating Transverse Instances . 277

12.5 Re-marking Coordination Components . 278
12.5.1 Re-marking Process Context Instances 278
12.5.2 Re-marking Aggregation and Transverse Instances 279

12.6 Re-marking Ports . 280
12.7 Executing Micro Process Instances . 282
12.8 State Changes . 287
12.9 Terminating Macro Process Instances . 290
12.10 Further Issues . 294

12.10.1 Creation of Object Instances . 295
12.10.2 Handling Relations . 297
12.10.3 Backward Jumps . 299

12.11 Summary . 300

13 Further Issues 301
13.1 Monitoring . 301
13.2 Exception Handling . 302

13.2.1 Exception Handling During Micro Process Execution 302
13.2.2 Exception Handing During Macro Process Execution 304

13.3 Advanced Concepts for User Integration . 305
13.4 Advanced Concepts for Data Processing . 309

13.4.1 Displaying Overview Tables . 309
13.4.2 Restricting Attribute Values and Relations 309

IV Evaluation and Discussion 311

14 Evaluation 313
14.1 Proof-of-Concept Prototype . 313

14.1.1 Motivation . 313
14.1.2 Architecture and Technology . 314
14.1.3 End-User View . 317
14.1.4 Summary and Discussion . 321

14.2 Practical Application . 322
14.2.1 Medical Domain . 323
14.2.2 Extension Course Proposal . 326
14.2.3 Vacation Request . 328
14.2.4 House Building . 328
14.2.5 Summary and Discussion . 329

15 Summary and Outlook 331
15.1 Contribution . 331

15.1.1 Object-awareness . 332
15.1.2 The PHILharmonicFlows framework 332

15.2 Benefit . 334
15.3 Outlook . 336

Bibliography 337

List of Figures 349

List of Tables 357

Part I

Motivation

1

1
Introduction

Companies spend a huge amount of time and money for information technology (IT) to im-
prove their effectiveness and efficiency [HMPR04]. In this context, effectiveness refers to the
close alignment of the business goals on one hand and the capabilities offered by IT to achieve
these goals on the other. In particular, whether the efforts spent in IT pay off depends first and
foremost on the alignment of IT with business perspectives (cf. Fig. 1.1); i.e., business data,
business functions, and business processes [MRB08]. To enable such business-IT-alignment,
therefore, IT has "to do the right things" in order to be effective [Dru67]. In turn, efficiency
means "to do the things right" [Dru67]. More and more, the role of IT as enabler for staying
competitive at the market is understood (cf. Fig. 1.2). First, for any company it is of almost im-
portance to introduce new products and services as quickly as possible at the market. Second,
in order to cope with the increasing competitive pressure and market dynamics, it is crucial
to be able to continuously adapt IT in a quick and effective way to changing needs. Conse-
quently, rapid development and improved maintenance constitute important success factors to
foster efficiency. To realize them, the development approach (i.e., programming, modeling or
configuration) chosen for realizing IT system plays a fundamental role.

According to [Dvt05], IT relies on several layers (cf. Fig. 1.1). As basic layer, the system infras-
tructure consists of hardware, operating system, and other system software. The second layer
refers to generic applications that may be applied in a wide range of business domains. How-
ever, generic applications typically focus on a particular business perspective while neglecting
the others. For example, Database Management Systems (DBMS) support the management
of business data. In turn, Process Management Systems (PrMS) support the specification,
execution, and monitoring of business processes. Both DBMS and PrMS allow specifying the
required data and process logic through modeling rather than programming. Furthermore, busi-
ness functions are supported by specialized tools like text editors, mail clients, or spreadsheet
tools. Layers three and four of the IT stack consist of domain-specific and tailor-made appli-
cations (e.g., purchase order management, production planning, and human resource man-
agement). Usually, a tailor-made application is developed for a specific organization. Hence,
a tailor-made application requires a customer-specific programming of its functionalities. By

3

1 Introduction

effectiveness

efficiency

IT landscape

system infrastructure

generic applications

domain-specific applications

tailor-made applications

business perspectives

business

data

business

functions

business

processes

programming

customizing

modeling

ERP-Systems

DBMS PrMS

business-IT-alignment

market dynamics

market dynamics

maintenance

efficiency

time-to-market

rapid development

Figure 1.1: IT landscape and business perspectives

contrast, domain-specific applications comprise software solutions pre-implementing standard
functionality for specific types of organizations. Examples include Enterprise Resource Plan-
ning Systems (ERP) and Customer Relationship Management Systems (CRM). These appli-
cations can then be customized to the specific needs of an organization. Usually, such a cus-
tomizability is realized through configuration support (i.e., it is based on parameter settings). In
the following, we use the term application when meaning domain-specific as well as tailor-made
applications.

1.1 Context of Object-Aware Processes

In current organizations both, domain-specific and tailor-made applications exist for most busi-
ness divisions. They support enterprises in managing their core assets, including customers,
staff, products, and resources [Wes07]. Examples include applications for human resource
management (HR), purchase order management, and production planning. Usually, these ap-
plications allow accessing business data and offer a variety of business functions to their users.
For this purpose, data-oriented views are provided that enable users to access and change
business data at any point in time. Typically, these views offer overview tables for which each
row corresponds to a particular business object [KR09c]. As example consider the overview
table listing different job applications as implemented in an existing Human Resource Manage-
ment System (cf. Fig. 1.2).

In addition to data access, various business functions are provided for accessing, changing,
and managing business data. When invoking such business functions (e.g., editing an appli-
cation, initiating a review), business objects (e.g., applications, job offers, interviews) may be
created, deleted, or updated; i.e., attribute values may be read or written by authorized users.

4

1.1 Context of Object-Aware Processes

Figure 1.2: Overview table in an existing HR application

Usually, electronic forms are provided to users in order to execute business functions. In partic-
ular, these forms may be invoked by users for reading and writing attribute values of business
objects.

application

GUI

overview tables

user forms

application code

business logic

DBMS interface

DBMS

data logic

g
e

n
e

ri
c

 i
m

p
le

m
e

n
ta

ti
o

n

Figure 1.3: Architecture using DBMS

Relational DBMS constitute an important backbone
of any tailor-made or domain-specific application.
To enable rapid development, they handle data
storage and management within a separate layer
(cf. Fig. 1.3). Before DBMS emerged, for each ap-
plication, data storage and access had been imple-
mented from scratch and in a proprietary manner.
As a consequence, each change of an application-
specific data structure had required an adoption of
the application code itself [Wes07]. In this context,
DBMS contribute to reduce the efforts for imple-
menting data management functions and for main-
taining large application databases. For this pur-
pose, usually, the application data structure is mod-
eled in the DBMS by specifying the object types re-
quired as well as their attributes (cf. Fig. 1.4a+b).
At run-time, the DBMS takes care of storing and
managing data (i.e., object instances) in an effi-
cient, consistent, and persistent manner (cf. Fig.
1.4c). DBMS further provide features like security,
transactions, and indexing [GR92]. Using a DBMS,
the implementation of application systems is usu-
ally based on architectures consisting of logically independent components. For example, con-
sider 3-tier architectures as illustrated in Fig. 1.3. Here, the first component provides the DBMS
interface, the second one enables user interactions (i.e., GUI components), and the third one
covers business logic (i.e., the implementation of business functions). By explicitly representing
data structures in DBMS, generic implementations of many GUI components (e.g., user forms
and overview tables) become possible (cf. Fig. 1.4d). A dynamically generated form contains
(editable) input fields for those object attributes, the respective user may write or read (based

5

1 Introduction

on his or her user role). Thereby, the type of an input field (e.g., text field, checkbox, combobox,
or radio button) may depend on the data type of the respective attribute. In turn, if a user only
owns read permissions, a corresponding data field displaying the value of the attribute is used.
Altogether, generic implementations of GUI components (cf. Fig. 1.3) significantly reduce im-
plementation efforts. Instead of programming thousands of different user forms, it becomes
possible to automatically generate them at run-time based on defined data models and user
authorizations (i.e., read and write permissions for individual attribute values).

overview tables

data view

overview tables

B D

b1 d1

b2 d2

relation 1

A E F

a1 e1 f1

a1 e2 f2

relation 2

C

c1

c2

A

a1

a2

a2 e3 f3

attributes values

developer

m
o

d
e

ll
in

g

end user 1

relation 1.B = b1

b1 d3c3a3

a3 e4 f4

a3 e5 f5

B D

b1 d1

A E F

a1 e1 f1

a1 e2 f2

C

c1

A

a1

b1 d3c3a3

a3 e4 f4

a3 e5 f5

attributes values

B

A E F

CA

b2 c2a2

a2 e3 f3

re
tr

ie
v

in
g

selection

constraint

a

b c

d

relation 1
relation 1

relation 2
relation 2

data view

end user 2

relation 1.B = b2

B D

relation 1

A E F

relation 2

CA

attributes

buildtime runtime

attributes

object

type

object

type

object instances

object instances

A:

b2B:

C:

a2

c2

updating

form

Figure 1.4: Relational Database Management System

During the last decade, new business needs have emerged [MRB08]. In addition to the provi-
sion of business data and business functions, business process support has become a major
issue in information systems engineering (cf. Fig. 1.5). In order to effectively achieve business
objectives [LR12], mandatory activities must be performed on selected business objects in a
particular order. Furthermore, the execution of different business functions must be coordi-
nated among different users. For the latter purpose, corresponding activities are assigned to
the worklists of authorized users (cf. Fig. 7). Otherwise, users do not have the information
about which activities must be executed next and whether the preceding activities have been
finished.

PrMS provide generic functions for modeling, executing and monitoring processes; i.e., process
logic is explicitly modeled instead of being hard-coded (cf. Fig. 1.6a). In contemporary PrMS,
usually, a business process is defined in terms of activities and a number of control-flow con-
straints restricting their execution order [vH04]. As illustrated in Fig. 1.6b, an activity represents
a task linked to a particular business function of an application system. Usually, application

6

1.1 Context of Object-Aware Processes

application

systems

application

systems

DBMS

application

systems

PrMS

DBMS

Data Management Process Management

further

stage

further

stage

use

use

Figure 1.5: History of application system development

data is managed by the invoked applications themselves. In turn, only data relevant for process
control (e.g., for evaluating transition conditions) or for providing activity input parameters are
managed by the PrMS itself (cf. Fig. 1.6b). Furthermore, most PrMS are only able to deal
with atomic data elements (i.e., attributes); i.e., it is not possible to group data elements or de-
fine semantic relations between them. Finally, roles and users are captured in an organization
model that is usually maintained by the PrMS [RMR07].

To be able to assign human activities to the right actors, PrMS use actor expressions referring
to entities of the organizational model (e.g., user roles) [RMR08, RMR09]. Actor expressions
must be defined for each human activity. At run-time, for each business case, a separate pro-
cess instance is created and then executed according to the defined process logic (cf. Fig.
1.6c). A particular activity will be only enabled if all preceding activities are completed or can-
not be executed anymore (except loop backs). Similar to DBMS, which allow for the automatic
generation of data-oriented views (i.e., overview tables) and form-based activities at run-time,
PrMS automatically generate a worklist for each registered user based on a generic implemen-
tation; i.e., it is not necessary to implement specific worklists for each process defined. When
a human activity becomes enabled, corresponding work items are then automatically added to
worklists of authorized users (cf. Fig. 1.6d). An example of such a worklist is shown in Fig. 1.7.
Finally, when a user selects a work item, the PrMS launches the associated business function
as provided by a particular application system (cf. Fig. 1.6d).

Altogether, DBMS allow separating the logic of business functions from data management,
whereas PrMS foster the separation of process and function logic (i.e., application code). More-
over, required data structures and process definitions are expressed in terms of models rather
than manually coded. This fastens implementation, increases maintainability, and reduces cost
of change [WRRM08, RW12].

7

1 Introduction

B

C F

D

E

I

HG

A Jstart end

sequence

alternative

branch

parallel

branch

loop

B

C F

D

E

I

HG

A Jstart end

B

C F

D

E

I

HG

A Jstart end

B

C F

D

E

I

HG

A Jstart end

B

D

G

F

H

worklist

user view

process model process instance 1

DB

user

a
p
p
lic
a
tio
n

DB

a
p
p
lic
a
tio
n

DB

a
p
p
lic
a
tio
n

a
p
p
lic
a
tio
n

a
p
p
lic
a
tio
n

a
p
p
lic
a
tio
n

DB DB

user

m
o

d
e

ll
in

g

object-id
attribute value attribute value

attribute value

attribute value

object-id

object-id

object-id

process instance 2

process instance 3

operational semantic

buildtime runtime

a

b c

d

Figure 1.6: Imperative Process Management System (according to [KR09a])

Figure 1.7: Worklist of a PrMS [LKRD10]

1.2 Problem Statement

DBMS are indispensable for implementing any applications system. In turn, PrMS have not
been broadly used so far as expected by vendor software. One reason for this situation is that
traditional PrMS have been primarily designed for the support of highly structured, repetitive
business processes [LR00]. However, various processes are still not adequately supported

8

1.2 Problem Statement

by these PrMS [RW12]. For example, [Sil09] characterizes the latter as unstructured or semi-
structured processes, which are knowledge-intensive and driven by user decisions [MKR12].
They require high flexibility during process execution [DRRM11]. In turn, other authors argue
that the business functions to be integrated with these processes cannot be straight-jacketed
into activities [vWG05, SOSS05]; i.e., the activity-based execution paradigm interferes with
business goals and organizational needs.
Furthermore, PrMS allow for a strict separation of concerns (cf. Fig. 1.8); i.e., data, functions,
and processes are managed by different kinds of systems. However, this makes it impossible to
provide integrated access to them. Without such integrated view, relevant context information
is missing during process execution [vWG05]; i.e., application systems must be directly invoked
outside the control of the PrMS. If data is changed directly in the underlying application system,
however, inconsistencies between process and data states might occur. In addition, data-
oriented views do not provide sufficient information on business processes and vice versa.

application

GUI

overview tables

user forms

application code

business logic

DBMS interface

DBMS

process logic

worklists

PrMS

GUI

worklists

application

GUI

overview tables

user forms

application code

business logic

DBMS interface

DBMS

process logic

data logicdata logic

PrMS

not used

DBMS

indispensable

user

access to

processes

access to

data and

functions

integrated access

to processes, data,

and functions

user

Figure 1.8: Application system architectures for providing process support

For these reasons, traditional PrMS cannot be used to support the processes in database-
driven application systems. Note that in existing applications, providing such integrated sup-
port, process logic is usually hard-coded (cf. Fig. 1.8). In general, both tailor-made and
domain-specific applications are complex to design and costly to maintain; e.g., even simple
process changes might require costly code adaptations and high efforts for testing [RW12]. In
this context, all processes require comprehensive programming efforts, and hence it is not pos-

9

1 Introduction

sible to automatically generate worklists or other user components at run-time. Instead, user
components like worklists need to be manually coded for each implemented process. The same
applies to data-oriented views (e.g., overview tables) and user forms. In particular, which input
and data fields shall be displayed when a particular user form, does not only depend on the
user executing this activity, but also on the processing state of the involved process instance.
Note that this requires a multiplicity of user forms whose implementation is a cumbersome and
costly task.

Data

Functions

Users

Processes

?

Figure 1.9: Dependencies

Opposed to tailor-made applications, domain-specific ap-
plications are characterized by hard-coded processes
that may be customized by setting specific system param-
eters [BHM01]; i.e., based on certain settings, one may
configure a particular process variant [HBR10a, HBR10b,
RW12]. From an organization’s point of view, however,
these process variants are usually not transparent. In
addition, there exist multiple dependencies between the
system settings required in this context. As a result, pro-
cess variants usually can only be tailored by very expe-
rienced consultants. In turn, from the system provider’s
point of view, process logic as well as the settings are
often (redundantly) scattered over the entire application
code, which therefore becomes extremely complex. This
results in long development cycles and high maintenance costs (e.g., when introducing new
features).

So far, many companies have taken benefit from their investments in ERP packages. However,
since configurability depends on the range of preconfigured alternatives, these packages are
very huge and extremely complex [KRG00]. In particular, configuration of domain-specific appli-
cations usually cannot be accomplished as quick and as efficient as the modeling of processes
in PrMS. According to [HL99], at least 90% of ERP implementations end up late or over bud-
get, and almost half of them fail to achieve desired results. Consequently, tailor-made as well
as domain-specific applications require long development cycles as well as high maintenance
efforts.

Finally, when dividing the system architecture of existing applications into data, functions, pro-
cesses, and users (cf. Fig. 1.8), the role of data and processes, and especially their interde-
pendencies, have not been well understood (cf. Fig. 1.9). However, the reasons why certain
processes are currently not adequately supported by existing PrMS are not clear. Hence, fun-
damental research efforts in this area are required.

10

1.3 Contribution

1.3 Contribution

On one hand, generic services as offered by DBMS and PrMS enable a faster implementation
and better maintenance of information systems; i.e., a model-driven development approach
provides higher flexibility compared to low-level programming and configuration. On the other
hand, integrated access to data, processes and functions, as offered by many existing applica-
tion systems, covers business needs best.
This thesis will show that the identified limitations of existing PrMS can be traced back to the
unsatisfactory integration of the different business perspectives. So far, the required integra-
tion of data, functions and processes as well as their mutual relationships have not been well
understood. To improve this situation, this thesis first conducts extensive case studies; i.e.,
it evaluates contemporary application systems (e.g., for human resource management [KB11]
and management of conferences). The first part of this thesis presents the comprehensive re-
sults of these studies. More precisely, we introduce a list of properties for business processes,
which we denote as "object-aware processes" and we elicit major requirements for their effec-
tive support.

Our overall vision is to develop a comprehensive framework for the support of object-aware
business processes. This framework has been developed in the PHILharmonicFlows project1

that was established in the context of this thesis. In particular, we pursue the following funda-
mental goals:

1. Providing adequate business process support. Process support for unstructured,
data-driven processes, as it can be found in many contemporary application systems,
shall be realized in a much more effective and generic manner.

2. Providing integrated access to business data, business functions and business
processes. Data- as well as process-oriented views shall be provided in an integrated
way.

3. Providing generic implementations of end-user components. Based on data and
process models, a generic implementation shall be provided that allows for automatically
generating of fine-grained end-user components at run-time (e.g., worklists, user forms,
and overview tables) taking the given context (e.g., user, process state) into account as
well.

Furthermore, the core of the PHILharmonicFlows framework shall cover the following stages of
the process lifecycle:

1. Modeling. PHILharmonicFlows shall provide modeling components for defining exe-
cutable processes and corresponding data structures in an integrated way. Opposed
to traditional process support paradigms, it shall provide a uniform methodology for mod-
eling processes at different levels of granularity. In addition, sophisticated concepts for
integrating users and enabling fine-grained access control shall be provided in an effec-
tive manner.

2. Execution. The proper execution as well as termination of processes at run-time shall be
ensured based on well-defined correctness rules. In addition, a precise and formal opera-
tional semantics shall be provided, which not only enables generic process execution, but

1Process, Humans and Information Linkage for harmonic Business Flows

11

1 Introduction

also realizes generic business functions. For this purpose, the framework shall automat-
ically create end-user components (e.g., work-lists, form-based activities, and overview
tables).

The thesis provides an extensive validation of the developed framework. In particular, it in-
troduces a proof-of-concept prototype for demonstrating fundamental concepts of the build-
and the run-time environment of PHILharmonicFlows. In addition, we apply this prototype to
real-world cases to elaborate the benefits of our approach as well as lessons learned.

Overall, this thesis comprises the following original contributions:

• It provides a software architecture for application systems, that enables a tight integration
of data, functions, processes, and users, while retaining the well-established principle of
separating concerns.

• It provides a sophisticated and very advanced process support paradigm that allows

� decoupling activities from (particular) process steps; i.e., process execution is based
on data rather than on black-box activities,

� combining object behavior, expressed in terms of states and state transitions, with
data-driven process execution. Opposed to existing approaches, an explicit mapping
between object states and object attribute values is provided, and

� coordinating the execution of different processes taking the relations between the
involved object instances into account. In particular, coordination is not only accom-
plished along direct object relations, but the processing of object instances can be
also coordinated based on their relationships within the overall data structure. In
particular, transitive as well as transverse relationships between object instances
are taken into account in this context. Finally, the provided approach allows for the
asynchronous execution of process instances taking the one-to-many relationships
between the processed object instances into account.

• It provides sophisticated concepts for user integration and access control. These con-
cepts ensure consistency between data and process states at any point in time.

• It provides generic implementations for end-user components. This enables us to auto-
matically generate overview tables, worklists, and form-based activities at run-time. In
particular, users may select the object instances desired in a given context; i.e., a great
variability of user forms is considered. This way, each user may choose his or her pre-
ferred work practice.

12

1.4 Outline

1.4 Outline

The remainder of this thesis is divided into four parts - motivation, object-aware processes and
their properties, PHILharmonicFlows framework and its concepts, as well as evaluation and
discussion:

Part I comprises an introduction (cf. Chapt. 1) and presents the research method we applied
(cf. Chapt. 2).

Part II addresses the notion of object-aware processes. More specifically, Chapt. 3 first in-
troduces their properties which are then underpinned by a detailed literature study. Based on
the identified properties, Chapt. 4 discusses related work. Following this, fundamental require-
ments for the support of object-aware processes are elicited in Chapt. 5.

Part III of this thesis presents the PHILharmonicFlows2 framework; i.e., a solution framework
for object-aware process management. After giving an overview about the framework, we
introduce concepts related to the underlying data model in Chapt. 6. In turn, process support is
realized at different levels of granularity and therefore implemented in terms of micro and macro
processes in our framework. Micro process modeling and execution is introduced in Chapts.
7 and 8. In turn, macro processes are used to coordinate the execution of micro processes.
These concepts are introduced in Chapts. 10 and 12. Chapt. 9 discusses different kinds
of activities as supported by the PHILharmonicFlows framework. Finally, further issues (e.g.,
exception handling, advanced user integration, and advanced data processing) are discussed
in Chapt. 13.

Part IV provides an evaluation of the PHILharmonicFlows framework (cf. Chapt. 14) and
summarizes the main contributions of the thesis (cf. Chapt. 15). We illustrate the proof-of-
concept implementation of the modeling and the execution environment. Following this, the
thesis gives insights into some of the lessons learned when applying this prototype to real-
world processes. Finally, Chapt. 15 summarizes the contribution of this thesis, illustrates the
benefit of the provided solution, and provides an outlook on future research directions.

2Process, Humans, and Information Linkage for harmonic Business Flows

13

1 Introduction

14

2
Research Methodology

This chapter presents the research questions addressed by this thesis and introduces the re-
search methodology applied. 1

IT Research

Natural ResearchDesign Research

IT

business

building

evaluation

discovery

justification
assess

refine

application

applicable

knowledge

additional

knowledge

business

needs

Figure 2.1: IT research [HMPR04]

Generally, in the context of IT re-
search (cf. Fig. 2.1), two scien-
tific approaches may be applied: natu-
ral science and design science [MS95,
HMPR04]. Natural science research
is knowledge-producing and comprises
discovery and justification as major
steps [MS95]. In turn, design science
is a knowledge-using activity [MS95],
which aims at developing IT systems
with building and evaluation as major
tasks [HMPR04]. Research should be
usually based on natural science. Con-
cerning IT, however, design science
has been considered as being more
successful and relevant. Nevertheless,
technology and behavior cannot be
separated from each other [HMPR04].
According to [MS95, HMPR04], there-
fore, IT research might result in significant contributions when engaging in both scientific ap-
proaches [HMPR04]. This thesis follows this suggestion and utilizes the synergistic effects that
can be achieved when combining natural and design science research.

1The chapter is based on the following referred paper:
[K1̈1] V. Künzle. Towards a Framework for Object-Aware Process Management. In 1st Int’l Symposium on
Data-driven Process Discovery and Analysis (SIMPDA’11), PhD Seminar, 2011
[KR11c] V. Künzle and M. Reichert. PHILharmonicFlows: Research an Design Methodology. Technical Report,
2011

15

2 Research Methodology

2.1 Research Questions

Starting with the basic observation that there exist processes not adequately supported by
existing PrMS, this thesis considers the following research questions:

• Research Question 1: What are the common properties of these processes?

• Research Question 2: Which requirements must be fulfilled by a PrMS in order to ade-
quately support processes with these properties?

• Research Question 3: How can these requirements be supported by an integrated con-
ceptual framework?

To answer these fundamental questions, our main research activities are as follows (cf. Fig.
2.2): We start with natural research to identify the characteristic properties of those business
processes currently not adequately supported (cf. Research Question 1). To deal with Re-
search Question 2, we evaluate existing approaches (i.e., already available knowledge) to elicit
the requirements for an information system supporting the identified properties. Finally, we
address Research Question 3 and develop a comprehensive framework as well as proof-of-
concept prototype for an approach supporting the requirements elicited. In particular, the de-
velopment of this framework is based on design research.

2.2 Doing Natural Research: Property Investigation and Justification

To discover the properties of the business processes not adequately supported by current
PrMS, first of all, we perform a comprehensive property investigation for respective processes.
Then, we justify our findings with an extensive literature study.

2.2.1 Process Analysis

Data Source: Due to the limitations of existing PrMS, many business applications (e.g., ERP
systems) do not rely on PrMS, but realize a hard-coded process logic instead. In order to ensure
that the processes, we analyzed in our property investigation, are not self-made examples,
but constitute real-world processes, we investigated the processes implemented by existing
application software. Amongst others, we analyzed the processes supported by the human
resource management system Persis and the reviewing system Easychair [KR09c, KR09b].
However, our evaluation was not restricted to the inspection of user interfaces solely. In addition,
the author of this thesis gathered extensive practical experiences as software developer of the
Persis system; i.e., she has deep insights into the application code of this system as well as
the various processes implemented. Finally, we confirmed the results by interviewing system
users as well as system consultants.

Selection Criteria: We evaluated the processes based on the main building blocks of existing
PrMS. The latter comprise business processes, business data, business functions, and users
(cf. Fig. 2.1). In particular, we focussed on the fundamental interdependencies that exist
between these building blocks. Finally, to set a focus, we restricted ourselves to properties
related to process modeling, execution and monitoring.

16

2.2 Doing Natural Research

process

analysis

literature

srudy

requirements

elicitation

related

work

conceptual

design

user interface

design

prototype

practical

application

discovery

justification

e
v
a
lu
a
tio
n

evaluationbu
ild
in
g

b
u
ild
in
g

bu
ild
in
g

eval
uatio

n

property

investigation

re
q

u
ire

m
e
n

ts
e
n

g
in

e
e
rin

g

im
pact

investigation

fr
a
m

e
w

o
rk

d
e
s
ig

n

pro
of-o

f-c
oncept

natural

a
p
p
lic
a
b
le

d
e
s
ig
n

traditional

approaches

d
is
c
o
v
e
ry

research

re
s
e
a
rc
h

u
s
in
g

k
n
o
w
le
d
g
e

Figure 2.2: Research methodology (according to [K1̈1, KR11c])

2.2.2 Literature Study

Ensuring importance: We complemented our process analysis by an extensive literature study.
This way, we were able to show that other work also considers the identified properties as
relevant.

Ensuring completeness: In order to not exclude important properties, we compared our anal-
ysis results with existing literature. Though we were able to identify additional properties (e.g.,
relating to process change and process evolution), they did not directly relate to process mod-
eling, execution, and monitoring. To set a focus, we omit them in the context of this thesis.

Ensuring generalisation: In our literature study, we identified several approaches that target at
a tight integration of business processes and business data. Interestingly, existing work par-

17

2 Research Methodology

tially refers to similar application scenarios as considered by this thesis, while addressing only
selected properties. Based on these insights, we contrasted the different application scenarios
with the total set of identified properties. This way, we were able to demonstrate two things:
first, the properties are related to each other. Second, broad support for them is required by a
variety of processes from different application domains.

2.3 Using Applicable Knowledge: Requirements Elicitation

To elicit the basic requirements for supporting object-aware processes, we compared the iden-
tified properties with the main process characteristics addressed by traditional PrMS [KWR10b,
KWR10a]. More precisely, we evaluated which properties cannot be directly supported when
applying traditional imperative, declarative and data-driven approaches [KWR10b, KWR10a].
Though the identified requirements are not complete in the sense that they cover all aspects
one can imagine, their fulfilment is indispensable for realizing the fundamental properties for
modeling and executing object-aware processes.

2.4 Doing Design Research: Framework Design and
Proof-of-Concept

Hevner et al [HMPR04] consider solution design as search process being inherently iterative.
This has been confirmed by other authors [Sim96, Boe86]. In turn, Simon [Sim96] describes
the nature of the design process as a Generate/Test Cycle. The spiral model [Boe86] defines
an approach in which one and the same step is repeated several times, each time improving
the results of the previous outcome. For this purpose, we performed iterative walkthroughs.
In particular, we revised our solution and improved it step by step. This has led to different
development versions. Additionally, we investigated in user interface design [Sch10, Wag10].
This way, shortcomings concerning the usability of the framework design were identified at an
early project stage and considered in subsequent iterative revisions.

In order to evaluate the PHILharmonicFlows framework, we developed a powerful proof-of-
concept prototype realizing its build-time and run-time environment. We applied this prototype
to a real-world case. Additionally, we evaluated the developed concepts using other process
scenarios; e.g., order handling, house building, vacation requests, and patient treatment. In
particular, these scenarios are different from the ones we considered in the context of our
process analyses. Finally, we elaborated the benefits of our approach when applying it to these
processes.

18

Part II

Object-Aware Processes

19

3
Properties of Object-Aware Processes

To better understand why existing PrMS lack an adequate support for many of the processes
which are hard-coded in existing application systems, we thoroughly investigate these pro-
cesses and perform a systematic analysis of their properties.1To gain empirical evidence, we
evaluate the properties of data- and process-oriented application software (with hard-coded
process logic) in several case studies. For example, we study widely used information systems
from the areas of human resource management and document reviewing (cf. Chap. 2). In this
context, we analyze the nature of data, activities, processes, and users, as well as the complex
interdependencies between these entities. As our major finding, we observe that many busi-
ness processes require object-awareness; i.e., they focus on the processing of business data,
which is represented in terms of business objects. Based on the insights gained during our
case studies, we derive propositions in respect to the fundamental properties of object-aware
processes. This chapter summarizes the findings we gathered during these case studies.

In the following, we discuss basic properties of object-aware business processes along a char-
acteristic example for recruiting people (cf. Fig. 3.1).

1The chapter is based on the following referred paper:
[KR09c] V. Künzle and M. Reichert. Towards Object-aware Process Management Systems: Issues, Chal-
lenges, Benefits. In Enterprise, Business-Process and Information Systems Modeling (BPMDS’09), volume 29
of LNBIP, pages 197–210. Springer Berlin Heidelberg, 2009
[KR09b] V. Künzle and M. Reichert. Integrating Users in Object-Aware Process Management Systems: Issues
and Challenges. In Business Process Management Workshops (Proc. BPD’09), volume 43 of LNBIP, pages
29–41. Springer Berlin Heidelberg, 2009
[KWR10a] V. Künzle, B. Weber, and M. Reichert. Object-aware Business Processes: Fundamental Require-
ments and their Support in Existing Approaches. International Journal of Information System Modeling and
Design (IJISM), 2(2):9–46, 2010

21

3 Properties of Object-Aware Processes

interview initiate

reviewsinitiate

reviewsinitiate

reviewsinitiate

reviews

review

review

review

review

review

Marla Sun

Hans Manz

invite

many skills

announce

job

Init

application

fill in

review

decide

application

fill

job

job

engineer

01 | 01 | 2010

software

Ulm

fill in

review

fill in

review

fill in

review

decide

application

fill in

review

employee

Willi Ohr

Init

application

personnel

officer

Mila Fun

data structure activities

human resource department

initiate

reviews

functional devision

external

activities usersusers

personnel

officer

Fritz Maier

applicant

Hilde Moore

employee

Franz Hahn

employee

Lola Fee

applicant

Max Sun

interview

application

application

Hans Manz

hm@web.de

12|12|1970

Ulm

Figure 3.1: Example of a recruitment process (according to [KR11b, KR11d, KWR10a])

Example 3.1 (Example of a recruitment process from the human resource domain):
In the context of recruitment, applicants may apply for job offers via an online form. Before an applicant may
send her application to the respective company, specific information (e.g., name, e-mail address, birthday, and
residence) must be provided. Once the application has been submitted, the responsible personnel officer

in the human resource department is notified. The overall process goal is to decide which applicant shall get
the job. Since many applicants may apply for a particular job offer, usually, different personnel officers are
involved in handling the applications. If an application is ineligible, the applicant is immediately rejected. Oth-
erwise, personnel officers may request internal reviews for each application. Depending on the functional
divisions concerned, the concrete number of reviews may differ from application to application. Correspond-
ing review forms must be filled by employees from functional divisions who make a proposal on how to proceed;
i.e., they indicate whether the applicant shall be invited for an interview or be rejected. If the reviewer pro-
poses to invite the applicant, an additional appraisal is needed. In turn, if the reviewer proposes to reject the
applicant, a reason or an alternative job offer must be provided. After the employee has filled the review

form, she submits it back to the personnel officer. In the meanwhile, additional applications might have ar-
rived; i.e., reviews relating to the same or different applications may be requested or submitted at different points
in time. In this context, the personnel officer may flag the reviews he already evaluated. The processing of the
application proceeds, while corresponding reviews are created; e.g., the personnel officer may check the CV

and study the cover letter of the application. Based on the incoming reviews, he makes his decision on the
application or initiates further steps (e.g., interviews or additional reviews). Finally, he does not have to wait for
the arrival of all reviews; e.g., if a particular employee suggests hiring the applicant, he may immediately follow
this recommendation.

3.1 Property Identification

This section discusses fundamental properties of object-aware business processes along the
introduced example. Related to the different business perspectives (cf. Chapt. 1), we focus

22

3.1 Property Identification

on data integration, process granularity, process modeling and execution, activities, and user
integration.

3.1.1 Data Integration

Generally, we figured out that many limitations of existing PrMS can be traced back to the
unsatisfactory integration of processes and data. In particular, the scenarios we analyzed in our
case studies are all characterized by a tight integration of business data, which is represented
in terms of business objects. Respective business data should be manageable and accessible
based on complex objects rather than atomic data elements. Usually, application systems
manage data in terms of different object types. Each object type comprises a set of attributes
describing different properties of the object type. For example, consider the review object type
as illustrated in Fig. 3.2. A review comprises attributes like urgency, proposal, appraisal, remark,
and comment. At run-time, for each object type, a varying number of object instances may be
created. Object instances of the same type usually differ in the values of their attributes (cf.
Fig. 3.2). While a particular review object instance propose to invite the applicant (i.e., attribute
proposal has value "invite"), another one might suggest rejecting the candidate (i.e., attribute
proposal has value "reject").

review

urgency

return date

remark

proposal

appraisal

reason

comment

considered

review #1

urgent

12 | 10 | 2013

please check

reject

less skills

review #2

not urgent

12 | 12 | 2013

improved demand

invite

very good

many skills

b
u

il
d

ti
m

e
ru

n
ti

m
e

attributes

attribute

values

data structure

object

types

object

instances

urgency

return date

remark

proposal

appraisal

reason

comment

considered

urgency

return date

remark

proposal

appraisal

reason

comment

considered

Figure 3.2: Example of an object type and related object instances

Property 1 (Object Types)
Data is managed in terms of object types of which each comprises a number of attributes.

23

3 Properties of Object-Aware Processes

In general, object types are inter-related. Since this thesis focuses on relational databases
[Cod90], each relation constitutes a one-to-many relationship. For example, consider the re-
lation between object types application and review as illustrated in Fig. 3.3; i.e., object type
review refers to object type application. Hence, at run-time, an application object instance may
be referenced by number of review object instances; i.e., for a particular application several
reviews exist. In the following, we denote an object instance, which is directly or transitively ref-
erenced by another object instance o, as higher-level object instance of o; e.g., an application

is a higher-level object instance of a set of reviews. By contrast, an object instance directly or
transitively referencing another object instance is denoted as lower-level object instance; e.g.,
reviews are lower-level object instances of an application object instance.

proposal
refusal

proposal
refusalproposal

refusal

name
job

name
valid

application

0 … n

job

review

1 … 5

interview

0 .. 4

application

job

review interview

object type

relation

cardinality

object instances relations

a

b

name
valid

location
decision

date
time

proposal
remark

admin
true

maier
admin

invite 01|01
4 pm

attributes

b
u

il
d

ti
m

e
ru

n
ti

m
e

data structure

attribute

values

Figure 3.3: Data structure at build- and run-time (according to [KR11b, KR11d, KWR10a])

Property 2 (Object Relations)
Object types are inter-related.

Overall, object types, object attributes, and object inter-relations form a data structure. At run-
time, object types may have a varying number of inter-related object instances. In this context,
it is possible to restrict the concrete number of object instances referring the same higher-level
object instance by lower and upper bounds (i.e., cardinalities). For example, consider Fig. 6.6a:
for each application, at least one and at most five reviews are required. Consequently, object
instances of the same object type may not only differ in their attribute values, but also in their
inter-relations (cf. Fig. 6.6b); e.g., for a particular application two reviews might be requested,

24

3.1 Property Identification

while for another one three reviews are needed. A challenge in this context is to cope with
this varying and dynamic number of object instances to be handled at run-time. Thereby, the
different relations between the object instances must be considered as well.

Property 3 (Cardinalities)
At run-time, for each object type a varying number of object instances may exist. This number may be restricted in
different way through cardinality constraints.

3.1.2 Process Granularity

As a major finding we learned that many business processes focus on the processing of busi-
ness data represented in terms of business objects. Each business object comprises a set of
attributes. Furthermore, business objects may be related to each other. In this context, pro-
cesses require object-awareness, which means that the overall process model shall be struc-
tured and divided according to the object types involved. For each object type, therefore, a
particular process type exists. Thus, the modeling of processes and data constitute two sides
of the same coin, and should therefore correspond to each other. In accordance to data mod-
eling, the modeling and execution of processes is based on two levels of granularity: object
behavior and object interactions.

The first granularity level concerns the behavior of object instances, which describes the pro-
cessing of an individual object instance. Usually, for each object type, a separate process
definition exists [MRH07]. The creation of a process instance is then directly coupled with the
one of an object instance; i.e., for each object instance, exactly one process instance exists.

Fig. 3.4 illustrates the mapping between object and process types and between object and
process instances respectively; e.g., object type job has its own process type. At run-time, exist
multiple instances of a job object. Accordingly, for each of them a separate process instance is
created.

Property 4 (Object Behavior)
For each object type, a specific process type exists.

The second granularity level comprises the interactions taking place between the instances of
different object types. More precisely, whether a particular process instance may proceed also
depends on the progress of other process instances. Generally, for each object type, multi-
ple object instances may exist (cf. Fig. 3.4b). In particular, these may be created or deleted
at arbitrary points in time; i.e., the corresponding data structure dynamically evolves depend-
ing on the type and number of created object instances and their relations. Furthermore, the
creation of an object instance is directly coupled with the one of the corresponding process
instance. These individual process instances are executed asynchronously to each other as
well as asynchronously to higher- and lower-level instances. In particular, they may be instan-
tiated simultaneously or at different points in time. Consequently, individual object instances
may be in different processing states at a certain point in time. For example, several reviews
might have been requested for a particular application. While a particular one might have just

25

3 Properties of Object-Aware Processes

proposal
refusal

proposal
refusalproposal

refusal

name
job

name
valid

application

0 … n

job

review

1 … 5

interview

0 .. 4

application

job

review interview

object type

relation

cardinality

object instances relations

a

b

name
valid

location
decision

date
time

proposal
remark

admin
true

maier
admin

invite 01|01
4 pm

attribute application

job

review interview

application

interviewreview

asynchronous

asynchronous

object behavior
c

d

b
u

il
d

ti
m

e
ru

n
ti

m
e

data structure process structure

object

interactions

attribute

values

asynchronous

job

Figure 3.4: Process structure at build- and run-time

been initiated, others might have been already submitted back to the personnel officer who
must inspect them. Taking the behavior of individual object instances into account, this results
in a complex process structure in accordance with the given data structure (cf. Fig. 3.4d). For
example, when executing a particular process instance, related subordinate process instances
may be triggered. In turn, results collected during the execution of these subordinate process
instances are relevant for executing the super-ordinate process instance as well.

When executing particular process instances, it should be possible to synchronize them when-
ever needed (cf. Fig. 3.5). For example, applications may only be filled in and sent as long as
the corresponding job is published. Here, a number of related object instances depend on one
higher-level instance. We denote this as top-down dependency. Consider that synchronization
must be possible in an asynchronous way rather than be based on specific (i.e., pre-specified)
points within the higher-level instance. For example, this means, that even if activity evaluate

has been already activated, it is still possible to fill in an application.
Opposed to this, an application may only be rejected if all corresponding reviews propose the
rejection. In this context, one higher-level instance depends on a number of lower level ones.
We denote this as bottom-up dependency. For this purpose, it must be possible to aggregate
several lower-level instances if needed. Moreover, such dependencies do not necessarily coin-
cide to object relations. For example, consider the initiation of an interview. This is only possible
if the job has been published and at least one review proposes to invite the applicant. Thus,
transitive as well as transverse dependencies must be considered as well.

26

3.1 Property Identification

interviewreview

job

application

initiate publish evaluate fill

fill in send check
accept

reject

initiate fill in inspect initiate meet

b
u

il
d

-t
im

e

process structure

top-down

dependency

bottom-up

dependency

transitive

dependency

transverse

dependency

Figure 3.5: Process structure at build-time

Property 5 (Object Interactions)
Individual process instances are executed in a loosely coupled manner; i.e., concurrently to each other. Process
synchronization needed in this context, must cope with a varying number of inter-related process instances. Ad-
ditionally, synchronization should not be based on specific points during process execution, but follows a more
asynchronous and flexible process coordination. In order to adequately consider the one-to-many relationships,
which exist between the object instances corresponding to the respective process instances, it must be possible
to aggregate sets of lower-level instances. Overall, top-down, bottom-up, transverse, and transitive dependencies
must be considered (cf. Fig. 3.5).

3.1.3 Process Modeling and Execution

As another basic insight, we learned that the progress of a process often depends on available
business objects and their attribute values. Hence, process execution should be accomplished
in a data-driven manner. For object-aware processes, this means that they need to be defined
in terms of data conditions rather than in terms of black-box activities.

Looking at an individual process type in more detail, usually, the creation of a new object in-
stance is directly coupled with the one of the corresponding process instance. When executing
activities, certain attribute values are mandatorily required to proceed with the flow of control.
In this context, object behavior determines in which order object attributes must be written and
what valid attribute settings are. Corresponding to this, the steps of a process are less defined
in terms of black-box activities, but are rather defined based on explicit data conditions. Note
that this is a fundamental difference compared to contemporary PrMS.

When defining object behavior, for each process step, it must be defined when it may be en-
abled. This should be accomplished by specifying pre-conditions on the attribute values of the
object instance (cf. Fig. 3.6). Regarding our example, the data conditions used to describe the

27

3 Properties of Object-Aware Processes

review

urgency

return date

remark

proposal

appraisal

reason

comment

considered

STRING

STRING

STRING

STRING

STRING

STRING

BOOLEAN

DATE

b
u

il
d

ti
m

e
object type object behavior

review

urgency != NULL

and

return date != NULL

(proposal = ‚invite’

and appraisal != NULL)

or

(proposal = ‚reject’

and reason != NULL)

considered != NULL

initiate fill in inspect

Figure 3.6: Object behavior

object behavior of the review object type are related to its attributes (cf. Fig. 3.6).
In turn, regarding object interactions, synchronization constraints between the instances repre-
senting object behavior may depend on the number of related object instances as well as on
respective attribute values. Thus, for process synchronization, corresponding data conditions
turn out to be more complex; i.e., varying numbers of related process instances as well as their
asynchronous execution must be taken into account. For example, consider the creation of
new review object instances, which is only possible as long as no decision for the correspond-
ing application object instance has been made. Moreover, an application may only be rejected
(i.e., assign value "rejection" to attribute decision) if all review object instances referencing the
application have proposed rejection (i.e., value "reject" is assigned to attribute proposal).

Property 6 (Mandatory Information)
During the processing of individual object instances, certain attribute values are mandatorily required before pro-
ceeding with process execution. In turn, in the context of interactions between object instances, process instance
execution may further depend on the attribute values of related process instances and object instances respectively.

To proceed with the execution of a particular process instance, mandatorily required data must
be provided. For this purpose, activities for creating object instances as well as for editing
object instance attributes must be performed. Respective activities are usually realized as user
forms that provide input fields (e.g., text-fields, checkboxes, etc.) for writing selected attribute
values and data fields (i.e., read-only input fields) for reading them. In particular, there exists
one action (i.e., input or data field) for each attribute to be read or written in the context of
a particular activity. Furthermore, each activity consists of at least one action. Consider the
example from Fig. 3.7: before the employee may fill in the review, values for attributes urgency and
return date must be provided by the personnel officer.

In the context of a particular activity, users may optionally read or write additional attribute
values, which are not mandatorily required to proceed with process execution. For example,
input fields corresponding to mandatorily required attributes may be marked using a red star.
As illustrated in Fig. 3.8, in addition to the input fields for attributes urgency and return date, the
personnel officer may optionally set a value for attribute remark.

Which object attributes are mandatory and which are not, may depend on the values of other
object attributes as well. If an employee proposes to invite an applicant (i.e., value "invite" is

28

3.1 Property Identification

urgency:

return date: 12 | 10 | 2013

save cancel

Edit Review #1

proposal:

appraisal:

reason:

save cancel

Edit Review #1

considered

save cancel

Edit Review #1

urgency != NULL

and

return date != NULL

(proposal = ‚invite’

and appraisal != NULL)

or

(proposal = ‚reject’

and reason != NULL)

considered

!= NULL

initiate fill in inspect

employee

personnel

officer

high

Figure 3.7: Mandatory activities comprising solely mandatory actions

assigned to attribute proposal), he must additionally provide a value for attribute appraisal (cf.
Fig. 3.9a). Opposed to this, if he proposes to reject the applicant (i.e., value "reject" is assigned
to attribute proposal) he must provide a reason instead (cf. Fig. 3.9b). Consequently, when filling
a form, certain input fields might become mandatory on-the-fly. Such control flow, which is
specific to a particular form, is common in existing application systems.

Property 7 (Control flow within User Forms)
Whether certain object attributes are mandatory when processing a particular activity might depend on certain other
object attribute values. In particular, when filling a form, certain attributes might become mandatory on-the-fly.

In addition, users currently not executing a mandatory activity, may execute optional activities
if desired; i.e., write certain attribute values even if these are not required at the moment.
More precisely, certain activities might be optional, while others are mandatory to proceed with
process execution. In turn, other form-based activities may be optionally executed to gather
object information at any point in time regardless of the progress of the corresponding process
instance. Opposed to this, other activities are mandatory and comprise actions changing the
values of the object attributes that are referred by the data conditions of one or multiple process
steps. Regarding the example from Fig. 3.10, an employee may fill the review, while a personnel
officer may edit his remark and read attributes urgency and return date.

Property 8 (Optional activities)
Depending on the state of object instances, certain activities are mandatory for progressing with process execution.
At the same time, users should be allowed to optionally execute activities (e.g., to write certain attributes even if
they are not required at the moment).

29

3 Properties of Object-Aware Processes

urgency != NULL

and

return date != NULL

(proposal = ‚invite’

and appraisal != NULL)

or

(proposal = ‚reject’

and reason != NULL)

considered

!= NULL

initiate fill in inspect

employee

personnel

officer
urgency:

return date:

remark:

12 | 10 | 2013

please check

save cancel

Edit Review #1

*
*

high

urgency:

invite

return date:

remark:

proposal:

appraisal:

reason:

comment:

12 | 10 | 2013

please check

save cancel

Edit Review #1

*
*

high

urgency:

invite

return date:

remark:

proposal:

appraisal:

reason:

comment:

considered

12 | 10 | 2013

please check

very good

many skills

save cancel

Edit Review #1

*

high

mandatory input fields

optional input fields

Figure 3.8: Mandatory activities comprising mandatory as well as optional actions

Note that when executing such optional activities, the attribute changes required to fulfill the
data condition of a particular process step may be realized as well. For example, the employee
may fill in the review (i.e., edit the input fields corresponding to attributes proposal, appraisal,
and reason) before the personnel officer has completed the initiation of the review (i.e., before
values for attributes urgency and return date are available). This way, it becomes possible to
set respective attributes up-front; i.e., before the mandatory activity usually writing them be-
comes activated. Since this can be done asynchronously at arbitrary point in time, a high
process flexibility can be realized. More precisely, if required data becomes available early,
mandatory activities to be executed later may then be automatically skipped; i.e., the employee
does not need to execute activity fill in when required attribute values are already available.
Consequently, for any object-aware process, the progress of a corresponding process instance
correlates with the attribute values of the associated object instance. This way, process state
and object state are in sync at any point in time.

Property 9 (Flexible process execution)
Mandatory activities, which are no longer needed due to the early availability of the required attributes, may be
automatically skipped.

30

3.1 Property Identification

urgency:

invite

return date:

remark:

proposal:

appraisal:

reason:

comment:

12 | 10 | 2013

please check

save cancel

Edit Review #1

*
*

high urgency:

reject

return date:

remark:

proposal:

appraisal:

reason:

comment:

12 | 10 | 2013

please check

save cancel

Edit Review #1

*

*

high

a b

Figure 3.9: Control flow within user forms

In certain situations, users may want to re-execute activities, even if all mandatory object at-
tributes have been already set. For example, the employee may want to change the value of
attribute proposal later on. In such cases, whether or not an activity is considered as completed
depends on an explicit user commitment. More precisely, the employee explicitly decides when
to submit the review back to the personnel officer. The latter, in turn, must not inspect the review

before the employee has submitted it.
Moreover, users decide about the concrete number of object instances created for a particular
object type. For example, the personnel officer decides about the concrete number of reviews
required for each application. In general, as long as cardinality constraints are met, users
should be free to decide whether or not additional object instances (and process instances re-
spectively), shall be created. Consequently, the concrete data and process structure emerges
dynamically at run-time and is determined by the users.

Property 10 (Re-executing activities)
Users should be allowed to re-execute a particular activity (i.e., to update its attributes), even if all mandatory object
attributes have been already set.

Property 11 (User decisions)
The progress of a process instance does not only depend on available data. In certain situations, in addition, a
commitment of the responsible user is required to proceed with the execution of the process instance. Moreover,
users may decide about the concrete number of object instances created at run-time (as long as all cardinality
constraints are met).

3.1.4 Activities

Providing access to business data and processing this data, constitute important features of
any application system. Typically, particular activities are more related to the involved object
instances rather than strictly be assigned to single process steps.

Basically, activities can be categorized into form-based and black-box activities. In object-
aware processes, usually, the values of object attributes may be accessed during activity ex-
ecution. More precisely, when executing activities, certain attribute values are mandatorily

31

3 Properties of Object-Aware Processes

urgency != NULL

and

return date != NULL

(proposal = ‚invite’

and appraisal != NULL)

or

(proposal = ‚reject’

and reason != NULL)

considered

!= NULL

initiate fill in inspect

employee

personnel

officer
urgency:

return date:

remark:

12 | 10 | 2013

please check

save cancel

Edit Review #1

*
*

high

urgency:

invite

return date:

remark:

proposal:

appraisal:

reason:

comment:

12 | 10 | 2013

please check

save cancel

Edit Review #1

*
*

high

urgency:

invite

return date:

remark:

proposal:

appraisal:

reason:

comment:

considered

12 | 10 | 2013

please check

very good

many skills

save cancel

Edit Review #1

*

high

urgency:

return date:

remark:

proposal:

appraisal:

reason:

comment:

save cancel

Edit Review #1

urgency:

invite

return date:

remark:

proposal:

appraisal:

reason:

comment:

12 | 10 | 2013

please check

very good

many skills

save cancel

Edit Review #1

high

urgency:

return date:

remark:

12 | 10 | 2013

please check

save cancel

Edit Review #1

high

optional activity mandatory activity optional activity

optional activitymandatory activity

mandatory activity

Figure 3.10: Mandatory and optional activities

required to proceed with the flow of control. Usually, activities requiring user input are realized
as user forms. In addition, black-box activities enable complex computations or allow inte-
grating advanced functionalities (e.g., sending e-mails or invoking web services). Regarding
form-based activities, whether or not an input field is displayed for a particular user depends on
his data authorizations.

Property 12 (Form-based activities)
A form-based activity comprises a set of atomic actions. Each of them corresponds to either an input field for writing
the value of an object attribute or a data field for reading it.

Property 13 (Black-box activities)
Black-box activities enable complex computations or allow integrating advanced functionalities. Hence, for each
black-box activity, a corresponding implementation is required.

Activities can be further categorized as instance-specific or context-sensitive. Instance-specific
activities correspond to exactly one object instance (cf. Fig. 3.11a). Usually, when executing

32

3.1 Property Identification

such an activity, selected attributes of this object instance may be read, written, or updated. This
is accomplished using a form (e.g., the form an applicant may use for entering his application
data). However, black-box activities may be also instance-specific. Such activities only require
input parameters referring to the attributes of one particular object instance. For example,
consider an activity for sending an info-mail to an applicant.
In turn, a context-sensitive activity additionally changes attribute values of higher- or lower-
level object instances (cf. Fig. 3.11b). Context-sensitive, form-based activities may comprise
input fields corresponding to attributes of several object instances; e.g., when an employee is
filling in a review, additional information about the corresponding application should be provided
(i.e., attributes belonging to the application the review refers to). When integrating lower-level
object instances, usually, a collection of object instances is considered. When a personnel
officer edits an application, for example, all corresponding reviews should be visible. In turn,
a context-sensitive, black-box activity requires attribute values of several object instances as
input parameters. For example, consider an activity comparing the skills of an applicant with
the requirements of the respective job.

application

job

review interview

application

job

review interview

application

job

review interview

activity batch activitycontext-sensitive activity

a cb

Figure 3.11: Activity types (according to [KR11b, KR11d, KWR10a])

Using context-sensitive activities, several process instances may be processed in the context
of one and the same activity. Consequently, activities do not necessarily coincide to single
process steps as in traditional process support paradigms (cf. Chapt. 4).

Property 14 (Varying activity granularity)
Depending on their preference, users should be allowed to freely choose the most suitable activity type for achieving
a particular goal. Regarding instance-specific activities, all actions refer to attributes of one particular object instance
and therefore belong to exactly one process instance (i.e., object behavior). In turn, context-sensitive activities
comprise actions referring to different, but related object instances (of same or different type). Since each object
instance is coupled with exactly one process instance (describing the behavior of the object instance), a context-
sensitive activity belongs to several process instances.

Generally, many object instances may exist for a particular object type. In this context, a batch
execution of activities allows users to change a collection of selected object instances in one
go (cf. Fig. 3.11c). Using batch execution in connection with form-based activities, attribute
values may then be set using one form and then be assigned to all object instances; e.g., a
personnel officer might want to flag a collection of reviews as "evaluated" in one go, or, as soon
as an applicant is hired for a job, for all other applications value "reject" shall be set for attribute
decision by filling one form. In turn, regarding black-box activities one and the same activity may
be invoked for a number of instances in one go. As example consider the activity used to send

33

3 Properties of Object-Aware Processes

an info-mail to an applicant. Using batch execution, it becomes possible to send the info-mail
to a number of applicants in one go.

Property 15 (Batch execution)
Activities shall be executable for a number of object instances (of the same type) in one go. Using form-based
activities, attribute values shall be set based on one particular form. Respective values are then assigned to a
number of selected object instances. In turn, regarding black-box activities one and the same activity may be
executed for a number of object instances in one go.

Altogether, there exist several possibilities to reach a process goal. Depending on their prefer-
ence, users should be free to select the most suitable activity type in order to fulfill a specific
task; i.e., there may exist alternative ways of achieving a particular goal. More precisely, it is up
to the user whether he selects an instance-specific activity, context-sensitive activity or batch
activity in order to provide the required attribute values. In addition, users may terminate an
activity, even if required data is missing and re-execute it afterwards. This shall be also possible
if all mandatorily required attribute values have been already set.

3.1.5 User Integration

In existing PrMS, human activities are usually associated with actor expressions at build-time
(e.g., user roles). We denote this as type-specific authorization (cf. Fig. 3.12). Respective ex-
pressions are then applied to all process instances of the respective type. Users who may work
on an activity are then determined during run-time based on the actor expression. Regarding
our example (cf. Fig. 3.12), each user owning role personnel officer may check applications.
More precisely, each personnel officer may check any application.

application #1

application #1

application #1

fill in send check
accept

reject

personnel

officer

fill in send check
accept

reject

fill in send check
accept

reject

Ulmlocation

decision

. . .

Berlinlocation

decision

. . .

Ulmlocation

decision

. . .

Figure 3.12: Type-specific authorization

Regarding object-aware processes, a type-specific authorization alone is not sufficient. In par-
ticular, the selection of potential actors not only depends on the activity itself, but also on the
object instance processed by this activity [RzM98, RzM04]. We denote this as instance-specific

34

3.1 Property Identification

authorization. As example consider Fig. 3.13, which depicts different process instances han-
dling applications. While one personnel officer might be responsible for applications that apply
for a job at a location whose name starts with a letter between ’A’ and ’L’, another one may
only have access to applications referring to a job at a location whose name starts with a let-
ter between ’M’ und ’Z’. Existing PrMS lack support for such data-dependent, instance-specific
authorizations.

application #1

application #1

application #1

fill in send check
accept

reject

personnel

officer

fill in send check
accept

reject

fill in send check
accept

reject

Ulmlocation

decision

. . .

Berlinlocation

decision

. . .

Ulmlocation

decision

. . .

location

M - Z
personnel

officer

location

A - L

Figure 3.13: Instance-specific authorization

Property 16 (Instance-specific authorization)
The selection of potential actors for executing an activity does not only depend on the activity and its associated
user role itself, but also on the object instance processed by this activity.

Regarding instance-specific authorizations, user permissions have to be restricted to a set of
object instances or to a specific object instance [HW04, KKC02]. In general, the mapping
between users and object instances (i.e., the regulation which user shall have which access
rights for which object instances) is not arbitrary, but must obey certain constraints [BBU99].
For example, an applicant may only scan his own application, but must not access the ones
of other applicants. Thus, the relationships between users and object instances must be taken
into account when defining data and process authorizations.

Property 17 (Authorizations considering relationships to users)
The selection of potential actors for executing an activity may also depend on the relationship between the user and
the object instance to be processed by the activity.

To proceed with process execution, certain attribute values must be set. For this purpose,
authorized users must execute mandatory activities. In this context, form-based activities com-
prise input fields corresponding to the required attributes. Consequently, not only the actor

35

3 Properties of Object-Aware Processes

expressions, but also permissions for accessing data must be taken into account when as-
signing activities to users. In particular, it is very crucial that process authorization (i.e., actor
expressions) complies with data authorization.

Property 18 (Compliance between data and process authorization)
Each user who must execute a process-relevant activity, needs to own respective data permissions for setting
required attribute values.

When working on mandatory (form-based) activities, users may optionally edit additional at-
tribute values together with the ones mandatorily required. In particular, based on optional
activities authorized users may access or change data at any point in time. However, unde-
sired manipulations of object attributes, which are relevant for process execution, should be
prevented. For example, an applicant must write the values of attributes CV and cover letter

before he may submit his application. However, if the applicant has already sent his application,
he must no longer change the values of these two attributes. Hence, data permissions must be
granted taking the progress of the corresponding process instance into account as well. Which
input and data fields, shall be displayed not only depends on the user working on this activity,
but also on the processing state of the respective process instances. Note that this resulty in
a multiplicity of different user forms whose manual implementation would be cumbersome and
error-prone.

Property 19 (Data authorization depending on the progress of the process)
Which input and data fields shall displayed not only depends on the user executing a (form-based) activity, but also
on the processing state of the respective process instance.

Despite the dependencies existing between user assignment and data permission, we need to
differentiate between them. In particular, a user normally not involved in process execution, may
have the data permission to set or change attribute values solely based on optional activities.
For example, a manager is allowed to read applications, make a comment, and change the decision.
However, the workitem for the corresponding mandatory activity is assigned to an employee, but
not to the manager.

Property 20 (Differentiating between data and process authorization)
There is a difference between data and process authorization. While data authorization allows for the execution
of optional activities, process authorization controls who is responsible for executing mandatory activities that are
usually required to proceed with the flow of control.

Note that one and the same user may have both data and process authorizations. Then,
the respective form-based activity should comprise both mandatory input fields and optional
ones.

36

3.2 Property Verification

3.2 Property Verification

The previous section has given insights into processes currently not adequately supported by
process management technology. In particular, it has identified basic properties of these pro-
cesses. This section backs up our findings based on an extensive literature study. In particular,
we compare our analysis results with existing literature in order to ensure the relevance and
completeness of the identified properties. In addition, we confirm that a support of the prop-
erties is needed in a variety of application scenarios. Finally, we add important properties
identified by other researchers, but not yet contained in our property list.

We focus on process modeling, execution and monitoring, but exclude properties related to
the ad-hoc change and evolution of business processes [RW12]. Further, we contrast different
application scenarios with the total set of properties. This way, we can demonstrate that the
properties are related to each other and a broad support is required by a variety of processes
from different application domains; i.e., generalization is possible.

According to the insights gained in our analysis, advanced process support necessitates object-
awareness in many application cases; i.e., business processes and business objects cannot
be treated independently from each other. Note that this has been confirmed by other work as
well [LBW07, RL03, VRv08, MRH07, vWG05, vBEW00, RDtI07, RDtI09a, KG07], although a
holistic support and understanding of object-awareness is still missing. In particular, we must
understand the inherent relationships that exist between the different business perspectives
and the aspects they cover (cf. Chapt. 1).

An aggregation of the different properties into more abstract categories results in five major
characteristics of object-aware process support (cf. Fig. 3.14): First, object-aware processes
shall be based on two levels of granularity. On one hand, behavior of individual object instances
needs to be considered during process execution; on the other, interactions among different
object instances must be taken into account as well. Since the progress of a process depends
on available object instances (and their attribute values), in addition, process execution should
be data-driven. Finally, a flexible activity execution is crucial. In particular, activities do not have
to coincide with particular process steps.

Object-aware processes must consider all elements of the underlying data structure, which
comprises objects, object attributes, and object relations. More precisely, objects and object
relations also constitute proper guidelines for choosing the granularity of processes and sub-
processes respectively; i.e., the behavior of the business objects involved in a process must
be taken into account during process execution and the interactions between business objects
must be adequately covered; i.e., the behavior of individual objects must be coordinated with
the one of related objects. Thus, any process structure (cf. Sect. 3.1) should comply with the
corresponding data structure.
In addition to user worklists, which provide access to the process activities to be executed,
integrated access to related objects is another fundamental characteristic of object-aware pro-
cesses. In particular, authorized users should be allowed to access and manage business data
(i.e., business objects) at any point in time. In turn, this requires advanced support with respect
to the integration of users.

37

3 Properties of Object-Aware Processes

Figure 3.14: Main characteristics of object-aware processes (according to [KR11b])

3.2.1 Relevance and Completeness

Besides PHILharmonicFlows, there exists other pioneering work targeting at object-aware pro-
cess support (cf. Fig. 3.15): artifact-centric modeling [LBW07], product-based workflow sup-
port [RL03, VRv08], data-driven process coordination (Corepro) [MRH07, MRH08a], case han-
dling [vWG05], Proclets [vBEW00], object-centric processes [RDtI07, RDtI09a], and object life
cycle compliance [KG07]. Although these approaches show several limitations, four charac-
teristics of object-aware processes are addressed by at least one of these approaches. This
section summarizes these approaches, while details are provided in Chapt. 4.

The approaches depicted in Fig. 3.15 confirm the relevance of a tight integration of processes
and data. In the following, we discuss how the characteristics object behavior, object interac-
tions, data-driven execution, and varying activity granularity are addressed by them.

Object Behavior

To ensure consistency between process and object states, imperative approaches have been
enriched with object life cycles (OLC). Examples of such approaches include artifact-centric
modeling, data-driven coordination, object-centric processes, and object life cycle compliance.
An OLC defines object behavior; i.e., the processing states of an object and the transitions be-
tween them. The latter are enabled after executing corresponding activities, which are therefore
associated with pre-/post-conditions on objects states; i.e., the execution of an activity depends
on the current state of an object and its completion triggers a subsequent state.
None of these approaches considers object attributes. Hence, it is unclear which attribute val-
ues must be available when a subsequent state becomes activated; i.e., mandatory information
is not considered. Consequently, if certain pre-conditions cannot be met during run-time, it is
not possible to dynamically react on this; i.e., a data-driven OLC execution is supported by
none of the approaches.
Proclets, case handling, and product-based workflows allow for another kind of object behavior.
Although business objects are not explicitly considered, each process may be aligned with an

38

3.2 Property Verification

Artifact-centric Process Modelling

Batch Activities

Case Handling

Data-driven Process Coordination

Proclets

Product-based Workflow Support

Object-centric Process Modeling

A Object Behavior

C Data-driven Execution

D Variable Activity Granuarity

ABCD

B Object Interactions

Main Characteristica

*5 only batch execution, no context-sensitive activities

*4 only for coordination

Object Life Cycle Compliance

*1 using state machines

*2 only implicit

O*5 X O*2

X O*2

O*5

O*3 X*1

O*4 X

X

X*1

X*1

X

X*1

O*2

*3 no differentiation between object behavior and object interactions

Figure 3.15: Characteristics supported by existing approaches

object; i.e., it is up to the process designer to decide for an object-specific process granularity.
Proclets are based on black-box activities, whereas case handling and product-based work-
flows allow defining activities in tight relation to atomic data elements (that may be considered
as object attributes). This way, it becomes possible to determine the order in which object
attributes shall be written and to define what valid attribute settings are.

Object Interactions

An asynchronous coordination of process instances is enabled; i.e., lightweight processes com-
municate with each other via messages. Although this is not necessarily based on the underly-
ing data structure (i.e., processes may be defined at an arbitrary level of granularity), processes
may be aligned according to object types.
Using artifact-centric process modeling, explicit relations between artifacts can be defined.
However, their life cycles are treated independently from each other. In addition to the sup-
port of object behavior, pre-conditions for activity execution allow coordinating artifact lifecycles.
Consequently, no separation between object behavior and object interactions is made.
Object-centric process modeling as well as data-driven process coordination allow defining ob-
ject interactions based on OLCs. Thus, it becomes possible to asynchronously execute object-
specific process instances and to coordinate them at certain points during their execution; i.e.,
process synchronization complies with the underlying data structure. Thereby, a varying num-

39

3 Properties of Object-Aware Processes

ber of instances can be created.

Data-driven Execution

Regarding Case Handling, activities are realized as forms processing atomic data elements.
The latter may be free, mandatory, or optional. An activity is completed if all of its mandatory
data elements are set. Thereby, a particular data element may be read or written in the context
of several activities. Since a data element, mandatory for a particular activity, may be optional
for a preceding one, values may be assigned before they become mandatory for process exe-
cution. This way, a data-driven process execution is enabled.
Product-based workflows use a product data model, which is a tree-like structure comprising
atomic data elements and related operations. The latter may comprise input data elements
and refer to exactly one output data element. An operation will be executable if all input data
elements have assigned values. Finally, the product is considered as processed as soon as a
value for the top element of the product data model (i.e., the root element) has become avail-
able.
Regarding data-driven process coordination, processes themselves are activity-driven. More
precisely, activities are executed in the context of OLC state transitions. The activation of a sub-
sequent state then depends on the completion of the process associated with the respective
state transition. Opposed to this, process synchronization relies on a data-driven approach:
Whether or not a particular state of an object is activated may depend on the activation of
specific states of other (related) objects.

Varying Activity Granularity

[SOSS05] allows for a batch execution of activities; i.e., the same activities of different process
instances may be grouped and then processed together. A similar approach is followed by Pro-
clets. In particular, it is possible to create several Proclet instances in one go. The execution of
a set of instance-specific activities, however, is not possible.
To our best knowledge, currently, there exists no approach that allows for the flexible com-
position of activities relating to different process instances (i.e., it is not possible to support
context-sensitive activities involving a number of (selected) process instances).

3.2.2 Relatedness and Generalisation

To emphasize the practical benefit of the identified characteristics, Fig. 3.16 shows their rele-
vance in the context of the application scenarios discussed in literature. Note that existing ap-
proaches partially consider the same scenarios, but address different characteristics. Hence,
this indicates that the characteristics are related to each other and required in the context of a
variety of processes from different application domains. For each application domain, the rele-
vance of the characteristics is illustrated in the rows on the bottom of Fig. 3.16. For example,
consider application scenario order processing as illustrated in Column 5. Order processing
has been used as illustrating scenario in the context of case handling, batch activities, and
business artifacts. While case handling addresses the need for data-driven process execution,
business artifacts emphasize object behavior and interactions. Finally, [SOSS05] discusses the
need for executing multiple activities in one go. Altogether, Fig. 3.16 indicates that integrated
and consistent support is needed for the identified characteristics.

According to Fig. 3.16, each characteristic of object-aware processes has been addressed by
at least one existing approach. However, note that Fig. 3.16 does not distinguish between

40

3.2 Property Verification

Artifact-centric Process Modelling

Batch Activities

Case Handling

Data-driven Process Coordination

Proclets

Product-based Workflow Support

Object-centric Process Modeling

Human Resources (Hiring People)

Academic(ConferenceManagement)

Insurance (Claim Processing)

Development Processes

Education (Course Management)

Order Processing

Health Care (Patient Treatment)

Hotel Business (Guest Check)

Inspections

A Object Behavior

C Data-driven Execution

D Variable Activity Granuarity

ABCD

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

B Object Interactions

Main Characteristica Application Scenarios

 A Object Behavior

 B Object Interactions

 C Data-driven Execution

 D Variable Activity Granularity

*5 only batch execution, no context-sensitive activities

*4 only for coordination

Object Life Cycle Compliance

*1 using state machines

*2 only implicit

O*5 X O*2

X O*2

O*5

O*3 X*1

O*4 X

X

X*1

X*1

X

X*1

O*2

X X X X

X

X

X X

X

X

X

X

X

X

X

X

X

X X

X

*3 no differentiation between object behavior and object interactions

Figure 3.16: Application scenarios discussed by existing approaches (cf. [KR11b, KR11d])

process modeling and execution.
Besides the discussed approaches, there exist systems supporting of single characteristics.
As examples consider project management systems or enterprise resource planning systems
having an integrated workflow component (e.g., SAP Business Objects) [SSB09]. However,
these systems lack a comprehensive support of object-aware processes.
Finally, note that there is no approach integrating application data in a consistent way; i.e.,
objects, attributes and relations must be considered (cf. Fig. 3.17).

Providing integrated access to business data on one hand and business processes on the
other requires advanced concepts for user integration. In particular, the assignment of users to
processes and activities must not be solely based on user roles, but take the processed appli-
cation data into account as well. This has been recognized in [RzM98, RzM04] which allow for
activity-based object-individual resolution of roles. In this context, the relations between users
and object instances are considered as well (see also [BBU99, HW04, KKC02]). Finally, [ST97]
and [Bot02] emphasize that user assignments should consider the permissions for accessing
the data processed by an activity as well. Whether or not a permission for accessing data or
executing a function is granted, depends on the specific use case; i.e., the context in which it is
accessed or executed.

41

3 Properties of Object-Aware Processes

Artifact-centric Process Modelling

Batch Activities

Case Handling

Data-driven Process Coordination

Proclets

Product-based Workflow Support

Object-centric Process Modeling

Human Resources (Hiring People)

Academic(ConferenceManagement)

Insurance (Claim Processing)

Development Processes

Education (Course Management)

Order Processing

Health Care (Patient Treatment)

Hotel Business (Guest Check)

Inspections

A Attributes

C Relations

ABC

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

B Objects

Data Integration

Application Scenarios

 A Attributes

 B Objects

 C Relations

Object Life Cycle Compliance

*1 only implicit

O*1 O*1

O*1 X

O*1 X X

X

X

X

X

X

O*1 X

X X X X

X

X

X X

X

X

X

X

X

X

X

X

X

X X

X

X

Figure 3.17: Data integration in existing approaches

The need for accessing process-related application data at any point in time during process ex-
ecution is emphasized in [WSML02]. Instance-based user groups are suggested, which grant
access to all data of the process instances a particular user is involved in. A similar concept is
presented in [vWG05].
A more flexible execution of activities is provided by declarative approaches [vPS09, PWZ+12,
WRZW09], which do not enforce users to work on activities in a strict execution order (as im-
posed in traditional imperative approaches). Instead, processes are defined in terms of a set
of activities and constraints prohibiting undesired execution orders of these activities. However,
declarative approaches provide only limited support for object-aware processes [KWR10b]. Fi-
nally, [SOSS05] emphasizes the need for batch activities; i.e., activities of different process
instances may be grouped. However, the grouping only considers activities but does not take
data into account.

42

4
State-of-the-Art

This chapter discusses issues that emerge when applying existing process management para-
digms to implement the properties introduced in Chapt. 3. First, we focus on imperative and
declarative process support paradigms (cf. Sects. 4.1 and 4.2), and then consider extensions
of these two fundamental paradigms (cf. Sect. 4.3). Finally, we evaluate specific work for user
integration, relevant in the context of this thesis (cf. Sect. 4.4).1

4.1 Imperative Process Support Paradigms

There has been a long tradition of modeling business processes in an imperative way [DR09,
RW12]. Process languages supporting this paradigm, for example, include BPMN, EPC and
BPEL. Imperative processes are specified in terms of directed process graphs [WRRM08].
Process steps then correspond to activities that are connected by arcs expressing precedence
relations (cf. Fig. 4.1) [TRI09]. For control flow modeling, different patterns exists, e.g., se-
quential, alternative and parallel routing, or loop backs [vtKB03].

Imperative approaches only provide limited support for the properties of object-aware pro-
cesses. Compared to the main characteristics of object-aware processes (cf. Sect. 3.2), the
imperative approach can be characterized by hidden information flows (A), flow-based trigger-
ing of activities (B), actor expressions (C), fixed activity granularity (D), and arbitrary process
granularity (E). In the following, we evaluate to what extend the imperative approach is able to
support object-aware processes showing these characteristics (cf. Fig. 4.2).

1The chapter is based on the following referred paper:
[KWR10b] V. Künzle, B. Weber, and M. Reichert. Object-aware Business Processes: Properties, Require-
ments, Existing Approaches. Technical Report, 2010
[KWR10a] V. Künzle, B. Weber, and M. Reichert. Object-aware Business Processes: Fundamental Require-
ments and their Support in Existing Approaches. International Journal of Information System Modeling and
Design (IJISM), 2(2):9–46, 2010
[KR11d] V. Künzle and M. Reichert. Striving for Object-Aware Process Support: How Existing Approaches Fit

43

4 State-of-the-Art

A1

R1

A2

R2

execute execute
A3

R1
execute

A

R

activity

data element

role

caption

XOR

D1

A4

D2

D2=‚x’

D2=‚y’

R3

execute

A5

R2

execute

D

Figure 4.1: Imperative process modeling (according to [KWR10a])

caption
object types

cardinalities

mandatory information

object behavior
object interactions

P1

P3

P6

P4
P5

P7 control-flow within forms

data integration

process granularity

process modeling / execution

optional activities
flexible process execution
re-execution of activities
user decisions
activities
form-based activities
black-box activities
variable activity granularity

user integration
instance-specificity

P8
P9

P10
P11

P12
P13
P14

P16

O

-

O
O

-
-
-
-
-

-
X

-

-

-

O partially supported
+ supported

- not supported

object relationsP2 -

batch executionP15 -

 flow-based activation
 actor expressions
 fixed granularity of actvities
 arbitrary granularity of processes

A
A

A, E

E
E

A
A, D

B
B
B
B

A
A
D
D

A

B
C
D
E

 hidden information flowsA

characteristic

relationships
compliance
process dependency
differentiation

P17
P18
P19
P20

-
-
-
-

A
A, C
A, B
A, B

Figure 4.2: Evaluation of the imperative approach (according to [KWR10a])

4.1.1 Hidden Information Flows

As first characteristic of the imperative process support paradigm consider hidden information
flows (A). Usually, the imperative approach allows for the explicit definition of the data flow
between activities based on atomic data elements [RM09]. The latter are connected with ac-
tivities (and their input/output parameters) through data arcs or with routing conditions (cf. Fig.
4.1). Activities themselves are regarded as black boxes; i.e., application data comprising ob-
ject types and object relations is usually managed within the applications invoked by activities
during run-time. In particular, there exists no explicit link between activities and the object in-
stances (and object attributes) processed by them. Hence, which data is actually accessed or
changed during activity execution does not become transparent. Consequently, it is not pos-
sible to define mandatory information and to enable an automatic generation of form-based
activities. Altogether, this characteristic affects properties related to the business perspectives
data, processes, activities, and users (cf. Chapt. 1).

Together. In 1st Int’l Symposium on Data-driven Process Discovery and Analysis (SIMPDA’11), 2011

44

4.1 Imperative Paradigms

Data. Imperative PrMS are unaware of the object instances actually accessed during process
execution. Thus, data integration based on object types, attributes and relations is not sup-
ported (i.e., Props. 1 and 2 are not met). In addition, cardinalities between object instances
are not transparent. However, as we will discuss, it is up to the process modeler to create a
workaround by defining a separate sub-process for each object type involved (i.e., Prop. 3 is
not fully met).

Processes. A particular activity usually accesses data provided by preceding activities accord-
ing to the modeled data flow. However, the PrMS has no control on whether required data
changes are accomplished; i.e., mandatory information in the context of an activity execution
can neither be ensured nor monitored by the PrMS (i.e., Prop. 6 is not met). Since mandatory
information is not transparent, the internal control-flow (i.e., Prop. 7) of a form-based activity
cannot be expressed.

Activities. If a data element, an activity wants to read, is not written by preceding activities,
process execution might be blocked or even crash during run-time. In turn, if the flow of data
between activities (and the application services invoked by them) is not explicitly specified
within a process model, corresponding process instances might proceed although required
data is missing. Consequently, it is not possible to automatically invoke a form-based activity
for requesting missing data from users (i.e., Prop. 12 is not met). Finally, black-box activities
and hence application integration are supported (i.e., Prop. 13 is met).

Users. Regarding user integration, it does not become transparent, which object instances
are accessed when executing a particular activity. Hence, authorization may only be related to
activities. As a consequence, instance-specific authorization, enabling different permissions for
the same activity depending on the processed object instance, is not supported (i.e., Prop. 16
is not met). Since the organizational model is usually strongly separated from application data,
in addition, the relationships between users and processed objects cannot be considered (i.e.,
Prop. 17 is not met). Moreover, using an imperative PrMS, integrated access to application data
is not possible. For this reason, it cannot be guaranteed that a user who owns the permission for
executing an activity is also authorized to access attributes of the object instances processed
by this activity; i.e., compliance between data and process authorization is not considered (i.e.,
Prop. 18 is not met). The same applies to properties Prop. 19 (process dependency; i.e.,
data authorization dependent on the progress of the process) and Prop. 20 (differentiation; i.e.,
differentiation between data and process authorization).

4.1.2 Flow-based Triggering of Activities

Another characteristic of the imperative process support paradigm is its flow-based triggering
of activities (B). Each process step corresponds to an activity, which is mandatory for process
execution (except it is contained in a conditional execution path skipped during run-time). More-
over, whether or not an activity becomes activated depends on the state of preceding activities,
i.e., a particular activity may be enabled if its preceding activities are completed or cannot be
executed anymore (except loop backs). No direct support exists for verifying whether the (se-
mantic) goals of a process can be achieved [RKG06, RDtI07, GS07]. In this context, some
approaches allow checking the compliance of imperative process models with global regula-
tions or semantic constraints [LKRM+10, LRMD10]. For example, they define pre- and post

45

4 State-of-the-Art

conditions for activities in relation to application data [HTG12]. If the pre-conditions of an ac-
tivity cannot be met during run-time, process execution will be blocked. In this context, it is no
longer sufficient to only postulate certain attribute values for executing a particular activity. In
addition, it must be also possible to dynamically react on emerging attribute values; i.e., to trig-
ger activities based on data available rather than on the activities already executed. Altogether,
activity execution is exclusively flow-based. This characteristic affects properties belonging to
the business categories processes and users.

Processes. Data may only be accessed when executing activities according to the defined
control flow; i.e., data must not be accessed asynchronously to process execution. Conse-
quently, there exists no explicit support for optional activities that allow for a data access at any
point in time (i.e., Prop. 8 is not met). However, this can be simulated using the workaround
described in Ex. 4.1.

Example 4.1 (Workaround 1: Optional activities):
Optional activities may be added as conditional branches in different regions of a process model (cf. Fig. 4.3).

optional activities

mandatory

activity

mandatory

activity

mandatory

activity

optional

activity

optional

activity

Figure 4.3: A workaround "simulating" optional activities (according to [KWR10a])

As a drawback of this workaround, spaghetti-like process models containing a high number of
redundant activities might result. Besides this, optional activities cannot be distinguished from
mandatory ones. Note that without such a workaround, required changes of application data
would have to be accomplished directly within the application systems. When bypassing the
PrMS or application system, however, inconsistencies with respect to attributes, redundantly
maintained in both systems, might occur. Worst case, this might result in run-time errors or
inconsistent process executions.

Regarding process flexibility provided by imperative approaches [RRD09], flexible process ex-
ecution as required in the context of object-aware process management is not explicitly sup-
ported. More precisely, since the activation of an activity depends on the completion of other
activities, skipping an activity if required output data is already available is not possible (i.e.,
Prop. 9 is not met). Again, a workaround exists (cf. Ex. 4.2).

Example 4.2 (Workaround 2: Flexible process execution):
Consider Fig. 4.4a. Using XOR-Splits, process data elements may be evaluated before and after activity execution.
If required object attribute values have already been made available before triggering the activity, which usually
writes them, the skipping of this activity is simulated by not choosing the corresponding branch.

Note that there exist approaches like ADEPT2 [RHD98, Rei00, RRKD05, RD09], which enable
process flexibility by supporting dynamic process changes (e.g., to add or move activities)

46

4.1 Imperative Paradigms

mandatory

activity

user

decision
XOR

decision = no

decision

mandatory

activity

decision

= yes

explicit user decisions

b

mandatory

activity
XOR

data is null

data

 flexible process execution

a

XOR

data is not null

data

is null

data

is not null

Figure 4.4: Workarounds for flexible execution and user decisions (according to [KWR10a])

during run-time. However, to set a focus, we exclude issues related to process changes and
process evolution (see [RRD09, WRRM08, WSR09, RW12] for respective surveys). Instead,
this thesis focuses on process modeling and execution.

Activity activation solely depends on the completion of other activities. Hence, there is no
explicit support for user decisions (i.e., Prop. 11 is not met). Further, there is no inherent
support for re-executing an activity as long as the user does not commit its completion (i.e.,
Prop. 10 is not met).

Example 4.3 (Workaround 3: Activity re-execution and user decisions):
Consider Fig. 4.4b. User decisions are encapsulated by black-box activities, which write data elements according
to the defined data flow. These data elements are then evaluated using an XOR-split to decide whether to proceed
with process execution or to initiate a backward jump (using a loop).

Users. Since data may only be accessed when executing mandatory activities, imperative
approaches lack a support for synchronizing data processing and process execution. Thus,
data authorization is not properly taken into account; i.e., data authorizations do not depend on
process states. Note that this is outside the scope of PrMS and therefore implemented in the
underlying application systems. Accordingly, it is not possible to ensure that data authorization
depends on the progress of the corresponding process. (i.e., Prop. 19 is not met). Finally, no
differentiation between process and data authorization can be made (i.e., Prop. 20 is not met).
In particular, users may only execute mandatory activities added to their worklist.

4.1.3 Actor Expressions

As another characteristic, human activities are associated with actor expressions; e.g., user
roles (C) [RMR08, RMR09]. Based on such expressions, activities will be assigned to worklists
of authorized users during run-time. In particular, this enables process coordination among
users. Furthermore, when a human activity becomes enabled, a corresponding work item
is added to the worklists of authorized users; i.e., a process-oriented view allows executing
activities by the right users at the right point in time. However, this affects the compliance
between process and data authorization. In particular, it is not possible to ensure that each
user, who must execute a particular activity in order to proceed with process execution, may
also change the data processed during the execution of this activity (i.e., Prop. 18 is not met).

47

4 State-of-the-Art

4.1.4 Fixed Activity Granularity

As another characteristic of imperative processes consider fixed activity granularity (D). In par-
ticular, activities are associated with a specific business function implemented at build-time,
and thus having a fixed granularity. Hence, an activity must be executed in a defined context.
However, such a rigid execution is not always adequate. In certain cases, an activity needs to
be repeated in an ad-hoc manner, or it has to be executed in advance or first be stopped and
then be caught up at a later point in time [vWG05]. Conventional PrMS do not allow for such
kind of flexibility. Furthermore, users are usually involved in the execution of multiple instances
of a particular process type. Thus, work items of their worklist may refer to activities of the same
type. Each of them must then be processed separately in the PrMS, which does not always
comply with common work practice. In summary, the isolated execution of process instances
in existing PrMS is by far too inflexible [SOSS05]. This characteristic affects properties related
to the business perspectives processes and activities.

Processes. All activities are considered as black box; i.e., it does not become transparent
which object instances are processed by a particular activity. Furthermore, it is not possible to
control the flow logic within a form; i.e., it is not possible to influence the order in which data
elements shall be processed during the execution of an activity (i.e., Prop. 7 is not met).

Activities. Each process step refers to exactly one activity that is pre-defined at build-time.
Hence, different work practices cannot be supported. By contrast, for object-aware processes,
activities may have varying granularity ; i.e., it shall depend on the user, executing an activity,
to decide which and how many object instances shall be processed. In this context, data
authorization does not only depend on the user executing this activity, but on the processing
states of the involved object instances as well. The resulting high number of different activities
is not supported (i.e., Prop. 14 is not met); i.e., context-sensitive activities are not supported.
Since it is not possible to execute several activities in one go, in addition, batch execution is not
supported (i.e., Prop. 15 is not met).

4.1.5 Arbitrary Process Granularity

Granularity issues are not properly addressed by imperative PrMS; i.e., processes, sub-pro-
cesses, and activities may be modeled at arbitrary levels of granularity (E). While certain activ-
ities are only processing one object instance, others may process several object instances of
the same or different type. Neither a consistent methodology nor practical guidelines exist for
process modeling [RL03], often resulting in inconsistent or non-comparable models. Further-
more, when modeling and executing processes in PrMS, no direct support for considering the
underlying data structure is provided (i.e., the objects and their relations). This has effects on
properties of the business perspectives processes and data.

Processes. Imperative approaches do not distinguish between the behavior of individual object
instances and the processes coordinating them. Generally, there exists no elaborated model-
ing methodology giving advice on the number of object types to be handled within one process
definition. A process is either defined at a coarse- or fine-grained level. When choosing a fine-
grained modeling style, each process definition is aligned with exactly one object type. This way
one can ensure that corresponding process instances access one particular object instance of
the respective object type at run-time. For this purpose, either one data element for routing

48

4.1 Imperative Paradigms

the object-ID or several data elements (corresponding to the object attributes) are added to
the process model. The activity-centred paradigm of imperative approaches, however, is not
appropriate for supporting object behavior (i.e., Prop. 4 is only partially met). In particular, hid-
den information flows and the flow-based activation of activities inhibit the dynamic adaptation
of the control-flow based on available data. Furthermore, process instances are executed in
isolation to each other [vBEW00]. Neither dependencies between instances of different pro-
cess types nor between instances of the same process type can be defined at a reasonable
semantical level. Often, the modeling of subordinate processes serves as a workaround. How-
ever, in existing PrMS the execution of subordinate process instances is tightly synchronized
with their superordinate process instance; i.e., the latter is blocked until the sub-process in-
stances are completed. Thus, in current PrMS, neither aggregated activities nor more complex
synchronization dependencies can be adequately handled [vBEW00] (i.e., Prop. 5 is not fully
met).

A coarse-grained modeling style, prohibits fine-grained control regarding object behavior (i.e.,
Prop. 4 is not met). Processes are only defined in terms of activities and interactions between
object instances are not considered (i.e., Prop. 5 is not met). Process support involving different
object instances is provided using sub-processes. Thereby, a sub-process is associated with
an activity of the higher-level process instance. However, it is not possible to define relations
and synchronization dependencies between different sub-process definitions. Consequently,
processes comprising the explicit definition of object interactions are not supported (i.e., Prop.
5 is not met). Note that this limitation can be addressed by "multiple-instantiation patterns"
[vtKB03, RR06], which allow specifying the number of instances for a respective activity either
at build- or run-time. Regarding multiple-instance activity patterns, new sub-process instances
may only be created as long as subsequent activities have not been started. Thus, lower-level
process instances (i.e., sub-process instances) can only be created at a specific point dur-
ing the execution of the higher-level process instance. Furthermore, except for one variant of
the multiple-instantiation pattern, sub-process instances cannot be executed asynchronously
to the higher-level process instance. Using multiple-instantiation patterns with synchroniza-
tion (cf. Fig. 4.5a), each sub-process instance must either be completed or skipped before
subsequent activities of the higher-level process instance may be triggered. In turn, using
multiple-instantiation without synchronization, the results of these sub-process executions are
not relevant for progressing the higher-level process instance (cf. Fig. 4.5b). Finally, interde-
pendencies between sub-processes, executed asynchronously to each other (cf. Fig. 4.5c),
cannot considered.

with synchronization without synchronization asynchronous synchronizationa b c

Figure 4.5: Sub-process execution based on multiple-instantiation

Data. Since an activity may be linked to several object types (and object flows are hidden), it is
a difficult task to ensure consistency between process and data modeling. In particular, when

49

4 State-of-the-Art

modeling a process, the creation of object instances cannot be restricted to a varying and dy-
namic number of object instances based on cardinalities. Using multiple-instantiation patterns,
however, it is possible to restrict the number of sub-processes in accordance to the specified
cardinality of related object types. Thus, cardinalities may only be manually considered by the
process modeler without system support (i.e., Prop. 3 is partially met).

4.2 Declarative Process Support Paradigms

Declarative approaches suggest a fundamentally different way of describing business pro-
cesses [vP06, vPS09, FLM+09, FMR+10, WRZW09, PWZ+12]. While imperative models
specify how things have to be done, declarative approaches focus on the logic that governs
the interplay of actions in the process by describing (1) the activities that may be performed
and (2) the constraints prohibiting undesired behavior. In the example from Fig. 4.6, activ-
ities A2 and A3 may only be executed after finishing A1. Furthermore, A2 and A3 are mutually
exclusive.

A1

R1

A2

R2

execute execute
A

R

activity

data element

role

caption

D1

D

A3

execute

R3

A4

R1

execute precedence

constraint

mutual exclusion

Figure 4.6: Declarative modeling approach [Pes08]

Declarative modeling approaches only provide rudimentary support for object-aware proces-
ses. Several of their characteristics correspond to the ones of imperative approaches: hidden
information flows (A), actor expressions (C), fixed activity granularity (D), and arbitrary process
granularity (E). However, they differ from imperative approaches in respect to activity activation.
While imperative approaches pursue a flow-based activation, declarative approaches rely on a
constraint-based coordination (B) (cf. Fig. 4.7). This leads to a better support of optional ac-
tivities compared to imperative approaches. However, the extensions introduced for imperative
approaches (e.g., [vBEW00]) are not applicable to declarative ones. To avoid redundancies,
we only discuss the main differences between imperative and declarative approaches.

4.2.1 Constraint-based Coordination of Activities

Characteristic to declarative processes is the constraint-based coordination of activities (B).
Imperative models take an "inside-out" approach by requiring all execution alternatives to be
explicitly specified in the model. In turn, declarative models take an "outside-in" approach:
constraints implicitly specify execution alternatives as all valid alternatives have to satisfy the

50

4.2 Declarative Paradigms

object types

cardinalities

mandatory information

object behavior
object interactions

P1

P3

P6

P4
P5

P7 control-flow within forms

data integration

process granularity

process modeling / execution

optional activities
flexible process execution
re-execution of activities
user decisions
activities
form-based activities
black-box activities
variable activity granularity

user integration
instance-specificity

P8
P9

P10
P11

P12
P13
P14

P16

-

-

O
O

-
+
-
-
-

-
X

-

-

-

O partially supported
+ supported

- not supported

object relationsP2 -

batch executionP15 -

 constraint-based activation
 actor expressions
 fixed granularity of actvities
 arbitrary granularity of processes

A
A

A, E

E
E

A
A, D

B
B
B
B

A
A
D
D

A

B
C
D
E

 hidden information flowsA

characteristic

relationships
compliance
process dependency
differentiation

P17
P18
P19
P20

-
-
-
-

A
A, C
A, B
A, B

caption

Figure 4.7: Evaluating the declarative approach (according to [KWR10a])

defined constraints [Pes08]. Consequently, adding constraints means discarding some exe-
cution alternatives. This results in a coarse up-front specification of a process, which can
be refined iteratively during run-time. Generally, constraints can be roughly divided into three
classes [SSO05, vP06, vPS09]: constraints restricting the selection of activities (e.g., mini-
mum/maximum occurrence of activities, mutual exclusion), the ordering of activities, and the
use of resources (e.g., execution time of activities). This characteristic affects properties related
to the business perspective process.

Proper support for optional activities is provided, i.e., activities may be considered as optional
as long as no constraint enforces their execution (i.e., Prop. 8 is met). Mandatory activities
cannot be skipped if the required data is already available (i.e., Prop. 9 is not met). However,
the following workaround may be applied:

Example 4.4 (Workaround 4: Flexible process execution):
Specific data constraints may be introduced to check whether all required data are available. If this is not the case,
respective activity execution is then blocked.

Activities cannot be re-executed based on user commitments (i.e., Prop. 10 is not met).

Example 4.5 (Workaround 5: Re-execution of activities):
Using a specific constraint, re-execution of a particular activity is possible as long as no activity providing the user
commitment has been executed.

51

4 State-of-the-Art

4.2.2 Arbitrary Process Granularity

Like for imperative processes, granularity issues are not properly addressed; i.e., processes,
sub-processes, and activities may be modeled at arbitrary level of granularity (E). However,
partial support for integrating process instances can be achieved based on sub-processes
[ZSPW12]: For declarative approaches not supporting multiple instantiations, cardinalities to
higher-level process definitions cannot be expressed (i.e., Prop. 3 is not met).

4.3 Extensions of Traditional Approaches

Several approaches have already perceived the inability of current technologies to adequately
capture the relation between process and data, and concepts targeting at a better integration of
these two perspectives have been suggested: artifact-centric modelling [NC03, LBW07, GS07],
product-based workflow-support [RL03, VRv08], data-driven process coordination [MRH07,
MRH08a], case handling [vWG05], object-centric processes [RDtI07, RDtI09a], and Proclets
[vBEW00].

This section evaluates to what extent these approaches support the properties introduced in
Sect. 3.1. As illustrated in Fig. 4.8, each property is addressed by at least one existing
approach. Although the approaches we analyzed show limitations, they can be considered
as pioneer work towards object-aware process support. However, none of them covers all
properties in a comprehensive and integrated way. Further, note that Fig. 4.8 does not make
any difference between process modeling and process execution. Though some approaches
(e.g., the artifact-centric modeling) provide rich capabilities for process modeling, they do not
explicitly address run-time issues (or at least do not treat them explicitly). Since all these
approaches correspond to extensions of traditional imperative or declarative process support
paradigms, it is impossible to extend them for covering the comprehensive set of the introduced
properties.

4.3.1 Case Handling

We first evaluate to what extend Case Handling (CH) [vWG05, GRv08, RRvdA03] and the
Flower CH tool [Ath02] cover the properties of object-aware processes. As illustrated in Fig.
4.9, CH is a data-driven process support paradigm for which activities are represented in terms
of user forms that comprise a number of input fields. The latter refer to atomic data elements
which are either defined as mandatory, restricted, or free. Compared to imperative and declar-
ative approaches, the main differences lie in the integration of application data, the data-driven
execution paradigm, and an advanced role concept.

Processes. Processes may be defined at arbitrary level of granularity ; i.e., in a coarse- or fine-
grained manner. A coarse-grained definition includes data elements corresponding to different
objects. Alternatively, at a more fine-grained level, a case is treated in tight accordance with
an object; i.e., each case then refers to an object type. This enables support of object behavior
(i.e., Prop. 4 is met). In turn, when modeling processes at a coarse-grained level, similar
restrictions for the asynchronous coordination of sub-process instances hold as for imperative
approaches. Hence, we presume a fine-grained modeling style in the following.

52

4.3 Extensions of Traditional Approaches

object types

object relations

cardinalities

data

integration

A
rt

if
a

c
t-

c
e

n
tr

ic
 M

o
d

e
ll
in

g

C
a

s
e

 H
a

n
d

li
n

g

D
a

ta
-d

ri
v

e
n

 C
o

o
rd

in
a

ti
o

n

P
ro

c
le

ts

P
ro

d
u

c
t-

b
a

s
e

d
 S

u
p

p
o

rt

X O OO -

X - X- -

X - OO O

O
b

je
c

t-
c

e
n

tr
ic

 P
ro

c
e

s
s

e
s

P1

P2

P3

P6 mandatory information

process

modeling/

execution

X X -X -

P7 control-flow within forms - - -- -

P9 flexible process execution - - -X -

P10 re-execution of activities - - -X -

P11 user decisions - - -- -

P8 optional activities - - -O -

activities

P12 form-based activities - - -X -

P13 black-box activities X X XX X

P14 varying activity granularity - - -- -

P15 batch execution - - -- -

user

integration

P16 instance-specificity - - -- -

O

O

X

object behavior

object interactions

process

granularity

X X XX X

O - O- O

P4

P5

X

O

-

-

-

-

O

O

P17 relationships - - -- -

compliance

process dependency

differentiation

- - -X -

- - -- -

- - -- -

P18

P19

P20

-

X

-

-

-

-

-

-

-

Figure 4.8: Evaluation of existing approaches (according to [KWR10a])

Object interactions can then be defined as sub-cases. However, it is not possible to execute
them in the loosely coupled manner required (i.e., asynchronously to the higher-level case). It
is further not possible to adequately handle the one-to-many relationships that exist between
different cases; e.g., to aggregate sets of lower-level cases. Thus, object interactions are not
supported as required in the context of object-aware processes (i.e., Prop. 5 is not met).

Data. CH solely provides atomic data elements; data integration based on object types and
their inter-dependencies is not considered. However, using a fine-grained modeling style (i.e.,

53

4 State-of-the-Art

C1

A1

D1

R1

A2

D2

R2

execute

redoe
execute

A3

D6

R1

execute

D3 D4

F1

D1

D2

F2

D2

F3

D3

D4

mandatoryrestrictedmandatoryrestrictedmandatory

D7D5

free
free

free

F4

D5

D6

D7
A

D

R

activity

data element

role

C

F form

case

caption

Figure 4.9: Case Handling Modeling Approach [vWG05]

to treat a case in tight accordance with an object), the case as a whole is considered as object.
Thus, object types are partially supported (i.e., Prop. 1 is partially met). Even if interdepen-
dencies between different cases can be defined as sub-cases, corresponding relationships
(at data level) are not explicitly defined. Thus, it is not possible to consider transitive and
transverse relationships (i.e., Prop. 2 is not met). Further, Case Handling supports multiple-
instantiation patterns through dynamic sub-plans (i.e., sub-process instances) [Ath02]. This
allows creating a dynamically specified number of sub-process instances. Consequently, us-
ing multiple-instantiation patterns as extension, cardinalities between higher- and lower-level
process instances can be taken into account. However, it cannot be ensured that the cor-
rect number of sub-process instances is actually created at run-time; i.e., to ensure that their
quantity lies between the minimum and maximum cardinality (i.e., Prop. 3 is not fully met).

Processes. Opposed to activity-centric approaches, CH enables a tighter integration of pro-
cesses, activities and data [MWR08, WMR10]. Thereby, CH differentiates between free, re-
stricted, and mandatory data elements. For mandatory data elements, a value is required to
complete the activity these data elements belong to. This way, mandatory information can be
defined (i.e., Prop. 6 is met). However, since dependencies between input fields cannot be
expressed, no support for controlling the control-flow within a user form exists (i.e., P7 is not
supported). Opposed to imperative and declarative approaches, the activation of an activity
does not depend on the completion of preceding activities, but rather on data changes. In the
context of CH, an activity is considered as completed if its mandatory data elements all have
an assigned value; i.e., mandatory information is provided. Thus, activities can be automati-
cally skipped at run-time if their data elements are provided by other activities. This enables
a flexible process execution (i.e., Prop. 9 is met). In this context, one must consider that user
commitments can not be defined. As a consequence, it is not possible to intervene process
execution in order to revise previously filled information (i.e., Prop. 11 is not met). However,
besides defining who shall work on an activity, CH allows defining who may redo an activity
or (manually) skip it. Despite the introduction of the redo-role, re-executing activities arbitrarily
often is not possible (i.e., Prop. 10 is not fully met).

Example 4.6 (Re-executing activities in CH):
As illustrated in Fig. 4.10a, role R1 may execute or redo activity A1. If all mandatory data elements of a particular

54

4.3 Extensions of Traditional Approaches

activity are available, subsequent activities become enabled immediately. Regarding this example (cf. Fig. 4.10b),
as long as A2 is not completed (i.e., a value for data element D2 is not set), R1 may redo activity A1. However, after
completing subsequent activity A2, a redo only becomes possible if the user is authorized to redo A2 as well (cf. Fig.
4.10c). Otherwise, A1 cannot be redone any longer.

A1 – redo not possibleA1 – redo possibleA1 executable

A1

D1

R1

A

D

R

mandatory activity

data element

role

mandatory

A2

D2

mandatory

R2

A1

D1

R1

mandatory

A2

D2

mandatory

R2

A1

D1

R1

mandatory

A2

D2

mandatory

R2
execute

redo

execute

redo

execute

redo
execute execute execute

A

D

R

mandatory activity completed

data element with assigned value

role enabled for activity execution

a b c

Figure 4.10: Re-execution of activities in Case Handling

Consider optional activities. First, all users involved in a case may read its data elements.
Based on a query mechanism, users may access both active and completed cases. This
allows accessing data at any point in time. Second, free data elements may be used to write
data, independent from the normal flow of control. For this purpose, free data elements are
assigned to the case as a whole rather than to specific activities. However, this way the same
optional activity is offered to all users; i.e., it is not possible to offer different optional activities
to different users depending on the current progress of the case instance (i.e., Prop. 8 is not
fully met).

Activities. CH supports both black-box and form-based activities (i.e., Props. 12 and 13 is
met). However, for both kinds of activities the granularity is fixed at build-time and a concrete
activity is always executed in the context of a particular case instance. Consequently, users
cannot access data elements of other relating cases. Thus, there is no variable granularity
of activities supporting preferred work practices; e.g., context-sensitive activities cannot be
realized (i.e., Prop. 14 is not met). Finally, since each case instance is executed in isolation,
batch execution of activities is not supported (i.e., Prop. 15 is not met).

Users. Since the data elements processed during the execution of an activity are known, fine-
grained process authorization at the level of single data elements becomes possible. Hence,
it can be ensured that each user owning the execution role of an activity owns respective data
permissions as well (i.e., Prop. 18 is met). Note that any user owning the execution role of
an activity must execute it mandatorily; i.e., no differentiation between authorization and user
assignment is made (i.e., Prop. 20 is not supported). Regarding data authorization, it is further
not possible to define different access rights for a particular user depending on the progress
of the case (i.e., Prop. 19 is not met). Finally, instance-specific authorization, considering the
relationships between users and application data, is not provided (i.e., Props. 16 and 17 are
not met).

For a detailed comparison of CH with the imperative approach see [MWR08, WMR10]. Finally,
an approach presenting more flexible processes using adaptive workflows and CH is presented
in [GRv08].

55

4 State-of-the-Art

4.3.2 Artifact-centric Modeling

We now consider artifact-centric process modeling [NC03, LBW07, GS07, Hul08] and evaluate
to what degree it covers the properties of object-aware processes. The basic concepts of this
approach are illustrated in Fig. 4.11. Business artifacts are similar to object types; i.e., a busi-
ness artifact comprises atomic as well as structured attributes, related business artifacts, and
a lifecycle [Hul08, BHS09]. The latter is defined using a finite-state machine capturing the main
processing stages and the transitions between them. Transitions may be associated with condi-
tions defined in terms of attribute values or relationships to other business artifacts. In turn, ser-
vices are executed to evolve business artifacts through their entire lifecycle. For this purpose,
associations (i.e., ECA-rules) specify how services are linked with artifacts. Note that artifacts
(including their informational structure and lifecycles), services, and ECA-rules only constitute
a logical representation of business processes and business data. A formal specification of
the semantics of artifact-based process models is presented in [HDD+11, DHV11, DHV13].
In particular, an incremental as well as a fixpoint semantics is provided for business artifacts.
However, note that this semantics focuses on the life cycle of a particular artifact, but does
neither consider a data-driven execution paradigm nor interactions with other artifacts during
run-time.

Data Modeling

Business

Artifacts

Life-Cyclesconditions

Process Modeling

Associations
(ECA-Rules)

IMPLEMENTATION

Services

Figure 4.11: Artifact-centric modeling [Hul08]

Data. Like objects, artifacts consist of different attributes and refer to related artifacts. Thus,
there exists no comprehensive data structure. Instead, attributes and relations may be redun-
dantly defined within different artifacts (i.e., artifact definitions are treated independent from
each other). The emerging data structure is redundantly distributed among several data mod-
els. This makes it hard to comprehend and difficult to maintain. Altogether, data modeling
based on object types, relations and cardinalities is supported (i.e., Props. 1, 2, and 3 are met),
even through it has no impact on the process structure.

Process Granularity. In addition to the definition of the information structure, for each arti-
fact, a life-cycle model exists. The latter is used to describe artifact behavior (i.e., Prop. 4

56

4.3 Extensions of Traditional Approaches

is supported). During process execution, artifacts are processed. Thereby, they change to
different life-cycle stages. However, granularity issues in respect to activities (and processes
respectively) are not considered; i.e., it does not become transparent which artifacts are actu-
ally processed when a particular activity is executed; i.e., each service processes one or more
artifacts (of same or of different type). Further, ECA-rules are used for coordinating artifact life
cycles based on quantifiers (e.g., ∀, ∃). Consequently, there is no clear separation between be-
havior and interactions. Finally, aggregations are not taken into account and neither transitive
nor transverse relationships between business artifacts are considered (i.e., Prop. 5 is not fully
met).

Process Modeling and Execution. Services are defined in terms of black-box activities. Thus,
it is neither possible to determine the order in which object attributes shall be written nor to de-
fine what valid attribute settings shall be (i.e., Prop. 7 is not supported). However, for each
transition of an artifact life-cycle, a (data-) condition (describing mandatory information) may be
specified (i.e., Prop. 6 is met). Based on this condition, it becomes possible to synchronize
data state and process state. However, it is a tedious task to ensure that these conditions are
consistent with the ECA-rules specified for service invocations. The latter enable the activation
of services based on data conditions. Hence, activities may be re-executed as long as required
data is not available (i.e., Prop. 10 is met).
User commitments are not explicitly considered in this context (i.e., Prop. 11 is not supported).
Since ECA-rules constitute pre-conditions rather than post-conditions, it is not possible to dy-
namically skip services (i.e., Prop. 9 is not supported). Although optional activities may be
realized using ECA-rules, the business artifacts framework does not aim at an integrated ac-
cess to application data. Thus, for users it is not possible to distinguish between optional and
mandatory activities in their worklists (i.e., Prop. 8 is not supported).

Activities. All services are defined in terms of black-box activities (i.e., Prop. 13 is supported).
Form-based activities, which may be automatically generated based on the data conditions, are
not considered (i.e., Prop. 12 is not met). Since each service requires its own implementation,
the granularity of activities is fixed at build-time. Consequently, it is neither possible to provide
a dynamically varying granularity of activities nor batch execution (i.e., Props. 14 and 15 are
not met).

Users. Regarding user integration, the approach relies on similar concepts as applied in tra-
ditional PrMS (e.g., role-based access control [FK92]). A more advanced user integration, as
required for object-aware process support, is not provided (i.e., Props. 16, 17, 18, 19, and 20
are not met).

For more details see [NC03, LBW07, GS07, Hul08]. Further, [BGH+07] and [GBS07] dis-
cusses a formal analysis of artifact-centric business process models. For a comparison of the
artifact-based approach with the imperative one see [KLW08]. Finally, modeling artifact-centric
processes in a declarative way is introduced in [VHH+11].

4.3.3 Product-based Workflow Support

The core of product-based workflows [vdA97, RL03, Van09, VRv11] is a Product Data Model
described in terms of a tree-like structure [RL03]. Such a structure comprises atomic data
elements as well as operations (cf. Fig. 4.12); i.e., processes are designed in respect to
a given product structure. The latter may have several input data elements and exactly one

57

4 State-of-the-Art

output data element. An operation is executable if (specific) values are available for all input
data elements. Finally, the product is fully processed as soon as a value for the top element of
the product data model (i.e., the root element) becomes available.
In particular, the basic idea is to model a sequence of activities based on a bill-of-material
and design criteria like costs, quality, and time. Process models can then be manually derived
[RL03] or automatically generated [Van09] based on the product data model. In addition, it is
possible to directly execute the product data model [Van09, VRv11].

A

DCB

HGF E data elements

operations

Figure 4.12: Product data model [VRv11]

Data. Product-based modeling only considers
atomic data elements; data integration in terms
of object types and their inter-relations are not
considered. However, it is possible to choose
a fine-grained modeling style as well; i.e., one
particular product data model may be related to
one object. Thus, object types (i.e., Prop. 1) are
partially supported. Since sub-processes are
not considered, object relations and cardinalities
cannot be taken into account (i.e., Props. 2 and
3 are not met).

Process Granularity. Regarding product-based
modeling, dependencies between atomic data
elements (that can be considered as attributes)
are established. Nevertheless, processes (as
well as activities) may be defined at an arbitrary level of granularity; i.e., while some activi-
ties may process data elements belonging to one object instance, executing another one may
involve data elements belonging to several object instances (of same or different type). In this
context, it does not become transparent how the various data elements belong together (i.e., to
the same or to a different object instance). Taking the before mentioned fine-grained modeling
approach, however, it is possible to ensure that all data element involved in the process model
belong to one and the same object instance. This way, object behavior is provided (i.e., Prop. 4
is met). Since each process instance is executed in isolation, however, object interactions are
not supported (i.e., Prop. 5 is not met).

Process Modeling and Execution. Input data elements are explicitly specified. Hence,
mandatorily required information becomes transparent (i.e., Prop. 6 is met). However, each
process model solely contains data elements mandatorily required for process execution. Ad-
ditional data is not taken into account. Consequently, optional activities are not considered; i.e.,
it is not possible to write certain data elements even if they are not required at the moment (i.e.,
Prop. 8 is not supported). What is done during activity execution, however, is still out of the
control of the PrMS; i.e., activities constitute black-boxes. Hence, it is not possible to capture
the internal flow logic of a user form (i.e., Prop. 7 is not met). The run-time interpretation of
the product data model itself enables data-driven process execution. Since the activation of an
activity depends on pre-conditions, however, an activity cannot be automatically skipped if re-
quired output data element is already available (i.e., Prop. 9 is not supported). Finally, activities
cannot be re-executed and user decisions are not explicitly considered (i.e., Props. 10 and 11
are not met).

Activities. Only black-box activities are considered (i.e., Prop. 13 is supported). As extension,
however, user forms may be automatically generated based on the respective input and output

58

4.3 Extensions of Traditional Approaches

data elements. Since only one particular output data element is allowed, however, each form
may only comprise one input field. Concerning object-aware processes, providing required
attribute values is not as strict as for product-based processes. Consequently, form-based
activities are not supported by the latter (i.e., Prop. 12 is not met). Further, each activity
requires its own implementation and each process instance is executed in isolation. Finally,
the granularity of activities is fixed at build-time; i.e., it is not possible to provide a dynamically
varying granularity of activities as well as batch execution (i.e., Props. 14 and 15 are not met).

User Integration. Concerning user integration, product-based processes apply similar con-
cepts as traditional PrMS (i.e., role-based access control). More advanced concepts, required
in the context of object-aware processes are not considered (i.e., Props. 16, 17, 18, 19, and 20
are not met).

For more detailed information see [vdA97, RL03, Van09, VRv11]. [Rei02] illustrates a use case
applying the product-based approach within the financial services. Further, a first approach
towards integrating this approach with case handling is presented in [vB01, VRvdA08]. Fi-
nally, [CV11] uses this approach for monitoring collaborative business processes and [RVV10]
addresses challenges for dealing with schema evolution in this context.

4.3.4 Data-driven Process Coordination

Corepro [MRH07, MRH08a, MRH+08b, M0̈9] and its data-driven coordination framework en-
able the coordination of multiple processes based on objects and object relations. Single ob-
jects are defined in terms of states and (internal) transitions between them. The latter can be
associated with complex actions (i.e., processes) that must be completed before the subse-
quent state may be entered. According to the relations between objects, external transitions
connect the states of different objects to coordinate their processing (cf. Fig. 4.13).

LCM 2

LCM 1

A B C

D

F

E

A

B D

F

C E

states

processes

Data Structure

Object Type 1

Object Type 2

Process Structure

Figure 4.13: COREPRO modeling approach

Data. Object types are explicitly defined. However, the respective definition does not cover
object attributes (i.e., Prop. 1 is not fully met). Further, it is possible to define object relations.
In this context, several object instances may be handled at run-time. However, their concrete
number must be fixed at build-time. Cardinality constraints are not taken into account (i.e.,
Prop. 3 is not fully met).

Process Granularity. For each object type, a process model describing object behavior is de-
fined in terms of a state chart (i.e., Prop. 4 is supported). At run-time, corresponding process

59

4 State-of-the-Art

instances are executed concurrently. Based on the aforementioned external transitions, the ex-
ecution may be synchronized where needed. Although the approach considers multiple object
instantiation, one-to-many relationships between object types cannot be properly handled. In
particular, it is not possible to aggregate sets of lower-level object instances. Moreover, pro-
cess coordination is solely aligned with object relations. Transitive or transverse relationships
cannot be specified. Hence, object interactions are not supported as required in the context
of object-aware processes (i.e., Prop. 5 is not fully met). In summary, it is possible to coordi-
nate individual (i.e., object-specific) processes based on the underlying data structure while the
granularity of processes (and activities) can be freely chosen.

Process Modeling and Execution. Since object attributes are not considered, mandatorily
required information cannot be defined (i.e., Prop. 6 is not met). In addition, access to data
is only possible when executing activities specified within the process model; i.e., optional
activities are not supported (i.e., Prop. 8 is not met). Activities are treated as black-boxes;
i.e., it is out of control what is done during their execution. Hence, it is not possible to define
the internal flow logic of a form (i.e., Prop. 7 is not met). Processes themselves are still
activity-driven, only process synchronization follows a data-driven approach. In particular, the
activation of a subsequent state depends on the completion of a process associated with the
corresponding state transition. Consequently, a flexible data-driven execution, allowing for the
re-execution of activities and the explicit consideration of user decisions, is not supported (i.e.,
Props. 9, 10, and 11 are not met).

Activities. Process execution is solely based on black-box activities (i.e., Prop. 13 is met).
Since object attributes are not defined, form-based activities cannot be automatically generated
at run-time (i.e., 12 is not met). Neither a variable granularity of activities nor batch execution
are supported (i.e., Props. 14 and 15 are not met).

User Integration. The integration of users is not addressed. Since processes are considered
as black-boxes, standard concepts for user integration may be applied (e.g., role-based access
control). Advanced concepts, as required in the context of object-aware processes, are not
considered (i.e., Props. 16, 17, 18, 19, and 20 are not met).

4.3.5 Proclets

Proclets [vBEW00, vBEW01, vMR09] constitute small processes that interact with each other
through the exchange of messages. The latter is accomplished through ports and channels
(cf. Fig. 4.14). Channels may be customized to support different kinds of interactions (e.g.,
push/pull, synchronous/asynchronous). A naming service can be used to find other Proclets.
Each message sent or received is stored in the knowledge base of the respective Proclet.

Data Integration. Object types are not explicitly managed by this framework. However, the
definition of a proclet may be aligned with a specific object type (i.e., to use a fine-grained
modeling style). Object attributes are not considered (i.e., Prop. 1 is not fully supported). Since
each proclet may communicate with any other proclet, coordination is not based on object
relations (i.e., Prop. 2 is not met). Since for each proclet type a dynamic number of instances
can be handled at run-time, a complex process structure emerges and evolves during run-time.
Finally, cardinality constraints can be handled (i.e., Prop. 3 is partially met).

60

4.3 Extensions of Traditional Approaches

create

end

*,1

1,*

create

end

*,1

1,*

naming service

tasks

channels

ports

proclets

Figure 4.14: Proclet framework [vBEW00]

Process Granularity. The granular-
ity of a proclet is not explicitly defined.
However, using a fine-grained model-
ing style (i.e., each proclet is defined
in close relation to an object type), a
certain kind of object behavior can be
expressed (i.e., Prop. 4 is met). At
run-time, for each proclet type a dy-
namic number of instances is handled.
This way, a complex process structure
emerges, for which the individual pro-
clet instances may be executed asyn-
chronously to each other and synchro-
nized where needed. It is possible to
send a message to multiple proclets
or to restrict the number of recipients
based on cardinality constraints. In ad-
dition, activity pre- and post-conditions
may be used to define creation and execution dependencies as well as aggregations. However,
since object relations are not taken into account, transitive or transverse relationships between
proclet instances cannot be handled (i.e., Prop. 5 is not fully met).

Proclets are defined using Petri nets [vBEW00]. Thus, black-box activities are supported (i.e.,
Prop. 13 is met). In turn, all other properties belonging to the business perspectives processes,
activities, and users are not supported (i.e., Prop. 6 - 12 and Prop. 14 - 20 are not met).

For more detailed information see [vBEW00, vBEW01, vMR09]. Finally, a use case from the
healthcare domain is introduced in [MRv+10].

4.3.6 Object-centric Processes

Object-centric business process modeling [RDtI07, RDtI09a, Red09, RDtI09b] allows coordinat-
ing object-specific processes, which are defined in terms of finite state machines. As illustrated
in Fig. 4.15, the latter are coordinated using different signals. To each state, several atomic
tasks may be assigned.

Data Integration. Object types may be explicitly defined. However, similar to the data-driven
process coordination approach, object attributes are not explicitly considered (i.e., Prop. 1 is
not fully met). As opposed to the data-driven process coordination approach, object relations
are not explicitly defined. Instead, coordination dependencies are directly defined using various
signal types. This way, process coordination may not necessarily coincide with object relations
(i.e., Prop. 2 is not fully met). In this context, cardinality constraints may be considered as well
(i.e., Prop. 3 is met).

Process Granularity. For each object-type, a finite state-machine is defined to describe its
behavior (i.e., Prop. 4 is supported). At run-time, for each object type a varying number of
object instances (with corresponding state machines) may then be executed concurrently to
each other. However, it is not possible to specify asynchronous object interactions as required
in the context of object-aware processes. In particular, the spawn signal (cf. Fig. 4.15) should

61

4 State-of-the-Art

not be restricted to specific points during process execution. Instead, it should be possible to
assign them to a number of states. Moreover, aggregation conditions (cf. the finished signal
in Fig. 4.15) should be definable using more complex constraints rather than solely declaring
minimal and maximal counts. Consequently, object interactions cannot be handled as flexible
as required (i.e., Prop. 5 is not fully met).

Object Type 2

Object Type 1

A B C

D

F

E

A

B D

F

C E

states

spawn

signal 0..n 0..n1..1

transitions

finish

signal

none-terminating

signal (message)

Figure 4.15: Object-centric modeling approach [RDtI09a]

Process Modeling and Execu-
tion. Tasks are assigned to par-
ticular states to activate them.
Since object attributes are not
considered, mandatory informa-
tion does not become transpar-
ent (i.e., Prop. 6 is not met).
For this reason, a flexible (data-
driven) process execution is not
possible (i.e., Prop. 9 is not
met). However, [RDtI09a] in-
troduces an approach enabling
more flexible task execution. This
way, unplanned tasks may be in-
voked allowing for some kind of
optional activities. When using
these tasks, however, integrated
access to involved business data
is not possible (i.e., Prop. 8 is not fully supported). Since tasks are considered as black-box,
the internal flow logic of a user form cannot be specified (i.e., Prop. 7 is not met). Finally, nei-
ther re-execution of activities nor the integration of user decisions are considered (i.e., Props.
10 and 11 are not met).

Regarding activities and the integration of users, the same conclusions can be as for imperative
process support paradigms (i.e., Props. 12 - 20 are not met).

4.3.7 Other Approaches

In the previous sections, we presented approaches dealing with traditional process manage-
ment. Another interesting concept from this area is discussed in [SOSS05]. It deals with the
grouping and ungrouping of activities in worklists in order to enable batch execution (cf. Prop.
15).

Object Behavior Diagrams [KS91, PS98] provide a graphical notation for describing the behav-
ior of objects in object-oriented software systems. They comprise states and activities triggering
state transitions. Since it is possible to transform object behavior diagrams into a correspond-
ing Petri Net representation based on synthesis techniques [CKLY98, ER89], an operational
semantics for executing them is provided. It is further possible to synchronize the execution
of behavior diagrams corresponding to different objects [M0̈9]. However, no formal operational
semantics is provided; further the synchronization support is not sufficient to fully met the prop-
erties of object-aware processes.

62

4.4 Approaches for User Integration

Another approach dealing with object behavior is provided by UML [BRJ98]. In particular, UML
Activity Diagrams provide an activity-centered approach for modeling object behavior com-
prising control flow logic, events, and user decisions. In turn, with UML State Charts, object
behavior can be defined in terms of states and state transitions. However, both diagrams do not
explicitly consider object attribute values, and hence a data-driven execution is not addressed.
Furthermore, UML does not provide a well-defined operational semantics for executing respec-
tive diagrams at run-time (although there exist proposals for this [PDG+11, Ges10, Esh02]).
Finally, UML lacks mechanisms for synchronizing the execution of different models [Red09].

Data-driven programs [DH12] address the problem of exchanging data between different infor-
mation systems using interface protocols. However, data semantics is not considered. Further,
the communication between information systems becomes complex. For this reason, [DH12]
proposes to design software applications operating with defined master data rather than in-
dividual 1:1 interfaces. Accordingly, software applications should be coordinated based on a
common basis of data, which relies on concepts like grouping, cardinalities, polymorphism, and
a "case-of" mechanism.

In the context of model-driven software architectures [Fra10], application code is automatically
generated based on a collection of different models. Like PHILharmonicFlows, this approach
aims at increasing development times and managing the complexity of large software systems.
Opposed to PHILharmonicFlows, however, the models are used to generate corresponding
application code rather than to interpret this code directly. As a consequence, a lot of effort is
required to keep models and application code consistent.

Finally, scientific workflows [TDGS07] address a tighter integration of processes and data as
well. In this context, different data sources are used to perform extensive calculations and
evaluations requiring distributed resources. However, they are mainly based on an activity-
centric execution paradigm.

4.4 Approaches for User Integration

Existing approaches are provided by process management and application systems. Regard-
ing the latter, both consistency issues and instance-specific authorization have been consid-
ered. However, user assignment based on data permissions and considering the relationships
between users add data are not taken into account by any approach. To our best knowledge,
only approaches from the area of application systems consider relations between users and
object instances. Regarding process management, a set of approaches addressing specific
strategies for user assignment are available. Altogether, a comprehensive solution for generic
access control, as required for object-aware process management, is still missing.

4.4.1 Enabling Instance-specific Authorization

Instance-specific authorization (i.e., Prop. 16) means that the selection of potential actors does
not only depend on the activities performed, but also on the object instances processed by the
respective activity. For this purpose, [ST97] describes an approach that groups permissions
for accessing data and functions. Whether a user may perform a particular activity depends
on the agreement of another user at run-time. This enables a manual approval of the object

63

4 State-of-the-Art

instances relevant in the given context. However, it is not possible to access data outside
the scope of a specific activity; i.e., optional activities are not considered. Similarly, current
PrMS focus on actor assignments for controlling activity executions. By contrast, permissions
for accessing data and functions are mostly managed within the invoked application systems.
[WSML02] describes the concept of "instance-based user group". Actors get access to all
object instances associated with at least one process instance they have been involved in.
The opposite direction (i.e., user assignments depending on permissions for data access) is
not considered. [RzM98] allows managing specific properties for each data element relevant
for the process. In addition to actor expressions, for each activity, relevant properties of the
used data elements are defined. Obviously, this is accomplished in a redundant manner and
therefore data inconsistencies might arise.

4.4.2 Ensuring Consistency between Data and Process Authorization

To ensure consistency between data and process authorization, each user who shall execute
a process-relevant activity must own corresponding data permissions as well (cf. Prop. 18).
In this context, Case Handling [vWG05] distinguishes between mandatory and optional data
elements of an activity; however, no differentiation between mandatory and optional activities
is made. Similar to [WSML02], users get access to all data elements of the process instances
they are involved in (i.e., the permission to read / write data is assigned implicitly). [ST97] and
[Bot02] define permissions for accessing data and functions in the context of a specific task.
The opposite direction must be taken into account as well. More precisely, the assignment of
users to tasks may depend on data permissions (cf. Prop. 19). To our best knowledge, this is
not considered by any approach. Regarding [ST97] and [Bot02], for example, all permissions
are defined at the level of object types. Thus, it is not possible to assign different permissions
for object instances of the same type.

4.4.3 Considering Relations between Users and Object Instances

In some approaches [LS97, KKC02, Tho97, HW04, BBU99], it is possible to restrict permissions
to a selected set of object instances. However, only in few cases [KKC02, HW04, BBU99] these
restrictions can be defined depending on the relationships between users and object instances.
In particular, it is not possible to consider relationships already defined in the data structure.
Instead, they must be defined redundantly based on the permissions.

4.4.4 Differentiating User Assignment and Authorization

Except few approaches (e.g., Case Handling), PrMS do not support optional activities as de-
scribed in Sect. 3.1. Hence, it is not possible to differentiate between tasks users must execute
and tasks they may execute. In [RtE05], various possibilities for assigning and activating ac-
tivities are described. [BFA99] takes the hierarchy of roles into account and [WBK03] allows
defining different priorities for assigning users to activities. However, for all approaches, always
at least one user must execute an activity. Opposed to this, [vWG05] focuses on data access
rather than on assigning users to activities. Finally, for each activity it is possible to differentiate
between optional and mandatory data elements.

64

5
Requirements

Chapt. 4 has revealed characteristic problems that occur when using existing process man-
agement technology for implementing object-aware processes and their properties. Tab. 5.1
illustrates major differences between object-aware process support on one hand and traditional
(i.e., imperative and declarative) process support on the other:

Object-Aware Process Support Traditional Process Support
Data Integration integrated data access hidden information flows
Modeling object behavior and interactions arbitrary process granularity
Execution data-, user-, and activity-driven activity-driven / constraint-based
Activities flexible granularity fixed granularity

Table 5.1: Comparing object-aware with traditional process support

Basically, any PrMS targeting at the support of object-aware processes must satisfy a number of
fundamental requirements. This thesis differentiates between end-user requirements, process
support requirements, and system requirements. Note that we summarized the requirements in
a compact and unstructured way considering the fact that we already systematically presented
the properties of object-aware processes, to be supported by the generic solution framework
we target at, in Chapt. 3.

As emphasized, we aim at effective business-IT-alignment, rapid application development and
improved maintenance. General requirements like scalability, traceability, quality, and reusabil-
ity apply to all applications and PrMS, and are therefore not discussed in detail. Instead, we fo-
cus on requirements for the modeling and execution of object-aware processes. In this context,
we must ensure correct and robust process execution during run-time. Regarding real-world
scenarios, however, it is not always possible to completely exclude deadlock situations. For
example, reviewers might not be able to agree on whether or not to hire a particular applicant;
or it might be not possible to recruit an appropriate candidate for a job. Consequently, not only
rules for structural correctness are required, but also extensive mechanisms for detecting in-

65

5 Requirements

correct situations at run-time. For this purpose, it is essential to keep track of relevant run-time
information (e.g., the current process state).

5.1 End-User Requirements

Traditional PrMS are unable to provide data- and function-oriented views as known from many
application systems (i.e., accessing business information is only possible when executing a
process activity and its related application function). In turn, regarding the end-user view on
object-aware processes, it will be crucial that all business perspectives can be accessed using
one and the same system; i.e., an integrated access to processes and data must be provided.
In particular, proper business-IT-alignment necessitates an integrated access to data, func-
tions, and processes. Finally, available data and running processes should be transparent to
authorized users.

5.1.1 Integrated Access to Processes, Data and Functions

To provide effective support for object-aware processes, both a data- and a process-oriented
view need to be provided for end-users. In particular, hidden information flows, as can be found
in traditional PrMS, are no longer acceptable. Applying a data-oriented view, users must be
able to access and manage data at any point in time. In turn, using a process-oriented view,
it should be possible to assign upcoming tasks to the right users at the right point in time.
However, it is not sufficient to only provide strictly separated views on processes and data.
In particular, a process instance is tightly coupled with its corresponding object instance; i.e.,
attribute values reflect the progress of its related process instance. In turn, data authorization
(i.e., read and write permissions on object attributes) depends on the progress of process ex-
ecution. As illustrated in Fig. 5.1, these mutual dependencies between object and process
instances should be made transparent to end-users. On one hand, this means that during
process execution access to relevant context information is needed. For this purpose, in ad-
dition to upcoming mandatory activities, the process-oriented view should display the objects
referred by these activities. On the other hand, business data should include information about
corresponding processes. Thus, within a data-oriented view, the progress of the corresponding
process instances must be displayed. Activities may then be invoked starting from both, the
data- and the process-oriented view.

batch

execution

data-oriented view

optional

activities

process progress

process-oriented view

mandatory

activities

affected objects

user

forms

complex

functions

Figure 5.1: End-user view - abstract model

66

5.2 Process Support Requirements

5.1.2 Monitoring

When executing object-aware processes (i.e., object behavior), upcoming mandatory activities
should be immediately assigned to responsible users. For this purpose, worklists (i.e., ade-
quate process-oriented views) must be provided. Generally, for an object type, hundred or
thousands of object instances might exist. Such huge data sets are usually handled within
existing application systems. For example, consider a human resource management system,
which concurrently processes thousands of job applications; i.e., system performance is cru-
cial. Furthermore, object instances may be created or deleted at arbitrary points in time; i.e.,
the corresponding data structure dynamically emerges and evolves depending on the type and
number of created object instances as well as on their relations. In addition, for each object
instance (e.g., job application), a corresponding process instance must be handled and its man-
ifold inter-dependencies with other process instances be controlled. Considering this, we obtain
a complex and potentially large process structure referring to a multitude of object instances
and reflecting their inter-dependencies.
Consequently, in addition to the processing state of individual process instances (i.e., object
instances), it must be possible to track the various object interactions (i.e., the overarching pro-
cess logic). For this, proper monitoring concepts are required. In particular, the processing
state of the whole process structure must be displayed at each point in time during process
execution. In this context, it is crucial to adequately handle one-to-many relationships and to
consider the asynchronous execution of the individual process instances. Finally, inconsis-
tencies emerging during the execution of a complex process structure must be detected and
pproperly handled.

5.2 Process Support Requirements

Obviously, the missing link between application data and business processes prohibits an in-
tegrated access. Further, it disallows defining processes in close relation to data. In order
to realize the properties of object-aware processes, a new process modeling paradigm and
methodology is required. In particular, process execution should no longer be solely activity-
driven (i.e., the execution of activities depends on the completion of other activities). Instead,
a data-driven execution paradigm, combined with activity-centric aspects and user decisions,
is required. Since activities may have flexible granularity, individual activities do not longer co-
incide to particular process steps as in existing process support paradigms. Note that this is a
fundamental difference.

5.2.1 Process Modeling Methodology

Object-aware processes are usually structured according to business objects involved. To align
data and process modeling in this context, these must not be treated independent from each
other; i.e., processes need to be defined in close relation to the underlying data model and data
must no longer be treated as second-class citizens within the PrMS [vWG05]. Instead, process
modeling must be based on a clear methodology differentiating between object behavior and
object interactions (cf. Props. 4 and 5). Further, it is no longer recommendable to define
processes at an arbitrary level of granularity as in existing PrMS (cf. Fig. 5.2).

67

5 Requirements

process model process model data model

object relations

object types

object interactions

object behavior

control flow

activities

traditional methodology object-aware methodology

Figure 5.2: Object-aware process modeling methodology

5.2.2 Process Modeling Paradigm

As discussed, users should be able to choose the work practice they prefer. Therefore, a flexible
execution of activities is required; i.e., activities must not follow a pre-defined execution order.
For this reason, a strict activity-based process modeling and process execution paradigm, as
supported in traditional PrMS, is too rigid.

First of all, consider the execution of an activity in the context of a particular process instance
reflecting object behavior. Using optional activities (cf. Prop. 8), it should become possible
to execute activities before and after their (mandatory) activation during process execution.
We denote this as horizontal flexibility (cf. Fig. 5.3). In turn, an activity may also process
attribute values of several object instances; i.e., an activity execution may refer to multiple
object instances. We denote this as vertical flexibility (cf. Fig. 5.3). Finally, batch execution
of activities (cf. Prop. 15) might be required; i.e., attributes of several instances of the same
type may be processed in one go. Altogether, the granularity of an activity should not be fixed
at build-time, but be dynamically selectable depending on the needs of the respective user.
Therefore, it is no longer appropriate that activities coincide to individual process steps as in
existing applications. In addition, process instances can no longer be treated independent from
each other.

process

steps

process instance

of type A

horizontal flexibility

of activities

process instances

of type B

activities

vertical flexibility

of activities

Figure 5.3: Horizontal and vertical flexibility of activities

68

5.3 System Requirements

5.3 System Requirements

To ensure rapid development and run-time flexibility (e.g., in respect to the activity granularity
chosen), an object-aware process management should comprise generic techniques for auto-
matically generating worklists, overview tables, and user forms at run-time. In particular, these
components should enable an integrated access to data, functions, and processes. In addi-
tion, the structure of data and process models should correspond to each other; i.e., data and
processes are two sides of the same coin. For this purpose, the traditional architecture of
process-aware information systems, as introduced in Chapt. 1, is no longer applicable.

5.3.1 Generic End-User Components

Process definition must be accomplished at two levels of granularity; i.e., object behavior and
object interactions. Opposed to this, however, activity execution should be of flexible granu-
larity; i.e., an activity may comprise input fields corresponding to attributes of several object
instances and process instances respectively (cf. Fig. 5.3). When initiating a review, for ex-
ample, it should be possible to simultaneously change attribute values of the application and
the job offer. Which input and data fields shall be displayed then, not only depends on the
user performing this activity, but also on the state of the respective process instances. Note
that this might require a multiplicity of different user forms. Manually implementing all these
forms would be a cumbersome and error-prone task. To enable rapid development, instead, it
should be possible to automatically and dynamically generate user forms based on a generic
component at run-time. The latter should automatically determine required input fields (for writ-
ing object attributes) and data fields (for reading object attributes) at run-time. In addition, it
should be possible to automatically generate data-oriented views (i.e., overview tables) as well
as process-oriented views (i.e., worklists) during run-time.

5.3.2 New Architecture

To overcome fundamental limitations of traditional PrMS, a tight integration of data and process
models becomes necessary (cf. Fig. 5.4a). Such a tight integration provides the foundation
for realizing the discussed generic techniques for automatically generating user interfaces. In
particular, permissions for accessing data depend on the progress of corresponding process
instances. In turn, process execution is primarily data-driven; i.e., the activation of mandatory
activities depends on already assigned attribute values. More precisely, to automatically gener-
ate overview tables, worklists, and user forms, both information about data and corresponding
processes is required (cf. Fig. 5.4b). Finally, user integration is not only required for process
support, but also in the context of data and functions (cf. Fig. 5.4b). In particular, a tight inte-
gration of data functions and processes is indispensible for enabling integrated access to them
during run-time.

Finally, it is not appropriate to treat user roles and application data independent from each other
as in existing PrMS. Instead, data structures (i.e., object types and their inter-relations) should
embed organizational entities as well; i.e., roles should be explicitly defined in terms of object
types. Otherwise, it will not be possible to utilize the relationships existing between users and
object instances (cf. Prop. 17).

69

5 Requirements

processes

functions

data

users

dataprocesses

functions

users

traditional architecture object-aware architecture

a

b b

c

cc

Figure 5.4: Traditional architecture and object-aware architecture (according to [KR11b])

Altogether, a tight integration of all business perspectives (cf. Chapt. 1) is required. Never-
theless, separating concerns still must be ensured to allow for a good system maintenance. In
particular, data and processes must be defined in separate, but well-integrated models.

70

Part III

PHILharmonicFlows

71

RUN-TIME

BUILD-TIME

Macro Process

Micro Process

States

Data

User Integration

Forms

Black-box Activities

DATA

IN
TEGRATIO

N

OBJECT INTERACTIONS

OBJECT BEHAVIOR

OBJECT
ACCESS

automatically generated

implementation required

Data-

oriented

View

automatically generated

Overview

Tables

INTEGRATED ACCESS

Process-

oriented

View

Monitoring

automatically generated

Worklists

EXCEPTIO
N

HANDLIN
G

Figure 5.5: Main components of the PHILharmonicFlows framework

73

The overall research goal of this thesis is to provide a comprehensive framework for object-
aware process support that meets all the properties we identified in Chap. 3. In part III of
this thesis, we incrementally introduce PHILharmonicFlows1 – a framework providing a generic
solution approach for enabling an integrated access to business data, business processes,
and business functions (cf. Fig. 5.5) [KR11b, KR11a]. Based on the various models provided
by this framework and their generic implementation, an automatic and dynamic generation of
data- as well as process-oriented views becomes possible at run-time (e.g., overview tables,
worklists, and user forms). Regarding activities, PHILharmonicFlows differentiates between a
form-based and black-box implementation. The latter allow for more complex business func-
tions accomplishing computations or integrating legacy applications. Hence, for each black-box
activity, a specific implementation is required. In turn, form-based activities (i.e., user forms),
are automatically generated taking both user permissions and the progress of the respective
process instance into account. Finally, PHILharmonicFlows provides advanced support for user
integration, process monitoring, and exception handling.

Fig. 5.5 summarizes the main components of the PHILharmonicFlows framework. Basically,
it comprises a modeling as well as a run-time environment enabling full lifecycle support for
object-aware processes. As opposed to activity-centric process modeling approaches which
explicitly require specifying activities and their execution constraints (e.g., precedence rela-
tions), PHILharmonicFlows allows defining processes in tight integration with data. As a fun-
damental prerequisite, a data model of the respective domain needs to be defined. In most
existing process management systems (cf. Chap. 4), the data and process perspectives are
integrated in one and the same artifact resulting in complex models that are difficult to com-
prehend and maintain. In turn, PHILharmonicFlows allows for defining data and processes in
separate, but well integrated models (cf. Fig. 6.1). Thus, it retains the well established principle
of separating concerns [Dij76].

The modeling environment of PHILharmonicFlows enforces a well-defined modeling methodol-
ogy that governs the definition of processes at different levels of granularity. In this context, the
framework differentiates between micro and macro processes capturing both object behavior
and object interactions.

Process and data authorization is based on user roles. Data may be accessed optionally and
at any point during run-time. In turn, process execution is based on permissions for creating
and deleting object instances as well as for reading or writing their attributes. Furthermore,
the access to object attributes must take the current progress of the process into account. In
order to enable access control at such a fine-grained level, PHILharmonicFlows maintains a
comprehensive authorization table. Finally, besides form-based activities, PHILharmonicFlows
supports black-box activities (e.g., to invoke a web service or send an e-mail).

The run-time environment provides data- and process-oriented views to end-users; i.e., autho-
rized users may invoke activities for accessing data at any point in time as well as activities
needed to proceed with the flow of the process. Moreover, PHILharmonicFlows is based on
a well-defined formal semantics, which allows for the automatic generation of end-user com-
ponents corresponding to the run-time environment (e.g., tables giving an overview of object
instances, user worklists, and form-based activities). Consequently, implementation efforts are
significantly reduced and only become necessary for realizing black-box activities.

1Process, Humans, and Information Linkage for harmonic Business Flows

74

6
Data Integration

RUN-TIME

BUILD-TIME

Macro Process

Micro Process

Data

User Integration

Forms

Black-box Activities

automatically generated

implementation required

Relations

Objects

Attributes

Data-

oriented

View

automatically generated

Overview

Tables

Process-

oriented

View

Monitoring

automatically generated

Worklists

Figure 6.1: Data modeling in PHILharmonicFlows

75

6 Data Integration

A DBMS is usually based on a specific data meta-model (e.g. relational, hierarchical, or object-
relational models) to define the logical data structure. Our goal is to cover the fundamental re-
lationships that exist between the different business perspectives, especially the ones between
business processes and business data. Hence, PHILharmonicFlows relies on a relational data
model, which comprises object types, object attributes, and object relations [Cod90]. Note that
the framework does not consider object-oriented data models. On one hand, the latter are
not common in practice; on the other, their use would distract us from the basic properties of
object-aware processes.1

RDBMS enable the definition of business data in terms of relations (i.e., tables). In particular,
for each business object type (e.g., order) a corresponding table is defined representing the
attributes of the business object as columns (cf. Fig. 1.4b). For each of these attributes, a
corresponding data type as well as additional properties are then specified (e.g., the maximal
length of its value). At run-time, individual object instances (e.g., Order 1, Order 2, and Order
3) are represented as rows in the corresponding table; each column may contain a value corre-
sponding to the data type of the respective attribute (cf. Fig. 1.4c). At least one of the attributes
is defined as primary key. Using its value during run-time, any object instance represented
as row in the respective table can be uniquely identified. Relationships between object types
are modeled in terms of foreign key attributes. More precisely, a table may contain a column
storing values of primary key attributes belonging to any referenced object instance (i.e., row
in a table). Thus, individual object instances differ in the values of their attributes and their re-
lationships among each other. Since normalization constitutes an integral part of the relational
data model, all relations form 1-to-many relationships; i.e., many-to-many-relationships are dis-
solved using an intermediate relation. In order to control data access, each registered user can
get the permissions to read and write data (i.e., object instances) from several relations. As
illustrated in Fig. 1.4d, these permissions may be restricted to particular rows (i.e., individual
object instances). For this purpose, several views can be defined, each of them containing
a subset of the available rows that fulfill a certain constraint. In addition, permissions can be
restricted to particular columns (i.e., individual attributes) as well.

6.1 Object Attributes

Attribute types describe the individual properties of business objects. As illustrated in Fig. 6.2,
each attribute type is defined by its name and type (cf. Def. 1a). To set a focus, according
to the traditional relational model, only atomic data types are considered. The latter include
integer, decimal, string, boolean, and date. In turn, complex (i.e., aggregated) data types (e.g.,
lists or arrays), are captured in terms of relating object types (which are then referenced by the
object type they belong to).
When generating user forms at run-time, for each attribute the respective user owns write (read)
permissions for, an input field (data field) is automatically created.

In a relational DBMS, attribute types may be optionally flagged as "not null". For them, a
value is required when creating an object instance. Whether or not a value is required for
a specific attribute at run-time, depends on the course of process execution; i.e., "not null"
does not require to write the attribute value when creating the object instance, but necessitates
that this is done at some point during process execution. To ensure this, we introduce micro

1Note that many-to-many relationships between objects can be dissolved by using one-to-many relations.

76

6.2 Object Types and Instances

proposal

remark

urgency

return date

appraisal

reason

comment

finished

STRING

STRING

STRING

DATE

STRING

STRING

STRING

BOOLEAN

invite

fast processing

high

01/03/2012

very good

many skills

false

attribute type attribute value

attribute

name type

Figure 6.2: Attribute types and attribute values

processes in Chap. 7. Finally, default attribute values may be used which will then be assigned
to respective input fields as initial values.

At run-time, attributes are represented in terms of name-value-pairs. Thereby, any attribute
value must belong to the domain of the respective attribute type (cf. Fig. 6.2 and Def. 1a).

Definition 1 (Attribute types and attributes):
In the following, let Identifiers be the set of all valid identifiers over a given alphabet.

a) An attribute type is a tuple attrType = (name, type) where

• name ∈ Identifiers is an identifier.

• type ∈ {INTEGER,DECIMAL,STRING,BOOLEAN,DATE} is a basic data type.

AttrTypes denotes the set of all definable attribute types and AttrValues the set of all possible attribute
values corresponding to any of the above data types.

b) An attribute is a tuple attr = (attrType, attrValue) ∈ AttrTypes × AttrValues with attrValue denoting a valid
value of attrType; i.e., attrValue belongs to the domain of attrType.type. Attr denotes the set of all attributes.

6.2 Object Types and Instances

When defining a business object, attribute types may be grouped to a respective object type.
As illustrated in Fig. 6.3, each object type comprises a set of attribute types that define its
properties. In addition, an object type has a unique name (cf. Def. 2).

At run-time, for each object type a varying number of object instances may be created (cf.
Fig. 6.3). Object instances usually differ in the values of their attributes. Note that we do not
enforce the definition of primary keys as known from DBMS. Instead, for each object instance,
PHILharmonicFlows automatically generates an object identifier (OID) to uniquely identify it at
run-time. How to represent such an OID depends on the technical implementation chosen.

77

6 Data Integration

Review #3
Review #2

Review

proposal

remark

urgency

return date

appraisal

reason

comment

finished

Review #1

invite

fast processing

high

01/03/2012

very good

many skills

false

proposal

remark

urgency

return date

appraisal

reason

comment

finished

STRING

STRING

STRING

DATE

STRING

STRING

STRING

BOOLEAN

object type object instances

1OID

unique identifier

Figure 6.3: Object types and object instances

Definition 2 (Object types and instances):
a) An object type is a tuple oType = (name, AttrTypeSet) where

• name ∈ Identifiers is an identifier.

• AttrTypeSet ⊂ AttrTypes is a finite set of attribute types.

∀ attrTypei ∈ AttrTypeSet, i=1,2: attrType1.name = attrType2.name⇒ attrType1 ≡ attrType2.
OTypes corresponds to the set of all definable object types.

b) An object instance is a tuple o = (oid,oType,attrval) where

• oid is the unique identifier of o; i.e., it holds: for oi = (oidi, oTypei, attrvali), i=1,2 being two instances of
a particular object type with oid1 = oid2,⇒ o1 ≡ o2;
i.e., every object instance is uniquely identified by its object identifier.

• oType = (name, AttrTypeSet) is the object type of o.

• attrval: AttrTypeSet 7→ AttrValues ∪ {NULL} assigns to each attribute type
attrType = (name, type) ∈ AttrTypeSet an attribute value.
Thereby, attrval(attrType) is compatible with the data type attrType.type.

OInstances denotes the set of all object instances of any object type ot ∈ OTypes. Furthermore, oin-
stances: OTypes 7→ 2OInstances assigns to each object type ot the set of object instances (with oinstances(ot)
⊆ OInstances) currently existing for this object type.

Like in the relational data model, attribute types may be flagged as unique (cf. Def. 3); it
is not possible to assign the same value for the respective attribute to more than one object
instance.2

Definition 3 (Unique attributes):
Let ot = (name, AttrTypeSet) ∈ OTypes be an object type. Then:

uniqueot: AttrTypeSet 7→ BOOLEAN indicates for each object attribute whether its value is unique within the
collection of object instances corresponding to object type ot.

2Corresponding validations are automatically applied at run-time when editing the generated user forms (cf.
Sect. 9.1.1).

78

6.3 Predefined Attribute Values

6.3 Predefined Attribute Values

For certain attributes, only specific values from a finite value domain may be assigned at run-
time. This is usually accomplished based on combo boxes or radio buttons. For example, con-
sider attributes "country name" and "family status". Regarding the latter, only values "single",
"married", "divorced", and "widowed" may be set. As illustrated in Fig. 6.4, in PHILharmon-
icFlows such predefined value sets can be specified in terms of value types. Like object types,
each value type may comprise a number of attribute types (cf. Def. 4). Usually, only one
attribute type is required. In turn, value types comprising several attribute types, are required
for realizing more advanced concepts during user form generation (cf. Chap. 13.4 for more
details). Finally, each instance of a value type represents a particular value at run-time.

Review

proposal

remark

urgency

return date

appraisal

reason

comment

finished

STRING

STRING

STRING

DATE

STRING

STRING

STRING

BOOLEAN

object type

Proposal

proposal

value type

domain
STRING

Review #1

invite

fast processing

high

01/03/2012

very good

many skills

false

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Proposal #1

proposal invite

Proposal #2

proposal reject

object instance value instances

buildtime runtime

Figure 6.4: Value types and instances

Definition 4 (Value types and instances):
a) A value type is a tuple vType = (name, AttrTypeSet) where

• name ∈ Identifiers is an identifier.

• AttrTypeSet ⊂ AttrTypes is a finite set of attribute types describing vType.

VTypes denotes the set of all definable value types.

b) A value instance is a tuple v = (vType, vattrval) where

• vType = (name, AttrTypeSet) is the value type of v.

• vattrval: AttrTypeSet 7→ AttrValues ∪ {NULL} assigns to each attribute type
attrType ∈ AttrTypeSet an attribute value vattrval(attrType) compatible with attrType.type.

VInstances denotes the set of all value instances of any type vt ∈ VTypes.
Finally, vinstances: VTypes 7→ 2VInstances assigns to each value type vt ∈ VTypes the set of value in-
stances(vt) currently existing for this value type.

Example 6.1 (Value type):
To capture predefined values describing the family status of an employee, a value type comprising an attribute type
family status of data type STRING is defined. Corresponding to this attribute type, instances "single", "married",
"divorced", and "widowed" may be created.

A value type is assigned to the respective attribute type(s) of a particular object type. We
denote these assignments as domains, which are represented in terms of relations (cf. Def. 5).

79

6 Data Integration

At run-time, a domain comprises all the values of the value instances the respective attribute
type refers to (cf. Fig. 6.4).

Definition 5 (Domain):
Let ot = (name, AttrTypeSet) ∈ OTypes be an object type. Then:

domain: AttrTypeSet 7→ Identifiers × vTypes × (AttrTypes ∪ {NULL})
with domain(attrtype) = (label, vType, vattrType)

assigns to the attribute type of the object type ot an attribute type corresponding to a value type vType ∈ vTypes or
NULL (if no such corresponding attribute type exists): vattrType ∈ vType.AttrTypeSet.

Example 6.2 (Domain):
Attribute type family status of the value type introduced in Ex. 6.1 can be defined as domain. Hence, correspond-
ing instances "single", "married", "divorced", and "widowed" may then be assignable at run-time.

Like in relational DBMS, object relations are captured "by reference" (i.e., within a relation
always one object instance is referenced based on its OID). Opposed to this, instances of value
types are referenced "by value"; i.e., the value of the selected instance is directly assigned to
the attribute.

6.4 Data Model and Data Structure

As illustrated in Fig. 6.5, a data model consists of object types and the relation types be-
tween them (cf. Def. 6). Thereby, a relation type describes a semantic relationship between
a source and a target object type. For each relation type, in addition, a minimum and maxi-
mum cardinality may be specified. In turn, cardinalities set a restriction of the minimum and/or
maximum number of instances of the source object type that may reference one and the same
target object instance. Since normalization constitutes an integral part of the relational model
[KR05, Cod90], all relations form 1-to-many relationships; i.e., many-to-many-relationships
must be dissolved in our approach by introducing additional 1-to-many-relations [KR05].

Definition 6 (Data model and data structure):
a) A data model is a tuple dm = (name, OTypeSet, RelTypeSet) where

• name ∈ Identifiers is an identifier.

• OTypeSet ⊂ OTypes is a finite set of object types.

• RelTypeSet ⊂ Identifiers × OTypeSet × OTypeSet × N0 × (N0 ∪∞) is a finite set of relation types with
relType = (name, source, target, min, max) ∈ RelTypeSet having the following meaning:

◦ name ∈ Identifier is an identifier.

◦ source ∈ OTypeSet is the source object type of relType.

◦ target ∈ OTypeSet is the target object type of relType.

◦ min ∈ N0 corresponds to the minimum cardinality of relType.

◦ max ∈ N0 ∪ {∞} with max ≥ min corresponds to the maximum cardinality of relType.

80

6.4 Data Model and Data Structure

Application

appraisal

CV

cover letter

Job Offer

published until

published from

label

decision

description

Review

proposal

remark

urgency

return date

appraisal

reason

comment

finished

Interview

location

date

description

timemin 3

max 5

min 1

max 3

min 10

relation type

cardinalities

data model

applying_to

examined discusses

Figure 6.5: Example of a data model

DM denote the set of all definable data models.

b) A data structure is a tuple ds = (dm, OSet, RelSet) representing an instance of a data model where

• dm = (name, OTypeSet, RelTypeSet) ∈ DM is the data model ds is based on.

• OSet is a finite set of object instances corresponding to any object type from OTypeSet: OSet ⊆
OInstances ∧ ∀ o ∈ OSet: o.oType ∈ OTypeSet.

• RelSet ⊆ RelTypeSetType × OSet × OSet
∧ ∀ rel = (relType, soid, toid) ∈ RelSet:

rel.relType ∈ RelTypeSet ∧ soid.oType = rel.relType.source
∧ toid.oType = rel.relType.target;

i.e., RelSet is a finite set of instances of relation types from RelTypeSet.

DS describes the set of all definable data structures.

For each object type, a number of object instances exists at run-time. These usually differ in
their attribute values and relations among each other (cf. Fig. 6.6).

Interview #11
Interview #10

Interview #9
Interview #8Application #3

Review #6
Review #5

Application #2

appraisal

CV

cover letter

Job Offer #1

published until

published from

label

decision

description

Review #4

proposal

remark

urgency

return date

appraisal

reason

comment

finished

Interview #7

location

date

description

time

relations

data structure

Figure 6.6: Example of a data structure

81

6 Data Integration

The number of object instances referencing one and the same target object instance must be
between the minimum and maximum cardinality (cf. Def. 7). In this context, note that minimum
cardinalities may initially be not fulfilled. Hence, mandatory activities for creating respective
object instances are assigned to the worklists of responsible users (cf. Chap. 8.8).

Definition 7 (Cardinality compliance):
Let ds = (dm, OSet, RelSet) ∈ DS be an instance of data model dm = (name, OTypeSet, RelTypeSet) ∈ DM. Then:

∀ relType ∈ RelTypeSet, ∀ o ∈ OSet:
RelSet∗ := { rel ∈ relSet | rel.relType = relType ∧ rel.toid = o },⇒

relType.min ≤ | RelSet∗ | ≤ relType.max.

6.5 Data-oriented User View

Based on object types, object attributes and object relations, PHILharmonicFlows allows for
automatically generating data-oriented views at run-time (cf. Fig. 6.7).

RUN-TIME

BUILD-TIME

Macro Process

Micro Process

Data

User Integration

Forms

Black-box Activities

automatically generated

implementation required

Relations

Objects

Attributes

Data-

oriented

View

automatically generated

Overview

Tables

Process-

oriented

View

Monitoring

automatically generated

Worklists

Figure 6.7: Data-oriented view in PHILharmonicFlows

82

6.5 Data-oriented User View

To enable both process management and data integration, PHILharmonicFlows provides a
data- and task-oriented view to end-users. Based on a data-oriented view, users may access
and manage business objects at any point in time. More precisely, users may access respective
objects also outside the scope of the activities relevant for process execution (i.e., bypassing
mandatory activities assigned to the users worklist). However, data- and task-oriented views
should not be treated completely independent from each other. On one hand, when accessing
data (optionally) corresponding processing states are important as well. On the other, when
executing mandatory activities, optional actions (e.g., for reading and writing additional attribute
values) should be enabled as well. In this context, overview tables constitute a fundamental
run-time concept provided by PHILharmonicFlows. Such an overview table is automatically
generated for each object type, listing the corresponding object instances and enabling access
to several object-related business functions. The latter include optional activities (e.g., for edit-
ing related attribute values) as well as mandatory activities needed to proceed with the flow of
the processes to which respective objects correspond to (cf. Chapt. 9 for details). Based on
these data- and function-oriented views, the task-oriented view works as filter selecting exactly
those object instances for which the respective must execute a particular business function;
i.e., overview tables may be used in different context providing the object instances required in
the particular situation.

As illustrated in Fig. 6.7, a data model constitutes the basis for generating overview tables at
run-time. For each object type, a separate overview table exists. From a user perspective,
the instances of a particular object type correspond to rows in a table (cf. Fig. 6.8). In turn,
columns relate to selected attributes of the object type or - more precisely - to attribute values
of the respective object instances. The name of the attribute type is then used as label for the
heading of the corresponding column.

proposalurgency return date appraisal reason finished

invitehigh 01/03/2012 very good true

rejectlow 11/04/2012 less skills false

invitelow 24/12/2011 good false

rejecthigh 26/08/2012 bad less skills true

attributes
Review

object type

attribute values

object

instances

Figure 6.8: Overview table comprising attributes

The way how respective attribute values are displayed depends on the type of the correspond-
ing attribute (cf. Fig. 6.9).

Boolean

String

Integer

Decimal

Date

Yes

Lorem ipsum dolor sit amet, consetetur sadipscing ...

123

123,456

01/03/2012

Yes / No

cut after 50 characters

Figure 6.9: Displaying attribute values

As illustrated in Fig. 6.10, in addition to attributes, references to other object instances are
displayed in terms of columns as well. At run-time, such relations are expressed based on

83

6 Data Integration

OIDs of the referenced object instances (cf. Def. 6). Thus, each relation must be dissolved in
order to display the object instance referenced; i.e., the values of the relations are substituted
by (meaningful) attribute values of the related object instance.3 For this purpose, PHILhar-
monicFlows allows defining label attributes (cf. Def. 8), which are displayed in the respective
overview tables (instead of the OID itself).

Definition 8 (Label attribute):
Let OTypes be the set of all definable object types and AttrTypes be the set of all definable attribute types (corre-
sponding to any object type). Then:

label: OTypes 7→ 2AttrTypes with label(ot) ⊆ ot.AttrTypeSet denotes the attribute types to be used to label a particular
object instance at run-time.

Review

application

Hans Maier

Wilma Schmidt

Horst Müller

Fred Pauli

referenced object types

title attribute values

of the referenced object instances

proposalurgency return date appraisal reason finished

invitehigh 01/03/2012 very good true

rejectlow 11/04/2012 less skills false

invitelow 24/12/2011 good false

rejecthigh 26/08/2012 bad less skills true

attributes activities

detailed

object

information

Figure 6.10: Example of an overview table with attributes and relations

The number of attribute types corresponding to a particular object type is usually too large
to display them all in the overview table. Hence, we allow hiding attributes or relations (cf.
Sect. 13.4). Additional information on object instances (e.g., attributes not displayed or detailed
information about referenced object instances) may be viewed on-demand. For this purpose,
an optional activity may be invoked for each object instance listed in the overview table (cf. Fig.
6.10).

To determine which object instances (and corresponding attribute values) may be read or writ-
ten by a user, fine-grained authorization permissions are required (cf. Chapt. 9). The latter also
depend on the current processing state of the considered object instance.

6.6 Summary

As a a prerequisite for any integrated access to business processes and business data, PHIL-
harmonicFlows allows defining a (relational) data model, which consists of object types, object
attributes, and object relations. Regarding the latter, in addition, minimum and maximum car-
dinalities may be additionally defined. In particular, such a data model provides the foundation
for automatically generating data-oriented user views and user forms at run-time.

3In most cases, one attribute is used to describe a particular object instance.

84

7
Micro Process Modeling

RUN-TIME

BUILD-TIME

Macro Process

Micro Process

Data

User Integration

Forms

Black-box Activities

automatically generated

implementation required

Relations

Objects

Attributes

States

Micro Transition

Micro Step

Responsibilities

Data-

oriented

View

automatically generated

Overview

Tables

Process-

oriented

View

Monitoring

automatically generated

Worklists

Figure 7.1: Integrating micro process types in PHILharmonicFlows

85

7 Micro Process Modeling

Currently, two different kinds of process modeling paradigms exist (cf. Chap. 4). While im-
perative ones enable stringent processes (i.e., guidance how processes shall be executed is
provided), declarative modeling paradigms additionally support optional activities which enable
loosely structured processes by allowing users to execute activities as long as pre-specified
constraints are not violated [vPS09, RW12, FLM+09, FMR+10]. However, neither imperative
nor declarative approaches are appropriate to support the properties described in Chap. 3.
Exactly for this reason, we introduce a new process modeling paradigm that combines ideas
known from declarative approaches (i.e., using conditions) with the ones from imperative ap-
proaches.

PHILharmonicFlows enforces a well-defined modeling methodology that governs the process
engineer to define processes at different levels of granularity. More precisely, the framework
differentiates between micro and macro processes to be able to capture both object behavior
and object interactions. This chapter introduces the notion of a micro process for capturing and
defining object behavior (cf. Fig. 7.1) [KR11a]. In this context, optional as well as mandatory
access to data is enabled. More precisely, using optional activities (cf. Prop. 8), on one hand,
data (i.e., object instances) may be accessed and managed at arbitrary point in time. On the
other, certain information (i.e., attribute values) must be available to reach desired process-
ing goals. Therefore, activities for creating object instances as well as for providing required
attribute values must be executed. Since these activities are necessary to proceed with the
process, we denote them as mandatory activities. To realize them, for each object type a micro
process type describing object behavior needs to be defined (cf. Prop. 4). As illustrated in
Fig. 7.2, the creation of an object instance is coupled with the creation of a respective micro
process instance.

Object Instance

Micro Process TypeObject Type

Micro Process Instance

InstantiationInstantiation

Figure 7.2: Relationship between object and micro process instances

To capture object behavior, the properties defined in Chap. 3 must be realized. First, one must
ensure that during the processing of individual object instances certain attribute values are
mandatorily set before proceeding with the process (cf. Prop. 6); i.e., the processing state of
a particular micro process instance must comply with the attribute values of the corresponding
object instance. For this purpose, object behavior is based on data (i.e., object attributes) and
thus the data (i.e., attribute values) mandatorily required becomes transparent. In particular,
this necessitates a data-oriented modeling paradigm rather than an activity-oriented one. Data-
oriented process definitions also provide the basis for automatically generating form-based ac-
tivities during run-time (cf. Prop. 12). A particular requirement is to define the internal flow logic
for executing a form-based activity; i.e., the flow between the input fields of the respective form
(cf. Prop. 7). For this purpose, modeling for micro processes must be accomplished at a very
fine-grained level enabling the definition of order dependencies for setting attribute values.
Another challenge is to coordinate the processing of an individual object instance (i.e., assign-
ing its attribute values) among different users. This must be done in a more coarse-grained

86

7.1 Micro Process Types

modeling style rather than be based on particular attribute values. In this context, the modeling
paradigm must additionally allow integrating black-box activities (cf. Prop. 13).
To allow for a flexible process execution (cf. Prop. 9), PHILharmonicFlows applies a data-driven
execution paradigm for micro processes; i.e., the progress of a micro process depends on the
availability of certain data. Even though required data might be available, in many cases it is
desired that the micro process must not proceed with its execution as long as the user has not
explicitly committed his or her work on the respective activity (cf. Prop. 11). In particular, users
should be allowed to re-execute activities (cf. Prop. 10). Consequently, process control not
only depends on data, but also on the respective responsible user as well.
Another challenge concerns the combinational explosion of the number of user forms to be
supported: On one hand, provided input fields not only depend on the permissions of respec-
tive user invoking the form, but also on the current state of the process. On the other, varying
granularities of user forms must be considered; i.e., user forms may invoke input fields in re-
spect to attribute of several object instances although the micro process instance refers to one
particular object instance (cf. Prop. 14).
Finally, the execution of a particular micro process instance does not only depend on the at-
tribute values of the object instance it belongs to, but also on attribute values of related object
instances and thereto on the execution of other micro process instances. For this purpose,
any micro process should provide proper interfaces for interacting with other micro process
instances (i.e., to enable object interactions).

As illustrated in Fig. 7.1, similar to existing approaches capturing object behavior, PHILhar-
monicFlows provides a state-based approach; i.e., (abstract) object states serve as the basis
for coordinating the (mandatory) activities of a micro process among different user roles. For
this purpose, the latter need to be assigned to the different states of a micro process. Opposed
to existing state-based approaches, however, PHILharmonicFlows allows for an explicit map-
ping between states and attribute values ensuring compliance between them; i.e., it is precisely
defined which attribute values must be set in order to leave a certain micro process state. To
accomplish this, each state comprises a number of (atomic) micro steps. Each of these micro
steps corresponds to a mandatory write access on a particular attribute of the processed object
instance. Note that a single micro step does not represent an activity, but solely refers to one
atomic action. By connecting micro steps with micro transitions, a default execution order can
be expressed. In particular, based on micro transitions, both the internal logic of form-based
activities and the coordination of the processing among users can be expressed.

7.1 Micro Process Types

First of all, we introduce micro process types defining object behavior. Sects. 7.1.1 - 7.1.3 first
discuss this kind of process support informally, followed by a formal specification in Sect. 7.1.4.
As discussed, for each object type a micro process type must be provided defining the process-
ing of individual object instances at run-time (i.e., object behavior). In this context, one must
specify mandatorily required attribute values as well as the order in which they shall be set.
As illustrated in Fig. 7.3, each micro process type comprises a number of micro step types of
which each refers to a particular object attribute type. In turn, micro step types are connected
with each other using micro transition types. Based on this, their default execution order can
be expressed; i.e., the order in which respective attribute values shall be set (cf. Fig. 7.3).
At run-time, such a micro step will be reached when a value for its corresponding attribute is

87

7 Micro Process Modeling

set. Hence, the respective attribute is mandatory. To enable the process flexibility required in
practice, however, authorized users may provide a value for attributes required later one. For
this case, the (subsequent) micro step for writing this attribute will be automatically reached
since the value for the respective attribute is already available.

Example 7.1 (Micro steps and micro transitions):
Consider the review micro process type as illustrated in Fig. 7.3. Each micro step type refers to a particular
attribute type of the respective object type (except the start micro step type); e.g., micro step type urgency refers
to attribute type urgency. In turn, micro transition types define the default execution order of the micro steps; e.g.,
after assigning a value to attribute urgency, a value for attribute return date is mandatorily required. However, a
value for attribute return date may be also set before writing attribute urgency. Then, the subsequent micro step
return date will be automatically reached since the value of attribute urgency will be available.

urgency
return

date
reject

invite

proposal

appraisal

reason

Review

proposal
remark

urgency
return date

appraisal
reason
comment
finished

micro transition types

object type micro process type

micro step types

Figure 7.3: A micro process type with micro step and micro transition types

7.1.1 Micro Step Types

As opposed to activity-centric process modeling, where each process step corresponds to a
predefined activity, a micro step type refers to a particular attribute type. In turn, the latter
corresponds to the object type the micro process type is defined for. This way, each micro step
type describes an atomic action for writing the respective attribute (cf. Ex. 7.1). In addition, the
processing of individual object instances not only includes the setting of its attribute values, but
also the assignment of relations to other object instances. As illustrated in Fig. 7.4, a micro
step type may therefore also refer to a relation type (whose source object type corresponds to
the object type of the micro process type).

A micro process type may contain micro step types not referring to any attribute or relation type.
Respective micro step types usually represent start and end micro step types (cf. Fig. 7.5).

Generally, there exist different kinds of micro step types (cf. Fig. 7.6). Micro step types not
referring to any attribute or relation type are denoted as empty micro step types. An empty mi-
cro step is immediately reached when one of its incoming micro transitions becomes activated.
As example consider the end micro step type in Fig. 7.5. Another example of empty micro
steps are start micro steps. These are immediately reached when the corresponding object
instance is created; i.e., a value for the oid of the corresponding object instance is set. Further,

88

7.1 Micro Process Types

urgency
return

date
reject

invite

proposal

appraisal

reason

Review

proposal
remark

urgency
return date

appraisal
reason
comment
finished

object type micro process type

alternative

job

Job Offer

alternative jobrelation type

Figure 7.4: A micro process type with a micro step type referring to a relation type

urgency
return

date
reject

invite

proposal

appraisal

reason

Review

proposal
remark

urgency
return date

appraisal
reason
comment
finished

object type micro process type

alternative

job

Job Offer

alternative job micro step types

not referencing an attribute or relation type

start micro step type end micro step type

Figure 7.5: Micro step types not referencing an attribute or relation type

micro step types referring to an attribute or relation type are denoted as atomic micro step types
(cf. Fig. 7.6). At run-time, atomic micro steps are reached when a value for the correspond-
ing attribute or relation becomes available. If the value for a particular attribute is missing, a
mandatory activity for writing this attribute is assigned to the worklist of a responsible user (cf.
Sect. 8.8). Finally, micro step types comprising value step types are called value-specific micro
step types. As example consider micro step type proposal as illustrated in Fig. 7.5 (cf. Sect.
7.1.2 for details).

7.1.2 Value Step Types

Whether or not certain attribute values are mandatory for an object instance may also depend
on the values of other object attributes; i.e., while for a particular attribute "arbitrary" values may
be set, other ones require specific values. To reflect this, the specification of a micro step type
can be extended. More precisely, different values (or value ranges) of an object attribute can
be considered in case they influence object behavior. Therefore, any value-specific micro step
type may comprise a number of value step types of which each represents a predicate defined

89

7 Micro Process Modeling

Review

proposal
remark

urgency
return date

appraisal
reason
comment
finished

appraisal
alternative

job
reject

invite

proposal

empty

micro step type

atomic

micro step types

value-specific

micro step type

Job Offer

published until
published from

label
description

alternative job

referring an

attribute type

referring a

relation type

value step type

Figure 7.6: Different kinds of micro step types

in respect to the object attribute referred by the micro step type. In addition to the micro step
type itself, a particular value step type can be used as source for micro transition types as well.
These micro transitions are then activated at run-time if the respective condition of the micro
value step evaluates to true.

Example 7.2 (Value-specific micro step types):
Consider micro step type proposal in Fig. 7.5. Its corresponding attribute either may have value "reject" or "invite";
i.e., for these values corresponding value step types will be defined. If value step reject is reached, either a
value for attribute reason or a reference to an alternative job is then mandatorily required (i.e., either micro step
reason or micro step alternative job may be reached next). Opposed to this, if value step invite is reached, a
value for attribute appraisal is mandatory; i.e., micro step appraisal is reachable.

A value step type represents a constraint requiring a specific value (or value range) to be set.
In principle, atomic as well as value-specific micro step types represent a basic data condition
in relation to an object attribute. Concerning an atomic micro step type, the data condition
simply corresponds to ’object attribute != null’ (like for the micro step corresponding to object
attribute urgency). A value-specific micro step, in turn, realizes a more precise data condition
based on specific values (e.g., the data condition of micro step proposal corresponds to proposal

= ’reject’ or proposal = ’invite’). When defining such constraints, one must ensure that the data
type of the specified values is compliant with the one of the corresponding attribute. Which
options exist for predicate definition depends on the implementation of the PHILharmonicFlows
framework. For example, more advanced implementations may additionally allow for the use
of AND- and OR-operators (including comparisons with system variables, system functions, or
values of other attributes).

Example 7.3 (Different possibilities for defining value-specific micro step types):
Different possibilities for defining value-specific micro step types, as illustrated in Fig. 7.7, exist:

a) Attribute number of internships has type INTEGER. Hence, the constraint of the corresponding value step
type may only use predicates referring to INTEGER values (e.g., number of internships >= 1).

b) Attribute type finished has type BOOLEAN. Hence, the value step type must only be based on predicates
with values "true" and "false" (e.g., finished = true, finished = false).

c) Attribute return date has type DATE. In this context, predicates may use system variables like TODAY to
compare the attribute value with the current date.

90

7.1 Micro Process Types

d) Attributes current salary, bonus, and wished salary have type DECIMAL. In order to define a value range
for attribute wished salary, for example, the OR operator can be used. In addition, the wished salary is
compared with the current salary and the bonus.

Applicant

number of internships INTEGER

Review

finished

>= 1

> 5

number of

internships

BOOLEAN
true

false

finished

>= TODAY + 2 WEEKS

>= TODAY + 1 MONTH

return date

(wished salary < 100) OR

(wished salary > 100.000)

wished salary

wished salary <=

current salary + bonus

Review

return date DATE

Employee

current salary
bonus

wished salary

DECIMAL
DECIMAL
DECIMAL

a

b

c

d

object type with attribute types value-specific micro step types

value step type

system

variables

default comparative

operator „=“

comparative

operators

system

functions

other

attribute

values

OR operator

Figure 7.7: Value step types

If a domain (cf. Sect. 6.3) is defined for the respective attribute types, the values specified in
the context of a predicate of a corresponding value step type must belong to this domain; i.e.,
only instances of the value type the domain refers to can be used.

Example 7.4 (Value step types with domains):
Consider the predefined values of attribute proposal as illustrated in Fig. 7.8. Here, the corresponding value type
comprises instances of values "reject" and "invite"; i.e., only these two values may be assigned to attribute proposal

at run-time and hence be used within predicate definitions.

Review

proposal STRING
= ’reject’

= ’invite’

proposal
Proposal

name

domain

STRING

Proposal #1

name invite

Proposal #2

name reject

value instancesvalue typeattribute type micro step types

Figure 7.8: Value step types using domains

91

7 Micro Process Modeling

7.1.3 Micro Transition Types

To define the order in which attribute values and relations shall be set during the processing
of a particular object instance, micro step types may be inter-connected using micro transition
types (cf. Fig. 7.3). Note that this does not restrict the flexibility for processing object instances;
i.e., the predefined sequences of micro step types only define a default execution order. Based
on additional permissions (cf. Sect. 9.1.1), however, users may set required attribute values
before the corresponding micro step is reached. In such a case, the micro steps correspond-
ing to already written attribute values will be immediately completed once they are reachable;
i.e., a data-driven execution is supported. In addition, it is possible to change attribute values
afterwards.
A micro transition type may also use a value step type as source. This way, one can express
that alternative paths depend on specific attribute values (e.g., micro step type proposal in Fig.
7.5). However, a value step type may only be source of a micro transition type. In turn, the
target of a micro transition type is always a micro step type. In order to define alternative ex-
ecution paths based on user decisions, a micro step type may have more than one outgoing
micro transition type (see value step type reject in Fig. 7.5). As illustrated in Fig. 7.5, it depends
on the user whether he assigns a value to attribute reason or alternative job. If values for both
attributes are provided (e.g., a value for attribute reason as well as for relation alternative job

is available), and needs to ensure that only one of them is fired at run-time. Only then exactly
one micro step and hence one state can be reached (cf. Sect. 7.2). Otherwise, several pro-
cessing states may be activated concurrently resulting in a large number of state combinations
and hence a large state space that might be difficult to handle [VRv11]; e.g., it would not be
possible to precisely identify the current processing state of an object instance at run-time.
Note that although PHILharmonicFlows ensures that each object instance is always in one pro-
cessing state, this does not prohibit parallel execution. During the execution of a particular ac-
tivity, parallel processing of disjoint sets of mandatory as well as optional attributes is possible.
More precisely, while a certain user may read or write attributes (and relations) of a particular
object instance using a specific form, other users may concurrently edit forms corresponding
to the same object instance. In this context, known mechanisms for synchronizing concurrent
data access should be applied [KE11]. Moreover, a high degree of concurrency and flexibility
exist for processing and coordinating multiple object instances (of same or different type). In
particular, a high number of inter-related micro process instances (of same and different type)
may be executed concurrently and be synchronized where needed. Despite this asynchronous
execution, PHILharmonicFlows allows processing several object instances through executing a
specific activity; i.e., PHILharmonicFlows enables vertical flexibility (see Sect. 9.1.1 for details
on the parallel processing of object instances of different type and for processing several object
instances of the same type in one go in Sect. 9.3).

To ensure that only one alternative path of a micro process is chosen at the same time, the
data-driven execution paradigm must be taken into account; i.e., a subsequent micro step will
be reached when providing a value for its corresponding attribute (or relation).1 Consequently,
if the attribute values of several subsequent micro steps are available, in principle, all of them
could be activated, which must be prevented.

1except it is an empty micro step referring to no attribute or relation.

92

7.1 Micro Process Types

Example 7.5 (Problems with activating subsequent micro steps):
When assigning value "reject" to attribute proposal, the corresponding micro value step is reached (cf. Fig. 7.4).
Then, all subsequent micro steps may be concurrently reached if values for attribute reason as well as relation
alternative job are available.

To prevent this behavior, micro transition types originating from the same source micro step
type or value step type are associated with different priorities. The latter may be evaluated at
run-time to decide which of the reachable micro steps shall be activated in case of ambiguities;
i.e., then only the micro transition with the highest priority is enabled to activate its target micro
step.

Example 7.6 (Activating subsequent micro steps using priorities):
Consider Fig. 7.9 when activating value step reject, micro steps reason and alternative job may be reached if
for both attributes a value is available. Since the micro transition targeting micro step alternative job has higher
priority, solely this micro step will be reached (even though a value for attribute reason exists as well).

urgency
return

date
reject

invite

proposal

appraisal

reason

Review

proposal
remark

urgency
return date

appraisal
reason
comment
finished

object type micro process type

alternative

job

Job Offer

alternative job

1

2

3

priorities

Figure 7.9: Associating micro transition types with priorities

Note that only those outgoing micro transitions (and their priorities) must be evaluated for which
the required value of the target micro step is available. Hence, a micro transition with lower
priority may be triggered, if for all other ones with higher priority the target micro step is not
reachable; i.e., no value for its corresponding attribute or relation exists (cf. Figs. 7.10a and
7.10b).

Example 7.7 (Evaluating priorities):
Consider Fig. 7.10b. Even though the micro transition targeting at micro step reason has a lower priority than the
one targeting at micro step appraisal, reason may be reached if a value for its attribute exists, but no attribute
value for micro step appraisal is available. In turn, if there exist attribute values for both subsequent micro steps,
only the micro transition with the higher priority will be activated (cf. Fig. 7.10c).

A micro transition originating from a value step type must be treated in a special way. A value-
specific micro step type might comprise a number of value step types that are defined based

93

7 Micro Process Modeling

Review #1

invite
very good

proposal
appraisal
reason

1OID

proposal

reason

appraisal
1

2

Review #1

invite

no skills

proposal
appraisal
reason

1OID

proposal

reason

appraisal
1

2

Review #1

invite
very good
no skills

proposal
appraisal
reason

1OID

proposal

reason

appraisal
1

2

a b c

Figure 7.10: Priorities for micro transition types

on predicates. As discussed, in principle, PHILharmonicFlows allows for arbitrary predicates.
Hence, the predicates of several value step types might evaluate to true at run-time. Conse-
quently, several micro transitions originating from different value steps may be reached at the
same time (cf. micro step number of internships in Fig. 7.11). In such a case, only those micro
transitions may be reachable for which an attribute value required by the target micro step is
available; i.e., only those for which a respective attribute value is available may become acti-
vated (cf. Fig. 7.11a). If attribute values relevant for reaching more than one micro step exist
(cf. Fig. 7.11b), again only the micro transition with the highest priority is selected.

Applicant #15

number of internships 3

>= 1

< 5

number of

internships

1OID

1

2

decision

appraisal

decision
appraisal good

Applicant #15

number of internships 3

>= 1

< 5

number of

internships

1OID

1

2

decision

appraisal

decision accept
appraisal good

a b

Figure 7.11: Handling value step types with overlapping predicates

Generally, we can not ensure that the value step types defined for a particular micro step type
cover all possible attribute values. Especially, certain attribute values might not be considered;
i.e., no predicate of any value step will evaluate to true at run-time. For example, assume that
value "accept" is assigned to attribute proposal (cf. Fig. 7.12a). Since only attribute values
"reject" and "invite" are covered by respective value steps, this might lead to a deadlock at run-
time. To prevent such errors already at build-time, an outgoing micro transition type should be
associated with the micro step type itself (cf. Fig. 7.12b). This way, it becomes possible to cope
with arbitrary attribute values for which the predicates of all value steps evaluates to false.

For certain use cases, the definition of such a default transition is not adequate. Instead, certain
values are mandatorily required. As illustrated in Fig. 7.13, the micro process instance may
only proceed if value "true" is assigned to attribute finished. PHILharmonicFlows therefore
provides concepts for handling deadlock situations at run-time (cf. Chap. 13.2).

94

7.1 Micro Process Types

reject

invite

proposal

Review #1

acceptproposal
1OID

reject

invite

proposal

Review #1

acceptproposal
1OID

a b

Figure 7.12: Preventing deadlocks at build-time

true

finished

Review #1

falsefinished
1OID

Figure 7.13: Scenario without default micro transition type

7.1.4 Formal Definition of Micro Process Types

In this section, we formally define the notion of a micro process type:

Definition 9 (Micro process types):
Let dm = (name, OTypeSet, RelTypeSet) be a data model. Then:

A micro process type is an acyclic graph defined as tuple micProcType = (oType, MicStepTypeSet, Mic-
TransTypeSet) with the following properties:

• oType = (name, AttrTypeSet) ∈ OTypeSet is the object type whose behavior is described by micProcType.

• MicStepTypeSet is a finite set of micro step types. A micro step type micStepType = (refType, ValueStep-
Types) ∈ MicStepTypeSet has the following properties:

◦ refType ∈ AttrTypeSet is an attribute type, or
refType ∈ RelTypeSet is a relation type with refType.source = oType, or
refType = NULL is undefined (i.e., the micro step type is empty).

◦ ValueStepTypes is a set of boolean predicates with: predicate: ValueStepTypes 7→ Boolean

• MicTransTypeSet ⊂ MicStepTypeSet × MicStepTypeSet × N is a finite set of micro transition types with a
micro transition type micTransType = (source, target, priority) ∈ MicTransTypeSet having the following
properties:

◦ source ∈ MicStepTypeSet ∪ ValueStepTypes is the source micro step type or source value step type
of micTransType.

◦ target ∈ MicStepTypeSet is the target micro step of micTransType.

◦ priority ∈ N is the priority of micTransType.

MicProcTypes denotes the set of all definable micro process types.

95

7 Micro Process Modeling

As a prerequisite for the correct execution of micro process instances during run-time, a number
of structural properties must be met. The purpose of these properties is to prevent deadlocks
and livelocks as far as possible at run-time. However, when concurrently processing several
object instances, certain real-world scenarios may require the occurrence of deadlocks to some
degree. To deal with such situations during run-time, PHILharmonicFlows provides respective
concepts. We therefore first introduce functions for structurally analyzing micro process types.
In particular, for each micro step type intransCount (cf. Def. 10) determines the number of its
incoming micro transition types. In turn, function outtransCount returns the number of micro
transition types outgoing from a particular micro step type. Finally, for each micro step type
intrans (outtrans) determines its incoming (outgoing) micro transition types (cf. Def. 10).

Definition 10 (Functions for structurally analyzing micro process types):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet) ∈ MicProcTypes be an acyclic micro process type.
Then:

• intransCount: MicStepTypeSet 7→ N0 determines the number of incoming micro transition types of a micro
step type.

• outtransCount: MicStepTypeSet ∪ ValueStepTypes 7→N0 determines the number of micro transition types
outgoing from a micro step type or any of its value step types.

• intrans: MicStepTypeSet 7→ MicTransTypeSet determines the set of incoming micro transition types of a
micro step type.

• outtrans: MicStepTypeSet ∪ ValueStepTypes 7→MicTransTypeSet determines micro transition types out-
going from a micro step type or any of its value step types.

Empty micro step types, having no incoming micro transition types, are denoted as start micro
step types. In turn, empty micro step types having no outgoing micro transition types are called
end micro step types (cf. Def. 11).

Definition 11 (Start and end micro step types):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet) ∈ MicProcTypes be a micro process type. Then:

• startMicStepType of micProcType is the only micro step type micStepType ∈ MicStepTypeSet
with intransCount(micStepType) = 0 ∧ micStepType.refType = NULL.

• endMicStepType of micProcType is a micro step type micStepType ∈ MicStepTypeSet
with outtransCount(micStepType) = 0 ∧ micStepType.refType = NULL.

Further, EndMicStepTypes := {micStepType ∈ MicStepTypeSet | micStepType is an end micro step type}
denotes the set of all defined end micro step types.

Taking solely micro step types and their incoming and outgoing micro transition types into ac-
count, a micro process must be acyclic (cf. Def. 12a). Backward jumps and the resetting of
attribute values are enabled by connecting different state types of a micro process type (cf.
Chap. 7.5 for details). According to Def. 12b, each micro process type contains exactly one
start micro step type not referring to any attribute or relation type and having no incoming micro
transition type. Further, a micro process type must comprise at least one end micro step type
not referring to an attribute or relation type and not having any outgoing micro transition type
(cf. Def. 12c). All other micro step types, in turn, must have at least one incoming as well as
one outgoing micro transition type (cf. Def. 12d and e). To ensure that only one micro step

96

7.2 State Types

becomes activated at the same time during run-time, micro transition types having the same
source micro step type (or one of its value step types) must be associated with priorities (cf.
Def. 12f). Note that these properties ensure the reachability of each micro step type (including
end micro process types). In particular, each micro step can be reached starting from the start
micro step. Finally, from any micro step at least one end micro step can be reached.

Definition 12 (Structural properties of micro process types):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet) ∈ MicProcTypes be a micro process type referring
to an object type oType = (name, AttrTypeSet) ∈ OTypes. Let micStepType = (refType, ValueStepTypes) ∈ MicStep-
TypeSet be a micro step type. Then:

a) micProcType is acyclic.

b) ∃! micStepType ∈ MicStepTypeSet with micStepType = startMicStepType;
i.e., there exists exactly one start micro step type.

c) EndMicStepTypes 6= ∅;
i.e., there exists at least one end micro step type.

d) ∀ micStepType ∈ MicStepTypeSet - {startMicStepType}:
intransCount(micStepType) ≥ 1;

i.e., all micro step types except the start micro step type have at least one incoming micro transition type.

e) ∀ micStepType ∈ (MicStepTypeSet ∪ ValueStepTypes) - EndMicStepTypes:
outtransCount(micStepType) ≥ 1;

i.e., all micro step types (except end micro step types) and all value step types have at least one outgoing
micro transition type.

f) transTypei ∈ MicTransTypeSet with
transTypei.source = micStepType ∨ transTypei.source ∈ ValueStepTypes, i=1,2 ∧
transType1 6= transType2 ∧ transType1.source = transType2.source,⇒

transType1.priority 6= transType2.priority;
i.e., micro transition types with the same source micro step type (value step type) must not have the same
priority.

7.2 State Types

Section 7.1 discussed order constraints for setting attribute values. We use a fine-grained mod-
eling style for which process steps correspond to particular attributes to accomplish this. To
coordinate the setting of the attribute values among different users, however, a more coarse-
grained modeling style is required. In addition, micro process support should allow for the
integration of black-box activities and provide an adequate interface for synchronizing the exe-
cution of micro process instances at run-time. For this reason, state types are used to realize
mandatory activities and coordinate the processing of individual object instances among dif-
ferent users. Generally, a state may be expressed in terms of a particular data condition on
selected attributes of the respective object type; i.e., each state postulates specific attribute
values to be set.

Example 7.8 (Data condition of states):
Consider object type review and its states as depicted in Fig. 7.14. In state initialized, values for attributes
urgency and return date are required. In turn, this corresponds to the following data condition: urgency != NULL

97

7 Micro Process Modeling

and return date != NULL. Regarding state pending, the data condition is as follows: (proposal = "reject" and
(reason != NULL or alternative job != NULL)) or (proposal = ’invite’ and appraisal != null).

A state type comprises a subset of micro step types. Note that single micro step types do not
represent activities as known from traditional PrMS, but refer to an atomic action (e.g., editing
an input field within a form). More precisely, each micro step type represents a mandatory
write access to a particular object attribute. In this context, it is not essential which activity is
executed to set the required attribute values; i.e., one may use a black-box activity as well as a
form-based one for this purpose. Regarding the latter, micro step types belonging to the same
state type indicate which input fields must be mandatorily written by an activity. In turn, micro
transition types, connecting micro step types of the same state type, define their order and the
dependencies between the input fields; i.e., whether or not a particular input field is mandatory
may depend on value settings of other input fields. Hence, they reflect the internal logic of a
form-based activity. Note that micro process instances are executed during the processing of
form-based activities. This way, additional input fields may become mandatory on-the-fly.
Note that a micro process type only defines mandatory input fields and their dependencies.
During the execution of form-based activities, it should be further possible to optionally read
and write additional attribute values or relations if the user has respective permissions (see
Sect. 9.1.1 for details).
Finally, state types can be used to coordinate the execution of several activities among different
user roles. For this purpose, state types may be associated with different user roles.

Example 7.9 (User assignment to states):
Fig. 7.14 shows the micro process type describing the behavior of the review object type. Before end state
finished may be reached, each review must be created by a personnel officer and then be filled out be an
employee.

finished

pending

initialized

urgency
return

date
reject

invite

proposal

appraisal

reason

Review

proposal
remark

urgency
return date

appraisal
reason
comment
finished

object type micro process type

alternative

job

Job Offer

alternative job

1

2

3

personnel

officer

employee

state types
user

assignment

Figure 7.14: State types and related user assignments

98

7.2 State Types

According to Def. 13, a state type has a name and a number of micro step types.

Definition 13 (Extending micro process types with state types):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet) ∈ MicProcTypes be a micro process type. Then:

A state type of micProcType is a tuple stateType = (name, sMicStepTypeSet) where

• name ∈ Identifiers is an identifier.

• sMicStepTypeSet ⊂ MicStepTypeSet is a finite set of micro step types.

StateTypeSetmicProcType is a finite set of state types defined for micProcType.
To explicitly consider state types in the following, a micro process type is enriched by respective information;
i.e., it represents a tuple micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateTypeSet).

We denote the state type containing the start micro step type as start state type, in turn, each
end state type comprises exactly one end micro step type (cf. Def. 14).

Definition 14 (Start and end state types):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateTypeSet) ∈ MicProcTypes be an acyclic micro
process type. Then:

• startStateType ∈ StateTypeSet is that state type of micProcType containing the start micro step type:
startMicStepTypemicProcType ∈ stateType.sMicStepTypeSet.

• endStateType ∈ StateTypeSet is a state type of micProcType containing exactly one end micro step type:
∃! micStepType ∈ stateType.sMicStepTypeSet withmicStepType ∈ EndMicStepTypemicProcType.

EndStateTypes denotes the set of all end state types defined for micProcType.

State types may not only correspond to mandatory activities for writing certain attribute values
or relations. By adding empty micro step types, it is further possible to define mandatory
activities enabling required user commitments even if no attribute value must be mandatorily
set. For these states, additional read permissions may be granted to the respective user role
(see Sect. 9.1.1 for details).

Example 7.10 (State types comprising empty micro step types):
Consider Fig. 7.15. The depicted micro process type comprises five state types representing mandatory activities
and involving two user roles. After the employee has filled in the review in state pending, the personnel officer

must commit his awareness of the results. Depending on the statement provided by the employee, the review either
reaches state reject proposed or invitation proposed. Since in both states no attribute values must be set, the
states only comprise empty micro steps.

Regarding state types, a number of structural properties must be ensured at build-time. First,
each micro step type must belong to exactly one state type (cf. Def. 15a). Hence, the state
types of a micro process type must comprise disjoint sets of micro step types. Second, an object
instance is always in one processing state, which is precisely defined by a set of elementary
actions. Second, each end micro step type must belong to a state type comprising no other
micro step types (cf. Def. 15b). If an end state is activated at run-time, no further actions are
mandatorily required. Third, there exists exactly one start state type containing the start micro

99

7 Micro Process Modeling

invitation

proposed

reject

proposed

finished

pending

initialized

urgency
return

date
reject

invite

proposal

appraisal

reason

Review

proposal
remark

urgency
return date

appraisal
reason
comment
finished

alternative

job

Job Offer

alternative job

1

2

3

personnel

officer

personnel

officer

personnel

officer

employee

mandatory reading activity

object type micro process type

empty micro

step type

Figure 7.15: Mandatory reading activities

step type (cf. Def. 15c). Opposed to end state types, the start state type may include additional
micro step types; i.e., within the start state, mandatory interactions might be required. Fourth,
the micro step types belonging to the same state type must be inter-connected (cf. Def. 15d).
More precisely, the sub-graph of a micro process type, induced by the micro step types of a
particular state type, is compound. Otherwise, it would be possible to activate one and the
same processing state several times (cf. Fig. 7.16). Such behavior would be ambiguous for
end users; i.e., they would not be able to distinguish such a processing from backward jumps.
Finally, regarding form-based activities, these micro step types are typically represented as
mandatory input fields (or other form components). Hence, different micro step types of a state
type must not refer to the same attribute type or relation type (cf. Def. 15e).

state 2

state 1

A

B

C

state 1

A AB

a b

Figure 7.16: Disallowed structures for state type definitions

Definition 15 (Structural properties of state types):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateTypeSet) ∈ MicProcTypes be a micro process
type. Let further stateTypei ∈ StateTypeSet, i=1,2 be two state types. Then:

a) ∀ micStepType ∈ MicStepTypeSet: ∃! stateType ∈ StateTypesmicProcType with
micStepType ∈ stateType.sMicStepTypeSet;

i.e., each micro step type must belong to exactly one state type.

b) ∀ micStepType ∈ EndMicStepTypesmicProcType with∃! stateType ∈ StateTypeSet:
micStepType ∈ stateType.sMicStepTypeSet ∧ | stateType.sMicStepTypeSet | = 1;

i.e., each end micro step type must belong to a state type comprising no other micro step types.

100

7.3 External Micro Transition Types

c) ∃! startStateType ∈ StateTypeSet which is a start state type;
i.e., it exists exactly one start state type that contains the start micro step type.

d) ∀ stateType ∈ StateTypesmicProcType: micStepTypei ∈ stateType.sMicStepTypeSet, i=1,2 with
micStepType2 is a successor of micStepType1,⇒

All micro step types on the path from micStepType1 to micStepType2 belong
to stateType.sMicStepTypeSet as well;

i.e., the micro step types belonging to the same state type must be inter-connected.

e) ∀ micStepTypei = (refType, ValueStepTypes) ∈ stateType.sMicStepTypeSet, i=1,2:
micStepType1.refType 6= micStepType2.refType;

i.e., different micro step types of a state type must not refer to the same attribute or relation type.

State types are further used to coordinate the execution of individual micro process instances
(cf. Chaps. 10 and 12). In particular, state types constitute the interface between micro process
and macro process types (i.e., between object behavior and object interactions).

7.3 External Micro Transition Types

We denote a micro transition type that connects micro step types of two different state types as
external micro transition type (cf. Def. 16).

Example 7.11 (External micro transition type):
In Fig. 7.17, consider the micro transition type connecting micro step types return date and proposal.

Definition 16 (External micro transition types):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateTypeSet) ∈ MicProcTypes be a micro process
type and let stateTypei ∈ StateTypeSet, i=1,2 be two state types. Then:

isexternal: MicTransTypes 7→ BOOLEAN with:

isexternal(mtt) :=

TRUE, ∃stateTypei ∈ StateTypeSetmicProcType, i=1,2,
with stateType1 6= stateType2

∧ mtt.source ∈ stateType1.sMicStepTypeSet
∧ mtt.target ∈ stateType2.sMicStepTypeSet

FALSE, else

At run-time, the firing of an external micro transition triggers a subsequent micro state; i.e., the
data-driven execution paradigm applies for the activation of states as well.

Example 7.12 (Implicit activation of states):
A review reaches state pending as soon as the responsible personnel officer has set the values of attributes
urgency and return date (cf. Fig. 7.17).

Opposed to a purely data-driven activation, however, some scenarios might require that a re-
sponsible user explicitly commits the completion of an activity he or she worked on.

101

7 Micro Process Modeling

Example 7.13 (User commitment):
Consider state pending in Fig. 7.17. An employee may re-execute the activity filling in the review form until he
explicitly commits to submit the review to the personnel officer.

To capture user commitments in a micro process type, we flag external micro transition types
either as implicit or explicit (cf. Def. 17).

invitation

proposed

reject

proposed

finished

pending

initialized

urgency
return

date
reject

invite

proposal

appraisal

reason

Review

proposal
remark

urgency
return date

appraisal
reason
comment
finished

internal micro transition types

object type micro process type

alternative

job

Job Offer

alternative job

1

2

3

personnel

officer

personnel

officer

personnel

officer

employee

external, implicit micro transition types

external, explicit micro transition types

Figure 7.17: Different types of micro transitions

Definition 17 (Explicit micro transition types):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateTypeSet) ∈ MicProcTypes be a micro process
type and micTransTypeext := { t ∈ MicTransType | isexternal(t) = TRUE} be an external micro transition type. Then:

explicit: MicTransTypeext 7→ BOOLEAN defines for each external micro transition type micTransType, whether it
is explicit (i.e., explicit(micTransType) = TRUE) or implicit (i.e., explicit(micTransType) = FALSE).

For correct micro process execution, several structural constraints must be met. Consider Fig.
7.18: several external micro transitions have the same micro step type as source.

State 1

A

State 2

B

State 3

C

State 1

A

State 2

B

C

State 1

A

State 2

B

State 3

C

a b c

Figure 7.18: Structural properties of external micro transition types

102

7.4 User Assignment

Whether State 2 or State 3 may be activated depends on the values available for attributes B

and C. However, a user owns the required write permissions for these attributes only if the sub-
sequent state is already activated. As a consequence, the subsequent state must be activated
before the required attribute values and relations can be written. For this purpose, external
micro transition types, having the same micro step type as source, must be defined as explicit
ones (cf. Def. 18a). As illustrated in Fig. 7.18a, implicit, external micro transition types must
not have the same source micro step type. If the source micro step of an external explicit micro
transition is reached during run-time, the responsible user must decide which of the subse-
quent states shall be activated (cf. Fig. 7.18c). This selection can be accomplished by explicitly
choosing the desired state from the list of possible states. In this context, we must ensure that
the target micro step types of explicit external micro transition types, originating from the same
source, belong to different state types (cf. Def. 18b). The situation illustrated in Fig. 7.18b is
therefore not allowed.

Definition 18 (Structural properties of external micro transition types):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateTypeSet) ∈ MicProcTypes be a micro process
type. Then:

∀ micTransTypei ∈ MicTransTypeSet, i=1,2
with micTransType1 6= micTransType2 ∧ micTransType1.source = micTransType2.source ∧
isexternal(micTransTypei) = TRUE, i=1,2:

a) explicit(micTransTypei) = TRUE, i=1,2

b) ∃ stateTypei = (namei, sMicStepTypeSeti) ∈ StateTypeSet, i=1,2 with
stateType1 6= stateType2 ∧ micTransTypei.target ∈ sMicStepTypeSeti, i=1,2

7.4 User Assignment

PHILharmonicFlows allows associating state types and explicit micro transition types with user
roles. This way, the actors responsible for executing mandatory activities (i.e., for setting re-
spective attribute values), setting branching decisions, and making commitments (cf. Defs. 19
and 20) can be determined. Note that we consider a user role as entity representing a set of
users [FK92, RMR07, RMR09].

Definition 19 (Execution responsibility):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateTypeSet) be a micro process type and let
UserRoles be the set of all defined user roles. Then:

An execution responsibility is a tuple execResp = (stateType, role) where

• stateType ∈ StateTypeSet is a state type.

• role ∈ UserRoles is a user role.

Definition 20 (Transition responsibility):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateTypeSet) be a micro process type and let
UserRoles be the set of all defined user roles. Then:

A transition responsibility is a tuple transResp = (micTransType, role) where

103

7 Micro Process Modeling

• micTransType ∈ MicTransTypeSet is an external, explicit micro transition type requiring a user commitment:
isexternal(micTransType) = TRUE ∧ explicit(micTransType) = TRUE.

• role ∈ UserRoles is a user role.

7.5 Backward Jumps

In certain scenarios, it becomes necessary to reset the execution of micro processes by jump-
ing back to a previous state. In PHILharmonicFlows, such backward jumps can be defined
using backward transition types. As opposed to micro transition types, which connect micro
step types, backward transition types always connect two state types with each other.

Example 7.14 (Backward transition types):
As illustrated in Fig. 7.19, if one of the states reject proposed or invitation proposed is activated, the respective
micro process instance may be reset to state pending.

invitation

proposed

reject

proposed

finished

pending

initialized

urgency
return

date
reject

invite

proposal

appraisal

reason

Review

proposal
remark

urgency
return date

appraisal
reason
comment
finished

alternative

job

Job Offer

alternative job

1

2

3

personnel

officer

personnel

officer

personnel

officer

employee

backward transition types

object type micro process type

Figure 7.19: Backward transition types

However, for each backward transition type, it must be ensured that its target state type always
precedes its source state type (cf. Fig. 7.20a). More precisely, it should not be possible to
connect arbitrary state types using backward transitions type; e.g., state types corresponding
to different alternative execution paths (cf. Fig. 7.20b).

We define function beforeStates to determine all state types lying on a path from one state
type to another state type (cf. Def. 21). Using this function we define structural constraints for
backward transition types.

104

7.5 Backward Jumps

State 1

A

State 2

B

State 3

C

State 1

A

State 2

B

State 3

C

a b

Figure 7.20: Structural properties of backward transition types

Definition 21 (Predecessor states):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateTypeSet) ∈ MicProcTypes be a micro process
type. Then:

beforeStates: StateTypeSet 7→ 2StateTypeSet with beforeStates(s) determining all state types contained in a path
from the start state type to s (including s).

A backward jump is only allowed to state types corresponding to the set beforeStates as defined
in Def. 22.

Definition 22 (Extending micro process types with backward transition types):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateTypeSet) ∈ MicProcTypes be a micro process
type. Then:

A backward transition type is a tuple backTransType = (source, target) with
source, target ∈ StateTypeSet ∧ source 6= target ∧ target ∈ beforeStates(source).

BackTransTypeSetmicProcType denotes a finite set of backward transition types defined on micProcType.
In the following, a micro process type represents a tuple micProcType = (oType, MicStepTypeSet, MicTransType-
Set, StateTypeSet, BackTransTypeSet); i.e., we enrich the definition of a micro process type with backward tran-
sition types.

At run-time, before performing a backward jump, it must be ensured that its target state was
actually reached earlier. More precisely, if the target state of a backward transition belongs
to an alternative path (cf. Fig. 7.21), it must be ensured that this path was actually chosen
during run-time. We refer to Chap. 8 for details, which further explains in detail how attribute
values are handled in the context of backward jumps (e.g., their resetting and reassignment are
discussed).

State 2

B

State 3

C

State 1

A

Figure 7.21: Backward transitions and alternative execution paths

105

7 Micro Process Modeling

Finally, we must define which users may perform a backward jump when the source state of
the corresponding backward transition becomes activated. For this purpose, backward respon-
sibilities need to be specified (cf. Def. 23).

Definition 23 (Backward responsibility):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateTypeSet, BackTransTypeSet) be a micro pro-
cess type and let UserRoles be the set of all defined user roles. Then:

A backward responsibility is a tuple backResp = (backTransType, role) where

• backTransType ∈ BackTransTypeSet is a backward transition type.

• role ∈ UserRoles is a user role.

7.6 Reducing Administrative Efforts

Usually, dozens or hundreds of different object types may be involved in a more complex
business process. For each of these object types, then, a corresponding micro process type
must be defined. In addition, user roles must be assigned to states, external transitions, and
backward transitions. Overall, this may lead to high administrative efforts. To remedy these,
PHILharmonicFlows, for each defined object type, automatically generates a "minimum" micro
process type. Furthermore, default assignments for external micro transitions and backward
transitions are used to reduce modeling efforts.

7.6.1 Minimal Micro Process Types

PHILharmonicFlows automatically generates a minimum micro process type for each object
type. As illustrated in Fig. 7.22, such a minimum micro process type comprises a start and
an end micro step type, which are assigned to respective start and end state types. Both the
start and end micro step type are empty requiring no attribute value or relation to be set. These
two micro step types are connected using an (external) explicit micro transition type. This way,
an explicit user commitment is required to activate the end state and therefore to terminate a
running micro process instance. Altogether, a minimum micro process type does not require
any mandatory attribute values or relations. However, it fulfills all structural properties required.
Although it is automatically generated for each object type, it may be refined and modified as
desired.

7.6.2 Default User Assignment

To further reduce administrative efforts, each user role owing the execution responsibility for a
particular state type automatically obtains the responsibilities for committing outgoing (external)
explicit micro transition types as well as for outgoing backward jumps.

106

7.6 Reducing Administrative Efforts

finishedinitialized

Object Type

C

A
B

object type micro process type

external, explicit micro transition type

start micro step type end micro step type

start state type end state type

Figure 7.22: Minimum micro process type

Example 7.15 (Default user assignment):
Consider the review micro process type from Fig. 7.23. Since user role employee is assigned to state pending

(i.e., user role employee owns the execution responsibility for state pending), this user role automatically owns
the transition responsibility for the explicit micro transition type connecting micro step type reason and the empty
micro step type belonging to state type reject proposed. The same applies to all other explicit micro transition
types whose source micro step type belongs to state pending; i.e., the ones starting from micro steps alternative

job or appraisal. Regarding state type reject proposed, user role personnel officer is assigned; i.e., it then
owns the corresponding execution responsibility. Hence, the personnel officer automatically owns the transition
responsibility for the micro transition type connecting the empty micro step type of state type reject proposed and
the end micro step type of state type finished. Moreover, this user additionally owns the backward responsibility
for the backward transition type connecting state types reject proposed and pending. Note that these default
assignments can be manually overwritten afterwards.

invitation

proposed

reject

proposed

finished

pending

initialized

urgency
return

date
reject

invite

proposal

appraisal

reason

Review

proposal
remark

urgency
return date

appraisal
reason
comment
finished

alternative

job

Job Offer

alternative job

1

2

3

personnel

officer

personnel

officer

personnel

officer

employee

object type micro process type

execution responsibles are

automatically assigned to explicit micro

transitions and backward transitions

Figure 7.23: Default user assignment

107

7 Micro Process Modeling

7.7 Summary

To capture and model the behavior of object types, corresponding micro process types must
be defined. More precisely, for each object type a micro process type needs to be defined. It
comprises a number of abstract state types which are then used to coordinate the execution of
corresponding micro process instances among different users.
As opposed to existing state-based approaches, PHILharmonicFlows allows establishing a
mapping between states and object attribute values and hence ensuring compliance between
them. For this purpose, each state comprises a number of micro steps. In turn, a micro step
refers to an attribute or relation type and describes an elementary action for setting them. By
connecting micro steps with micro transitions, their default execution order is obtained. To en-
able user decisions, micro transition types may be declared as explicit; i.e., at run-time, the
commitment of a user is required to proceed with the control flow. Finally, based on backward
transition types, backward jumps to previous states can be realized.

108

8
Micro Process Execution

RUN-TIME

BUILD-TIME

Macro Process

Micro Process

Data

User Integration

Forms

Black-box Activities

automatically generated

implementation required

Relations

Objects

Attributes

States

Micro Transition

Micro Step

Responsibilities

Data-

oriented

View

automatically generated

Overview

Tables

Process-

oriented

View

Monitoring

automatically generated

Worklists

Figure 8.1: Micro process execution in PHILharmonicFlows

109

8 Micro Process Execution

In addition to the structural correctness of a micro process type, the correct execution of its
corresponding micro process instances is crucial. In particular, this necessitates a well-defined
formal semantics, which not only provides the basis for creating and executing micro process
instances, but shall enable the automatic generation of end-user run-time components as well,
e.g., for running micro process instances, process-oriented views and form-based activities
shall be automatically generated. To properly execute a micro process instance, its execution
follows a precise operational semantics, which is based on the attribute values of the corre-
sponding object instance. Like in activity-centric approaches [RD98, LR00], we introduce a
number of markings for the different components of a micro process instance. The formal
operational semantics for executing micro process instances is then defined based on these
markings. More precisely, we define rules that control the interactions among the different
components of a micro process instance during its execution. How these interactions are taking
place depends on various conditions. In particular, while some rules concern the dependencies
between different components, others require user inputs. Finally, to improve the comprehensi-
bility of the rules, PHILharmonicFlows categorizes them into marking rules (highlighted in green
colour in the following), execution rules (yellow colour), and reaction rules (blue colour) (cf. Tab.
8.1). Fig. 8.2 illustrates the three different rules and their inter-dependencies.

Marking

Rules

Execution

Rules

Reaction

Rules

triggers triggers

triggers

triggers

Figure 8.2: Rules and their inter-dependencies

Abbreviation Input Output Colour
Marking Rules MR markings markings green
Execution Rules ER markings required user input yellow
Reaction Rules RR user input markings blue

Table 8.1: Different micro process rules

• Marking rules (MR). Marking rules change markings of particular components of a micro
process instance taking the current markings of other components into account; i.e., the
current markings of the individual components of a micro process instance are evaluated
to determine follow-up-markings. For example, when a micro step changes its marking
from ACTIVATED to UNCONFIRMED, all outgoing implicit micro transitions will be marked as
READY.

• Execution rules (ER). At certain points during micro process execution, input from the
user is required. Such user inputs comprise the setting of attribute values or the com-
mitment of state changes. Using execution rules, we can exactly specify under what
conditions (i.e., markings) respective user inputs are mandatorily required. For example,
when a micro step becomes marked as ENABLED, a corresponding attribute value (or re-
lation) must be set. For this purpose, a corresponding form-based mandatory activity is
automatically generated and assigned to the worklist of the responsible user.

110

8.1 Micro Process Instances

• Reaction rules (RR). Opposed to execution rules, reaction rules determine which mark-
ings must be changed when required user input becomes available. For example, if a
required attribute value is available, the corresponding micro step changes its marking
from ENABLED to ACTIVATED.

Due to explicit consideration of data during process execution, the operational semantics pro-
vided by PHILharmonicFlows is much more complex as the one known from activity-centric
process support paradigms (e.g., like Petri Nets). In particular, when executing object-aware
processes, on one hand, we must support cross-state process execution to coordinate different
users and synchronize various process instances. On the other, we must capture state-internal
execution logic (i.e., dependencies between input fields and user guidance). Furthermore, non-
determinism and backward jumps need to be considered. For the sake of understandability, we
introduce the required rules step-by-step overwriting them where necessary.

8.1 Micro Process Instances

To enable object-aware process support at run-time, the creation of an object instance must
be coupled with the one of a corresponding micro process instance. Consequently, each micro
process type may be instantiated multiple times; i.e., for each micro process type a number
of corresponding micro process instances may exist. According to the definition of a micro
process type, a corresponding micro process instance may comprise several micro steps, mi-
cro transitions, states, and backward transitions. Further, it is related to exactly one object
instance.1 The execution of micro process instances is then based on different kinds of mark-
ings similar to Workflow Nets or Petri Nets [RMRD04] (cf. Def. 24); i.e., the processing state
of a micro process instance is defined by the current markings of its states, micro steps, micro
transitions, and backward transitions (cf. Fig. 8.3). Furthermore, a micro process instance
itself has an associated marking expressing its overall state. Based on these markings, it can
be expressed which components (e.g., micro steps) are activated at a certain point in time.
Markings are further used to describe which components may be activated later on as well as
for which components this is no longer possible (i.e., these components belong to a skipped
execution path). Respective information is not only important to identify the actual execution
path, but is also essential to identify deadlock situations or reset the execution in the context of
backward jumps. For this purpose, at each point during process execution, all components of
the micro process instance are associated with a marking; i.e., not only the components cur-
rently activated. In the following, we describe the markings required for a particular component
to allow for the correct execution of the respective micro process instance.

Example 8.1 (Markings of micro process instances):
Consider the review micro process instance illustrated in Fig. 8.3. Currently, this instance is running; i.e., it is
marked as RUNNING. State initialized has been already finished (marking CONFIRMED). Thus, attribute values
corresponding to the particular micro steps of this state are available (marking CONFIRMED). In turn, state pending

is still activated (i.e., marked as ACTIVATED). In this context, a value for attribute proposal is mandatorily required in
order to proceed with process execution (marking ENABLED of micro step proposal). Opposed to this, micro steps
corresponding to attributes (relations) reason, alternative job, and appraisal are currently marked as READY

1Note that we omit the qualifier type of the micro process components to improve understandability and to
indicate that we are talking about the process instance level. In particular, we consider micro steps, micro
transitions, states and loop transitions. Nevertheless, each of these components has a corresponding type.

111

8 Micro Process Execution

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

WAITING

READY

ENABLED

BLOCKED

ACTIVATED

CONFIRMABLE

UNCONFIRMED

CONFIRMED

BYPASSED

SKIPPED

micro process instance

currently running

state finished

attribute value

available

state currently

activated

state not activated –

but possible

activated later on

attribute value

mandatorily

required

attribute value required

while state activated

Figure 8.3: Markings for micro process execution

indicating that a respective value is required when state pending becomes activated. All subsequent states (e.g.,
reject proposed) are currently marked as WAITING indicating that they may be activated later on.

Definition 24 (Micro process instance):
A micro process instance is a tuple micProcInst = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) where

• micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet) is a micro process type.

• oid is the identifier of the object instance, micProc belongs to.

• MState: StateSet 7→ StateMarkings assigns to each state s of micProc its current marking MState(s) ∈
StateMarkings := {WAITING, ACTIVATED, CONFIRMED, SKIPPED}. The semantics of these markings is de-
scribed in Tab. 8.2.

• MMicStep: MicStepSet 7→ MicroStepMarkings assigns to each micro step micStep (and to each value step
valStep) of micProc its current marking MMicStep(micStep) ∈ MicroStepMarkings (and MMicStep(valStep) ∈ Mi-
croStepMarkings) with MicroStepMarkings := {WAITING, READY, ENABLED, BLOCKED, ACTIVATED, UNCON-
FIRMED, CONFIRMED, BYPASSED, SKIPPED}. The semantics of these markings is described in Tab. 8.3.

• MMicTrans: MicTransSet 7→ MicroTransitionMarkings assigns to each micro transition micTrans of micProc
its current marking MMicTrans(micTrans) ∈ MicroTransitionMarkings := {WAITING, CONFIRMABLE, READY,
ENABLED, ACTIVATED, UNCONFIRMED, CONFIRMED, BYPASSED, SKIPPED}. The semantics of these markings
is described in Tab. 8.4.

• MBackTrans: BackTransSet 7→ BackwardTransitionMarkings assigns to each backward transition backTrans
of micProc its current marking MBackTrans(backTrans) ∈ BackwardTransitionMarkings := {WAITING, CON-
FIRMABLE, READY, BLOCKED, SKIPPED}. The semantics of these markings is described in Tab. 8.5.

MicProcInstances denotes the set of all micro process instances of any micro process type micProcType ∈
MicProcTypes. Further, MMicProc: MicProcInstances 7→ MicroProcessMarkings assigns to each micro process
instance micProcInst its current marking MMicProc(micProcInst) ∈ MicroProcessMarkings := {RUNNING, FINISHED}.
The semantics of these markings is described in Tab. 8.6.
Finallly, micprocinstances: MicProcTypes 7→ 2MicProcInstances assigns to each micro process type micProcType the
set of corresponding micro process instances; i.e., micprocinstances(micProcType) ⊆ MicProcInstances running on
micProc.

112

8.1 Micro Process Instances

8.1.1 State Markings

Concerning the states of a micro process instance, the following information is relevant:

• Which state is currently activated?

• Which states may be activated later on?

• Which states were already activated during process execution?

• Which states were skipped due to the selection of an alternative path?

For this purpose, each state is either marked as WAITING, ACTIVATED, CONFIRMED or SKIPPED

(cf. Def. 24). These markings have the following meanings 8.2:

Marking Label Description
WAITING The state has not been activated yet, but it is still possible that it becomes

activated later; i.e., a preceding state is currently activated.
ACTIVATED The state is currently activated; i.e., attribute values corresponding to the micro

steps of this state must be mandatorily set.
CONFIRMED The state was previously activated and a subsequent state is activated now.

SKIPPED The state has not been activated yet and will also not become activated any-
more (unless backward jumps are performed); i.e., the respective state be-
longs to an alternative execution path not chosen for execution.

Table 8.2: State markings

For each micro process instance, exactly one of its states is activated at a certain point in time.
In turn, this indicates that responsible users must assign attribute values or relations, which are
referred by the micro steps of this state.

Initially, the start state of a micro process instance is marked as ACTIVATED. In turn, all other
states are initially marked as WAITING. If a state becomes marked as ACTIVATED, responsible
users must set the attribute values or relations corresponding to the micro steps of this state;
i.e., they must execute a mandatory (form-based) activity (cf. Sect. 8.4). If all required attribute
values (or relations) are available for the currently activated state, the latter may change its
marking from ACTIVATED to CONFIRMED. Following this, another subsequent state becomes
activated (cf. Sect. 8.5). If an end state becomes activated, in turn, the micro process instance
will terminate.

For coordinating the execution of several micro process instances (i.e., to evaluate the coordina-
tion components), it is important to know whether or not a particular state can still be activated;
i.e., additional information about the states currently not activated needs to be maintained as
well. For this purpose, we apply an external dead-path elimination to prevent those states from
becoming activated, which belong to skipped paths. As a consequence, respective states are
marked as SKIPPED (cf. Sect. 8.5.4).

Fig. 8.4 illustrates the markings, a state may pass as well as their transitions:

1. If a state change takes place, the previous state (currently marked as ACTIVATED) is re-
marked as CONFIRMED. In turn, the subsequent state, which is currently marked as WAIT-
ING, then changes its marking to ACTIVATED.

113

8 Micro Process Execution

2. States that cannot be activated any longer are marked as SKIPPED. To determine these
states during run-time, dead paths are eliminated (cf. Sect. 8.5.4).

WAITING ACTIVATED CONFIRMED

SKIPPED

1 1

2

Figure 8.4: State markings and their transitions

8.1.2 Micro Step and Value Step Markings

Different markings are required to indicate the processing state of the micro steps of a micro
process instance. In particular, each micro step (or value step) is either marked as WAITING,
READY, ENABLED, BLOCKED, ACTIVATED, UNCONFIRMED, CONFIRMED, BYPASSED, or SKIPPED

(cf. Def. 24).

As described in Chapt. 7, each state may comprise several micro steps. In turn, a micro step
referring to a particular object attribute may additionally comprise a number of value steps. The
latter can be reached if the corresponding predicate evaluates to true. First of all, the markings
of micro steps (and value steps) depend on the marking of the state they belong to (cf. Fig.
8.5). Especially, all micro steps belonging to a WAITING state (i.e., that still may be activated)
are initially marked as WAITING.
A single micro step does do not represent an activity, but corresponds to a particular input field
of a user form. More precisely, for each user assigned to the respective state, a form-based
activity is generated. For each micro step of the currently activated state, this form then com-
prises an input field related to the corresponding attribute and relation respectively (cf. Sect.
8.4). When also taking data authorization into account, input fields that may be optionally set
can be added to the respective user form (cf. Sect. 9.1.1). To distinguish such optional input
fields from mandatory ones, the input fields corresponding to the micro steps of the activated
state are marked as READY.
The micro transitions connecting the micro steps of a state represent the internal logic of the
corresponding form-based activity. During activity execution, it should be transparent for users
which input field must be mandatorily set in order to reach a subsequent micro step. Respec-
tive micro steps are marked as ENABLED indicating that a value for the attribute (or relation)
they refer to is missing. A micro step will be immediately reached as soon as a value for its
corresponding attribute or relation becomes available (or no attribute or relation is available).
Generally, it must be ensured that always one micro step is activated during activity execution.
As it is possible that one micro step (or value step) has more than one outgoing micro transition,
only the one with the highest priority is reached at run-time and hence it is marked as UNCON-
FIRMED. All other ones not belonging to the selected execution path are marked as BYPASSED.
In the context of a value-specific micro step which comprises a number of values steps, it might
occur that for a particular attribute value none of the corresponding value steps becomes acti-
vated; i.e., none of the predicates evaluates to true. If the value-specific micro step itself has no
outgoing micro transition, process execution will then be blocked; i.e., the value-specific micro

114

8.1 Micro Process Instances

step will be marked as BLOCKED indicating that another value ir required for the attribute the
micro step refers to.
When a subsequent state becomes activated, all micro steps of the preceding state which are
currently marked as UNCONFIRMED, change their marking to CONFIRMED. In order to enable
users to change already assigned attributes values or relations later on (as long as the state
to which they belong is activated), micro steps belonging to a skipped path are first marked
as BYPASSED. These micro steps change their marking to SKIPPED when the state is marked
as CONFIRMED. This way, alternative execution paths may be changed later on requiring a
state-internal reset of micro process instance execution.

WAITING

WAITING

ACTIVATED

READY

ENABLED

BLOCKED

ACTIVATED

UNCONFIRMED

BYPASSED

CONFIRMED

CONFIRMED

SKIPPED

SKIPPED

SKIPPED

Figure 8.5: Dependencies between state markings and micro step markings

Tab. 8.3 summarizes the possible markings for the micro steps (and value steps) of a micro
process instance:

Marking Label Description
WAITING The micro step belongs to a state that has not been activated yet; i.e.,

the state to which the micro step belongs is currently marked as WAIT-
ING. Accordingly, the micro step is currently not reachable, but may be
reached later when the state it belongs to becomes activated. When
marking a micro step as WAITING, all corresponding value steps will be
marked as WAITING as well.

READY The micro step belongs to the currently activated state, which is there-
fore marked as ACTIVATED. Thus, it is possible to activate the micro step.
All micro steps and micro transitions belonging to a particular state, how-
ever, represent a sub-graph of the micro process instance and hence
imply an order for the micro steps of a state. For this reason, usually
one micro step (or several ones in case of alternative execution paths)
is mandatorily required next. This micro step becomes marked as EN-
ABLED. Opposed to this, if there still exists at least one previous micro
step belonging to the sub-graph of the state, the micro step is marked as
READY indicating that another attribute value (or relation) is required be-
fore. When a micro step becomes marked as READY, its corresponding
value steps will be marked as READY as well.

115

8 Micro Process Execution

Marking Label Description
ENABLED The micro step belongs to the currently activated state; i.e., the state the

micro step belongs to is marked as ACTIVATED. For an enabled micro
step, the corresponding attribute (or relation) must be set in order to pro-
ceed with the flow of control. Furthermore, if a micro step is marked as
ENABLED, its value steps will be marked as ENABLED as well. Value step
predicates can only be evaluated when an attribute value (or relation)
becomes available for the respective micro step.

ACTIVATED The micro step belongs to the currently activated state. To mark a par-
ticular micro step as ACTIVATED, we consider the following cases:

• An atomic micro step is marked as ACTIVATED when a value for
its corresponding attribute (or relation) becomes available.

• An empty micro step not referring to any attribute (or relation)
immediately becomes marked as ACTIVATED.

• A value step becomes marked as ACTIVATED when its corre-
sponding predicate evaluates to true.

• Value-specific micro steps are marked as ACTIVATED if at least
one of its value steps is marked as ACTIVATED or there exists an
outgoing micro transition of the value-specific micro step itself,
enabling the micro process instance to proceed even if no value
step is activated.

BLOCKED The (value-specific) micro step belongs to the currently activated state.
A value-specific micro step is marked as BLOCKED if none of its value
steps is marked as ACTIVATED and no outgoing micro transition from
the value-specific micro step itself exists. This indicates that another
attribute value (or relation) must be assigned for the corresponding at-
tribute or relation of the micro step to proceed with micro process exe-
cution.

UNCONFIRMED The micro step belongs to the currently activated state. The micro step
was reached during micro process execution. More precisely, a value
of the corresponding attribute (or relation) is available and one of its
incoming micro transitions has been triggered.

CONFIRMED The state to which the micro step belongs has changed its marking from
ACTIVATED to CONFIRMED. Then, all micro steps currently marked as
UNCONFIRMED change their marking to CONFIRMED; i.e., the micro step
is reached and hence a value of the corresponding attribute (or relation)
is available. In addition, the path to which the micro steps belong was
skipped. In turn, a value step is marked as CONFIRMED if the corre-
sponding predicate is fulfilled and the value step does not belong to a
skipped path (i.e., one of its outgoing micro transitions has fired).

BYPASSED All micro steps of the currently activated state, which have not been
reached yet, are marked as BYPASSED. A value step is marked as BY-
PASSED if its predicate evaluates to false. Since it is possible to change
attribute values (or relations) as long as the respective state is activated,
these micro steps might still be activated later. For this case, however,
a reset and re-execution of affected parts of the micro process instance
are required.

SKIPPED All micro steps not yet reached are marked as SKIPPED. Respective
micro steps belong to a state that either is marked as SKIPPED or CON-
FIRMED.

Table 8.3: Micro step markings

116

8.1 Micro Process Instances

Fig. 8.6 illustrates the markings of a micro step (or value step) and their possible transitions:

1. A micro step changes its marking from WAITING to READY when the state it belongs to
becomes marked as ACTIVATED.

2. A micro step changes its marking from READY to ENABLED when it becomes reachable;
i.e., the previous micro step is marked as CONFIRMED or UNCONFIRMED.

3. A micro step changes its marking from ENABLED to ACTIVATED when a value for its corre-
sponding attribute (or relation) becomes available (or the micro step is an empty one).
Concerning a value-specific micro step, at least one of its value steps must then be
marked as ACTIVATED or there is a micro transition outgoing from the micro step itself.

4. A value-specific micro step changes its marking from ENABLED to BLOCKED when a value
for its corresponding attribute (or relation) becomes available, but none of its value steps
is marked as ACTIVATED (i.e., the predicates of all value steps evaluate to false) and there
is no micro transition outgoing from the micro step itself.

5. A value-specific micro step changes its marking from BLOCKED to ENABLED when the
value of the corresponding attribute (or relation) is deleted.

6. A micro step changes its marking from ACTIVATED to UNCONFIRMED if one of the following
two cases holds:

a) The respective micro step is the only one currently marked as ACTIVATED.

b) There are other micro steps currently marked as ACTIVATED. In this case, only the
one with the highest priority (of its incoming micro transition) is marked as UNCON-
FIRMED. (All other ones are marked as BYPASSED.)

7. A micro step changes its marking from ACTIVATED to BYPASSED if the priority of its incom-
ing micro transition is lower than the priority of another activated micro step.

8. If a subsequent state becomes activated, all micro steps belonging to the previous state
and currently marked as UNCONFIRMED are re-marked as CONFIRMED.

9. If a subsequent state becomes activated, all micro steps belonging to the previous state
and currently marked as BYPASSED are re-marked as SKIPPED.

10. A micro step changes its marking from WAITING to SKIPPED due to an external dead-path
elimination.

11. A micro step changes its marking from ENABLED to BYPASSED when a subsequent micro
step becomes marked as UNCONFIRMED.

12. A micro step changes its marking from BLOCKED to BYPASSED when an alternative sub-
sequent micro step becomes marked as UNCONFIRMED.

13. When applying a state-internal dead-path elimination, the micro steps belonging to an
alternative execution path are marked as BYPASSED.

117

8 Micro Process Execution

WAITING READY ENABLED

BLOCKED

ACTIVATED UNCONFIRMED

BYPASSED

CONFIRMED

SKIPPED

1 2 3

4 5

6

7

8

9

10

11

1213

Figure 8.6: Micro step markings and their transitions

8.1.3 Micro Transitions Markings

Micro transitions connect micro steps with each other. When a micro process instance is cre-
ated, all micro transitions are initially marked as WAITING. In this context, internal micro tran-
sitions, connecting micro steps of the same state, represent the internal process logic of a
form-based activity ; i.e., they describe the default order in which required attribute values (or
relations) shall be set. In turn, external micro transitions activate subsequent states; i.e., they
coordinate the processing of an object instance among different users. Further, external micro
transitions may be flagged as explicit. Such an explicit micro transition requires a user com-
mitment before a subsequent state may be activated. To express this behavior, we introduce
marking CONFIRMABLE. Based on it, a respective mandatory activity is automatically assigned
to the worklist of the responsible user who must perform the commitment. If a state change is
committed, the micro transition will be marked as READY.
Opposed to this, implicit micro transitions are immediately marked as READY (once they are
reachable) indicating that the subsequent micro step is reachable. In addition, for external
implicit micro transitions, a state change (i.e., the activation of a subsequent state) is then ini-
tiated. If attribute values (or relations) for subsequent micro steps are available (i.e., the micro
steps are marked as ACTIVATED), micro transitions are marked as ENABLED. Generally, it is
possible that more than one subsequent micro step is reachable; i.e., all these micro steps are
marked as ACTIVATED. For all micro transitions currently marked as ENABLED, their respective
priorities must be evaluated. Only the micro transition with the highest priority is marked as
ACTIVATED enabling the subsequent micro step to change its marking from ACTIVATED to UN-
CONFIRMED. Like for micro steps, we differentiate between UNCONFIRMED and CONFIRMED as
well as between BYPASSED and SKIPPED, enabling the correct re-assignment of attribute values
and relations during the activation of the respective state.

In summary, each micro transition has one of the following markings: WAITING, CONFIRMABLE,
READY, ENABLED, ACTIVATED, UNCONFIRMED, CONFIRMED, BYPASSED, or SKIPPED (cf. Tab.
8.4).

Marking Label Description
WAITING When creating a micro process instance, its micro transitions are initially

marked as WAITING. A micro transition marked as WAITING is currently
not reachable. In particular, its source micro step has not been reached
yet; i.e., it has not been marked as UNCONFIRMED yet.

CONFIRMABLE A micro transition is marked as CONFIRMABLE when it becomes reach-
able, but a user commitment is required to proceed with control flow (i.e.,
to mark the micro transition as READY).

118

8.1 Micro Process Instances

READY A micro transition is marked as READY when it becomes reachable; i.e.,
its source micro step is reached and either marked as UNCONFIRMED
(internal micro transition) or CONFIRMED (external micro transition). If
the micro transition is explicit, a user commitment has been made.

ENABLED The target micro step is marked as ACTIVATED; i.e., the required at-
tribute value (or relation) is available. Since more than one micro step
may be marked as ACTIVATED at a certain point during process execu-
tion, more than one micro transition may be marked as ENABLED. For
respective micro transitions, their priorities must then be evaluated.

ACTIVATED The micro transition may fire; i.e., either only one micro transition has
been marked as ENABLED or it has the highest priority of all micro tran-
sitions currently marked as ENABLED.

UNCONFIRMED The micro transition has fired; i.e., the target micro step is reached and
marked as UNCONFIRMED.

CONFIRMED The micro transition has fired and a subsequent state has already been
activated.

BYPASSED The micro transition has not fired yet. Either the subsequent micro step
was not reachable (since the required attribute value or relation is miss-
ing) or its priority was too low.

SKIPPED The micro transition has not fired and a subsequent state has already
been activated.

Table 8.4: Micro transition markings

Fig. 8.7 illustrates the different markings of a micro transition and their possible transitions:

1. An implicit micro transition changes its marking from WAITING to READY when reaching its
source micro step; i.e., its source micro step is marked as UNCONFIRMED.

2. An explicit micro transition changes its marking from WAITING to CONFIRMABLE when
reaching its source micro step; i.e., the source micro step is marked as UNCONFIRMED.

3. An explicit micro transition changes its marking from CONFIRMABLE to READY, when the
required user commitment is made.

4. A micro transition changes its marking from READY to ENABLED as soon as its target micro
step becomes reachable; i.e., the required attribute value or relation to which the target
micro step refers becomes available and the target micro step is marked as ACTIVATED.

5. A micro transition changes its marking from ENABLED to ACTIVATED either if exactly one
micro transition is marked as ENABLED or the micro transition has the highest priority of
all micro transitions currently marked as ENABLED.

6. An internal micro transition changes its marking from ACTIVATED to UNCONFIRMED when
reaching its target micro step; i.e., its target micro step becomes marked as UNCON-
FIRMED.

7. An external micro transition changes its marking from ACTIVATED to UNCONFIRMED when
reaching its target micro step; i.e., its target micro step is marked as UNCONFIRMED.

8. To mark states belonging to a skipped execution path of the current state, a state-internal
dead-path elimination is applied. Based on it, internal micro transitions, belonging to
skipped paths, change their marking from WAITING to BYPASSED.

119

8 Micro Process Execution

9. An internal micro transition changes its marking from ENABLED to BYPASSED if the micro
transition has not the highest priority of all micro transition currently marked as ENABLED.

10. An external micro transition changes its marking from WAITING to SKIPPED if another
micro transition is either used to activate a subsequent state or a state-external dead-
path elimination has been applied.

11. An external micro transition changes its marking from ACTIVATED to CONFIRMED when
reaching its target micro step; i.e., its target micro step is marked as UNCONFIRMED.

12. If a subsequent state is activated, all micro transitions belonging to the previous state and
currently marked as UNCONFIRMED change their marking to CONFIRMED.

13. If a subsequent state is activated, all micro transitions belonging to the previous state and
currently marked as BYPASSED change their marking to SKIPPED.

WAITING READY

CONFIRMABLE

ENABLED

1

2 3

4

ACTIVATED

5

UNCONFIRMED

6

CONFIRMED

7

BYPASSED

8

SKIPPED

9 10

11

12

13

Figure 8.7: Markings of a micro transition and their transitions

8.1.4 Backward Transition Markings

Backward transitions between the states of a micro process instance describe backward jumps.
Initially, they are marked as WAITING. A backward jump is enabled if the source state of the
backward transition is currently marked as ACTIVATED. It then is marked as CONFIRMABLE;
i.e., any backward transition is treated as explicit transition and hence the respective backward
jump requires a commitment of an authorized user. As soon as such a commitment is made, the
backward transition is marked as READY. Following this, the state change may be performed;
i.e., the micro process instance is reset to a previous state. Note that a backward transition will
be only enabled (i.e., marked as CONFIRMABLE), if its target state was reached before; i.e., its
target state must not belong to an alternative path not chosen during micro process execution.
In the latter case, the backward transition is marked as BLOCKED and the backward jump must
not be performed. Since a particular backward jump may be performed several times during
the execution of a micro process instance, a backward transition is re-marked as WAITING once
it has been fired. Finally, an uncommitted backward transition is marked as SKIPPED, when a
subsequent state becomes activated during micro process execution.

Any backward transition has one of the following markings: WAITING, CONFIRMABLE,
READY, BLOCKED, CONFIRMED, or SKIPPED (cf. Tab. 8.5).

120

8.1 Micro Process Instances

Marking Label Description
WAITING A backward transition is initially marked as WAITING indicating that its

source state has not been activated yet; i.e., its source state is not
marked as ACTIVATED and the backward jump must not be performed.

CONFIRMABLE To perform the backward jump, a user commitment is required. After-
wards, the backward jump can be performed; i.e., the source state of
the corresponding backward transition is then activated (i.e., marked as
ACTIVATED).

READY The source state of the backward transition is activated (i.e., marked as
ACTIVATED) and the required user commitment has been made. This
marking then triggers the backward jump; i.e., the resetting of the micro
process instance to the target state of the backward transition.

BLOCKED The backward jump must not be performed since the target state of the
backward transition belongs to a skipped path; i.e., the target state is
marked as SKIPPED.

SKIPPED The backward jump was not performed; i.e., the micro process execution
proceeds without this backward jump.

Table 8.5: Backward transition markings

Fig. 8.8 illustrates the markings of a backward transition and their possible transitions:

1. A backward transition changes its marking from WAITING to CONFIRMABLE when the
source state of the backward transition becomes activated.

2. A backward transition changes its marking from CONFIRMABLE to READY when the re-
quired user commitment becomes available.

3. A backward transition changes its marking from READY to WAITING after performing the
backward jump.

4. A backward transition changes its marking from CONFIRMABLE / BLOCKED to SKIPPED

when the micro process execution proceeds without having performed any backward
jump.

5. A backward transition changes its marking from WAITING to BLOCKED when the source
state of the backward transition becomes activated (i.e., marked as ACTIVATED). However,
the target state of the backward transition belongs to a non-selected execution path; i.e.,
it was skipped during micro process execution.

WAITING CONFIRMABLE

BLOCKED

READY

SKIPPED

1

2

3

4

5 4

Figure 8.8: Markings of a backward transition and their transitions

121

8 Micro Process Execution

Marking Label Description
RUNNING The micro process instance was started and no end state has been ac-

tivated yet (i.e., the currently activated state is not an end state).
FINISHED An end state of the micro process instance has been activated (i.e., it is

marked as ACTIVATED).

Table 8.6: Micro process instance markings

8.1.5 Micro Process Instance Markings

The processing state of a micro process instance can be defined based on the markings of
its states, micro steps, micro transitions, and backward transitions. In addition, each micro
process instance has its own marking indicating whether an instance is INITIALIZED, RUNNING,
or FINISHED (cf. Tab. 8.6).

Fig. 8.9 illustrates the markings of a micro process instance and their possible transitions:

1. A micro process instance changes its marking from RUNNING to FINISHED when an end
state of the micro process instance becomes activated.

2. When using backward jumps, a micro process instance may be re-activated; i.e., it is
possible to jump from an end state to a previous state.

RUNNING FINISHED

1

2

Figure 8.9: Markings of a micro process instance and their transitions

8.2 Creating Object Instances

Using create permissions (cf. Def. 25), we can define which user role may create object
instances of a particular object type at run-time. Activities for creating new object instances
can be invoked based on the overview table provided for the corresponding object type (cf.
Fig. 8.10). More precisely, depending on their create permissions, users may optionally create
object instances of particular object types. These activities are denoted as optional object
creation and are defined by Execution Rule ER1.

create new application

Application

applicant

Hans Maier

Wilma Schmidt

Horst Müller

Fred Pauli

decisionCV cover letter appraisal

accept very good

reject

reject good

reject bad

optional object creation

Figure 8.10: Optional creation of object instances

122

8.3 Initializing Micro Process Instances

Definition 25 (Create permissions):
Let dm = (name, OTypeSet, RelTypeSet) be a data model and UserRoles be the set of all defined user roles.
A create permission createPerm = (oType, role) is a tuple where

• oType ∈ OTypeSet is an object type.

• role ∈ UserRoles is a user role.

CreatePermissions corresponds to the set of all definable create permissions.

Execution Rule (ER1: Optional object creation):
∀ createPerm = (oType, r) ∈ CreatePermissions:

An object instance of type oType may be optionally created by users owning role r.

8.3 Initializing Micro Process Instances

When creating an object instance, a corresponding micro process instance is automatically
created and initialized using Reaction Rule RR1. For each component of the micro process
instance then an initial marking is set. First, the micro process instance itself is marked as
RUNNING (cf. Reaction Rule RR1a). Furthermore, all states of the micro process instance
except its start state are marked as WAITING (cf. Reaction Rule RR1b); remember that this
indicates that they may still be activated during micro process execution. By contrast, the start
state is marked as ACTIVATED (cf. Reaction Rule RR1c).
If a (start) state becomes marked as ACTIVATED, attribute values and relations referred by its
micro steps must be set. Hence, after creating a micro process instance all micro steps (and
value steps) corresponding to the start state, except the start micro step, are marked as READY

(cf. Reaction Rules RR1d + g). Since the start micro step refers to the OID of the related
object instance, it is immediately marked as UNCONFIRMED (cf. Reaction Rule RR1e); i.e., the
OID is available as soon as the object instance is created. In turn, all other micro steps and
value steps not belonging to the start state are marked as WAITING (cf. Reaction Rules RR1f
+ h). Finally, all micro transitions and backward transitions are initially marked as WAITING (cf.
Reaction Rules RR1i + j).

Reaction Rule (RR1: Initializing a micro process instance):
Let dm = (name, OTypeSet, RelTypeSet) ∈ DM be a data model and ds = (dm, OSet, RelSet) be a correspond-
ing data structure. Further, let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro
process instance of type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcIn-
stance ∈ micprocinstances(micProc). Finally, let startState = (name, sMicStepSet) ∈ StateSet be the start state of
micProcInstance and startMicStep ∈ MicStepSet be its corresponding start micro step.

When creating an object instance o (i.e., OSet = OSet ∪ {o} with o = (oid, oType, attrval) ∧ o.oid = micProcIn-
stance.oid) then:

a) MMicProc(micProcInstance) := RUNNING;
i.e., the micro process instance is initially marked as RUNNING.

b) ∀ state ∈ StateSet - {startState}: MState(state) := WAITING;
i.e., all states except the start state are initially marked as WAITING.

123

8 Micro Process Execution

c) MState(startState) := ACTIVATED;
i.e., the start state is initially marked as ACTIVATED.

d) ∀ micStep ∈ startState.sMicStepSet - {startMicStep}: MMicStep(micStep) := READY;
i.e., all micro steps belonging to the start state are initially marked as READY.

e) MMicStep(startMicStep) := UNCONFIRMED;
i.e., the start micro step is initially marked as UNCONFIRMED.

f) ∀ micStep ∈ MicStepSet - {startState.sMicStepSet}: MMicStep(micStep) := WAITING;
i.e., all other micro steps not belonging to the start state are marked as WAITING.

g) ∀ micStep = (ref, ValueSteps) ∈ MicStepSet with micStep /∈ startState:
∀ valueStep ∈ ValueSteps: MMicStep(valueStep) := WAITING;

i.e., all value steps of any micro step not belonging to the start state are initially marked as WAITING.

h) ∀ micStep = (ref, ValueSteps) ∈ MicStepSet with micStep ∈ startState:
∀ valueStep ∈ ValueSteps: MMicStep(valueStep) := READY;

i.e., all value steps of any micro step belonging to the start state are initially marked as READY.

i) ∀ micTrans ∈ MicTransSet: MMicTrans(micTrans) := WAITING;
i.e., all micro transitions are initially marked as WAITING.

j) ∀ backTrans ∈ BackTransSet: MBackTrans(backTrans) := WAITING;
i.e., all backward transitions are initially marked as WAITING.

Example 8.2 (Applying Reaction Rule RR1):
Consider the review micro process instance from Fig. 8.11, which is currently marked as RUNNING. Start state
initialized is marked as ACTIVATED. In turn, all other states (i.e., pending, reject proposed, invitation

proposed, and finished) are initially marked as WAITING. Micro steps urgency and return date, which both
belong to the start state, are marked as READY. By contrast, the start micro step, is marked as UNCONFIRMED. All
other micro steps, value steps, and micro transitions are initially marked as WAITING.

RR1

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

micro process instance

marked as RUNNING

start state

marked as ACTIVATED

start micro step

marked

as UNCONFIRMED

micro steps

belonging to the start state

are marked as READY

states

(except the start state)

are marked as WAITING

micro transitions

marked as WAITING

micro steps

NOT belonging to the start state

are marked as READY

Review #1

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

object instance micro process instance

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

Figure 8.11: Applying Reaction Rule RR1

The initial markings described provide the basis for defining the operational semantics of micro
processes. In particular, marking UNCONFIRMED of the start micro step constitutes the trigger
of a set of rules that drive micro process execution. As illustrated in Fig. 8.12, after creating
an object instance, Reaction Rule RR1 is triggered. According to this rule, the micro process
instance the object instance refers to is automatically initialized.

124

8.4 State-internal Execution

ER1

object creation

new object

optional

RR1

micro process

initialization

micStep

UNCONFIRMED

Figure 8.12: Rules for initializing a micro process instance

8.4 State-internal Execution

We first focus on the state-internal execution of a micro process instance. Generally, for each
state, the required attribute values or relations must be defined by executing respective atomic
(and value-specific) micro steps. When a state becomes enabled during micro process execu-
tion (i.e., during the processing of an object instance), usually, a form-based activity for entering
the required attribute values is generated (cf. Fig. 8.13).

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Return Date:

fast evaluation requiredUrgency:

07 08 2011

save cancel

Edit Review

Proposal:

Reason:

save cancel

Edit Review

reject

Alternative Job:

Appraisal:
finished

save cancel

Edit Review*
*

Figure 8.13: State-specific generation of form-based activities

The input fields of a form-based activity must be filled in by the responsible user when the
corresponding state becomes activated (cf. Sect. 7.4). Thereby, the user is guided in setting
the required attribute values (or relations); e.g., by highlighting the input fields to be set next.
In order to capture the internal logic of a form for setting object attributes, the corresponding
micro steps are linked with internal micro transitions.

125

8 Micro Process Execution

8.4.1 Deterministic Execution

Using (state-)internal micro transitions, the internal logic of a form-based activity can be de-
fined; i.e., the default order in which the mandatory input fields of the corresponding form shall
be edited. In turn, this allows guiding users in filling respective forms. Despite any predefined
sequence of micro steps, users should be allowed to choose the work practice they prefer; i.e.,
the order in which values are assigned to object attributes does not have to coincide with the
one defined for the corresponding micro steps of the form-based activity. In particular, at run-
time a micro step is completed as soon as a value is assigned to its object attribute (or relation).
If the attribute value (or relation) the next micro step refers to is missing, the respective input
field will be marked as mandatory (e.g., using a red asterisk).

We first discuss how deterministic micro process instances are executed. When a micro pro-
cess instance becomes initialized, its start micro step, which belongs to the currently activated
start state, is marked as UNCONFIRMED (cf. Reaction Rule RR1). Note that the start micro
step is empty and hence does not refer to any object attribute (or relation); i.e., no data input
is required to reach this start micro step. If there are other micro steps belonging to the start
state, values for the attributes (or relations) these micro steps refer to are required. Consider
micro steps urgency and return date in Fig. 8.14, for which respective attribute values must
be set by the responsible user. When a micro step becomes marked as UNCONFIRMED, all
(implicit) micro transitions outgoing from this micro step immediately change their marking to
READY. Accordingly, the subsequent micro step is reachable and micro process execution may
proceed. Note that internal micro transitions do not require any user commitment. To realize
this behavior, we introduce Marking Rule MR1 which is triggered when a micro step changes
its marking from ACTIVATED to UNCONFIRMED.

Marking Rule (MR1: Marking implicit micro transitions as READY):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micStep ∈ MicStepSet with MMicStep(micStep) = UNCONFIRMED:
∀ micTrans ∈ outtrans(micStep) with explicit(micTrans) = FALSE:

MMicTrans(micTrans) := READY;

i.e., when marking a micro step as UNCONFIRMED, all implicit micro transitions outgoing from this micro step are
marked as READY.

Example 8.3 (Applying Marking Rule MR1):
Consider Fig. 8.14. After initializing the review micro process instance, the start micro step is marked as UNCON-
FIRMED. According to Marking Rule MR1, this triggers the marking of the micro transition between the start micro
step and micro step urgency as READY.

Assume that a micro transition is marked as READY. Then its target micro step can be reached
when the attribute value (or relation) it refers to becomes available. When applying Marking
Rule MR1, therefore, Marking Rule MR2 is triggered afterwards. This rule allows the target
micro step of the micro transition to change its marking from READY to ENABLED. Note that
this indicates that a value for the attribute or relation the respective micro step refers to is then
mandatorily required.

126

8.4 State-internal Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

MR1

TRIGGER:

micro step becomes marked as UNCONFIRMED

outgoing micro transition

is re-marked

from WAITING to READY

object instance micro process instance

Review #1

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

SKIPPED

Figure 8.14: Applying Marking Rule MR1

Marking Rule (MR2: Marking micro steps as ENABLED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micTrans ∈ MicTransSet with MMicTrans(micTrans) = READY: MMicStep(target) := ENABLED;

i.e., when the marking of a micro transition changes to READY, its target micro step will be marked as ENABLED.

Example 8.4 (Applying Marking Rule MR2):
Consider Fig. 8.15 and the depicted review micro process instance. Assume that the micro transition between the
start micro step and micro step urgency becomes marked as READY. In turn, this triggers a change of the marking
of micro step urgency from READY to ENABLED according to Marking Rule MR2.

Marking a micro step as ENABLED indicates that a value for the attribute (or relation) this micro
step refers to is required. Accordingly, in the corresponding user form the respective input field
is highlighted (cf. Fig. 8.16). If an attribute value (or relation) is missing for a micro step, a user
input is mandatory to proceed with micro process execution. This is expressed by Execution
Rule ER2.

Execution Rule (ER2: Data input required):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let Attr denote the set of all attributes of any attribute type and RelSet be a finite set of
relations. Then:

∀ micStep ∈ MicStepSet with micStep.ref 6= NULL ∧ MMicStep(micStep) = ENABLED:

• ref=(attrType, attrValue) ∈ Attr,⇒ attrValue must be set

• ref=(relType, soid, toid) ∈ RelSet ∧ soid = oid,⇒ toid must be set

127

8 Micro Process Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

MR2

TRIGGER:

micro transition

becomes marked as READY

target micro step

is re-marked from READY to ENABLED

object instance micro process instance

Review #1

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

SKIPPED

Figure 8.15: Applying Marking Rule MR2

If an atomic (or value-specific) micro step changes its marking to ENABLED, a value for the corresponding attribute
(or relation) must be set.

Example 8.5 (Applying Execution Rule ER2):
Consider Fig. 8.16. Since micro step urgency is currently marked as ENABLED, a value for attribute urgency is
mandatorily required. Hence, the corresponding input field is highlighted using a red asterisk.

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

ER2

Return Date:

Urgency:

save cancel

Edit Review

*

TRIGGER:

micro step

becomes marked as ENABLED

and no attribute value is assigned

object instance micro process instance

Review #1

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

corresponding input field is highlighted

SKIPPED

Figure 8.16: Applying Execution Rule ER2

When a required attribute value (or relation) is set, the respective micro step will be marked as
ACTIVATED according to Reaction Rule RR2. Note that if the required attribute value (or relation)
is already available, Execution Rule ER2 will be skipped and Reaction Rule RR2 directly be
executed.

128

8.4 State-internal Execution

Reaction Rule (RR2: Marking micro steps as ACTIVATED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micStep=(ref, ValueSteps) ∈ MicStepSet with MMicStep(micStep) = ENABLED ∧ ref 6= NULL ∧ ValueSteps = ∅:
ref=(attrT, attrV) ∈ Attr ∧ attrV 6= NULL ∨ ref=(relT, s, t) ∈ RelSet ∧ t 6= NULL,⇒

MMicStep := ACTIVATED;

i.e., all atomic micro steps will be marked as ACTIVATED if a value for the corresponding attribute or relation is
available.

Example 8.6 (Applying Reaction Rule RR2):
Consider Fig. 8.17. Value "high" is assigned to attribute urgency. According to Reaction Rule RR2, then micro step
urgency is marked as ACTIVATED.

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

RR2

Return Date:

highUrgency:

save cancel

Edit Review

*

TRIGGER:

attribute value assigned

micro step is re-marked as

ACTIVATED

object instance micro process instance

Review #1

high

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

SKIPPED

Figure 8.17: Applying Reaction Rule RR2

If a micro step is marked as ACTIVATED, one may proceed with micro process execution. Ac-
cording to Marking Rule MR3, therefore, all incoming micro transitions, which are currently
marked as READY, change their marking to ENABLED.

Marking Rule (MR3: Marking micro transitions as ENABLED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micStep ∈ MicStepSet with MMicStep(micStep) = ACTIVATED:
∀ micTrans ∈ intrans(micStep) with MMicTrans(micTrans) = READY:

MMicTrans(micTrans) := ENABLED;

i.e., if a micro step becomes marked as ACTIVATED, all incoming micro transitions currently marked as READY
change their marking to ENABLED.

129

8 Micro Process Execution

Example 8.7 (Applying Marking Rule MR3):
In our running example, the micro transition connecting the start micro step with micro step urgency becomes
marked as ENABLED (cf. Fig. 8.18).

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

MR3

TRIGGER:

micro step becomes marked as ACTIVATED

incoming micro transition

is re-marked from READY to ENABLED

object instance micro process instance

Review #1

high

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

SKIPPED

Figure 8.18: Applying Marking Rule MR3

If only one micro transition becomes marked as ENABLED at a certain point in time, Marking
Rule MR4 will be triggered immediately. In particular, deterministic micro transitions, currently
marked as ENABLED, immediately change their marking to ACTIVATED.2.

Marking Rule (MR4: Marking micro transitions as ACTIVATED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∃! micTrans ∈ MicTransSet with MMicTrans(micTrans) = ENABLED,⇒ MMicTrans(micTrans) := ACTIVATED.

i.e., if there exists only one micro transition currently marked as ENABLED, it will immediately marked as ACTIVATED.

Example 8.8 (Applying System Rule MR4):
Consider Fig. 8.19: The micro transition connecting the start micro step with micro step urgency will immediately
marked as ACTIVATED when the micro transition becomes ENABLED.

2 Regarding a non-deterministic micro process instance, however, multiple succeeding micro steps may exist.
In the given context, when the attribute values (or relations) required for these steps become available, several
of them may be simultaneously marked as ACTIVATED. To prevent parallel micro step execution at this level,
only one micro step (and hence one state) may be reached. To ensure this, micro transitions originating from
the same micro steps are associated with different priorities. In order to evaluate priorities during micro process
execution, the respective micro transitions (targeting at micro steps currently marked as ACTIVATED) will be
marked as ENABLED (cf. Marking Rule MR3). Only the micro transition with the highest priority among all
enabled micro transitions will be selected. For this purpose, marking ENABLED is used for micro transitions to
evaluate which subsequent micro step (currently marked as ACTIVATED) may be actually reached; i.e., which
alternative path shall be selected (see Sect. 8.4.3 for details).

130

8.4 State-internal Execution

MR4

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

object instance micro process instance

TRIGGER:

only one micro transition

becomes marked as ENABLED
Review #1

high

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

micro transition

is immediatelly re-marked from

ENABLED to ACTIVATED

SKIPPED

Figure 8.19: Applying Marking Rule MR4

If a micro transition is marked as ACTIVATED, its target micro step can be reached and is there-
fore marked as UNCONFIRMED. This is defined by Marking Rule MR5.

Marking Rule (MR5: Marking micro steps as UNCONFIRMED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micTrans=(source, target, priority) ∈ MicTransSet with MMicTrans(micTrans) = ACTIVATED:
MMicStep(target) := UNCONFIRMED;

i.e., if a micro transition becomes marked as ACTIVATED, its target micro step will be re-marked as UNCONFIRMED.

Example 8.9 (Applying Marking Rule MR5):
Regarding our review micro process instance (cf. Fig. 8.20), micro step urgency can now be reached and marked
as UNCONFIRMED.

When a micro step becomes marked as UNCONFIRMED, its incoming micro transition is also
marked as UNCONFIRMED to indicate the path selected during micro process execution. To
ensure this, the application of Marking Rule MR5 triggers Marking Rule MR6.

Marking Rule (MR6: Marking micro transitions as UNCONFIRMED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micStep ∈ MicStepSet with MMicStep(micStep) = UNCONFIRMED:
∀ micTrans ∈ intrans(micStep) with MMicTrans(micTrans) = ACTIVATED ∧ isexternal(micTrans) = FALSE:

MMicTrans(micTrans) := UNCONFIRMED;

i.e., if a micro step becomes marked as UNCONFIRMED, its incoming (internal) micro transition, which is currently
marked as ACTIVATED, will be re-marked as UNCONFIRMED.

131

8 Micro Process Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

MR5

object instance micro process instance

Review #1

high

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

TRIGGER:

micro transition

becomes marked as ACTIVATED

target micro step

is re-marked as UNCONFIRMED

SKIPPED

Figure 8.20: Applying Marking Rule MR5

Example 8.10 (Applying Marking Rule MR6):
Consider Fig. 8.21. The micro transition connecting the start micro step with micro step urgency is re-marked as
UNCONFIRMED.

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

MR6

object instance micro process instance

Review #1

high

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

TRIGGER:

micro step

becomes marked as UNCONFIRMED

incoming micro transition

is re-marked from

ACTIVATED to UNCONFIRMED

SKIPPED

Figure 8.21: Applying Marking Rule MR6

The execution of Marking Rule MR5 (i.e., marking micro steps as UNCONFIRMED) triggers Mark-
ing Rule MR1 (cf. Fig. 8.22). According to Marking Rule MR1, all micro transitions, whose
source micro step has just been marked as UNCONFIRMED, change their marking from WAIT-
ING to READY.

The rules introduced for the deterministic execution of micro process instances are summa-
rized in Fig. 8.22: After marking a micro step as UNCONFIRMED, its outgoing (internal) micro
transitions change their marking from WAITING to READY (i.e., Marking Rule MR1). In turn, this
triggers Marking Rule MR2 according to which the target micro steps of these micro transitions

132

8.4 State-internal Execution

(with marking READY) change their marking from READY to ENABLED. If the attribute or relation
to which such a micro step refers has been already set, Reaction Rule RR2 is immediately trig-
gered. Opposed to this, if the required data input (i.e., attribute value or relation) is still missing,
Execution Rule ER2 is triggered. According to ER2, a mandatory form-based activity is auto-
matically assigned to the worklist of the responsible user. Using Reaction Rule RR2, in turn,
the micro step will be marked as ACTIVATED when the required data input becomes available.
This triggers Marking Rule MR3 according to which all incoming micro transitions change their
marking from READY to ENABLED.
Regarding deterministic micro process execution, exactly one micro transition is marked as EN-
ABLED at any point during process execution. For this special case, the respective transition will
be immediately marked as ACTIVATED according to Marking Rule MR4. When a micro transition
becomes marked as ACTIVATED, in turn, its target micro step is re-marked from ACTIVATED to
UNCONFIRMED (i.e., Marking Rule MR5). On one hand this indicates that all incoming micro
transitions (marked as ACTIVATED) may change their marking to UNCONFIRMED. On the other,
all outgoing (internal) micro transitions are then marked as READY (cf. Marking Rule MR1). This
then triggers the introduced rules iteratively.

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

micStep

UNCONFIRMED

micTrans

READY

micStep

ENABLED

value assigned

value

assigned

micStep

ACTIVATED

micTrans

ENABLED

micTrans

ACTIVATED

micStep

UNCONFIRMED

micTrans

UNCONFIRMED

micro process

initialization

Figure 8.22: Rules for deterministic micro process execution

8.4.2 Handling Value-specific Micro Steps

So far, we have described the rules enabling a state-internal execution of deterministic micro
processes. In this context, we have focused on atomic micro steps. This section extends the
rules driving micro process execution by additionally considering value-specific micro steps.

If a state changes its marking from WAITING to ACTIVATED, exactly one of its incoming external
micro transitions is marked as READY. According to Marking Rule MR2, when a micro transition
becomes marked as READY, all target micro steps will be marked as ENABLED. If the target
micro step is a value-specific one, however, all value steps belonging to it must be marked as
ENABLED as well. For this purpose, we extend Marking Rule MR2 (cf. Marking Rule MR2’).

Marking Rule (MR2’: Marking value steps as ENABLED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

a) see MR2 in Sect. 8.4.1

133

8 Micro Process Execution

b) ∀ micStep=(ref, ValueSteps) ∈ MicStepSet with MMicStep(micStep) = ENABLED:
∀ valueStep ∈ ValueSteps: MMicStep(valueStep) := ENABLED;

i.e., when a value-specific micro step becomes marked as ENABLED, its corresponding value steps will be
marked as ENABLED as well.

Example 8.11 (Applying Marking Rule MR2’):
Regarding our running example (cf. Fig 8.23), state pending contains the value-specific micro step proposal. Since
the micro transition between micro steps return date and proposal is marked as READY, its target micro step (i.e.,
micro step proposal) is re-marked to ENABLED according to Marking Rule MR2; i.e., micro step proposal is marked
as ENABLED. In addition, using Marking Rule MR2’, all value steps belonging to micro step proposal (i.e., value
step reject as well as micro step invite) are marked as ENABLED.

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

MR2'

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

object instance micro process instance

Review #1

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

micro transition

becomes marked as READY
MR2: micro step

is re-marked as ENABLED

MR2': value steps

are re-marked from

READY to ENABLED

Figure 8.23: Applying Marking Rule MR2’

Marking a micro step as ENABLED indicates that a value for the attribute (or relation) the micro
step refers to is required; i.e., Execution Rule ER2 must be applied. For this purpose, in the
respective form the corresponding input field is highlighted (e.g., the input field corresponding
to micro step proposal in Fig. 8.24).

When a value for an attribute (or relation), a value-specific micro step refers to, becomes avail-
able, whether the micro step can be marked as ACTIVATED depends on its value steps. For this
purpose, one first must evaluate which of the value steps may be activated. More precisely, a
value step will be marked as ACTIVATED if its predicate evaluates to true. For this purpose, we
extend Reaction Rule RR2 (cf. Reaction Rule RR2’).

Reaction Rule (RR2’: Marking value steps as ACTIVATED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

a) see RR2 in Sect. 8.4.1

b) ∀ micStep=(ref, ValueSteps) ∈ MicStepSet with MMicStep(micStep) = ENABLED ∧ micStep.ref 6= NULL:
∀ valueStep ∈ ValueSteps with constraint(valueStep) = TRUE:

MMicStep(valueStep) := ACTIVATED;
i.e., all value steps evaluating to True are marked as ACTIVATED.

134

8.4 State-internal Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

ER2

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Proposal:

Reason:

save cancel

Edit Review

Alternative Job:

Appraisal:

*

object instance micro process instance

Review #1

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

TRIGGER:

micro step

becomes marked as ENABLED

and no attribute value is assigned

corresponding input field

is highlighted

Figure 8.24: Applying Execution Rule ER2 for value-specific micro steps

Example 8.12 (Applying Marking Rule RR2’):
Consider Fig. 8.25. When a value for attribute proposal becomes available, whether micro step proposal can be
marked as ACTIVATED depends on its value steps. Since value "reject" is assigned to attribute proposal, value step
reject is marked as ACTIVATED.

Opposed to atomic micro steps, which will be immediately marked as ACTIVATED when the
required attribute value (or relation) becomes available, a value-specific micro step may only
be marked as ACTIVATED if at least one of its value steps is marked as ACTIVATED (cf. Reaction
Rule RR2”).

Reaction Rule (RR2”: Marking value-specific micro steps as ACTIVATED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

a) see RR2 in Sect. 8.4.1

b) see RR2’ in Sect. 8.4.2

c) ∀ micStep=(ref, VSteps) ∈ MicStepSet with MMicStep(micStep) = ENABLED ∧ ref 6= NULL ∧ VSteps 6= ∅:
∃ valueStep ∈ VSteps with MMicStep(valueStep) = ACTIVATED,⇒

MMicStep(micStep) := ACTIVATED;
i.e., a value-specific micro step changes its marking from ENABLED to ACTIVATED if at least one of its value
steps is marked as ACTIVATED.

135

8 Micro Process Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

RR2'

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Proposal:

Reason:

save cancel

Edit Review

reject

Alternative Job:

Appraisal:

*

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

value step

is re-marked from ENABLED to ACTIVATED

TRIGGER:

attribute value assigned

and the predicate evaluates to true

Figure 8.25: Applying Marking Rule RR2’

Example 8.13 (Applying Marking Rule RR2”):
Consider Fig. 8.26. Since value step reject is currently marked as ACTIVATED, micro step proposal changes its
marking from ENABLED to ACTIVATED.

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

RR2'’

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Proposal:

Reason:

save cancel

Edit Review

reject

Alternative Job:

Appraisal:

*

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

TRIGGER:

value step

becomes marked as ACTIVATED

value-specific micro step

is re-marked from ENABLED to ACTIVATED

Figure 8.26: Applying Marking Rule RR2”

If no value step of any enabled value-specific micro step is currently ACTIVATED, but a respective

136

8.4 State-internal Execution

attribute value is available, two scenarios are considered:

First, if the (value-specific) micro step itself has an outgoing micro transition, it can be handled
like an atomic micro step; i.e., it will be marked as ACTIVATED when the required attribute value
(or relation) becomes available (whether any of the predicates related to the value steps are
met). This indicates that micro process execution may proceed regardless of the specific at-
tribute value assigned (cf. Reaction Rule RR2”’d). Second, if no such micro transition exists,
and none of the value steps can be activated although an attribute value (or relation) is avail-
able, the respective value-specific micro step will be marked as BLOCKED indicating that micro
process execution must not proceed. For these micro steps another attribute value (or relation)
must be assigned (cf. Reaction Rule RR2”’e).

Reaction Rule (RR2”’: Marking value-specific micro steps as BLOCKED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

a) see RR2 in Sect. 8.4.1

b)-c) see RR2’ in Sect. 8.4.2

d) ∀ micStep=(ref, VSteps) ∈ MicStepSet with MMicStep(micStep) = ENABLED ∧ ref 6= NULL ∧ VSteps 6= ∅:
if outtransCount(micStep) ≥ 1:
(ref=(attrT, attrV) ∈ Attr ∧ attrV 6= NULL) ∨ (ref=(relT, s, t) ∈ RelSet ∧ t 6= NULL),⇒

MMicStep := ACTIVATED;
i.e., a value-specific micro step changes its marking from ENABLED to ACTIVATED if a value for its correspond-
ing attribute becomes available and the micro step itself has at least one outgoing micro transition (in addition
to the outgoing micro transitions of value steps belonging to this micro step).

e) ∀ micStep=(ref, VSteps) ∈ MicStepSet with
MMicStep(micStep) = ENABLED ∧ micStep.ref 6= NULL ∧ VSteps 6= ∅ ∧
((ref=(attrT, attrV) ∈ Attr ∧ attrV 6= NULL) ∨ (ref=(relType, s, t) ∈ RelSet ∧ t 6= NULL)):

if outtransCount(micStep) = 0 ∧ @ vStep ∈ VStepswith MMicStep(vStep) = ACTIVATED,⇒
MMicStep(micStep) := BLOCKED;

i.e., a value-specific micro step changes its marking from ENABLED to BLOCKED if it has no outgoing micro
transition and no value step currently marked as ACTIVATED.

To indicate that a value-specific micro step is blocked, the corresponding input field is high-
lighted (e.g., using a red exclamation mark).

Example 8.14 (Applying Marking Rule RR2”’):
Consider Fig. 8.27. For micro step proposal only value steps reject and invite exists. Both are associated with
outgoing micro transitions. Consequently, if a value other than "reject" or "invite" is assigned to attribute proposal,
the execution of the review micro process instance will be blocked; i.e., micro step proposal will be marked as
BLOCKED. To make this situation transparent to users the corresponding input field referring to attribute proposal is
then marked with a red exclamation mark.

In situations in which micro process execution is blocked due an incorrect attribute value, re-
sponsible users must reset the respective input field; i.e., delete the incorrect attribute value.
Following this, according to Reaction Rule RR3, the respective micro step changes is mark-
ing from BLOCKED to ENABLED indicating that a corresponding attribute value is now missing.
Note that value-specific micro steps always refer to an attribute, but not to a relation. If a new
attribute value is assigned, Reaction Rule RR2 will be triggered again.

137

8 Micro Process Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

RR2'’’e

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Proposal:

Reason:

save cancel

Edit Review

accept

Alternative Job:

Appraisal:

!*

object instance micro process instance

Review #1

accept

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

TRIGGER:

attribute value assigned

and no value step becomes

marked as ACTIVATED

value-specific micro step

is re-marked as BLOCKED

corresponding input field

is highlighted

Figure 8.27: Applying Marking Rule RR2”’

Reaction Rule (RR3: Re-marking value-specific micro steps as ENABLED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micStep=(ref, ValueSteps) ∈ MicStepSet with MMicStep(micStep) = BLOCKED:
ref=(attrType, attrValue) ∈ Attr ∧ attrValue = NULL,⇒ MMicStep(micStep) := ENABLED;

i.e., if the attribute value of a micro step, which is currently marked as BLOCKED, is deleted, the micro step will be
re-marked as ENABLED.

Example 8.15 (Applying Marking Rule RR3):
Consider Fig. 8.28. If value "accept" is deleted from the input field corresponding to attribute proposal, the micro
step proposal will be re-marked as ENABLED.

If another value is provided, which is covered by a value step (i.e., the respective predicate
evaluates to True), micro process execution may proceed. For this purpose, the value step be-
comes marked as ACTIVATED (cf. Reaction Rule RR2’. In turn, this triggers Reaction Rule RR2”
according to which the micro step itself changes its marking from ENABLED to ACTIVATED.

Example 8.16 (Applying Reaction Rule RR2’ and RR2”):
Consider Fig. 8.29. If value "reject" is assigned, value step reject will be marked as ACTIVATED (cf. Reaction
Rule RR2’ which triggers Reaction Rule RR2”). In turn, when applying Reaction Rule RR2”, the micro step itself
(referring to attribute proposal) changes its marking from ENABLED to ACTIVATED.

138

8.4 State-internal Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

RR3

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Proposal:

Reason:

save cancel

Edit Review

Alternative Job:

Appraisal:

*

object instance micro process instance

Review #1

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

TRIGGER:

attribute value is deleted

value-specific micro step

is re-marked as ENABLED

Figure 8.28: Applying Marking Rule RR3

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

RR2' + RR2'’

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Proposal:

Reason:

save cancel

Edit Review

reject

Alternative Job:

Appraisal:

*

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

RR2': value step

is re-marked as ACTIVATED

RR2'’: value-specific micro step

is re-marked as ACTIVATED

TRIGGER RR2':

attribute value assigned

and the predicate evaluates to true

TRIGGER RR2'’:

value step

becomes marked as ACTIVATED

Figure 8.29: Applying Reaction Rule RR2’ and RR2”

When a micro step becomes ACTIVATED, its incoming micro transition, which is currently marked
as READY, is re-marked as ENABLED (cf. Marking Rule MR3). If this micro transition is the only
one targeting at the respective micro step, it immediately changes its marking from ENABLED

to ACTIVATED (cf. Marking Rule MR4). In turn, this triggers Marking Rule MR5, which allows
the target micro step to change its marking from ACTIVATED to UNCONFIRMED (cf. Fig. 8.30).

139

8 Micro Process Execution

When the micro step is a value-specific one, corresponding value steps must be re-marked as
well. For this purpose, we extend Marking Rule MR5 (cf. Marking Rule MR5’). In particular, all
value steps, currently marked as ACTIVATED, change their marking to UNCONFIRMED. Opposed
to this, all value steps, still marked as ENABLED, are now re-marked as BYPASSED; i.e., their
outgoing micro transitions must not fire anymore and hence it is not possible to activate the
execution paths originating from these bypassed value steps.

Marking Rule (MR5’: Marking value steps as UNCONFIRMED or BYPASSED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

a) see MR5 in Sect. 8.4.1

b) ∀ micStep=(ref, VSteps) ∈ MicStepSet with MMicStep(micStep) = UNCONFIRMED ∧ VSteps 6= ∅:

∀ vS ∈ VSteps: MMicStep(vS) :=

{
UNCONFIRMED, if MMicStep(vS) = ACTIVATED

BYPASSED, if MMicStep(vS) = ENABLED

i.e., when a value-specific micro step becomes re-marked ACTIVATED to UNCONFIRMED, all value steps cur-
rently marked as ACTIVATED are re-marked as UNCONFIRMED. Furthermore, all value steps currently marked
as ENABLED change their marking to BYPASSED.

Example 8.17 (Applying Marking Rule MR5’):
Consider Fig. 8.30. Value step reject changes its marking from ACTIVATED to UNCONFIRMED, whereas value step
invite is re-marked as BYPASSED.

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

MR5'

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

TRIGGER:

micro step becomes

marked as UNCONFIRMED

value step

is re-marked from

ACTIVATED to UNCONFIRMED

value step

is re-marked from

ENABLED to BYPASSED

Figure 8.30: Applying Marking Rule MR5’

In turn, when a micro step is marked as UNCONFIRMED, its outgoing micro transitions are
re-marked from WAITING to READY (cf. Marking Rule MR1). Similarly, when a value step is
re-marked from ACTIVATED to UNCONFIRMED, its outgoing micro transitions are re-marked as
READY (cf. Marking Rule MR1’).

140

8.4 State-internal Execution

Marking Rule (MR1’: Marking micro transitions originating from value steps as READY):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

a) see MR1 in Sect. 8.4.1

b) ∀ valueStep ∈ ValueSteps with MMicStep(valueStep) = UNCONFIRMED:
∀ micTrans ∈ outtrans(valueStep) with explicit(micTrans) = FALSE:

MMicTrans(micTrans) := READY;
i.e., if a value step is marked as UNCONFIRMED, all implicit micro transitions outgoing from this micro step will
be marked as READY.

Example 8.18 (Applying Marking Rule MR1’):
Consider Fig. 8.31. Value step reject is marked as UNCONFIRMED. This triggers Marking Rule MR1’. In particular,
the micro transition between value step reject and micro step reason as well as the micro transition between value
step reject and micro step alternative job are marked as READY; i.e., more than one succeeding micro step
may be reached (cf. Sect. 8.4.3 for details). Opposed to this, the execution path comprising micro step appraisal

is skipped due to a state-internal dead-path eliminating (cf. Sect. 8.4.4 for details).

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

MR1'

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

TRIGGER:

value step becomes

marked as UNCONFIRMED

outgoing micro transitions

are re-marked as READY

Figure 8.31: Applying Marking Rule MR1’

Altogether, Fig. 8.32 illustrates the various rules for handling value-specific micro steps and
their interdependencies. The depicted flow of rules differs from the handling of atomic micro
steps: First, regarding Marking Rule MR1, micro transitions starting from value steps currently
marked as UNCONFIRMED must change their marking to READY.3 Second, when a micro step
becomes marked as ENABLED (cf. Marking Rule MR2), corresponding value steps are also
marked as ENABLED. Moreover, in the context of Reaction Rule RR2, value steps must be
considered; i.e., a value step is marked as ACTIVATED if its predicate evaluates to true. Further,
Reaction Rule RR2 is extended to adequately deal with value-specific micro steps. The latter
may be marked as ACTIVATED, if at least one of its value steps is marked as ACTIVATED or the
value-specific micro step itself is source of a micro transition (and a value for the attribute the
micro step refers to is available). Opposed to this, if a value for the attribute, the value-specific

3Note that the same applies to micro transitions originating from a micro step itself.

141

8 Micro Process Execution

micro step refers to, is set and it is not possible to activate the micro step (i.e., none of its value
steps evaluates to true), the micro step changes its marking to BLOCKED. In turn, this marking
indicates that an attribute value different from the current one must be set. In this context, we
introduce Reaction Rule RR3 to re-mark respective micro steps as ENABLED. Finally, when
applying Marking Rule MR5 to mark micro steps as UNCONFIRMED, corresponding value steps
currently ACTIVATED must be marked as UNCONFIRMED as well. Value steps, in turn, which are
still marked as ENABLED, change their marking to BYPASSED.

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

micStep

UNCONFIRMED

micTrans

READY

micStep

ENABLED

value assigned

value

assigned

micStep

ACTIVATED

micTrans

ENABLED

micTrans

ACTIVATED

micStep

UNCONFIRMED micTrans

UNCONFIRMED

RR3

micStep

BLOCKED

micStep

ENABLED

valueStep

BYPASSED

micro process

initialization

Figure 8.32: Rules considering value-specific micro steps

8.4.3 Non-deterministic Execution

We now discuss how non-deterministic micro process instances are executed. Thereby, we
differentiate between the following scenarios: In general, non-deterministic execution paths
exist in the context of value-specific micro steps. For example consider Fig. 8.33a, where it
depends on the attribute value of the source micro step, which of the alternative paths will be
selected (i.e., which value step will be activated at run-time). If only one value step is activated
at run-time, all rules introduced in the context of deterministic execution and handling value-
specific micro steps can be applied. In general, however, we also have to consider scenarios
in which a micro step (or value step) has more than one outgoing micro transition (cf. Fig.
8.33b); i.e., users may choose one attribute (or relation) mandatorily required. Here, it depends
on the target micro step, which particular micro transition will be chosen. More precisely, an
outgoing micro transition may be chosen, if a value for the attribute (or relation) the target micro
step refers to is available (or this target micro step is empty). In this context, we must ensure
that only one subsequent micro step may be reached (even if for multiple target micro steps
respective values are available). To be able to cope with such scenarios, respective micro
transitions are associated with different priorities at build-time. Based on them, only the micro
transition having the highest priority (i.e., the lowest number) is selected at run-time. Note that
value steps as well as the micro step itself may have outgoing micro transitions (cf. Fig. 8.33c).
Here, micro transitions originating from both a value and a micro step may be simultaneously
chosen. This may lead to the parallel activation of different states. In addition, more than one
value step may be activated at a certain point during process execution. As example consider
Fig. 8.33d.

Using Marking Rule MR1, outgoing (internal) micro transitions are marked as READY when
their source micro step or source value step becomes marked as UNCONFIRMED. In turn, this
triggers Marking Rule MR2. Accordingly, all target micro steps of the micro transitions currently

142

8.4 State-internal Execution

true

false

finished

true

false

finished

a c

>= 1

> 5

number of

internships

d

reason

b

1

2

1

2

3

4
5

1

2

1

2

Figure 8.33: Non-deterministic execution paths

marked as READY are re-marked as ENABLED. This indicates that a value for the attribute (or
relation) the micro step refers to is now mandatorily required.

Example 8.19 (Applying Marking Rule MR2 for several micro steps):
Consider Fig. 8.34. If value "reject" is assigned to attribute proposal either a value for attribute reason (i.e., to
reach micro step reason) or relation alternative job (i.e., to reach micro step alternative job) is mandatorily
required. Hence, corresponding input fields are highlighted with a red star.

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

MR2

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Z

Proposal:

Reason:

save cancel

Edit Review

reject

Alternative Job:

Appraisal:

*
*

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Z

TRIGGER:

micro transitions

become marked as READY

target micro steps

are re-marked from

READY to ENABLED

ER1: corresponding

input fields are highlighted

non-choosen execution path

(dead-path eliminiation

is executed later on)

Figure 8.34: Applying Marking Rule MR2 for several micro steps

If an attribute value (or relation) is only available for one subsequent micro step (i.e., this micro
step is marked as ACTIVATED according to Reaction Rule RR2), only one alternative execution
path is chosen. More precisely, when applying Marking Rule MR3, the incoming micro transition
of a micro step which is currently marked as ACTIVATED, is re-marked from READY to ENABLED.
If only one micro transition becomes ENABLED, Marking Rule MR4 immediately re-marks this
micro transition as ACTIVATED. Furthermore, all other execution paths, which are still marked as
READY, are re-marked as BYPASSED indicating that corresponding micro transitions belong to
alternative execution paths currently skipped (since there is no value for the attribute or relation
their target micro step refers to). We extend System Rule MR4 (cf. Marking Rule MR4’).

143

8 Micro Process Execution

Marking Rule (MR4’: Marking micro transitions as BYPASSED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

a) see MR4 in Sect. 8.4.1

b) ∃ micTrans’ ∈ MicTransSet with MMicTrans(micTrans’) = ACTIVATED:
∀ micTrans ∈ MicTransSet with MMicTrans(micTrans) = READY:

MMicTrans(micTrans) := BYPASSED;
i.e., if a micro transition is marked as ACTIVATED all other micro transitions currently marked as READY are
re-marked as BYPASSED.

Furthermore, we must consider the case for which values of the attributes (or relations) of more
than one subsequent micro step are available.

Example 8.20 (Applying Reaction Rule RR2 for several micro steps):
Consider Fig. 8.35. Values for both attribute reason and for relation alternative job are available. Consequently,
when applying Reaction Rule RR2, the corresponding micro steps are marked as ACTIVATED.

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

RR2

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Proposal:

less skillsReason:

save cancel

Edit Review

reject

Alternative Job: engineer

Appraisal:

*
*

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

less skills

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Z

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative

job

TRIGGER:

attribute value and relation

are assigned

micro steps

are re-marked from

ENABLED to ACTIVATED

Figure 8.35: Applying Reaction Rule RR2 to several micro steps

If more than one micro step is marked as ACTIVATED at a certain point during micro process
execution, Marking Rule MR3 is applied several times for each of these micro steps.

Example 8.21 (Applying Marking Rule MR3 for several micro steps):
Consider Fig. 8.36. When applying Marking Rule MR3, the micro transition between value step reject and micro
step reason is marked as ENABLED. The same applies to the micro transition linking value step reject and micro
step alternative job.

144

8.4 State-internal Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

MR3

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Review #1

reject

be fast

high

01/03/2012

less skills

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID
Z

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

object instance micro process instance

incoming micro transitions

are re-marked from

READY to ENABLED

TRIGGER:

micro steps

become marked as ACTIVATED

Figure 8.36: Applying Marking Rule MR3 for several micro steps

In the given context, we must consider the priorities of enabled micro transitions to determine
which of the latter shall be activated. Consider Marking Rule MR4”, which will be triggered if
more than one micro transition becomes marked as ENABLED. According to this rule, from the
ENABLED micro transitions only the one having the highest priority4 is re-marked as ACTIVATED.
In turn, all other ones are re-marked from ENABLED to BYPASSED (cf. Marking Rule MR4’).
In addition, these micro transitions, which are currently marked as READY, are re-marked as
BYPASSED. Note that the latter cannot be reached since the value of the attribute (or relation)
the target micro step refers to is not available.

Marking Rule (MR4”: Priority Evaluation):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

a) see MR4 in Sect. 8.4.1

b) see MR4’ in Sect. 8.4.3

c) Let MicTransENABLED := {micTrans ∈ MicTransSet | MMicTrans(micTrans) = ENABLED}.
Let further micTrans* ∈ MicTransENABLED be the enabled micro transition having the highest priority;
i.e., micTrans*.priority ≤ micTrans.priority ∀ micTrans ∈ MicTransENABLED. Then:

MMicTrans(micTrans) :=

{
ACTIVATED, micTrans = micTrans*
BYPASSED, micTrans ∈ MicTransENABLED - {micTrans*}

i.e., the micro transition with the highest priority (i.e., lowest number) is marked as ACTIVATED, where all other
ones are marked as BYPASSED.

Example 8.22 (Applying Marking Rule MR4” for priority evaluation):
Consider Fig. 8.37. Only the micro transition between value step reject and micro step alternative job is
marked as ACTIVATED. By contrast, due to its lower priority, the micro transition between value step reject and
micro step reason, is marked as BYPASSED.

4Note that the lowest value represents the highest priority.

145

8 Micro Process Execution

MR4'’

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Review #1

reject

be fast

high

01/03/2012

less skills

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID
Z

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

object instance micro process instance

lower priority

higher priority

due to its lower priority

 the micro transition

is re-marked as BYPASSED

due to its higher priority

 the micro transition

is re-marked as ACTIVATED

TRIGGER:

several micro transitions

become marked as ENABLED

Figure 8.37: Applying Marking Rule MR4” for priority evaluation

After applying Marking Rule MR4, Marking Rule MR5 is triggered and the target micro step
of the micro transition marked as ACTIVATED is re-marked as UNCONFIRMED. Following this,
according to Marking Rule MR6, the incoming micro transition of a micro step currently marked
as UNCONFIRMED is re-marked from ACTIVATED to UNCONFIRMED as well.

Altogether, to execute non-deterministic micro process instances, we extended Marking Rule
MR4 in two ways (cf. Fig. 8.38). First, all micro transitions currently marked as READY are
re-marked as BYPASSED in case another micro transition is ACTIVATED. Note that these micro
transitions cannot fire because the attribute value (or relation) required to activate their target
micro step is missing. Second, it is possible that more than one micro transition may fire and
hence is marked as ENABLED. For this case, only the micro transition with the highest priority
(i.e., having the lowest value) is ACTIVATED. All other ones are marked as BYPASSED.

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

micTrans

ACTIVATED

RR3

micTrans

BYPASSED

priority

evaluation

valueStep

BYPASSED

micro process

initialization

Figure 8.38: Rules for non-deterministic micro process execution

8.4.4 Internal Dead-path Elimination

Especially, when coordinating the execution of multiple micro process instances (cf. Chap.
10), we must be able to identify those states that can no longer be reached (since an alterna-
tive execution path was selected). To identify them, different kinds of dead-path eliminations are

146

8.4 State-internal Execution

supported. In particular, we mark all micro steps, micro transitions, and states not selected dur-
ing micro process execution accordingly. However, we must consider that values of attributes
(or relations) may be changed as long as the state the corresponding micro steps belong to
is still ACTIVATED.5 For this purpose, we differentiate between external and internal dead-path
elimination. Regarding the latter, we mark all micro steps and micro transitions belonging to
the currently ACTIVATED state as BYPASSED if another execution path within the same state is
chosen. Consider Marking Rules MR4 and MR5. Applying the latter, all value steps for which
the corresponding predicate evaluates to false are marked as BYPASSED, when the micro step
the value step belongs to is marked as UNCONFIRMED. As example consider value step invite

in Fig. 8.39.

In turn, when applying Marking Rule MR4, all outgoing micro transitions that cannot be activated
are marked as BYPASSED (e.g., the micro transition between value step reject and micro step
reason in Fig. 8.40).

Both value steps and micro transitions currently marked as BYPASSED (cf. Marking Rule MR4
and MR5) constitute the starting point of an internal dead-path elimination. For the latter, two
additional marking rules are needed. First, Marking Rule MR7 remarks those micro transitions
as BYPASSED whose source value or source micro step is currently marked as BYPASSED.
However, only internal micro transitions are considered; i.e., Marking Rule MR7 only addresses
micro transitions whose source and target micro steps belong to the same state (i.e., the state
currently marked as ACTIVATED).

Marking Rule (MR7: Marking micro transitions as BYPASSED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

a) ∀ micStep ∈ MicStepSet with MMicStep(micStep) = BYPASSED:
∀ micTrans ∈ outtrans(micStep) with isexternal(micTrans) = FALSE ∧ MMicTrans(micTrans) = WAITING:

MMicTrans(micTrans) := BYPASSED;
i.e., if a micro step is marked as BYPASSED, all internal micro transitions outgoing from it are marked as
BYPASSED as well.

b) ∀ micStep=(ref, ValueSteps) ∈ MicStepSet with
MMicStep(micStep) = BYPASSED ∨ MMicStep(micStep) = UNCONFIRMED:

∀ valueStep ∈ ValueSteps with MMicStep(valueStep) = BYPASSED:
∀ micTrans ∈ outtrans(valueStep) with isexternal(micTrans) = FALSE
∧ MMicTrans(micTrans) = WAITING:

MMicTrans(micTrans) := BYPASSED;
i.e., if a value step is marked as BYPASSED, all internal micro transitions outgoing from this value step are
marked as BYPASSED as well.

Second, according to Marking Rule MR8, if all incoming micro transitions of any micro step,
belonging to the currently ACTIVATED state, are marked as BYPASSED, this micro step will be
marked as BYPASSED as well. Note that Marking Rules MR7 and MR8 trigger each other itera-
tively. Finally, an internal dead-path elimination will terminate if the micro transitions originating
from a BYPASSED micro step are external ones.

5Note that this flexibility is required in practice and such value changes are therefore tolerated.

147

8 Micro Process Execution

Marking Rule (MR8: Marking micro steps as BYPASSED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micStep ∈ MicStepSet with MMicStep(micStep) ∈ {READY, ENABLED, BLOCKED}:
∀ micTrans ∈ intrans(micStep) with MMicTrans(micTrans) = BYPASSED:

MMicStep(micStep) := BYPASSED;
i.e., if all incoming micro transitions of a micro step are marked as BYPASSED, it will be marked as BYPASSED as
well.

Example 8.23 (Internal dead-path elimination):
Consider Fig. 8.39. Value step invite, which is marked as BYPASSED, triggers Marking Rule MR7. As a conse-
quence, the micro transition between value step invite and micro step appraisal is re-marked from WAITING to
BYPASSED. Consider now micro steps reason and appraisal, whose incoming micro transitions are both marked as
BYPASSED. In turn, this triggers Marking Rule MR8, according to which both micro steps are marked as BYPASSED
as well (cf. Fig. 8.40) Finally, since all micro transitions originating from micro steps reason and appraisal are
external ones, Marking Rule MR7 is not re-triggered; i.e., the internal dead-path elimination terminates.

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

MR7

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Review #1

reject

be fast

high

01/03/2012

less skills

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID
Z

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

object instance micro process instance

TRIGGER:

value step

becomes marked as BYPASSED

outgoing micro transitions

are re-marked as BYPASSED

Figure 8.39: Applying Marking Rule MR7

Fig. 8.41 summarizes the rules relevant for an internal dead-path elimination. Furthermore,
Fig. 8.41 shows which markings trigger the respective rules. Marking Rule MR8 is triggered
when all incoming micro transitions of a micro step are marked as BYPASSED. In turn, micro
transitions are marked as BYPASSED when executing Marking Rule MR4. Moreover, when
applying Marking Rule MR5, value steps may be marked as BYPASSED. In turn, the latter
triggers the execution of Marking Rule MR7, which then marks all micro transitions originating
from these value steps as BYPASSED. Finally, Marking Rules MR7 and MR8 are iteratively
applied.

148

8.4 State-internal Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

MR8

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Review #1

reject

be fast

high

01/03/2012

less skills

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID
Z

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

object instance micro process instance

TRIGGER:

all incoming micro transitions

become marked as BYPASSED

target micro steps

are re-marked as BYPASSED

Figure 8.40: Applying Marking Rule MR8

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

micTrans

ACTIVATED

RR3

micTrans

BYPASSED

priority

evaluation

MR8 MR7

internal dead-path

elimination

micTrans

BYPASSED

micStep

BYPASSED

valueStep

BYPASSED

micro process

initialization

Figure 8.41: Rules for an internal dead-path elimination

8.4.5 Handling Empty Micro Steps

So far, we have considered atomic and value-specific micro steps. This section extends these
considerations by additionally considering empty micro steps (e.g., end micro steps).

Example 8.24 (Applying Marking Rule MR2 for empty micro steps):
Consider Fig. 8.42. State finished comprises an empty micro step, which is marked as ENABLED when one of its
incoming micro transitions becomes marked as READY.

Marking ENABLED indicates that a value for the attribute (or relation) the respective micro step
refers to is mandatorily required to proceed with micro process execution. However, empty
micro steps do not refer to any attribute or relation, and are hence immediately marked as
ACTIVATED. For this purpose, we extend Reaction Rule RR2 to RR2’.

149

8 Micro Process Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

MR2

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Review #1

reject

be fast

high

01/03/2012

less skills

true

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID
Z

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

object instance micro process instance

TRIGGER: micro transition

becomes marked as READY

micro step

is re-marked

as ENABLED

Figure 8.42: Applying Marking Rule MR2 to empty micro steps

Reaction Rule (RR2””: Marking empty micro steps as ACTIVATED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

a) see RR2 in Sect. 8.4.1

b)-e) see RR2’ in Sect. 8.4.2

f) ∀ micStep=(ref, ValueSteps) ∈ MicStepSet with ref = NULL ∧ MMicStep(micStep) = ENABLED:
MMicStep(micStep) := ACTIVATED;

i.e., all empty micro steps that become marked as ENABLED are immediately re-marked as ACTIVATED.

Example 8.25 (Applying Reaction Rule RR2”” for empty micro steps):
Consider Fig. 8.43. According to Reaction Rule RR2””, the empty micro step of state finished will be immediately
marked as ACTIVATED.

Execution Rule ER2 is not applied in the context of empty micro steps. Instead, Reaction Rule
RR2 is immediately triggered (cf. Fig. 8.44). If an empty micro step is marked as ACTIVATED,
Marking Rule MR3 will be triggered followed by the already introduced sequence of rules.

8.4.6 Re-assigning Attribute Values and Relations

When a state becomes enabled during the processing of an object instance, a correspond-
ing form-based activity for entering the required attribute values (or relations) is automatically
generated (cf. Fig. 8.45). In particular, for each micro step of the currently activated state, a
corresponding input field is generated, enabling the assignment of the corresponding attribute
value (or relation). These input fields must then be filled out by the responsible user who is
assigned to the respective state.

150

8.4 State-internal Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

RR2

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Review #1

reject

be fast

high

01/03/2012

less skills

true

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID
Z

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

object instance micro process instance

empty micro steps

are immediately re-marked

from ENABLED to ACTIVATED

TRIGGER:

empty micro step

becomes marked

as ENABLED

Figure 8.43: Applying Reaction Rule RR2”” to empty micro steps

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

empty micStep
micro process

initialization

Figure 8.44: Rules for empty micro steps

Example 8.26 (Executing state pending):
Consider Fig. 8.45. Value step reject and micro step alternative job are both marked as UNCONFIRMED; i.e., the
required attribute values and relations are available – attribute proposal has value "reject" and relation alternative

job refers to the "engineer" object instance. When applying an internal dead-path elimination, all other micro steps
(i.e., reason and appraisal), value step invite, and micro transitions (i.e., the micro transition between reject

and reason and the one between invite and appraisal) are marked as BYPASSED.

As long as a state change has not been triggered, the responsible user may still change at-
tribute settings. For example, he might assign value "invite" instead of value "reject" to attribute
proposal. To provide this flexibility, the ACTIVATED state needs to be internally reset. More
precisely, the micro process instance is reset to the first micro step of the currently activated
state. To detect when value changes are applied during micro process execution, each (atomic
or value-specific) micro step comprises a trace saving the value of the referenced attribute or

151

8 Micro Process Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Proposal:

Reason:

save cancel

Edit Review

reject

Alternative Job: engineer

Appraisal:

Review #1

reject

be fast

high

01/03/2012

less skills

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Z

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

object instance micro process instance

all required

attribute values

and relations

are provided

Figure 8.45: Micro process execution in state pending

relation when the respective micro step is marked as UNCONFIRMED (cf. Def. 26).

Definition 26 (Trace):
Let ds=(dm, OSet, RelSet) be a data structure with OSet be the set of all object instances, Attr the set of all at-
tributes, and AttrValues the set of all possible attribute values.
Further, let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Finally, let micStep = (ref, ValueSteps) ∈ MicStepSet with ref 6= NULL be a value-specific or
atomic micro step. Then:

trace: MicStepSet 7→ AttrValues ∪ OSet is a function that determines for each micro step the value (or object
reference) assigned to the corresponding attribute (or relation) when the micro step is re-marked from ACTIVATED
to UNCONFIRMED. In detail:

• trace(micStep) = attrValue, if ref = (attrType, attrValue) ∈ Attr ∧ MMicStep(micStep) = UNCONFIRMED
i.e., in this case function trace determines for each micro process step the value assigned to the correspond-
ing attribute, when the micro step becomes re-marked from ACTIVATED to UNCONFIRMED; i.e., trace(micStep)
= attrValue.

• trace(micStep) = toid, if ref = (relType, soid, toid) ∈ RelSet ∧ MMicStep(micStep) = UNCONFIRED
i.e., in this case trace is a function that determines for each micro process step the reference assigned to
the corresponding relation, when the micro step becomes re-marked from ACTIVATED to UNCONFIRMED; i.e.,
trace(micStep) = toid.

According to Reaction Rule RR4, an internal reset is triggered if the currently assigned value
of the attribute or relation is not the same as saved by the corresponding trace. All micro and
value steps of the currently ACTIVATED state are marked as READY, regardless whether they
are currently marked as UNCONFIRMED or BYPASSED (cf. Reaction Rule RR4a+b). In addition,
all internal micro transitions, for which the source and target micro (or value) steps belong
to the currently activated state, are marked as WAITING (cf. Reaction Rule RR4c). In turn, the
external micro transition, which was used to activate the current state, changes its marking from

152

8.4 State-internal Execution

CONFIRMED to READY (cf. Reaction Rule RR4d). If the currently activated state corresponds
to the start state of the micro process instance, the corresponding start micro step is marked
as UNCONFIRMED and its outgoing micro transitions are marked as READY (cf. Reaction Rule
RR4e). Finally, all external micro transitions, used to enable a subsequent state, are marked
as WAITING (cf. Reaction Rule RR4f).

Reaction Rule (RR4: Internal reset):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let state=(name, sMicStepSet) ∈ StateSet be a state with MState(state) = ACTIVATED.
Then:

∃ micStep = (ref, ValueSteps) ∈ sMicStepSet with MMicStep(micStep) = UNCONFIRMED ∧
(ref ∈ Attr ∧ attrValue 6= trace(micStep) ∨ ref ∈ RelSet ∧ ref.toid 6= trace(micStep),⇒

a) ∀ micStep ∈ sMicStepSet: MMicStep(micStep) := READY;
i.e., all micro steps of the currently activated state are marked as READY.

b) ∀ micStep = (ref, ValueSteps) ∈ sMicStepSet: ∀ valueStep ∈ ValueSteps: MMicStep(valueStep) := READY;
i.e., all value steps of the currently activated state are marked as READY.

c) ∀ micTrans=(source, target, priority) ∈ MicTransSet with {source, target} ⊆ sMicStepSet:
MMicTrans(micTrans) := WAITING;

i.e., all internal micro transitions of the currently activated state are marked as WAITING.

d) state != startStatemicProcInstance: micTrans=(source, target, priority) ∈ MicTransSet with
source /∈ sMicStepSet ∧ target ∈ sMicStepSet ∧ MMicTrans(micTrans) = CONFIRMED:

MMicTrans(micTrans) := READY;
i.e., if the currently activated state does not correspond to the start state of the micro process instance, the
marking of the external micro transition whose target micro step belongs to the currently activated state is
reset from CONFIRMED to READY.

e) state = startStatemicProcInstance:
MmicStep(startMicStepmicProcInstance) := UNCONFIRMED ∧
∀ micTrans ∈ MicTransSet with micTrans.sourceStep = startMicStep:

MMicTrans(micTrans) := READY;
i.e., if the currently activated state corresponds to the start state of the micro process instance, the corre-
sponding start micro step is re-marked as UNCONFIRMED and the micro transitions originating from it are
marked as READY.

f) micTrans=(source,target,prio) ∈ MicTransSet with source ∈ sMicStepSet ∧ target /∈ sMicStepSet
∧ MMicTrans(micTrans) = CONFIRMABLE:

MMicTrans(micTrans) := WAITING;
i.e., all external micro transitions whose source micro step (or value step) belongs to the currently activated
state is marked as WAITING.

Example 8.27 (Applying Reaction Rule RR4):
Consider Fig. 8.46. The trace of micro step proposal is "reject" since this value was used during micro process
execution. However, the responsible user changed this value afterwards; i.e., value "invite" is now assigned to at-
tribute proposal. When performing the required internal reset, micro steps proposal, reason, alternative job,
and appraisal as well as value steps reject and invite are re-marked as READY. In addition, the internal micro
transitions connecting value steps reject and invite with the respective micro steps reason, alternative job, or
appraisal are marked as WAITING. In turn, the external micro transition connecting micro steps return date and
proposal was used to activate state pending. Hence, this micro transition is re-marked as READY. Finally, the exter-
nal micro transition between micro steps alternative job and finished (belonging to state reject proposed) is
re-marked as WAITING. Before setting attribute value proposal, this micro transition was marked as CONFIRMABLE
(cf. Fig. 8.45).

153

8 Micro Process Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

RR4

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Proposal:

Reason:

save cancel

Edit Review

invite

Alternative Job: engineer

Appraisal:

trace = reject

Review #1

invite

be fast

high

01/03/2012

less skills

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Z

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

object instance micro process instance

TRIGGER:

value of attribute proposal

becomes changed from

„reject“ to „invite“

micro transition

used to activate the state

is re-marked as READY

micro transition

for activating a subsequent state

is re-marked as WAITING

micro steps and value steps

are re-marked as READY

internal micro transitions

are re-marked as WAITING

Figure 8.46: Applying Reaction Rule RR4

After an internal reset, the re-initialized region of the micro process instance may be re-executed
based on the already presented marking rules (cf. Fig. 8.47). Opposed to the first execution of
this region, however, the different attribute values and relations are now considered leading to
a dynamic adaption of the corresponding user form.

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

empty micStep

internal reset

RR4

micro process

initialization

Figure 8.47: Rules for an internal reset

Example 8.28 (Applying Marking Rule MR2 after an internal reset):
Consider Fig. 8.48. When re-applying Marking Rule MR2, micro step proposal as well as its value steps reject

and invite are first marked as ENABLED.

154

8.5 State Changes

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

MR2

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Proposal:

Reason:

save cancel

Edit Review

invite

Alternative Job: engineer

Appraisal:

Review #1

invite

be fast

high

01/03/2012

less skills

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Z

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

object instance micro process instance

TRIGGER:

micro transition

becomes marked as READY

target micro steps and value steps

become re-marked as ENABLED

Figure 8.48: Applying Marking Rule MR2 after an internal reset

Example 8.29 (Applying Reaction Rule RR2 after an internal reset):
Consider the user form in Fig. 8.48. Since value "invite" is now assigned to attribute proposal, Reaction Rule RR2
is immediately triggered marking the corresponding value step invite as ACTIVATED (cf. Fig. 8.49). Since at least
one of its value steps is marked as ACTIVATED, in addition, micro step proposal changes its marking from ENABLED
to ACTIVATED as well.

Note that the re-execution of a particular region of a micro process instance might lead a dy-
namic adaption of the corresponding user form.

Example 8.30 (Applying Execution Rule ER2 for adapting user forms):
When applying the rules for a state-internal execution of a micro process instance, instead of micro steps reason

and alternative job, micro step appraisal becomes ENABLED. In turn, this marking triggers Execution Rule ER2
leading to a dynamic adaption of the corresponding user form. Consider Fig. 8.50, where the input field belonging
to micro step appraisal is marked as mandatory (using a red star).

8.5 State Changes

As discussed in Chapt. 7, a micro process comprises different states to coordinate the pro-
cessing of an object instance among different users. More precisely, in different states the
user forms generated for assigning required attribute values or relations are assigned to dif-
ferent users (depending on the specified user role assignment). Sect. 8.4 described the rules
driving the state-internal executions of a micro process instance at run-time; i.e., the genera-
tion of state-specific user forms as well as their internal process logic. Opposed to this, this

155

8 Micro Process Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

RR2

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Proposal:

Reason:

save cancel

Edit Review

invite

Alternative Job: engineer

Appraisal:

Review #1

invite

be fast

high

01/03/2012

less skills

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Z

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

object instance micro process instance

TRIGGER:

attribute value is assigned

and the predicate of at least one value

step evaluates to true

value step

is re-marked as

ACTIVATED

micro step is re-marked as

ACTIVATED as well

Figure 8.49: Applying Reaction Rule RR2 after an internal reset

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

ER2

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Proposal:

Reason:

save cancel

Edit Review

invite

Alternative Job: engineer

Appraisal: *

Review #1

invite

be fast

high

01/03/2012

less skills

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Z

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

object instance micro process instance

micro step

becomes marked as

ENABLED

corressponding attribute value

is now mandatorily required

Figure 8.50: Applying Execution Rule ER2 for adapting user forms

section discusses when a state change occurs and how it is performed. In this context, we
must differentiate between implicit and explicit state changes. The latter additionally require
the commitment of a responsible user, whereas implicit state changes are automatically per-
formed. Moreover, in certain situations users may decide which of the subsequent states shall
be activated.

156

8.5 State Changes

8.5.1 Implicit Micro Transitions

External micro transitions are either categorized as implicit (like internal micro transitions) or
explicit. According to Marking Rule MR1, implicit micro transitions will be marked as READY

when their source micro step (or value step) is re-marked from ACTIVATED to UNCONFIRMED.

Example 8.31 (Applying Marking Rule MR1 to external micro transitions):
Consider Fig. 8.51. Since micro step return date is marked as UNCONFIRMED, its outgoing implicit micro transition,
which targets at micro step proposal, is marked as READY.

MR9

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

MR1

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

object instance micro process instance

Review #1

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

TRIGGER MR1:

micro step becomes

marked as UNCONFIRMED

MR1: outgoing implicit micro transition

is re-marked as READY

object instance micro process instance

Review #1

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

source state is

re-marked as CONFIRMED

target state is re-marked

as ACTIVATED

micro steps are re-marked from

UNCONFIRMED to CONFIRMED

micro transitions are re-marked from

UNCONFIRMED to CONFIRMED

micro steps are re-marked

from WAITING to READY

TRIGGER MR9:

external micro transition

becomes marked as READY

Figure 8.51: Applying Marking Rules MR1 and MR9 to external micro transitions

A state change will be triggered, when an external micro transition becomes marked as READY

indicating that its source micro step is reached (cf. Marking Rule MR9). First, the state currently
marked as ACTIVATED is re-marked as CONFIRMED. This indicates that this state has been
reached during micro process execution. In addition, all UNCONFIRMED micro steps, value
steps, and micro transitions belonging to this state are re-marked as CONFIRMED. Opposed to
this, all BYPASSED micro steps, value steps, and micro transitions of this state are re-marked
as SKIPPED. Following this, the subsequent state (i.e., the state, to which the target micro
step of the external micro transition, which is currently marked as READY, belongs becomes

157

8 Micro Process Execution

ACTIVATED; i.e., the target state changes its marking from WAITING to ACTIVATED).
Finally, all micro and value steps of this newly ACTIVATED state are re-marked from WAITING to
READY.

Marking Rule (MR9: State Change):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let state1 = (name1, sMicStepSet1) ∈ StateSet with source ∈ sMicStepSet1 ∧
MState(state1) = ACTIVATED be the currently ACTIVATED state and state2 = (name2, sMicStepSet2) ∈ StateSet with
target ∈ sMicStepSet2 ∧ MState(state2) = WAITING be its successor (i.e., the subsequent state that shall be activated
next). Then:

micTrans ∈ MicTransSet with MMicTrans(micTrans) = READY ∧ isexternal(micTrans) = TRUE,⇒

a) MState(state1) := CONFIRMED;
i.e., the currently ACTIVATED state is re-marked as CONFIRMED.

b) ∀ micStep = (ref, ValueSteps) ∈ sMicStepSet1 with MMicStep(micStep) = UNCONFIRMED:

• MMicStep(micStep) := CONFIRMED;
i.e., all micro steps of the newly CONFIRMED state, which are currently marked as UNCONFIRMED, are
re-marked as CONFIRMED.

• ∀ valueStep ∈ ValueSteps:

MMicStep(valueStep) :=

{
CONFIRMED if MMicStep(valueStep) = UNCONFIRMED

SKIPPED if MMicStep(valueStep) = BYPASSED

i.e., all value steps of the newly CONFIRMED state, which are currently marked as UNCONFIRMED, are
re-marked as CONFIRMED. In turn, all value steps currently marked as BYPASSED are re-marked as
SKIPPED.

c) ∀ micStep = (ref, ValueSteps) ∈ sMicStepSet1 with MMicStep(micStep) = BYPASSED:

• MMicStep(micStep) := SKIPPED;
i.e., all micro steps of the newly CONFIRMED state, which are currently marked as BYPASSED, are
re-marked as SKIPPED.

• ∀ valueStep ∈ ValueSteps: MMicStep(valueStep) := SKIPPED;
i.e., all value steps of the newly CONFIRMED state, which are currently marked as BYPASSED, are
re-marked as SKIPPED.

d) ∀ micTrans ∈ MicTransSet with {micTrans.source, micTrans.target} ⊆ sMicStepSet1:

MMicTrans(micTrans) :=

{
CONFIRMED if MMicTrans(micTrans) = UNCONFIRMED

SKIPPED if MMicTrans(micTrans) = BYPASSED

i.e., all micro transitions of the newly CONFIRMED state, which are currently marked as UNCONFIRMED, are
re-marked as CONFIRMED. In turn, all micro transitions currently marked as BYPASSED are re-marked as
SKIPPED.

e) MState(state2) := ACTIVATED;
i.e., the subsequent state changes its marking from WAITING to ACTIVATED.

f) ∀ micStep = (ref, ValueSteps) ∈ sMicStepSet2 with MMicStep(micStep) = WAITING:

• MMicStep(micStep) := READY;
i.e., all micro steps of the newly ACTIVATED state, which are currently marked as WAITING, are re-
marked as READY.

• ∀ valueStep ∈ ValueSteps with MMicStep(valueStep) = WAITING: MMicStep(valueStep) := READY;
i.e., all value steps of the newly ACTIVATED state, which are currently marked as WAITING, are re-
marked as READY.

158

8.5 State Changes

Example 8.32 (Applying Marking Rule MR9 to implicit state changes):
Consider states initialized and pending in Fig. 8.51. If the external micro transition between micro steps return

date and proposal becomes marked as READY (according to Marking Rule MR1), state initialized is re-marked
as CONFIRMED and state pending changes its marking from WAITING to ACTIVATED. In addition, all micro steps
and micro transitions of state initialized are re-marked as CONFIRMED as well; i.e., there exists no alternative
execution path within this state. In addition, all micro and value steps of state pending are re-marked as READY.

As illustrated in Fig. 8.52, a state change is triggered as soon as an external (implicit) micro
transition becomes marked as READY. Following this, the rules already introduced can be
applied.

Example 8.33 (Continuing execution after a state change):
Since the micro transition between micro steps return date and proposal is marked as READY, Marking Rule
MR2 is triggered remarking the target micro step (i.e., proposal) as well as its value steps reject and invite from
READY to ENABLED. In turn, this indicates that a value for attribute proposal is now required; i.e., Execution Rule
ER2 is triggered.

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

internal reset

RR4

micro process

initialization

MR9

state change

internal

micTrans

READY

external

micTrans

READY

Figure 8.52: Rules for state changes

8.5.2 Explicit Micro Transitions

As opposed to implicit micro transitions, which are immediately marked as READY when their
source micro step (or value step) becomes marked as UNCONFIRMED, explicit micro transitions
additionally require a user commitment. Hence, respective micro transitions are first marked as
CONFIRMABLE to indicate that a commitment of the responsible user is required. More precisely,
if the source micro step (or value step) of a micro transition changes its marking from ACTIVATED

159

8 Micro Process Execution

to UNCONFIRMED, outgoing explicit micro transitions are marked as CONFIRMABLE.6 To realize
this behavior, Marking Rule MR1 is extended accordingly (cf. Marking Rule MR1”).

Marking Rule (MR1”: Marking explicit micro transitions as CONFIRMABLE):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

a) see MR1 in Sect. 8.4.1

b) see MR1’ in Sect. 8.4.2

c) ∀ micStep=(ref, ValueSteps) ∈ MicStepSet with MMicStep(micStep) = UNCONFIRMED:

• ∀ micTrans ∈ outtrans(micStep) with explicit(micTrans) = TRUE:
MMicTrans(micTrans) := CONFIRMABLE;

i.e., if a micro step becomes marked as UNCONFIRMED, the explicit micro transitions originating from it
will be marked as CONFIRMABLE.

• ∀ valueStep ∈ ValueSteps with MMicStep(valueStep) = UNCONFIRMED:
∀ micTrans ∈ outtrans(valueStep) with explicit(micTrans) = TRUE:

MMicTrans(micTrans) := CONFIRMABLE;
i.e., if a value step becomes marked as UNCONFIRMED, the explicit micro transitions originating from it
are marked as CONFIRMABLE.

Example 8.34 (Applying Marking Rule MR1” to explicit micro transitions):
Consider Fig. 8.53. After reaching micro step alternative job (i.e., after marking this step as UNCONFIRMED), its
outgoing micro transition, which targets at micro step finished, is re-marked from WAITING to CONFIRMABLE.

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

MR1'’

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

TRIGGER:

micro step becomes

marked as UNCONFIRMED

outgoing explicit micro transition

is re-marked as CONFIRMABLE

Figure 8.53: Applying Marking Rule MR1” to explicit micro transitions

If an external micro transition becomes marked as CONFIRMABLE, the subsequent state may be
ACTIVATED when the responsible user commits the state transition. To commit a state transition,
a mandatory activity is assigned to the worklist of the responsible users. Then, a commit button
is dynamically added to the respective state-specific user form (cf. Fig. 8.54). According to
Execution Rule ER3, as long as no such commitment has been made, however, respective
user input is mandatorily required to proceed with micro process execution.

6Note that this may only apply to external micro transitions.

160

8.5 State Changes

Execution Rule (ER3: User commit required):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micTrans ∈ MicTransSet with MMicTrans(micTrans) = CONFIRMABLE:
A user commitment is required;

i.e., if an external micro transition is marked as CONFIRMABLE, a commitment of the responsible user will be required.

Example 8.35 (Applying Execution Rule ER3):
Consider Fig. 8.54. Before state reject proposed may be ACTIVATED, a user commitment is mandatorily required.
Therefore, a corresponding commit button is dynamically added to the user form and offered as long as state
pending is ACTIVATED.

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

ER3

Proposal:

Reason:

save cancel

Edit Review

reject

Alternative Job: engineer

Appraisal:

commit

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

TRIGGER:

explicit micro transition

becomes marked as CONFIRMABLE

user commitment

is mandatorily required

to proceed with

micro process execution

Figure 8.54: Applying Execution Rule ER3

When a user commits the transition, the respective micro transition is re-marked as READY (cf.
Reaction Rule RR5). To indicate whether a user commitment is made, we introduce function
committedstate-change (cf. Def. 27).

Definition 27 (Commitment for micro transitions):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let MicTransexplicit := micTrans ∈ MicTransSet | explicit(micTrans) = TRUE. Then:

committedstate-change: MicTransexplicit 7→ BOOLEAN returns whether or not the required user commitment has been
made for any particular explicit micro transition.

161

8 Micro Process Execution

Reaction Rule (RR5: Marking explicit micro transitions as READY):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

micTrans ∈ MicTransSet with MMicTrans(micTrans) = CONFIRMABLE ∧ committedstate-change(micTrans) = TRUE,⇒
MMicTrans(micTrans) = READY;

i.e., when a user commits an external micro transition, it will be marked as READY.

Example 8.36 (Applying Reaction Rule RR5):
Consider Fig. 8.55. The micro transition between micro steps alternative job and finished is re-marked from
CONFIRMABLE to READY.

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

RR5

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

explicit micro transition is re-marked

from CONFIRMABLE to READY

TRIGGER:

user commit for

state change available

Figure 8.55: Applying Reaction Rule RR5

As illustrated in Fig. 8.56, when applying Marking Rule MR1, all explicit micro transitions are
marked as CONFIRMABLE. For each of these micro transitions, a user commitment is manda-
tory. Hence, Execution Rule ER3 is triggered. When a commitment for a micro transition is
made, in turn, the micro transition changes its marking from CONFIRMABLE to READY (cf. Reac-
tion Rule RR5). Compared to implicit micro transitions, the corresponding state change takes
place (i.e., Marking Rule MR9 is triggered), if an explicit micro transition is marked as READY,
.

8.5.3 User Decisions

In certain situations, there exist multiple explicit micro transitions originating from the same
micro step (cf. Fig. 8.57). In this case, we already ensure during micro process modeling that
the target micro steps of these micro transitions belong to different states (cf. Def. 18). If the
source micro step becomes marked as UNCONFIRMED, Marking Rule MR1 is triggered. It then
re-marks all micro transitions, originating from this micro step, as CONFIRMABLE.

162

8.5 State Changes

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

internal reset

RR4

micro process

initialization

MR9

ER3

RR5

state change

internal

micTrans

READY

external

micTrans

READY

external

micTrans

CONFIRMABLE

external

micTrans

READY

committed

Figure 8.56: Rules for explicit micro transitions

Example 8.37 (Applying Marking Rule MR1 to user decisions):
Consider Fig. 8.57. If micro step A becomes marked as UNCONFIRMED, the micro transition between micro steps A

and B becomes marked as CONFIRMABLE. In addition, the micro transition between micro steps A and C is re-marked
as CONFIRMABLE.

WAITING

READY

ENABLED

BLOCKED

ACTIVATED

CONFIRMABLE

UNCONFIRMED

CONFIRMED

BYPASSED

SKIPPED

MR1

state 1

A

state 2

B

state 3

C

TRIGGER:

micro step becomes

marked as

UNCONFIRMED

outgoing explicit

micro transitions

are re-marked as

CONFIRMABLE

Figure 8.57: Applying Marking Rule MR1 to user decisions

If multiple micro transitions become marked as CONFIRMABLE, alternative state transitions are
possible. In this context, a user may select the subsequent state as he prefers; i.e., the user
must decide which of these alternative states shall be activated. In this context, Execution Rule
ER3 is used, requiring a user commitment for one of the respective micro transitions (e.g., using
a combo box).

Example 8.38 (Applying Execution Rule ER3 to user decisions):
For example, consider Fig. 8.58. The responsible user may either commit the transition to state 2 or state 3.

163

8 Micro Process Execution

WAITING

READY

ENABLED

BLOCKED

ACTIVATED

CONFIRMABLE

UNCONFIRMED

CONFIRMED

BYPASSED

SKIPPED

xyzA:

STATE state 2

save cancel commit

ER3

state 1

A

state 2

B

state 3

C

TRIGGER:

explicit micro transitions

become marked as

CONFIRMABE

target states

selectable in a

combo box

user commitment

is mandatorily required

Figure 8.58: Applying Execution Rule ER3 to user decisions

In principle, several users maybe assigned to the same explicit micro transition type. Consider
Ex. 8.39. At run-time, as soon as one of the users commits a state transition, this transition
takes place.

Example 8.39 (User decisions with different responsible users):
Assume that user 1 is assigned to the micro transition linking micro steps A and B, while user 2 is assigned to the
micro transition between micro steps A and C. Then, each of the two users may commit the respective state transition
(cf. Sect. 7.3 for details).

If a micro transition, which is currently marked as CONFIRMABLE, is committed, conflicting ex-
ternal micro transitions must be skipped; i.e., their transitions must be marked as SKIPPED to
indicate that the respective execution path of the micro process instance has not been selected.
Hence, we must extend Reaction Rule RR5, which will be triggered as soon as one out of sev-
eral conflicting micro transitions is committed by the respective user. All other micro transitions,
which are still marked as CONFIRMABLE, change their marking to SKIPPED (cf. Reaction Rule
RR5’).

Reaction Rule (RR5’: User Decisions):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let MicTransSetCONFIRMABLE := {micTrans ∈ MicTransSet | MMicTrans(micTrans) = CON-
FIRMABLE}. Then:

∃ a user commitment for micTrans ∈ MicTransSet*,⇒

∀ micTrans ∈ MicTransSet: MMicTrans(micTrans) :=

{
READY, a user commitment is available
SKIPPED, else

i.e., if a user commitment becomes available for an external explicit micro transition, the latter is marked as READY
and all other external explicit micro transitions, currently marked as CONFIRMABLE, are now marked as SKIPPED .

Example 8.40 (Applying Reaction Rule RR5’ to user decisions):
Consider Fig. 8.59. Since the responsible user has committed the change to state 2, the external explicit micro
transition between micro steps A and B is re-marked from CONFIRMABLE to READY. Opposed to this, the micro
transition between micro steps A and C (currently marked as CONFIRMABLE) is re-marked as SKIPPED.

164

8.5 State Changes

WAITING

READY

ENABLED

BLOCKED

ACTIVATED

CONFIRMABLE

UNCONFIRMED

CONFIRMED

BYPASSED

SKIPPED

xyzA:

STATE state 2

save cancel commit

RR5'

state 1

A

state 2

B

state 3

C

TRIGGER:

state is

committed

committed micro transition

is re-marked as READY

not committed micro transition

is re-marked as SKIPPED

Figure 8.59: Applying Reaction Rule RR5’ to user decisions

If an explicit micro transition is marked as READY, the corresponding state change may be
executed (i.e., Marking Rule MR9 is triggered). By contrast, according to Reaction Rule RR5,
when a certain state becomes skipped, the non-chosen execution path as well as the respective
external micro transition become marked as SKIPPED.

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

internal reset

RR4

micro process

initialization

MR9

ER3

RR5

state change

external

micTrans

READY

external

micTrans

SKIPPED

Figure 8.60: Rules considering user decisions

8.5.4 External Dead-path Elimination

In Sect. 8.4.4, we introduced an internal dead-path elimination for micro steps, value steps,
and micro transitions of the currently activated state. Based on it, we can identify which input
fields of the related user form; i.e., attribute values or relations) are not required anymore to
proceed with micro process execution. Similarly, we must identify all states that are no longer
reachable due to the selection of an alternative execution path. Especially, identifying these

165

8 Micro Process Execution

states is crucial for coordinating the execution of inter-dependent micro process instances (cf.
Chapts. 10, 11, and 12). For this purpose, we introduce an external dead-path elimination.
It marks all states, micro steps, value steps, and micro transitions as SKIPPED if they are not
reachable any longer and do not belong to the currently activated state.

An external dead-path elimination is triggered when a micro step, value step, or micro transition
becomes marked as SKIPPED. Consider a state change (i.e., Marking Rule MR9 and Reaction
Rule RR5’) as starting point for it. According to Reaction Rule RR5’, a micro transition is marked
as SKIPPED when a commitment for any other micro transition, which is currently marked as
CONFIRMABLE, becomes available (cf. Sect. 8.5.3 for details).

Example 8.41 (Applying Marking Rule MR9 to trigger an external dead-path elimination):
Consider Fig. 8.61. After the user commitment for activating state reject proposed is made, the state change
takes place; i.e., Marking Rule MR9 is triggered. Then, the previous state pending is re-marked from ACTIVATED
to CONFIRMED. In addition, all micro steps, value steps, and micro transitions belonging to this state and currently
marked as BYPASSED are re-marked as SKIPPED. In turn, this triggers an external dead-path elimination.

MR9

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

TRIGGER:

external micro transition

becomes marked as READYsource state

is re-marked

as CONFIRMED

target state

is re-marked

as ACTIVATED

micro steps, value steps, and micro transitions

currently marked as BYPASSED

are re-marked to SKIPPED

Figure 8.61: Applying Marking Rule MR9 to trigger an external dead-path elimination

Regarding the example from Fig. 8.61, micro steps reason and appraisal are now marked as
SKIPPED. In turn, this triggers Marking Rule MR10. In particular, if a micro or value step is
marked as SKIPPED, its outgoing micro transitions are re-marked from WAITING to SKIPPED.
Following this, if all incoming external micro transitions of a micro step are marked as SKIPPED,
this micro step itself must be marked as SKIPPED. Further, its value steps are then also re-
marked as SKIPPED (cf. Marking Rule MR11).

Note that Marking Rules MR10 and MR11 may trigger each other; i.e., in the context of an
external dead-path elimination these rules are iteratively invoked as long as a micro step is
found whose incoming micro transition are all marked as SKIPPED. Further, the external dead-
path elimination terminates in any case, when reaching an end micro step. Finally, if all micro
steps of a state are marked as SKIPPED, the respective state must be marked as SKIPPED as
well (cf. Marking Rule MR12).

166

8.5 State Changes

Marking Rule (MR10: Marking micro transitions as SKIPPED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micStep=(ref, ValueSteps) ∈ MicStepSet with MMicStep(micStep) = SKIPPED:

• ∀ micTrans ∈ outtrans(micStep) with MMicTrans(micTrans) = WAITING:
MMicTrans(micTrans) := SKIPPED;

i.e., if a micro step becomes marked as SKIPPED, its outgoing micro transitions are re-marked from WAITING
to SKIPPED.

• ∀ valueStep ∈ ValueSteps with MMicStep(valueStep) = SKIPPED:
∀ micTrans ∈ outtrans(valueStep) with MMicTrans(micTrans) = WAITING:

MMicTrans(micTrans) := SKIPPED;
i.e., if a value step becomes marked as SKIPPED, its outgoing micro transitions are re-marked from WAITING
to SKIPPED.

Marking Rule (MR11: Marking micro steps and value steps as SKIPPED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micStep=(ref, ValueSteps) ∈ MicStepSet with MMicStep(micStep) = WAITING:
∀ micTrans ∈ intrans(micStep): MMicTrans(micTrans) = SKIPPED,⇒

• MMicStep(micStep) := SKIPPED;
i.e., if all incoming micro transitions of a micro step are marked as SKIPPED, the micro step is marked as
SKIPPED as well.

• ∀ valueStep ∈ ValueSteps with MMicStep(micStep) = SKIPPED ∧ MMicStep(valueStep) = WAITING:
MMicStep(valueStep) := SKIPPED;

i.e., if a micro step is marked as SKIPPED, all corresponding value steps will be marked as SKIPPED as well.

Marking Rule (MR12: Marking states as SKIPPED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let state = (name, sMicStepSet) ∈ StateSet be a state. Then:

∀ micStep ∈ sMicStepSet: MMicStep(micStep) = SKIPPED,⇒ MState(state) := SKIPPED;

i.e., a state will be marked as SKIPPED if its micro steps (and hence value steps and micro transitions) are all marked
as SKIPPED.

Example 8.42 (External dead-path elimination):
Consider Fig. 8.62. All micro transitions originating from micro steps reason and appraisal are re-marked as
SKIPPED. Following this, consider micro step finished of state invitation proposed in Fig. 8.63. Since all incom-
ing external micro transitions are marked as SKIPPED, this micro step as well as its value steps (i.e., value step true)
are re-marked as SKIPPED. Further, since value step true, which belongs to state invitation proposed, becomes
marked as SKIPPED, Marking Rule MR10 is re-triggered. Regarding Fig. 8.64, the micro transition between value
step true of state invitation proposed and the end micro step is marked as SKIPPED as well. Opposed to micro
step finished in state invitation proposed (cf. Fig. 8.64), micro step finished in state reject proposed has
an incoming micro transition that is currently marked as READY. Hence, it must not be marked as SKIPPED; i.e.,
the external dead-path elimination terminates at this point. Furthermore, the end micro step has another incoming
micro transition that is currently marked as WAITING. Hence, the end micro step is also not marked as SKIPPED;

167

8 Micro Process Execution

i.e., it is still possible to reach it (and the end state respectively). Finally, it is no longer possible to activate state
invitation proposed; i.e., all micro steps of this state are marked as SKIPPED. Hence, invitation proposed

itself must be marked as SKIPPED as well (cf. Fig. 8.65).

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

MR10

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

TRIGGER:

micro steps become

marked as SKIPPED

outgoing micro transitions

currently marked as WAITING

are re-marked to SKIPPED

Figure 8.62: Applying Marking Rule MR10

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

MR11

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

TRIGGER:

all incoming micro transitions

become marked as SKIPPED

micro step and value steps

are re-marked as SKIPPED

Figure 8.63: Applying Marking Rule MR11

Altogether, Fig. 8.66 illustrates the rules needed for performing an external dead-path elim-
ination (i.e., Marking Rules MR10, MR11 and MR12). An external dead-path elimination is
triggered in the following two cases:

a) The execution of Marking Rule MR9 is followed by marking a micro or value step as
SKIPPED.

b) The execution of Reaction Rule RR5 is followed by re-marking an external micro transition
from CONFIRMABLE to SKIPPED.

168

8.6 Backward Jumps

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

MR10

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

TRIGGER:

value step (micro step)

becomes marked as SKIPPED

outgoing

micro transitions

are re-marked

as SKIPPED

Figure 8.64: Applying Marking Rule MR10 iteratively

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

MR12

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

TRIGGER:

all micro steps

become marked as SKIPPED

state

is re-marked

from WAITING

to SKIPPED

Figure 8.65: Applying Marking Rule MR12

8.6 Backward Jumps

Sect. 7.5 has introduced backward transitions, which allow rolling back (i.e., resetting) a micro
process instance if necessary (i.e., to jump back to a previous state). When the source state
of a backward transition becomes activated, authorized users may reset the execution of the
micro process instance to the target state of the backward transition (which is a predecessor
of its source state in the normal flow of control). Initially, all backward transitions are marked
as WAITING (cf. Reaction Rule RR1). As example, consider the backward transition connecting
state reject proposed and state pending in Fig. 8.67.

Altogether, after a state becomes activated (i.e., Marking Rule MR9), Marking Rule MR13 is
triggered (cf. Fig. 8.68). According to this rule, all backward transitions originating from the
newly activated state are re-marked as CONFIRMABLE if their target state is currently marked as
CONFIRMED. In turn, if the target state of a backward transition is currently marked as SKIPPED,

169

8 Micro Process Execution

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

internal reset

RR4

micro process

initialization

MR9

ER3

RR5

state change

external

micTrans

READY

external

micTrans

SKIPPED

MR11 MR10

MR12

external dead-path

elimination

micStep

SKIPPED

micTrans

SKIPPED

micStep

SKIPPED

micStep

SKIPPED

state

SKIPPED

Figure 8.66: Rules for an external dead-path elimination

RR1

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

false

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

backward transitions are

marked as WAITING

Figure 8.67: Applying Reaction Rule RR1 to backward transitions

170

8.6 Backward Jumps

this backward transition is re-marked as SKIPPED.
Following this, an authorized user may optionally commit a backward jump whose backward
transition is currently marked as CONFIRMABLE (cf. Execution Rule ER4). If a commitment is
made, the respective backward transition will be marked as READY (cf. Reaction Rule RR6).
However, if a subsequent state becomes activated before initiating any backward jump, the
corresponding backward transitions will be re-marked as SKIPPED (cf. Marking Rule MR9).

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

internal reset

RR4

micro process

initialization

MR9

ER3

RR5

state change

MR11 MR10

MR12

external dead-path

elimination

MR13 ER4 RR6

backward jump

state

ACTIVATED

backTrans

CONFIRMABLE

committed

Figure 8.68: Rules for committing backward jumps

8.6.1 Committing Backward Jumps

Since we treat backward transitions are treated like explicit ones, a commitment of a responsi-
ble user7 is required to perform the backward jump. First of all, all selectable backward transi-
tions are marked as CONFIRMABLE; i.e., their source state becomes marked as ACTIVATED (cf.
Marking Rule MR13). However, a backward jump to a previous state will be only possible if the
previous state (i.e., the target state of the backward transition) was reached before during micro
process execution; i.e., the target state of the backward transition must be currently marked as
CONFIRMED. By contrast, if the target state is marked as SKIPPED, the backward transition must
not be performed and therefore be also marked as SKIPPED.

Marking Rule (MR13: Marking backward transitions as CONFIRMABLE):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let state ∈ StateSet be the currently activated state; i.e., MState(state) = ACTIVATED.

7The responsible user is defined by a corresponding backward responsibility (cf. Sect. 7.5).

171

8 Micro Process Execution

Then:

∀ backTrans=(source, target) ∈ BackTransSet with source = state:

MBackTrans(backTrans) :=

{
CONFIRMABLE, MState(target) = CONFIRMED

SKIPPED, MState(target) = SKIPPED

i.e., if a state becomes marked as ACTIVATED, its outgoing backward transitions will be re-marked as CONFIRMABLE
on condition that their target state is currently marked as CONFIRMED. In turn, if the target state is currently marked
as SKIPPED, the backward transition will be re-marked as SKIPPED.

Example 8.43 (Applying Marking Rule MR13 to skip backward jumps):
Consider Fig. 8.69. When state 3 becomes marked as ACTIVATED, Marking Rule MR13 is triggered. The backward
transition connecting states 3 and 1 is then marked as CONFIRMABLE since its target state (i.e., state 1) is currently
marked as CONFIRMED (i.e., this state was previously reached). By contrast, the target state of the backward
transition linking states 3 and 2 is currently marked as SKIPPED. Hence, this backward transition is also marked as
SKIPPED.

state 1

state 2

state 3

target state

is marked as CONFIRMED

target state

is marked as SKIPPED

backward transition

becomes re-marked

as CONFIRMABLE

backward transition

becomes re-marked

as SKIPPED

TRIGGER:

source state becomes

marked as ACTIVATED

Figure 8.69: Applying Marking Rule MR13 to skip backward jumps

Example 8.44 (Applying Marking Rule MR13 for enabling backward jumps):
Consider Fig. 8.70. State reject proposed becomes marked as ACTIVATED. In turn, this triggers the execution of
Marking Rule MR13. Accordingly, the backward transitions connecting state reject proposed with states pending

and initialized are both re-marked as CONFIRMABLE. Note that none of the two backward transitions is marked
as SKIPPED since both states pending and initialized are marked as CONFIRMED.

If a backward transition is marked as CONFIRMABLE, the micro process instance may be reset
to the target state of this backward transition. However, a backward transition is not auto-
matically executed, but has to be committed by a responsible user. Therefore, we introduce
function committedbackTrans for differentiating between committed and non-committed backward
transitions (cf. Def. 28).

Definition 28 (Commitment for backward transitions):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

committedbackTrans: BackTransSet 7→ BOOLEAN defines whether or not the required user commitment has been
made for a particular backward transition.

172

8.6 Backward Jumps

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

MR13

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

false

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

target states

are marked as SKIPPED

backward transitions are re-

marked as CONFIRMABLE

TRIGGER:

source state

becomes

marked as

ACTIVATED

Figure 8.70: Applying Marking Rule MR13 to enable backward jumps

As opposed to explicit micro transitions, which must be executed in order to proceed with a
micro process, the execution of backward transitions is optional. For example, a backward
transition may be executed to handle an exceptional situation: To be more precise, a backward
jump may be initiated when processing the form-based activity related to the source state of its
backward transition. For this purpose, the target state is added to a respective combo box. In
particular, all states that may be activated due to a backward transition are then added to the
combo box (see Fig. 8.71).

Altogether, a responsible user may optionally commit a backward transition, which is marked
as CONFIRMABLE, in order to reset micro process execution to a previous state (i.e., to its target
state) (cf. Execution Rule ER4).

Execution Rule (ER4: Committing backward jumps):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ backTrans ∈ BackTransSet with MBackTrans(backTrans) = CONFIRMABLE ∧ committedbackTrans(backTrans) = FALSE:
An authorized user may optionally commit backTrans.

i.e., if a backward transition changes its marking from WAITING to CONFIRMABLE, a commitment of the responsible
user may be optionally made.

Example 8.45 (Applying Execution Rule ER4):
In Fig. 8.71, state initialized is selected. Using the commit button, the selected state is then activated.

If a backward transition is marked as CONFIRMABLE and the required commitment is made,
while the source state is activated, the backward jump may be performed. To indicate this,
the respective backward transition is marked as READY (cf. Reaction Rule RR6). However,
we must consider that more than one backward transition, originating from the source state,

173

8 Micro Process Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

ER4

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

finished:

backward jump: initialized

save cancel commit

true

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

false

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

TRIGGER:

backward transitions become

marked as CONFIRMABLE

backward jump to one target

state can be optionally

selected and committed

Figure 8.71: Applying Execution Rule ER4

may be currently marked as CONFIRMABLE; i.e., several backward jumps to different previous
states may be performed (cf. Fig. 8.71). Accordingly, if one backward transition is marked as
READY, all other ones (still marked as CONFIRMABLE) must be re-marked as WAITING. Note
that since them might be executed later on, respective backward transitions are not marked as
SKIPPED.

Reaction Rule (RR6: Marking backward transitions as READY):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ backTrans ∈ BackTransSet with MBackTrans(backTrans) = CONFIRMABLE:

MBackTrans(backTrans) :=

{
READY, if committedbackTrans(backTrans) = TRUE
WAITING, else

i.e., if a user commits a backward transition, it is marked as READY, while all other backward transitions, which are
currently marked as CONFIRMABLE, are then re-marked as WAITING.

Example 8.46 (Applying Reaction Rule RR6):
Consider Fig. 8.72. The backward jump from state reject proposed to the preceding state initialized was
committed. In turn, this has triggered Reaction Rule RR6 according to which the backward transition from state
reject proposed to state initialized is re-marked from CONFIRMABLE to READY. At the same time, the backward
transition from state reject proposed to state pending is re-marked as WAITING.

174

8.6 Backward Jumps

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

RR6

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

finished:

backward jump: initialized

save cancel commit

true

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

false

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

TRIGGER:

backward jump to state initialized is committed

backward transition to state initialized

is re-marked as READY

backward transition to state pending

is re-marked as WAITING

Figure 8.72: Applying Reaction Rule RR6

8.6.2 Backward Transitions during an External Dead-path Elimination

When completing the source state of a backward transition (i.e., this state is marked as CON-
FIRMED using Marking Rule MR9) and the respective backward jump was not initiated, the
latter can no longer be performed unless the source state is re-activated later due to another
backward jump. In this situation, according to Marking Rule MR14, all backward transitions
originating from the respective state are re-marked as SKIPPED.

Marking Rule (MR14: Deactivating backward transitions):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ state ∈ StateSet with MState(state) = CONFIRMED:
∀ backTrans=(source, target) ∈ BackTransSet with source = state:

MBackTrans(backTrans) := SKIPPED;

i.e., if a state becomes marked as CONFIRMED, its outgoing backward transitions are re-marked to SKIPPED.

We further extend the rules enabling an external dead-path elimination to consider backward
transitions as well. If a state becomes marked as SKIPPED, according to Marking Rule MR15,
its outgoing backward transitions must be marked as SKIPPED as well.

Marking Rule (MR15: Marking backward transitions as SKIPPED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ state ∈ StateSet with MState(state) = SKIPPED:

175

8 Micro Process Execution

∀ backTrans=(source, target) ∈ BackTransSet with source = state:
MBackTrans(backTrans) := SKIPPED;

i.e., if a state becomes marked as SKIPPED, its outgoing backward transitions are re-marked to SKIPPED.

Example 8.47 (Applying Marking Rule MR15):
Consider Fig. 8.73. Since state invitation proposed is marked as SKIPPED, its outgoing backward transition,
which targets at state pending, will be also marked as SKIPPED.

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

MR15

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

false

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

TRIGGER:

state becomes

marked as

SKIPPED

outgoing backward transitions

are re-marked as SKIPPED

Figure 8.73: Applying Marking Rule MR15

Fig. 8.74 illustrates the rules required for the comprehensive external dead-path elimination de-
scribed; i.e., Marking Rules MR14 and MR15 need to be added to properly deal with backward
transitions in the context of an external dead-path elimination.

8.6.3 Executing Backward Jumps

If a backward transition is marked as READY, the respective backward jump to a preceding state
must be executed (cf. Marking Rule MR16). According to this rule, the target state of the back-
ward transition is re-marked from CONFIRMED to ACTIVATED (cf. Marking Rule MR16a). In addi-
tion, all micro and value steps belonging to the target state are re-marked as READY, regardless
from whether these micro steps are currently marked as CONFIRMED or SKIPPED (cf. Marking
Rule MR16b and c). Internal micro transitions, whose source and target micro steps (value
steps) belong to the target state of the backward transition, in turn, are re-marked to WAITING

(cf. Marking Rule MR16d). Moreover, each state (except the start state) that was reached
during micro process execution was activated through exactly one external micro transition. In
particular, there is exactly one external micro transition whose target micro step belongs to the
target state of the backward transition and which is currently marked as CONFIRMED. Note that
this marking indicates that the state has been activated using this micro transition. After reset-
ting a micro process instance, execution must continue from this point. For this purpose, this
micro transition is re-marked from CONFIRMED to READY (cf. Marking Rule MR16e). However,

176

8.6 Backward Jumps

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

internal reset

RR4

micro process

initialization

MR9

ER3

RR5

state change

MR11 MR10

MR12

external dead-path

elimination

MR13 ER4 RR6

backward jump

state

ACTIVATED

MR14MR15

state

CONFIRMED
state

SKIPPED

Figure 8.74: Rules considering backward jumps during an external dead-path elimination

if the target state of the backward transition corresponds to the start state of the micro process
instance, the start micro step will be marked as UNCONFIRMED and all micro transitions origi-
nating from the start micro step will be re-marked as READY (cf. Marking Rule MR16f). Since
it is possible to activate the backward transition once again, the backward transition itself is
re-marked from READY to WAITING (cf. Marking Rule MR16g). Further, all external micro tran-
sitions originating from the state, which is now activated (i.e., the target state of the backward
transition), are re-marked as WAITING (cf. Marking Rule MR16h). Finally, the source state of
the backward transition is re-marked as SKIPPED (cf. Marking Rule MR16i).

Marking Rule (MR16: Backward Jump):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let startStatemicProcInstance = (name, sMicStepSet) ∈ StateSet be the start state of
micProcInstance and startMicStepmicProcInstance ∈ sMicStepSet be the start micro step of micProcInstance. Then:

backTrans = (source, target) ∈ BackTransSet
with MBackTrans(backTrans) = READY ∧ target = (name, sMicStepSet) ∈ StateSet:

i.e., if a backward transition becomes marked as READY, the following re-markings apply:

a) MState(target) := ACTIVATED;
i.e., the target state of the executed backward transition is re-marked from CONFIRMED to ACTIVATED.

b) ∀ micStep=(ref, ValueSteps) ∈ sMicStepSet: MMicStep(micStep) := READY;
i.e., all micro steps of the target state are re-marked as READY.

177

8 Micro Process Execution

c) ∀ micStep=(ref, ValueSteps) ∈ sMicStepSet:
∀ valueStep ∈ ValueSteps: MMicStep(valueStep) := READY;

i.e., all value steps of the target state are re-marked as READY.

d) ∀ micTrans1 ∈ MicTransSet with {micTrans1.source, micTrans1.target} ∈ sMicStepSet:
MMicTrans(micTrans1) := WAITING;

i.e., all internal micro transitions of the target state are re-marked as WAITING.

e) target != startStatemicProcInstance: ∃! micTrans2 = (s,t,prio) ∈ MicTransSet with
s /∈ sMicStepSet ∧ t ∈ sMicStepSet ∧ MMicTrans(micTrans2) = CONFIRMED:

MMicTrans(micTrans) := READY;
i.e., if the target state of the backward transition differs from the start state of the micro process instance, the
external micro transition, whose target micro step belongs to the target state and which is currently marked
as CONFIRMED, will be re-marked to READY.

f) target = startStatemicProcInstance:
MmicStep(startMicStepmicProcInstance) := UNCONFIRMED ∧
∀ micTrans3 ∈ MicTransSet with micTrans3.source = startMicStepmicProcInstance:

MMicTrans(micTrans3) := READY;
i.e., if the target state of the backward transition corresponds to the start state of the micro process instance,
the start micro step will be re-marked as UNCONFIRMED and the micro transitions originating from it will be
re-marked as READY.

g) MBackTrans(backTrans) := WAITING;
i.e., the backward transition itself is re-marked from READY to WAITING.

h) micTrans4 ∈ MicTransSet with micTrans4.source ∈ sMicStepSet ∧ micTrans4.target /∈ sMicStepSet:
MMicTrans(micTrans4) := WAITING;

i.e., external micro transitions, whose source micro step (or value step) belongs to the currently activated
state, are re-marked as WAITING.

i) MState(source) := SKIPPED;
i.e., the source state of the backward transition is re-marked from ACTIVATED to SKIPPED.

Example 8.48 (Backward jump to the start state):
Consider the backward jump to state initialized as illustrated in Fig. 8.75. First, according to Marking Rule MR16,
state initialized is re-marked from CONFIRMED to ACTIVATED (i.e., this state is re-activated). Second, all micro
and value steps of state initialized are re-marked as READY (cf. Marking Rule MR16b and c), while all internal
micro transitions are re-marked as WAITING (cf. Marking Rule MR16d). Since state initialized corresponds to
the start state of the micro process instance, opposed to all other micro steps of state initialized, the respective
start micro step is re-marked as UNCONFIRMED (cf. Marking Rule MR16f) and the micro transition connecting the
start micro step with micro step urgency is re-marked as READY (cf. Marking Rule MR16f). Note that this marking
triggers Marking Rule MR2, according to which the subsequent micro steps are enabled when required attribute
values (or relations) become available. Furthermore, the backward transition between states reject proposed and
initialized which enables the backward jump, is re-marked from READY to WAITING (cf. Marking Rule MR16g).
Finally, the external micro transition, which originates from micro step return date, is re-marked as WAITING (cf.
Marking Rule MR16h) and the (source) state reject proposed is marked as SKIPPED (cf. Marking Rule MR16i).

Example 8.49 (Backward jump to a state that differs from the start state):
Consider now Fig. 8.76. Here, a backward jump is not targeting at state initialized, but at state pending. Like
in Example 8.48, the target state (i.e., state pending) is marked as ACTIVATED (cf. Marking Rule MR16a) and the
backward transition is re-marked from READY to WAITING (cf. Marking Rule MR16g). All micro and value steps of
state pending are re-marked as READY (cf. Marking Rule MR16b and c). Furthermore, all internal micro transitions
are re-marked as WAITING (cf. Marking Rule MR16d). Opposed to Ex. 8.48, however, state pending is not the
start state of the micro process instance. Hence, the external micro transition, which was used to activate state
pending, must be marked as READY. Consider the micro transition connecting micro steps return date (belonging

178

8.6 Backward Jumps

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

MR16

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

RR6

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

micro process instance

TRIGGER:

backward transition

becomes marked as READY

object instance

Review #1

reject

be fast

high

01/03/2012

false

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job a

b b

c

f

f

g

h

i

Figure 8.75: Applying Marking Rule MR16 to a backward jump to the start state

to state initialized) and proposal (belonging to state pending). It is re-marked from CONFIRMED to READY. Note
that this triggers Marking Rule MR2 to re-execute the micro process instance. Finally, the external micro transitions
originating from micro steps reason, alternative job, and appraisal are re-marked as WAITING (cf. Marking Rule
MR16h) and the (source) state reject proposed is re-marked as SKIPPED (cf. Marking Rule MR16i).

In summary, a backward jump will be initiated if a backward transition is marked as READY (cf.
Fig. 8.77).

8.6.4 Re-setting Micro Process Instances

Before a particular region of a micro process instance may be re-executed, all states succeed-
ing the target state of the respective backward jump (as well as all their micro steps, value steps,
micro transitions, and backward transitions) must be reset. First, micro steps whose incoming
micro transitions are all marked as WAITING, are then re-marked as WAITING as well. Thereby,
only micro steps not belonging to the currently activated state are considered. In turn, micro
steps of the currently activated state (i.e., the target state of the backward transition) must be
further marked as READY (cf. Marking Rules MR16b + c). In addition, if a micro step is marked

179

8 Micro Process Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

object instance

Review #1

reject

be fast

high

01/03/2012

false

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

MR16

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

RR6

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

micro process instance

TRIGGER:

backward transition

becomes marked as READY

a

b

b

b

bc d

e

g

h

h

i

Figure 8.76: Applying Marking Rule MR16 to a backward jump that targets at a state differing
from the start state

as WAITING, according to Marking Rule MR17, its value steps will be marked as WAITING as
well.

Marking Rule (MR17: Resetting micro steps and value steps):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micStep=(ref, ValueSteps) ∈ sMicStepSet with state ∈ StateSet ∧ MState(state) 6= ACTIVATED:

a) ∀ micTrans ∈ intrans(micStep) with MMicTrans(micTrans) = WAITING: MMicStep(micStep) := WAITING;
i.e., if all incoming micro transitions of a micro step, which do not belong to the currently activated state, are
marked as WAITING, the micro step will be also marked as WAITING.

b) ∀ valueStep ∈ ValueSteps with MMicStep(micStep) = WAITING: MMicStep(valueStep) := WAITING;
i.e., if a micro step is marked as WAITING, all corresponding value steps will be also marked as WAITING.

Example 8.50 (Applying Marking Rule MR17 to reset micro and value steps):
Consider Fig. 8.78 which illustrates the markings after executing the backward jump. When jumping back to state
initialized, all subsequent states (i.e., pending, reject proposed, invitation proposed, and finished) as
well as corresponding micro steps, value steps, micro transitions, and backward transitions must be reset. For this

180

8.6 Backward Jumps

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

internal reset

RR4

micro process

initialization

MR9

ER3

RR5

state change

MR11 MR10

MR12

external dead-path

elimination

MR13 ER4 RR6

backward jump

MR16

backward

jump

backTrans

CONFIRMABLE

committed

MR14MR15

backTrans

READY

micTrans

WAITING

Figure 8.77: Rules for performing a backward jumps

purpose, Marking Rule MR17 is applied. Since the micro transition between micro steps return date and proposal

is marked as WAITING, micro step proposal itself is also marked as WAITING. In addition, value steps reject and
invite of micro step proposal are marked as WAITING.

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

MR17

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

false

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

incoming micro transition

becomes marked as WAITING

state is not

marked as ACTIVATED

target micro and value steps

are re-marked as WAITING

Figure 8.78: Applying Marking Rule MR17 to reset micro and value steps

According to Marking Rule MR18, all outgoing micro transitions are also marked as WAITING

when a micro step or value step becomes marked as WAITING.

181

8 Micro Process Execution

Marking Rule (MR18: Resetting micro transitions):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micStep=(ref, ValueSteps) ∈ sMicStepSet with MMicStep(micStep) = WAITING:

a) ∀ micTrans ∈ outtrans(micStep): MMicTrans(micTrans) := WAITING;
i.e., if a micro step is marked as WAITING, its outgoing micro transitions will be also marked as WAITING.

b) ∀ valueStep ∈ ValueSteps with MMicStep(valueStep) = WAITING:
∀ micTrans ∈ outtrans(valueStep): MMicTrans(micTrans) := WAITING;

i.e., if a value step is marked as WAITING, its outgoing micro transitions will be also marked as WAITING.

Example 8.51 (Applying Marking Rule MR18 to reset micro transitions):
Consider Fig. 8.79. According to Marking Rule MR18, all micro transitions originating from micro step proposal are
marked as WAITING; i.e., the micro transitions between value step reject and micro step reason, between value
step reject and micro step alternative job, and between value step invite and micro step appraisal.

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

false

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

MR18

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

TRIGGER:

micro steps and value steps

become marked as WAITING
outgoing micro transitions

are marked as WAITING

Figure 8.79: Applying Marking Rule MR18 to reset micro transitions

Note that Marking Rules MR17 and MR18 trigger each other iteratively similar to internal and
external dead-path eliminations. Therefore, all subsequent execution paths are reset until
reaching an end micro step (cf. Fig. 8.80).

Furthermore, in the given context, states and backward transitions must be reset as well. This
is accomplished by Marking Rules MR19 and MR20. A state is marked as WAITING if its corre-
sponding micro steps are all marked as WAITING. In turn, a backward transition is marked as
WAITING when its source state becomes marked as WAITING.

Marking Rule (MR19: Resetting states):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-

182

8.6 Backward Jumps

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

false

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

MR17 + MR18 iteratively

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

TRIGGER MR16:

micro steps and value steps

become marked as WAITING

all subsequent

micro steps

and transitions

are re-marked

as WAITING
TRIGGER MR15:

micro transitions

become marked as WAITING

Figure 8.80: Applying Marking Rule MR17 and MR18 iteratively

stances(micProc). Further, let state = (name, sMicStepSet) ∈ StateSet be a state. Then:

∀ micStep ∈ sMicStepSet with MMicStep(micStep) = WAITING: MState(state) := WAITING;

i.e., a state is marked as WAITING if its micro steps are all marked as WAITING.

Marking Rule (MR20: Resetting backward transitions):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ backTrans=(source, target) ∈ BackTransSet with MState(source) = WAITING: MbackTrans(backTrans) := WAITING;

i.e., a backward transition is marked as WAITING when its source state becomes marked as WAITING.

Example 8.52 (Resetting states and backward transitions):
Consider Fig. 8.81. States pending, reject proposed, invitation proposed, and finished are re-marked as
WAITING when applying Marking Rule MR19. In addition, according to Marking Rule MR20, the backward transitions
between states reject proposed and initialized, between states reject proposed and pending, and between
invitation proposed and pending are marked as WAITING.

Overall, in the context of a backward jump, an external reset of the micro process instance is
applied starting from the currently activated state (i.e., the target state of the backward transi-
tion). For this purpose, Marking Rules MR17, MR18, MR19, and MR20 are applied (cf. Fig.
8.82).

8.6.5 Re-executing Micro Process Instances

After performing a backward jump, at least one micro transition is marked as READY. More pre-
cisely, if the newly activated state corresponds to the start state of the micro process instance,

183

8 Micro Process Execution

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

object instance micro process instance

Review #1

reject

be fast

high

01/03/2012

false

proposal

remark

urgency

return date

appraisal

reason

comment

finished

1OID

Job Offer #4

01/01/2012

engineer

publ. until

publ. from

label

description

7OID

alternative job

MR19 + MR20

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

TRIGGER MR19:

all micro steps, value steps and micro transitions

become marked as WAITING

MR19:

state is re-marked as WAITING

TRIGGER MR20:

state becomes

marked

as WAITING

MR20:

outgoing

backward

transitions

are re-marked

as WAITING

Figure 8.81: Applying Marking Rules MR19 and MR20 to reset states and backward
transitions

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

internal reset

RR4

micro process

initialization

MR9

ER3

RR5

state change

MR11 MR10

MR12

external dead-path

elimination

MR13 ER4 RR6

backward jump

MR16

backward

jump

backTrans

CONFIRMABLE

committed

MR14MR15

backTrans

READY

micTrans

WAITING
MR17 MR18

MR20MR19

external reset

micStep

WAITING

micStep

WAITING

micTrans

WAITING

state

WAITING

backTrans

WAITING

Figure 8.82: Rules for resetting the micro process instance

all micro transitions originating from the corresponding start micro step are marked as READY

(cf. Marking Rule MR16f). By contrast, if the currently activated state does not correspond to
the start state, exactly one external micro transition (whose target micro step belongs to the
currently activated state) is marked as READY (cf. Marking Rule MR16e). Starting from the
micro transitions, which are currently marked as READY, the region of the micro process in-

184

8.6 Backward Jumps

stance that was reset is now re-executed again (cf. Marking Rule MR2). As already explained,
if required attribute values or relations a particular micro step refers to, are already available,
micro process execution automatically proceeds. More precisely, if the required attribute value
or relation is available, Execution Rule ER2 is automatically skipped. Instead, Reaction Rule
RR2 is executed. Consequently, micro process execution automatically proceeds until an ex-
plicit external micro transition is reached that requires a respective user commitment. Until this
point, no user intervention for changing already assigned attribute values or relations will be
possible (i.e., required attribute values are already assigned in the first iteration). In particular,
if a subsequent state is reachable using an implicit external micro transition, this state will be
immediately activated without allowing for any user intervention. In particular, it is not possible
to revise data inputs.

Example 8.53 (Automatic re-execution):
Consider Fig. 8.81. State initialized becomes activated due to the backward jump outgoing from state reject

proposed. Since values for attributes urgency and return date are already available, state initialized will be
automatically marked as CONFIRMED and its subsequent state pending as ACTIVATED.

One option to prevent such automatic re-execution of micro process instances without resetting
attribute values would be to delete the respective attribute values before. However, in this case,
we loose all work already done (i.e., already assigned attribute values must then be reset even
if they shall not be changed). Hence, this is not a feasible solution. To enable more user
interventions, we introduce user commitments for already set attribute values and relations. In
this context, consider data markings UNASSIGNED, ASSIGNED, and CONFIRMABLE (cf. Def. 29).
Each user, who is allowed to set required attribute values or relations, may commit respective
values.

Definition 29 (Data Markings):
DataMarkings := {UNASSIGNED, ASSIGNED, CONFIRMABLE} corresponds to the set of all markings defined for
attributes and relations (cf. Tab. 8.7).

Marking Label Description
UNASSIGNED For this attribute or relation, no value is currently assigned.

ASSIGNED For this attribute or relation, a value is currently assigned.

CONFIRMABLE For this attribute or relation, a value is currently assigned, but must be com-
mitted by an authorized user.

Table 8.7: Data Markings

Data markings are only important for attributes and relations referenced by a corresponding
micro step. In this context, we must consider that more than one micro step may refer to the
same attribute or relation (i.e., these micro steps belong to different states). For this reason,
data markings are assigned to micro steps rather than to attributes and relations. Accordingly,
we extend the definition of micro steps as specified in Def. 30.

185

8 Micro Process Execution

Definition 30 (Extending Micro Steps with Data Markings):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let micStep = (ref, ValueSteps) ∈ MicStepSet be a micro step. Then:

MData: MicStepSet 7→ DataMarking assigns to each micro step ms its marking MData(ms) ∈ DataMarkings.

We extend the definition of a micro process instance accordingly. In the following, therefore, a micro process in-
stance represents a tuple micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData).

When performing a backward jump, the data markings of affected micro steps (i.e., the micro
steps marked as WAITING or READY) are changed to CONFIRMABLE. For these micro steps,
attribute values must be committed before proceeding with micro process execution. Note that
this allows responsible users to change already set attribute values and relations when re-
executing the micro process instance. More precisely, users may delete these attribute values
and relations. In this case, data marking are changed to UNASSIGNED. When a new value is
assigned, however, the respective data marking is changed to ASSIGNED and micro process
execution may proceed. Alternatively, users may commit already assigned values. In this
case, respective data markings are changed from CONFIRMABLE to ASSIGNED, triggering the
corresponding reaction rules.

Fig. 8.83 illustrates possible data markings and their transitions:

1. If a value is set for the referenced attribute or relation, the data marking of the respective
micro step changes from UNASSIGNED to ASSIGNED.

2. If the value of a referenced attribute or relation is deleted, the data marking of the respec-
tive micro step changes from ASSIGNED to UNASSIGNED.

3. After a backward jump, all data markings of the micro steps corresponding to the back-
ward region are changed from ASSIGNED to CONFIRMABLE.

4. If a user commitment is made for a micro step after a backward jump, the data marking
of this micro step changes CONFIRMABLE to ASSIGNED.

5. If an attribute value or relation (which is referenced by a micro step with data marking
CONFIRMABLE) is deleted, the data marking changes from to UNASSIGNED.

UNASSIGNED ASSIGNED CONFIRMABLE

1

2

3

4

5

Figure 8.83: Data markings and their transitions

Initially, for each micro step its data marking corresponds to UNASSIGNED; i.e., when creating a
micro process instance, no attribute value or relation is assigned. For this purpose, we extend
Reaction Rule RR1 for initializing micro process instances (cf. Marking Rule RR1’).

186

8.6 Backward Jumps

Marking Rule (RR1’: Initializing micro steps with data markings):
Let dm = (name, OTypeSet, RelTypeSet) ∈ DM be a data model and ds = (dm, OSet, RelSet) be a corresponding
data structure. Further, let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData) be a micro
process instance of type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcIn-
stance ∈ micprocinstances(micProc). Finally, let startState = (name, sMicStepSet) ∈ StateSet be the start state of
micProcInstance and startMicStep ∈ MicStepSet the start micro step.

Assume that a new object instance o is created:
OSet = OSet ∪ {o} with o = (oid, oType, attrval) ∧ o.oid = micProcInstance.oid.
Then the initial markings of micProcInstance are set as follows:

a)-j) see RR1 in Sect. 8.3

k) ∀ micStep ∈ MicStepSet: MData(micStep) := UNASSIGNED;
i.e., for each micro step, its initial data marking is set to UNASSIGNED.

If a value for the attribute or relation the micro step refers to becomes available, the data mark-
ing changes from UNASSIGNED to ASSIGNED. If the attribute value or relation is deleted, in turn,
data marking UNASSIGNED is re-allocated (cf. Reaction Rule RR7).

Reaction Rule (RR7: Assigning Data Markings):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micStep=(ref, ValueSteps) ∈ MicStepSet with ref 6= NULL:

• ref=(attrType, attrValue) ∈ Attr,⇒

MData(micStep) :=

{
ASSIGNED, attrValue 6= NULL
UNASSIGNED, attrValue = NULL

i.e., when an attribute value becomes available for a micro step, its data marking changes to ASSIGNED. By
contrast, if no attribute value is available, the data marking corresponds to UNASSIGNED.

• ref=(relType, soid, toid) ∈ RelSet,⇒

MData(micStep) :=

{
ASSIGNED, toid 6= NULL
UNASSIGNED, toid = NULL

i.e., when a relation becomes available for a micro step, its data marking changes to ASSIGNED. By contrast,
if no relation is available, its data marking corresponds to UNASSIGNED.

When performing a backward jump, the data markings of the micro steps belonging to the reset
region of the micro process instance are changed to CONFIRMABLE. For this purpose, the micro
steps belonging to the target state are reset first (cf. Marking Rule MR16’).

Marking Rule (MR16’: Marking data markings as CONFIRMABLE):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

backTrans = (s, t) ∈ BackTransSet with MBackTrans(backTrans) = READY ∧ t = (name, sMicStepSet) ∈ StateSet,⇒
i.e., if a backward transition becomes marked as READY, the following re-markings apply:

a)-i) see MR16 in Sect. 8.6.3

187

8 Micro Process Execution

j) ∀ backTrans=(s, t) ∈ BackTransSet with MBackTrans(backTrans) = READY ∧ t=(name, sMicStepSet) ∈ StateSet:
∀ micStep=(ref, ValueSteps) ∈ sMicStepSet: MData(micStep) := CONFIRMABLE;

i.e., data markings of all micro steps belonging to the target state are changed to CONFIRMABLE.

Second, the data markings of micro steps belonging to any subsequent state, which must be
reset due to the backward jump, must be changed to CONFIRMABLE as well. For this purpose,
we extend Marking Rule MR17. In particular, if a micro step is marked as WAITING (i.e., its
incoming micro transitions are all marked as WAITING), the corresponding data marking must
be changed to CONFIRMABLE (cf. Marking Rule MR17’).

Marking Rule (MR17’: Re-assigning data markings when resetting micro steps):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micStep=(ref, ValueSteps) ∈ sMicStepSet with state=(name, sMicStepSet) ∈ StateSet ∧ MState(state) 6= ACTI-
VATED:

a)-b) see MR17 in Sect. 8.6.4

c) ∀ micTrans ∈ intrans(micStep) with MMicTrans(micTrans) = WAITING: MData(micStep) := CONFIRMABLE;
i.e., if all incoming micro transitions of a micro step not belonging to the currently activated state are marked
as WAITING, the data marking of this micro step changes to CONFIRMABLE.

Assume the data marking of a micro step is CONFIRMABLE. Then, this micro step may only
be activated, when a user commitment becomes available for the attribute value or relation the
micro step refers to. This is defined by Execution Rule ER5. For this purpose, we introduce
function committeddata which indicates whether or not a commitment for the respective attribute
value or relation has been made (cf. Def. 31).

Definition 31 (Commitment for data markings):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

committeddata: MicStepSet 7→ BOOLEAN evaluates whether or not the required user commitment has been made
for a particular micro step type.

Execution Rule (ER5: Committing data):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micStep ∈ MicStepSe with MData(micStep) = CONFIRMABLE ∧ committeddata(micStep) = FALSE:
A user commitment is required;

i.e., if the data marking of a micro step corresponds to CONFIRMABLE, a commitment of any responsible user is
required.

188

8.6 Backward Jumps

In turn, when a user provides the required commitment, the data marking is changed to AS-
SIGNED (cf. Reaction Rule RR8). Accordingly, the respective micro step can now be activated.
To accomplish the latter, Reaction Rule RR2 needs to be extended; i.e., micro steps may only
be marked as ACTIVATED, if their data marking corresponds to ASSIGNED (cf. Reaction Rule
RR2””’).

Reaction Rule (RR8: Data committed):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ micStep=(ref, ValueSteps) ∈ MicStepSet with MData(micStep) = CONFIRMABLE ∧ committeddata(micStep) = TRUE:
MData(micStep) := ASSIGNED;

i.e., the data marking of a micro step changes to ASSIGNED when a user commitment for its attribute value (or
relation) becomes available.

Reaction Rule (RR2””’: Considering data markings when activating micro steps):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

a) ∀ micStep=(ref, VSteps) ∈ MicStepSet with MMicStep(micStep) = ENABLED ∧ ref 6= NULL ∧ VSteps = ∅:
(ref=(attrT, attrV) ∈ Attr ∧ attrV 6= NULL) ∨ (ref=(relT, soid, toid) ∈ RelSet ∧ toid 6= NULL)
∧ MData(micStep) = ASSIGNED:

MMicStep := ACTIVATED;
i.e., all atomic micro steps will be marked as ACTIVATED if for the corresponding attribute (or relation) a value
becomes available and the respective data marking corresponds to ASSIGNED.

b) ∀ micStep=(ref, VSteps) ∈ MicStepSet with MMicStep(micStep) = ENABLED ∧ ref 6= NULL:
∀ vStep ∈ VSteps with constraint(valueStep) = TRUE ∧ MData(micStep) = ASSIGNED:

MMicStep(vStep) := ACTIVATED;
i.e., all value steps that evaluate to True will be marked as ACTIVATED when the data marking of the micro
step they belong to corresponds to ASSIGNED.

c) ∀ micStep=(ref, VSteps) ∈ MicStepSet with MMicStep(micStep) = ENABLED ∧ ref 6= NULL ∧ VSteps 6= ∅:
∃ vStep ∈ VSteps with MMicStep(vStep) = ACTIVATED ∧ MData(micStep) = ASSIGNED:

MMicStep(micStep) := ACTIVATED;
i.e., a value-specific micro step will be re-marked from ENABLED to ACTIVATED if at least one of its value steps
becomes marked as ACTIVATED and its data marking corresponds to ASSIGNED.

d) ∀ micStep=(ref, VSteps) ∈ MicStepSet with
MMicStep(micStep) = ENABLED ∧ ref 6= NULL ∧ VSteps 6= ∅ ∧ outtransCount(micStep) ≥ 1:
(ref=(attrT, attrV) ∈ Attr ∧ attrV 6= NULL) ∨ (ref=(relT, s, t) ∈ RelSet ∧ t 6= NULL)
∧ MData(micStep) = ASSIGNED,⇒

MMicStep := ACTIVATED;
i.e., a value-specific micro step will be re-marked from ENABLED to ACTIVATED when a value for its corre-
sponding attribute becomes available and the micro step itself has at least one outgoing micro transition (in
addition to the micro transitions outgoing from value steps of this micro step) and its data marking corre-
sponds to ASSIGNED.

e) ∀ micStep=(ref, VSteps) ∈ MicStepSet with MMicStep(micStep) = ENABLED ∧ ref 6= NULL ∧ VSteps 6= ∅:
((ref=(attrT, attrV) ∈ Attr ∧ attrV 6= NULL) ∨ (ref=(relT, s, t) ∈ RelSet ∧ t 6= NULL)):

outtransCount(micStep) = 0 ∧ MData(micStep) = ASSIGNED ∧
@ vStep ∈ ValueSteps with MMicStep(vStep) = ACTIVATED:

MMicStep(micStep) := BLOCKED;
i.e., a value-specific micro step will be re-marked from ENABLED to BLOCKED if it has no outgoing micro

189

8 Micro Process Execution

transition, none of its value steps is currently marked as ACTIVATED and its data marking corresponds to
ASSIGNED.

f) ∀ micStep=(ref, ValueSteps) ∈ MicStepSet with
ref = NULL ∧ MMicStep(micStep) = ENABLED ∧ MData(micStep) = ASSIGNED:

MMicStep(micStep) := ACTIVATED;
i.e., all empty micro steps that become marked as ENABLED will be immediately re-marked as ACTIVATED if
their data marking corresponds to ASSIGNED.

Consider Execution Rule ER5 as well as Reaction Rules RR7 and RR8 as illustrated in Fig.
8.84. In order to re-execute a micro process instance after a backward jump, already assigned
attribute values and relations, which are mandatorily required to proceed with the control flow,
must be committed by responsible users. This enables authorized users to reuse already as-
signed attribute values and relations when re-executing a micro process instance.

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

internal reset

RR4

micro process

initialization

MR9

ER3

RR5

state change

MR11 MR10

MR12

external dead-path

elimination

MR13 ER4 RR6

backward jump

MR16

backward

jump

MR17 MR18

MR20MR19

external reset
MR14MR15

RR7 ER5RR8

re-executionDataMarking

(UN-)ASSIGNED

DataMarking

CONFIRMABLE

committed

DataMarking

ASSIGNED

Figure 8.84: Rules for re-executing a micro process instance

190

8.7 Terminating Micro Process Instances

8.7 Terminating Micro Process Instances

According to Marking Rule MR21, a micro process instance will terminate when one of its end
states becomes activated (i.e., is marked as ACTIVATED).

Marking Rule (MR21: Termination of a micro process instance):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let EndStates ⊂ StateSet comprise all end states of micProc. Then:

∃ state ∈ EndStates with MState(state) = ACTIVATED: MMicProc(micProcInstance) := FINISHED;
i.e., a micro process instance will be re-marked from ACTIVATED to FINISHED as soon as one of its end states
becomes marked as ACTIVATED.

Note that it should be even possible to re-activate a micro process instance if a backward jump
from its end state to a previous state is performed; i.e., backward transitions originating from
an end state may fire even if the micro process instance has been marked as CONFIRMED. For
this purpose, the micro process instance must be re-marked as ACTIVATED when a respective
backward transition is triggered (cf. Marking Rule MR16”).

Example 8.54 (Re-activating micro process instances):
After having received a rejection, the applicant object instances reaches end state rejected. Consider now the
case when an applicant applies for another job after having received the rejection. In this case, the applicant

micro process instance changes from state rejected to state pending. Since state pending does not belong to
the set of end states, the micro process instance corresponding to the applicant object instance must become
re-activated.

Marking Rule (MR16”: Re-activating micro process instances):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData) be a micro process instance of
type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let EndStates ⊂ StateSet comprise all end states of micProcInstance. Then:

backTrans ∈ BackTransSet with MBackTrans(backTrans) = READY and backTrans.target ∈ StateSet;
i.e., if a backward transition becomes marked as READY, the following re-markings apply:

a)-i) see MR16 in Sect. 8.6.3

j) see MR16’ in Sect. 8.6.5

k) ∀ backTrans ∈ BackTransSet with MBackTrans(backTrans) = READY ∧ source ∈ EndStates:
MMicProc(micProcInstance) := ACTIVATED;

i.e., if a backward jump originates from an end state, the micro process instance is re-activated and therefore
marked as ACTIVATED.

Altogether, Fig. 8.85 lists all rules needed for the correct execution of a micro process instance.
The rather high number is rules is required to provide the required flexibility for process ex-
ecution, to realize the required data-driven execution paradigm, and to precisely specify the
corresponding execution semantics at a fine-grained level needed to implement the approach.
In particular, these rules have provided the foundation for implementing parts of the PHILhar-
monicFlows prototype (cf. Chapt. 14).

191

8 Micro Process Execution

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

internal reset

RR4

micro process

initialization

MR9

ER3

RR5

state change

MR11 MR10

MR12

external dead-path

elimination

MR13 ER4 RR6

backward jump

MR16

backward

jump

MR17 MR18

MR20MR19

external reset
MR14MR15

RR7 ER5RR8

re-execution

MR21

termination
end state

ACTIVATED

micProc

FINISHED

Figure 8.85: Comprehensive set of rules for executing a micro process instance

8.8 Task-oriented User View

As illustrated in Fig. 8.86, the main components relevant in the context of a micro process
execution include states (and their execution responsibilities) as well as the micro steps and
micro transitions. Based on the operational semantics introduced in this chapter, we are able to
provide a generic approach for automatically generating process-oriented views at run-time.

In addition to the data-oriented view (cf. Sect. 6.5), in which users may access business data
and involve business functions at any point in time, PHILharmonicFlows provides a process-
oriented view as well. Based on the latter, upcoming activities can be assigned to the right
users at the right point in time. In particular, for each user, PHILharmonicFlows automatically
generates a worklist that comprises all mandatory activities this user is responsible for. Op-
posed to worklists in traditional PrMS (cf. Chapt. 4), however, the following issues must be
considered:

• For each micro process type, usually, a high number of micro process instances exists
(i.e., a large amount of object instances must be handled for a particular object type).

• Activities (generic and black-box ones) are aligned in respect to particular object types.

• Which activities are executable and which input fields are displayed when editing a partic-
ular object instance depends on the currently activated state of the corresponding micro
process instance (as well as respective user permissions).

192

8.8 Task-oriented User View

RUN-TIME

BUILD-TIME

Macro Process

Micro Process

Data

User Integration

Forms

Black-box Activities

automatically generated

implementation required

Relations

Objects

Attributes

States

Micro Transition

Micro Step

Responsibilities

Process-

oriented

View

Monitoring

automatically generated

Worklists

Data-

oriented

View

automatically generated

Overview

Tables

Figure 8.86: Process-oriented view in PHILharmonicFlows

Consequently, each user must execute one and the same activity for a potentially large number
of micro process instances of same type. As a consequence, it is not always useful to directly
list all activities, one entry following the other. Instead, all micro process instances and related
tasks should be displayed in a more aggregated and comprehensive way. This aggregation
(which is generated for each particular user) comprises two steps: First, a process-oriented
view is generated for each object type. Second, for each of these views corresponding manda-
tory activities are then further categorized in respect to the states defined by the corresponding
micro process types. Altogether, this results in process views that allow users to get a quick
overview on their different working areas (i.e., the different micro process types) for which they
must execute upcoming activities. Based on this aggregated view, corresponding object in-
stances for which mandatory activities must be executed are then automatically selected and
displayed in a corresponding overview table. This way, the process-oriented view works as filter
selecting the affected object instances.

An example of a process-oriented user view is depicted in Fig. 8.87. Note that the micro pro-
cess types and their user assignments (i.e., execution and transition responsibilities) constitute
the fundamental basis for generating such views. Initially, for each micro process type, the
corresponding number of micro process instances, for which the respective user must execute
at least one mandatory activity, is listed. In this context, consider the abstract process view as

193

8 Micro Process Execution

illustrated in Fig. 8.87, according to it the respective user must execute tasks related to 214
applications.

Reviews

0initialized

pending

reject proposed

invitation proposed

finished

4

0

0

0

Applications

67initialized

sent

checked

accepted

rejected

99

45

0

3

TO DO

TO DO

214

4

micro process type

states

number of micro

process instances

Applications 214

Reviews 4

micro process type

number of micro

process instances

abstract process view detailed process view

Figure 8.87: Process-oriented user view

As discussed, there exist two kinds of mandatory activities: on one hand, form-based activities
for providing required attribute values (and relations) are required, on the other, as well as
user commitments for activating subsequent states must be supported. Which activities are
mandatory for a particular micro process instance again depends on its currently activated
state; i.e., the current markings of the corresponding micro process instance. Therefore, the
aggregated process view additionally allows categorizing micro process instances according to
the states defined for the respective micro process type. For this purpose, a detailed process
view can be realized for each object type (cf. Fig. 8.87).

Example 8.55 (Process-oriented user view):
Consider Fig. 8.88. The user role employee is assigned to state pending as well as to the explicit external micro
transitions originating from the micro step types reason, alternative job, and appraisal. Since there exist four
review instances, for which state pending is currently activated (cf. Fig. 8.90), PHILharmonicFlows summarizes
them in the aggregated view of the responsible employee (cf. Fig. 8.87).

Using this aggregated view, users may list all corresponding instances. More precisely, when
selecting a specific state, a respective overview table is automatically generated listing the
associated object instances (cf. Fig. 8.89). This overview table can then be considered as
worklist; i.e., the aggregated view acts like a filter in order to select all instances being in the
specified state and for which the user must execute a mandatory activity. In this context, also
note that for these object instances the required activities may be also executed in one go if
desired by the user (cf. Sect. 9.3 for details).

Example 8.56 (Worklist):
Consider review instance #1 in Fig. 8.89. For this instance, a value for attribute proposal is still missing. Hence,
micro step proposal is marked as ENABLED (cf. Fig. 8.90). In turn, this requires the execution of a mandatory form-
based activity to assign the missing value. This activity may be invoked using the edit-icon (cf. the pencil in Fig.
8.89). Review instance #2, in turn, either requires a value for attribute reason or a relation alternative job. Note
that this attribute (or relation) may be also assigned by invoking a respective form (like the one for instance #1). In

194

8.8 Task-oriented User View

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

employee

employee

employee

employee

personnel

officer

personnel

officer

personnel

officer

Figure 8.88: Examples of execution and transition responsibilities

proposalurgency return date appraisal finished

high 01/03/2012

rejectlow 11/04/2012

rejectlow 24/12/2011

rejecthigh 26/08/2012

Reviews

application

Hans Maier

Wilma Schmidt

Horst Müller

Fred Pauli

mandatory

activities

form

submit

INSTANCE #1
INSTANCE #2
INSTANCE #3
INSTANCE #4

Figure 8.89: Worklist

turn, for review instances #3 and #4, respective attribute values have been already assigned. For these instances,
the responsible user (i.e., the employee) must commit the activation of the subsequent state. More precisely,
regarding instance #3 (cf. Fig. 8.90), the explicit external micro transition originating from micro step reason is
marked as CONFIRMABLE. In turn, this indicates that a user commitment is mandatorily required. Opposed to this,
for instance #4, a value for relation alternative job is selected (instead of setting attribute reason). Consequently,
the explicit micro transition originating from micro step alternative job is re-marked as CONFIRMABLE (cf. Fig.
8.90).

195

8 Micro Process Execution

pending

reject

invite

proposal

appraisal

reason

alternative

job

1

2

pending

reject

invite

proposal

appraisal

reason

alternative

job

1

2

pending

reject

invite

proposal

appraisal

reason

alternative

job

1

2

pending

reject

invite

proposal

appraisal

reason

alternative

job

1

2

instance 1 instance 2

instance 3 instance 4

value for attribute

proposal required

value for attribute reason or

relation alternative job required

commitment

required

commitment

required

Figure 8.90: Review micro process instances in state pending

8.9 Summary

For properly initiating and executing micro process instances at run-time, PHILharmonicFlows
is based on well-defined marking, execution, and reaction rules. In particular, these rules
evaluate the attribute values of the corresponding object instances and enable the automatic
generation of end-user components at run-time.

Opposed to traditional PrMS, each activity is related to a particular object instance and micro
process instance respectively. In particular, this constitutes the foundation for providing aggre-
gated views based on the different object and micro process types. Further, this allows for the
proper handling of a large number of instances. Note that this does not impose any restriction
with respect to the quick processing of upcoming activities. As will be shown in Sect. 9.3,
PHILharmonicFlows additionally provides features for processing a particular activity for mul-
tiple object instances in one go. Furthermore, we do not disallow executing optional activities
like traditional PrMS. Instead, in our approach these may be invoked for particular object in-
stances based on the data-oriented perspective. Overall, PHILharmonicFlows provides data-
and function-oriented features as known from (database) applications; i.e., we do not treat
the process-oriented view completely independent from the data- and function-oriented ones.
Instead, the process-oriented view acts as filter guiding users to find mandatorily required ac-
tivities relevant for quickly processing running process instances.

196

9
Activities

RUN-TIME

BUILD-TIME

Macro Process

Micro Process

Data

User Integration

Forms

Black-box Activities

automatically generated

implementation required

Relations

Objects

Attributes

States

Micro Transition

Micro Step

Macro Step

Macro Transition

Process Context

Aggregation

Transverse

Responsibilities

Permissions

Data-

oriented

View

automatically generated

Overview

Tables

Process-

oriented

View

Monitoring

automatically generated

Worklists

Figure 9.1: Activities in PHILharmonicFlows

197

9 Activities

Opposed to existing PrMS, this thesis does not pursue enterprise application integration [Kel02]
as goal. Instead, it targets at the support of processes that are based on functions for man-
aging and accessing data as stored in a DBMS. The thesis focuses on generic functionality
for automatically generating data-oriented views (i.e., overview tables, data reports), process-
oriented views (i.e., worklists), and form-based activities (i.e., user forms). However, one may
also integrate common business functions, which are not form-based. For example, consider
complex computations or the integration of legacy applications. However, the latter one re-
stricted to corresponding business functions must be assignable to one particular business
object; i.e., changes on additional business objects are possible but then out of control like in
existing PrMS.

As discussed in Chapt. 4, in contemporary PrMS a business process is defined in terms of a
set of activities and their execution constraints. When executing an activity, the attribute val-
ues of object instances may be changed. However, activity-centric PrMS do not control which
object instances may be accessed and updated during activity execution. More precisely, the
relationship between activities and object types is not made transparent; i.e., application data is
managed by the invoked application components themselves. We denote respective activities
as black-box. Thereby, each black-box activity requires a specific implementation.
As opposed to activity-centric PrMS, PHILharmonicFlows defines processes based on data
rather than on black-box activities (cf. Chapt. 7). In particular, this allows for a well-defined
granularity enabling the definition of process types in tight accordance with the one of object
types and their relations. At build-time, each activity is put into the context of a particular object
type. This enables us to automatically generate form-based activities (i.e., user forms) during
run-time; i.e., activities for creating, editing, reading, and deleting object instances.
Generally, users should be allowed to choose the granularity of a particular activity. For ex-
ample, when processing a particular object instance, users may want to additionally process
related object instances. Furthermore, the progress of a micro process may not only depend on
the availability of data (i.e., data-driven process execution), but also on explicit user decisions;
i.e., even though required data is available, the execution of a particular micro process instance
must not proceed until a user explicitly commits this.
PHILharmonicFlows automatically generates activities enabling such a flexible process con-
trol. Examples include the commitment of state changes and the application of backward
jumps. For these control activities as well as for form-based activities, a generic implemen-
tation is provided; i.e., these activities are automatically generated at run-time and integrated
with overview tables and worklists. Accordingly, we denote them as generic activities. Finally,
PHILharmonicFlows allows processing multiple object instances in one go. We denote this as
batch execution.

9.1 Generic Activities

PHILharmonicFlows provides generic activities for editing, reading, creating, and deleting ob-
ject instances (i.e., form-based activities) as well as for enabling process control. The latter
includes user commitments and backward jumps.

198

9.1 Generic Activities

9.1.1 Editing Object Instances

When a state becomes enabled during the processing of a particular object instance, usually,
a corresponding form-based activity for entering required attribute values is automatically gen-
erated (cf. Fig. 9.2). This activity is then assigned to the worklists of authorized users (cf. Def.
19). In general, we denote such activities as mandatory. Mandatory activities are required to
proceed with the flow of control; i.e., to set required attribute values and relations.

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

Return Date:

Urgency:

save cancel

Edit Review

Proposal:

Reason:

save cancel

Edit Review

reject

Alternative Job:

Appraisal:

finished

save cancel

Edit Review

finished

save cancel

Edit Review

personnel

officer

employee

personnel

officer

personnel

officer

Figure 9.2: Generating mandatory activities

As illustrated in Fig. 9.3, the states of a micro process instance may be associated with dif-
ferent user forms. Thereby, a generated user form comprises one input field for each attribute
referenced by any micro step of the currently considered state. Generally, we denote each of
these input fields as mandatory action. Moreover, when processing a form, the user is guided
in setting the attribute values or relations required (e.g., by highlighting selectable input fields).
To allow for this guidance, the state-internal logic of the respective micro process instance is
taken into account (cf. Chapt. 8).

To enable an integrated and flexible access to business data and business processes, users
should be allowed to optionally read or write object attributes even if they are currently not ex-
ecuting any mandatory activity; i.e., users should be allowed to execute optional activities (cf.
Prop. 8). However, which object attributes may be optionally read or written again depends
on the current progress of the considered process instance as well; i.e., whether a user may
access certain object attributes depends on the state of the corresponding micro process in-
stance (cf. Prop. 19). Furthermore, optional activities may differ from user to user; i.e., different

199

9 Activities

object type

attribute type

micro process type

micro step type

form

mandatory action

Figure 9.3: Mandatory actions

users may read/write different attribute values in a particular state of an object instance. As a
consequence, the number of forms required for the processing of an object instance depends
on the numbers of defined object states and involved user roles.

Example 9.1 (Variability of user forms):
Considering our example from Chapt. 8, a review object instance comprises five different states; i.e., initialized,
pending, reject proposed, invitation proposed, and finished. Further, these states refer to three different
user roles (i.e., personnel officer, employee, and manager). Altogether, this might require fifteen different user
forms.

To enable context-awareness of form-based activities (cf. Prop. 14) when processing a par-
ticular object instance, it should be possible to edit attribute values of related object instances
if desired. Note that this further multiplies the number of required user forms; i.e., for such
related object instances, their different processing states and corresponding user roles must
be considered as well. Consequently, as illustrated in Fig. 9.4, the number of required user
forms depends on the number of processing states, involved user roles, and related object
instances.

Example 9.2 (Vertical flexibility of form-based activities):
When processing a review form, users may want to concurrently access the corresponding application within the
same form. Like the review object type, an application comprises five states. Consequently, for a particular user,
up to twenty-five different user forms may have to be generated.

nu
m

be
r o

f

ob
je
ct
 in

st
an

ce
s

n
u

m
b

e
r

o
f
s
ta

te
s

number of users

Figure 9.4: Factors determining the controls of form-based activities

Such a fine-grained access control is required by many applications. To enable it, PHILhar-
monicFlows provides an authorization table for each object type (cf. Fig. 9.5). In this context,

200

9.1 Generic Activities

different permissions for reading and writing object attribute values may be granted to the differ-
ent user roles.1 Opposed to existing approaches, PHILharmonicFlows additionally considers
the states of micro process instances as defined by its corresponding type. More precisely,
different user roles may own different read or write permissions in different states (cf. Def.
32a+b).

Definition 32 (Read and write permissions):
Let dm = (name, OTypeSet, RelTypeSet) be a data model and oType = (name, AttrTypeSet) ∈OTypeSet be an object
type with corresponding micro process type micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateType-
Set, BackTransTypeSet). Further, let UserRoles be the set of all defined user roles.
Optional read and write permissions are then defined as follows:

A permission perm = (refType, stateType, role, mode) is a tuple where

• refType ∈ AttrTypeSet ∪ RelTypeSet is an attribute type or a relation type
with refType ∈ RelTypeSet,⇒ refType.source = oType

• stateType ∈ StateTypeSet is a state type.

• role ∈ UserRoles is a user role.

• mode is either r (read permission) or w (write permission).

ReadPermissions corresponds to the set of all definable read permissions (i.e., mode = r) and WritePermissions
corresponds to the set of all definable write permissions (i.e., mode = w).

review

initialized

attributes

proposal

remark

urgency

return date

appraisal

reason

comment

finished

PO

W

MW

MW

E

del

create

R

R

R

W

pending

attributes

proposal

remark

urgency

return date

appraisal

reason

comment

finished

R

R

R

R

del

MW

R

R

R

MW

MW

W

PO E

relations

altern. job

. . .

relations

altern. job

. . .

MW

. . .

SYS

systempersonnel

officer employee

roles

object

type

states

create permission

(state independent)
delete permission

(state dependent)

mandatory write

(corresponding micro step)

optional write

read

M

R

R

R

W

manager

M = mandatory

R = repeatable

O = optional

U = unique (not repeatable)

Possible combinations:

MR / MU / OR / OU

Figure 9.5: Authorization table

Example 9.3 (Read and write permissions):
As illustrated in Fig. 9.5, the personnel officer (PO) may still update attributes urgency, return date, and
remark even if the subsequent state pending has been already activated. In addition, he may read attribute comment.

Generally, the permissions granted to selected attributes of an object type constitute the founda-
tion for generating forms at run-time. As illustrated in Fig. 9.6, in this context, for each attribute

1If a user owns several roles, he gets the permissions of all granted roles at the same time. In addition,
PHILharmonicFlows provides features to select only a subset of granted roles during the login process.

201

9 Activities

of an object type one potential action exists (i.e., to write or read the attribute). Whether such
an action is actually added to a particular user form, however, depends on the user’s permis-
sions. If the user may write a particular attribute, a corresponding input field is added to the
form allowing him or her to optionally assign or change the respective attribute value. In turn,
to enable read access, the current value of the attribute is displayed in a data field to the user
when processing the form. In general, depending of their permissions, users may optionally
read and write attribute values of a particular object instance. According to Execution Rule
ER6, these actions are denoted as optional ones.

Execution Rule (ER6: Optional data access):
Let dm = (name, OTypeSet, RelTypeSet) be a data model and ds = (dm, OSet, RelSet) be a corresponding
data structure. Further, let micProcInstance be a micro process instance of type micProc; i.e., micProcInstance
∈ micprocinstances(micProc). Finally, let o = (oid, oType, attrval) be the object instance micProcInstance refers to;
i.e., o.oid = micProcInstance.oid. Then:

a) ∀ readPerm ∈ ReadPermissions:
∃ readPerm.stateType ∈ StateSet with MState(readPerm.stateType) = ACTIVATED,⇒

• readPerm.refType ∈ AttrTypes,⇒
attrval(readPerm.refType) may be optionally read by users owning r.

• readPerm.refType ∈ RelTypeSet,⇒
∃ rel ∈ RelSet with rel.soid = o.oid and rel.relType ∈ RelTypeSet:
rel.toid.attrval(label(rel.relType.target)) may be optionally read by users owning r.

b) ∀ writePerm ∈WritePermissions:
∃ writePerm.stateType ∈ StateSet with MState(writePerm.stateType) = ACTIVATED,⇒

• writePerm.refType ∈ AttrTypes,⇒
attrval(writePerm.refType) may be optionally written by users owning r.

• writePerm.refType ∈ RelTypeSet,⇒
∃ rel ∈ RelSet with rel.soid = o.oid and rel.relType ∈ RelTypeSet:
rel.toid.attrval(label(rel.relType.target)) may be optionally written by users owning r.

user role

read permission

write permission

object type

attribute type

micro process type

micro step type

form

optional action

mandatory action

data field

input field

input field

Figure 9.6: Optional actions

As illustrated in Fig. 9.7, for usability reasons, mandatory and optional actions are usually not
treated separately, but combined in one and the same form. Generally, a form may comprise
(1) optional actions solely, (2) mandatory actions solely, or (3) optional as well as mandatory
actions. We therefore distinguish between optional and mandatory activities. More precisely, a
mandatory activity refers to at least one object attribute for which a value must be set. In turn,
an optional activity only comprises actions not relevant for progressing with the process.

From the viewpoint of the end-user, for a particular object instance an optional activity may
be invoked by a user if he owns the permissions to optionally write at least one attribute of the

202

9.1 Generic Activities

user roleformobject instance

micro proc. instance

read permission

write permission

attribute

micro step

optional action

mandatory action

data field

input field

input field

Figure 9.7: Mandatory and optional actions

object instance. In turn, a mandatory activity becomes enabled if there exist pending mandatory
actions for the respective object instance and the user owns the required permissions. If a user
may invoke both optional and mandatory activities for a particular object instance at a certain
point in time, corresponding actions are composed in one form. Thereby, mandatory attributes
are highlighted, while optional ones are not; i.e., certain actions of the activity are considered
as being more important than others. This allows users to do the work they must do and the
one they might want to do in a single step.

Another challenge is to ensure that process authorization (i.e., user assignment for execution
mandatory activities) complies with data authorization (cf. Prop. 18). More precisely, each
user who must execute a mandatory activity should own corresponding write permissions for
changing the attribute values required for proceeding with process execution. This is automat-
ically ensured by PHILharmonicFlows; i.e., each user owning the execution responsibility for
a particular state, automatically gets write permissions for the attributes referenced by a micro
step of this state. Optional permissions may then be additionally granted to the respective user
role by adjusting the generated authorization table accordingly.

Example 9.4 (Automatically granted write permissions):
Consider Fig. 9.8. Since the personnel officer owns the execution responsibility for state initialized, write
permissions for attributes urgency and return date, which are referenced by the micro steps of state initialized,
are automatically granted.

Example 9.5 (Adjusted permissions):
Write permissions for attributes urgency and return date are automatically granted for the personnel officer.
Since there is no micro step type referring to the remark attribute type, however, write permission for attribute remark

must be manually granted (Fig. 9.8).

As discussed, for users owning the execution responsibility of a particular state, a mandatory
activity is assigned to their worklist. In this context, we denote write permissions automati-
cally assigned for execution responsibilities as mandatory (cf. Def. 33). This allows us to
further differentiate between process authorization (i.e., user assignment through execution re-
sponsibilities) and data authorization (i.e., permissions). Only for users with mandatory write
permissions, a mandatory activity is assigned to their worklists (cf. 8.8).

203

9 Activities

. . .initialized

urgency
return

date

personnel

officer

review

initialized

attributes

proposal

remark

urgency

return date

appraisal

reason

comment

finished

PO

W

relations

altern. job

. . .

automatically granted

mandatory

write permissions

E

R

R

R

W

manually assigned

optional

write permissions

manually assigned

optional

read permissions

mandatory

activity

optional

activity

MW
MW

personnel

officer
employee

Figure 9.8: Different permissions and resulting activity types

Definition 33 (Mandatory write permissions):
Function mandatory: WritePermissions 7→ BOOLEAN defines whether a particular write permission writePerm =
(refType, stateType, r, mode) ∈WritePermissions is mandatory for r;
i.e., users owning the specified role must then mandatorily assign a value to the attribute or relation when the
respective state becomes activated at run-time.

When a state becomes activated, a mandatory activity for editing the required attribute values
is automatically assigned to the worklist of users owning corresponding mandatory write per-
missions. When additionally considering the introduced permissions, it is possible to optionally
edit additional attributes not referenced by a micro step of the currently activated state.

Example 9.6 (Optional input fields):
As illustrated in Fig. 9.9, the personnel officer may edit attribute remark when initiating a review.

Even users currently not executing a mandatory activity may execute optional activities.

Example 9.7 (Optional activities):
While the personnel officer initiates the review, the employee may optionally read attributes urgency, return
date, and remark and optionally write attribute comment (cf. Fig. 9.9).

Taking the different permissions into account, overview tables are adapted accordingly. In par-
ticular, which object instances (rows) are editable and which attribute values (columns) are dis-
played depends on the permissions of the respective user accessing the overview table. Since

204

9.1 Generic Activities

Return Date:

highUrgency:

12 05 2013

save cancel

Edit Review

*

personnel

officer

please proof quicklyRemark:

employee

Return Date:

highUrgency:

12 05 2013

save cancel

Edit Review

please proof quicklyRemark:

mandatory activity

optional activity

review

initialzed

attributes

proposal

remark

urgency

return date

appraisal

reason

comment

finished

W

MW

MW

del

create

R

R

R

W
many skillsComment:

initialized

urgency
return

date

PO E

mandatory

input fields

optional

input field

optional

input field

data fields

create

permission

delete

permission

Figure 9.9: Generating form-based activities

for different object instances different states may be activated, both activities and displayed at-
tribute values may vary from object instance to object instance. For the sake of transparency,
the currently activated state of object instances should be displayed as well (cf. Fig. 9.10).
Otherwise, it would not be transparent for users why a particular object instance is editable,
while others are not. As illustrated in Fig. 9.10, taking the currently activated state of an ob-
ject instance into account, only users owning at least one write permission may invoke the
corresponding user form for editing attribute values.

Example 9.8 (Executable activities vary from object instance to object instance):
A personnel officer only has write permissions in state initialized. Thus, only object instances for which state
initialized is currently activated are editable.

In turn, for read permissions, it usually does not make sense to display all attribute values
of an object instance in the overview table. For users owning solely read permissions in the
current state of an object instance, therefore, a corresponding activity for displaying detailed
object information (e.g., all attribute values) is added. In turn, if a user also owns write permis-
sions, detailed object information is displayed when invoking the respective user form (i.e., edit
activity).

Example 9.9 (Detailed view on object instances):
In states pending and finished, the personnel officer only owns read permissions (cf. Fig. 9.10). Hence, an
activity displaying detailed object information may be invoked. In turn, in state initialized, write permissions are
granted as well. Accordingly, an edit activity is invoked when selecting the respective object instance.

An overview table might contain columns (i.e., attribute values) for which the respective user
does not own read permissions in all states. Consequently, certain attribute values need to
be hidden for selected object instances in particular states. In order to differentiate them from
attributes without currently assigned value, PHILharmonicFlows indicates it explicitly if access
is denied (cf. Fig. 9.10).

205

9 Activities

Example 9.10 (Varying read permissions):
The personnel officer must not read attribute comment if state initialized is currently activated. In all other
states, however, the comment must be read.

proposalurgency return date appraisal finished

invitehigh 01/03/2012 very good true

denied denied denied

deniedlow denied denied

deniedhigh 26/08/2012 denied denied

Reviews

application

Hans Maier

Wilma Schmidt

Horst Müller

Fred Pauli

STATE

finished

initialized

initialized

pending

state activity

edit

delete

create

read

review

initialzed

attributes

proposal

remark

urgency

return date

appraisal

reason

comment

finished

PO

W

MW

MW

del

create

pending

attributes

proposal

remark

urgency

return date

appraisal

reason

comment

finished

R

R

R

R

del

PO

relations

altern. job

. . .

relations

altern. job

. . .

personnel

officer

edit read

create

finished

attributes

proposal

remark

urgency

return date

appraisal

reason

comment

finished

R

R

R

R

R

R

R

R

del

PO

relations

altern. job

. . .

read

create

Figure 9.10: Adapting overview tables

As discussed in Sect. 8.8, data- and process-oriented views shall be tightly integrated. In
particular, based on the task-oriented user view (i.e., by selecting a particular state), invoked
object instances are listed in a corresponding overview table. More precisely, the task-oriented
view acts as filter in this context. In turn, overview tables contain a column listing the currently
activated state of the respective micro process instance corresponding to a particular object
instance. Based on overview tables, mandatory as well as optional activities may be invoked;
e.g., consider the separate column as illustrated in Fig. 9.10. In this context, PHILharmon-
icFlows differentiates between mandatory and optional activities. Regarding the overview table
in Fig. 9.10, optional activities are displayed using a pop-up menu (see the double-arrow in Fig.
9.10).

Altogether, editing attribute values (and relations) is not only possible when the respective
value is mandatorily required for micro process execution (cf. Execution Rule ER2). In addition,
users may optionally edit object instances (and relations) if required permissions are available
(cf. Execution Rule ER6).

206

9.1 Generic Activities

proposalurgency return date appraisal finished

invitehigh 01/03/2012 very good true

denied denied denied

deniedlow denied denied

deniedhigh 26/08/2012 denied denied

Reviews

application

Hans Maier

Wilma Schmidt

Horst Müller

Fred Pauli

STATE

finished

initialized

initialized

pending

edit review

display review

delete review

mandatory

activities

pop-up menu

comprising

optional activities

Figure 9.11: Differentiating between mandatory and optional activities

ER1

object creation

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

new object

optional
attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

internal reset

RR4

micro process

initialization

MR9

ER3

RR5

state change

MR11 MR10

MR12

external dead-path

elimination

MR13 ER4 RR6

backward jump

MR16

backward

jump

MR17 MR18

MR20MR19

external reset
MR14MR15

RR7 ER5RR8

re-execution

MR21

termination

ER6

mandatory

optional

Figure 9.12: Rules for editing object instances

9.1.2 Creating Object Instances

Create permissions (cf. Def. 25) may be assigned based on authorization tables as well.
However, they are independent from any state. Note that the respective object instance does
not exist when applying this permission. Hence, create permissions are directly assigned on
the top-level of the authorization table, the first row does not distinguishing between different
states, as depicted in Fig. 9.5.

Object instances may be created by any user owning corresponding create permissions. For
each newly created object instance, a corresponding micro process instance is automatically
initialized (cf. Reaction Rule RR1). Thereby, the start state of the micro process instance
becomes activated. When creating object instances, the respective user is enabled to assign
attribute values and relations based on an automatically generated user form (cf. Sect. 9.1.1).

207

9 Activities

This user form can be invoked and executed by selecting a respective item from the overview
table generated for the object type (cf. Fig. 9.13). Which input and data fields are displayed
in this context depends on the read and write permissions granted for the respective user in
respect to the start state of the corresponding micro process.

create new application

Application

applicant

Hans Maier

Wilma Schmidt

Horst Müller

Fred Pauli

decisionCV cover letter appraisal

accept very good

reject

reject good

reject bad

optional object creation

mandatory

creation of

lower-level

object instances

create new review

edit application

display application

review

review

review

optional

creation of

lower-level

object instances

Figure 9.13: Overview table enabling the creation of new object instances

Example 9.11 (Creating object instances):
Based on the definition of the application object type, PHILharmonicFlows automatically generates an overview
table listing existing application object instances (cf. Fig. 9.13). Since the personnel officer owns the create
permission for application object instances (cf. Fig. 9.14), a corresponding item for involving this creation activity is
displayed in the overview table (see Fig. 9.13A). Note that this business function is required, to enter applications
send by mail. Using this item, a corresponding micro process instance is generated and its start state initialized

becomes activated. In this state, the personnel officer owns write permissions for relation job offer as well as
for attributes cover letter, priority, and remark. Hence, the generated user form for creating a new application

object instance comprises input fields for assigning a relation to a job offer as well as for editing the attributes
cover letter, priority, and remark (cf. Fig. 9.14).

Figure 9.14: Authorization table of the application object type

In general, object instances must not be created independently from each other. Instead, lower-
level object instances are required in the context of higher-level ones. For this reason, PHIL-
harmonicFlows allows creating an object instance directly in relation to a higher-level one; e.g.,

208

9.1 Generic Activities

to create an application object instance directly in relation to the job offer object instance the
application shall refer to. Such activities are dynamically integrated into the overview table and
may be executed for each listed, higher-level object instance (cf. Fig. 9.13). When executing
this activity, a corresponding relation is automatically assigned; i.e., the relation targets at the
respective higher-level object instance the activity was started with.

Example 9.12 (Creating lower-level object instances for a higher-level one):
For each application object instance, multiple review object instances must be created. As illustrated in Fig.
9.13, the corresponding activity for creating object instances may be directly executed within the overview table that
lists the application object instances. For this purpose, a respective item is added for each application object
instance. Since it corresponds to an optional activity, the item is added to the context menu (cf. Sect. 9.1).

When creating object instances, it must be ensured that the cardinality constraints specified for
the different object relations are met. For this purpose, a creation context is created for each
object instance of the target object type. Consider Fig. 9.15. For each relation, a source and a
target object type is defined (cf. Def. 6). At run-time, for each instance of the target object type,
a corresponding creation context is managed. In particular, this context counts all lower-level
instances of the source object type referencing this target object instance (cf. Def. 34).

relation type

target

object type

source

object type

target

object instances

sets of source

object instances

#4 #2

relations
creation

context

Figure 9.15: Creation contexts

Definition 34 (Creation context):
Let dm = (name, OTypeSet, RelTypeSet) be a data model and ds = (dm, OSet, RelSet) be a corresponding data
structure. Then:

A creation context cc = (relType, toid, SoidSet) is a tuple where

• relType ∈ RelTypeSet is a relation type.

• toid is the identifier of the object instance o ∈ OSet of the target object type the creation context cc belongs
to.

• SoidSet is a finite set of identifiers representing the instances of the source object type that reference the
object instance identified by toid:

∀ soid ∈ SoidSet: ∃ rel ∈ RelSet with rel.rType = relType ∧ rel.source = soid ∧ rel.target = toid.

CreationContexts represents the set of all creation contexts. Furthermore, CreationContextSeto corresponds to
the set of creation contexts existing for a particular target object instance.
To capture respective information, in the following, an object instance correspionds to a tuple o = (oid, oType,
attrval, CreationContextSet); i.e., the creation contexts are added.

209

9 Activities

Whether or not additional lower-level source object instances may be created depends on the
number of already existing ones. To additionally consider object creation, we must extend the
already defined operational semantics accordingly. For this purpose, we introduce a number of
run-time markings for creation contexts. Based on these markings, it can be expressed when

• object instances must be mandatorily created,

• object instances must not be created anymore, and

• object instances may be optionally created.

Based on respective markings we can additionally determine to which higher-level target ob-
ject instances relations may be assigned afterwards. In particular, when editing existing object
instances, corresponding user forms may comprise components (e.g., comboboxes) for select-
ing higher-level object instances to be referenced. This set must be dynamically updated when
reaching the maximum number of lower-level object instances for particular object instances.
Then, these object instances must be removed or deactivated from the respective form com-
ponent enabling the creation of respective relations. For this purpose, each creation context is
either marked as ACTIVATED, CONFIRMED, or BLOCKED (cf. Def. 35).

Definition 35 (Markings for creation contexts):
Let dm = (name, OTypeSet, RelTypeSet) be a data model and ds = (dm, OSet, RelSet) be a corresponding data
structure. Then:

MCc: CreationContexts 7→ {ACTIVATED, CONFIRMED, BLOCKED} assigns to a creation context cc its current marking
(see Tab. 9.1).
In the following, a data structure is represented as a tuple ds = (dm, OSet, RelSet, MCc).

These markings have the following meaning (cf. Tab. 9.1):

Marking Label Description
ACTIVATED The minimum number of required lower-level source object instances is

not reached. Additional object instances must still be created.
CONFIRMED The minimum number of required lower-level source object instances is

reached, but not the maximum one. Hence, additional object instances
may be optionally created, although this is not mandatory.

BLOCKED The maximum number of required lower-level source object instances is
reached. Additional object instances must not be created.

Table 9.1: Creation context markings

At run-time, a corresponding creation context is initialized for each defined relation type when a
new object instance is created. When creating an object instance, no lower-level source object
instance referencing it exists (i.e., relations between object instances may only be created
when both the source and the target object instance exist. The marking of respective creation
contexts therefore depends on the minimum cardinality specified for the corresponding relation
type. More precisely, if a minimum cardinality is defined, the creation context will be initially
marked as ACTIVATED. Otherwise, it will be marked as CONFIRMED (cf. Reaction Rule RR1”).

210

9.1 Generic Activities

Reaction Rule (RR1”: Initializing creation contexts):
Let dm = (name, OTypeSet, RelTypeSet) ∈ DM be a data model and ds = (dm, OSet, RelSet, MCc) be a data
structure of dm. Further, let micProcInstance be a micro process instance of type micProc; i.e., micProcInstance ∈
micprocinstances(micProc).

When creating a new object instance:
OSet = OSet ∪ {o} with o = (micProcInstance.oid, oType, attrval, CreationContextSet),
the initial markings of its creation context instances are as follows:

a)-j) see RR1 in Sect. 8.3

k) see RR1’ in Sect. 8.6

l) ∀ cc ∈ CreationContextSet with cc.relType ∈ RelTypeSet:

MCc :=

{
ACTIVATED, |cc.SoidSet| < cc.relType.min
CONFIRMED, else

i.e., all creation contexts are initially marked as CONFIRMED or ACTIVATED. In the latter case, for the corre-
sponding relation type a minimum cardinality is defined.

If a relation is assigned later on, the affected creation contexts are updated. According to
Reaction Rule RR9, the source object instance is then assigned to the creation context of
the target object instance. Using Marking Rule MR22, the marking of the creation context is
updated accordingly.

Reaction Rule (RR9: Updating creation contexts):
Let dm = (name, OTypeSet, RelTypeSet) be a data model and ds = (dm, OSet, RelSet, MCc) be a corresponding
data structure.

When assigning a new relation (i.e., RelSet = RelSet ∪ {rel}) then:

∀ cc ∈ CreationContexts with cc.toid = rel.target: cc.SoidSet := cc.SoidSet ∪ {rel.source};

i.e., when assigning a new relation, its source object instance is assigned to the creation contexts (of the respective
relation type) that exists for the respective target object instance.

Marking Rule (MR22: Re-marking creation contexts):
Let dm = (name, OTypeSet, RelTypeSet) be a data model and ds = (dm, OSet, RelSet, MCc) be a corresponding
data structure. Further, let cc ∈ CreationContexts be a creation context. Then:

When assigning an object instance (with identifier oid) to cc.SoidSet; i.e., cc.SoidSet = SoidSet ∪ {oid},⇒

MCc(cc) :=

ACTIVATED, |cc.SoidSet| < cc.relType.min
BLOCKEDcard, |cc.SoidSet| = cc.relType.max
CONFIRMED, else

As long as the minimum cardinality constraint of a relation is not met, the corresponding cre-
ation context is marked as ACTIVATED. In turn, this indicates that a corresponding creation
activity must be mandatorily executed (cf. Execution Rule ER7a). This activity is invokable in
the context of the respective higher-level object instance. Regarding the separate column in the
overview table, that comprises the different work-items, opposed to optional activities which are
integrated within a context menu, mandatory activities are directly placed in the right column
(cf. Fig. 9.13). In addition, a mandatory activity for creating a lower-level object instance is

211

9 Activities

considered in the process-oriented view generated for the object type of the higher-level object
instance as well.

Execution Rule (ER7: Object creation and relation assignment):
Let dm = (name, OTypeSet, RelTypeSet) be a data model and ds = (dm, OSet, RelSet, MCc) be a corresponding
data structure. Further, let relType ∈ RelTypeSet be a relation type. Then:

a) ∀ cc ∈ CreationContexts with MCc(cc) = ACTIVATED:
A new object instance o of type source and a new relation rel of type relType with
rel.source = o ∧ rel.target = cc.toid must be created.

b) ∀ cc ∈ CreationContexts with MCc(cc) = CONFIRMED:
A new object instance o of type source and a new relation rel of type relType with
rel.source = o ∧ rel.target = cc.toid may be optionally created.

c) ∀ cc ∈ CreationContexts with MCc(cc) = BLOCKEDcard:
No new relation rel = (relType, sourceoid, targetoid) of type relType with
rel.target = cc.toid may be created.

Example 9.13 (Considering a minimum cardinality constraint):
For each application object instance at least three review object instances must be created. For this purpose,
a corresponding work item is dynamically added to the application work list of the responsible user. Consider
therefore the overview table listing application object instances. Here, the item for starting the respective creating
activity is then no longer displayed in the context menu of the respective application object instance but directly in
the column containing the activities executable for this object instance (cf. Fig. 9.13).

In turn, taking the maximum cardinality constraint of a relation into account, the work item in the
overview table will be dynamically disabled when reaching the maximum number of lower-level
object instances (cf. Execution Rule ER7c). In turn, consider the case for creating lower-
level object instances independent from a higher-level one. For this purpose, a combo box is
displayed in the form for editing the lower-level object instance. In this case, the higher-level
object instance for which the maximum number of lower-level object instances is reached is
dynamically removed from the corresponding combo-box. In particular, only higher-level object
instances are offered for selection which corresponding process context is either marked as
ACTIVATED or CONFIRMED.

Example 9.14 (Considering maximum cardinality constraints):
For each application object instance, at most five review object instances may be created. If for a particular
application object instance already five review object instances exist, the work item for creating corresponding
review object instances becomes disabled in the application overview table of the respective user. Furthermore,
when editing lower-level instances, the application object instance is no longer selectable in the respective combo-
box.

If a creation context is marked as CONFIRMED according to Execution Rule ER7b, additional
object instances referencing the respective higher-level one may be optionally created.

212

9.1 Generic Activities

Fig. 9.16 additionally contains all rules needed for the creation of object instances.

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

internal reset

RR4

micro process

initialization

MR9

ER3

RR5

state change

MR11 MR10

MR12

external dead-path

elimination

MR13 ER4 RR6

backward jump

MR16

backward

jump

MR17 MR18

MR20MR19

external reset
MR14MR15

RR7 ER5RR8

re-execution

MR21

termination

ER6

mandatory

optional

ER1

object creation

ER7

RR9

MR22

new object cardinality

mandatory

optional

new

relation

new relation

creation

context

updated

creation

context

ACTIVATED

creation

context

CONFIRMED

new relation

Figure 9.16: Rules for object creation

9.1.3 User Commitments and Decisions

As discussed in Sect. 7.3, external state transitions correspond to points during process execu-
tion at which a user must explicitly commit that the target state of the transition may be activated
(assuming that required data is available). As a prerequisite, for all explicit micro transitions a
corresponding transition responsibility (i.e., a user role) must be provided (cf. Sect. 7.4). When
an external micro transition is reached during run-time (i.e., marked as CONFIRMABLE), the re-
spective user commitment becomes mandatory to proceed with the process (cf. Sect. 7.4).
Consequently, the activities for making respective commitments are mandatory as well. Like
activities for writing attribute values, they are considered in the aggregated view; i.e., if for a
micro process instance a user commitment is required, the corresponding counter will be in-
cremented (cf. Fig. 9.17). Regarding the data-oriented view, which lists the invoked instances,
the activity is displayed as mandatory one, directly in the table and will be excluded from the
popup-menu. When invoking this activity, the required user dialog is automatically generated
(cf. Fig. 9.17). If there are several explicit outgoing micro transitions, the responsible user
must select the desired one. This can be realized, for example, using a combo box that lists all
possible subsequent states (cf. Fig. 9.17).

213

9 Activities

Reviews

0initialized

pending

reject proposed

invitation proposed

finished

1

0

0

0

TO DO

4

proposalurgency return date appraisal

rejectlow 24/12/2011

Reviews

application

Horst Müller

reason

mandatory

activities

submitno skills

STATE

pending

Commit to state

save cancel

reject proposed

Figure 9.17: User Commitments and Decisions

9.1.4 Backward Jumps

Opposed to user commitments and user decisions, which are always mandatory when they
become activated, backward jumps are optional. Note that respective jumps are usually applied
to handle exceptional situations. In particular, activities enabling backward jumps are only listed
in the overview tables when corresponding backward transitions are activated (i.e., marked
as CONFIRMABLE). Further, the generated user dialog is similar to the user commitment we
discussed in the previous section. Since backward jumps to different previous states may exist,
the desired state is also selectable using a combo box (cf. Fig. 9.18).

deniedhigh 26/08/2012 denied deniedFred Pauli pending

proposalurgency return date appraisal finished

Reviews

application STATE

backward jump

Backward jump to state

save cancel

initialized

optional

activities

Figure 9.18: Backward jumps

9.2 Black-box Activities

In addition to form-based activities, PHILharmonicFlows allows for the integration of black-box
activities, which may be assigned to different states. In particular, black-box activities realize
more complex business functions for which a specific implementation is required. While form-
based activities provide input fields (e.g., text-fields, combo-boxes, checkboxes, buttons, etc.)
for writing and data fields for reading selected attributes of object instances, black-box activities
enable computations as well as the integration of advanced functionalities (e.g., sending e-mails
or invoking web services). As illustrated in Fig. 9.19, like form-based activities, black-box activ-
ities may be defined as optional or mandatory. In the latter case, their execution is mandatory

214

9.2 Black-box Activities

in order to proceed with the control flow. In particular, the respective state may be only termi-
nated if all mandatory black-box activities are executed. This way, PHILharmonicFlows allows
differentiating between a data- and activity-driven execution paradigm at run-time. Black-box
activities are automatically added to the overview tables and are considered when generating
worklists (i.e., mandatory ones). Regarding the latter, the counters displayed in the context of
an aggregated view are incremented for each object instance for which at least one mandatory
activity must be executed (regardless of whether this is a form-based or black-box activity); i.e.,
object instances are counted and not activities. Particular activities are transparent when invok-
ing corresponding overview tables listing the affected instances. Finally, for executing black-box
activities automatically, a special user role SYSTEM is provided.

Example 9.15 (Integrating black-box activities):
Consider Fig. 9.19 which illustrates an overview table comprising four review object instances. For the review

object instance displayed in the third row, state pending is currently activated. In this state, a mandatory black-
box activity needs to be executed. For this purpose, a corresponding icon is directly displayed in the right column.
Since this black-box activity is defined as mandatory, it is not possible to commit the transition to a subsequent state.
Hence, the corresponding submit-icon is deactivated. In turn, the fourth review object instance is in state finished.
Here, the black-box activity send mail to reviewer may be optionally executed and is therefore assigned in the
context menu.

proposalurgency return date appraisal finished

invitehigh 01/03/2012 very good true

low

rejecthigh 26/08/2012 average

Reviews

application

Hans Maier

Wilma Schmidt

Horst Müller

Fred Pauli

STATE

finished

initialized

initialized

pending

edit review

display review

delete review

optional black-box activity
send mail to reviewer

name

of the black-box

activity

object type

for which the black-box activity is defined

mandatory

black-box activity

submit

deactivated

Figure 9.19: Integrating black-box activities

9.2.1 Defining a black-box activity

For each object type, an overview table is automatically generated. As illustrated in Fig. 9.20,
in order to adequately integrate any black-box activity, it needs to be defined in respect to
a particular object type, but may also process instances of related object types at run-time.
Therefore, the identifier of the processed object instance is passed out to the activity as input.
It can then be used to determine related object instances when implementing the business
function of the black-box activity.

Example 9.16 (Processing related object instances derived by the OID):
Consider an activity comparing the provided skills of an applicant with the skills required by the offered job.
This activity is defined in respect to an application. However, based on the OID of the application, information
from the corresponding skill object instances are fetched.

Black-box activities are defined for a particular object type at build-time and are executable for
each object instance of this type at run-time. Regarding the review object instances (cf. Fig.

215

9 Activities

9.19), for example, activity send mail to reviewer becomes executable for each review object
instance when activating state finished.

Note that the required relationship between black-box activities and particular object types is
not really a restriction. If several input parameters are required (e.g., OIDs of several object in-
stances not related to each other), a user interface must be implemented that allow for required
data inputs; i.e., black-box activities may also comprise user forms. However, these must be
provided by the implementation of the black-box activity.

Example 9.17 (Processing related object instances requiring additional user input):
When comparing two applications, the activity making this comparison is assigned to the application object
type. At run-time, it may then be invoked in respect to one application object instance. For selecting the other
one, a corresponding user interface must be (manually) implemented.

user role

execution

permission

object type

micro process type

state

black-box activity

Figure 9.20: Relationship between black-box activities and object types

To foster the reuse of a black-box activity (e.g., to enable its use at different points during pro-
cess execution), it must be encapsulated by an activity template. Such a template comprises
the name of the activity, the object type the activity refers to, and the required service imple-
mentation2 (cf. Def. 36). When generating overview tables, the name of the activity is used as
label (cf. black-box activity send mail to reviewer in Fig. 9.19).

Definition 36 (Black-box activity template):
A black-box activity template is a tuple actTempl = (name, oType, service) where

• name ∈ Identifiers is an identifier.

• oType ∈ OTypes is the object type the activity refers to.

• service corresponds to the implementation of the business function encapsulated by the activity template.

ActTemplates denotes the set of all activity templates.

Whether or not a black-box activity may be invoked for a particular object instance may also
depend on the currently activated state of this instance. Therefore, any black-box activity tem-
plate is directly assigned to a particular state of the micro process type that corresponds to the
respective object type (cf. Def. 37). Consequently, at a certain point in time a black-box activity
may be executable for certain object instances, while this is not the case for others.

2How to implement respective services and connect them with the processed object instance is out of the scope
of this thesis

216

9.2 Black-box Activities

Definition 37 (Black-box activity):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateTypeSet, BackTransTypeSet) ∈ MicProcTypes
be a micro process type. Then:

A black-box activity is a tuple act = (actTempl, stateType) where

• actTempl ∈ ActTemplates is an activity template.

• stateType ∈ StateTypeSet with micProcType.oType = actTempl.oType
is a state type of the micro process type that corresponds to the object type the activity template refers to.

ActivitySetmicProcType corresponds to the finite set of black-box activities defined for micProcType. Further,
ActivitySetstate denotes the set of all black-box activities assigned to a particular micro process state (of all mi-
cro process types).
In the following, a micro process type represents a tuple micProcType = (oType, MicStepTypeSet, MicTransType-
Set, StateTypeSet, BackTransType, ActivitySet); i.e., parameter ActivitiySet is assigned.

9.2.2 User Assignment and Authorization

Similar to execution responsibilities of form-based activities, permissions for executing black-
box activities must be granted to selected user roles (cf. Def. 38).

Example 9.18 (Execution permissions):
Consider Fig. 9.19. It must be defined which user roles may execute activity send mail to reviewer when state
finished becomes activated.

Definition 38 (Execution permission for black-box activities):
Let UserRoles be the set of all defined user roles. Then:

An execution permission is a tuple execPerm = (act, role) where

• act ∈ ActivitySetstate is a black-box activity.

• role ∈ UserRoles is a user role.

ExecPermissions denotes the set of all definable execution permissions.

At a particular point in time, a black-box activity may be mandatory for a certain user, while be-
ing optional for another one. More precisely, a mandatory black-box activity must be executed
by a particular user. Simultaneously, another user may execute the activity optionally. As dis-
cussed in Chapt. 8, PHILharmonicFlows additionally allows for data-driven process execution.
Process execution may even proceed if required attribute values become available after execut-
ing a black-box activity (instead of manually editing any user form). In turn, process execution
may proceed without executing a black-box activity if required attribute values are already avail-
able. Opposed to this, in certain situations, a more activity-driven execution behavior might be
required when compared with a strictly data-driven one; i.e., it should be possible to enforce
the execution of black-box activities independent from already available attribute values. Like
for generic activities, this requires to differentiate between mandatory black-box activities and

217

9 Activities

optional ones. For this purpose, execution permissions are definable as mandatory in PHILhar-
monicFlows (cf. Def. 39a).

Definition 39 (Properties of execution permissions):
a) mandatory: ExecPermissions 7→ BOOLEAN defines whether a particular black-box activity must be ex-

ecuted by a certain user role; i.e., the state to which the activity refers may only be left after executing the
activity.

b) repeatable: ExecPermissions 7→ BOOLEAN defines whether the execution of a particular black-box activity
may be repeated by authorized users; i.e., the responsible user role may execute the black-box activity
several times as long as the respective state remains activated.

Assume that for a black-box activity, a corresponding mandatory execution permission is avail-
able. The state this activity is assigned to then may only be left after having executed the
activity. To enforce a strict execution sequence for black-box activities, different states must
be specified for them. In addition, a corresponding mandatory execution permissions must
be specified. Finally, to allow for the re-execution of a black-box activity, the corresponding
execution permission must be defined as repeatable (cf. Def. 39b).

When a state becomes activated, black-box activities are automatically assigned to the work-
lists of the users owning respective execution permissions (cf. Fig. 9.19). When generating
the overview table listing the object instances for which mandatory black-box activities must
be executed, the respective activity is not displayed in the popup menu containing the optional
activities, but directly in the table. For mandatory black-box activities their label is displayed as
tooltip.

9.2.3 Execution of Black-box Activities

Since a micro process execution now may also depend on the execution of black-box activities,
the operational semantics introduced in Chapt. 8 must be extended. Like for the other com-
ponents, a number of run-time markings is required for black-box activities. Based on these
markings, it can be expressed when respective activities are executable, running, or not exe-
cutable any longer. More precisely, each black-box activity is either marked as WAITING, READY,
ACTIVATED, UNCONFIRMED, CONFIRMED, or SKIPPED (cf. Def. 40).

Definition 40 (Markings for black-box activities):
Let micProcInstance be a micro process instance of type micProc; i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

MAct: ActivitySet 7→ ActivityMarkings assigns to an activity its current marking MAct(activity) ∈ ActivityMarkings.
Thereby, ActivityMarkings = {WAITING, READY, ACTIVATED, UNCONFIRMED, CONFIRMED, SKIPPED}. The seman-
tics of these markings is described in Tab. 9.2.

In the following, a micro process instance represents a tuple micProcInstance = (micProc, oid, MState, MMicStep,
MMicTrans, MBackTrans, MData, MAct).

218

9.2 Black-box Activities

These markings have to following meanings:

Marking Label Description
WAITING It is not possible to execute the activity since the state it is assigned to is

not activated. Note that the activity may be executed later on when its state
becomes activated (i.e., a previous state is currently activated).

READY The black-box activity is assigned to the currently activated state. Hence it
may be executed.

ACTIVATED After invoking the black-box activity, it is running (i.e., its state is marked as
ACTIVATED).

UNCONFIRMED The execution of the black-box activity is completed and the state the activity
belongs to is still activated.

CONFIRMED The execution of the black-box activity is completed and the state the activity
belongs to has been left (i.e., marked as CONFIRMED).

SKIPPED The black-box activity has not been executed and it will not be executed any-
more (unless a backward jump will be triggered). Either the state the black-
box activity refers to was not activated or left without having executed the
black-box activity (i.e., the latter is optional).

Table 9.2: Activity markings

Fig. 9.21 illustrates the markings and their possible transitions:

1. A black-box activity changes its marking from WAITING to READY when the state the ac-
tivity belongs to becomes marked as ACTIVATED.

2. A black-box activity changes its marking from READY to ACTIVATED when being invoked
(either by a user or automatically).

3. A black-box activity changes its marking from ACTIVATED to UNCONFIRMED when its exe-
cution terminates.

4. An already executed black-box activity changes its marking from UNCONFIRMED to CON-
FIRMED when a subsequent state becomes activated; i.e., the state the black-box activity
belongs to becomes marked as CONFIRMED.

5. A not yet executed black-box activity changes its marking from READY to SKIPPED when
a subsequent state becomes activated; i.e., the state the black-box activity belongs to
becomes marked as CONFIRMED.

6. A black-box activity changes its marking from WAITING to SKIPPED when the state the
activity belongs to becomes marked as SKIPPED.

7. An already executed black-box activity changes its marking from UNCONFIRMED to ACTI-
VATED when its execution is repeated.

When a micro process instance becomes initialized, black-box activities must be initialized as
well. Consequently, all black-box activities assigned to the start state of the micro process
instance are initially marked as READY. In turn, all other black-box activities are initially marked
as WAITING (cf. Reaction Rule RR1”’).

219

9 Activities

state ACTIVATED

ACTIVATED CONFIRMEDUNCONFIRMEDREADYWAITING

SKIPPED

1 2 3 4

56

7

Figure 9.21: Black-box activity markings and their transitions

Reaction Rule (RR1”’: Initializing black-box activities):
Let dm = (name, OTypeSet, RelTypeSet) ∈ DM be a data model and ds = (dm, OSet, RelSet, MCc) be a correspond-
ing data structure. Further, let micProcInstance be a micro process instance of type micProc = (oType, MicStepSet,
MicTransSet, StateSet, BackTransSet, ActivitySet); i.e., micProcInstance ∈ micprocinstances(micProc). Finally, let
startState = (name, sMicStepSet) ∈ StateSet be the start state of micProcInstance and startMicStep ∈ MicStepSet
the start micro step.

When creating a new object instance: OSet = OSet ∪ {o} with o.oid = micProcInstance.oid, the initial marking of a
black-box activity is set as follows:

a)-j) see RR1 in Sect. 8.3

k) see RR1’ in Sect. 8.6

l) see RR1” in Sect. 9.1

m) ∀ act ∈ ActivitySetstartState: MAct(act) := READY;
i.e., all black-box activities assigned to the start state are marked as READY.

n) ∀ act ∈ ActivitySetmicProcType - ActivitySetstartState: MAct(act) := WAITING;
i.e., all black-box activities not belonging to the start state are marked as WAITING.

Black-box activities currently marked as READY may be executed by any authorized user. This
is expressed by Execution Rule ER8. Accordingly, these activities are added to the overview
tables. Furthermore, mandatory black-box activities are considered in generated worklists.

Execution Rule (ER8: Executing black-box activities):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData, MAct) be a micro process instance
of type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet, ActivitySet); i.e., micProcInstance ∈
micprocinstances(micProc). Then:

a) ∀ act ∈ ActivitySetState with MAct(act) = READY ∧ mandatory(act) = TRUE:
The black-box activity must be executed when it becomes marked as READY.

b) ∀ act ∈ ActivitySetState with MAct(act) = READY ∧ mandatory(act) = FALSE:
The black-box activity may be optionally executed when it becomes marked as READY.

c) ∀ act ∈ ActivitySetState with MAct(act) = UNCONFIRMED ∧ repeatable(act) = TRUE:
The execution of the black-box activity may be repeated when the activity becomes marked as
UNCONFIRMED.

220

9.2 Black-box Activities

To indicate whether a black-box activity was executed, we introduce function executed :

Definition 41 (Executed activities):
Let micProcInstance be a micro process instance of type micProc; i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

executed: ActivitySet 7→ BOOLEAN expresses whether or not the black-box activity has been executed yet.

When terminating the execution of a black-box activity, its marking changes from ACTIVATED

to UNCONFIRMED (cf. Reaction Rule RR10). Only repeatable black-box activities may then
be re-executed. The latter is possible as long as the state they are assigned to is marked as
ACTIVATED (cf. Execution Rule ER8C).

Reaction Rule (RR10: Black-box activity execution):
Let micProcInstance be a micro process instance of type micProc; i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

∀ act ∈ ActivitySet with MAct(act) = ACTIVATED ∧ executed(act) = TRUE: MAct(act) := UNCONFIRMED;

i.e., a black-box activity changes its marking from ACTIVATED to UNCONFIRMED if the execution terminates.

Black-box activities must be taken into account when activating subsequent states. In such a
case, all executed black-box activities currently marked as UNCONFIRMED of the currently acti-
vated state are re-marked as CONFIRMED (cf. Marking Rule MR9’g). In turn, all non-executed
black-box activities currently marked as READY of this state are re-marked as SKIPPED (cf.
Marking Rule MR9’h). Finally, all black-box activities of the subsequent state become marked
as READY; i.e., they may then be executed (cf. Marking Rule MR9’i).

Marking Rule (MR9’: State change considering black-box activities):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData, MAct) be a micro process instance
of type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet, ActivitySet); i.e., micProcInstance ∈
micprocinstances(micProc). Then:

micTrans=(source, target, priority) ∈ MicTransSet with MMicTrans(micTrans) = READY ∧ isexternal(micTrans) = TRUE:

a-f) see MR9 in Sect. 8.5

g) ∀ act ∈ Activitiessource with MAct(act) = UNCONFIRMED: MAct(act) := CONFIRMED;
i.e., all black-box activities of the newly CONFIRMED state which are currently marked as UNCONFIRMED, are
re-marked as CONFIRMED.

h) ∀ act ∈ Activitiessource with MAct(act) = READY: MAct(act) := SKIPPED;
i.e., all black-box activities of the newly CONFIRMED state which are currently marked as READY, are re-
marked as SKIPPED.

i) ∀ act ∈ Activitiestarget with MAct(act) = WAITING: MAct(act) := READY;
i.e., all black-box activities of the newly ACTIVATED state which are currently marked as WAITING, are re-
marked as READY.

Note that it is not possible to proceed with the execution of a micro process instance (i.e., to
leave the currently activated state) if there exist mandatory activities of this state that have not

221

9 Activities

been executed yet. Consequently, an activity for committing a state change is not executable
as long as not all mandatory activities will be executed. Consider as example the deactivated
icon as illustrated in Fig. 9.19. In order to block external micro transitions in such a case, we
introduce an additional marking BLOCKEDact for micro transitions (cf. Def. 42).

Definition 42 (Micro transition marking considering black-box activities):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData, MAct) be a micro process instance
of type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet, ActivitySet); i.e., micProcInstance ∈
micprocinstances(micProc). Thereby, MMicTrans: MicTransSet 7→ MicroTransitionMarkings assigns to each micTrans
∈ MicTransSet its current marking MMicTrans(micTrans) with MicroTransitionMarkings = {WAITING, CONFIRMABLE,
READY, ENABLED, ACTIVATED, UNCONFIRMED, CONFIRMED, BYPASSED, SKIPPED}. Then we extend the set of possi-
ble markings for micro transitions as follows:

MicroTransitionMarkings := MicroTransitionMarkings ∪ {BLOCKEDact}.
Marking BLOCKEDact indicates that it is not possible to activate the micro transition since not all mandatory activities
of the source state of this micro transition have been executed yet.

As shown in Sect. 8.5, a state transition will be enabled when a corresponding external micro
transition becomes marked as READY. In turn, this marking triggers the activation of the subse-
quent state. For explicit micro transitions requiring a user commitment, marking CONFIRMABLE

is assigned before. To consider black-box activities in this context, external micro transitions
may only be marked as READY or CONFIRMABLE if all mandatory black-box activities of the
currently activated state are marked as UNCONFIRMED (cf. Marking Rule MR1”’).

Marking Rule (MR1”’: Marking external micro transitions as BLOCKEDact):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData, MAct) be a micro process instance
of type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet, ActivitySet); i.e., micProcInstance ∈
micprocinstances(micProc). Further, let state = (name, sMicStepSet) ∈ StateSet be a state. Then:

a) see MR1 in Sect. 8.4

b) see MR1’ in Sect. 8.4

c) see MR1” in Sect. 8.5

d) ∀ micStep=(ref, ValueSteps) ∈ sMicStepSet with MMicStep(micStep) = UNCONFIRMED:
∀ micTrans ∈ outtrans(micStep) with isexternal(micTrans) = TRUE:

MMicTrans(micTrans) :=

CONFIRMABLE, if explicit(micTrans) = TRUE ∧
∀ act ∈ Activitiesstate: MAct(act) = UNCONFIRMED

READY, if explicit(micTrans) = FALSE ∧
∀ act ∈ Activitiesstate: MAct(act) = UNCONFIRMED

BLOCKEDact, else
i.e., as long as not all black-box activities of a state have been executed, outgoing external micro transitions
are marked as BLOCKEDact.

e) ∀ valueStep ∈ ValueSteps with MMicStep(valueStep) = UNCONFIRMED:
∀ micTrans ∈ outtrans(valueStep) with explicit(micTrans) = TRUE ∧ isexternal(micTrans) = TRUE:

MMicTrans(micTrans) as defined in d)
i.e., as long as not all black-box activities of a state have been executed, all outgoing external micro transitions
are marked as BLOCKEDact.

After having executed all mandatory black-box activities, the blocking is undone; i.e., respective

222

9.2 Black-box Activities

micro transitions are either marked as READY or CONFIRMABLE (depending on whether they are
implicit or explicit ones). For this purpose, we introduce Marking Rule MR23:

Marking Rule (MR23: Unblocking external micro transitions):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData, MAct) be a micro process instance
of type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet, ActivitySet); i.e., micProcInstance ∈
micprocinstances(micProc). Further, let state = (name, sMicStepSet) ∈ StateSet be a state. Then:

∀micTrans = (source, target, priority) ∈MicTransSet with source ∈ sMicStepSet ∧MMicTrans(micTrans) = BLOCKEDact:
∀ act ∈ Activitiesstate: MAct(act) = UNCONFIRMED:

MMicTrans(micTrans) :=

{
CONFIRMABLE, if explicit(micTrans) = TRUE
READY, if explicit(micTrans) = FALSE

i.e., if the execution of all mandatory black-box activities is completed, the state transition is enabled by marking
implicit micro transitions as READY and explicit ones as CONFIRMABLE.

Fig. 9.22 additionally contains Execution Rule ER8, Reaction Rule RR10, and Marking Rule
MR23 as required for the execution of black-box activities.

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

internal reset

RR4

micro process

initialization

MR9

ER3

RR5

state change

MR11 MR10

MR12

external dead-path

elimination

MR13 ER4 RR6

backward jump

MR16

backward

jump

MR17 MR18

MR20MR19

external reset
MR14MR15

RR7 ER5RR8

re-execution

MR21

termination

ER6

mandatory

optional

ER1

object creation

ER7

RR9

MR22

new object cardinality

mandatory

optional

new

relation

ER8

RR10 MR23

black-box activities

executed

activity

UNCONFIRMED

unblocking

external

micTrans

Figure 9.22: Rules for black-box activities: ER8, RR10, and MR23

When performing an external dead-path elimination (cf. Sect. 8.5), black-box activities must be
marked as SKIPPED when the state they belong to becomes marked as SKIPPED as well. This
is expressed by Marking Rule MR24 (cf. Fig. 9.23).

223

9 Activities

Marking Rule (MR24: Marking black-box activities as SKIPPED):
Let micProcInstance = (micProc, oid, MState, MMicStep, MMicTrans, MBackTrans, MData, MAct) be a micro process instance
of type micProc = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet, ActivitySet); i.e., micProcInstance ∈
micprocinstances(micProc). Further, let state ∈ StateSet be a state. Then:

∀ act = (actTempl, state) ∈ Activitiesstate with MState(state) = SKIPPED: Mact(act) := SKIPPED;

i.e., when a state becomes marked as SKIPPED, corresponding black-box activities are marked as SKIPPED as well.

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

internal reset

RR4

micro process

initialization

MR9

ER3

RR5

state change

MR11 MR10

MR12

external dead-path

elimination

MR13 ER4 RR6

backward jump

MR16

backward

jump

MR17 MR18

MR20MR19

external reset
MR14MR15

RR7 ER5RR8

re-execution

MR21

termination

ER6

mandatory

optional

ER1

object creation

ER7

RR9

MR22

new object cardinality

mandatory

optional

new

relation

ER8

RR10 MR23

black-box activities

state

SKIPPED

MR24

activity

SKIPPED

Figure 9.23: Rules for black-box activities during the external dead-path elimination

9.3 Batch Execution

As discussed, both form-based and black-box activities are executed in respect to a particular
object instance. In addition, when executing form-based activities, object instances of related
object types may be accessed simultaneously. To support this, actions corresponding to differ-
ent object instances may be combined in one form (cf. Fig. 9.24).

Batch execution allows applying the same activity to a collection of object instances having the
same object type in one go. Such aggregated execution is possible for both generic activities
(i.e., editing, creating, and deleting of object instances, user commitments, backward jumps)
and black-box activities. A form-based activity comprises input fields for each attribute type of
the corresponding object type. Edited attribute values are then assigned to all invoked object
instances; i.e., there exists one input field per attribute for all object instances (cf. Fig. 9.25).

224

9.3 Batch Execution

form user roleobject instance

micro proc. instance

read permission

write permission

attribute

micro step

optional action

mandatory action

data field

input field

input field

Figure 9.24: Context-sensitive activity

user roleformobject instance

micro proc. instance

read permission

write permission

attribute

micro step

optional action

mandatory action

data field

input field

input field

Figure 9.25: Batch execution of user forms

As a particular challenge it must be ensured that any user triggering such a batch execution
owns the required permissions for all processed object instances. This necessitates an appro-
priate selection mechanism for object instances, which considers the currently activated object
states as well. Regarding a batch execution based on form-based activities, the provided at-
tribute values are assigned to all selected object instances. Therefore, a form should only
comprise input fields for those attributes the user wants to change. All other ones must retain
their individual values.

To ensure this, PHILharmonicFlows uses the following procedure for the batch execution of
activities:

1. selection of the desired activity by the user,

2. selection of the desired attributes by the user (in case of form-based activities),

3. automatic de-selection of object instances (with missing permissions) by the system,

4. selection of the desired object instances by the user, and

5. execution of the activity by the user.

First, the activity for which batch execution shall be applied must be selected by the user. For
this purpose, as illustrated in Fig. 9.26, a combo box listing all possible activities (defined in
the context of the respective object type) is displayed at the top of the overview table. The left
column of this table provides a checkbox for selecting desired object instances (cf. Fig. 9.26). If
the user invoking the selected activity does not own corresponding permissions for the currently
activated state of an object instance, the corresponding checkbox is automatically disabled;

225

9 Activities

e.g., consider the deactivated checkboxes in Fig. 9.26. This way, PHILharmonicFlows ensures
that batch execution is only activated for object instances for which the respective user owns
the permissions required. Moreover, when selecting the activity for editing object instances, a
separate user dialog is invoked enabling the selection of particular attributes. If all information
is available (i.e., desired action, desired object instances and optionally the desired attributes),
the corresponding execution can be started by using the execute-button (as displayed besides
the combo box for selecting the activity).

proposalurgency return date appraisal finished

invitehigh 01/03/2012 very good true

low

high 26/08/2012

Reviews

application

Hans Maier

Wilma Schmidt

Horst Müller

Fred Pauli

STATE

finished

initialized

initialized

pending

Activity: executeedit

activities for

batch execution

button for starting

batch execution

checkboxes

for selecting object instances

for batch execution

deactivation when

permissions are missing

Figure 9.26: Enabling batch execution

9.4 Further Issues

In addition to the creation and processing of object instances, their deletion constitutes an-
other relevant use case for application systems. In this context, like for relational databases,
referential integrity reference has to be taken into account; i.e., a relation must not target at
an object instance that does not exist anymore. Regarding object-aware process support, in
addition, corresponding macro process instances need to be handled; i.e., coordination com-
ponentes must be updated after deleting a particular micro process instance. Both requires
comprehensive concepts.

For deleting object instances, generic activities should be provided as well. Further, corre-
sponding delete permissions need to be assigned using authorization tables. Opposed to cre-
ate permissions, however, delete permissions (cf. Def. 43) depend on the currently activated
state of the respective micro process instance.

Definition 43 (Delete permissions):
Let dm = (name, OTypeSet, RelTypeSet) be a data model and oType = (name, AttrTypeSet) ∈ OTypeSet an object
type with related micro process type micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateTypeSet,
BackTransTypeSet). Further, let UserRoles be the set of all defined user roles. Then:

A delete permission delPerm = (oType, stateType, role) is a tuple where

• oType ∈ OTypeSet is an object type.

• stateType ∈ StateTypeSet is a state type.

• role ∈ UserRoles is a user role.

DeletePermissions corresponds to the set of all definable delete permissions.

226

9.5 Summary

If a user owns the permission to delete an object instance in a particular state, a corresponding
activity for deleting this object instance will be displayed.

Example 9.19 (Delete permissions):
Consider Fig. 9.14. The personnel officer owns the delete permission for review object instances in state
initialized. Hence, a corresponding optional activity is added to the respective overview table (cf. Fig. 9.19).

Actually, PHILharmonicFlows does not physically delete object instances. Instead, correspond-
ing micro process instances are marked as SKIPPED indicating that their execution is no longer
necessary. Otherwise, it would not be possible to trace the processing of the deleted object
instance later on. When a micro process instance is marked as SKIPPED, the current process-
ing state is frozen (i.e., the markings of states, micro steps, micro transitions, and backward
transitions retain their marking) and all attribute values are further available. Opposed to this,
however, relations to other object instances (and micro process instances respectively) need
to be adequately handled. In this context, different options exist. Either all relations to other
instances are deleted3 or all instances which reference the object instance deleted are deleted
as well4. Which approach shall be used depends on the respective use case; i.e., object-aware
processes are driven by user decisions. For this reason, when deleting an object instance re-
sponsible users must be aware of affected lower-level object instances and decide about the
concrete procedure. Both cases imply further adaptations of the resulting process and data
structure (cf. Chapt. 12). When deleting dependent object instances, additional references
to other higher-level object instances need to be considered. In turn, when only deleting the
relations to other object instances, certain parts of the process structure become decoupled.
As example consider applications not referring to any job offer. These applications are not
assignable to any macro process instance any longer. Thus, for adequately handling the dele-
tion of object instances additional features must be developed.

9.5 Summary

PHILharmonicFlows differentiates between generic and black-box activities. Generic activities
comprise form-based activities for creating, editing, reading, and deleting object instances.
Based on the defined operational semantics, these activities can be automatically generated at
run-time. Opposed to this, a black-box activity requires an implementation or encapsulates any
legacy application. Application data is then managed by the respective software component;
i.e., outside the control of PHILharmonicFlows. Finally, PHILharmonicFlows allows for batch
execution; i.e., to process multiple object instances in one go.

3Note that this is similar to "on delete set null" when using SQL[DD97]
4Note that this is similar to "on delete cascade" when using SQL[DD97]

227

9 Activities

228

10
Macro Process Modeling

RUN-TIME

BUILD-TIME

Macro Process

Micro Process

Data

User Integration

Forms

Black-box Activities

automatically generated

implementation required

Relations

Objects

Attributes

States

Micro Transition

Micro Step

Macro Step

Macro Transition

Responsibilities

Permissions

Data-

oriented

View

automatically generated

Overview

Tables

Process-

oriented

View

Monitoring

automatically generated

Worklists

Figure 10.1: Macro process modeling in PHILharmonicFlows

229

10 Macro Process Modeling

Generally, a business process involves multiple object instances with same and different type.
Moreover, object instances are inter-related and each of them is coupled with a corresponding
micro process instance. Consequently, a complex process structure comprising multiple ob-
ject instances and their interactions emerges at run-time. PHILharmonicFlows allows modeling
such multi-object processes in terms of macro processes. As opposed to a micro process,
which defines the behavior of a particular object type, a macro process covers object interac-
tions; i.e., the execution of micro process instances needs to be coordinated taking the given
data structure into account. More precisely, a macro process refers to parts of the data struc-
ture and consists of macro steps and macro transitions linking them (cf. Fig. 10.1). Opposed to
a micro step that refers to a single attribute of a particular object type, a macro step refers to an
object type by its own. Taking the semantical relationships between object types into account,
various coordination components are required for coordinating the different kinds of interac-
tions among the micro process instances of a process structure(i.e., coordination components
process contexts, aggregations, and transverse as illustrated in Fig. 10.1). As will be shown
in the following, macro processes allow hiding the complexity of large process structures from
users.

10.1 State-based View

As described, PHILharmonicFlows allows modeling object behavior in terms of states and state
transitions. Opposed to existing approaches (e.g., [BHS09, MRH07]), however, our framework
enables a mapping between the values of object attributes and object states, and hence en-
sures compliance between them. In this context, data authorizations (i.e., permissions) are
granted at the level of individual object attributes (and relations). In turn, process authorization
(i.e., user assignment) is based on object states. As will be shown, states may be also used
to define process synchronization constraints (i.e., object interactions). For each defined micro
process, PHILharmonicFlows automatically generates state-based views. As illustrated in Fig.
10.2, a state-based view of a micro process instance abstracts from particular micro steps; i.e.,
only the states of the micro process instance are displayed. Accordingly, external micro transi-
tions are logically mapped to the states their source and target micro steps belong to; i.e., the
source (target) of a micro transition is displayed in the state-based view according to the state
the source (target) micro step belongs to.

Example 10.1 (State-based view of the review micro process type):
Consider Fig. 10.2. The state-based view of the review micro process type comprises states initialized,
pending, reject proposed, invitation proposed, and finished. These states are inter-connected through ex-
ternal micro transition types.

For state-based views, PHILharmonicFlows defines function precedingStateTypes. For a par-
ticular state s, it determines all predecessors (including s itself cf. Def. 44). In the following, this
function is used for structural analyses of both micro and macro process types.

230

10.2 Complex Process Structure

invitation

proposed

true

finished

reject

proposed

true

finished

finished

pending

initialized

urgency
return

date

reject

invite

proposal

appraisal

reason

alternative

job

1

2

invitation

proposed

reject

proposed

finished

pending

initialized

Figure 10.2: Generating the state-based view of the review micro process type

Definition 44 (Predecessor state types):
Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateTypeSet, ActivitySet) ∈ MicProcTypes be a
micro process type. Then:

For each state type s, precedingStateTypes: StateTypeSet 7→ 2StateTypeSet determines its directly or indirectly
preceding state types (including s).

Example 10.2 (Predecessor state types):
Consider Fig. 10.2. Preceding state types of state reject proposed are the states initialized, pending, and
state reject proposed.

10.2 Complex Process Structure

Object instances may be created by any user owning a corresponding create permission (cf.
Def. 32). For each newly created object instance, a corresponding micro process instance is
automatically initialized (cf. Marking Rule MR1) and started (cf. Reaction Rule RR1), resulting
in the activation of the start state of the respective micro process instance. When creating
an object instance, the respective user may assign attribute values and relations based on an
automatically generated form (cf. Sect. 9.1). Which input and data fields are displayed in this

231

10 Macro Process Modeling

context, depends on the read and write permissions granted for this user in the start state of
the micro process instance.

As discussed, object instances are inter-related and coupled with corresponding micro process
instances. Consequently, at run-time a complex process structure emerges comprising multiple
object instances and their inter-dependencies (cf. Fig. 10.3).

review #12
review #11

review #10
review #9

review #8
review #7

application #6
application #5

application #4
application #3

application #2

initialized pending

reject

proposed

invitation

proposed

finished

review #6
review #5

review #4
review #3

review #2
review #1

initialized planned finished

interview #7
interview #6

interview #5
interview #4

interview #3
interview #2

interview #1

job Offer #3
job Offer #2

job Offer #1

application #1

relations

micro process instance relationships

data structure process structure

initialized sent checked

agreed

canceled

published closed

occupied

not

occupied

dynamically evolving

number of object instances

micro process instances

asynchronously executed to each other

initialized

Figure 10.3: Complex process structure

Note that a process structure may comprise dozens or hundreds of micro process instances
[MHHR06, MRH08a]. Thereby, a dynamically evolving number of object instances has to be
supported. Although the corresponding micro process instances are executed asynchronously
to each other, they need to be coordinated at certain points during their execution (cf. Prop.
5).

10.3 Macro Process Types

Despite the asynchronous processing of the micro process instances corresponding to a com-
plex process structure, their execution must be synchronized at certain points in time; i.e., there
exist execution dependencies between the micro process instances (cf. Fig. 10.4). In this con-
text, the potentially large number of micro process instances that dynamically evolves during
run-time constitutes a challenge. In particular, an appropriate abstraction for large process
structures is required. On one hand, such abstraction must be comprehensible for end users,
on the other it should serve as basis for synchronizing micro process execution.
When coordinating micro process instances, in addition, the semantic relationships that exist

232

10.3 Macro Process Types

between corresponding object instances must be taken into account; e.g., for each application

object instance, several review object instances may exist. In particular, micro process instances
may also have to be coordinated, even if no direct relation between the corresponding object
instances exists; e.g., micro process instances related to interview object instances must be co-
ordinated with the ones of review object instances. Generally, the relationships existing between
object instances should be considered when synchronizing the execution of micro process in-
stances. Thereby, the cardinalities of the semantic relationships as defined in the data model
must be considered. As another challenge, a flexible coordination of micro process instances
is required, while their execution should obey a data-driven paradigm; i.e., micro processes as
well as macro processes should be defined and executed based on data; i.e., object types,
object attributes, and object states.

review #12
review #11

review #10
review #9

review #8
review #7

application #6
application #5

application #4
application #3

application #2

initialized pending

reject

proposed

invitation

proposed

finished

review #6
review #5

review #4
review #3

review #2
review #1

initialized planned finished

interview #7
interview #6

interview #5
interview #4

interview #3
interview #2

interview #1

job Offer #3
job Offer #2

job Offer #1

application #1

relations

micro process instance relationships

data structure process structure

initialized sent checked

accepted

rejected

initialized published closed

occupied

not

occupied

dynamically evolving

number of object instances

micro process instances

asynchronously executed to each other

Figure 10.4: Execution dependencies in a complex process structure

To hide the complexity of large process structures from process designers and end-users, PHIL-
harmonicFlows allows defining macro process types in a "flat" and compact way. For this pur-
pose, at the type level, a macro process consists of a number of macro step types and macro
transition types (cf. Fig. 10.5). As opposed to imperative process modeling, where process
steps are defined in terms of activities, a particular macro step type ot(s) refers to an object
type ot and a corresponding state type s. While micro process types are based on attribute
types, the definition of a macro process type is based on object types. In this context, the
state types of the micro process definitions play a crucial role. In particular, they do not only
provide the basis for coordinating the execution of any micro process instance among different
user roles, but also for synchronizing the execution of inter-related micro process instances. To
express the dependencies existing between the states of micro process instances correspond-
ing to different types, macro step types may be inter-connected using macro transition types.

233

10 Macro Process Modeling

Whether or not the state of the target macro step may be activated then depends on the state
of the source macro step.

job Offer

published

application

initializ

ed

macro step type
macro transition type

application #6
application #5

application #4
application #3

application #2

job Offer #3
job Offer #2

job Offer #1

application #1

initialized sent checked

agreed

canceled

initialized published closed

occupied

not

occupied

process

structure

macro process type

data

structure

Figure 10.5: Mapping dependencies between macro step and macro transition types

Example 10.3 (Macro step and macro transition type):
Fig. 10.5 shows the macro step type referring to object type job offer in state published. It further depicts a macro
transition type describing a dependency between a job offer in state published and corresponding applications

in state initialized.

A macro process type may include both parallel and alternative execution paths (cf. Fig. 10.6).
To express this, each macro step type comprises a number of port types. In turn, each macro
transition type connects a macro step type with a port type of a subsequent macro step type.
Generally, more than one macro transition type may refer to a particular port type. Whether the
state of the macro step type can be activated during run-time then depends on the activation of
its ports. More precisely, a state may only be activated if at least one of its ports belonging to a
macro step referencing this state becomes activated, i.e., all incoming macro transitions of this
port are fired. Based on this, alternative execution paths can be defined using multiple ports
(i.e., OR-semantics is enabled). In turn, to enable parallel execution several macro transitions
must target to the same port (i.e., AND-semantics is enabled).

Example 10.4 (AND semantics):
Consider the macro step type referring to object type job offer in state not occupied (cf. Fig. 10.6). At run-
time, this macro step type may only be activated if the job offer object instance reaches state closed and for all
application object instances, which refer to the respective job offer object instance, state rejected is activated.

Example 10.5 (OR semantics):
Consider the macro step type referring to object type application in state rejected (cf. Fig. 10.6). At run-time, it
may only be activated if state reject proposed is activated for related all review or all related interview objects
instances.

234

10.3 Macro Process Types

job offer

initialized

job offer

published

application

initialized

application

sent

review

initialized

review

reject

proposed

review

invitation

proposed

application

rejected

interview

initializ

ed

application

accepted

job offer

occupied

job offer

not

occupied

job offer

closed

interview

agreement

proposed

interview

reject

proposed

start macro step type

object type

state type

macro step type

macro transition type
port type

end macro step types

OR

semantics

AND

semantics

Figure 10.6: Recruitment macro process type

When executing a particular macro process instance at run-time, we must consider that not all
micro process instances of the emerging process structure belong to one and the same macro
process instance. For example, consider Fig. 10.7. All micro process instances related to the
same macro process instance are coloured red. Consequently, a process structure may be
mapped to several macro process instances. To handle this at run-rime, each macro process
type refers to a primary object type. If an object instance of the primary object type is created
at run-time, a corresponding macro process instance is initialized as well. This macro process
instance then comprises all micro process instances which directly or indirectly reference the
primary object instance. Finally, a particular object instance may be involved in several macro
process instances (cf. Ex. 10.6).

review #12
review #11

review #10
review #9

review #8
review #7

application #6
application #5

application #4
application #3

application #2

initialized pending

reject

proposed

invitation

proposed

finished

review #6
review #5

review #4
review #3

review #2
review #1

initialized planned finished

interview #7
interview #6

interview #5
interview #4

interview #3
interview #2

interview #1

job Offer #3
job Offer #2

job Offer #1

application #1

relations

micro process instance relationships

data structure process structure

initialized sent checked

agreed

canceled

initialized published closed

occupied

not

occupied

Figure 10.7: Recruitment macro process instance (coloured in red)

235

10 Macro Process Modeling

Example 10.6 (Macro process instances):
The macro process instance illustrated in Fig. 10.7 refers to a particular job offer object instance. For this pur-
pose, the macro process instance comprises a job offer micro process instance, all application micro process
instances referring to the latter , and all review as well as interview micro process instances referring to the re-
spective application object instances. If another macro process type is defined including the application object
type as primary object type, a new macro process instance is created for each of the two coloured application

object instances. In this case, several macro process instances refer to the same micro process instances.

Definition 45 (Macro process types):
Let dm = (name, OTypeSet, RelTypeSet) be a data model. Then:

A macro process type is a tuple macProcType = (name, oType, MacStepTypeSet, MacTransTypeSet) where

• name ∈ Identifiers is an identifier.

• oType = (name, AttrTypeSet) ∈ OTypeSet is the primary object type.

• MacStepTypeSet is a finite set of macro step types with macStepType = (oType, stateType, PortTypeSet)
∈ MacStepTypeSet having the following meaning:

◦ oType ∈ OTypeSet is an object type with related micro process type micProcType.

◦ stateType ∈ micProcType.StateTypeSet is a state type of the referenced object type.

◦ PortTypeSet is a finite set of port types. Each port has a unique id in respect to all port types of
macProcType.

• MacTransTypeSet ⊂ MacStepTypeSet × MacStepTypeSet × PortTypeSet is a finite set of macro transition
types. For macTransType = (source, target, port) ∈MacTransTypeSet, source (target) ∈MacStepTypeSet
corresponds to the source (target) macro step and port ∈ PortTypeSet is a port type of the target macro step;
i.e., port ∈ target.PortTypeSet.

MacProcTypes denotes the set of all macro process types and PortTypes denotes the set of all port types belong-
ing to any macro step type;
i.e., ∀ p ∈ PortTypes: ∃ macStepType ∈ MacStepTypeSet with p ∈ macStepType.PortTypeSet.
Finally, sPortTypeSetstateType ⊆ PortTypeSet is the finite set of port types corresponding to a particular stateType.

In the following, a state type represents a tuple stateType = (name, sMicStepTypeSet, sPortTypeSet).

To ensure the correct execution of macro process instances at run-time, like for micro process
instances, PHILharmonicFlows prescribes several structural properties. First of all, Def. 46
introduces functions for structurally analyzing a macro process type1.

Definition 46 (Functions for structurally analyzing macro process types):
Let macProcType = (name, oType, MacStepTypeSet, MacTransTypeSet) ∈MacProcTypes be a macro process type.
Then:

• For each macro step type, intransCount: MacStepTypeSet 7→ N0 determines the number of incoming
macro transition types.

• For each macro step type, outtransCount: MacStepTypeSet 7→ N0 determines the number of outgoing
macro transition types.

• For each macro step type m, precedingMacroStepTypes: MacStepTypeSet 7→ 2MacroStepTypes determines
its directly or indirectly preceding macro step types.

1We omit a formal definition here due to the intuitive semantics of these functions.

236

10.3 Macro Process Types

A macro step type without an incoming macro transition type is denoted as start macro step
type. In turn, macro step types without outgoing macro transition types are called end macro
step types (cf. Def. 47). Thereby, we require that all start and end macro step types refer to the
primary object type of the macro process type. Further, the start macro step type must refer to
the start state type of the micro process type corresponding to this primary object type. In turn,
all end macro step types must refer to an end state type of this micro process type.

Definition 47 (Start and end macro step types):
Let macProcType = (name, refType, MacStepTypeSet, MacTransTypeSet) ∈ MacProcTypes be a macro pro-
cess type. Further, let macStepType = (oType, stateType, PortTypeSet) ∈ MacStepTypeSet be a correspond-
ing macro step type and micProcType = (oType, MicStepTypeSet, MicTransTypeSet, StateTypeSet, Activity-
Set) be the micro process type corresponding to the primary object type of macStepType; i.e., macStep-
Type.oType = micProcType.oType. Finally, startStateTypemicProcType ∈ StateTypeSet corresponds to the start state
and EndStateTypesmicProcType ⊂ StateTypeSet to the set of end state types of micProcType. Then:

• The startMacStepType of macProcType is the only macro step type
macStepType ∈ MacStepTypeSet with intransCount(macStepType) = 0 ∧
macStepType.oType = refType ∧ macStepType.stateType = startStateTypemicProcType.

• An endMacStepType of macProcType corresponds to a macro step type
macStepType ∈ MacStepTypeSet with outtransCount(macStepType) = 0 ∧
macStepType.oType = refType ∧ macStepType.stateType ∈ EndStateTypesmicProcType.

EndMacStepTypesmacProcType := {mSType ∈ MacStepTypeSet | mSType is an end macro step type} com-
prises all end macro step types. Thereby, EndMacStepTypes 6= 0.

When defining macro transition types, certain macro step types must not be linked with each
other; i.e., the relationship between the object type of the source macro step type and the one of
the target macro step must be taken into account. In this context, PHILharmonicFlows utilizes
the semantic relationships that exist between the respective object types according to the de-
fined data structure. However, when defining the execution dependencies between micro pro-
cess types, it is not always sufficient to only consider direct relations between object instances;
e.g., relations indicating that a review object corresponds to a particular application object. To
allow for a more sophisticated process coordination, in addition, indirect (i.e., transitive) as
well as transverse relationships have to be also considered; e.g., to access all reviews related
to a particular job offer or all reviews related to an interview referencing the same application.
Regarding the job offer macro process type (cf. Fig. 10.6), for example, there exists a depen-
dency between reviews and interviews although these two object types do no directly reference
each other. Overall, taking the semantic relationships between object instances into account is
a key to allow for the concurrent, but well synchronized processing of object instances and their
corresponding micro process instances respectively.

To support this, PHILharmonicFlows structures a data model into data levels (cf. Def. 48).
All object types not referring to any other object type are placed on Level #1. As illustrated in
Fig. 10.8A, any other object type is then assigned to a lower data level as the object types it
references.

237

10 Macro Process Modeling

Definition 48 (Data levels):
Let dm = (name, OTypeSet, RelTypeSet) ∈ DM be an acyclic data model. Then:

Function level assigns to each object type ot ∈ OTypeSet its level(ot):
level: OTypeSet 7→ N with

level(ot) :=

1, @rel ∈ RelTypeSet: rel.relType.source = ot
1 + max{level(ot’) | else
(name, ot, ot’,min,max) ∈ RelTypeSet}

review interview

job offer

application

data model

top-down

transverse

bottom-up

#1

#2

#3

review interview

job offer

application

relation

data model

object

type

#1

#2

#3

data level

a b

Figure 10.8: Data levels and relationships

Example 10.7 (Organizing the data model in data levels):
Consider Fig. 10.8. Since the job offer object type does not reference any other object type, it is placed on the top
data level (i.e., data level #1). Further, the application object type references the job offer object type; hence
the application object type is assigned to data level #2. In turn, the application object type is referenced by the
review and the interview object types. These object types are assigned to data level #3.

As a prerequisite for such an organization of the data model into data levels, the data model
must be acyclic. To be more precise, cycles must be detected and resolved before applying
such a layering to the data model. In this context, we provide function formsCycle (cf. Def.
49). For each relation type, it evaluates whether this relation is contained in any cycle of the
data model. Relation types for which this applies are visualized for users (cf. Fig. 10.9) who
then must manually dissolve them. Therefore, at least one relation type involved in a cycle
must be flagged using function resolvesCycle (cf. Def. 49) to interrupt the cycle. Selected
relation types (i.e., relation types for which function resolvesCycle evaluates to true) are not
considered when re-arranging the data structure into different data levels. Altogether, either
the data model is acyclic or cycles are resolved using function resolvesCycle (cf. Def. 50); i.e.,
PHILharmonicFlows hierarchically organizes object types.

238

10.3 Macro Process Types

review interview

job offer

application

relations

data model

object types

#1

#2

#3

data level

participant

participate

lead

#4

resolvesCycle = TRUE

review interview

job Offer

application

relations

data model

object types

#1

#2

#3

data level

participant

participate lead
#4

resolvesCycle = TRUE

review interview

job offer

application

relations

data model

object types

#1

#2

#3

data level

participant

participate lead
#4

formsCycle = TRUE

ba c

Figure 10.9: Handling cyclic relations

Definition 49 (Functions for structurally analyzing the data model):
Let dm = (name, OTypeSet, RelTypeSet) ∈ DM be a data model. Then:

• formsCycle: RelTypeSet 7→ BOOLEAN indicates whether or not a particular relation type is contained in
any cycle in dm.

• resolvesCycle: RelTypeSet 7→ BOOLEAN optionally marks particular relation types to resolve potential
cycles of dm.

Example 10.8 (Handling cyclic relations):
Consider Fig. 10.9. Relation types participate and lead form a cycle. For them, function formsCycle evaluates
to true. Hence, one of these relation types must be flagged, which is then indicated by function resolvesCycle.
Regarding Fig. 10.9b, relation type lead is flagged. Therefore, object type participant is placed at a lower data
level as object type interview. By contrast, in Fig. 10.9c relation type participate is flagged. In this case, the
participant object type is placed at a higher data level as object type interview. Since the participant object
type does not reference another object type it is placed at data level #1.

Definition 50 (Structural properties of the data model):
Let dm = (name, OTypeSet, RelTypeSet) ∈ DM be a data model. Then:

Either dm is acyclic; i.e., ∀ relType ∈ RelTypeSet: formsCycle(relType) = FALSE,

or cycles have been resolved; i.e.,
RelTypeSet∗ := {relType ∈ RelTypeSet | resolvesCycle(relType) = FALSE},⇒
dm = (name, OTypeSet, RelTypeSet∗) is acyclic.

Further, it is important to determine the various relationships existing between two object types.
For a particular object type, function path specifies a path of relation types through which an-
other object type is transitively referenced.

239

10 Macro Process Modeling

Definition 51 (Path between two object types):
Let dm = (name, OTypeSet, RelTypeSet) ∈ DM be a data model. Then:

path: OTypeSet × 2RelTypeSet 7→ OTypeSet with path(oType,pathRelTypeSet) = oType’ ∧
oType’ ∈ OTypeSet ∧ ∃ rti = (name, source, target, min, max) ∈ RelTypeSet: i=1..n with

rt1.source = oType ∧ rt1.target = oType1 ∧ rt2.source = oType1 ∧ rt2.target = oType2 ∧ ...
∧ rtn.source = oTypen-1 ∧ rtn.target = oTypen ∧ oTypen = oType’}.

Example 10.9 (Paths between two object types):
Consider Fig. 10.10. Object type A is indirectly referenced by object type D. Thereby, two paths of relation types
exist. By contrast, object type F is not referenced by object type D.

Figure 10.10: Paths between object types

We denote an object type A directly or indirectly referencing an object type B as lower-level
object type of B (cf. Def. 52). Accordingly, an object type directly or indirectly referenced by
other object types is denoted as higher-level object type (cf. Def. 52).

Definition 52 (Higher- and lower-level object types):
Let dm = (name, OTypeSet, RelTypeSet) ∈ DM be an acyclic data model (i.e., dm may contain cycles resolved by
using function resolvesCycle). Then:

• higherlevel: OTypeSet 7→ 2OTypeSet with
higherlevel(ot) := {ot’ ∈ OTypeSet | level(ot) < level(ot’) ∧
∃ RelTypeSet’ ⊆ RelTypeSet with path(ot,RelTypeSet’) = ot’}.

• lowerlevel: OTypeSet 7→ 2OTypeSet with
lowerlevel(ot) := { ot’ ∈ OTypeSet | ot ∈ higherlevel(ot’) }

As illustrated in Fig. 10.8b, a relationship between object types A and B is categorized as top-
down (bottom-up), if B is a lower-level (higher-level) object type of A. Furthermore, we categorize
a relationship between object types A and B as transverse if there exists another object type C

of which both A and B are lower-level object types (i.e., A and B have a higher-level object type
in common). These three relationships are defined by Def. 53.

240

10.3 Macro Process Types

Definition 53 (Relationships):
Let dm = (name, OTypeSet, RelTypeSet) ∈ DM be an acyclic data model.
Further, let oti ∈ OTypeSet, i=1,...,3 be different object types. Then:

• top-down: OTypeSet × OTypeSet 7→ BOOLEAN with

top-down(ot1,ot2) :=

{
true, ot1 ∈ higherlevel(ot2)
false, else

• bottom-up: OTypeSet × OTypeSet 7→ BOOLEAN with

bottom-up(ot1,ot2) :=

{
true, ot1 ∈ lowerlevel(ot2)
false, else

• transverse: OTypeSet × OTypeSet 7→ BOOLEAN with

transverse(ot1,ot2) :=

{
true, ∃ ot3: oti ∈ lowerlevel(ot3): i=1,2
false, else

Example 10.10 (Relationships):
Consider Fig. 10.11.

a) Top-down: State initialized of a review micro process instance may only be activated if state published

of the corresponding job offer micro process instances is activated. This constitutes a top-down relation-
ship since several lower-level review micro process instances depend on the execution of a higher-level
job offer micro process instance. Note that job offer (belonging to the source macro step type) is a
higher-level object type of object type review (belonging to the target macro step type).

b) Bottom-up: The activation of state closed of a job offer micro process instance depends on the activation
of state reject proposed for all related interview micro process instances. This constitutes a bottom-up
relationship since one higher-level job offer micro process instance depends on the execution of all lower-
level interview micro process instances. Note that interview (belonging to the source macro step type) is
a lower-level object type of object type job offer (belonging to the target macro step type).

c) Transverse: The activation of state initialized of an interview micro process instance depends on
the activation of state invitation proposed of the review micro process instances belonging to the same
application. This constitutes a transverse relationship since several lower-level interview micro process
instances depend on the execution of all lower-level review micro process instance referencing the same
higher-level application. Note that the review object type (belonging to the source macro step type) and
interview object type (belonging to the target macro step type) have a common higher-level object type (i.e.,
application).

As illustrated in Fig. 10.11, macro transition types may only connect macro step types whose
object types have a top-down, bottom-up, or transverse relationship to each other, or which refer
to the same object type (cf. Def. 54f). Otherwise, it would not be possible to asynchronously
execute and synchronize the corresponding micro process instances (cf. Sect. 11).

Taking solely macro step types and their incoming and outgoing macro transition types into
account, a macro process type must be acyclic (cf. Def. 54a). Further, according to Def.
54b, each macro process type contains exactly one start macro step type and at least one end
macro step type (cf. Def. 54c). All other macro steps must have at least one incoming as
well as one outgoing macro transition type (cf. Def. 54d + e). Note that properties a-e ensure
reachability of each macro step type. In particular, each macro step can be reached starting
from the start macro step. Finally, from any macro step, at least one end macro step can be
reached.

241

10 Macro Process Modeling

review interview

job offer

application

#1

#2

#3

participant

top-down

job offer

published

review

initialized

transverse

review

invitation

proposed

interview

initialized

bottom-up

job offer

closed

interview

reject

proposed

top-down

bottom-up

transverse

application

initialized

application

sent

review

pending

participant

agreed

same object type

no relationship

process context type

aggregation type

transverse type

data model macro process type relationships coordination components

Figure 10.11: Macro transition types and corresponding relationships

To ensure correct process execution at run-time, two critical situations must be taken into ac-
count. First, regarding deterministic micro process types, we must ensure that the execution
dependencies specified by the macro transition types do not lead to a mutual waiting (cf. Fig.
10.12).

Example 10.11 (Mutual waiting):
Consider Fig. 10.12. State published of a job offer micro process instance may only be activated if state
planned of a related interview micro process instance becomes activated. To initialize an interview, however,
the corresponding job offer must be in state closed. Since state closed of the job offer micro process instance
succeeds state published, a deadlock will occur; i.e., both micro process instances will be waiting for each other.

initialized published closed . . .

initialized planned finished

job offer

closed

interview

initialized

interview

planned

job offer

published

job offer

interview

macro

process

type

micro

process

types
mutual

waiting

Figure 10.12: Deadlock situation using deterministic micro process types

When using non-deterministic micro process types, corresponding execution dependencies
must consider that at most one execution path is selectable at run-time. For this reason, we
must avoid that any execution sequence of the macro process type comprises state types
belonging to different alternative execution paths; i.e., mutual exclusions as illustrated in Fig.
10.13 must be prevented.

242

10.3 Macro Process Types

Example 10.12 (Mutual exclusion):
Consider Fig. 10.13. Regarding the macro process type, state reject proposed of a review micro process instance
is followed by state invitation proposed; i.e., after activating state reject proposed, state invitation proposed

must be activated. Since these states belong to different alternative execution paths in the corresponding review

micro process instance, these two states exclude each other.

initialized pending

reject

proposed

invitation

proposed

finished

review

review

reject

proposed

. . .

. . .

review

invitation

proposed

macro

process

type

micro

process

type

mutual

exclusion

Figure 10.13: Deadlock situations using non-deterministic micro process types

To prevent mutual waitings as well as mutual exclusions, each macro step type referring to the
same object type as one of its predecessors must refer to a state type that succeeding the one
of the preceding macro step type (cf. Def. 54g). Nevertheless, non-deterministic micro process
types might lead to deadlocks at run-time if the state type required by a macro step type is
not reached. Since the number of object instances created during run-time is unknown at
build-time, such situations cannot be prevented in the forefront. Instead, they must be properly
handled at run-time (see Sect. 13.2 for details).

Finally, we must consider that lower-level object instances do not exist before the higher-level
ones they refer to are created. Hence, any macro transition type categorized as bottom-up
must not target at a macro step type referring to a start state type (cf. Def. 54h).

Definition 54 (Structural properties of macro process types):
Let dm = (name, OTypeSet, RelTypeSet) ∈ DM be an acyclic data model. Let further macProcType = (name, oType,
MacStepTypeSet, MacTransTypeSet) ∈ MacProcTypes be a macro process type. Then:

a) macProcType is acyclic.

b) ∃! s = startMacStepType ∈ MacStepTypeSet;
i.e., there exists exactly one start macro step type.

c) EndMacStepTypes 6= ∅; i.e., there exists at least one end macro step type.

d) ∀ m ∈ MacStepTypeSet - {startMacStepType}: intransCount(m) ≥ 1;
i.e., all macro step types except the start macro step type have at least one incoming macro transition type.

e) ∀ m ∈ MacStepTypeSet - EndMacStepTypes: outtransCount(m) ≥ 1;
i.e., all macro step types except end macro step types have at least one outgoing macro transition type.

f) ∀ m = (source, target, port) ∈ MacTransTypeSet:
top-down(source.oType, target.oType) = true ∨
bottom-up(source.oType, target.oType) = true ∨
transverse(source.oType, target.oType) = true ∨
source.oType = target.oType;

i.e., all macro transition types may only connect macro step types whose object types constitute a top-down,
bottom-up, or transverse relationship to each other, or the macro step types refer to the same object type.

243

10 Macro Process Modeling

g) ∀ m1 ∈ MacStepTypeSet:
∀ m2 ∈ precedingMacStepTypes(m1) with m1.oType = m2.oType:

m2.stateType ∈ precedingStateTypes(m1.stateType);
i.e., if a successor macro step type refers to the same object type as one of its predecessors, its state type
must be a successor of the predecessor state type.

h) ∀ macTransType = (s, t, port) ∈ MacTransTypeSet with bottom-up(s.oType, t.oType) = true:
t.stateType != startStateType;

i.e., macro transition types categorized as bottom-up must not target macro step types referring to the start
state type.

10.4 Summary

To capture and model object interactions, a macro process type may be defined. As opposed to
traditional process modeling approaches, where process steps are defined in terms of activities,
a macro step type always refers to an object type together with a corresponding state type.
To take the dynamically evolving number of object instances as well as their asynchronous
execution into account, for each macro transition type, a corresponding coordination component
type needs to be defined. For this purpose, PHILharmonicFlows takes the relationship between
the object types of the source and the target macro steps into account. To cover this, we
automatically structure the data model into different data levels. All object types not referring
to any other object type are placed on Level #1. Any other object type is always assigned to
a lower data level as the object types it references. This way, we can automatically categorize
macro transition types. The required coordination component then depends on the type of the
respective macro transition type.

244

11
Coordination Components

RUN-TIME

BUILD-TIME

Macro Process

Micro Process

Data

User Integration

Forms

Black-box Activities

automatically generated

implementation required

Relations

Objects

Attributes

States

Micro Transition

Micro Step

Macro Step

Macro Transition

Process Context

Aggregation

Transverse

Responsibilities

Permissions

Process-

oriented

View

Monitoring

automatically generated

Worklists

Data-

oriented

View

automatically generated

Overview

Tables

Figure 11.1: Coordination components in PHILharmonicFlows

245

11 Coordination Components

At run-time, a macro process instance coordinates the concurrent processing of inter-related
object instances. Thereby, for each object type a set of object instances exist. Furthermore, an
object instance of a particular type may be referred by related collections of object instances
corresponding to lower-level object types. Overall, this results in large and complex process
structures. Accordingly, the execution of a set of lower-level micro process instances may de-
pend on a higher-level micro process instance and vice versa.
By contrast, macro process types, as shown in Chapt. 10, are modeled in a flat and com-
pact way abstracting from the underlying process structure and its complexity. Note that in
this context, the micro process instances may be assigned to different states of a macro pro-
cess instance. Thus, the execution of a macro process instance is not that strict sequential as
in traditional approaches. More precisely, at a certain point in time, several macro steps are
reached by a subset of their related micro process instances. Hence, the dependencies be-
tween micro process instances, as defined by the macro process type, must obey a well-defined
operational semantics to properly coordinate these micro process instances. More precisely,
for each macro transition type, a corresponding coordination component type must be defined
(cf. Fig. 11.1). In turn, this coordination component should consider the type of relationship
existing between the object types referenced by the source and target macro step type of this
transition. While for each macro transition type representing a top-down relationship a process
context type must be specified, bottom-up relationships require an aggregation type. In turn,
for relationships of type transverse a transverse type should be used.

As a prerequisite for coordinating micro process instances at run-time, therefore, the semantic
relations of the corresponding object instances (i.e., data structure) must be structurally ana-
lyzed. In this context, for a particular object type, referencedOI determines the object instance
referenced by a path of relation types (cf. Def. 55).

Definition 55 (Referenced object instance):
Let dm = (name, OTypeSet, RelTypeSet) ∈ DM be a data model and ds = (dm, OSet, RelSet, MCc) be a correspond-
ing data structure. Then:

referencedOI: OSet × 2RelTypeSet 7→ OSet with referencedOI(oid, pathRelTypeSet) := oid’ where oid’ ∈ OSet:
∃ ri = (relType, soid, toid) ∈ RelSet: i=1..n ∧ ∀ ri: ri.relType ∈ pathRelTypeSet:

r1.soid = oid ∧ r1.toid = r2.soid ∧ r2.soid = r3.toid ∧ ...
∧ rn-1.toid = rn.soid ∧ rn.toid = oid’.

Example 11.1 (Referenced object instance):
Consider Fig. 11.2. Review #7 indirectly references job offer #1 through a relation type. More precisely, this path
comprises the relation type connecting the review and the application object types as well as the relation type
connecting the application and job offer object types.

Further, we denote all object instances directly or indirectly referenced by a particular object
instance o (i.e., reached on any path starting from o) as higher-level object instances of o.
Accordingly, we denote the object instances directly or indirectly referencing an object instance
o' as a lower-level object instance of o' (cf. Def. 56).1

1Remember that the higher an object instance in the hierarchy is the lower its level # will be.

246

Review Interview

Job Offer

Application

#1

#2

#3

Review #12
Review #11

Review #10
Review #9

Review #8
Review #7

Application #6
Application #5

Application #4
Application #3

Application #2

Review #6
Review #5

Review #4
Review #3

Review #2
Review #1

Interview #7
Interview #6

Interview #5
Interview #4

Interview #3
Interview #2

Interview #1

Job Offer #3
Job Offer #2

Job Offer #1

Application #1

data model data structure

defined path of

relation types

object instance

referenced at run-time

through the defined

path of relations

Figure 11.2: Determining referenced object instances

Definition 56 (Higher- and lower-level object instances):
Let dm = (name, OTypeSet, RelTypeSet) ∈ DM be a data model and ds = (dm, OSet, RelSet, MCc) be a correspond-
ing data structure. Then:

• higherlevelOIs: OSet 7→ 2OSet with
higherlevel(o) := {o’ ∈ OSet | level(o’.oType) ≤ level(o.oType) ∧
∃ RelSet’ ⊆ RelSet with referencedOI(o,RelSet’) = o’.

• lowerlevelOIs: OSet 7→ 2OSet with
lowerlevel(o) := {o’ ∈ OSet | o ∈ higherlevelOIs(o’)}

Example 11.2 (Higher- and lower-level object instances):
Consider Fig. 11.3. Application #3 and job offer #1 are the higher-level object instances of object instance
review #7. In turn, the lower-level object instances of job offer #1 comprise application object instances #1 -

#3, review object instances #1 - #8, and interview object instances #1 - #6.

247

11 Coordination Components

#1

#2

#3

Review #12
Review #11

Review #10
Review #9

Review #8
Review #7

Application #6
Application #5

Application #4
Application #3

Application #2

Review #6
Review #5

Review #4
Review #3

Review #2
Review #1

Interview #7
Interview #6

Interview #5
Interview #4

Interview #3
Interview #2

Interview #1

Job Offer #3
Job Offer #2

Job Offer #1

Application #1

lower-level object instances

Review #12
Review #11

Review #10
Review #9

Review #8
Review #7

Application #6
Application #5

Application #4
Application #3

Application #2

Review #6
Review #5

Review #4
Review #3

Review #2
Review #1

Interview #7
Interview #6

Interview #5
Interview #4

Interview #3
Interview #2

Interview #1

Job Offer #3
Job Offer #2

Job Offer #1

Application #1

higher-level object instances

Figure 11.3: Higher- and lower-level object instances

11.1 Process Contexts

We first consider top-down relationships within a data structure. For them, the execution of a
set of lower-level micro process instances depends on the one of a higher-level micro process
instance. Regarding Fig. 11.4, for example, the execution of a set of application micro process
instances depends on the execution of the corresponding job offer micro process instance. To
cover this behavior in a macro process type, for each macro transition type categorized as top-
down, a corresponding process context type must be defined. The latter specifies whether or
not the respective state of a lower-level micro process instance, as specified by the target macro
step, may be activated; i.e., the activation of this state depends on the state of the referenced
higher-level micro process instance (as specified by the source macro step type).

To differentiate between AND- and OR-semantics during micro process instance coordination,
port types manage the activation of states (cf. Exs. 10.4 and 10.5). Thereby, each port type
belongs to a particular state type of a macro step type (cf. Sect. 10.3). As illustrated in Fig.
11.5, a process context type comprises the port type that belongs to the state type referenced
by the target macro step type (cf. portType in Def. 57) as well as the micro process type
corresponding to the source macro step type (cf. sourceMicProcType in Def. 57).

To allow for the asynchronous execution of the higher-level micro process instance, a process
context type additionally stores subsequent states of the higher-level micro process type, which
also enable the lower-level instances to activate the state specified by the target macro step
type. As example consider the processing of job offers as illustrated in Fig. 11.5. Here, a job

offer micro process instance may activate state closed even if not all corresponding interviews

have been planned; i.e., it is possible to process job offers while interviews may further activate

248

11.1 Process Contexts

Application #6
Application #5

Job Offer #2

Application #4

initialized sent checked

agreed

canceled

initialized published closed

occupied

not

occupied

Job Offer

published

Application

send

macro step type macro transition type

Application #3
Application #2

Job Offer #1

Application #1

initialized sent checked

agreed

canceled

initialized published closed

occupied

not

occupied

top-down

Figure 11.4: Top-down relationship

Review Interview

Job Offer

Application

#1

#2

#3

Participant

Job Offer

published

Interview

planned

top-down

path A

path B

initialized planned finished

initialized published closed

occupied

not

occupied

Job Offer

Interview
portType

sourceMicProcType =

higher-level micro process type

corresponding to the source macro step type

pStateTypeSet

PathRelTypeSet

macro process type

data model process context type

Figure 11.5: Process context type

state planned. This way, at run-time, the execution of the higher-level micro process instance
must not be blocked until all lower-level micro process instances have activated the respective
state. For this purpose, each process context type comprises a set of states belonging to its
source micro process type (cf. pStateTypeSet in Def. 57). In particular, each process context
type contains at least the state relating to the source macro step type, but subsequent states
may be optionally added if required. This way, an asynchronous execution of different micro

249

11 Coordination Components

process instances is possible. However, only states succeeding the state defined by the source
macro step type may be chosen. If one of these states becomes activated at run-time, all
lower-level micro process instances referring to the higher-level one may then activate the state
specified by the target macro step type.

A top-down relationship must not necessarily coincide with a direct relation of the data model,
i.e., it may represent a transitive (i.e., indirect) relationship between two object types as well.
Further, note that there may be several paths within a data structure based on which a particular
higher-level object instance may be reached from a lower-level one (cf. Fig. 11.5). To avoid
ambiguities, therefore, the path between the two object types involved (i.e., the object types
referenced by the source and target macro step types) are specified as well.

Definition 57 (Process context types):
Let dm = (name, OTypeSet, RelTypeSet) be a data model and macProcType = (name, oType, MacStepTypeSet,
MacTransTypeSet) ∈ MacProcTypes be a macro process type. Further, let macTransType = (s, t, pType) ∈ Mac-
TransTypeSet be a top-down macro transition type; i.e., top-down(s.oType, t.oType) = true. Then:

A process context type is defined as tuple pcType = (pType, sourceMicProcType, pStateTypeSet, PathRel-
TypeSet) where:

• pType is the port type that belongs to the state type of the target macro step type of macTransType.

• sourceMicProcType is the micro process type corresponding to the source macro step type;
i.e., sourceMicProcType.oType = s.oType.

• pStateTypeSet ⊆ sourceMicProcType.StateTypeSet is a set of state types corresponding to sourceMicProc-
Type with:

� s.stateType ∈ pStateTypeSet;
i.e., pStateTypeSet comprises at least the state type of the source macro step type.

� ∀ stateType ∈ pStateTypeSet: s.stateType ∈ precedingStateTypes(stateType);
i.e., all other state types in pStateTypeSet succeed the state type corresponding to the source macro
step type.

• PathRelTypeSet ⊆ RelTypeSet is a finite set of relation types describing a path from the lower-level object
type of the target macro step type to the higher-level object type of the source macro step type;
i.e., path(t.oType,PathRelTypeSet) = s.oType.

PCTypes corresponds to the set of all definable process context types. Further, PCTypespType denotes the set of
all process context types belonging to the same port type; i.e., PCTypespType := {p ∈ PCTypes | p.portType = pType}.

Example 11.3 (Process context type):
Consider Fig. 11.5. Since the macro transition type between the macro step type referring to the job offer

object type in state published and the macro step type referring to the interview object type in state planned

is categorized as top-down, a corresponding process context type must be defined. The latter comprises at least
state published which is referenced by its source macro step type. Further, state closed is added to this process
context type, which allows activating state planned of the interview micro process instance even if state closed

of the corresponding job offer micro process instance has been already activated; i.e., the job offer micro
process instance may asynchronously continue its execution. To determine the concrete job offer micro process
instances, a particular interview micro process instance depends on, at run-time, the set of relations referring to
the application object instances is evaluated; i.e., pathA (cf. Fig. 11.5) is chosen.

250

11.1 Process Contexts

At run-time, a process context is initialized for each lower-level micro process instance (cf. Fig.
11.6). Depending on the currently activated state of the higher-level micro process instance, it
controls whether or not the state of the lower-level micro process instance may be activated. For
this purpose, each process context instance (cf. Def. 58) comprises the port corresponding to
the lower-level micro process instance and the referenced higher-level micro process instance
(cf. port and sourceMicProcInstance in Def. 58). Only if one state defined by the corresponding
process context type (cf. pStateTypeSet in Def. 57) is activated for the higher-level micro
process instance, the lower-level one may activate the respective state (cf. Chapt. 12).

Definition 58 (Process context instance):
Let micProcInstance be an instance of a micro process type micProc ∈ MicProcTypes; i.e., micProcInstance ∈
micprocinstances(micProc). Then:

A process context instance is a tuple pcInstance = (pcType, port, sourceMicProcInstance) where

• pcType is a process context type.

• port is the instance of pcType.portType which belongs to a state of micProcInstance:
∃ state ∈ micProc.StateSet ∧ port ∈ state.sPortSet.

• sourceMicProcInstance is an instance of pcType.sourceMicProcType referenced by micProcInstance; i.e.,
pcType.sourceMicProcInstance ∈ micprocinstances(pcType.sourceMicProcType) ∧
sourceMicProcInstance.oid = referencedOI(micProcInstance.oid, pcType.PathRelTypeSet).

PCInstances denotes the set of all process context instances corresponding to any process context type pcType
∈ PCTypes. Further, PCInstancesport corresponds to the set of all process context instances referring to the same
port. Finallly, pcinstances: PCTypes 7→ 2PCInstances assigns to each process context type pcType ∈ PCTypes its
corresponding instances pcinstances(pcType) ⊆ PCInstances.

Example 11.4 (Process context instances):
Consider a process context type that enables an application micro process instances to activate state send. As
illustrated in Fig. 11.6, at run-time, for job offer #1 three application object instances exist. Hence, three
instances of the process context type are initialized. Each of them corresponds to an application micro process
instance controlling whether or not state send can be activated.

251

11 Coordination Components

Application #3
Application #2

Job Offer #1

Application #1

initialized sent checked

agreed

canceled

initialized published closed

occupied

not

occupied

process

structure

data

structure

process context instance #3
process context instance #2

process context instance #1

port

sourceMicProcInstance

Job Offer

Application

initialized sent checked

agreed

canceled

initialized published closed

occupied

not

occupied

process

model

data

model

pStateTypeSet

portType

sourceMicProcType

PathRelTypeSet

Job Offer

published

Application

send

top-down

macro

process

type

build-time

run-time

Figure 11.6: Process context instance

11.2 Aggregations

Aggregation types provide another fundamental concept for coordinating micro process in-
stances. An aggregation type must be defined for each macro transition type categorized as
bottom-up (cf. Fig. 11.7). Compared to process context types, aggregation types work the
other way around; i.e., the execution of a particular higher-level micro process instance is co-
ordinated with the one of a number of related lower-level micro process instances. Consider
thereto Prop. 5 (see Sect. 3.1) according to which an application may only be rejected if all
corresponding reviews propose the rejection. More precisely, whether the higher-level micro
process instance may activate a certain state depends on the activated states of the lower-
level instances. In this context, the state of the higher-level micro process instance is defined
by the target macro step type. In turn, the source macro step type specifies the state of the
lower-level instances.

At run-time, an aggregation instance is initiated for each higher-level micro process instance
aggregating corresponding lower-level micro process instances. For this purpose, Def. 59
provides functions for counting lower-level micro process instances.

252

11.2 Aggregations

initialized sent checked

accepted

initialized pending

reject

proposed

invitation

proposed

finished

Review #7
Review #6

Review #5

Application #2

rejected

Review

reject

proposed

Application

rejected

macro step type
macro transition type

bottom-up

initialized pending

reject

proposed

invitation

proposed

finished

Review #4
Review #3

Review #2
Review #1

Application #1

initialized sent checked

accepted

rejected

Figure 11.7: Bottom-up relationship

Definition 59 (Micro process instance counter):
Let micProcType = (oType, MicStepSet, MicTransSet, StateSet, BackTransSet, ActivitySet) ∈ MicProcTypes be a
micro process type and MicProcSet := micprocinstances(micProcType). Further, let stateType ∈ StateSet be a state
of micProcType. Then:

• #ALL: 2MicProcInstances 7→ INTEGER with #ALL(MicProcSet) = |MicProcSet|;
#ALL determines the total number of micro process instances from a given instance set.

• #IN: 2MicProcInstances × stateType 7→ INTEGER with
#IN(MicProcSet, stateType) = | {micProc ∈ MicProcSet with MState(stateType) = ACTIVATED} |;
#IN determines the number of micro process instances from a given instance set for which the state is
currently marked as ACTIVATED.

• #BEFORE: 2MicProcInstances × stateType 7→ INTEGER with
#BEFORE(MicProcSet, stateType) = | {micProc ∈ MicProcSet with MState(stateType) = WAITING} |;
#BEFORE determines the number of micro process instances from a given instance set for which the state is
currently marked as WAITING.

• #AFTER: 2MicProcInstances × stateType 7→ INTEGER with
#AFTER(MicProcSet, stateType) = | {micProc ∈ MicProcSet with MState(stateType) = CONFIRMED} |;
#AFTER determines the number of micro process instances from a given instance set for which the state is
currently marked as CONFIRMED.

• #SKIPPED: 2MicProcInstances × stateType 7→ INTEGER with
#SKIPPED(MicProcSet, stateType) = | {micProc ∈ MicProcSet with MState(stateType) = SKIPPED} |;
#SKIPPED determines the number of micro process instances from a given instance set for which the state is
currently marked as SKIPPED.

253

11 Coordination Components

Each aggregation type comprises the port type of the higher-level micro process type as well
as the lower-level micro process type itself (cf. portType and sourceMicProcType in Fig. 11.8).
When defining an aggregation type, the counters may be used for specifying a predicate. The
default predicate of an aggregation type is #IN = #ALL; i.e., for all lower-level micro process in-
stances the defined state must be activated. However, this predicate may be overwritten intro-
ducing more complex conditions; i.e., additional counters may be used referring to the number
of micro process instances for which the respective state is currently not reached (i.e., marked
as WAITING), was already reached (i.e., marked as CONFIRMED), or belongs to an alternative
path skipped during execution (i.e., marked as SKIPPED). These counters allow continuing the
execution of the lower-level micro process instances even if the higher-level micro process in-
stance has not reached the respective state yet. In addition, simple arithmetic expression may
be used; e.g., #IN = #ALL - 3. At run-time, the defined predicate is then evaluated based on the
states of corresponding lower-level micro process instances.

Transitive relationships may be also considered when defining macro transition types repre-
senting bottom-up relationships. Like for process context types, the desired path of relation
types must be specified for an aggregation type as well (cf. PathRelTypeSet in Fig. 11.8).

Definition 60 (Aggregation types):
Let dm = (name, OTypeSet, RelTypeSet) be a data model and macProcType = (name, oType, MacStepTypeSet,
MacTransTypeSet) ∈ MacProcTypes be a macro process type. Further, let macTransType = (s, t, pType) ∈ Mac-
TransTypeSet be a bottom-up macro transition type; i.e., bottom-up(s.oType, t.oType) = true. Then:

An aggregation type is defined as tuple aggType = (pType, sourceMicProcType, sourceStateType, aggCon-
straint, PathRelTypeSet) with:

• pType is the port type that belongs to the state type of the target macro step type of macTransType.

• sourceMicProcType is the micro process type of the source macro step type; i.e.;
sourceMicProcType.oType = s.oType.

• sourceStateType = s.stateType is the state type based on which the micro process instances are aggregated
at run-time.

• aggConstraint: MicProcInstances × sourceStateType 7→ BOOLEAN is a predicate based on the counters
introduced in Def. 59 and simple artithmetic expressions.

• PathRelTypeSet ⊆ RelTypeSet is a finite set of relation types describing a path from the lower-level object
type of the source macro step type to the higher-level object type of the target macro step type; i.e.,

path(s.oType,PathRelTypeSet) = t.oType.

AGGTypes corresponds to the set of all definable aggregation types. Further, AGGTypespType denotes the set of
all aggregation types belonging to the same port type; i.e.; AGGTypespType := {a ∈ AGGTypes | a.portType = pType}.

Example 11.5 (Aggregation type):
Consider Fig. 11.8. Since the macro transition type between the macro step type referring to the review object
type in state reject proposed and the macro step type referring to the application object type in state rejected

is categorized as bottom-up, a corresponding aggregation type must be defined. In the given case, the predicate
is defined as "#IN + #AFTER = #ALL"; i.e., an application may only be rejected if all corresponding reviews

propose rejection. Since the aggregation predicate comprises counter #AFTER as well, on the one hand, a review

may be finished (state finished can be activated) even if the application has not reached state rejected. On the
other hand, state rejected of the application may also be activated when some reviews are already finished.

254

11.2 Aggregations

initialized pending

reject

proposed

invitation

proposed

finished

Review #3
Review #2

Review #1

Application #1

initialized sent checked

accepted

rejected

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

#ALL = 3

#IN = 1

#BEFORE = 1

#AFTER = 1

#SKIPPED= 0

counter

state of the

target

macro step

#IN+#AFTER=#ALL

PathRelTypeSet

portType

sourceMicProcType

sourceStateType

aggConstraint

Review

reject

proposed

Application

rejected

bottom-up

Figure 11.8: Aggregation type

Opposed to process context types, which are initiated for each lower-level micro process in-
stance, an aggregation is initiated for each higher-level one (cf. Fig. 11.9). Each aggregation
instance manages the complete set of corresponding lower-level micro process instances (cf.
Def. 61). If a new relation is assigned at run-time, the affected micro process instance will be
added.

Definition 61 (Aggregation instance):
Let micProcInstance be an instance of a micro process type micProc ∈ MicProcTypes; i.e., micProcInstance ∈
micprocinstances(micProc). Then:

An aggregation instance is a tuple aggInstance = (aggType, port, SourceMicProcSet, eval) where

• aggType is an aggregation type.

• port is the instance of the portType that belongs to the state of micProcInstance as referred by the target
macro step: ∃ state ∈ micProc.StateSet ∧ port ∈ state.sPortSet.

• SourceMicProcSet is a set of micro process instances of aggType.sourceMicProcType that reference
micProcInstance:

∀ sMicProcInstance ∈ SourceMicProcSet:
sMicProcInstance ∈ micprocinstances(aggType.sourceMicProcType) ∧
micProcInstance.oid = referencedOI(sMicProcInstance.oid, aggType.PathRelTypeSet).

• eval: aggConstraint × SourceMicProcSet 7→ BOOLEAN is a function evaluating the predicate defined by
aggConstraint in respect to instance set SourceMicProcSet; i.e., functions #ALL, #IN, #AFTER, #BEFORE,
and #SKIPPED are evaluated based on SourceMicProcSet.

AGGInstances denotes the set of aggregation instances of any aggregation type aggType ∈ AGGTypes. Fur-
ther, AGGInstancesport is the set of all aggregation instances targeting at same port. Finallly, agginstances:
AGGTypes 7→ 2AGGInstances assigns to each aggregation type aggType ∈ AGGTypes its corresponding instances
agginstances(aggType) ⊆ AGGInstances.

255

11 Coordination Components

Example 11.6 (Aggregation instances):
Consider Fig. 11.9. For application #1, four review object instances exist. Since an aggregation instance is
initiated for each higher-level micro process instance, only one aggregation instance exists. The latter comprises all
four review micro process instances referring to application #1.

initialized pending

reject

proposed

invitation

proposed

finished

Review #4
Review #3

Review #2
Review #1

Application #1

initialized sent checked

accepted

rejected

portSourceMicProcSet

Review

reject

proposed

Application

rejected

bottom-up

Figure 11.9: Aggregation instance

11.3 Transverse

When using transverse relationships, two different sets of micro process instances must be
coordinated in the context of a higher-level one. For example, the execution of an interview

micro process instance may depend on the one of all review micro process instances referencing
the same application micro process instance. This means, coordination is not based on direct
or indirect relationships but rather on a relationship to a common higher-level instance. For
specifying such a coordination, a corresponding transverse type can be used (cf. Fig. 11.10).

When defining a transverse type, for two object types (i.e., the one of the source and the one
of the target macro step type), a common higher-level object type must be specified. The
lower-level instances of the two object types are then coordinated in respect to the common
higher-level one (cf. Def. 62). The latter may be referenced indirectly (i.e., transitively) by both
object types. In this context, two paths of relation types must be specified – one originating
from the object type of the source macro step type and one from the object type of the target
macro step type to the common higher-level object type.

When using a transverse instance at run-time, all micro process instances corresponding to
the respective source macro step type (cf. Fig. 11.11) are aggregated in respect to the refer-
enced higher-level object instance. The same counters are used for specifying an aggregation
predicate as in the context of aggregation types (cf. Def. 59).

256

11.3 Transverse

initialized pending

reject

proposed

invitation

proposed

finished

Review #6
Review #5

Review #4

initialized planned finished

Interview #5
Interview #4

Application #2

initialized sent checked

accepted

rejected

initialized pending

reject

proposed

invitation

proposed

finished

Review #3
Review #2

Review #1

initialized planned finished

Interview #2
Interview #1

Application #1

initialized sent checked

accepted

rejected

Review

invitation

proposed

Interview

initialized

macro step type
macro transition type

transverse

Figure 11.10: Transverse relationship

Example 11.7 (Common higher-level object type):
Consider the data model from Fig. 10.8. Common higher-level object types of review and interview are
application and job offer. One of these object types must be chosen when defining a transverse type that coordi-
nates the execution of interview micro process instances with the one of certain review micro process instances.
Obviously, there is a difference in coordinating interviews and reviews belonging to the same application or
job offer. In the latter case, the set of related instances is significantly higher since it contains all reviews and
interviews corresponding to any application for a particular job offer.

Definition 62 (Transverse type):
Let dm = (name, OTypeSet, RelTypeSet) be a data model and macProcType = (name, oType, MacStepTypeSet,
MacTransTypeSet) ∈ MacProcTypes be a macro process type. Further, let macTransType = (s, t, pType) ∈ Mac-
TransTypeSet be a transverse macro transition type; i.e., transverse(s.oType, t.oType) = true. Then:

A transverse type is defined as tuple transType = (pType, sourceMicProcType, sourceStateType, higherOT,
transConstraint, SourcePathRelTypeSet, TargetPathRelTypeSet) with the following properties:

• pType corresponds to the port type belonging to the state type of the target macro step type of macTransType.

• sourceMicProcType is the micro process type of the source macro step type; i.e.,
sourceMicProcType.oType = s.oType.

257

11 Coordination Components

initialized pending

reject

proposed

invitation

proposed

finished

Review #3
Review #2

Review #1

Application #1

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

#ALL = 3

#IN = 1

#BEFORE = 1

#AFTER = 0

#SKIPPED= 2

counter

state of the

target

macro step

initialized planned finishedInterview #1

portType

sourceMicProcType

sourceStateType

higherOT

#IN+#AFTER>=1

transConstraintsourcePathRelTypeSet

targetPathRelTypeSet

Review

invitation

proposed

Interview

initialized

macro step type
macro transition type

transverse

Figure 11.11: Transverse type

• sourceStateType = s.stateType is the state type based on which the micro process instances are aggregated
at run-time.

• higherOT ∈ OTypes corresponds to an object type transitively referenced by the two object types referrenced
by the source as well as target macro step type; i.e., higherOT ∈ higherlevel(s.oType) ∩ higherlevel(t.oType).

• transConstraint: MicProcInstances × sourceStateType 7→ BOOLEAN is a predicate based on the counters
introduced in Def. 59 and simple artithmetic expressions.

• SourcePathRelTypeSet ⊆ RelTypeSet is a finite set of relation types describing a path from the lower-level
object type of the source macro step type to the higher-level object type of the target macro step type; i.e.,

path(s.oType,SourcePathRelTypeSet) = higherOT.

• TargetPathRelTypeSet ⊆ RelTypeSet is a finite set of relation types describing a path from the lower-level
object type of the target macro step type to the common higher-level object type higherOT; i.e.:

path(t.oType,TargetPathRelTypeSet) = higherOT.

TRANSTypes corresponds to the set of all definable transverse types. Further, TRANSTypesportType denotes the
set of all transverse types targeting at a particular port type.

Example 11.8 (Transverse type):
Consider Fig. 11.11. Since the macro transition type between the macro step type referring to the review object
type in state invitation proposed and the one referring to the interview object type in state initialized is
categorized as transverse, a transverse type must be defined. For this, as predicate "#IN + #AFTER >= 1" is used;
i.e., an interview may be initialized if at least one corresponding review proposes to invite the candidate. Since
counter #AFTER is considered, a review may be finished (state finished can be activated) even if the interview

has not been initialized yet.

258

11.3 Transverse

At run-time, for each micro process instance belonging to the target macro step type a trans-
verse instance (cf. Def. 63) is created. It manages all micro process instances corresponding to
the source macro step type and referring to same higher-level object instance (cf. Fig. 11.12).

initialized pending

reject

proposed

invitation

proposed

finished

Review #3

Review #2

Review #1

Application #1

initialized planned finished
Interview #1

port

higherOI
SourceMicProcSet

Review

invitation

proposed

Interview

initialized

macro step type
macro transition type

transverse

Figure 11.12: Transverse instance

Definition 63 (Transverse instance):
Let sourceMicProcInstance and targetMicProcInstance be two instances micro process types sourceMicProc and
targetMicProc respectively. Then:

A transverse instance corresponds to a tuple transInstance = (transType, port, higherOI, SourceMicProcSet)
where

• transType a transverse type.

• port is the instance of the portType corresponding to a state of micProcInstance:
∃ state ∈ micProc.StateSet ∧ port ∈ state.sPortSet.

• higherOI is a common higher-level object instance with type transType.higherOT; i.e.,
higherOI = referencedOI(targetMicProcInstance.oid, transType.TargetPathRelTypeSet).

• SourceMicProcSet comprises all micro process instances of sourceMicProcType referencing higherOI:
∀ sMicProcInstance ∈ SourceMicProcSet:

sMicProcInstance ∈ micprocinstances(sourceMicProcType) ∧
higherOI = referencedOI(sMicProcInstance.oid, transType.SourcePathRelTypeSet).

TRANSInstances denotes the set of all transverse instances of any transverse type transType ∈ TRANSTypes.
Further, TRANSInstancesport corresponds to the set of all transverse instances targeting at the same port. Finallly,
transinstances: TRANSTypes 7→ 2TRANSInstances assigns to each transverse type transType ∈ TRANSTypes the set
of corresponding transverse instances with transinstances(transType) ⊆ TRANSInstances.

259

11 Coordination Components

11.4 Summary

In summary, process context, aggregation, and transverse coordination components enable an
advanced synchronization of interdependent micro process instances. In particular, these com-
ponents allow for an asynchronous micro process execution and take the dynamically evolving
set of micro process instances of a particular macro process type into account. This way, the
emerging process structure is abstracted and hence becomes manageable at run-time. Since
the definition of coordination components is based on a macro process type and modeled in a
flat and comprehensible way, process designers are guided in deciding how many and which
coordination components are required.

260

12
Macro Process Execution

RUN-TIME

BUILD-TIME

Macro Process

Micro Process

Data

User Integration

Forms

Black-box Activities

automatically generated

implementation required

Relations

Objects

Attributes

States

Micro Transition

Micro Step

Macro Step

Macro Transition

Process Context

Aggregation

Transverse

Responsibilities

Permissions

Data-

oriented

View

automatically generated

Overview

Tables

Process-

oriented

View

Monitoring

automatically generated

Worklists

Figure 12.1: Macro process execution in PHILharmonicFlows

261

12 Macro Process Execution

As discussed in the previous chapters, a macro process type provides an abstract view on a
complex process structure. In particular, it provides transparency of the coordination compo-
nents that are required to describe the various execution dependencies between the micro pro-
cess types involved. More precisely, a macro process type reflects required process context,
aggregation, and transverse types at a high level of abstraction. In turn, these coordination
components define synchronization constraints between micro process instances based on
their corresponding states (cf. Chapt. 11). Chapter 12 introduces a precise operational seman-
tics for enacting macro process instances, which is based on concrete instances of process
context, aggregation, and transverse types. For this purpose, we extend the operational se-
mantics we introduced for micro process execution (cf. Chapt. 8). Thereby, we must be able to
control whether a particular state of any micro process instance concerned in a process struc-
ture may be activated taking both the current progress of this micro process instance and its
dependencies to other micro process instances into account. Note that this requires dynamic
adaptions of worklists, overview tables, and user forms; i.e., which activities are mandatorily
or optionally executable at a certain point in time not only depends on the state of the micro
process instance itself, but also on the instances of the various coordination components and
hence on the states of other micro process instances (cf. Chap. 11). The correct activation of
these coordination components is a fundamental system feature which requires a well-defined
operational semantics as well.

12.1 States as Interface between Micro and Macro Processes

For a particular macro process type, at run-time, the instances of its process context, aggre-
gation, and transverse types control the coordination of the micro process instances involved.
In particular, these coordination components are defined in terms of dependencies between
different states of micro process instances (cf. Chapt. 11). Hence, states act as interface be-
tween macro and micro process instances. For this purpose, the port types associated with
the steps of a macro process type are mapped to the particular micro process types (cf. Def.
64). More precisely, for each state type which is referred by at least one macro step type, one
or more port types exist. Note that several macro transition types may target at the same port
type. This way, it becomes possible to differentiate between AND- and OR-semantics (cf. Sect.
10.3). Further, for each incoming macro transition type of a port type, a respective coordination
component is defined. Depending on the type of the incoming macro transition (i.e., top-down,
bottom-up, or transverse), each port type refers to one or more coordination components; i.e.,
process context, aggregation, or transverse types.1

Definition 64 (Using state types as interface between macro and micro process types):
Let macProcType = (name, oType, MacStepTypeSet, MacTransTypeSet) be a macro process type. Further, let
stateType = (name, sMicStepTypeSet) be a state type. Then:

A port type is a tuple sPortType = (stateType, pPCTypeSet, pAGGTypeSet, pTRANSTypeSet) with

• stateType ∈ StateTypes corresponds to the state type the port type belongs to;
i.e., ∃ macStepType ∈ MacStepTypeSet with sPortType ∈ macStepType.PortTypeSet.

• pPCTypeSet ⊆ PCTypes corresponds to the finite set of process context types targeting at sPortType:
∀ pcType ∈ pPCTypeSet: pcType.portType = sPortType.

1except the macro transition connects two macro step types referring to the same object type

262

12.2 Macro Process Instances

• pAGGTypeSet ⊆ AGGTypes corresponds to the finite set of aggregation types targeting at sPortType:
∀ aggType ∈ pAGGTypeSet: aggType.portType = sPortType.

• pTRANSTypeSet ⊆ TRANSTypes corresponds to the finite set of transverse types targeting at sPortType:
∀ transType ∈ pTRANSTypeSet: transType.portType = sPortType.

Further, sPortTypeSetstateType comprises all port types defined for stateType. Accordingly, the definition of a state
type is extended to stateType = (name, sMicStepTypeSet, sPortTypeSet).
Finally, PortInstances denotes the set of all port instances corresponding to any port type portType ∈ PortTypes.

12.2 Macro Process Instances

Each macro process type is associated with a primary object type (cf. Def. 45). This way, it be-
comes possible to divide an emerging process structure into different subsets of micro process
instances.2 For example, for macro process type recruitment, several instances exist of which
each belongs to a particular job offer; in Fig. 10.7, the micro process instances corresponding
to a particular job offer are red-colored. Generally, each macro process instance refers to an
instance of its primary object type. Further, it comprises all micro process instances directly or
indirectly referencing this object instance (cf. Ex. 10.6).

Remember that for proper micro process execution, we introduced reaction, execution, and
marking rules (cf. Chapt. 8). These rules have been defined based on well-defined mark-
ings. To properly coordinate the micro process instances of an emerging process structure,
we introduce additional markings for process context, aggregation, and transverse instances
as well as for the corresponding port instances. Based on these markings, we introduce addi-
tional reaction, execution and marking rules and extend existing ones. Like the markings we
introduced for micro process instances, the ones for coordination components and ports are
not only used to describe which components are currently activated3, but also to identify the
actual execution path of a macro process instance (i.e., the coordination components and ports
actually used to activate certain states). Finally, the additional markings are applied to detect
deadlock situations.

Regarding a process context (cf. Sect. 11.1), it can be derived whether or not one of its states
can still be marked as ACTIVATED later on (i.e., at least one state of the process context is
still marked as WAITING). In turn, if all states have been already marked as CONFIRMED or
SKIPPED, the process context cannot be activated anymore. For this reason, PHILharmon-
icFlows distinguishes between real deadlocks and waiting situations. Regarding aggregation
and transverse instances, however, this differentiation is not possible. Here, lower-level micro
process instances provide information needed for continuing with the execution of a higher-
level micro process instance. In this context, the concrete number of lower-level micro process
instances may depend on user decisions as long as cardinality constraints are met. As a con-
sequence, it is not possible to determine whether aggregations or transverse predicates can

2Note that these subset must not necessarily be disjoint.
3A process context instance becomes marked as ACTIVATED if one of its states belonging to the source micro
process instances is ACTIVATED. In turn, aggregation and transverse instances become marked as ACTIVATED
if there corresponding aggregation predicate evaluates to true.

263

12 Macro Process Execution

evaluate to true in a later state. However, both situations (i.e., real deadlocks and waiting sit-
uations), must be detected and concepts to adequately handle them be provided (cf. Sect.
13.2).

At each point during macro process execution, all coordination components and ports are as-
sociated with a marking; i.e., not only the process context, aggregation, transverse and port
instances currently activated. In the following, we describe their markings in order to allow for
correct coordination of the micro process instances involved.

Example 12.1 (Markings of macro process instances):
To give a first impression of the rules introduced in the following, consider the application micro process instance
from Fig. 12.2. State accepted comprises a port currently marked as ACTIVATED. In turn, this activation is due
to the fact that all coordination components targeting at this port are marked as ACTIVATED as well. Hence, state
accepted may be reached; i.e., the respective external explicit micro transition is marked as CONFIRMABLE. By
contrast, state rejected has a port marked as WAITING, since all coordination components are marked as WAITING
as well. Therefore, it is not possible to mark the incoming external micro transition as CONFIRMABLE at this stage.

initialized send

application

checked

accepted

rejected

all coordination components

ACTIVATED

port ACTIVATED

external micro transition

CONFIRMABLE

all coordination components

WAITING

port WAITING

external micro transition

WAITING

WAITING

READY

ENABLED

BLOCKED

ACTIVATED

CONFIRMABLE

UNCONFIRMED

CONFIRMED

BYPASSED

SKIPPED

Figure 12.2: Markings for macro process execution

Definition 65 (Macro Process Instance):
A macro process instance is a tuple macProcInstance = (macProc, oid, MPc, MAgg, MTrans, MPort) with

• macProc is a macro process.

• oid is the identifier of the primary object instance macProcInstance belongs to;
i.e., oid ∈ oinstances(macProc.oType).

• MPc: PCInstances 7→ PcMarkings assigns to a process context instance pc its current marking MPc(pc) ∈
PCMarkings. Thereby, we define PcMarkings = {WAITING, ENABLED, ACTIVATED, CONFIRMED, SKIPPED,
BLOCKED}. The semantics of these markings is described in Tab. 12.1.

• MAgg: AGGInstances 7→ AggMarkings assigns to an aggregation agg its current marking MAgg(agg) ∈ AG-
GMarkings. Thereby, we define AggMarkings = {WAITING, ENABLED, ACTIVATED, CONFIRMED, SKIPPED}.
The semantics of these markings is described in Tab. 12.2.

• MTrans: TRANSInstances 7→ TransMarkings assigns to a transverse tv its current marking MTrans(tv) ∈ Trans-
Markings. Thereby, we define TransMarkings = {WAITING, ENABLED, ACTIVATED, CONFIRMED, SKIPPED}.
The semantics of these markings is described in Tab. 12.2.

• MPort: PortInstances 7→ PortMarkings assigns to a port its current marking MPort(port) ∈ PortMarkings.
Thereby, we define PortMarkings = {WAITING, ENABLED, ACTIVATED, CONFIRMED, SKIPPED, BLOCKED}.
The semantics of these markings is described in Tab. 12.3.

264

12.2 Macro Process Instances

Fig. 12.3 summarizes the markings of port, process context, aggregation, and transverse in-
stances and their possible transitions4.

WAITING ACTIVATED

BLOCKED SKIPPED

ENABLED CONFIRMED

*

* not for aggregation

and transverse instances

Figure 12.3: Markings of port, process context, aggregation, and transverse instances and
marking transitions

12.2.1 Markings for Process Context Instances

A process context instance describes a dependency between two micro process instances
of different type (cf. Def. 58); i.e., the activation of a state of a lower-level micro process
instance depends on the currently activated state of a higher-level micro process instance. For
this purpose, a process context refers to a number of states of the higher-level micro process.
If one of these states is activated at run-time, for the lower-level micro process instance the
respective state may be activated. At run-time, the following issues are relevant:

• Does the higher-level micro process instance, on which the execution of the lower-level
one depends, already exist?

• Is one of the states of the higher-level micro process instance belonging to the process
context that is currently activated?

• Is it still possible to activate one of the states defined by a process context later on?

• Was a given process context used to activate the respective state of the referred lower-
level micro process instance?

Each process context instance has one of the following markings: WAITING, ENABLED, ACTI-
VATED, CONFIRMED, or BLOCKED (cf. Def. 65). These markings are illustrated in Fig. 12.3 and
have the following meanings (cf. Tab. 12.1):

Marking Label Description
ENABLED The port (and corresponding state respectively) to which the process context

refers has not been activated yet. In particular, no higher-level micro process
instance is referenced when this marking is assigned.

WAITING The port (and corresponding state respectively) to which the process con-
text refers has not been activated yet. However, a higher-level micro process
instance exists, but none of the states referenced by the process context is
currently marked as ACTIVATED. Finally, it is still possible to activate one of
these states later on.

BLOCKED The port (and corresponding state respectively) to which the process context
refers has not been activated yet. No state of the higher-level micro process
instance corresponding to the process context is currently ACTIVATED. Further,
it is no longer possible to activate one of these states later on.

4Note that a backward jump or the deletion of a relation may lead to re-markings of involved instances. These
transitions are not illustrated in Fig. 12.3 and not discussed in detail.

265

12 Macro Process Execution

ACTIVATED The port (and corresponding state respectively) to which the process context
refers has not been activated yet. In turn, the currently activated state of the
higher-level micro process instance corresponds to one of the states of the
process context.

CONFIRMED The port (and corresponding state respectively) to which the process context
refers has been activated ; i.e., the process context (and corresponding port
respectively) to activate the respective state of the lower-level micro process
instance.

SKIPPED The process context (and corresponding port respectively) was not used to
activate the respective state (i.e., another port belonging to the same state
was used or the state was skipped due to a dead-path elimination). Finally,
the process context does not become activated later on.

Table 12.1: Markings of process context instances

12.2.2 Markings for Aggregation and Transverse Instances

Opposed to process context instances which describe a dependency between exactly two mi-
cro process instances, aggregation (transverse) instances represent a dependency between
a higher-level micro process instance and several lower-level (transverse) micro process in-
stances. More precisely, the activation of a state of a higher-level transverse micro process
instance depends on a predicate, which refers to the activated states of related lower-level
(transverse) micro process instances. These predicates may use functions counting the corre-
sponding lower-level (transverse) micro processes (cf. Sect. 11.2). If the respective predicate
evaluates to true at run-time, for the corresponding higher-level (transverse) micro process in-
stance the respective state may be activated.
Since the mentioned predicates depend on the actual number of currently created object in-
stances and micro process instances respectively, it cannot be automatically decided whether
or not a predicate will evaluate to true later on. Consequently, marking WAITING may be as-
signed even if it is not possible to ACTIVATE the aggregation later on. To detect deadlock situa-
tions in this context, marking WAITING is visualized when monitoring macro process instances
(cf. Sect. 13.1). This way, users can detect micro process instances which cannot proceed
since their execution depends on the execution of other micro process instances.

In summary, each aggregation (transverse) instance has one of the following markings (cf. Tab.
12.2 and Fig. 12.3): WAITING, ENABLED, ACTIVATED, CONFIRMED, or SKIPPED.

Marking Label Description
ENABLED The port (and corresponding state respectively) to which the aggregation

(transverse) instance refers has not been activated yet. There are currently
no lower-level micro process instances available.

WAITING The port (and corresponding state respectively) to which the aggregation
(transverse) refers has not been activated yet. There exists at least one lower-
level micro process instance, but the predicate corresponding to the aggrega-
tion (transverse) instance currently evaluates to false.

ACTIVATED The port (and corresponding state respectively) to which the aggregation
(transverse) refers has not been activated yet. The predicate corresponding
to the aggregation (transverse) instance currently evaluates to true.

CONFIRMED The port (and corresponding state respectively) to which the aggregation
(transverse) instance refers was activated (or is currently activated); i.e., the
aggregation (transverse) instance (and corresponding port respectively) was
used to activate the respective state of the higher-level micro process instance.

266

12.2 Macro Process Instances

SKIPPED The aggregation (transverse) instance (and its corresponding port respec-
tively) was not used to activate the respective state (or the state was skipped
due to a dead-path elimination). The aggregation (transverse) instance will
not be activated later on even if the predicate evaluates to true (i.e., process
execution has progressed).

Table 12.2: Markings of aggregation and transverse instances

12.2.3 Markings for Ports

To each state of a micro process instance, a number of ports may be assigned. In turn, each
port comprises one or more coordination components; i.e., process context, aggregation, or
transverse instances. A certain state may then only be ACTIVATED if at least one of its ports be-
comes ACTIVATED. In turn, to activate a port, all corresponding coordination components must
be marked as ACTIVATED. In summary, depending on its incoming coordination components,
each port has one of the following markings (cf. Tab. 12.3 and Fig. 12.3):WAITING, ENABLED,
ACTIVATED, CONFIRMED, SKIPPED, or BLOCKED (cf. Def. 65).

Marking Label Description
ENABLED The port (and corresponding state respectively) has not been activated yet.

Marking ENABLED indicates that the marking of the port must be re-
evaluated due to a changed marking of a corresponding coordination com-
ponent.

WAITING The port (and corresponding state respectively) has not been activated yet. In
particular, the port cannot be activated at this moment since at least one of
its coordination component is currently marked as WAITING. However, it is still
possible to activate the port later on; i.e., no coordination component referring
to this port is currently marked as SKIPPED or BLOCKED.

ACTIVATED All coordination components are marked as ACTIVATED.

BLOCKED The port (and corresponding state respectively) has not been activated yet
and at least one coordination component (i.e., process context) is currently
marked as BLOCKED.

CONFIRMED The port was previously ACTIVATED; i.e., it was used to activate the state it
belongs to.

SKIPPED The port has not been activated and will also not become activated anymore;
i.e., either another port of the state was used for activating the port or the state
itself was SKIPPED.

Table 12.3: Markings of port instances

12.2.4 Additional Markings for Micro Process Instances

The current processing state of a macro process instance can be derived from the processing
states of its corresponding micro process instances (cf. Fig. 12.4). More precisely, each
macro process type refers to a primary object type (cf. Def. 45). Hence, each macro process
instance refers to a particular object instance at run-time. In this context, note that not for
each object instance a corresponding macro process instance exists (i.e., only for those object
instances whose object type is primarily referred by a particular macro process type). This way,
macro process instances can be uniquely identified (and all object instances and micro process

267

12 Macro Process Execution

instances respectively) belonging to the same macro process instance can be determined (cf.
Chapt. 10.3); i.e., a macro process instance comprises all micro process instances whose
object instance directly or indirectly references the primary object instance of the macro process
instance. Further, note that a macro process type may also comprise macro step types referring
to an object type that is assigned to a higher level than the primary object type.

object type

macro process instance

macro process type micro process type

object instance micro process instance

object instance micro process instance

object type macro process instance

Figure 12.4: Correlation between macro and micro process instances

When executing a particular micro process instance, the activation of a subsequent state de-
pends on its ports activated (if such ports exist)5. In particular, an external micro transition may
only be marked as READY (implicit micro transition) or CONFIRMABLE (explicit micro transition)
if at least one port of the state the target micro step belongs to is currently marked as ACTI-
VATED (or no port exists for this state). As long as it is not possible to activate the subsequent
state, an external micro transition needs to be blocked. For this purpose, we introduce mark-
ings BLOCKEDwaiting and BLOCKEDdeadlocked for micro transitions (cf. Def. 66). While the former
indicates that subsequent states may be activated later on, the latter expresses that process
execution is blocked and user intervention becomes necessary.

Definition 66 (Micro transition markings extended for detecting deadlock situations):
Let micProcInstance be a micro process instance of type micProc; i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let micProcInstance.MMicTrans: micProc.MicTransSet 7→ MicroTransMarkings be the func-
tion that assigns to each micTrans ∈ MicTransSet its current marking MMicTrans(micTrans). Thereby, MicroTransMark-
ings = {WAITING, CONFIRMABLE, READY, ENABLED, ACTIVATED, UNCONFIRMED, CONFIRMED, BYPASSED, SKIPPED,
BLOCKEDact}. Then we extend the set of micro transition markings as follows:

MicroTransMarkings := MicroTransMarkings ∪ {BLOCKEDwaiting, BLOCKEDdeadlocked}.
The semantics of these two additional markings is described in Tab. 12.4.

Marking Label Description
BLOCKEDwaiting Since no port of the state the target micro step belongs to is cur-

rently marked as ACTIVATED, this state cannot be ACTIVATED; i.e.,
to mark the external micro transition either as READY (implicit mi-
cro transition) or CONFIRMABLE (explicit micro transition). How-
ever, at least one port of the state may be marked as ACTIVATED
later on; i.e., not all ports are currently marked as BLOCKED.

5Note that ports do not exist for each state. Instead, a port only exist for the states referenced by a macro step
type.

268

12.3 Initializing of Coordination Components

BLOCKEDdeadlocked Since no port of the state the target micro step belongs to is cur-
rently marked as ACTIVATED, this state cannot be ACTIVATED; i.e.,
to mark the external micro transition either as READY (implicit mi-
cro transition) or CONFIRMABLE (explicit micro transition). More-
over, it is no longer possible to activate any port of the target state
later on; i.e., all ports are currently marked as BLOCKED.

Table 12.4: External micro transition markings

For detecting situations in which the processing of a particular micro process instance is
blocked, markings BLOCKEDwaiting and BLOCKEDdeadlocked are forwarded to the corresponding
micro process instance. For this purpose, we introduce WAITING and BLOCKED as additional
markings for micro process instances as a whole (cf. Def. 67).

Definition 67 (Micro process markings for detecting deadlock situations):
Let MMicProc: MicProcInstances 7→ MicroProcessMarkings be the function assigning to a micro process instance
micProcInstance its current marking MMicProc(micProcInstance) ∈ MicroProcessMarkings := {RUNNING, FINISHED}
(cf. Def. 24). Then we extend this set of markings as follows:

MicroProcessMarkings := MicroProcessMarkings ∪ {WAITING, BLOCKED} (cf. Tab. 12.5).

Marking Label Description
WAITING A micro process instance is marked as WAITING if there exists at least one

external micro transition currently marked as BLOCKEDwaiting and no other ex-
ternal micro transition is currently marked as BLOCKEDdeadlock (i.e., deadlocks
are of higher priority).

BLOCKED A micro process instance is marked as BLOCKED if there exists at least one
external micro transition currently marked as BLOCKEDdeadlocked.

Table 12.5: Micro process markings in the context of deadlocks

A particular micro process instance currently marked as BLOCKEDwaiting or BLOCKEDdeadlocked,
can be recognized based on the markings of the corresponding macro process instance. This
is very important for monitoring issues (cf. Sect. 13.1). On one hand, deadlocks situations can
be detected earlier. On the other, it becomes possible to skip all micro process instances of a
particular macro process instance in one go.

12.3 Initializing of Coordination Components

The operational semantics for executing macro process instances can now be defined based
on the markings introduced for process context, aggregation, transverse, and port instances.
More precisely, we define a number of rules that control the interactions between the states
of the different micro process instances corresponding to a macro process instance. Where
required, we overwrite or extend existing rules, which we introduced when defining the opera-
tional semantics of micro process execution (cf. Chapt. 8). To illustrate this, the rule overview

269

12 Macro Process Execution

figures from Chapt. 8 are extended (e.g., see Fig. 12.5). All rules required for macro process
execution are coloured, while already defined rules for micro process execution are grey.

ER2 RR2 MR3 MR4 MR5 MR6MR1 MR2RR1

attribute editing &

relation creation

RR3

priority

evaluation

MR8 MR7

internal dead-path

elimination

internal reset

RR4

micro process

initialization

MR9

ER3

RR5

state change

MR11 MR10

MR12

external dead-path

elimination

MR13 ER4 RR6

backward jump

MR16

backward

jump

MR17 MR18

MR20MR19

external reset
MR14MR15

RR7 ER5RR8

re-execution

MR21

termination

ER6

mandatory

optional

ER1

object creation

ER7

RR9

MR22

new object cardinality

mandatory

optional

new

relation

ER8

RR10 MR23

black-box activities

state

SKIPPED

MR24

activity

SKIPPED

Figure 12.5: Rule for initializing coordination components

When creating an object instance, the corresponding micro process instance is automatically
created (cf. Reaction Rule RR1). In this context, all ports (and coordination components tar-
geting at these ports respectively) must be instantiated as well. Note that for a newly created
object instance, no relations to other object instances exist. In this case, the object instance
is created independently from other ones (cf. Sect. 9.1). For this reason, the particular co-
ordination component instances are created, but without referencing the respective higher- or
lower-level source micro process instances (cf. Def. 12.6a). More precisely, coordination com-
ponent instances are created in respect to the micro process instance their port belongs to.
The source micro process instance (in case of process context instances) or the set of source
micro process instances (in case of aggregation and transverse instances) is assigned after-
wards, when respective relations become available (cf. Def. 12.6b). For this reason, all ports
and all corresponding coordination components are first marked as WAITING indicating that it
is not possible to activate the respective states to which the ports belong to. To consider this,
Reaction Rule RR1, which was introduced for initializing micro process instances, is extended
(cf. Reaction Rule RR1””o-r).

When lower-level object instances are required in the context of particular higher-level ones
(i.e., a minimal cardinality is defined), it is possible to create new object instances directly in the
context of a higher-level object instance (cf. Sect. 9.1.2). In this case, the relation to the higher-
level object instance is automatically assigned and all corresponding coordination components
are updated; i.e., source micro process instances are assigned (cf. Sect. 12.4).6

6Note that the creation of an object instance also depends on the state currently activated for a particular higher-

270

12.3 Initializing of Coordination Components

application

checked

accepted

rejected

process context

aggregation

application

checked

accepted

rejected

process

context

aggregation

micro process instance

of a newly created object instance

micro process instance of an object instance

for which relations to other instances are defined
a b

no relations available

no relations available

relations available

relations available

higher-level

object instance

lower-level

object instances

source micro process instance

source micro process instances

higher-level

object instance

lower-level

object instances

Figure 12.6: Initializating ports and coordination components

Reaction Rule (RR1””: Initializing coordination components and ports):
Let micProcInstance be an instance of micro process type micProc; i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let macProcInstance be an instance of a macro process type macProc; i.e., macProcIn-
stance ∈ macprocinstances(macProc). Finally, let state ∈ micProc.StateSet be a state and port ∈ state.sPortSet be
a port of this state. Then:

If a new object instance is created; i.e., OSet = OSet ∪ {o} o.oid = micProcInstance.oid, the initial markings of port,
process context, aggregation, and transverse instances are defined as follows:

a)-j) see RR1 in Sect. 8.3

k) see RR1’ in Sect. 8.6

l) see RR1” in Sect. 9.1

m)-n) see RR1”’ in Sect. 9.2

o) ∀ pc ∈ port.pPCSet: macProcInstance.MPc(pc) := ENABLED;
i.e., all process context instances are initially marked as ENABLED.

p) ∀ agg ∈ port.pAGGSet: macProcInstance.MAgg(agg) := ENABLED;
i.e., all aggregation instances are initially marked as ENABLED.

q) ∀ tv ∈ port.pTRANSSet: macProcInstance.MTrans(tv) := ENABLED;
i.e., all tranverse instances are initially marked as ENABLED.

r) ∀ port ∈ sPortSet: macProcInstance.MPort(port) := WAITING;
i.e., all port instances are initially marked as WAITING.

level instance; i.e., the creation of an object instance is not only restricted by the cardinalities defined, but also
by process context types referring to start states. Details are discussed in Sect. 12.10

271

12 Macro Process Execution

12.4 Composing Micro Process Instances

When a relation between two object instances is created, the micro process instance cor-
responding to the source object instance (as well as its her corresponding lower-level micro
process instances) must be integrated in the process structure. Therefore, the respective coor-
dination components must be adjusted; i.e., source micro process instances must be assigned
to process context, aggregation, and transverse instances (cf. Sect. 12.3). For this purpose,
we introduce Reaction Rule RR11, which is triggered when a new relation between two object
instances is established (cf. Fig. 12.7). After assigning the source micro process instance(s)
to a coordination component, their marking must be adapted (cf. Sect. 12.5). Therefore, all
changed coordination components are first marked as ENABLED. The latter are then evalu-
ated to check whether their marking must be changed (i.e., Marking Rules MR25, MR26, and
MR27).

Transitive dependencies between micro process instances must be considered as well. For
this reason, we differentiate between direct and indirect coordination components. Regarding
the latter, coordination component instances referring to lower- and higher-level micro process
instances must be updated accordingly. This is done by applying Reaction Rule RR11. Since
the identification of these coordination component instances is far from being trivial, we discuss
the different parts of this rule in detail.

As the focus of this thesis is on process modeling and execution, initially, we only consider
coordination components not applied for any state activation so far; i.e., the state to which the
port of the coordination component belongs has not been activated so far. Respective coor-
dination components are either marked as CONFIRMED or SKIPPED. Otherwise, inconsistent
process states might result necessitating additional exception handling mechanisms (cf. Sect.
12.10.2).

Reaction Rule (RR11: Updating coordination components):
Let dm ∈ DM be a data model and ds = (dm, OSet, RelSet, MCc) be a corresponding data structure. Further, let
micProcInsti be an instance of micro process type micProci, i=1,2; i.e., micProcInsti ∈ micprocinstances(micProci).
Then:

When creating a relation instance rel = (relType, soid, toid), i.e., RelSet = RelSet ∪ {rel}, the following marking
changes are made:

a) ∀ pcType ∈ PCTypes with rel.relType ∈ pcType.PathRelTypeSet:
∀ pcInst ∈ pcinstances(pcType) ∧ pcInst.port.state ∈ micProcInst1.StateSet with

micProcInst1.oid ∈ lowerlevelOIs(rel.soid) ∪ {rel.soid} ∧ MPc(pcInst) /∈ {CONFIRMED, SKIPPED}:
∃ micProcInst2 with micProcInst2.oid = referencedOI(micProcInst1.oid, pcType.PathRelTypeSet):

• pcInst.sourceMicProcInstance := micProcInst2

• MPc(pcInst) := ENABLED

b) ∀ aggType ∈ AGGTypes with rel.relType ∈ aggType.PathRelTypeSet:
∀ aggInst ∈ agginstances(aggType) ∧ aggInst.port.state ∈ micProcInst1.StateSet with

micProcInst1.oid ∈ higherlevelOIs(rel.toid) ∪ {rel.toid} ∧ MAgg(aggInst) /∈ {CONFIRMED, SKIPPED}:

• ∀ s ∈ aggInst.SourceMicProcInstancesSet: s := micProcInst2
with micProcInst1.oid = referencedOI(micProcInst2.oid, aggType.PathRelTypeSet)

• MAgg(aggInst) := ENABLED

272

12.4 Composing Micro Process Instances

ER1

object creation

ER2 RR2

RR3

RR7

ER6

attribute editing &

relation creation

MR3 MR4 MR5 MR6

ER5RR8

re-execution

MR8 MR7

internal dead-path

elimination

MR1 MR2RR1

internal reset

RR4

MR11 MR10

MR24

MR14MR15

MR12

MR9

ER3

RR5

state change

RR11

coordination

external dead-path

elimination

new

relation

MR13 ER4 RR6

backward jump

MR16

backward

jump

MR17 MR18

MR20MR19

external reset

MR21

termination

ER8

RR10 MR23

black-box activities

ER7

RR9

MR22

new object cardinality

mandatory

optional

mandatory

optional
micro process

initialization

Figure 12.7: Rules for updating coordination components

c) ∀ trType ∈ TransTypes with rel.relType ∈ trType.TargetPathRelTypeSet:
∀ trInst ∈ transinstances(trType) ∧ trInst.port.state ∈ micProcInst1.StateSet with

micProcInst1.oid ∈ lowerlevelOIs(rel.soid) ∪ {rel.soid} ∧ MTrans(trInst) /∈ {CONFIRMED, SKIPPED}:

• trInst.higherOI := referencedOI(micProcInst1.oid, trType.TargetPathRelTypeSet)

• ∀ s ∈ trInst.SourceMicProcInstancesSet: s := micProcInst2
with trInst.higherOI = referencedOI(micProcInst2.oid, trType.SourcePathRelTypeSet)

• MTrans(trInst) := ENABLED

d) ∀ trType ∈ TransTypes with rel.relType ∈ trType.SourcePathRelTypeSet:
∀ trInst ∈ transinstances(trType) ∧ trInst.port.state ∈ micProcInst1.StateSet with trInst.higherOI

∈ higherlevelOIs(rel.toid) ∪ {rel.toid} ∧ MTrans(trInst) /∈ {CONFIRMED, SKIPPED}:

• ∀ s ∈ trInst.SourceMicProcInstancesSet: s := micProcInst2
with trInst.higherOI = referencedOI(micProcInst2.oid, trType.SourcePathRelTypeSet)

• MTrans(trInst) := ENABLED

12.4.1 Updating Process Context Instances

At run-time, each process context instance belongs to exactly one micro process instance (cf.
Fig. 11.6) or – to be more precise – to a port of a micro process instance state. When creating
a new relation between a lower- and higher-level object instance, the micro process instance of

273

12 Macro Process Execution

the higher-level object instance must be assigned to the process context instances existing for
the lower-level one (cf. Fig. 12.6a). We denote this as direct process context instances.

Example 12.2 (Direct process context instances):
Consider Fig. 12.8. Object instance A is processed by a respective micro process instance. The activation of state a

of this instance depends on a process context instance. The source micro process instance of this process context
instance corresponds to the micro process instance that belongs to an object instance B, which is referenced by
object instance A as well. Hence, after creating the relation between object instances A and B, the micro process
instance related to B is assigned to the process context of state a.

In general, transitive dependencies must be taken into account as well. More precisely, a newly
added relation may belong to a path defined for a process context instance. Hence, the creation
of the relation affects process context instances not directly belonging to the source or target
object instances of the relation. We denote these process context instances as indirect ones
(cf. Fig. 12.8). As a consequence, all process context instances belonging to lower-level object
instances must be updated as well (cf. Reaction Rule RR11a).

Example 12.3 (Indirect process context instances):
Consider Fig. 12.8. The activation of state c depends on a process context instance. The source micro process
instance of this process context instance corresponds to the micro process instance of object instance B. In turn,
the latter is indirectly referenced via object instance A. Hence, when assigning the relation between object instances
A and B, the micro process instance of B is assigned to all process context instances of object instance C which
reference A transitively.

cC

B

A

data structure process structure

a

direct process

context instances

indirect process

context instances

NEW

RELATION

selected

higher-level

object instance

lower-level

object instances

Figure 12.8: Updating process context instances

274

12.4 Composing Micro Process Instances

We take both direct and indirect process context instances into account when creating a new
relation. Respective process context instances then must be determined as follows (cf. Reac-
tion Rule RR11a):

1. Determine all process context types that refer to the type of the newly added relation (i.e.,
relType ∈ PathRelTypeSet).

2. Determine all instances of these process context types that belong to the micro process
instances related to the lower-level object instance of the added relation or to one of
its lower-level instances. However, only process context instances that have not yet been
distributed to any state activation are considered; i.e., process context instances currently
marked as CONFIRMED or SKIPPED are not considered.

3. If a higher-level object instance of the source object instance can be determined using
the defined path of relations (i.e., PathRelTypeSet), the corresponding micro process
instance is assigned as source micro process instance to the respective process context
instance. Further, the latter is re-marked as ENABLED. This indicates that the process
context instance must be re-marked afterwards.

12.4.2 Updating Aggregation Instances

At run-time, each aggregation instance belongs to a port of a particular micro process instance
state (cf. Fig. 11.9). When creating a relation between two object instances, the micro process
instance of the lower-level object instance needs to be assigned to the set of source micro pro-
cess instances (i.e., SourceMicProcInstancesSet) of the aggregation existing for the referenced
higher-level object instance (cf. Fig. 12.6). We denote this as direct aggregation instances. A
direct aggregation instance directly belongs to the micro process instance of the target object
instance.

Example 12.4 (Direct aggregation instances):
Consider Fig. 12.9. The activation of state a depends on an aggregation instance. All micro process instances
related to instances of object type C, which reference object instance A, belong to the set of source micro process
instances of this aggregation instance. Hence, after creating a relation between object instances C and A, the micro
process instance related to C is assigned to the set of source micro process instances of the aggregation instance
of state a.

Again, transitive dependencies must be taken into account. More precisely, a newly created
relation may belong to a path of a particular aggregation instance; i.e., the source and target
object instances of the relation are not directly involved, but belong to a path of relations based
on which the set of source micro process instances of an aggregation instance is determined.
We denote the latter as indirect aggregation instances (cf. Fig. 12.9). As a consequence,
all aggregation instances belonging to higher-level object instances of the object instance the
newly created relation targets on must be updated as well (cf. Reaction Rule RR11b); i.e., their
set of source micro process instances must be updated.

275

12 Macro Process Execution

C

B

A

data structure process structure

 a

b

NEW

RELATION

higher-level

object instance

direct

aggregation

instances

indirect

aggregation

instances

Figure 12.9: Updating aggregation instances

Example 12.5 (Indirect aggregation instances):
Consider Fig. 12.9. The activation of state b depends on an aggregation instance. All micro process instances
belonging to an instance of object type C, which indirectly references object instance B are assigned to the set of
source micro process instances of this aggregation instance. Hence, after creating the relation between object
instances C and A, the micro process instance related to C is assigned to the set of source micro process instance
of the respective aggregation instance. The latter belongs to the micro process instance of the indirectly referenced
object instance B.

We take both direct and indirect aggregation instances into account when creating a relation.
Respective aggregation instances are determined as follows (cf. Reaction Rule RR11b):

1. Determine all aggregation types containing the relation type of the newly created relation;
i.e., relType ∈ PathRelTypeSet.

2. Determine all instances of these aggregation types that belong either to micro process
instance of the higher-level object instance itself or to one of its higher-level instances
referenced. However, only aggregation instances applied to any state activation are con-
sidered; i.e., aggregation instances currently marked as CONFIRMED or SKIPPED are not
taken into account.

3. For each of these aggregation instances, its corresponding set of source micro process
instances becomes updated; i.e., all micro process instances belonging to an object in-
stance directly or indirectly referencing the object instances the aggregation instance be-

276

12.4 Composing Micro Process Instances

longs to are assigned as source micro process instances. Finally, the latter is re-marked
as ENABLED, which indicates that it must be re-marked afterwards.

12.4.3 Updating Transvers Instances

Transverse instances comprise top-down as well as bottom-up dependencies in one compo-
nent. On one hand, they refer to a higher-level object instance, which may be referenced
transitively as well; on the other, a set of source micro process instances is aggregated in re-
spect to this higher-level object instance. These micro process instances may also belong to
object instances referencing the higher-level object instance transitively. As a consequence,
both relation paths may be affected when a new relation is created. Thus, transverse instances
must be updated in two steps (cf. Reaction Rules RR11c + d).

We consider Reaction Rule RR11c when creating a relation. The involved aggregation in-
stances are then determined as follows:

1. Determine all transverse types containing the type of the newly created relation on the
path defining the dependency between the object type the aggregation type belongs to
and the common higher-level object type (i.e., relType ∈ TargetPathRelTypeSet).

2. Determine all transverse instances of these types belonging to micro process instances
corresponding to the source object instance of the relation or to one of its lower-level in-
stances. Only transverse instances not yet applied to any state activation are considered;
i.e., transverse instances currently marked as CONFIRMED or SKIPPED are not taken into
account.

3. If a higher-level object instance can be determined based on the defined path of rela-
tions (i.e., TargetPathRelTypeSet), it is assigned as higher-level object instance to the
respective transverse instance. Following this, the set of source micro process instances
becomes updated (using SourcePathRelTypeSet). In addition, the transverse instance is
re-marked as ENABLED indicating that it must be re-evaluated afterwards.

According to Reaction Rule RR11d, in turn, involved aggregation instances must be determined
as follows when creating a relation:

1. Determine all transverse types that contain the type of the created relation on the path
defining the dependency between the object type whose instance as aggregated at run-
time and the common higher-level object type (i.e., relType ∈ SourcePathRelTypeSet).

2. Determine all transverse instances of these types for which the common higher-level
object instance corresponds to the relation’s target object instance or to one of its higher-
level instances. Only transverse instances not yet applied to any state activation are
considered; i.e., transverse instances currently marked as CONFIRMED or SKIPPED are
not taken into account.

3. For these transverse instances, the set of source micro process instances is updated
(using SourcePathRelTypeSet). In addition, the transverse instance is re-marked as EN-
ABLED indicating that it must be re-marked afterwards.

277

12 Macro Process Execution

12.5 Re-marking Coordination Components

After updating a coordination component (i.e., after setting its source micro process instance
or set of source micro process instances respectively), its marking must be updated as well;
i.e., the marking of the coordination component must be re-set from ENABLED to ACTIVATED,
WAITING, or BLOCKED.7 For this purpose, we introduce Marking Rules MR25, MR26, and MR27
(cf. Fig. 12.10).

In turn, when changing the marking of a coordination component, the port this coordination
component belongs to must be re-marked as well. To indicate this, respective ports are re-
marked as ENABLED. In turn, this marking triggers Marking Rule MR28 (cf. Sect. 12.6).

ER1

object creation

ER2 RR2

RR3

RR7

ER6

attribute editing &

relation creation

MR3 MR4 MR5 MR6

ER5RR8

re-execution

MR8 MR7

internal dead-path

elimination

MR1 MR2RR1

internal reset

RR4

MR11 MR10

MR24

MR14MR15

MR12

MR9

ER3

RR5

state change

RR11

MR26MR25 MR27

coordination

external dead-path

elimination

new

relation

MR13 ER4 RR6

backward jump

MR16

backward

jump

MR17 MR18

MR20MR19

external reset

MR21

termination

ER8

RR10 MR23

updating coordination components

black-box activities

ER7

RR9

MR22

new object cardinality

mandatory

optional

mandatory

optional
micro process

initialization

Figure 12.10: Rules for re-marking coordination components

12.5.1 Re-marking Process Context Instances

After assigning the source micro process instance to a particular process context instance,
the marking of the latter is changed depending on the current state of the source micro pro-
cess instance. According to Marking Rule MR25, the process context instance is re-marked
as ACTIVATED, WAITING, or BLOCKED. In particular, if one of the states referred by the process
context type corresponds to the current state of the source micro process instance, the respec-
tive process context instance is re-marked as ACTIVATED (cf. Fig. 12.11b). Otherwise, it is
either marked as WAITING (at least one state the process context type refers to is still marked
as WAITING) (cf. Fig. 12.11a) or as BLOCKED (cf. Fig. 12.11c).

7Note that marking BLOCKED is only applicable for process context instances.

278

12.5 Re-marking Coordination Components

initialized send checked

agreed

canceled

initialized published closed

occupied

not

occupied

port

sourceMicProcInstance

states belonging to the process context type

(i.e., pStateTypeSet)

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

process context

instance

initialized send checked

agreed

canceled

initialized published closed

occupied

not

occupied

port

sourceMicProcInstance

states belonging to the process context type

(i.e., pStateTypeSet)

process context

instance

initialized send checked

agreed

canceled

initialized published closed

occupied

not

occupied

port

sourceMicProcInstance

states belonging to the process context type

(i.e., pStateTypeSet)

process context

instance

a b c

Figure 12.11: Applying Marking Rule MR25

Marking Rule (MR25: Re-marking process context instances):
Let pcInst = (pcType, port, sourceMicProcInstance) ∈ PCInstances be an instance of process context type pcType
= (portType, sourceMicProc, pStateTypeSet, PathRelTypeSet) ∈ PCTypes. Then:

sourceMicProcInstance 6= NULL ∧ MPc(pcInst) = ENABLED,⇒

1. MPort(port) := ENABLED

2. MPc(pcInst) :=

ACTIVATED, if ∃ state ∈ sourceMicProc.StateSet with
state ∈ pStateTypeSet ∧ MState(state) = ACTIVATED

WAITING, if ∃ state ∈ sourceMicProc.StateSet with
state ∈ pStateTypeSet ∧ MState(state) = WAITING

BLOCKED, else

12.5.2 Re-marking Aggregation and Transvserse Instances

After assigning a micro process instance to the set of source micro process instances of an
aggregation instance, the corresponding predicate is re-evaluated and the aggregation instance
is re-marked. According to Marking Rule MR26, an aggregation instance either is re-marked
as ACTIVATED or WAITING. ACTIVATED is chosen if the aggregation predicate evaluates to true
(cf. Fig. 12.12b). Otherwise, marking WAITING will be assigned (cf. Fig. 12.12a).

Marking Rule (MR26: Re-marking aggregation instances):
Let aggInst = (aggType, port, SourceMicProcInstancesSet) ∈ AGGInstances be an instance of aggregation type
aggType = (portType, sourceMicProcType, sourceStateType, aggConstraint, PathRelTypeSet) ∈ AGGTypes. Then:

SourceMicProcInstancesSet 6= ∅ ∧ MAgg(aggInst) = ENABLED,⇒

1. MPort(port) := ENABLED

2. MAgg(aggInst) :=

{
ACTIVATED, if aggConstraint(SourceMicProcInstancesSet) = TRUE
WAITING, else

279

12 Macro Process Execution

initialized pending

reject

proposed

invitation

proposed

finished

initialized send checked

accepted

rejected

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

#IN+#AFTER=#ALL

port

instance

sourceStateType

SourceMicProcInstanceSet

aggregation

instance

initialized pending

reject

proposed

invitation

proposed

finished

initialized send checked

accepted

rejected

#IN+#AFTER=#ALL

port

instance

sourceStateType

SourceMicProcInstanceSet

aggregation

instance

a b

Figure 12.12: Applying Marking Rule MR26

The same applies to transverse instances (cf. Marking Rule MR27).

Marking Rule (MR27: Re-marking transverse instances):
Let trInst = (transType, port, higherOI, SourceMicProcInstancesSet) ∈ TRANSInstances be an instance of trans-
verse type trType = (portType, sourceMicProcType, sourceStateType, higherOT, transConstraint, SourcePathRel-
TypeSet, TargetPathRelTypeSet) ∈ TRANSTypes. Then:

MTrans(trInst) = ENABLED ∧ higherOI 6= NULL ∧ SourceMicProcInstancesSet 6= ∅,⇒

1. MPort(port) := ENABLED

2. MTrans(trInst) :=

{
ACTIVATED, if transConstraint(SourceMicProcInstancesSet) = TRUE
WAITING, else

12.6 Re-marking Ports

Whether or not a particular port must be re-marked depends on the markings of its coordination
components. More precisely, after re-marking a coordination component, the marking of the
referred port must be updated as well. For this purpose, the port will be re-marked as ENABLED

(cf. Marking Rules MR25, MR26, and MR27). In turn, this triggers Marking Rule MR28 (cf.
Fig. 12.13), which re-marks the respective port from ENABLED to WAITING, ACTIVATED, or
BLOCKED.

According to Marking Rule MR28, a port is marked as ACTIVATED if its coordination components
are all marked as ACTIVATED (cf. Fig. 12.14a). However, if at least one process context
is marked as BLOCKED, the port itself is marked as BLOCKED (cf. Fig. 12.14b). Finally, if
all coordination components are either marked as ACTIVATED or WAITING, the port becomes
marked as WAITING (cf. Fig. 12.14c).

280

12.6 Re-marking Ports

ER1

object creation

ER2 RR2

RR3

RR7

ER6

attribute editing &

relation creation

MR3 MR4 MR5 MR6

ER5RR8

re-execution

MR8 MR7

internal dead-path

elimination

MR1 MR2RR1

internal reset

RR4

MR11 MR10

MR24

MR14MR15

MR12

MR9

ER3

RR5

state change

RR11

MR26MR25 MR27

MR28

coordination

external dead-path

elimination

new

relation

MR13 ER4 RR6

backward jump

MR16

backward

jump

MR17 MR18

MR20MR19

external reset

MR21

termination

ER8

RR10 MR23

updating coordination components

updating ports

black-box activities

ER7

RR9

MR22

new object cardinality

mandatory

optional

mandatory

optional
micro process

initialization

Figure 12.13: Rules for re-marking ports

WAITING BLOCKED ACTIVATED

ba c

Figure 12.14: Applying Marking Rule MR28

Marking Rule (MR28: Re-marking ports):
Let port = (state, pPCSet, pAGGSet, pTRANSSet) ∈ Ports be a port. Then:

When re-marking at least one of the coordination components referring to port, the latter becomes re-marked as
ENABLED indicating that its marking must be re-evaluated as follows:

MPort(port) = ENABLED,⇒ MPort(port) :=

ACTIVATED, ∀ pc ∈ pPCSet: MPc(pc) = ACTIVATED ∧
∀ agg ∈ pAGGSet: MAgg(agg) = ACTIVATED ∧
∀ tv ∈ pTRANSSet: MTrans(tv) = ACTIVATED

BLOCKED, ∃ pc ∈ pPCSet: MPc(pc) = BLOCKED

WAITING, else

281

12 Macro Process Execution

12.7 Executing Micro Process Instances

When executing a collection of inter-related micro process instances, corresponding coordina-
tion components must be considered; i.e., the activation of a state depends on its activated
ports (if existing). Whether or not a subsequent state of a particular micro process instance
may be activated is controlled by Marking Rule MR1. The latter re-marks a micro transition as
READY (implicit transition) or as CONFIRMABLE (explicit transition). Thus, for correctly executing
macro process instances, taking the various coordination components into account, Marking
Rule MR1 (cf. Sect. 8.4) must be extended. In particular, an external micro transition may only
be marked as READY or CONFIRMABLE, if at least one port of the state the target micro step
belongs to is currently marked as ACTIVATED (or no port exists for this state) (cf. Marking Rule
MR1””f). In order to block external micro transitions as long as the subsequent state cannot
be activated, BLOCKEDwaiting and BLOCKEDdeadlocked are introduced as additional markings for
micro transitions (cf. Def. 66). Note that in addition to these markings, marking BLOCKEDact in-
dicates that not all required black-box activities for leaving the source state have been executed.
This differentiation is important to inform end-users about activities to be executed next.

As long as no port of the state the target micro step belongs is marked as ACTIVATED, all outgo-
ing external micro transitions are marked as BLOCKEDwaiting or BLOCKEDdeadlocked (cf. Marking
Rule MR1””f). The latter marking is assigned if there exists a port marked as BLOCKED.8

Marking Rule (MR1””: Marking external micro transitions as BLOCKED):
Let micProcInstance be an instance of micro process type micProc; i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let s, t ∈ StateSet be two states. Then:

a) see MR1 in Sect. 8.4.1

b) see MR1’ in Sect. 8.4.2

c) see MR1” in Sect. 8.5.2

d)+e) see MR1”’ in Sect. 9.2.3

f) ∀ micStep ∈ s.sMicStepSet with MMicStep(micStep) = UNCONFIRMED:
∀ micTrans ∈ outtrans(micStep) with isexternal(micTrans) = TRUE:

MMicTrans(micTrans) :=

CONFIRMABLE, if explicit(micTrans) = TRUE ∧
MAct(act) = UNCONFIRMED ∀ act ∈ Activitiess ∧
micTrans.target ∈ t.sMicStepSet ∧
(∃ port ∈ t.sPortSet with MPort(port) = ACTIVATED ∨ t.sPortSet = ∅)

READY, if explicit(micTrans) = FALSE ∧
MAct(act) = UNCONFIRMED ∀ act ∈ Activitiess ∧
micTrans.target ∈ t.sMicStepSet ∧
(∃ port ∈ t.sPortSet with MPort(port) = ACTIVATED ∨ t.sPortSet = ∅)

BLOCKEDact, if
∃ act ∈ ActivitiessourceState: (MAct(act) = READY ∨ MAct(act) = ACTIVATED)

BLOCKEDdeadlocked, if target ∈ t.sMicStepSet ∧ t.sPortSet 6= ∅ ∧
∃ p ∈ t.sPortSet: MPort(p) = BLOCKED

BLOCKEDwaiting, if target ∈ t.sMicStepSet ∧ t.sPortSet 6= ∅ ∧
∀ p ∈ t.sPortSet: MPort(p) = WAITING

8Note that this rule also applies to all micro transitions originating from a value step.

282

12.7 Executing Micro Process Instances

Example 12.6 (Applying Marking Rule MR1”” to activate a state without ports):
Consider Fig. 12.15a. State checked is currently ACTIVATED. For the two states succeeding checked (i.e., accepted
and rejected) no ports exist. Hence, external micro transitions targeting at these states become marked as CON-
FIRMABLE when their source micro step (belonging to state checked) is marked as UNCONFIRMED.

Example 12.7 (Applying Marking Rule MR1”” to activate a state with ports):
Consider Fig. 12.15b. State checked is currently ACTIVATED. For both states succeeding checked (i.e., states
accepted and rejected) a port exist. Since both ports are currently marked as ACTIVATED, the external micro
transitions targeting at these states immediately become marked as CONFIRMABLE when their source micro step
(belonging to state checked) is marked as UNCONFIRMED.

Example 12.8 (Applying Marking Rule MR1”” to block external micro transitions):
Consider Fig. 12.15c. State checked is currently ACTIVATED. For the states succeeding checked (i.e., accepted
and rejected) a port exist. The port belonging to state accepted is currently marked as WAITING. Thus, the
external micro transition connecting states checked and accepted is re-marked as BLOCKEDwaiting. Since the port
belonging to state rejected is currently marked as BLOCKED, in turn, the external micro transition targeting at this
state becomes re-marked as BLOCKEDdeadlocked when the source micro step belonging to state checked is marked
as UNCONFIRMED.

While an external and explicit micro transition is blocked (i.e., it is marked as BLOCKEDwaiting or
BLOCKEDdeadlocked), the subsequent state must not be activated. Accordingly, the activity for
committing the state change is automatically disabled (cf. Fig. 12.16).

Example 12.9 (Disabling committments):
Consider Fig. 12.16. State accepted of an application micro process instance may only be activated if all corre-
sponding interviews propose accepting the candidate. Regarding the first application instance, this condition is
met. Hence, the corresponding coordination component and its port respectively are re-marked as ACTIVATED. In
addition, the affected micro transition becomes marked as CONFIRMABLE. This way, the commit button to activate
state accepted becomes enabled. In turn, for the second application instance, the port of state accepted is still
marked as WAITING. Hence, the micro transition is marked as BLOCKEDwaiting and the corresponding commit button
is disabled.

If a port is later re-marked as ACTIVATED, incoming external micro transitions are re-marked as
READY (implicit transitions) or CONFIRMABLE (explicit transitions). This is expressed by Marking
Rule MR29, which allows continuing with the execution of the micro process instance; i.e., the
subsequent state may now be activated.

Example 12.10 (Applying Marking Rule MR29):
Consider Fig. 12.15c. The external micro transition between states checked and accepted is currently marked
as BLOCKEDwaiting. If the port belonging to state accepted becomes re-marked as ACTIVATED (cf. Fig. 12.15d),
however, this external micro transitions changes its marking from BLOCKEDwaiting to CONFIRMABLE as long as the
source micro step is still marked as UNCONFIRMED.

Finally, when a port is re-marked from ACTIVATED to WAITING or BLOCKED, it is not possible to
activate the subsequent state as long as no other port is currently marked as ACTIVATED. In

283

12 Macro Process Execution

checked

rejected

accepted

TRIGGER MR1:

micro step

becomes marked as

UNCONFIRMED

MR1'’’’

outgoing micro transitions

are re-marked as

CONFIRMABLE

checked

rejected

accepted

port

marked as

ACTIVATED

outgoing micro transitions

are re-marked as

CONFIRMABLE

checked

rejected

accepted

outgoing micro transitions

are re-marked as

CONFIRMABLE / READY

TRIGGER MR29:

port becomes marked as

ACTIVATED
micro step

still marked as

UNCONFIRMED

no ports

available

checked

rejected

accepted

port

marked as

WAITING or

BLOCKED

outgoing

micro transitions

are re-marked as

BLOCKEDwaiting or

BLOCKEDdeadlocked

TRIGGER MR1:

micro step

becomes marked as

UNCONFIRMED

TRIGGER MR1:

micro step

becomes marked as

UNCONFIRMED

MR29

checked

rejected

accepted

outgoing micro transitions

are re-marked as

BLOCKEDwaiting

TRIGGER MR30:

port becomes marked as

WAITING
micro step

still marked as

UNCONFIRMED

MR30

WAITING READY ENABLEDBLOCKED ACTIVATEDCONFIRMABLE UNCONFIRMED CONFIRMED BYPASSED SKIPPED

a b c

d

e

Figure 12.15: Applying Marking Rules MR1””, MR29, and MR30

this case, the external micro transitions targeting at this state are re-marked as BLOCKEDWAITING

or BLOCKEDDEADLOCKED (cf. Marking Rule MR30). However, micro transition instances that have
been already used for any state activation are not re-marked afterwards; i.e., micro transitions
already marked as CONFIRMED or SKIPPED retain this marking.

Marking Rule (MR29: Unblocking external micro transitions):
Let micProcInstance be an instance of micro process type micProc; i.e., micProcInstance ∈ micprocin-

284

12.7 Executing Micro Process Instances

applicant cover letter appraisal decision

Werner Luk

Simon Sun available average

Applications

job offer

project leader

programmer

STATE

checked

checked

create new application
submit

enabled

checked

rejected

accepted

checked

rejected

accepted

submit

disabled

Figure 12.16: Disbaling the committment of state transitions

stances(micProc). Further, let sourceState and targetState ∈ micProc.StateSet be two states. Then:

∃ port ∈ targetState.sPortSet with MPort(port) = ACTIVATED,⇒
∀ mT ∈ micProc.MicTransSet with mT.source ∈ sourceState.sMicStepSet
∧ mT.target ∈ targetState.sMicStepSet ∧ MMicTrans(mT) ∈ {BLOCKEDWAITING, BLOCKEDDEADLOCKED}:

MMicTrans(mT) :=

{
CONFIRMABLE, if explicit(mT) = TRUE
READY, else

i.e., when re-marking a port as ACTIVATED, it becomes enabled to activate the subsequent state by marking implicit
micro transitions as READY and explicit ones as CONFIRMABLE.

Example 12.11 (Applying Marking Rule MR30):
Consider Fig. 12.15d. The external micro transition between states checked and accepted is currently marked as
CONFIRMABLE. When the port belonging to state accepted is re-marked as WAITING (cf. Fig. 12.15e), the external
micro transition changes its marking from CONFIRMABLE to BLOCKEDwaiting (if the source micro step is still marked
as UNCONFIRMED).

Marking Rule (MR30: Blocking external micro transitions):
Let micProcInstance be an instance of micro process type micProc; i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let sourceState and targetState ∈ micProc.StateSet be two states. Then:

targetState.sPortSet 6= ∅ ∧ @ port ∈ targetState.sPortSet with MPort(port) = ACTIVATED,⇒
∀ mT ∈ MicTransSet with mT.source ∈ sourceState.sMicStepSet
∧ mT.target ∈ targetState.sMicStepSet ∧ MMicTrans(mT) ∈ {READY, CONFIRMABLE}:

MMicTrans(mT) :=

BLOCKEDdeadlocked, if mT.target ∈ targetState.sMicStepSet ∧

∃ port ∈ targetState.sPortSet: MPort(port) = BLOCKED

BLOCKEDwaiting, if mT.target ∈ targetState.sMicStepSet ∧
∀ port ∈ targetState.sPortSet: MPort(port) = WAITING

285

12 Macro Process Execution

For detecting blocked micro process instances during run-time, markings BLOCKEDWAITING or
BLOCKEDDEADLOCKED are propagated to the micro process instance level; i.e., the marking of the
micro process instance the external micro transition instance belongs to becomes re-marked
as well. According to Marking Rule MR31, if at least one micro transition of a micro process
instance is marked as BLOCKEDDEADLOCKED (or BLOCKEDWAITING), the micro process instance
itself is re-marked as BLOCKED (or WAITING) (cf. Sect. 12.2).

Marking Rule (MR31: Propagating coordination information to micro process instances):
Let micProcInstance be an instance of micro process type micProc; i.e., micProcInstance ∈ micprocin-
stances(micProc). Then:

MMicProc(micProcInstance) :=

BLOCKED, if ∃ mT ∈ micProc.MicTransSet with MMicTrans(mT) = BLOCKEDdeadlocked

WAITING, if ∃ mT ∈ micProc.MicTransSet with MMicTrans(mT) = BLOCKEDwaiting

RUNNING, else

Altogether, Fig. 12.17 illustrates the rules required for coordinating micro process instances.
In particular, external micro transitions become marked as BLOCKEDwaiting or BLOCKEDdeadlocked
using Marking Rules MR1, MR29, and MR30. Finally, respective markings are propagated to
the micro process instance (cf. Marking Rule MR31).

ER1

object creation

ER2 RR2

RR3

RR7

ER6

attribute editing &

relation creation

MR3 MR4 MR5 MR6

ER5RR8

re-execution

MR8 MR7

internal dead-path

elimination

MR1 MR2RR1

internal reset

RR4

MR11 MR10

MR24

MR14MR15

MR12

MR9

ER3

RR5

state change

RR11

MR26MR25 MR27

MR28

MR30 MR29

coordination

external dead-path

elimination

new

relation

MR13 ER4 RR6

backward jump

MR16

backward

jump

MR17 MR18

MR20MR19

external reset

MR21

termination

ER8

RR10 MR23

updating coordination components

updating ports

blocking / unblocking transitions

black-box activities

ER7

RR9

MR22

new object cardinality

mandatory

optional

mandatory

optional
micro process

initialization

MR31

Figure 12.17: Rules for micro process coordination

286

12.8 State Changes

12.8 State Changes

As discussed in Sect. 12.5, whether a particular coordination component may be activated
during run-time depends on the activated state of the source micro process instance(s). Hence,
the marking of respective coordination components must be updated when a state change
occurs. For this purpose, as illustrated in Fig. 12.18, Marking Rule MR9’ is extended to MR9”.

ER1

object creation

ER2 RR2

RR3

RR7

ER6

attribute editing &

relation creation

MR3 MR4 MR5 MR6

ER5RR8

re-execution

MR8 MR7

internal dead-path

elimination

MR1 MR2RR1

internal reset

RR4

MR11 MR10

MR24

MR14MR15

MR12

MR9

ER3

RR5

state change

RR11

MR26MR25 MR27

MR28

MR30 MR29

coordination

external dead-path

elimination

new

relation

MR13 ER4 RR6

backward jump

MR16

backward

jump

MR17 MR18

MR20MR19

external reset

MR21

termination

ER8

RR10 MR23

updating coordination components

updating ports

blocking / unblocking transitions

black-box activities

ER7

RR9

MR22

new object cardinality

mandatory

optional

mandatory

optional
micro process

initialization

MR31

Figure 12.18: Rules for state change considering coordination components

When performing a state change, two cases must be differentiated (cf. Fig. 12.19). The first
case refers to state changes that either occur during the execution of the source micro process
instance (for process context instances) or a micro process instance belonging to the set of
source micro process instances (for aggregation and transverse instances). Then, the marking
of the respective coordination component, which is currently marked as ACTIVATED, WAITING,
or BLOCKED, must be re-evaluated. For this reason, the respective coordination components
are re-marked as ENABLED. As discussed in Sect. 12.4, this marking acts as trigger for Marking
Rules MR25, MR26, and MR27, which are required to update the marking of the coordination
components (cf. Sect. 12.5). Regarding process context instances (cf. Marking Rule MR9”j),
the process context instance is re-marked as ACTIVATED (cf. Marking Rule MR25) if the newly
activated state belongs to the states defined by the process context (i.e., pStateTypeSet in Def.
57). In turn, if the currently activated state does not belong to the defined state set, the process
context is re-marked as BLOCKED or WAITING (cf. Marking Rule MR25). In the latter case,
it is possible to activate the process context later on; i.e., at least one state referred by the
corresponding process context type is still marked as WAITING.
Regarding aggregation and transverse instances, their marking is adjusted when a state chan-
ge occurs during the execution of the source micro process instances (cf. Marking Rule MR9”k

287

12 Macro Process Execution

and MR9”l). In this case, corresponding aggregation predicates are evaluated and the marking
is adjusted accordingly (cf. Marking Rules MR26 and MR27).

The second case deals with state changes that occur during the execution of the micro process
instance the port of the coordination component belongs to. The coordination components and
ports used for activating a particular state must then be re-marked as CONFIRMED (cf. Marking
Rule MR9”m). In turn, all coordination components (and ports respectively) not used for any
state activation must be re-marked as SKIPPED (cf. Marking Rule MR9”n).

application

checked

accepted

rejected

process context

A B

C

D

E

states of the

process context

Aggregation:

#IN + #AFTER = #ALL

state of the

aggregation

#1
#2

#3
#4

#5

case A

state change

during the execution of a

source micro process instance

case A

state change

during the execution of a

source micro process instance

case B

state change

during the execution of the

micro process instance

to which the port

comprising the coordination component

belongs to

Figure 12.19: Updating coordination components when executing a state change

Marking Rule (MR9”: State Change considering coordination components):
Let micProcInstance be an instance of micro process type micProc; i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let state1, state2 ∈ StateSet be two states with MState(state1) = ACTIVATED and
MState(state2) = WAITING. Finally, let micTrans ∈ MicTransSet be a micro transition with micTrans.source ∈
state1.sMicStepSet and micTrans.target ∈ state2.sMicStepSet (i.e., state2 is a successor of state1). Then:

MMicTrans(micTrans) = READY ∧ isexternal(micTrans) = TRUE,⇒

a-f) see MR9 in Sect. 8.5.1

g-i) see MR9’ in Sect. 9.2.3

j) ∀ pcType ∈ PCTypes with state1 ∈ pcType.pStateTypeSet ∨ state2 ∈ pcType.pStateTypeSet:
∀ pcInst ∈ pcinstances(pcType) with

pcInst.sourceMicProcInstance = micProcInstance ∧ MPc(pcInst) /∈ {CONFIRMED, SKIPPED}:
MPc(pcInst) := ENABLED;

i.e., each process context instance pcInst for which micProcInstance corresponds to
pcInst.sourceMicProcInstance, must be re-evaluated and re-marked as ENABLED. In turn, this mark-
ing triggers Marking Rule MR25.

k) ∀ aggType ∈ AGGTypes with state1 = aggType.sourceStateType ∨ state2 = aggType.sourceStateType:
∀ aggInst ∈ agginstances(aggType) with

micProcInstance ∈ aggInst.SourceMicProcInstancesSet ∧ MAgg(aggInst) /∈ {CONFIRMED, SKIPPED}:

288

12.8 State Changes

MAgg(aggInst) := ENABLED;
i.e., each aggregation instance aggInst, for which micProcInstance is contained in ag-
gInst.SourceMicProcInstancesSet, must be re-marked as ENABLED. In turn, this marking triggers
Marking Rule MR26.

l) ∀ transType ∈ TransTypes with state1 = transType.sourceStateType ∨ state2 = transType.sourceStateType:
∀ trInst ∈ transinstances(transType) with

micProcInstance ∈ trInst.SourceMicProcInstancesSet ∧ MTrans(trInst) /∈ {CONFIRMED, SKIPPED}:
MTrans(trInst) := ENABLED;

i.e., each transverse instance trInst, for which micProcInstance is contained in
trInst.SourceMicProcInstancesSet, must be re-marked as ENABLED. In turn, this marking triggers
Marking Rule MR27.

m) ∀ port with port.state = state2 ∧ MPort(port) = ACTIVATED:
MPort(port) := CONFIRMED ∧
∀ pcInst ∈ port.pPCSet: MPc(pcInst) := CONFIRMED ∧
∀ aggInst ∈ port.pAGGSet: MAgg(aggInst) := CONFIRMED ∧
∀ transInst ∈ port.pTRANSSet: MTrans(transInst) := CONFIRMED;

i.e., all ports and corresponding coordination components, which enable the activation of the respective state,
are re-marked as CONFIRMED.

n) ∀ port = (state, pPCSet, pAGGSet, pTRANSSet) with port.state = state2 ∧ MPort(port) 6= ACTIVATED:
MPort(port) := SKIPPED ∧
∀ port.pcInst ∈ pPCSet: MPc(pcInst) := SKIPPED ∧
∀ port.aggInst ∈ pAGGSet: MAgg(aggInst) := SKIPPED ∧
∀ port.transInst ∈ pTRANSSet: MTrans(transInst) := SKIPPED;

i.e., all ports and corresponding coordination components, which are not used to activate the respective
state, are re-marked as SKIPPED.

If the marking of a coordination component changes, the port this component belongs to may
have to be re-marked as well (cf. Sect. 12.6). In particular, if all coordination components of
a port are marked as ACTIVATED, the port itself is re-marked as ACTIVATED (cf. Marking Rule
MR28). In turn, if at least one coordination component of a port is still marked as WAITING,
the port itself will be marked as WAITING. The latter triggers Marking Rules MR29 and MR30,
according to which the corresponding external micro transitions are blocked or unblocked (cf.
Sect. 12.7).

Finally, when performing an external dead-path elimination (cf. Sect. 8.5), coordination compo-
nents and ports respectively must be marked as SKIPPED as well. In particular, when the state
they belong to is marked as SKIPPED, they are re-marked as SKIPPED as well (cf. Marking Rule
MR32 and Fig. 12.20).

Marking Rule (MR32: External dead-path elimination considering coordination):
Let micProcInstance be an instance of micro process type micProc; i.e., micProcInstance ∈ micprocin-
stances(micProc). Further, let state ∈ micProc.StateSet be a state. Then:

MState(state) = SKIPPED,⇒

• ∀ port1 ∈ state.sPortSet: MPort(port1) := SKIPPED ∧
∀ pcInst1 ∈ port1.pPCSet: MPc(pcInst1) := SKIPPED ∧
∀ aggInst1 ∈ port1.pAGGSet: MAgg(aggInst1) := SKIPPED ∧
∀ transInst1 ∈ port1.pTRANSSet: MTrans(transInst1) := SKIPPED

• ∀ pcType with state ∈ pcType.pStateTypeSet:
∀ pcInst2 ∈ pcinstances(pcType) with pcInst2.sourceMicProcInstance = micProcInstance:

MPc(pcInst2) := ENABLED ∧ MPort(pcInst2.port) := ENABLED

289

12 Macro Process Execution

• ∀ aggType with state = aggType.sourceStateType:
∀ aggInst2 ∈ agginstances(aggType) with micProcInstance ∈ aggInst2.SourceMicProcInstancesSet:

MAgg(aggInst2) := ENABLED ∧ MPort(aggInst2.port) := ENABLED

• ∀ transType with state = transType.sourceStateType:
∀ trInst2 ∈ transinstances(transType) with micProcInstance ∈ trInst2.SourceMicProcInstancesSet:

MTrans(trInst2) := ENABLED ∧ MPort(trInst2.port) := ENABLED

i.e., if a state becomes re-marked as SKIPPED, all ports and their coordination components are re-marked as
skipped as well. In addition, all coordination components and ports depending on this state are then re-evaluated
and re-marked as ENABLED.

ER1

object creation

ER2 RR2

RR3

RR7

ER6

attribute editing &

relation creation

MR3 MR4 MR5 MR6

ER5RR8

re-execution

MR8 MR7

internal dead-path

elimination

MR1 MR2RR1

internal reset

RR4

MR11 MR10

MR24

MR14MR15

MR12

MR9

ER3

RR5

state change

RR11

MR26MR25 MR27

MR28

MR30 MR29

coordination

external dead-path

elimination

new

relation

MR13 ER4 RR6

backward jump

MR16

backward

jump

MR17 MR18

MR20MR19

external reset

MR21

termination

ER8

RR10 MR23

updating coordination components

updating ports

blocking / unblocking transitions

black-box activities

ER7

RR9

MR22

new object cardinality

mandatory

optional

mandatory

optional
micro process

initialization

MR31

MR32

Figure 12.20: Rules for external dead-path elimination with coordination components

12.9 Terminating Macro Process Instances

A macro process instance will terminate if the micro process instance corresponding to its
primary object instance reaches an end state. To ensure proper termination of all involved
micro process instances, PHILharmonicFlows automatically re-marks them as BYPASSED. This
indicates that they are no longer needed in respect to the execution of the macro process
instance. Consequently, a macro process instance might not necessarily be sound at each
point during its execution.

Each macro process instance refers to a primary object instance (cf. Def. 65) dividing the
emerging process structure into different subsets of micro process instances (cf. Sect. 12.2).

290

12.9 Terminating Macro Process Instances

The termination of a macro process instance, therefore, strongly depends on the termination of
the micro process instance of its primary object instance. A micro process instance terminates
when one of its end states becomes activated (cf. Marking Rule MR21). In this case, the micro
process instance is marked as FINISHED. If the micro process instance that corresponds to the
primary object instance of the macro process instance is FINISHED, this macro process instance
is considered as FINISHED as well; i.e., the marking of the micro process instance indicates the
processing state of the corresponding macro process instance. However, other micro process
instances belonging to this macro process instance may still be RUNNING. These are no longer
required for macro process instance termination. However, it might be desired that selected
ones continue their execution. Opposed to this, other micro process instances must not be
continued. To handle both situations, we introduce markings BYPASSED and SKIPPED for micro
process instances (cf. Def. 68).

Example 12.12 (Termination of a macro process instance):
Regarding the recruitment example, each job offer object instance acts as primary object instance identifying a
particular macro process instance. In turn, each job offer comprises a set of related applications, reviews
and interviews. When a job offer terminates (i.e., end state occupied or not occupied is activated), some
applications may still be marked as RUNNING; e.g., applicants not hired may have to be rejected. Opposed to this,
reviews are no longer required since the decision on which applicant shall get the offered job has been already
made.

Definition 68 (Micro process markings for detecting instances no longer required):
Let MMicProc: MicProcInstances 7→ MicroProcessMarkings be the function assigning to each micro process instance
micProcInstance its current marking MMicProc(micProcInstance) with MicroProcessMarkings = {RUNNING, FINISHED,
WAITING, BLOCKED}. We extend the markings of a micro process instance as follows:

MicroProcessMarkings := MicroProcessMarkings ∪ {BYPASSED, SKIPPED} (cf. Tab. 12.6).

Marking Label Description
BYPASSED A micro process instance will be marked as BYPASSED if the macro process

instance it belongs to is marked as FINISHED, and the micro process instance
itself has not terminated yet.

SKIPPED Authorized users may manually skip micro process instances whose execution
is then skipped.

Table 12.6: Micro process markings detecting instances no longer required

Definition 69 (Micro process responsibility):
Let UserRoles be the set of all defined user roles. Then:

An micro process responsibility is a tuple micResp = (micProcType, role) where

• micProcType ∈ MicProcTypes is a micro process type.

• role ∈ UserRoles is a user role.

MicroProcessResponsibilities corresponds to the set of all definable micro process responsibilities.

To indicate to users when micro process instances are no longer mandatorily required, respec-

291

12 Macro Process Execution

tive instances are marked as BYPASSED. More precisely, all micro process instances belonging
to a macro process instance whose primary micro process instance becomes marked as FIN-
ISHED will be marked as BYPASSED indicating that their execution is no longer required in the
context of the macro process instance. For this purpose, the micro process instances belong-
ing to a particular macro process instance need to be adequately determined. In this context,
we have to consider that a micro process instance may belong to several macro process in-
stances. To handle this, we extend the micro process instance definition given in Def. 24. In
particular, each micro process instance additionally comprises a set of oids representing the
macro process instances they belong to (cf. Def. 70).9

Definition 70 (Identifying micro process instances):
Let micProcInstance be a micro process instance belonging. Then:

MacProcInstanceSetmicProcInstance is a set of oids identifying the macro process instances to which micProcInstance
belongs to.

In the following, a micro process instance represents a tuple micProcInstance = (micProc, oid, MState, MMicStep,
MMicTrans, MBackTrans, MData, MAct, MacProcInstanceSet).

Marking Rule (MR33: Marking micro process instances as BYPASSED):
Let macProcInstance be a macro process instance and micProcInstance its primary micro process instance; i.e.,
macProcInstance.oid = micProcInstance.oid. Then:

MMicProc(micProcInstance) = FINISHED,⇒

∀ micProcInstance’ with micProcInstance’.oid ∈ micProcInstance.MacProcInstanceSet ∧
MMicProc(micProcInstance’) /∈ {FINISHED, SKIPPED} ∧ @ micProcInstance” with

micProcInstance”.oid ∈ micProcInstance.MacProcInstanceSet ∧
MMicProc(micProcInstance”) ∈ {WAITING, BLOCKED, RUNNING}:

MMicProc(micProcInstance’) := BYPASSED;

i.e., if the primary micro process instance of a macro process instance terminates, all other micro process instances
that belong to this macro process instance and have not been marked as FINISHED or SKIPPED yet, will be re-marked
as BYPASSED (if the micro process instance does not belong to another currently running macro process instance).

A micro process instance marked as BYPASSED is displayed to responsible users who may
then decide on whether to continue or terminate it. For this purpose, an additional column is
displayed in the process-oriented view (cf. Fig. 12.21) of authorized users. Based on this view,
an overview table can be invoked listing the respective micro process instances (cf. Fig. 12.22).
Additionally, overview tables contain a column displaying the current marking of the respective
micro process instance (cf. Fig. 12.22). As defined by Execution Rule ER9, authorized users
may skip selected instances. (cf. Chapt. 13 for details). In turn, if a micro process instance is
skipped (cf. Def. 71), it will be automatically re-marked as SKIPPED (cf. Reaction Rule RR12)
and hence its execution stops.

9Note that a micro process instance is further treated as RUNNING as long as one corresponding macro process
instance is still RUNNING.

292

12.9 Terminating Macro Process Instances

Reviews

0initialized

pending

reject proposed

invitation proposed

finished

4

0

0

0

Applications

67initialized

sent

checked

accepted

rejected

99

45

0

3

TO DO

TO DO

214

4

micro process type

states

number of micro

process instances

detailed process view

23

18

65

2

4

BYPASSED

10

3

9

5

1

BYPASSED

Figure 12.21: Process-oriented user view displaying bypassed micro process instances

proposalurgency return date appraisal finished

invitehigh 01/03/2012 very good true

low

rejecthigh 26/08/2012 average

Reviews

application

Hans Maier

Wilma Schmidt

Horst Müller

Fred Pauli

STATE

finished

initialized

initialized

pending

run-time marking

of the corresponding

micro process instance

MARKING

finished

running

waiting

bypassed

skipping micro

process instances

Figure 12.22: Data-oriented user view with bypassed micro process instances

Execution Rule (ER9: Skipping micro process instances):
Let MicroProcessResponsibilities be the set of all definable micro process responsibilities. Then:

∀ micResp = (micProcType, r) ∈ MicroProcessResponsibilities:
A micro process instance of micProcType may be skipped by any user owning r.

Definition 71 (Skipping micro process instances):
Let MicProcInstances be the set of all instances of any micro process type. Then:

skipped: MicProcInstances 7→ BOOLEAN defines whether or not a particular micro process instance has been
skipped.

Reaction Rule (RR12: Marking micro process instances as SKIPPED):
Let micProcInstance ∈ MicProcInstances be a micro process instance. Then:

skipped(micProcInstance) = TRUE,⇒ MMicProc(micProcInstance) := SKIPPED;

i.e., when a user skips a micro process instance, it will be marked as SKIPPED.

293

12 Macro Process Execution

Fig. 12.23 illustrates all rules required to handle the correct termination of a macro process
instance and its corresponding micro process instances respectively. After marking the primary
micro process instance of a macro process instance as FINISHED (cf. Marking Rule MR21), all
other micro process instances belonging to this macro process instance, which have not been
FINISHED or SKIPPED yet, are re-marked as BYPASSED (cf. Marking Rule MR33). Authorized
users may then skip micro process instances no longer required (cf. Execution Rule ER9
and Reaction Rule RR12). Note that micro process instances not marked as BYPASSED may
be SKIPPED as well. For example, this is required to handle deadlock situations (i.e., micro
process instances marked as BLOCKED). For details we refer to Sect. 13.2.

ER1

object creation

ER2 RR2

RR3

RR7

ER6

attribute editing &

relation creation

MR3 MR4 MR5 MR6

ER5RR8

re-execution

MR8 MR7

internal dead-path

elimination

MR1 MR2RR1

internal reset

RR4

MR11 MR10

MR24

MR14MR15

MR12

MR9

ER3

RR5

state change

RR11

MR26MR25 MR27

MR28

MR30 MR29

coordination

external dead-path

elimination

new

relation

MR13 ER4 RR6

backward jump

MR16

backward

jump

MR17 MR18

MR20MR19

external reset

MR21

termination

ER8

RR10 MR23

updating coordination components

updating ports

blocking / unblocking transitions

black-box activities

ER7

RR9

MR22

new object cardinality

mandatory

optional

mandatory

optional
micro process

initialization

MR31

MR32

MR33 ER9 RR12

Figure 12.23: Rules for terminating macro and micro process instances

12.10 Further Issues

This thesis focuses on fundamental concepts enabling a proper support of object-aware pro-
cesses. Regarding the coordination of micro process instances, however, more detailed con-
cepts are required in practice. Due to lack of space, this section only sketches basic ideas.
First, in addition to the activation of states, the creation of the object instances (and micro
process instances respectively) may depend on coordination components; i.e., whether or not
another instance of a particular object type may be created in a given context not only depends
on cardinalities defined by the data model, but on coordination components as well (cf. Sect.
12.10.1). Second, the creation of relations may depend on the defined coordination compo-
nents as well (cf. Sect. 12.10.2). Third, it must be ensured that backward jumps which may
be applied during the execution of a particular micro process instance do not result in incorrect
processing states of a process structure (cf. Sect. 12.10.3).

294

12.10 Further Issues

12.10.1 Creation of Object Instances

Regarding macro process types, we need to consider several special cases: For example, a
macro step type may refer to a start state type of a micro process type (cf. Fig. 12.24). In
this case, macro processes and corresponding coordination components not only influence the
execution of running micro process instances, but also their creation; i.e., not only the activation
of a certain state, but also the creation of an object instance and micro process instance may
depend on the execution of other micro process instances.

Review

Job Offer

initialized

Job Offer

published

Application

initialized

Application

send

Review

initialized

Review

reject

proposed

Review

invitation

proposed

Job Offer

closed

start macro step

type

object type

state type

macro step

type

macro transition

type

port type

initialized pending

reject

proposed

invitation

proposed

finished

start state type
macro

process

type

micro

process

type

#1 #2 #3 #4 #5

Figure 12.24: Macro step types referring to start state types

Example 12.13 (Macro step types referring to start state types):
Consider Fig. 12.24 and the macro step type referring to object type review and state type initialized. The
macro transition type targeting at the latter originates from a macro step type referring to object type application

and state type send. Since the relationship between the application and review object types represents a top-
down dependency, a corresponding process context type is defined. This way, the creation of a new review object
instance targeting at this particular application object instance depends on the currently activated state of the
application micro process instance.

As discussed in Sect. 9.1.2, whether or not an object instance of a lower-level object type may
be created is managed by a creation context that controls the defined cardinalities. According
to Def. 34, a creation context belongs to a higher-level object instance managing the set of
corresponding lower-level object instances of a certain type. Depending on the number of cur-
rently existing lower-level object instances, the creation context is either marked as ACTIVATED,
CONFIRMED, or BLOCKED (cf. Def. 35). Hence, coordination components must be considered
as well.

Example 12.14 (Creation context considering process contexts):
Consider Fig. 12.25 and the creation context managing all review object instances that refer to a particular
application object instance. A newly created review object instance may only be assigned to a particular
application object instance if either state send or checked is activated for the micro process instance correspond-
ing to the application object instance.

295

12 Macro Process Execution

initialized send checked

accepted

rejected

states belonging to the process context

(i.e., pStateTypeSet)

process context

Review

Review

Review

Application

Review

#4

relations

creation

context

Figure 12.25: Creation context in response to a process context

When re-marking a creation context instance, in addition to the defined cardinalities, selected
coordination components must be considered.10 As a consequence, coordination types may
not only belong to particular port types (cf. Defs. 57, 60, and 62), but to creation context types
as well. In turn, a creation context (cf. Def. 34) may comprise a set of coordination compo-
nents. In the latter case, markings WAITING and ACTIVATED will be assigned if all coordination
components are marked as ACTIVATED.

Lower-level object instances, required by the defined cardinality constraints, are usually created
in the context of a higher-level object instance (e.g., to fulfill a minimum cardinality). The activity
for creating a new object instance is then only executable in the context of higher-level object
instances for which the creation is allowed. In particular, if not all coordination components of
the respective creation context are marked as ACTIVATED, the creation of new lower-level object
instances must be disabled.

Example 12.15 (Disabling creation):
Consider Fig. 12.26. For the application object instance displayed in column #4, state accepted is currently
activated. Since this state does not belong to the defined process context type, additional review object instances
cannot be created. Hence, no activity for creating review object instances may be invoked. Opposed to this,
for application object instance #1, state send is still activated. Since this state belongs to the corresponding
process context type, the activity for creating review object instances is enabled. Note that for this application

object instance the desired minimal cardinality is not met. Hence, the activity for creating lower-level review object
instances is mandatory.

10 Note that macro transition types targeting at start state types are either categorized as top-down or transverse
(since lower-level object instances do not exist before the higher-level ones they refer to are created). We ensure
this at build-time according to Def. 54h. In both cases (i.e., top-down and transverse relationships), the creation
of a lower-level object instance depends on the referenced higher-level one. Regarding top-down dependencies,
a corresponding process context type defines in which states of the higher-level micro process instance, lower-
level object instances may be created. In turn, when using a transverse relationship, a lower-level object instance
may only be created if the defined constraint evaluates to true. The latter is based on micro process instances
of another lower-level object type.

296

12.10 Further Issues

applicant cover letter appraisal decision

Heike Silko available very good true

Hans Manz

Werner Luk

Simon Sun available average

Applications

job offer

administrator

engineer

project leader

programmer

STATE

accepted

send

checked

checked

edit application

display application

delete application

send mail to applicant

create new application

create new review

create new interview

Application

send

Review

initialized

initialized send

application

checked

accepted

rejected

macro

process

type

process

context

type

activity for creating review instances

for this application is disabled

state send does belong

to the process context

activity for creating

review instances for this

application is enabled

state accepted does not

belong to the process context

Figure 12.26: Disabling the creation of object instances

12.10.2 Handling Relations

When creating a new object instance independently from a higher-level one, the relation to a
selected higher-level object instance is usually assigned afterwards; i.e., when invoking a form
for editing attribute values and relations. Therefore, a combobox is offered that allows users to
select the desired higher-level object instances (by displaying the label attribute specified). In
this context, only those higher-level object instances, for which the creation of a corresponding
lower-level object instance is currently allowed, should be displayed in the combobox; i.e., the
corresponding creation context must be evaluated. All other relations not allowed are consid-
ered as unsound relations. Further, consider the case for which a macro step type refers to the
start state of the source object instance of the relation. Here, the creation context must take the
corresponding coordination components into account as well (cf. Sect. 12.10.1). Regarding
the generated user form, all higher-level object instances, for which the creation context is not
marked as WAITING or ACTIVATED, are not considered when assigning the relation.

Example 12.16 (Preventing unsound relations):
Consider Fig. 12.26. Review object instances may only be created for applications being in state send or checked.
Hence, only application object instances displayed in columns #1, #2, and #3 are offered in the combobox when
invoking the form for editing a review object instance; i.e., the application object instance displayed in column #4

is removed since state accepted has already been activated.

If a relation, which is required for micro process coordination, is missing, process execution is
blocked until the required relation is assigned. In this context, no source micro process is cur-
rently defined for the respective coordination component. According to Reaction Rule RR1, the
respective coordination component is then marked as ENABLED. Since a port is only marked
as ACTIVATED if its coordination components are all marked as ACTIVATED, it is not possible to
activate the respective state (or to create a new object instance); i.e., the correct execution of
macro process instances is ensured (when preventing unsound relations as discussed). How-
ever, deleting relations and re-assigning them must be considered as well. In this case, parts of
the process structure may be disconnected and coupled to another higher-level object instance

297

12 Macro Process Execution

(and micro process instance respectively), which may belong to different macro process in-
stances. Regarding aggregations and transverse instances, for example, the assignment of an
additional lower-level object instance may affect the evaluation of the respective predicate (e.g.,
the predicate may not evaluate to true any longer). Especially, this is critical when coordination
components already marked as CONFIRMED or SKIPPED are involved.

Example 12.17 (Incorrect processing state):
Consider Fig. 12.27. State finished of a review micro process instance may only be activated if for the correspond-
ing application either state accepted or rejected is marked as ACTIVATED. As a consequence, re-assigning a
review, for which state finished is currently activated, to an application in state send or check would result in an
incorrect processing state.

Application

rejected

Application

accepted

Job Offer

occupied

Job Offer

not

occupied

Review

finished

Figure 12.27: Macro process type for finishing reviews

For the above reasons, not all relations between object instances are allowed. This must be
considered when automatically creating user forms; i.e., not all higher-level object instances
are displayed in the corresponding combo box. According to Marking Rules MR25, MR26, and
MR27, only those coordination components are re-marked that have not already been marked
as CONFIRMED or SKIPPED. This must be taken into account when re-assigning relations.
In particular, if the deletion of a relation affects coordination components already marked as
CONFIRMED or SKIPPED, it will be prohibited.

Application

initialized send checked

accepted

rejected

state belonging to the process context

Review

initialized pending

reject

proposed

invitation

proposed

finished

Application

initialized send checked

accepted

rejected

state belonging to the process context

Figure 12.28: Process context instances for finishing reviews

298

12.10 Further Issues

Example 12.18 (Handling coordination components already applied):
Consider Fig. 12.28. State finished of a review micro process instance is currently marked as ACTIVATED.
Regarding the application micro process instance this review refers to, state rejected is marked as ACTIVATED.
This has led to the activation of a port belonging to state finished of the review, which is therefore marked as
CONFIRMED; i.e., this port was used to activate state finished. In turn, the other port is marked as SKIPPED. Since
the execution of the review micro process instances has been dependent on the application instance, it is not
possible to delete and potentially re-assign the corresponding relation afterwards.

Generally, testing the coordination components in advance is not always appropriate. For spe-
cific use cases it might be required to flexibly re-assign their markings anyway. In this context,
advanced concepts for adapting the resulting process structure are required. For example, in-
correct parts of the process structure must be identified and marked accordingly. Additionally,
respective information must be propagated to the macro process instance level; i.e., sophisti-
cated techniques for exception handling are required.

12.10.3 Backward Jumps

When performing a backward jump during the execution of a micro process instance, a previ-
ous state becomes re-marked as ACTIVATED (cf. Marking Rule MR16). In addition, according
to Marking Rule MR19, all states succeeding the target state of the backward transition are re-
set; i.e., they are re-marked as WAITING. Hence, if the micro process instance corresponds to
the source of one or more coordination components, its marking must be updated accordingly.
For this purpose, as highlighted in Fig. 12.29, Marking Rule MR16 for performing backward
jumps as well as Marking Rule MR19 for re-setting states must be both extended (similar to
Marking Rule MR9). The latter performs a normal state change (cf. Sect. 8.5). In particular,
all affected process context, aggregation, and transverse instances must be re-marked as EN-
ABLED. In turn, this triggers Marking Rules MR25, MR26, and MR25 for updating the respective
marking.

However, if coordination components already marked as CONFIRMED or SKIPPED are involved,
a backward jump might lead to an improper processing state of the macro process instance.
Consequently, it is not allowed to execute a backward jump if coordination components that
have been already marked as CONFIRMED or SKIPPED are involved.11 This must be evaluated
when a new state becomes marked as ACTIVATED. Only the backward transitions originating
from this state that do not affect already used coordination components are then marked as
CONFIRMABLE. For this purpose, Marking Rule MR13 (which re-marks backward transitions as
CONFIRMABLE) must be extended as well (cf. Fig. 12.29).

Again, there exist specific use cases requiring the execution of backward jumps even if already
applied coordination components are concerned (e.g., for exception handling). Then, additional
concepts for adapting the resulting process structure are required.

11This is similar to the consideration of coordination components when assigning relations.

299

12 Macro Process Execution

ER1

object creation

ER2 RR2

RR3

RR7

ER6

attribute editing &

relation creation

MR3 MR4 MR5 MR6

ER5RR8

re-execution

MR8 MR7

internal dead-path

elimination

MR1 MR2RR1

internal reset

RR4

MR11 MR10

MR24

MR14MR15

MR12

MR9

ER3

RR5

state change

RR11

MR26MR25 MR27

MR28

MR30 MR29

coordination

external dead-path

elimination

new

relation

MR13 ER4 RR6

backward jump

MR16

backward

jump

MR17 MR18

MR20MR19

external reset

MR21

termination

ER8

RR10 MR23

updating coordination components

updating ports

blocking / unblocking transitions

black-box activities

ER7

RR9

MR22

new object cardinality

mandatory

optional

mandatory

optional
micro process

initialization

MR31

MR32

MR33 ER9 RR12

Figure 12.29: Rules for backward jumps

12.11 Summary

In summary, for each macro process instance, a complex process structure emerges during
run-time. Regarding the latter, individual micro process instances need to be coordinated. Co-
ordination component types define define synchronization constraints between micro process
instances based on their corresponding states. In particular, whether a particular state may be
activated additionally depends on its ports and their corresponding coordination components.
For this purpose, the operational semantics introduced for micro process execution (cf. Chapt.
8) is extended in two directions. First, whether a certain state of a particular micro process
instance involved in this process structure can be activated depends on the various involved
coordination components. Second, the creation of additional object instances and micro pro-
cess instances respectively is now managed considering the defined cardinality constraints.
Taking the comprehensive set of rules and their dependencies to another into account, macro
process execution seems to be very complex. However, this complexity is required to provide
to desired execution flexibility at run-time and to enable an integrated view on processes and
data for its users.

300

13
Further Issues

This thesis provides basic concepts for modeling and executing object-aware processes. How-
ever, there exist several issues which are also relevant in order to provide a comprehensive
framework. Regarding the process life-cycle, this chapter sketches additional ideas for process
monitoring (cf. Sect. 13.1) and exception handling (cf. Sect. 13.2). Furthermore, advanced
concepts for user integration and data processing are discussed in Sects. 13.3 and 13.4. Since
these topics do not constitute the focus of this thesis, we discuss them only informally.

13.1 Monitoring

Regarding a process structure emerging during run-time, its micro process instances (of same
and different type) are executed asynchronously to each other. Consider thereto Fig. 13.1 in
which the currently activated state of each micro process instance is colored blue. Based on
such a view, however, it is a challenging task to figure out the overall processing state of this
process structure.

In traditional PrMS, the state of a process instance is characterized by its currently activated
process steps. Opposed to this, a macro process step aggregates a number of micro process
instances for which different states may be activated; i.e., only for a sub-set of these micro
process instances the state specified by the macro step may be reached (cf. Fig. 13.2). In turn,
other micro process instances may have already left this state or skipped it. Consequently, it is
not that easy to figure out the overall state of a macro process instance.

To consider the asynchronous micro process execution within an aggregated macro process
view, similar counters as specified by Def. 59 are provided; i.e., each macro step comprises
counters (cf. Fig. 13.2) managing the total number of corresponding micro process instances
(#ALL), the number of instances for which the respective state is currently activated (#IN), the
number of instances which have not reached the respective state (#BEFORE), have skipped

301

13 Further Issues

Review #12

Review #11

Review #10

Review #9

Review #8

Review #7

Application #6

Application #5

Application #4

initialized published closed

occupied

not

occupied

Application #3

Application #2

initialized send checked

agreed

canceled

initialized pending

reject

proposed

invitation

proposed

finished

Review #6

Review #5

Review #4

Review #3

Review #2

Review #1

initialized planned finished

Interview #7

Interview #6

Interview #5

Interview #4

Interview #3

Interview #2

Interview #1

Job Offer #3

Job Offer #2

Job Offer #1

Application #1

data structure process structure

Figure 13.1: Asynchronous execution of micro process instances

it (#SKIPPED), or the state has been left and a subsequent state is currently activated (#AF-
TER). These counters aggregate the processing states of the corresponding micro process
instances. Furthermore, when selecting a particular counter, corresponding object instances
(and micro process instances respectively) are listed in an overview table. This way, features
for navigating through the process structure are realized. Consider therefore our prototypical
implementation as introduced in Sect. 14.1. There, Fig. 14.9 illustrates monitoring facilities
using the aforementioned counters.

13.2 Exception Handling

During process execution, exceptions cannot be always avoided. First, regarding a micro pro-
cess instance, inconsistencies between process and data state may occur when object attribute
values committed in a previous state are changed later on (cf. Sect. 13.2.1). Second, macro
process execution might lead to deadlocks when an external micro transitions becomes marked
as BLOCKED (or WAITING). PHILharmonicFlows provides concepts to identify and handle such
exceptions. In any case, the framework guarantees correct process execution.

13.2.1 Exception Handling During Micro Process Execution

When assigning optional write permissions, users may change attribute values, which have
been already committed in a previous state, later on. More precisely, a user may own optional
write permissions for object attributes mandatorily required in a previous state. When the values
of these attributes are changed afterwards, inconsistencies between process and data state

302

13.2 Exception Handling

initialized pending

reject

proposed

invitation

proposed

finished

Review

reject

proposed

#ALL = 12

#IN = 3

#BEFORE = 6

#SKIPPED = 1

#AFTER = 2

Figure 13.2: Macro steps for aggregating micro process instances

might occur. However, such inconsistencies cannot always be prohibited since certain real-
world scenarios require late changes of already committed object attribute values (cf. Ex.
13.1).

Example 13.1 (Changing attribute values later on):
Consider Fig. 13.3. When state initialized was activated, the personnel officer assigned value "low" to object
attribute urgency. Later on, when state reject proposed becomes activated, again, the personnel officer owns
write permissions for object attribute urgency. This allows him to change the value from "low" to "high". However,
the employee editing the review in state pending has assumed that the urgency for filling in the review is "low".

For detecting such inconsistencies between process state and data state, similar concepts as
introduced in Sect. 8.4.6 are applied. In particular, traces (cf. Def. 26) are used in this context.
If a trace of a micro step currently marked as CONFIRMED does not coincide with the actual
value of the corresponding object attribute, the latter is marked as INCONSISTENT; i.e., an
additional data marking is defined (cf. Def. 29). Further, in addition to execution and transition
responsibilities (cf. Defs. 19 and 20), a micro process responsibility is introduced. In case of an
inconsistency, the latter must perform an error treatment (see below). As long as the mismatch
between the object attribute value and the trace is not dissolved, it is not possible to further
process the object instance; i.e., all activities are deactivated.
In this context, for treating errors the user owning a respective micro process responsibility is
enabled to perform one of the following actions:

• reset the object attribute value to the value stored in the trace,

• perform a backward jump to the state the micro step of the trace belongs to, or

303

13 Further Issues

Figure 13.3: Late changes of attribute values

• accept the inconsistent attribute value (i.e., proceed with process execution despite the
inconsistency).

After performing one of these actions, the data marking (cf. Def. 29) of the object attribute
value changes from INCONSISTENT to ASSIGNED and all activities are activated again.

13.2.2 Exception Handing During Macro Process Execution

As discussed, a macro process instance comprises coordination components for synchroniz-
ing the execution of corresponding micro process instances. If a subsequent state of a micro
process instance cannot be ACTIVATED, the respective micro transition is marked as BLOCKED

or WAITING (cf. Marking Rules MR1”” and MR30). 1 In addition, to quickly recognize such
situations, these markings are propagated to the micro and macro process instance (cf. Mark-
ing Rule MR31) and are used for monitoring issues. To get an impression about the end-user
perspective on deadlocks, consider the proof-of-concept prototype introduced in Sect. 14.1.3.
Fig. 14.9 illustrates a view showing a macro process instance in a deadlock.

For dissolving deadlocks, in addition to micro process responsibilities, a macro process respon-
sibility is introduced. In addition, marking BYPASSED is used for coordination components and
ports respectively; i.e., the set of markings provided for coordination components and ports is
extended (cf. Def. 65). The user owning the macro process responsibility at run-time may then

1Marking BLOCKED is only assigned in connection with a process context (cf. Def. 58). Regarding aggregations
and transverse components, the defined predicates depend on the actual number of currently created object
instances and micro process instances respectively. Therefore, it is not possible to automatically determine
whether a predicate may evaluate to true later on. To detect deadlock situations in this context, marking WAITING
is used and visualized when monitoring macro processes. Whether or not an intervention is required must then
be decided by the responsible user.

304

13.3 Advanced Concepts for User Integration

mark particular coordination components and ports as BYPASSED. Respective components are
then no longer considered for coordinating the micro process instances.

Details about the end-user interfaces provided for performing such assignments are provided
in [Sch10].

13.3 Advanced Concepts for User Integration

Access control mechanisms (i.e., authorization) protect data from unauthorized access (con-
fidentiality) and changes (integrity) [Ber98]. Coincidently, one has to ensure that each user
gets access to all required data, functions and processes (availability) [Ber98, FK92]. In princi-
ple, access control must be considered at different layers of abstraction [SV01] (cf. Fig. 13.4):
strategies, models, and mechanisms. Strategies determine which components (e.g. data, func-
tions, processes) within a system shall be protected, and define the required kinds of privileges.
In turn, a model formally represents the applied strategy, whereas the used mechanism deter-
mines its technical implementation. Existing systems have earned many benefits by applying
Role-Based Access Control (RBAC) [FK92] as strategy. The additional layer between users
and privileges allows for faster and less cumbersome administration [BFA99]. Furthermore,
users with same positions or duties get same rights [FK92]. Hence, our strategy for access
control is generally based on role-based concepts for user integration. However, our work ex-
tends existing concepts to fulfill the requirements arising from the tighter integration of data and
functions with the corresponding process support.

access controlmeasures

strategies

models

confidentiality, integrity, availability

level

I

level

II

level

III

level

IV

goals

D
a

ta
-

&
 F

u
n

c
ti
o

n
-

o
ri
e

n
te

d
 A

p
p

lic
a

ti
o

n
s

P
ro

c
e

s
s
-o

ri
e

n
te

d

S
y
s
te

m
s

A
d

a
p

ti
v
e

 P
ro

c
e

s
s
e

s

C
o

lla
b

o
ra

ti
v
e

P
ro

c
e

s
s
e

s

mechanism

Figure 13.4: Classification of access control (according to [KR09b, KR10])

305

13 Further Issues

Complementary to these abstraction layers (i.e., strategies, models and mechanisms), different
kinds of systems make different claims in respect to the strategy needed. As illustrated in Fig.
13.4, access control can be arranged in four levels, each of them depending on the function-
ality of the system [Pfe05]. Since our goal is to provide integrated access to data, functions
and processes in a generic way, we need a strategy comprising Level I and Level II. In turn,
Levels III and IV are used for process-aware information systems enabling adaptive or collab-
orative processes [WRWR05]. Such processes are out of the scope of this thesis. We first
consider the abstraction layer of the strategy dimension when evaluating properties of object-
aware processes. In particular, we discuss which requirements must be fulfilled by a strategy
for access control when simultaneously addressing Level I and Level II. We further provide a
concrete model for this strategy in the context of our PHILharmonicFlows solution framework.
One mechanism making this model work is then implemented in our prototype.

Regarding the dependencies between data and user discussed in Sect. 3.1, user permissions
do not only depend on roles, but also on data properties (cf. Prop. 16) and on relationships
between users and object instances (cf. Prop. 17). Consequently, it is not sufficient to manage
the user and role definitions as well as the organizational model independent from application
data. Instead, PHILharmonicFlows allows integrating users with objects. For this purpose, an
object type may be flagged as user type (cf. Fig. 13.5). At run-time, each object instance
corresponding to a user type represents a particular user. To authenticate this user when he
logs in, each user type must include attribute types uniquely identifying users at run-time (e.g.,
username and password).

Review Interview

Job Offer

Application

user types

#1

#2

#3

Person Employee

Participant

user typeuser type

#4

relation

roles
relation

roles
applicant

personnel

officer

reviewer

participant

department = ‚HR’

location = ‚Ulm’

role context type

HR employee

#5

Figure 13.5: User types

Example 13.2 (User types):
Regarding the recruitment example (cf. Fig. 13.5), relevant user types are person and employee.

306

13.3 Advanced Concepts for User Integration

Each user type automatically represents a user role. When a user logs in, PHILharmonicFlows
determines, which instance of the user types corresponds to the entered user name and pass-
word. Based on this, the user role represented by the corresponding user type is then automat-
ically assigned.

Example 13.3 (Login):
When a user enters his user name and password, all instances of the user types person and employee are checked.
This way, he is either identified as person or employee.

Further, for each user type more specific user roles may be defined by constraining the attribute
types of the user type. Like for value step types (cf. Sect. 7.1.2), the options existing for the
definition of such constraints depend on their technical implementation (e.g., whether OR- and
AND-operators can be used). We denote these constraints as role context types. When a user
logs in, PHILharmonicFlows evaluates whether the role context types defined for the respective
user type are met; i.e., whether the constraint is fulfilled. In this case, the role represented by
the role context type is additionally assigned (cf. Ex. 13.4).

Example 13.4 (Role context types):
Regarding the recruitment example (cf. Fig. 13.5), for user type employee, a role context type is defined identifying
all employees of the human resource (HR) department; i.e., role HR employee is defined.

As advantage of this close integration of data and users, we can automatically determine ad-
ditional user roles from a given user type and its relations to other object types. We denote
these as relation role types. In particular, each relation type targeting at a user type represents
a relation role type. At run-time, each user owns the relation role if there exists at least one
object instance of the source object type of the respective relation which references the user
instance. 2 .

Example 13.5 (Relation roles):
Regarding the user types illustrated in Fig. 13.5, the relation role types applicant, personnel officer, reviewer,
and participant (in an interview) can be derived. Hence, each user represented by a person user instance
additionally owns user role applicant if there exists at least one application object instance referencing the
instance of type person identifying him.

Usually, for a particular user, access to data should be restrictable to a subset of the object in-
stances of an object type. We denote such fine-grained access control as instance-specific role
assignment. In this context, PHILharmonicFlows differentiates between cases in which access
depends on object attribute values and cases which require a specific relationship between the
object and the user instance. Since both depend on the object type, for which access shall be
granted, such specific assignments are captured in the authorization table maintained for each
object type (cf. Sect. 9.1.1). In particular, permissions (cf. Def. 32) may be associated with

2Note that a relation role type does not enable instance-specific access. Each person, for which an application

exists, owns relation role applicant. In order to restrict access to particular object instances (e.g., on his own
application) additional concepts as discussed in the following are required.

307

13 Further Issues

a constraint which is defined based on attribute values. We denote such a constraint as data
context. At run-time, users owning the respective role may only access those object instances
for which the constraint evaluates to true. 3 .

Example 13.6 (Instance-specific access using data contexts):
Using data contexts in connection with permissions, it becomes possible to grant access only to those job offers

that belong to location "ULM".

We further consider instance-specific role assignment based on relations between user and
object instances. While relation roles can be determined based on the relation types at build-
time, instance-specific role assignment is based on the concrete relations existing at run-time.
For this purpose, PHILharmonicFlows allows flagging permissions as instance-specific based
on function instance-specific: Permissions 7→ BOOLEAN. Using this flag, the relationship
between a certain user and object instance may be taken into account. In this context, PHIL-
harmonicFlows differentiates between top-down, bottom-up, and transverse relationships (cf.
Exs. 13.7, 13.8, and 13.9). 4 Similar concepts as used for defining coordination components
(cf. Chapt. 11) are applied.

Example 13.7 (Instance-specific access based on a top-down relationship):
Applicants may only access their own applications.

Example 13.8 (Instance-specific access based on a bottom-up relationship):
Participants may only access those interviews in which they participated.

Example 13.9 (Instance-specific access based on a transverse relationship):
Reviewers may only access those interviews that belong to an application they have to evaluate.

Such fine-grained access control based on relations may require high efforts to determine the
permissions of a user. Our current proof-of-concept prototype therefore does not determine
these relationships at run-time.5 Instead, relations to transitively referenced object instances
are stored directly; i.e., additional relations representing transitive relationships are used. We
denote these as virtual attributes. Note that this approach requires higher efforts when saving
object instances and relations, but less effort is needed to determine the modeled relation-
ships.

3This way, for a particular object type, different variants of an authorization table can be realized.
4Note that there may be several paths between the object type and the respective user type.
5Note that this would require inner-joins and sub-selects on the underlying data structure.

308

13.4 Advanced Concepts for Data Processing

13.4 Advanced Concepts for Data Processing

13.4.1 Displaying Overview Tables

In most cases, the number of attributes corresponding to a particular object type is too large to
display all of them in the overview table. Hence, only the label attributes defined for the object
type and the relations to other object attributes are displayed. In this context, label attributes (cf.
Def. 8) to be displayed can be derived from several other attributes and relations by composing
their values .

Example 13.10 (Label attribute composing several attributes):
Consider the overview table listing review object instances (cf. Fig. 13.6). Attributes proposal and finished are
defined as label attributes.

Example 13.11 (Relation as label attribute):
Consider again Fig. 13.6. The name of the applicant is used as label attribute for the lower-level object type
application.

Review

application

Hans Maier

Wilma Schmidt

Horst Müller

Fred Pauli

referenced object types

title attribute values

of the referenced object instances

employee

Martin Gause

Martin Gause

Fritz Vogel

Martin Gause

Application

Review

Employee

Applicant

name

label attribute

for lower-evel

object types

title attributes

of the review

object type

proposal

invite

reject

invite

reject

finished

true

false

false

true

displaying

all attributes

state

finished

reject proposed

invitation proposed

finished

marking

finished

finished

running

running

process information

Figure 13.6: Displaying overview tables

Using this approach, additional information on object instances can be viewed on-demand
involving a respective optional activity (cf. Fig. 13.6). Furthermore, users may select additional
columns (i.e., attribute or relation types) they would like to be displayed in the overview table.
For further details we refer to [Sch10] (cf. Sect. 6.2.10).

Finally, overview tables contain information about the corresponding micro process instance;
i.e., there is a column reflecting the run-time marking of the micro process instance and its
currently activated state (cf. Chapt. 8 for details).

13.4.2 Restricting Attribute Values and Relations

When editing object instances, in some cases, the set of possible attribute values must be
restrictable (cf. Ex. 13.12). Using value types, a predefined set of values can be specified.
However, even then only a subset of the value instances may be chosen. PHILharmonicFlows
allows defining such restrictions based on constraints.

309

13 Further Issues

Example 13.12 (Restricting attribute values):
When editing an application, the desired salary must be higher than 1000 and lower than 100.000 Euro.

Not only attribute values, but also the assignment of relations must be restrictable (cf. Ex.
13.13). In this context, a data context, as introduced in Sect. 13.3, is used.

Example 13.13 (Restricting relations):
When editing an application, only job offers belonging to location ’Ulm’ shall be selectable.

PHILharmonicFlows allows defining such restrictions in the context of particular write permis-
sions. This way, it is possible to define different restrictions for different users. In addition, for
a particular user, the restriction for one and the same attribute or relation may differ depending
on processing states. Generally, advanced concepts which ensure that these restrictions are
compliant with existing value step types are required.

310

Part IV

Evaluation and Discussion

311

14
Evaluation

Part III presented the PHILharmonicFlows framework, which supports the fundamental prop-
erties of object-aware processes as discussed in Part II. Part IV concludes the thesis with two
chapters. Chapt. 14 evaluates the framework and Chapt. 15 summarizes major results and
gives an outlook.

14.1 Proof-of-Concept Prototype

To demonstrate the technical feasibility of the presented concepts, this section introduces the
proof-of-concept prototype developed in the context of this thesis. First, Sect. 14.1.1 lists the
functional and technical requirements that were addressed in this context. Following this, Sect.
14.1.2 gives insights into the system architecture of this prototype and summarizes the core
technologies used to realize it. Finally, we illustrate end-user interfaces in Sect. 14.1.3.

14.1.1 Motivation

The main concepts presented in this thesis were implemented in a powerful proof-of-concept
prototype. It aims at demonstrating the practical feasibility of the PHILharmonicFlows frame-
work and evaluating its core concepts. In addition, sophisticated end-user interfaces were
realized to give an impression how users will perceive this framework.

In particular, the following functional requirements were addressed:

• Graphically defining data models, micro process types, macro process types, and autho-
rization tables.

• Enabling a "correctness-by-construction" -principle and extensive correctness checks in-
cluding a proper visualization of modeling errors.

313

14 Evaluation

• Enabling persistent storage of all created modeling artifacts (i.e., object and process
types) as well as application data (i.e., object and process instances).

• Automatically generating user interface components (i.e., overview tables, forms, and
worklists) based on the defined models.

• Implementing the operational semantics defined for micro and macro processes.

Further, the following technical requirements were considered when realizing the build- and
run-time environment of the PHILharmonicFlows framework:

• Ensuring a high degree of usability.

• Enabling scalability and high performance.

• Enabling short development times.

• Enabling extensibility and changeability.

We first realized mock-ups and investigated in user interface design [Wag10, Sch10]. After
implementing a first demonstrator of the prototype with Java [Prö11], we decided to switch
to C# due to a better support regarding the implementation of graph-based models. Further,
we simultaneously started with engineering the build-time [Bec12] and run-time components
[Sch12], and integrating them at a later stage [Spi13].

14.1.2 Architecture and Technology

The developed proof-of-concept prototype comprises a build- as well as a run-time environ-
ment (cf. Fig. 14.1). The build-time environment provides graphical user interfaces for defin-
ing data models, micro and macro process types, and user authorizations. In this context, a
"correctness-by-construction" is realized and correctness checks for the various models are
provided. All created models are stored in the build-time database. Before enacting object-
aware processes, the defined models need to be deployed to the run-time environment. For the
run-time database, an application schema is automatically generated based on the deployed
models. This database is then used to persistently store instance data. Opposed to the build-
time environment, which constitutes a single-user-system, the run-time environment is imple-
mented as web application that may be accessed concurrently by various users. Thereby, the
run-time environment provides generic implementations for automatically generating all user
interface components (i.e., overview tables, forms, and worklists) based on the defined data
and process models. It further comprises the logic required to correctly execute the micro and
macro process instances; i.e., it fully supports the operational semantics described in Part III.

The first version of the build-time environment was implemented using Eclipse RCP (i.e., Rich
Client Platform) and Java [Prö11]. Implementing graph-based models from scratch, however,
required high efforts. To reduce development efforts, therefore, we were looking for a framework
providing the basic functions for graph-based modeling editors. In this context, we evaluated
the JGraph framework and the Graphical Editing Framework (GEF). Opposed to JGraph, GEF
is well documented and easy to integrate with the Eclipse RPC. However, with GEF it was not
possible to effectively realize the designed usability concept [Wag10].

With the goal of improving usability, we started implementing a new software version using the
.NET Framework (i.e., C#) and Visual Studio. The latter enabled a faster development of a user

314

14.1 Proof-of-Concept Prototype

.NET Framework

MS SQL Server 2008

yFiles

C#

ASP.NET

WPF

XAML

Build-time Environment

Graphical Modeling

Correctness Rules

Run-time Environment

Operational Semantics

Instance DataType Data
Deployment

PHILharmonicFlows

Schema

generated

Application Schema

defines /

loads

reads /

writes
reads

generates User Interfaces

LinqLinq

Figure 14.1: Technologies used for the proof-of-concept prototype

interface that complies with the usability concept we designed. This became possible based on
WPF (i.e., Windows Presentation Foundation). Its selection was driven by its capability to use
the yFiles framework. The latter provides extensive features for modeling graphs. Furthermore,
WPF allows defining required user interface components in a declarative way based on XAML
(i.e., Extensible Application Markup Language). In addition, XAML allows separating design
and behavior. In turn, this enables the re-use of components for different tasks to reduce
overall development time.

The main components of the build-time environment are as follows (cf. Fig. 14.2):

• The build-time DB manager controls the database connection and provides methods to
insert, delete, and change database entries.

• The permission manager checks permissions and responsibilities (e.g., which attributes
may be accessed by the respective user).

• The consistency manager comprises classes for the modeling components (e.g., object
types, micro process types), verifies the modeling (i.e., "correctness-by-construction"),
and runs correctness checks.

315

14 Evaluation

• The view manager updates the editors grouped to different workspaces.

• The project manager opens, saves, and closes projects.

build-time DB manager

permission

manager

consistency

manager

view

manager

project

manager

sidebar workspaces dialogs

Figure 14.2: Architecture of the build-time environment

The run-time environment is based on ASP.NET (i.e., Active Server Pages), which is a server-
side web application framework for realizing dynamic web pages. The latter comprises user-
specific data controls. Both the data controls and the web page itself are modified using
stylesheets (CSS). With each user call, the web page is newly generated and adapted for
the respective browser (without requiring any plugins). Opposed to other server-side script
languages (e.g., PHP), which require programming of HTML pages, WPF pages need to be
created. The ASP compiler automatically generates a corresponding HTML page with embed-
ded javascript code. This way, it becomes possible to use existing .NET functionalities in the
context of a web application as well.

Finally, MS SQL Server 2008 is used for realizing the databases for the build- as well as the
run-time environment. We use Linq (Language-Integrated Query) to establish the database
connections. This way, it is not required to work with SQL statements, but rather with "get-" and
"set-functions". Hence, we can benefit from the advantages offered by object-orientation.

The prototype of the run-time environment comprises several components with different func-
tionalities (cf. Fig. 14.3):

• The run-time DB manager communicates with the database of the run-time environment
and manages instance data. Therefore, read and write access in provided.

• The build-time DB manager communicates with the database of the build-time environ-
ment and manages type data. Here, only read access is required.

• The process manager controls running micro and macro process instances.

• The form manager generates user forms based on object type definitions, permissions
and micro process instances.

• The permission manager is responsible for the correct integration of user roles; i.e., de-
pending on the currently activated states of the micro process instances, it controls which
users own which permissions at a certain point in time.

• The activity manager controls which functions may be applied to which object instances.

• The run-time manager is responsible for newly created object instances and newly as-
signed attribute values.

• The model manager maintains all models for which instances are currently in use.

316

14.1 Proof-of-Concept Prototype

run-time DB managerbuild-time DB manager

form manager

process managerpermission manager

operational semantics

model manager run-time manager

activity manager

s
e

s
s

io
n

 m
a

n
a

g
e

r

web pagesconfiguration settings

Figure 14.3: Architecture of the run-time environment

14.1.3 End-User View

We give an overview of the user interfaces provided by the developed proof-of-concept proto-
type. To ensure a high usability, we first investigated in user interface design and developed
an advanced usability concept for modeling object-aware processes with the build-time envi-
ronment [Wag10] as well as for enacting micro and macro process instances in the run-time
environment [Sch10]. All user interfaces ensure a consistent use of colors (i.e., yellow for nav-
igation, red for marking errors, blue for highlighting selections, and green for displaying open
tasks), symbols, and fonts.

Build-time Environment

The build-time environment is split into three main parts comprising a menu, a sidebar and a
workspace. The sidebar has been realized by applying the "accordion navigation" pattern to the
following areas: Data Structure (represented by a rectangle), Process Structure (represented
by an oval), and User Integration (represented by a triangle). In addition, each area comprises
sub-areas. When selecting an area (cf. Fig. 14.4A), it is expanded and highlighted using the
navigation color defined (i.e., yellow). Depending on the selected area or sub-area, additional
features are then displayed. For example, consider the zoom function depicted in Fig. 14.4B
or the information box depicted in Fig. 14.5A. Finally, the sidebar provides modeling elements
(cf. Fig. 14.4C and 14.5B), which may be dragged and dropped into the workspace for defining
respective models.

When defining a data model (cf. Fig. 14.4), required object types and user types respectively
can be dragged to the workspace and be assigned to different layers (cf. Fig. 14.4C). For
modeling object relations, two directions are provided (cf. Fig. 14.4D); i.e., a relation may
refer to an object type at a higher level (using direction "UP") or a lower level (using direction
"DOWN"). If this results in a cycle, the respective relation is automatically categorized as cycle
relation; i.e., resolvesCycle is set to true (cf. Def. 49). When selecting a particular object type
(cf. Fig. 14.4E), a table is displayed listing the attributes of the object type. Based on this table,
attribute types can be created, edited, or deleted (cf. Fig. 14.4F).

For each object type, a corresponding micro process type needs to be defined. This is illus-
trated in Fig. 14.5. For selecting an object type, the data structure can be displayed and used as
"Structure Compass" (cf. Fig. 14.5C). To distinguish a compass area from a normal workspace,
different background colors are used. While normal workspaces are colored white, compass

317

14 Evaluation

Figure 14.4: Data modeling in PHILharmonicFlows

areas are grey coloured. When selecting a particular object type (cf. Fig. 14.5D), the corre-
sponding micro process type is displayed at the bottom (cf. Fig. 14.5E).1 In this workspace,
states, micro steps, and micro transitions (including backward transitions) may be defined.

When defining a macro process type (cf. Fig. 14.6), in turn, it is associated with a set of
object types (cf. Def. 45). To enable this selection, the "Structure Compass" for navigating
within the defined data model is re-displayed (cf. Fig. 14.6A). Furthermore, when defining
macro step types and coordination components, additional information about the states of an
object type (as defined in the corresponding micro process type) is required. For this reason,
respective micro process types are dynamically displayed in the right panel of the compass
area (cf. Fig. 14.6B). To define a macro process type, first of all, the corresponding object
type must be selected (cf. Fig. 14.6C). Macro step types can then be dragged and dropped
to the workspace by selecting them from the sidebar (cf. Fig. 14.6D). In addition, they may
be connected using micro transition types. The latter are automatically categorized depending
on the relationships of the referred object types (cf. Def. 53). In this context, consider the
different colors of the macro transition types as illustrated in Fig. 14.6. Dialogs for specifying
the required coordination components are provided when selecting a particular macro transition
type.

We omit a description of additional features, like role definition and permission assignment.

Run-time Environment

The user interface of the run-time environment comprises three main parts: a header (cf. Fig.
14.7A) displaying login information, a selection area (cf. Fig. 14.7B) implemented based on

1Note that for each object type a minimal micro process type, comprising a start as well as an end state, is
automatically generated.

318

14.1 Proof-of-Concept Prototype

Figure 14.5: Micro process modeling in PHILharmonicFlows

the "accordion navigation" pattern, and a main workspace (cf. Fig. 14.7C) displaying overview
tables and worklists. Regarding the selection area, a choice among three different user views
can be made: task, data, and monitoring.

The data-oriented view comprises a panel for selecting the desired object type on the left (cf.
Fig. 14.7D) and the overview table listing the object instances (for which the respective user is
authorized) on the right (cf. Fig. 14.7E). In addition, the right panel contains a view illustrating
the context of the selected object type; i.e., its related object types (cf. Fig. 14.7F). Using the
data-oriented view, users can search for object types (cf. Fig. 14.7G), filter object instances
(cf. Fig. 14.7H), create new object instances (cf. Fig. 14.7I), and execute optional as well as
mandatory activities. Thereby, mandatory activities are listed in the row of the respective object
instance (cf. Fig. 14.7J), while optional ones are displayed separately in an instance-specific
context menu (cf. Fig. 14.7K). In addition, batch execution is possible (cf. Fig. 14.7L). When
selecting a particular object instance, it is possible to navigate through the data structure. In
this context, related object instances are displayed below in additional overview tables (cf. Fig.
14.7M).

The process-oriented user view (i.e., tasks) is illustrated in Fig. 14.8. It is based on a matrix
which represents micro process types and corresponding states as rows, and tasks (see below)
as columns (cf. Fig. 14.8A). Each cell of the matrix contains a number counting all object
instances (or micro process instances respectively) of the respective category.
The different kinds of task are as follows:

• Todo: The respective user either has to

a) set a mandatorily required object attribute value (cf. Sect. 8.4),

319

14 Evaluation

Figure 14.6: Macro process modeling in PHILharmonicFlows

b) create a corresponding lower-level object instance, if the minimum cardinality has
not been reached yet (cf. Sect. 9.1),

c) commit a state change (cf. Sect. 8.5), or

d) execute mandatory black-box activities (cf. Sect. 9.2).

• Responsible: The respective user may track states of the micro and macro instances, he
or she is responsible for (cf. Sect. 12.9).

• Error: The respective user either has to

a) check inconsistent object instances (cf. Sect. 13.2),

b) handle bypassed micro process instances (cf. Sect. 12.9), or

c) dissolve a deadlock (cf. Sect. 13.2).

Based on this matrix, a user may select a cell belonging to a micro process type or one of its
states as well as a desired task (cf. Fig. 14.8B). Following this, a corresponding overview table
is displayed in the bottom, listing all object instances of the selected category (cf. Fig. 14.8C).
Such an overview table can be considered as worklist comprising a number of object instances
for which (the same) mandatory activities must be executed. Note that batch execution is
possible in this context as well (cf. Fig. 14.8D).

Regarding the monitoring view (cf. Fig. 14.9), object instances representing a macro process
instance (of a selected macro process type) are listed in an overview table (cf. Fig. 14.9A).
In this context, activities for handling macro process instances (and micro process instances
respectively) are provided; e.g., consider the activity for skipping a micro process instance

320

14.1 Proof-of-Concept Prototype

Figure 14.7: Data-oriented user view

in Fig. 14.9B or for dissolving deadlocks in Fig. 14.9C. In addition, using the popup menu
displayed in Fig. 14.9D, users can navigate to micro process instances related to the currently
selected macro process instance. When selecting a macro process instance (cf. Fig. 14.9E),
a special monitoring view (cf. Fig. 14.9F) is displayed visualizing it. A macro step may be
expanded (cf. Fig. 14.9G) for displaying the various instance counters (cf. Def. 59). For
example, counter "in" indicates for how many micro process instances the respective state is
currently activated. When selecting a counter, an overview table is generated that contains the
corresponding micro process instance. This way, it becomes possible to navigate through the
whole process structure.

Furthermore, based on macro transitions, deadlocks can be visualized (cf. Fig. 14.9H). When
selecting a macro transition, a special view is generated displaying the invoked micro process
instances together with their coordination components. Based on this view, features for dissolv-
ing deadlocks can be provided (cf. Sect. 13.2).

14.1.4 Summary and Discussion

The developed prototype shows the technical feasibility of the concepts presented in Part III.
Moreover, it helps to visualize the concepts in a comprehensible and consistent way. Thus, our

321

14 Evaluation

Figure 14.8: Process-oriented user view

preparing investment into the design of a sophisticated user interface has paid off [W10, S10].
The prototype is still under development. In further work, we will use it to realize additional
features and concepts (e.g., schema evolution [CKR12a]).

14.2 Practical Application

This section gives additional impressions on our proof-of-concept prototype and illustrates its
application to characteristic cases to validate the concepts developed. This way, we aim at a
verification of the usability of the PHILharmonicFlows approach in practice. For this purpose,
PHILharmonicFlows is applied to the medical domain (cf. Sect. 14.2.1), an extension course
proposal (cf. Sect. 14.2.2), a vacation request (cf. Sect. 14.2.3), and a house building scenario
(cf. Sect. 14.2.4). Finally, we discuss the benefits of our framework as well as the lessons
learned along these process scenarios in Sect. 14.2.5.

322

14.2 Practical Application

Figure 14.9: Monitoring

14.2.1 Medical Domain

As healthcare scenario we consider a breast cancer diagnosis process as described in the
process handbook of a Women’s hospital (see [CKR12b] for details).

The breast cancer diagnosis process comprises an anamnesis, a physical examination (in-
cluding the collection of symptoms), a set of medical examinations (e.g., MRI, mammography,
blood analysis), and a tumor biopsy. During the anamnesis the doctor asks the patient specific
questions; e.g., about her history of diseases, family diseases, or current medication. The doc-
tor examines the patient and checks her for the presence of any symptom. The doctor asks
the patient about breast nodules and performs a physical examination in order to confirm or
exclude the symptoms. If the symptoms brought up by the patient are not confirmed during
the physical examination, the presence of the tumor will be denied. In this case the diagnosis
process is finished. Otherwise, the doctor decides about a battery of examinations based on
the symptoms confirmed. Examinations required to detect the presence of a breast tumor or
to exclude it are mammography and MRI examination. A mammography must be scheduled by
the secretary of the radiology department. At the day of the examination, the mammography is
performed and the resulting images become available. The images from both examinations are
then analyzed by a specialized doctor of the radiology department and added to the respective

323

14 Evaluation

medical reports. As opposed to the mammography examination, for which the equipment does
not cause claustrophobia, during the MRI examination the patient may have a case of elevated
anxiety due to the enclosure of the MRI equipment. In such cases, the radiology specialist,
responsible for the examination, must decide whether or not the patient shall be sedated before
continuing with the procedure. In the meanwhile, the doctor may request further examinations;
e.g., another MRI examination or additional blood tests. Otherwise, if the existence of a tumor is
confirmed, the doctor may want to biopsy this mass in order to confirm the malignancy of the tu-
mor. In this case, however, the consent of the patient is required. The biopsy report is returned
to the doctor who will inform the patient about the malignancy status of the tumor. Finally, the
diagnosis process is finished as positive, confirming the presence of a breast tumor.

The breast cancer diagnosis process as whole interacts with numerous smaller processes like
MRI examinations or mammographies. The execution of the diagnosis process depends on
the results of various examinations; e.g., data from the MRI examination is needed. Some
examinations are mandatory (e.g., anamnesis, patient information), while others are optional
(e.g., MRI, mammography, blood analysis, and tumor biopsy); i.e., it depends on the decision
of the responsible doctor which examinations shall be executed. For example, a radiology
specialist decides whether or not to sedate a patient during an MRI examination. Like most
healthcare processes, the sketched scenario is characterized by a large number of medical
forms to be filled by authorized medical staff (e.g., doctors, nurses, and laboratory staff) with
information relevant for patient treatment. For example, consider the information obtained when
interviewing the patient about her anamnesis.

We illustrate how are modeled this scenario using PHILharmonicFlows.

Data Model. The data model of the breast cancer diagnosis process is depicted in Fig. 14.10.
There is one object type for each of the phases of the diagnosis process. Thereby, the cardinal-
ity of object type anamnesis in relation to object type diagnosis corresponds to 1; i.e., there must
be exactly one instance of object type anamnesis for each diagnosis instance. Opposed to this,
the existence of an instance of object type mammography is not mandatory for a given diagnosis

instance. Furthermore, it is up to the respective doctor to initiate a specific number of instances
of this examination as long as cardinality constraints are fulfilled.

Micro Process Types. An example of a micro process type is depicted in Fig. 14.11. In order
to request a mammography, an authorized user must set the order date; i.e., to complete micro
step order date a value needs to be assigned to the corresponding attribute. In our example,
the micro transition type between state types requested and scheduled is explicit. This ensures
that the doctor may still review the examination request before sending it to the secretary of
the radiology department. In turn, in state scheduled, the secretary must fill attributes scheduled

date, doctor, and room. Further she has to decide when to notify the patient about the scheduled
appointment; i.e., the subsequent state patient notified will only be activated if this is explicitly
confirmed by the secretary.

Fig. 14.12 shows a fragment of the MRI micro process type; here the radiology specialist must
decide whether or not to sedate the patient.

Macro Process Type. The macro process type begins with the creation of an instance of
object type diagnosis, which triggers the creation of the micro process instance. Then, object
type anamnesis is instantiated. During patient examination, symptoms are collected, which are then
confirmed after the physical examination has taken place. If the symptoms are not confirmed,
the diagnosis will be finished as negative, indicating that no tumor was found. Otherwise, the

324

14.2 Practical Application

Figure 14.10: Breast cancer data model

Figure 14.11: Mammography micro process type

Figure 14.12: MRI micro process type

325

14 Evaluation

diagnosis process continues with the request of further examinations (e.g., mammography, blood

analysis, MRI, etc.).

Figure 14.13: Breast cancer macro process type

Overall, the methodology provided by PHILharmonicFlows ensures that each procedure (e.g.,
anamnesis, primary examination, mammography, etc.) is modeled from a data-oriented per-
spective (i.e., object types) as well as from a process-oriented one (i.e., micro process types).

14.2.2 Extension Course Proposal

Another scenario to which we applied the development methodology deals with proposing ex-
tension courses at a university; i.e., courses for professionals that aim at refreshing and updat-
ing their knowledge in a certain area of expertise. To propose an extension course, the course
coordinator must create a project describing it. The latter must be approved by the faculty co-
ordinator as well as the extension course committee. The result of this case study is discussed
in detail in [CKR12a].

The course coordinator creates an extension course project using a form. In this context,
he must provide details about the course, like name, start date, duration, and description.
Following this, professors may start creating the lectures for the extension course. In turn, each
lecture must have detailed study plan items, which describe the activities of the lecture. To each
lecture, (external) invited speakers may be assigned. The latter either may accept or reject
the invitation. After receiving the responses for these invitations and creating the lectures, the
coordinator may request an approval for the extension course project. First, it must be approved
by the faculty director. If he wants to reject it, he must provide a reason for his decision and the
course must not take place. Otherwise, the project is sent to the extension course committee,
which will evaluate it. If there are more rejections than approvals, the extension course project

326

14.2 Practical Application

is rejected. Otherwise, it is approved and hence may take place. In the following, we illustrate
the modeling of this scenario using PHILharmonicFlows.

Figure 14.14: Extension course data model

Data Model. Fig. 14.14 illustrates
the data model. Object types lecture

and decision committee refer to object
type extension course. In turn, object
types invitation and study plan item

refer to lecture. At run-time, these
relations allow for a varying num-
ber of interrelated object instances
whose processing must then be co-
ordinated.

Micro Process Type. Fig. 14.15
shows the micro process type re-
lated to object type extension course.
While the extension course is in state
under creation, the course coordina-
tor may set the attributes the corre-
sponding micro step types refers to
(e.g., name, start date, and faculty).
Following this, a user decision is
made in state under approval; i.e., the
faculty director either approves or rejects the extension course. If the value of attribute decision

corresponds to rejected, a value for attribute reason is required.

Figure 14.15: Extension course micro process type

The macro process type for extension courses is depicted in Fig. 14.16.

Figure 14.16: Extension course macro process type

327

14 Evaluation

14.2.3 Vacation Request

This case relates to vacation requests [KR11b], i.e., it deals with short running processes.
Therefore, we use it to provide a more sophisticated example concerning the modeling of micro
processes (cf. Fig. 14.17).

Figure 14.17: Vacation request micro process type (according to [KR11b])

Micro process type. An employee applying for a leave must specify a start as well as an end
date. In this context, two micro steps are introduced to ensure that the start data lies in the
future and the end data follows the start date; both micro steps are assigned to the same state.
Following this, the employee submits her request to her substitute who must decide whether he
is willing to take over. If he agrees the request is submitted to the manager of the employee.
She must decide whether to agree with the request or to refuse it. If the substitute is not willing
to take over, the employee may decide whether to re-submit the request or cancel it. The latter
is also possible for already agreed upon requests.

14.2.4 House Building

This scenario deals with a complex, long running process that involves numerous object types.
For this reason, we use it for evaluating the modeling of macro processes in more detail
[KR11b]. Figs. 14.18, 14.19, and 14.20 depict extracts of the data model as well as the macro
process type we created for this case.

Data model. As illustrated in Fig. 14.18, each house is built on a plot belonging to a town.
The plot must be bought; i.e., a sale contract between the town and builder is required. The
house is built up on basis of a construction plan, which must be approved by the town. It further
consists of brickwork comprising a base plate, stonework, a roof truss, and a frame carpentry.
In order to build-up higher floors and the roof, a scaffold is required. Finally, the interior finish
comprising installation, electrican stuff, painters and so on.

Macro process type. Consider the corresponding macro process type depicted in Fig. 14.19.
Before the brickwork can be started, the sale contract must be signed and the construction plan
be approved. The sub-parts belonging to the brickwork must be constructed in sequence within
a narrow time frame; i.e., the construction of a particular sub-part depends on the construction
of other subparts (of different type). In particular, roof construction may only be started when
the frame carpentry has finished the sub-structure of the roof (cf. Fig. 14.20). Consequently,
the macro transitions which connect the macro steps relating to these individual sub-parts refer
to transverse relationships.

328

14.2 Practical Application

Figure 14.18: House building data model

Figure 14.19: House building macro process type extraction 1

Figure 14.20: House building macro process type extraction 2

14.2.5 Summary and Discussion

As another use case not discussed in detail in this thesis, consider "Bricolage", an online shop
which enables business owners to sell their products. This scenario is discussed in [Wag10].
The considered process includes several steps ranging from the selling of products to their
delivery to customers.

329

14 Evaluation

Applying our proof-of-concept prototype and the developed concepts to the above process sce-
narios has proven that our basic modeling approach works well. Amongst others, it confirmed
that the unambiguous granularity of processes allows for an unambiguous modeling methodol-
ogy. The modeling of micro processes, which comprise micro steps defined in terms of object
attributes, enabled the required data-based modeling. The ordering of attributes as well as
their grouping to states further turned out to be very intuitive for modelers. Process coordina-
tion based on object types and their corresponding states has proven to be extremely useful
as well. In particular, it provided an adequate and comprehensible level of abstraction to users.
The "flat" way of modeling processes additionally facilitated modeling. Finally, the different kinds
of relationships offered in respect to process coordination contributed to hide the complexity of
the actual process structure from both modelers and end users.

At run-time, the integrated view on processes and data offers numerous benefits. For exam-
ple, state-based process monitoring allows for a more natural and intuitive view on business
processes for end-users. Since activities are not pre-fixed and are not rigidly associated with
one process, a more flexible process execution becomes possible. First, through the execution
of optional activities authorized users may accomplish certain actions up-front, i.e., before they
are mandatorily required in the course of process execution. Similarly, completed activities may
be re-executed if desired. Second, batch activities improve the processing of a large number
of object instances.

However, our evaluation has also revealed some limitations of our approach to be tackled in fu-
ture work. For example, the historization of attribute values and state changes was considered
as important feature for enabling proper process traceability. In addition, advanced features like
time events should be supported as well. Furthermore, different specializations of an object
type may require different models for related micro processes; i.e., we must cope with process
variability in the context of object-aware processes as well (see [HBR10a] and [HBR10b] for
how process variability is handled in traditional approaches). For example, job applications be-
longing to different locations may require different process definitions. Other scenarios, in turn,
required an overlap and synchronization of different macro process instances. For example,
consider the interdependencies between purchase orders and warehousing processes. Fur-
ther, this thesis focuses on the modeling and the execution phase in process lifecycle (includ-
ing exception handling). Additional challenges, however, emerge from the support of ad-hoc
changes during run-time as well as from schema evolution. Regarding the latter, major require-
ments are discussed in [CKR12a]. In this context, the evolution of data models needs to be
compliant with the one of the respective process models.

330

15
Summary and Outlook

Providing integrated access to business processes, business data, and business functions for
users constitutes a fundamental goal of any business application. While upcoming tasks must
be assigned to the right actors at the right point in time, users should be able to flexibly ac-
cess relevant business information and business functions at any point in time presuming they
have proper authorizations for this. On one hand, business information should include informa-
tion about business processes, on the other, adequate context information is required during
process execution.

Traditional PrMS allow for a strict separation of concerns; i.e., data, functions, and processes
are managed by different kinds of information systems. In turn, this makes it almost impossible
to provide integrated and consistent access to these different artifacts. For exactly this reason,
many processes supported by existing business applications (e.g., ERP systems) are still hard-
coded; i.e., their implementation requires programming efforts and due to the missing generic
process support it is not possible to automatically generate worklists and other artifacts during
run-time.

This thesis has shown that, based on a tighter integration of the different business perspectives,
many of the several limitations of existing PrMS may be overcome. In particular, such an
integration will help to provide more generic business software being able to automatically and
dynamically generate end-user and application components at run-time based on the specified
process and data mmodels.

15.1 Contribution

This thesis has conducted both natural research and design research, and thus made two
major contributions. First, it has been shown that "object-awareness" is fundamentally required
in order to provide generic support for the business processes, which are usually hard-coded

331

15 Summary and Outlook

in existing business application. In particular, we identified the major characteristics of object-
aware processes in this context. Second, we developed the PHILharmonicFlows framework,
which targets at a comprehensive support of object-aware processes.

15.1.1 Object-awareness

As shown in this thesis, the relationships between the different business perspectives have not
been well understood so far. Hence, as a first major contribution of this thesis, we conducted
natural research in order to identify the mutual relationships that exists between these perspec-
tives. For this purpose, we elaborated the key challenges for advanced process management,
which we denote as object-aware process management. By introducing the notion of object-
awareness, a comprehensive understanding of the relationships that exist between business
processes, data, functions, and users is provided.

In summary, object-awareness can be described by the following five fundamental characteris-
tics:

1. Object behavior: The behavior of the business objects involved in a business process
must be taken into account during process execution.

2. Object interactions: Interactions between business objects must be adequately handled;
i.e., the behavior of individual objects must be coordinated with the one of related objects.

3. Data-driven execution: Since the progress of a business process mainly depends on
available business objects and their attribute values, process execution should be ac-
complished in a data-driven manner.

4. Integrated access: Authorized users must be able to access and manage process-related
business objects at any point in time (presuming they have proper authorizations for this).

5. Flexible activity execution: Activities should be executable at different levels of granularity.
While a particular user may want to work on a certain object instance, another one may
desire to process a number of related object instances in one go.

Our analyzes revealed that contemporary PrMS have not achieved the technological maturity
yet for adequately supporting these fundamental characteristics in an integrated and consis-
tent way. Instead, a more advanced process modeling paradigm and methodology is required
which enables a tight integration of all business perspectives. Furthermore, process execution
should no longer be solely activity-driven. Instead, a data-driven execution paradigm, combined
with activity-oriented aspects, is required. Finally, since activities may have flexible granular-
ity, individual activities must no longer coincide with particular process steps like in traditional
PrMS.

15.1.2 The PHILharmonicFlows framework

As second major contribution of this thesis, we developed the PHILharmonicFlows framework.
This framework provides a comprehensive approach for supporting unstructured, data-driven
processes, as they can be found in many contemporary business applications. The fundamen-
tal idea of the framework is to provide a generic component that allows realizing similar features

332

15.1 Contribution

as can be found in hard-coded business applications in a much more effective and efficient
manner on one hand, and which benefits from the approach taken by PrMS on the other. The
framework enables data- as well as process-oriented views in an integrated and consistent way.
Using generic components, these views as well as form-based activities can be automatically
generated at run-time. Opposed to existing approaches targeting at an improved integration of
processes and data, PHILharmonicFlows covers all characteristics of object-awareness in an
integrated and comprehensive way. Further, it enables process modelling and provides a pre-
cise and well-defined operational semantics for executing business processes at different levels
of granularity. Based on the formal semantics provided, in addition, end-user components can
be automatically generated at run-time. Besides worklists and overview tables, PHILharmon-
icFlows considers the high number of individual user forms. This way, activity execution is
decoupled from particular process steps and process instances respectively. In turn, an imple-
mentation is required for black-box activities, which allow for more complex computations or the
integration of legacy applications.

As a prerequisite for any integrated access, a data model must be provided. With PHILhar-
monicFlows it becomes possible to define object types, object attributes, and object relations.
Regarding the latter, minimum and maximum cardinalities may be assigned. To enable process
support, PHILharmonicFlows enforces a well-defined modeling methodology, which differenti-
ates between micro and macro processes to cover both object behavior and object interactions.
Regarding object behavior, existing approaches can be divided into two groups. The first one
allows for a state-based modeling, combined with an activity-driven execution paradigm. Op-
posed to this, the second group follows a data-driven execution paradigm, but without consider-
ing states. The PHILharmonicFlows approach applies the well established concept of modeling
object behavior in terms of states and state transitions. Opposed to existing work, however, a
mapping between attribute values and objects states is established. This ensures compliance
between them and enables a data-driven process execution at run-time. Thus, for the first time,
a state-based modeling approach is combined with a data-driven execution paradigm.
In particular, for each object type a corresponding micro process type comprising a number of
states needs to be defined. Each state comprises a number of micro steps. In turn, a micro
step refers to an attribute and describes an atomic action for writing it. By connecting micro
steps with micro transitions, we obtain their default execution order. At run-time, a micro step
is completed when a value becomes available for the corresponding attribute. While states are
used to coordinate the processing of an object instance between different users, micro steps
capture the internal logic of activities.
To enable optional activities, a sophisticated authorization table is automatically generated for
each object type. Based on it, different permissions for reading and writing attribute values as
well as for creating and deleting object instances are granted to user roles. Thereby, PHILhar-
monicFlows considers the different states as well. Overall, object attributes, user permissions,
and the micro logic defined, build the foundation for automatically generating user forms at run-
time.
Whether or not subsequent states may be reached also depends on the execution of other pro-
cess instances; i.e., micro process instances of the same and of different type must be synchro-
nized with each other. Regarding process synchronization mechanisms, PHILharmonicFlows
provides ground-braking concepts. First of all, process coordination is based on states rather
implemented based on message exchanges. On one hand, this allows for the asynchronous
execution of individual process instances, on the other, sophisticated aggregation concepts,
which consider the cardinalities existing between object instances, are applied. Moreover,

333

15 Summary and Outlook

PHILharmonicFlows hides the complexity of large process structures from modelers as well
as from end-users to a large extend. For this purpose, macro processes can be modeled in
a flat and compact way, comprising process steps and process transitions as known from ex-
isting process modeling paradigms. As opposed to traditional process modeling approaches,
where process steps are defined in terms of activities, a macro step always refers to an object
type together with a corresponding state. To take the dynamically evolving number of object
instances as well as their asynchronous execution into account, for each macro transition, a
corresponding coordination component needs to be defined. Based on coordination compo-
nents, aggregation conditions as well as asynchronous process execution can be realized.

15.2 Benefit

PHILharmonicFlows enables a very flexible integration of business data, functions, and pro-
cesses, and thus overcomes many of the limitations known from activity-centered PrMS. Logi-
cally, the latter rely on a number of pre-defined processing states. Thereby, the defined control
flow and the activities executed determine which of these states may be reached. In turn, all
other processing states are prohibited by the defined process model (cf. Fig. 15.1a).

pre-defined processing state

prohibited processing state

optional processing state

activity

pre-defined processing state

prohibited processing state

optional processing state

activity

a b

Figure 15.1: Process execution in (a) traditional and (b) object-aware PrMS

Opposed to this rigid behavior, object-aware processes, as supported by PHILharmonicFlows,
allow for optional processing states, which enable users to access and manage business data
independent from actual process execution (cf. Fig. 15.1b). In this context, it becomes possible
to apply different ways of working as well as activities of different granularity to reach the overall
process goal. Thus, users may freely choose their preferred work practice. Particularly, a
knowledge-driven process execution enabling better user assistance is provided; i.e., while a
certain user may prefer doing a lot of work in the context of a particular activity (cf. Fig. 15.2a),
another one may prefer performing several activities for achieving the same results (cf. Fig.
15.2b).

Accordingly, the activities actually performed may vary from process instance to process in-
stance (cf. Fig. 15.3). Particularly, this fosters the execution of unstructured or semi-structured

334

15.2 Benefit

pre-defined processing state

prohibited processing state

optional processing state

activity

a

pre-defined processing state

prohibited processing state

optional processing state

activity

b

Figure 15.2: Choosing preferred work practices

process instances. The latter is achieved through a precise and intuitive methodology, which
allows for the harmonized modelling of processes. The tight integration with corresponding
business data leads to more comparable process models. Finally, the tight integration of busi-
ness data and the data-driven execution paradigm allows ensuring compliance between the
state of data objects and the progress of the process. Since it can be controlled, which context
information is available for a particular user, the "context tunnelling" problem can be avoided.

pre-defined processing state

prohibited processing state

optional processing state

activity

pre-defined processing state

prohibited processing state

optional processing state

activity

Figure 15.3: Varying execution of process instances

335

15.3 Outlook

This thesis has covered the basic relationships between business processes, business func-
tions, and business data. Thereby, it has focused on the main stages of the process lifecycle;
i.e., process modeling and execution. In future work, we will extend our framework by address-
ing other advanced issues related to object-aware process management (cf. Fig. 15.4); e.g.,
historization, traceability, process variability, and process flexibility (including ad-hoc changes).
Another challenging issue is to generate different process perspectives based on one and the
same process by taking the current context of the user into account as well. In addition, it
should be satisfied that process execution is compliant with business rules as discussed in the
context of imperative approaches [LKRM+10, LRMD10]. Finally, we are currently working on
the controlled evolution of data and process models [CKR12b, CKR12a].

diagnosis

p
ro

c
e

s
s

d
e

s
ig

n
p

ro
c

e
s

s

e
n

a
c

tm
e

n
t

implementation

configuration

historization

process variability

ad-hoc changes

process perspectives

process variability

evolution of data and

process models

traceability

generic services

like emailing, printing, etc.

Figure 15.4: Further issues

Overall, we will continue working on the PHILharmonicFlows framework to realize a more flex-
ible process management technology that allows performing daily work in a more natural and
intuitive way.

Bibliography

[Ath02] Pallas Athena. Flower User Manual. Pallas Athena, 2002.

[BBU99] J. Barkley, K. Beznosov, and J. Uppal. Supporting Relationships in Access Con-
trol Using Role Based Access Control. In Proceedings of the fourth ACM Work-
shop on Role-based Access Control (RBAC ’99), pages 55–65. ACM, 1999.

[Bec12] H. Beck. Implementierung einer Komponente zur Modellierung von Mikro-
Prozessen in einem datenorientierten Prozess- Management-System. Diploma
thesis, Ulm University, 2012.

[Ber98] E. Bertino. Data Security. Data and Knowledge Engineering, 25(1-2):199–216,
1998.

[BFA99] E. Bertino, E. Ferrari, and V. Atluri. The Specification and Enforcement of Autho-
rization Constraints in Workflow Management Systems. ACM Transactions on
Information and System Security, 2(1):65–104, 1999.

[BGH+07] K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su. Towards Formal Analysis
of Artifact-centric Business Process Models. In Proceedings of the 5th interna-
tional Conference on Business Process Management (BPM’07), pages 288–304.
Springer-Verlag, 2007.

[BHM01] L. Brehm, A. Heinzl, and M. Markus. Tailoring ERP Systems: A Spectrum of
Choices and their Implications. In Proceedings of the 34th Annual Hawaii Inter-
national Conference on System Sciences (HICSS ’01), pages 3–6. IEEE Com-
puter Society, 2001.

[BHS09] K. Bhattacharya, R. Hull, and J. Su. A Data-Centric Design Methodology for
Business Processes, pages 503–531. IGI Global, 2009.

[Boe86] B. Boehm. A Spiral Model of Software Development and Enhancement. SIG-
SOFT Software Engineering Notes, 11(4):14–24, 1986.

[Bot02] R. Botha. CoSAWoE - A Model for Context-sensitive Access Control in Workflow
Environments. PhD thesis, Rand Afrikaans University, 2002.

[BRJ98] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison Wesley Longman Publishing Co., Inc., 1998.

[CH09] D. Cohn and R. Hull. Business Artifacts : A Data-centric Approach to Modeling
Business Operations and Processes. IEEE Data Engineering Bulletin, pages
3–9, 2009.

337

[CKLY98] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri Nets
from Finite Transition Systems. IEEE Transactions on Computers, 47(8):859–
882, 1998.

[CKR12a] C. M. Chiao, V. Künzle, and M. Reichert. Schema Evolution in Object and
Process-Aware Information Systems: Issues and Challenges. In 1st Int. Work-
shop on Data- and Artifact-centric BPM (DAB’12), BPM’12 Workshops, volume
132 of LNBIP, pages 328–339. Springer, 2012.

[CKR12b] C. M. Chiao, V. Künzle, and M. Reichert. Towards Object-Aware Process Sup-
port in Healthcare Information Systems. In 4th International Conference on
eHealth, Telemedicine, and Social Medicine (eTELEMED’12), pages 227–236.
IARIA, 2012.

[Cod90] E. F. Codd. The Relational Model for Database Management. Addison-Wesley
Longman Publishing Co., Inc., 1990.

[CV11] M. Comuzzi and I. Vanderfeesten. Product-Based Workflow Design for Moni-
toring of Collaborative Business Processes. In Proceedings of the 23rd Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE 2011),
volume 6741 of LNCS, pages 154–168. Springer Berlin, 2011.

[DD97] C. J. Date and H. Darwen. A Guide to the SQL Standard. Addison-Wesley
Longman Publishing Co., Inc., 1997.

[DH12] U. Döbrich and R. Heidel. Datengetriebene Programmsysteme. Informatik Spek-
trum, 35(3):190–203, 2012.

[DHV11] E. Damaggio, R. Hull, and R. Vaculín. On the Equivalence of Incremental and
Fixpoint Semantics for Business Artifacts with Guard-Stage-Milestone Lifecycles.
In Proceedings of the 9th International Conference on Business Process Man-
agement (BPM’11), pages 396–412. Springer-Verlag, 2011.

[DHV13] E. Damaggio, R. Hull, and R. Vaculín. On the Equivalence of Incremental and
Fixpoint Semantics for Business Artifacts with Guard-Stage-Milestone Lifecycles.
Information Systems, 38(4):561–584, 2013.

[Dij76] E. Dijkstra. A Discipline of Programming. Prentice Hall PTR, 1st edition, 1976.

[Dor02] D. Dori. Object-Process Methodology. Springer, 2002.

[DR09] P. Dadam and M. Reichert. The ADEPT Project: A Decade of Research and De-
velopment for Robust and Flexible Process Support - Challenges and Achieve-
ments. Computer Science - Research and Development, 23(2):81–97, 2009.

[DRRM11] P. Dadam, M. Reichert, and S. Rinderle-Ma. Prozessmanagementsysteme: Nur
ein wenig Flexibilität wird nicht reichen. Informatik-Spektrum, 34(4):364–376,
2011.

[Dru67] F. Drucker. The Effective Executive. Harper Collins, London, 1967.

[Dvt05] M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hofstede. Process-Aware In-
formation Systems: Bridging People and Software through Process Technology.
Wiley, 2005.

[ER89] A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures - Part 1 and Part 2.
Acta Informatica, 27(4):315–368, 1989.

[Esh02] R. Eshuis. Semantics and Verification of UML Activity Diagrams for Workflow
Modeling. PhD thesis, University of Twente, 2002.

[FK92] D. Ferraiolo and R. Kuhn. Role-based Access Control. In In 15th NIST-NCSC
National Computer Security Conference, pages 554–563, 1992.

[FLM+09] D. Fahland, D. Lübke, J. Mendling, H. Reijers, B. Weber, M. Weidlich, and S. Zu-
gal. Declarative versus Imperative Process Modeling Languages: The Issue
of Understandability. In Enterprise, Business-Process and Information Systems
Modeling, volume 29 of LNBIP, pages 353–366. Springer Berlin Heidelberg,
2009.

[FMR+10] D. Fahland, J. Mendling, H. Reijers, B. Weber, M. Weidlich, and S. Zugal. Declar-
ative versus Imperative Process Modeling Languages: The Issue of Maintainabil-
ity. In Business Process Management Workshops, volume 43 of LNBIP, pages
477–488. Springer Berlin Heidelberg, 2010.

[Fra10] D. S. Frankel. Model Driven Architecture (OMG): Applying MDA to Enterprise
Computing. Wiley, 2010.

[GBS07] C. E. Gerede, K. Bhattacharya, and J. Su. Static Analysis of Business Artifact-
centric Operational Models. In Proceedings of the IEEE International Conference
on Service-Oriented Computing and Applications (SOCA ’07), pages 133–140.
IEEE Computer Society, 2007.

[Ges10] D. Gessenharter. Extending The UML Semantics For A Better Support of Model
Driven Software Development. In Proceedings of the 2010 International Confer-
ence on Software Engineering Research & Practice (SERP’10), pages 45–51.
CSREA Press, 2010.

[GR92] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Mor-
gan Kaufmann Publishers Inc., 1992.

[GRv08] C. W. Guenther, M. Reichert, and W. M. P. van der Aalst. Supporting Flexible
Processes with Adaptive Workflow and Case Handling. In 3rd IEEE Workshop
on Agile Cooperative Process-aware Information Systems (ProGility’08), pages
229–234. IEEE Computer Society Press, 2008.

[GS07] C. E. Gerede and J. Su. Specification and Verification of Artifact Behaviors in
Business Process Models. In Proceedings of the 5th International Conference
on Service-Oriented Computing (ICSOC ’07), pages 181–192. Springer-Verlag,
2007.

[HBR10a] A. Hallerbach, T. Bauer, and M. Reichert. Capturing Variability in Business Pro-
cess Models: The Provop Approach. Journal of Software Maintenance and Evo-
lution: Research and Practice, 22(6-7):519–546, 2010.

[HBR10b] Alena Hallerbach, Thomas Bauer, and Manfred Reichert. Configuration and
Management of Process Variants, pages 237–255. Springer, 2010.

[HDD+11] R. Hull, E. Damaggio, R. De Masellis, F. Fournier, M. Gupta, F. T. Heath, S. Hob-
son, M. Linehan, S. Maradugu, A. Nigam, P. N. Sukaviriya, and R. Vaculin. Busi-
ness Artifacts with Guard-Stage-Milestone Lifecycles: Managing Artifact Interac-
tions with Conditions and Events. In Proceedings of the 5th ACM International
Conference on Distributed Event-based System (DEBS ’11), pages 51–62. ACM,
2011.

[HL99] C. P. Holland and B. Light. A Critical Success Factors Model for ERP Implemen-
tation. IEEE Software, 16(3):30–36, 1999.

[HMPR04] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design Science in Information
Systems Research. MIS Quarterly, 28(1):75–105, 2004.

[HTG12] N. Haddar, M. Tmar, and F. Gargouri. Implementation of a Data-driven Workflow
Management System. In IEEE 15th International Conference on Computational
Science and Engineering (CSE’12), pages 111–118, 2012.

[Hul08] R. Hull. Artifact-Centric Business Process Models: Brief Survey of Research
Results and Challenges. In Proceedings of the OTM 2008 Confederated In-
ternational Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008. Part II
on On the Move to Meaningful Internet Systems (OTM ’08), pages 1152–1163.
Springer-Verlag, 2008.

[HW04] J. Hu and A. C. Weaver. A Dynamic, Context-Aware Security Infrastructure for
Distributed Healthcare Applications. In Proc. 1st Workshop on Pervasive Privacy
Security, Privacy, and Trust (PSPT’04), 2004.

[K1̈1] V. Künzle. Towards a Framework for Object-Aware Process Management. In 1st
Int’l Symposium on Data-driven Process Discovery and Analysis (SIMPDA’11),
PhD Seminar, 2011.

[KB11] V. Künzle and S. Buchhester. Routenplanung für Unternehmen. HR Perfor-
mance, 5:57–63, 2011.

[KE11] A. Kemper and A. Eickler. Datenbanksysteme: Eine Einführung. Oldenbourg
Wissenschaftsverlag, 2011.

[Kel02] W. Keller. Enterprise Application Integration. dpunkt Verlag, 2002.

[KG07] K. Küster, J. Ryndina and H. Gall. Generation of Business Process Models for
Object Life Cycle Compliance. In Business Process Management (BPM’07),
volume 4714 of LNCS, pages 165–181. Springer Berlin Heidelberg, 2007.

[KKC02] A. Kumar, N. Karnik, and G. Chafle. Context Sensitivity in Role-based Access
Control. SIGOPS Operating Systems Review, 36(3):53–66, 2002.

[KLW08] S. Kumaran, R. Liu, and F. Y. Wu. On the Duality of Information-Centric and
Activity-Centric Models of Business Processes. In Proceedings of the 20th In-
ternational Conference on Advanced Information Systems Engineering (CAiSE
’08), pages 32–47. Springer-Verlag, 2008.

[KR05] P. Kleinschmidt and C. Rank. Relationale Datenbanksysteme. Springer, 2005.

[KR09a] V. Künzle and M. Reichert. Herausforderungen auf dem Weg zu datenorien-
tierten Prozess-Management-Systemen. EMISA Forum, 29(2):9–24, 2009.

[KR09b] V. Künzle and M. Reichert. Integrating Users in Object-Aware Process Man-
agement Systems: Issues and Challenges. In Business Process Management
Workshops (Proc. BPD’09), volume 43 of LNBIP, pages 29–41. Springer Berlin
Heidelberg, 2009.

[KR09c] V. Künzle and M. Reichert. Towards Object-aware Process Management Sys-
tems: Issues, Challenges, Benefits. In Enterprise, Business-Process and Infor-
mation Systems Modeling (BPMDS’09), volume 29 of LNBIP, pages 197–210.
Springer Berlin Heidelberg, 2009.

[KR10] V. Künzle and M. Reichert. Herausforderungen bei der Integration von Benutzern
in Datenorientierten Prozess-Management-Systemen. EMISA Forum, 30(1):11–
28, 2010.

[KR11a] V. Künzle and M. Reichert. A Modeling Paradigm for Integrating Processes and
Data at the Micro Level. In Enterprise, Business-Process and Information Sys-
tems Modeling (BPMDS’11), volume 81 of LNBIP, pages 201–215. Springer,
2011.

[KR11b] V. Künzle and M. Reichert. PHILharmonicFlows : Towards a Framework for
Object-Aware Process Management. Journal of Software Maintenance and Evo-
lution: Research and Practice, 23(4):205–244, 2011.

[KR11c] V. Künzle and M. Reichert. PHILharmonicFlows: Research an Design Method-
ology. Technical Report, 2011.

[KR11d] V. Künzle and M. Reichert. Striving for Object-Aware Process Support: How
Existing Approaches Fit Together. In 1st Int’l Symposium on Data-driven Process
Discovery and Analysis (SIMPDA’11), 2011.

[KRG00] H. Klaus, M. Rosemann, and G. G. Gable. What is ERP? Information Systems
Frontiers, 2(2):141–162, 2000.

[KS91] G. Kappel and M. Schrefl. Object / Behavior Diagrams. In 7th International
Conference on Data Engineering (ICDE), pages 530–539, 1991.

[KWR10a] V. Künzle, B. Weber, and M. Reichert. Object-aware Business Processes: Fun-
damental Requirements and their Support in Existing Approaches. International
Journal of Information System Modeling and Design (IJISM), 2(2):9–46, 2010.

[KWR10b] V. Künzle, B. Weber, and M. Reichert. Object-aware Business Processes: Prop-
erties, Requirements, Existing Approaches. Technical Report, 2010.

[LBW07] R. Liu, K. Bhattacharya, and F. Y. Wu. Modeling Business Contexture and Be-
havior Using Business Artifacts. Advanced Information Systems Engineering,
4495:324–339, 2007.

[LKRD10] A. Lanz, U. Kreher, M. Reichert, and P. Dadam. Enabling process support for
advanced applications with the aristaflow bpm suite. In Proc. of the Business
Process Management 2010 Demonstration Track, number 615 in CEUR Work-
shop Proceedings, 2010.

[LKRM+10] L. T. Ly, D. Knuplesch, S. Rinderle-Ma, K. Goeser, H. Pfeifer, M. Reichert, and
P. Dadam. SeaFlows Toolset - Compliance Verification Made Easy for Process-
aware Information Systems. In Proc. CAiSE’10 Forum - Information Systems
Evolution, number 72 in LNBIP, pages 76–91. Springer, 2010.

[LR00] F. Leymann and D. Roller. Production Workflow. Prentice-Hall, 2000.

[LR12] M. Lohrmann and M. Reichert. Efficacy-aware Business Process Modeling. In
On the Move to Meaningful Internet Systems (OTM 2012), 20th International
Conference on Cooperative Information Systems, volume 7565 of LNCS, pages
38–55. Springer Berlin Heidelberg, 2012.

[LRMD10] L. T. Ly, S. Rinderle-Ma, and P. Dadam. Design and Verification of Instan-
tiable Compliance Rule Graphs in Process-Aware Information Systems. In The
22nd International Conference on Advanced Information Systems Engineering
(CAiSE’10), number 6051 in LNCS, pages 9–23. Springer, 2010.

[LS97] E Lupu and M. Sloman. A Policy Based Role Object Model. In Enterprise Dis-
tributed Object Computing Workshop (EDOC ’97), pages 36–47, 1997.

[M0̈9] D. Müller. Management datengetriebener Prozessstrukturen. PhD thesis, Ulm
University, 2009.

[MHHR06] D. Müller, J. Herbst, M. Hammori, and M. Reichert. IT Support for Release Man-
agement Processes in the Automotive Industry. In 4th Int’l Conf. on Business Pro-
cess Management (BPM’06), number 4102 in LNCS, pages 368–377. Springer,
2006.

[MKR12] N. Mundbrod, J. Kolb, and M. Reichert. Towards a System Support of Collab-
orative Knowledge Work. In 1st Int’l Workshop on Adaptive Case Management
(ACM’12), BPM’12 Workshops, LNBIP. Springer, 2012.

[MRB08] B. Mutschler, M. Reichert, and J. Bumiller. Unleashing the Effectiveness of
Process-Oriented Information Systems: Problem Analysis, Critical Success Fac-
tors, and Implications. IEEE Transactions on Systems, Man, and Cybernetics,
38(3):280–291, 2008.

[MRH07] D. Müller, M. Reichert, and J. Herbst. Data-Driven Modeling and Coordination of
Large Process Structures. In Proceedings of the 2007 OTM Confederated Inter-
national Conference on On the move to Meaningful Internet Systems: CoopIS,
DOA, ODBASE, GADA, and IS - Volume Part I, number 4803 in LNCS, pages
131–149. Springer, 2007.

[MRH08a] D. Müller, M. Reichert, and J. Herbst. A New Paradigm for the Enactment and
Dynamic Adaptation of Data-Driven Process Structures. In Proceedings of the
20th International Conference on Advanced Information Systems Engineering
(CAiSE’08), number 5074 in LNCS, pages 48–63. Springer, 2008.

[MRH+08b] D. Müller, M. Reichert, J. Herbst, D. Köntges, and A. Neubert. COREPRO-Sim:
A Tool for Modeling, Simulating and Adapting Data-driven Process Structures.
In 6th International Conference on Business Process Management (BPM’08
Demonstrations), volume 5240 of LNCS, pages 394–397. Springer, 2008.

[MRv+10] R. S. Mans, N. C. Russell, W. M. P. van der Aalst, A. J. Moleman, P. J. M.
Bakker, and M. Jaspers. Proclets in Healthcare. Journal of Biomedical Infor-
matics, 43(4):632–649, 2010.

[MS95] S. T. March and G. F. Smith. Design and Natural Science Research on Informa-
tion Technology. Decision Support Systems, 15(4):251–266, 1995.

[MWR08] B. Mutschler, B. Weber, and M. Reichert. Workflow Management versus Case
Handling: Results from a Controlled Software Experiment. In Proceedings of
the 2008 ACM symposium on Applied computing (SAC’08), pages 82–89. ACM,
2008.

[NC03] A. Nigam and N. S. Caswell. Business Artifacts: An approach to Operational
Specification. IBM Systems Journal, 42(3):428–445, 2003.

[PDG+11] H. Partsch, M. Dausend, D. Gessenharter, J. Kohlmeyer, and A. Raschke. From
Formal Semantics to Executable Models: A Pragmatic Approach to Model-Driven
Development. International Journal of Software and Informatics, 5(1-2):291–312,
2011.

[Pes08] M. Pesic. Constraint-Based Workflow Management Systems: Shifting Control to
Users. PhD thesis, Eindhoven, University of Technology, 2008.

[Pfe05] V. Pfeiffer. A Framework for Evaluating Access Control Concepts in Workflow
Management Systems. Diploma thesis, Ulm University, 2005.

[Prö11] A. Pröbstle. Technische Konzeption und Realisierung der Modellierungskompo-
nente für ein daten-orientiertes Prozess-Management-System. Diploma thesis,
Ulm University, 2011.

[PS98] G. Preuner and M. Schrefl. Observation Consistent Integration of Views of
Object Life-Cycles. In Proceedings of the 16th British National Conference
on Databases: Advances in Databases (BNCOD 16), pages 32–48. Springer-
Verlag, 1998.

[PWZ+12] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, and H. Reijers. Im-
perative versus Declarative Process Modeling Languages: An Empirical Inves-
tigation. In Proc. Business Process Management Workshops ER-BPM ’11, vol-
ume 99 of LNBIP, pages 383–394. Springer Berlin Heidelberg, 2012.

[RD98] M. Reichert and P. Dadam. Supporting Dynamic Changes of Workflows without
Losing Control. Journal of Intelligent Information Systems, 10(2):93–129, 1998.

[RD09] M. Reichert and P. Dadam. Enabling Adaptive Process-aware Information Sys-
tems with ADEPT2. In Handbook of Research on Business Process Modeling,
pages 173–203. Information Science Reference, 2009.

[RDtI07] G. Redding, M. Dumas, A. H. M. ter Hofstede, and A. Iordachescu. Transforming
Object-oriented Models to Process-oriented Models. In Proceedings of the 2007
International Conference on Business Process Management (BPM’07), number
4928 in LNCS, pages 132–143. Springer, 2007.

[RDtI09a] G. M. Redding, M. Dumas, A. H. M. ter Hofstede, and A. Iordachescu. A Flexi-
ble, Object-centric Approach for Business Process Modelling. Service Oriented
Computing and Applications, 4(3):191–201, 2009.

[RDtI09b] G. M. Redding, M. Dumas, A. H. M. ter Hofstede, and A. Iordachescu. Modelling
Flexible Processes with Business Objects. Seventh IEEE International Confer-
ence on E-Commerce Technology (CEC’05), 0:41–48, 2009.

[Red09] G. M. Redding. Object-centric Process Models and the Design of Flexible Pro-
cesses. PhD thesis, Queensland University of Technology, 2009.

[Rei00] M. Reichert. Dynamische Ablaufänderungen in Workflow-Management-
Systemen. PhD thesis, Ulm University, Germany, 2000.

[Rei02] H. A. Reijers. Product-Based Design of Business Processes Applied within the
Financial Services. Journal of Research and Practice in Information Technology,
34(2):34–46, 2002.

[RHD98] M. Reichert, C. Hensinger, and P. Dadam. Supporting Adaptive Workflows in Ad-
vanced Application Environments. In EDBT Workshop on Workflow Management
Systems, pages 100–109, 1998.

[RKG06] K. Ryndina, J. Küster, and H. Gall. Consistency of Business Process Models
and Object Life Cycles. In Proceedings of the 2006 International Conference on
Models in Software Engineering (MoDELS’06), pages 80–90. Springer, 2006.

[RL03] H. A. Reijers and W. M. P. Liman, S. van der Aalst. Product-Based Workflow
Design. Management Information Systems, 20(1):229–262, 2003.

[RM09] S. Rinderle-Ma. Data Flow Correctness in Adaptive Workflow Systems. EMISA
Forum, 29(2):25–35, 2009.

[RMR07] S. Rinderle-Ma and M. Reichert. A Formal Framework for Adaptive Access Con-
trol Models. Journal on Data Semantics IX, pages 82–112, 2007.

[RMR08] S. Rinderle-Ma and M. Reichert. Managing the Life Cycle of Access Rules in
CEOSIS. In Proceedings of the 12th IEEE International Enterprise Computing
Conference (EDOC’08), pages 257–266. IEEE Computer Society Press, 2008.

[RMR09] S. Rinderle-Ma and M. Reichert. Comprehensive Life Cycle Support for Access
Rules in Information Systems: The CEOSIS Project. Enterprise Information Sys-
tems, 3(3):219–251, 2009.

[RMRD04] S. Rinderle-Ma, M. Reichert, and P. Dadam. Correctness Criteria for Dynamic
Changes in Workflow Systems: A Survey. Data & Knowledge Engineering,
50(1):9–34, 2004.

[RR06] S. Rinderle and M. Reichert. Data-driven Process Control and Exception Han-
dling in Process Management Systems. In Proceedings of the 18th International
Conference on Advanced Information Systems Engineering (CAiSE’06), pages
273–287. Springer, 2006.

[RRD09] M. Reichert, S. Rinderle, and P. Dadam. Flexibility in Process-aware Information
Systems. Transactions on Petri Nets and Other Models of Concurrency (ToP-
NoC), 2(5460):115–135, 2009.

[RRKD05] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive Process Manage-
ment with ADEPT2. In Proceedings of the 21st International Conference on Data
Engineering (ICDE’05), pages 1113–1114. IEEE Computer Society, 2005.

[RRvdA03] H. A. Reijers, J. Rigter, and W. M. P. van der Aalst. The Case Handling Case.
International Journal of Cooperative Information Systems, 12(3):365–391, 2003.

[RtE05] N. C. Russell, A. H. M. ter Hofstede, and D. Edmond. Workflow Resource Pat-
terns. In Proceedings of the 17th International Conference on Advanced Infor-
mation Systems Engineering (CAiSE’05), pages 216–232. Springer, 2005.

[RVV10] H. A. Reijers, J. Vogelaar, and I. Vanderfeesten. Changing Products, Changing
Processes: Dealing with Small Updates in Product-Based Design. In Proceed-
ings of the 2nd International Conference on Information, Process, and Knowl-
edge Management (eKNOW 2010), pages 56–61, 2010.

[RW12] M. Reichert and B. Weber. Enabling Flexibility in Process-Aware Information
Systems. Springer, 2012.

[RzM98] M. Rosemann and M. zur Mühlen. Modellierung der Aufbauorganisation in
Workflow-Management-Systemen: Kritische Bestandsaufnahme und Gestal-
tungsvorschläge. EMISA-Forum, 3(1):78–86, 1998.

[RzM04] M. Rosemann and M. zur Mühlen. Organizational Management in Workflow Ap-
plications: Issues and Perspectives. Information Technology and Management,
5(3-4):271–291, 2004.

[Sch10] C. Scheb. Entwicklung eines Usability-Konzepts für die Laufzeitumgebung eines
datenorientierten Prozess-Management-Systems. Diploma thesis, Ulm Univer-
sity, 2010.

[Sch12] S. Schultz. Implementierung einer Komponente zur Ausführung von Mikro-
Prozessen in einem datenorientierten Prozess-Management System. Diploma
thesis, Ulm University, 2012.

[Sil09] B. Silver. Case Management: Addressing unique BPM Requirements. BPMS
Watch, pages 1–12, 2009.

[Sim96] H. A. Simon. The Sciences of the Artificial (3rd ed.). MIT Press Cambridge USA,
1996.

[SOSS05] S. W. Sadiq, M. E. Orlowska, W. Sadiq, and K. Schulz. When Workflows will
not deliver: The Case of contradicting Work Practice. In Proceedings of the 8th
International Conference on Business Information Systems (BIS’05), volume 1,
pages 69–84. Wydawnictwo Akademii Ekonomicznej w Poznaniu, 2005.

[Spi13] T. Spindler. Int. der Modellierungs- und Laufzeitumgebung eines datenorien-
tierten Prozess-Management-Systems. Master thesis, Ulm University, 2013.

[SSB09] N. Schroeder, U. Spinola, and J. Becker. SAP Records Management. SAP
PRESS, 2009.

[SSO05] S. Sadiq, W. Sadiq, and M. E. Orlowska. Specification and Validation of Process
Constraints for Flexible Workflows. Information Systems, 30(5):349–378, 2005.

[ST97] R. S. Sandhu and R. K. Thomas. Task-based Authorization Controls (TBAC): A
Family of Models for Active and Enterprise-oriented Authorization Management.
In Proceedings of the IFIP TC11 WG11.3 Eleventh International Conference on
Database Security XI: Status and Prospects (IFIP’97), pages 166–181. Chap-
man & Hall, Ltd., 1997.

[SV01] P. Samarati and S. Vimercati. Access Control: Policies, Models and Mecha-
nisms. In Revised versions of lectures given during the IFIP WG 1.7 International
School on Foundations of Security Analysis and Design on Foundations of Secu-
rity Analysis and Design: Tutorial Lectures (FOSAD), pages 137–196. Springer,
2001.

[TDGS07] I. J. Tylor, E. Deelman, D. B. Gannon, and M. Shields. Workflows for E-Science.
Springer, 2007.

[Tho97] R. K. Thomas. Team-based Access Control (TMAC): A Primitive for Applying
Role-based Access Controls in Collaborative Environments. In Proceedings of
the Second ACM Workshop on Role-based Access Control (RBAC ’97), pages
13–19. ACM, 1997.

[TRI09] L. Thom, M. Reichert, and C. Iochpe. Activity Patterns in Process-aware Infor-
mation Systems: Basic Concepts and Empirical Evidence. International Journal
of Business Process Integration and Management (IJBPIM), 4(2):93–110, 2009.

[van97] P. J. van Strien. Towards a Methodology of Psychological Practice: The Regula-
tive Cycle. Theory & Psychology, 7(5):683–700, 1997.

[Van09] I. Vanderfeesten. Product-Based Design and Support of Workflow Processes.
Phd thesis, Eindhoven University of Technology, 2009.

[vB01] W. M. P. van Der Aalst and P.J.S. Berens. Beyond Workflow Management :
Product-Driven Case Handling. In S. Ellis, T. Rodden, and I. Zigurs, editors,
International ACM SIGGROUP Conference on Supporting Group Work (GROUP
2001), pages 42–51. ACM Press, 2001.

[vBEW00] W. M. P. van der Aalst, P. Barthelmess, C. A. Ellis, and J. Wainer. Workflow
Modeling using Proclets. In Proceedings of the 7th International Conference on
Cooperative Information Systems (CooplS ’02), pages 198–209. Springer, 2000.

[vBEW01] W. M. P. van der Aalst, P. Barthelmess, C. A. Ellis, and J. Wainer. Proclets: A
Framework for Lightweight Interacting Workflow Processes. International Journal
of Cooperative Information Systems, 10(4):443–482, 2001.

[vdA97] W. M. P. van der Aalst. Designing Workflows Based on Product Structures. In
Proceedings of the ninth IASTED International Conference on Parallel and Dis-
tributed Computing Systems, pages 337–342. IASTED/Acta Press, 1997.

[vH04] W. M. P. van Der Aalst and K. Hees. Workflow-Management: Models, Methods
and Systems. MIT Press, Cambridge, 2004.

[VHH+11] R. Vaculin, R. Hull, T. Heath, C. Cochran, A. Nigam, and P. Sukaviriya. Declar-
ative Business Artifact Centric Modeling of Decision and Knowledge Intensive

Business Processes. In Proceedings of the 2011 IEEE 15th International En-
terprise Distributed Object Computing Conference (EDOC ’11), pages 151–160.
IEEE Computer Society, 2011.

[vMR09] W. M. P. van der Aalst, R. S. Mans, and N. C. Russell. Workflow Support Using
Proclets: Divide, Interact, and Conquer. IEEE Bulletin of the Technical Commit-
tee on Data Engineering, 32(3):16–22, 2009.

[vP06] W. M. P. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly Declarative
Service Flow Language. In Web Services and Formal Methods, volume 4184 of
LNCS, pages 1–23. Springer, 2006.

[vPS09] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative Workflows:
Balancing between Flexibility and Support. Computer Science - Research and
Development, 23:99–113, 2009.

[VRv08] I. Vanderfeesten, H. A. Reijers, and W. M. P. van der Aalst. Product-Based Work-
flow Support: Dynamic Workflow Execution. In Proceedings of the 20th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE’08),
number 5074 in LNCS, pages 571–574. Springer, 2008.

[VRv11] I. Vanderfeesten, H. A. Reijers, and W. M. P. van der Aalst. Product-based Work-
flow Support. Information Systems, 36(2):517–535, 2011.

[VRvdA08] I. Vanderfeesten, H. A. Reijers, and W. M. P. van der Aalst. Case Handling
Systems as Product Based Workflow Design Support. In Enterprise Information
Systems, pages 187–198. Springer Berlin, 2008.

[vtKB03] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[vtW03] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business Process
Management: A Survey. In Proceedings of the 2003 International Conference on
Business process management (BPM’03), number 2678 in LNCS, pages 1–12.
Springer, 2003.

[vWG05] W. M. P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A
new Paradigm for Business Process Support. Data Knowledge Engineering,
53(2):129–162, 2005.

[Wag10] N. Wagner. Entwicklung eines Usability-Konzepts für die Modellierungsumge-
bung eines datenorientierten Prozess-Management-Systems. Diploma thesis,
Ulm University, 2010.

[WBK03] J. Wainer, P. Barthelmess, and A. Kumar. W-RBAC - A Workflow Security Model
Incorporating Controlled Overriding of Constraints. International Journal of Co-
operative Information Systems (IJCIS), 12, 2003.

[Wes07] M. Weske. Business Process Management: Concepts, Languages, Architec-
tures. Springer, 2007.

[Wie09] R. J. Wieringa. Design Science as Nested Problem Solving. In Proceedings
of the 4th International Conference on Design Science Research in Information
Systems and Technology, DESRIST ’09, pages 1–12. ACM, 2009.

[WMR10] B. Weber, B. Mutschler, and M. Reichert. Investigating the Effort of Using Busi-
ness Process Management Technology: Results from a Controlled Experiment.
Science of Computer Programming, 75(5):292–310, 2010.

[WRRM08] B. Weber, M. Reichert, and S. Rinderle-Ma. Change Patterns and Change
Support Features - Enhancing Flexibility in Process-Aware Information Systems.
Data and Knowledge Engineering, 66(3):438–466, 2008.

[WRWR05] B. Weber, M. Reichert, W. Wild, and S. Rinderle. Balancing Flexibility and Se-
curity in Adaptive Process Management Systems. In Proceedings of the 2005
Confederated International Conference on On the Move to Meaningful Internet
Systems (OTM’05). Springer, 2005.

[WRWRM09] B. Weber, M. Reichert, W. Wild, and S. Rinderle-Ma. Providing Integrated Life
Cycle Support in Process-Aware Information Systems. International Journal of
Cooperative Information Systems (IJCIS), 18(1):115–165, 2009.

[WRZW09] B. Weber, H. A. Reijers, S. Zugal, and W. Wild. The Declarative Approach to
Business Process Execution: An Empirical Test. In Proceedings of the 21st
International Conference on Advanced Information Systems Engineering (CAiSE
’09), pages 470–485. Springer-Verlag, 2009.

[WSML02] S. Wu, A. Sheth, J. Miller, and Z. Luo. Authorization and Access Control of Ap-
plication Data in Workflow Systems. Journal of Intelligent Information Systems,
18(1):71–94, 2002.

[WSR09] B. Weber, S. Sadiq, and M. Reichert. Beyond Rigidity - Dynamic Process Life-
cycle Support: A Survey on Dynamic Changes in Process-aware Information
Systems. Computer Science - Research and Development, 23(2):47–65, 2009.

[ZSPW12] S. Zugal, P. Soffer, J. Pinggera, and B. Weber. Expressiveness and Understand-
ability Considerations of Hierarchy in Declarative Business Process Models. In
Enterprise, Business-Process and Information Systems Modeling, volume 113
of LNBIP, pages 167–181. Springer Berlin Heidelberg, 2012.

List of Figures

1.1 IT landscape and business perspectives . 4
1.2 Overview table in an existing HR application 5
1.3 Architecture using DBMS . 5
1.4 Relational Database Management System . 6
1.5 History of application system development . 7
1.6 Imperative Process Management System (according to [KR09a]) 8
1.7 Worklist of a PrMS [LKRD10] . 8
1.8 Application system architectures for providing process support 9
1.9 Dependencies . 10

2.1 IT research [HMPR04] . 15
2.2 Research methodology (according to [K1̈1, KR11c]) 17

3.1 Example of a recruitment process (according to [KR11b, KR11d, KWR10a]) . 22
3.2 Example of an object type and related object instances 23
3.3 Data structure at build- and run-time (according to [KR11b, KR11d, KWR10a]) 24
3.4 Process structure at build- and run-time . 26
3.5 Process structure at build-time . 27
3.6 Object behavior . 28
3.7 Mandatory activities comprising solely mandatory actions 29
3.8 Mandatory activities comprising mandatory as well as optional actions 30
3.9 Control flow within user forms . 31
3.10 Mandatory and optional activities . 32
3.11 Activity types (according to [KR11b, KR11d, KWR10a]) 33
3.12 Type-specific authorization . 34
3.13 Instance-specific authorization . 35
3.14 Main characteristics of object-aware processes (according to [KR11b]) 38
3.15 Characteristics supported by existing approaches 39
3.16 Application scenarios discussed by existing approaches (cf. [KR11b, KR11d]) 41
3.17 Data integration in existing approaches . 42

4.1 Imperative process modeling (according to [KWR10a]) 44
4.2 Evaluation of the imperative approach (according to [KWR10a]) 44
4.3 A workaround "simulating" optional activities (according to [KWR10a]) 46
4.4 Workarounds for flexible execution and user decisions (according to [KWR10a]) 47
4.5 Sub-process execution based on multiple-instantiation 49
4.6 Declarative modeling approach [Pes08] . 50
4.7 Evaluating the declarative approach (according to [KWR10a]) 51
4.8 Evaluation of existing approaches (according to [KWR10a]) 53

349

4.9 Case Handling Modeling Approach [vWG05] 54
4.10 Re-execution of activities in Case Handling 55
4.11 Artifact-centric modeling [Hul08] . 56
4.12 Product data model [VRv11] . 58
4.13 COREPRO modeling approach . 59
4.14 Proclet framework [vBEW00] . 61
4.15 Object-centric modeling approach [RDtI09a] 62

5.1 End-user view - abstract model . 66
5.2 Object-aware process modeling methodology 68
5.3 Horizontal and vertical flexibility of activities 68
5.4 Traditional architecture and object-aware architecture (according to [KR11b]) 70
5.5 Main components of the PHILharmonicFlows framework 73

6.1 Data modeling in PHILharmonicFlows . 75
6.2 Attribute types and attribute values . 77
6.3 Object types and object instances . 78
6.4 Value types and instances . 79
6.5 Example of a data model . 81
6.6 Example of a data structure . 81
6.7 Data-oriented view in PHILharmonicFlows . 82
6.8 Overview table comprising attributes . 83
6.9 Displaying attribute values . 83
6.10 Example of an overview table with attributes and relations 84

7.1 Integrating micro process types in PHILharmonicFlows 85
7.2 Relationship between object and micro process instances 86
7.3 A micro process type with micro step and micro transition types 88
7.4 A micro process type with a micro step type referring to a relation type 89
7.5 Micro step types not referencing an attribute or relation type 89
7.6 Different kinds of micro step types . 90
7.7 Value step types . 91
7.8 Value step types using domains . 91
7.9 Associating micro transition types with priorities 93
7.10 Priorities for micro transition types . 94
7.11 Handling value step types with overlapping predicates 94
7.12 Preventing deadlocks at build-time . 95
7.13 Scenario without default micro transition type 95
7.14 State types and related user assignments . 98
7.15 Mandatory reading activities . 100
7.16 Disallowed structures for state type definitions 100
7.17 Different types of micro transitions . 102
7.18 Structural properties of external micro transition types 102
7.19 Backward transition types . 104
7.20 Structural properties of backward transition types 105
7.21 Backward transitions and alternative execution paths 105
7.22 Minimum micro process type . 107
7.23 Default user assignment . 107

8.1 Micro process execution in PHILharmonicFlows 109
8.2 Rules and their inter-dependencies . 110
8.3 Markings for micro process execution . 112
8.4 State markings and their transitions . 114
8.5 Dependencies between state markings and micro step markings 115
8.6 Micro step markings and their transitions . 118
8.7 Markings of a micro transition and their transitions 120
8.8 Markings of a backward transition and their transitions 121
8.9 Markings of a micro process instance and their transitions 122
8.10 Optional creation of object instances . 122
8.11 Applying Reaction Rule RR1 . 124
8.12 Rules for initializing a micro process instance 125
8.13 State-specific generation of form-based activities 125
8.14 Applying Marking Rule MR1 . 127
8.15 Applying Marking Rule MR2 . 128
8.16 Applying Execution Rule ER2 . 128
8.17 Applying Reaction Rule RR2 . 129
8.18 Applying Marking Rule MR3 . 130
8.19 Applying Marking Rule MR4 . 131
8.20 Applying Marking Rule MR5 . 132
8.21 Applying Marking Rule MR6 . 132
8.22 Rules for deterministic micro process execution 133
8.23 Applying Marking Rule MR2’ . 134
8.24 Applying Execution Rule ER2 for value-specific micro steps 135
8.25 Applying Marking Rule RR2’ . 136
8.26 Applying Marking Rule RR2” . 136
8.27 Applying Marking Rule RR2”’ . 138
8.28 Applying Marking Rule RR3 . 139
8.29 Applying Reaction Rule RR2’ and RR2” . 139
8.30 Applying Marking Rule MR5’ . 140
8.31 Applying Marking Rule MR1’ . 141
8.32 Rules considering value-specific micro steps 142
8.33 Non-deterministic execution paths . 143
8.34 Applying Marking Rule MR2 for several micro steps 143
8.35 Applying Reaction Rule RR2 to several micro steps 144
8.36 Applying Marking Rule MR3 for several micro steps 145
8.37 Applying Marking Rule MR4” for priority evaluation 146
8.38 Rules for non-deterministic micro process execution 146
8.39 Applying Marking Rule MR7 . 148
8.40 Applying Marking Rule MR8 . 149
8.41 Rules for an internal dead-path elimination . 149
8.42 Applying Marking Rule MR2 to empty micro steps 150
8.43 Applying Reaction Rule RR2”” to empty micro steps 151
8.44 Rules for empty micro steps . 151
8.45 Micro process execution in state pending . 152
8.46 Applying Reaction Rule RR4 . 154
8.47 Rules for an internal reset . 154
8.48 Applying Marking Rule MR2 after an internal reset 155

8.49 Applying Reaction Rule RR2 after an internal reset 156
8.50 Applying Execution Rule ER2 for adapting user forms 156
8.51 Applying Marking Rules MR1 and MR9 to external micro transitions 157
8.52 Rules for state changes . 159
8.53 Applying Marking Rule MR1” to explicit micro transitions 160
8.54 Applying Execution Rule ER3 . 161
8.55 Applying Reaction Rule RR5 . 162
8.56 Rules for explicit micro transitions . 163
8.57 Applying Marking Rule MR1 to user decisions 163
8.58 Applying Execution Rule ER3 to user decisions 164
8.59 Applying Reaction Rule RR5’ to user decisions 165
8.60 Rules considering user decisions . 165
8.61 Applying Marking Rule MR9 to trigger an external dead-path elimination . . . 166
8.62 Applying Marking Rule MR10 . 168
8.63 Applying Marking Rule MR11 . 168
8.64 Applying Marking Rule MR10 iteratively . 169
8.65 Applying Marking Rule MR12 . 169
8.66 Rules for an external dead-path elimination 170
8.67 Applying Reaction Rule RR1 to backward transitions 170
8.68 Rules for committing backward jumps . 171
8.69 Applying Marking Rule MR13 to skip backward jumps 172
8.70 Applying Marking Rule MR13 to enable backward jumps 173
8.71 Applying Execution Rule ER4 . 174
8.72 Applying Reaction Rule RR6 . 175
8.73 Applying Marking Rule MR15 . 176
8.74 Rules considering backward jumps during an external dead-path elimination 177
8.75 Applying Marking Rule MR16 to a backward jump to the start state 179
8.76 Applying Marking Rule MR16 to a backward jump that targets at a state

differing from the start state . 180
8.77 Rules for performing a backward jumps . 181
8.78 Applying Marking Rule MR17 to reset micro and value steps 181
8.79 Applying Marking Rule MR18 to reset micro transitions 182
8.80 Applying Marking Rule MR17 and MR18 iteratively 183
8.81 Applying Marking Rules MR19 and MR20 to reset states and backward tran-

sitions . 184
8.82 Rules for resetting the micro process instance 184
8.83 Data markings and their transitions . 186
8.84 Rules for re-executing a micro process instance 190
8.85 Comprehensive set of rules for executing a micro process instance 192
8.86 Process-oriented view in PHILharmonicFlows 193
8.87 Process-oriented user view . 194
8.88 Examples of execution and transition responsibilities 195
8.89 Worklist . 195
8.90 Review micro process instances in state pending 196

9.1 Activities in PHILharmonicFlows . 197
9.2 Generating mandatory activities . 199
9.3 Mandatory actions . 200

9.4 Factors determining the controls of form-based activities 200
9.5 Authorization table . 201
9.6 Optional actions . 202
9.7 Mandatory and optional actions . 203
9.8 Different permissions and resulting activity types 204
9.9 Generating form-based activities . 205
9.10 Adapting overview tables . 206
9.11 Differentiating between mandatory and optional activities 207
9.12 Rules for editing object instances . 207
9.13 Overview table enabling the creation of new object instances 208
9.14 Authorization table of the application object type 208
9.15 Creation contexts . 209
9.16 Rules for object creation . 213
9.17 User Commitments and Decisions . 214
9.18 Backward jumps . 214
9.19 Integrating black-box activities . 215
9.20 Relationship between black-box activities and object types 216
9.21 Black-box activity markings and their transitions 220
9.22 Rules for black-box activities: ER8, RR10, and MR23 223
9.23 Rules for black-box activities during the external dead-path elimination 224
9.24 Context-sensitive activity . 225
9.25 Batch execution of user forms . 225
9.26 Enabling batch execution . 226

10.1 Macro process modeling in PHILharmonicFlows 229
10.2 Generating the state-based view of the review micro process type 231
10.3 Complex process structure . 232
10.4 Execution dependencies in a complex process structure 233
10.5 Mapping dependencies between macro step and macro transition types . . . 234
10.6 Recruitment macro process type . 235
10.7 Recruitment macro process instance (coloured in red) 235
10.8 Data levels and relationships . 238
10.9 Handling cyclic relations . 239
10.10 Paths between object types . 240
10.11 Macro transition types and corresponding relationships 242
10.12 Deadlock situation using deterministic micro process types 242
10.13 Deadlock situations using non-deterministic micro process types 243

11.1 Coordination components in PHILharmonicFlows 245
11.2 Determining referenced object instances . 247
11.3 Higher- and lower-level object instances . 248
11.4 Top-down relationship . 249
11.5 Process context type . 249
11.6 Process context instance . 252
11.7 Bottom-up relationship . 253
11.8 Aggregation type . 255
11.9 Aggregation instance . 256
11.10 Transverse relationship . 257

11.11 Transverse type . 258
11.12 Transverse instance . 259

12.1 Macro process execution in PHILharmonicFlows 261
12.2 Markings for macro process execution . 264
12.3 Markings of port, process context, aggregation, and transverse instances

and marking transitions . 265
12.4 Correlation between macro and micro process instances 268
12.5 Rule for initializing coordination components 270
12.6 Initializating ports and coordination components 271
12.7 Rules for updating coordination components 273
12.8 Updating process context instances . 274
12.9 Updating aggregation instances . 276
12.10 Rules for re-marking coordination components 278
12.11 Applying Marking Rule MR25 . 279
12.12 Applying Marking Rule MR26 . 280
12.13 Rules for re-marking ports . 281
12.14 Applying Marking Rule MR28 . 281
12.15 Applying Marking Rules MR1””, MR29, and MR30 284
12.16 Disbaling the committment of state transitions 285
12.17 Rules for micro process coordination . 286
12.18 Rules for state change considering coordination components 287
12.19 Updating coordination components when executing a state change 288
12.20 Rules for external dead-path elimination with coordination components 290
12.21 Process-oriented user view displaying bypassed micro process instances . . 293
12.22 Data-oriented user view with bypassed micro process instances 293
12.23 Rules for terminating macro and micro process instances 294
12.24 Macro step types referring to start state types 295
12.25 Creation context in response to a process context 296
12.26 Disabling the creation of object instances . 297
12.27 Macro process type for finishing reviews . 298
12.28 Process context instances for finishing reviews 298
12.29 Rules for backward jumps . 300

13.1 Asynchronous execution of micro process instances 302
13.2 Macro steps for aggregating micro process instances 303
13.3 Late changes of attribute values . 304
13.4 Classification of access control (according to [KR09b, KR10]) 305
13.5 User types . 306
13.6 Displaying overview tables . 309

14.1 Technologies used for the proof-of-concept prototype 315
14.2 Architecture of the build-time environment . 316
14.3 Architecture of the run-time environment . 317
14.4 Data modeling in PHILharmonicFlows . 318
14.5 Micro process modeling in PHILharmonicFlows 319
14.6 Macro process modeling in PHILharmonicFlows 320
14.7 Data-oriented user view . 321
14.8 Process-oriented user view . 322

14.9 Monitoring . 323
14.10 Breast cancer data model . 325
14.11 Mammography micro process type . 325
14.12 MRI micro process type . 325
14.13 Breast cancer macro process type . 326
14.14 Extension course data model . 327
14.15 Extension course micro process type . 327
14.16 Extension course macro process type . 327
14.17 Vacation request micro process type (according to [KR11b]) 328
14.18 House building data model . 329
14.19 House building macro process type extraction 1 329
14.20 House building macro process type extraction 2 329

15.1 Process execution in (a) traditional and (b) object-aware PrMS 334
15.2 Choosing preferred work practices . 335
15.3 Varying execution of process instances . 335
15.4 Further issues . 336

List of Tables

5.1 Comparing object-aware with traditional process support 65

8.1 Different micro process rules . 110
8.2 State markings . 113
8.3 Micro step markings . 116
8.4 Micro transition markings . 119
8.5 Backward transition markings . 121
8.6 Micro process instance markings . 122
8.7 Data Markings . 185

9.1 Creation context markings . 210
9.2 Activity markings . 219

12.1 Markings of process context instances . 266
12.2 Markings of aggregation and transverse instances 267
12.3 Markings of port instances . 267
12.4 External micro transition markings . 269
12.5 Micro process markings in the context of deadlocks 269
12.6 Micro process markings detecting instances no longer required 291

357

	I Motivation
	1 Introduction
	1.1 Context of Object-Aware Processes
	1.2 Problem Statement
	1.3 Contribution
	1.4 Outline

	2 Research Methodology
	2.1 Research Questions
	2.2 Doing Natural Research
	2.2.1 Process Analysis
	2.2.2 Literature Study

	2.3 Requirements Elicitation
	2.4 Doing Design Research

	II Object-Aware Processes
	3 Properties of Object-Aware Processes
	3.1 Property Identification
	3.1.1 Data Integration
	3.1.2 Process Granularity
	3.1.3 Process Modeling and Execution
	3.1.4 Activities
	3.1.5 User Integration

	3.2 Property Verification
	3.2.1 Relevance and Completeness
	3.2.2 Relatedness and Generalisation

	4 State-of-the-Art
	4.1 Imperative Paradigms
	4.1.1 Hidden Information Flows
	4.1.2 Flow-based Triggering of Activities
	4.1.3 Actor Expressions
	4.1.4 Fixed Activity Granularity
	4.1.5 Arbitrary Process Granularity

	4.2 Declarative Paradigms
	4.2.1 Constraint-based Coordination of Activities
	4.2.2 Arbitrary Process Granularity

	4.3 Extensions of Traditional Approaches
	4.3.1 Case Handling
	4.3.2 Artifact-centric Modeling
	4.3.3 Product-based Workflow Support
	4.3.4 Data-driven Process Coordination
	4.3.5 Proclets
	4.3.6 Object-centric Processes
	4.3.7 Other Approaches

	4.4 Approaches for User Integration
	4.4.1 Instance-specificity
	4.4.2 Consistency
	4.4.3 Relationships
	4.4.4 Differentiation

	5 Requirements
	5.1 End-User Requirements
	5.1.1 Integrated Access
	5.1.2 Monitoring

	5.2 Process Support Requirements
	5.2.1 Process Modeling Methodology
	5.2.2 Process Modeling Paradigm

	5.3 System Requirements
	5.3.1 Generic End-User Components
	5.3.2 New Architecture

	III PHILharmonicFlows
	6 Data Integration
	6.1 Object Attributes
	6.2 Object Types and Instances
	6.3 Predefined Attribute Values
	6.4 Data Model and Data Structure
	6.5 Data-oriented User View
	6.6 Summary

	7 Micro Process Modeling
	7.1 Micro Process Types
	7.1.1 Micro Step Types
	7.1.2 Value Step Types
	7.1.3 Micro Transition Types
	7.1.4 Formal Definition of Micro Process Types

	7.2 State Types
	7.3 External Micro Transition Types
	7.4 User Assignment
	7.5 Backward Jumps
	7.6 Reducing Administrative Efforts
	7.6.1 Minimal Micro Process Types
	7.6.2 Default User Assignment

	7.7 Summary

	8 Micro Process Execution
	8.1 Micro Process Instances
	8.1.1 State Markings
	8.1.2 Micro Step and Value Step Markings
	8.1.3 Micro Transitions Markings
	8.1.4 Backward Transition Markings
	8.1.5 Micro Process Instance Markings

	8.2 Creating Object Instances
	8.3 Initializing Micro Process Instances
	8.4 State-internal Execution
	8.4.1 Deterministic Execution
	8.4.2 Handling Value-specific Micro Steps
	8.4.3 Non-deterministic Execution
	8.4.4 Internal Dead-path Elimination
	8.4.5 Handling Empty Micro Steps
	8.4.6 Re-assigning

	8.5 State Changes
	8.5.1 Implicit Micro Transitions
	8.5.2 Explicit Micro Transitions
	8.5.3 User Decisions
	8.5.4 External Dead-path Elimination

	8.6 Backward Jumps
	8.6.1 Committing Backward Jumps
	8.6.2 Backward Transitions during an External Dead-path Elimination
	8.6.3 Executing Backward Jumps
	8.6.4 Re-setting Micro Process Instances
	8.6.5 Re-executing Micro Process Instances

	8.7 Terminating Micro Process Instances
	8.8 Task-oriented User View
	8.9 Summary

	9 Activities
	9.1 Generic Activities
	9.1.1 Editing Object Instances
	9.1.2 Creating Object Instances
	9.1.3 User Commitments and Decisions
	9.1.4 Backward Jumps

	9.2 Black-box Activities
	9.2.1 Defining a black-box activity
	9.2.2 User Assignment and Authorization
	9.2.3 Execution of Black-box Activities

	9.3 Batch Execution
	9.4 Further Issues
	9.5 Summary

	10 Macro Process Modeling
	10.1 State-based View
	10.2 Complex Process Structure
	10.3 Macro Process Types
	10.4 Summary

	11 Coordination Components
	11.1 Process Contexts
	11.2 Aggregations
	11.3 Transverse
	11.4 Summary

	12 Macro Process Execution
	12.1 States as Interface between Micro and Macro Processes
	12.2 Macro Process Instances
	12.2.1 Markings for Process Context Instances
	12.2.2 Markings for Aggregation and Transverse Instances
	12.2.3 Markings for Ports
	12.2.4 Additional Markings for Micro Process Instances

	12.3 Initializing of Coordination Components
	12.4 Composing Micro Process Instances
	12.4.1 Updating Process Context Instances
	12.4.2 Updating Aggregation Instances
	12.4.3 Updating Transverse Instances

	12.5 Re-marking Coordination Components
	12.5.1 Re-marking Process Context Instances
	12.5.2 Re-marking Aggregation and Transverse Instances

	12.6 Re-marking Ports
	12.7 Executing Micro Process Instances
	12.8 State Changes
	12.9 Terminating Macro Process Instances
	12.10 Further Issues
	12.10.1 Creation of Object Instances
	12.10.2 Handling Relations
	12.10.3 Backward Jumps

	12.11 Summary

	13 Further Issues
	13.1 Monitoring
	13.2 Exception Handling
	13.2.1 Exception Handling During Micro Process Execution
	13.2.2 Exception Handing During Macro Process Execution

	13.3 Advanced Concepts for User Integration
	13.4 Advanced Concepts for Data Processing
	13.4.1 Displaying Overview Tables
	13.4.2 Restricting Attribute Values and Relations

	IV Evaluation and Discussion
	14 Evaluation
	14.1 Proof-of-Concept Prototype
	14.1.1 Motivation
	14.1.2 Architecture and Technology
	14.1.3 End-User View
	14.1.4 Summary and Discussion

	14.2 Practical Application
	14.2.1 Medical Domain
	14.2.2 Extension Course Proposal
	14.2.3 Vacation Request
	14.2.4 House Building
	14.2.5 Summary and Discussion

	15 Summary and Outlook
	15.1 Contribution
	15.1.1 Object-awareness
	15.1.2 The PHILharmonicFlows framework

	15.2 Benefit
	15.3 Outlook

	Bibliography
	List of Figures
	List of Tables

