
Separating Per-client and Pan-client Views
in Service Specification

Colin Atkinson,
Dietmar Stoll

Chair of Software Technology
University of Mannheim

68161 Mannheim
+49 621 181 3914
{atkinson, stoll}@

informatik.uni-mannheim.de

Hilmar Acker,
Peter Dadam,
Markus Lauer
University of Ulm

89069 Ulm
+49 731 50 24131

{hilmar.acker, peter.dadam,
markus.lauer}@

uni-ulm.de

Manfred Reichert
University of Twente
7500 AE Enschede
+31 53 489 3705

m.u.reichert@cs.utwente.nl

ABSTRACT
Service-oriented architecture is predicated on the availability of
accurate and universally-understandable specifications of services
which capture all the information that a potential user needs to
know to use the service. However, WSDL, the most widely used
service specification standard, only allows the syntactic signatures
of the operations offered by a service to be described. This not
only makes it difficult to specify context sensitive information,
such as acceptable operation invocation sequences and drive
service discovery through client-oriented requirements, it is also
an inappropriate level of abstraction for a human friendly
description of a service’s capabilities. The current thinking is that
context sensitive information such as operation sequencing rules
should be described in an accompanying specification document
written in an auxiliary language. For example, WS-CDL is a well
known auxiliary language for writing choreography descriptions
that capture interaction scenarios in terms of abstract roles and
participants. However, this approach not only decouples the
additional information from the core WSDL specification, it also
describes it in terms of abstractions which may not match those
used (implicitly or explicitly) by the service. In this paper we
investigate this issue in greater depth, explore the different
solution patterns and propose a new specification approach which
rectifies the identified problems.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures: Patterns
D.2.1 [Software Engineering]: Requirements, Specification

General Terms
Design, Theory

Keywords
matching, service development, service specification

1. INTRODUCTION
Service-oriented architecture is predicated on the availability of
accurate and universally-understandable specifications of
services. Specifications not only carry the information needed to
use services, they are also the means by which service users are
introduced to suitable service providers. Finding the optimal form
of service specification is therefore central to effective service-
oriented development and the creation of efficient service-
oriented architectures.
Since electronic services such as web services are usually
accessed via asynchronous messaging or “remote procedure call”
(RPC) style interaction mechanisms, the first generation of
service specification standards such as WSDL [15][16] inevitably
focused on the description of the “procedures” that a service
offers. A WSDL service specification is essentially a description
of the signatures of the procedures offered by the service
including the types of their parameters and return values.
This provides the basic information that a service user needs in
order to invoke the procedures of the service via a communication
protocol such as SOAP [14]. As has been widely documented,
however, there is a lot of additional information that a service
user really needs in order to effectively interact with a
dynamically discovered service. Chief examples include
information about the order in which the operations of a service
should be called (often called the protocol) and information about
the semantics (i.e. the effects) of the operations. There is also a
whole array of additional “meta” information that can be added to
service specifications related to such issues as security,
authentication and other concepts involved in the establishment of
trust between service users and providers.
Not surprisingly, many research and standard-development
initiatives have attempted to address these problems over the last
few years. To express message sequencing information, or
choreography as it is often called in the web service community,
WS-CDL [13] (based on the Pi-Calculus [10][11]) has recently
emerged as the industry-leading standard. For defining the
semantics of services, OWL-S [12] is the leading language. In
addition, there is a whole host of others languages that allow
WSDL specifications to be annotated with additional “meta” data
information to describe properties related to such things as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IW-SOSE’06, May 27-28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

security, transactions, exception handling and quality of service
etc. [8][7][6][5][4].
An important common characteristic of all these approaches,
including those focusing on sequencing (choreography) and
semantics, is that they do not change the underlying WSDL
service specification - they retain the core specification in its
original form and add additional information on top of it. In other
words, they utilize the same basic operation signatures as WSDL,
but add additional specification mechanisms to support the
description of choreography and semantics etc. While this
principle may be attractive from a compatibility point of view,
however, it does not necessarily lead to specifications which
convey the required information in the most efficient way.
The basic problem is that much of the information that needs to
be added to capture such things as choreography and semantics is
context specific, whereas the underlying WSDL specification is
context independent. A WSDL specification of a service does not
explicitly take into account the different roles or states of the
users that may interact with it over time. These are only implicitly
accommodated as operation parameters which carry role or state
information in the form of IDs (e.g. session ID). However, since
choreography, semantics, and the other higher-level “meta”
information is usually context (i.e. identity) sensitive, this
requires the additional information to be described in terms of
these identity parameters.
Although it is clearly necessary for a service user to be able to
derive the low-level procedural interface to a service in a
mechanical way, it is not essential for this interface to be
explicitly expressed in a service specification. On the contrary, as
its name implies, a specification should be described at the level
of abstraction that conveys the necessary information in the most
effective way. Rather than base all specification information
around the low-level procedural interface, therefore, it may be
advantageous to specify a service using different abstractions
which accommodate a more precise and concise description of
context sensitive information. This principle is also in line with
the basic tenet of model-driven development which calls for
implementation-level, platform-specific descriptions of software
artifacts to be derived automatically from more abstract and user
friendly platform-independent specifications. As long as there is a
well defined mapping from the specification to (one of) the
implementation(s), a specification can take any form.
In this paper we present a strategy for specifying web services
that simplifies the description of context sensitive information
such as choreography and increases the level of semantic content.
The basic idea is to raise the level of abstraction of a service
specification and to make the implicit, context sensitive properties
explicit. We developed this approach as part of the AristaFlow
project [1] in order to simplify the problem of checking whether a
component is suitable for plugging into a work flow process.
However, it is not restricted to this area. We believe it provides an
enhanced form of service specification for all purposes.
The rest of the paper is structured as follows. In section 2 we give
an overview of the problem and in sections 3 and 4 we present the
patterns and concepts that can be used to overcome them. We
finish by presenting a better way to specify services and discuss
how to map these specifications to platform specific descriptions.

2. THE PROBLEM
To understand the limitations of WSDL style service
specifications, consider the following web service “interface”
which is fairly typical of stateful services. This service provides
support for a fairly common requirement in business applications,
the creation and manipulation of orders. The operations of the
service allow users to create order objects, add one or more items
to order objects, and once payment details have been defined and
checked, to “place” the orders. A user can place several orders
during a given session, and can work on several orders
simultaneously.
SessionedOrderManager {

 createSession return String

 authenticate (String userID, String password)

 createOrder return String

 defineOrderCustomer (String info, String orderID, String sessionID)

 defineOrderPayment (String info, String orderID, String sessionID)

 addOrderItem (String name, String orderID, String sessionID)

 deleteOrderItem (String name, String orderID, String sessionID)

 calculateOrderTotal (String orderID, String sessionID) return Euro

 checkOrderPayment (String orderID, String sessionID) return Boolean

 placeOrder (String orderID, String sessionID)

}

We have presented this interface in a Java like syntax to avoid the
clutter of the XML element tags in a full WSDL specification.
The intent is not to imply the use of any particular programming
language or standard, but to list the signatures of the operations
that the web service, as an object abstraction, offers to users. In a
WSDL document, this would appear in the portType and message
definition and would consist of the operation specifications. A
complete WSDL document would of course also have service and
binding parts, but this is not of interest here.
From the point of view of the service as a whole the execution of
the methods is not governed by any particular sequencing rules.
Because the service is designed to support multiple concurrent
users, the operations are arbitrarily interleavable and there is
therefore no protocol or set of sequencing rules. To use operating
system terminology, the operations are multiply “reentrant”. From
the point of view of an individual user, however, the invocation of
operations is very definitely governed by a set of sequencing rules
(or a protocol) since the operations applied to a given order must
be applied in a meaningful sequence.
More specifically, to successfully create and place an order a
customer must perform the following tasks (by invoking the
corresponding operations) in the following order -

• create a new order
• addItem (aI) or removeItem (rI) multiple times, with the

number of addItems invocations always having been
greater than the number of removeItems

• defineCustomer (dC) and definePayment (dP), in any
order

• calculateTotal (cT)
• checkPayment (cP)
• place (p)

When the order abstraction is considered alone, this sequencing
information can be specified or modeled in a straightforward way.
For example, using a regular expression language [9] the above
interleaving of operations can be easily expressed as follows.
(addItem | deleteItem)+ .

((defineCustomer . definePayment) |
 (definePayment . defineCustomer)) .
calculateTotal . checkPayment . place

Figure 1. Protocol as Regular Expression

It can also easily be expressed in the form of a state transition
diagram such as in figure 2.

Figure 2. Order Protocol Diagram

These specifications are relatively concise and simple because in
both cases all operations appearing in the specification apply to a
single object. The identity of the object is thus implicit. However,
at the level of the OrderManger service as a whole the issue of
identity is important, because the ordering requirements only
make sense in the context of individual objects. Therefore, to
specify the above ordering constraints (on individual order
objects) in terms of the operations exported by the OrderManager
service (which operate on multiple orders), the order identifier
must explicitly be taken into account. In the above version of
OrderManager this is the role of the orderID parameter of the
order operations.
The same also holds for the specifications of the effects of the
operations in terms of pre and post conditions. In the simple,
context sensitive case, the pre and post conditions of all the
operations would by default apply to the same instance of an
object. In the service-wide, context independent case, however,
the identity of the order object must always be included in the
specification.
A good example of how the specifications of protocols are
complicated by the need to take object identity into account is
given by the WS-CDL specification of the above sequencing
rules. This is shown below in figure 3.

<package xmi:version="2.0" xmlns:om="http://www.example.com/order
 name="orderCDL" version="1.0" targetNamespace="…" …>
…
<informationType name="StringType" typeName="xsd:string"/>
<informationType name="EuroType" typeName="om:Euro"/>
<informationType name="addItemMessageType"

typeName="om:addItemMessageType"/>
<informationTypes name="removeItemMessageType"

typeName="om:removeItemMessageType"/>
<informationType name="paymentInfoType"

typeName="om:paymentInfoType"/>
<informationType name="customerInfoType"

typeName="om:customerInfoType"/>
<informationType name="paymentOkInfoType"

typeName="om:paymentOkInfoType"/>

<informationType name="TotalType" typeName="om:TotalType"/>
...

<token name="orderID" informationType="StringType">

<tokenLocator token="orderID" informationType=
 "addItemMessageType" query="/RI/orderID"/>
<tokenLocator token="orderID" informationType=
 "removeItemMessageType" query="/RI/orderID"/>
<tokenLocator token="orderID" informationType=
 "paymentInfoType" query="/RI/orderID"/>
<tokenLocator token="orderID" informationType=
 "customerInfoType" query="/RI/orderID"/>
<tokenLocator token="orderID" informationType=
 "paymentOkInfoType" query="/RI/orderID"/>
<tokenLocator token="orderID" informationType=
 "TotalType" query="/RI/orderID"/>

<channelType name="customerOrderChannelType"

referenceToken="customerRef" >
 <identities description="orderID" tokens="orderID”/>

</channelType>

<choreography name="orderChoreo" root="true">
...
<activitiy type=" Interaction" name="addItemActivity"
 operation="addItem" channelVariable="customerOrderChannelType"
 ...>
 <exchangeDetail name="addItem" type="addItemMessageType"
 action="Request"/>
</activity>

Figure 3. WS-CDL description
In WS-CDL, the protocol between a user and a service is defined
primarily in terms of roleTypes and channels. At each place
where an operation of the service is invoked, a message (which
has an informationType) is sent through a channel. A channel
represents a connection between one client and one service
provider. One common way to create a WS-CDL description is to
attach a token (here: the orderID) to the channel, so that the
provider can uniquely identify the order as it receives a message.
Nevertheless, for each message exchanged, a tokenLocator must
be defined to identify the part of the message which holds the
orderID.
Because WS-CDL and WSDL are written against the whole
interface, in each case the orderID must be included in the
message. When the processing of order objects is serialized (i.e.
one order (object) has to be created and placed before the next is
created), this need to refer to orderIDs is merely inconvenient and
cumbersome. However, if processing of orders can themselves be
interleaved (i.e. multiple orders of one client can be in various
stages of processing at the same time), then the need to explicitly
refer to IDs can become a serious problem. This situation cannot
be cleanly handled in WS-CDL because one has to explicitly fix
the number of order processes that can be underway at any given
time, given one instance of a server. The idea, of course, is that
this number should be dynamically changeable.
Including the orderID parameter in the procedural interface of the
OrderManager service (for the operations that manipulate Order
objects) is unavoidable, because the whole point of this service is
to take responsibility for managing order objects on behalf of
users. Thus, at the (SOAP) method invocation level, an orderID
parameter must clearly be included. This does not mean, however,

cT p cP

dC

dP

dP

dC

aI
dI

aI
dI

that order identifier parameters need to be included in the
specification of services. As long as clear patterns are applied,
and a systematic convention is used to handle object identity in
the complete interface, it should be possible to fully specify the
service without explicitly elaborating the details of object
identification. By “fully specifying”, we mean that the service can
be specified in such a way that the full, implementation-level
interface can be derived unambiguously in a simple and
straightforward way.
The big advantage of making object identification implicit, and
specifying the service in a context sensitive way, is that the
specification of context sensitive information such as operation
sequencing rules or pre and post conditions is greatly simplified.
In the next two sections we introduce the two patterns which we
believe assist in the attainment of these benefits.

3. THE MANAGER PATTERN
Most stateful services, such as the OrderManager service from the
previous example, have the role of managing instances of some
other abstraction. In this case the OrderManager is responsible for
“managing” instances of a simple abstract data type (ADT) or
class: Order. By “managing” we mean that the service allows
instances of the managed ADT to be created and destroyed and
operations of the ADT to be applied to identified instances.
Since this relationship is so common in stateful services we
characterize it as a pattern – the manager pattern. Figure 4
illustrates the structure of this pattern for the Order –
OrderManager example. On the left hand side we have the core
abstraction pictured as a UML class with all its methods. This is a
simple Abstract Data Type (ADT). On the right hand side we
have the “manager” object which is derived from it. The purpose
of the “manager” object is to support the creation and deletion of
the basic ADT objects and to allow each of the ADT operations to
be applied to each instance of the ADT identified by an identifier.
Apart from the addition of the creation and deletion operations,
therefore, the main difference between the core ADT and its
manager is the addition of the extra “ID” parameter to the
methods to identify which instance is intended. Notice also,
however, that the name of each of the operation has also subtly
changed. The name of the addItem method in the managed ADT
has changed to orderAddItem in the manager to reflect the fact
that its operations do not affect its internal state directly but that
they add items to the Order objects. As long as these name
changes are performed systematically the manager abstraction can
be derived from the base ADT simply and unambiguously. Stated
differently, if a service user knows the operation signatures of the
managed ADT, it also knows the operation signatures of one of its
manager objects, as long as it is derived systematically from it.

Order

defineCustomer (String Info)
definePayment (String info)
addItem (String name)
deleteItem (String name)
calculateTotal () return Euro
checkPayment () return Boolean
place ()

OrderManager
createOrder return String
deleteOrder (String OrderID)
orderDefineCustomer (String Info, String OrderID)
orderDefinePayment (String info, OrderID)
orderAddItem (String name, String OrderID)
orderDeleteItem (String name, String OrderID)
orderCalculateTotal (String OrderID) return Euro
orderCheckPayment (String OrderID) return Boolean
orderPlace (String OrderID)

ADT ADT Manger

Order

defineCustomer (String Info)
definePayment (String info)
addItem (String name)
deleteItem (String name)
calculateTotal () return Euro
checkPayment () return Boolean
place ()

OrderManager
createOrder return String
deleteOrder (String OrderID)
orderDefineCustomer (String Info, String OrderID)
orderDefinePayment (String info, OrderID)
orderAddItem (String name, String OrderID)
orderDeleteItem (String name, String OrderID)
orderCalculateTotal (String OrderID) return Euro
orderCheckPayment (String OrderID) return Boolean
orderPlace (String OrderID)

ADT ADT Manger

*

1

Figure 4. Instance of the Manager Pattern

The Manager abstraction bears some resemblances to other well
known patterns and software engineering concepts. For example,

it subsumes the factory pattern since it provides methods for
creating and deleting objects of a specific type.
Figure 4 shows a concrete application of the manager pattern in
the context of the Order example. In figure 5 below we show the
generalized structure of the pattern.

ADT

method1(paramType11 p11;
… paramType1N p1N)

return paramType1M
…
methodN (paramTypeN1 pN1;

… paramTypeNN pNN)
return paramTypeNM

ADTManager
createADT return String
deleteADT (String adtID)
adtMethod1(method1(paramType11 p11;

… paramType1N p1N, String adtID)
return paramType1M

…
adtMethodN (method1(paramTypeN1pN1;

… paramTypeNN pNN, String adtID)
return paramTypeNM

ADT ADT Manger

*

1

*

1

Figure 5. Manger Pattern Structure

One of the key principles of our service specification approach is
that the abstractions managed by the service should be described
explicitly and independently. Thus, the specification for the
OrderManager web service would contain a description of the
managed ADT – Order, as well as (or possibly even instead of) a
description of the manager. This is illustrated below using the
same syntax as that in figure 1.
Order {
 defineCustomer (String info)
 definePayment (String info)
 addItem (String name)
 deleteItem (String name)
 calculateTotal () return Euro
 checkPayment () return Boolean
 place ()

(addItem | deleteItem)+ .
((defineCustomer . definePayment) |
 (definePayment . defineCustomer)) .
calculateTotal . checkPayment . place

}
The big advantage of separating out the specification of the
managed ADT in this way is that it can be accompanied by the
abstraction-specific sequencing constraints. These can take a
straightforward form because they can be based on the
assumption that all methods in a sequence operate on the same
ADT instance. The example specification above includes the
simple regular expression sequencing specification from above.
Pre and post conditions could also be added in the same context-
specific way.

Composition of Managed Objects
An abstraction that plays a particularly important role in client-
server architectures such as service-oriented architectures is that
of a session. A session is the abstraction which is generally used
to store the state of a conversation between users of a service and
providers of a service, when, as is generally the case in service-
oriented architectures, there can be multiple users of a single
service. The session abstraction, or more specifically the session
identifier, is used to provide service users with the illusion that
they are the sole user of the service.
In its simplest form, Session is a very simple ADT. The only
functionality which it usually offers is a procedure to authenticate

users, usually via the checking of user names and passwords.
Figure 6, below shows the manager pattern applied to the session
ADT.

Session

authenticate (String info)

SessionManager
createSession return String
deleteSession (String sessionID)
sessionAuthenticate (String Info, String sessionID)

ADT ADT Manager

*

1

Session

authenticate (String info)

SessionManager
createSession return String
deleteSession (String sessionID)
sessionAuthenticate (String Info, String sessionID)

ADT ADT Manager

*

1

*

1

Figure 6. Instance of the Session Pattern

Of course, a service which simply offers the capability to create
sessions and nothing else would be of little use. Useful services
always combine session management with other functionality,
such as for example, the management of additional abstractions.
Therefore, it is necessary to have a way of combining managed
ADTs within the context of a single manger service. Combining
session management with other management services is only one
example, albeit a very important one.
The composition of session management with the management of
other ADTs cannot be done in a naive way, however. For
example, in the case of a session-based order management service
it would not make sense to simply aggregate all the methods from
the OrderManager abstraction and the SessionManager
abstractions into a single service as illustrated below. The
problem is that session management should not take place
independently of order management, it should be “superimposed”
on top of it. The version of the SessionOrder manager below is
unrealistic because the management of orders (i.e. the invocation
of order operations) takes place outside the context of a session.
The whole point of adding session management to the service,
however, is that all functionality offered by the service should be
performed within the context of sessions.

SessionedOrderManager

createSession return String
deleteSession (SessionID)
authenticate (String info)

createOrder return String
deleteOrder (String OrderID)
orderDefineCustomer (String Info, String OrderID)
orderDefinePayment (String info, OrderID)
orderAddItem (String name, String OrderID)
orderDeleteItem (String name, String OrderID)
orderCalculateTotal (String OrderID) return Euro
orderCheckPayment (String OrderID) return Boolean
orderPlace (String OrderID)

Figure 7. Naive Session Manager

The version of the session manager in figure 8a) provides a much
more useful combination of the session and order management
abstractions because it superimposes the session management
service “on top of” the order management service. This is
evidenced by the fact that all of the order management operations
have an additional sessionID parameter, as well as an orderID
parameter, to allow the session to be identified.
The “superimpose on top of” relationship is of course not very
well defined here. In general, when fully fleshed out, this
approach to service specification will include several standard
combination operators such as for example “union”, which give
the naive case in figure 7, and “superimpose” which gives the
realistic case in figure 8a). Although the “union” operator is
unrealistic in this particular example, it can be useful in other
scenarios.

4. PAN-CLIENT AND PER-CLIENT
INTERFACES

Capturing the session management characteristics of a service by
superimposing the session manager abstraction on top of the other
services is a reasonable approach. However, session management
superimposition is such a universal requirement in service-
oriented architectures that it makes sense to treat it as a special
case. In other words, we believe it is valuable to define special
names for the “session managed” and “session unmanaged” view
of a service. This represents the second key idea in our approach
to service specification.
With this observation in mind, we believe that all session
managed services can have their interfaces represented in two
basic forms – the pan-client and the per-client interfaces. The
motivation for these names is simple. Since the whole purpose of
session management is to give clients the illusion that they are the
sole user of a service, a representation of the service interface in
which session identification is implicit corresponds to a client’s
“private” view of the service. The name “per-client” interface is
thus intended to capture this form. On the other hand, a
representation of the service interface in which the session ID is
made explicit (and thus all methods have Session ID parameters)
corresponds to a global view of the service in which the existence
of multiple concurrent clients is made clear. The name “pan-
client” interface is thus intended to capture this form. The
relationship between these two representations of the
SessionedOrderManager service is shown below in figure 8.

SessionedOrderManager

createSession return String
deleteSession (String sessionID)
sessionAuthenticate (String info)

createOrder return String
deleteOrder(String orderID)
orderDefineCustomer (String info, String orderID, String sessionID)
orderDefinePayment (String info, String orderID , String sessionID)
orderAddItem (String name, String orderID , String sessionID)
orderDeleteItem (String name, String orderID , String sessionID)
orderCalculateTotal (String orderID , String sessionID) return Euro
orderCheckPayment (String orderID , String sessionID) return Boolean
orderPlace (String orderID , String sessionID)

a) Pan-Client

SessionedOrderManager

createSession return String
deleteSession (String sessionID)
sessionAuthenticate (String info)

createOrder return String
deleteOrder(String orderID)
orderDefineCustomer (String info, String orderID, String sessionID)
orderDefinePayment (String info, String orderID , String sessionID)
orderAddItem (String name, String orderID , String sessionID)
orderDeleteItem (String name, String orderID , String sessionID)
orderCalculateTotal (String orderID , String sessionID) return Euro
orderCheckPayment (String orderID , String sessionID) return Boolean
orderPlace (String orderID , String sessionID)

a) Pan-Client

SessionedOrderManager

authenticate (String info)

createOrder return String
deleteOrder(String orderID)
orderDefineCustomer (String info, String orderID)
orderDefinePayment (String info, orderID)
orderAddItem (String name, String orderID)
orderDeleteItem (String name, String orderID)
orderCalculateTotal (String orderID) return Euro
orderCheckPayment (String orderID) return Boolean
orderPlace (String orderID)

b) Per-Client

SessionedOrderManager

authenticate (String info)

createOrder return String
deleteOrder(String orderID)
orderDefineCustomer (String info, String orderID)
orderDefinePayment (String info, orderID)
orderAddItem (String name, String orderID)
orderDeleteItem (String name, String orderID)
orderCalculateTotal (String orderID) return Euro
orderCheckPayment (String orderID) return Boolean
orderPlace (String orderID)

b) Per-Client
Figure 8. Pan and Per-Client Interface

As can be seen from this figure, the per-client view of the service
is much simpler and more understandable than the pan-client
view. The latter is basically the full, WSDL-style specification of
the service in which the complete invocation signature of each
procedure is fully elaborated. The per-client view also provides a
complete picture of all the procedures offered by the service.
However, it does so without explicitly describing the session
identification information. In effect, the per-client view resembles
the interface that clients of the service would have if they each
genuinely had a dedicated service provider which was exclusively
servicing their own needs and maintaining their own private
interaction state. This view much more closely matches the view

that human users of a service-based application receive of a
service – namely, the view that they are the exclusive user.
Browsers and other client applications are deliberately designed
to “hide” session management issues from the human user.
As with the manager pattern described in the previous section,
introducing the separate concepts of the per and pan-client views
of a service interface only makes sense if there is a clear
relationship between them, such that one can be derived from the
other simply and unambiguously.

Enhanced Specification of Services
To illustrate how the concepts explained above can be used to
enhance the specification of services, in figure 9 we depict all the
different abstractions and views that can be created for the
SessionedOrderManager service discussed above. To highlight
the variety of abstractions and views, we introduce an additional
customer survey abstraction as a managed ADT.

OrderCustomerManager

sessionAuthenticate (String info)

createOrder return String
deleteOrder(String orderID)
orderDefineCustomer (String Info, String orderID)
orderDefinePayment (String info, String orderID)
orderAddItem (String name, String orderID)
orderDeleteItem (String name, String orderID)
orderCalculateTotal (String orderID) return Euro
orderCheckPayment (String orderID) return Boolean
orderPlace(String orderID)
sGetTopicList (String surveyID) return String
sSelectTopic (String topic, String surveyID)
sGetQuestions (String surveyID) return String
sAnswerQuestions (String answers, String surveyID)

Per-Client

OrderCustomerManager

createSession return String
deleteSession (String sessionID)
sessionAuthenticate (String info)
createOrder return String
orderDefineCustomer (String info, String orderID, String sessionID)
orderDefinePayment (String info, String orderID, String sessionID)
orderAddItem (String name, String orderID, String sessionID)
orderDeleteItem (String name, String orderID, String sessionID)
orderCalculateTotal (String orderID, String sessionID) return Euro
orderCheckPayment (String orderID, String sessionID) return Boolean
orderPlace (String orderID, String sessionID)
sGetTopicList (String surveyID , String sessionID) return String
sSelectTopic (String topic, String surveyID , String sessionID)
sGetQuestions (String surveyID , String sessionID) return String
sAnswerQuestions (String answers, String surveyID, , String sessionID)

Pan-Client

OrderCustomerManager

createSession return String
deleteSession (String sessionID)
sessionAuthenticate (String info)
createOrder return String
orderDefineCustomer (String info, String orderID, String sessionID)
orderDefinePayment (String info, String orderID, String sessionID)
orderAddItem (String name, String orderID, String sessionID)
orderDeleteItem (String name, String orderID, String sessionID)
orderCalculateTotal (String orderID, String sessionID) return Euro
orderCheckPayment (String orderID, String sessionID) return Boolean
orderPlace (String orderID, String sessionID)
sGetTopicList (String surveyID , String sessionID) return String
sSelectTopic (String topic, String surveyID , String sessionID)
sGetQuestions (String surveyID , String sessionID) return String
sAnswerQuestions (String answers, String surveyID, , String sessionID)

Pan-Client

Managed Objects

Order

defineCustomer (String info)
definePayment (String info)
addItem (String name)
deleteItem (String name)
calculateTotal () return Euro
checkPayment () return Boolean
place ()

(addItem | deleteItem)+ .
((defineCustomer . definePayment) |

(definePayment . defineCustomer)) .
calculateTotal . checkPayment . place

getTopicList () return String
selectTopic (String topic)
getQuestions () return String
answerQuestions (String answers)

Survey

getTopicList+ . selectTopic+
getQuestions . answerQuestions

Figure 9. Different Abstractions and Views

It is not the intention that all the different parts should be
explicitly documented within a service specification. On the
contrary, the idea is that a service specification would contain
only the minimum information necessary to enable all these views
to be generated. Since derivability is generally from top to
bottom, i.e. the pan-client view can be derived from the per-client
view and the per-client view can be derived (partially) from the
managed ADTs), this implies that the bulk of the information

within a specification will be in the form of the managed objects
and the per-client interface.
When the different abstractions are separated out in this way, the
relevant sequencing constraints can be added at the most relevant
place as shown in figure 9. Sequencing constraints on the
operations of the managed abstraction can be defined as part of
their specification, and any additional per-client constraints at the
level of the whole service can be added to the per client version.
Similarly any additional constraints that span all clients can be
added at the pan client level.
If a suitable language were available to describe how the managed
ADTs on top in figure 9 are composed into the combined service
(i.e. via union or superimposition operators) the per-client
interface need not be represented in the explicit form shown
either. Instead, I could be described using a combination
expression together with any additional sequencing rules that
define the order in which instances of the different abstractions
are managed. Analogous operators can be envisaged to describe
how the pan-client interface is derived from the per-client
interface in unusual cases.

5. CONCLUSION
In this paper we have highlighted some shortcomings in the
current techniques and languages used to specify services in the
context of service-oriented architectures, in particular with regard
to the description of context sensitive information such as
protocols and have put forward some ideas for addressing them.
These revolve around two specific concepts – the concept of the
manager pattern in which the objects "managed" by a service are
explicitly specified and the concept of “per-client” interfaces in
which the session information is implicit. The basic idea is to
specify services in terms of these concepts, wherever possible,
rather than in terms of the usual pan-client interfaces captured in
WSDL documents.
For two of the three main roles of service specifications, this
brings significant benefits. For service usage, where a service
client interacts with a service provider via messaging services
such as SOAP, the approach brings no real advantages. However,
it has no disadvantages either, since a key tenet of the approach is
that the pan-client interaction must be unambiguously derivable
from the information in a service specification, regardless of the
form that it takes. As explained in the paper, provided the patterns
are applied systematically, pan-client interfaces can always be
derived from the managed ADTs and the per-client interface.
For service discovery, the approach allows the matching of
service providers to service users to be driven from a context
sensitive (e.g. client oriented) viewpoint that can include such
things as protocol descriptions and operation semantics (pre and
post conditions). At present, service discovery algorithms usually
only take the pan-client procedure signatures into account when
searching for components that match a particular service
requirement. However, the ability to satisfy context sensitive
requirements is a fundamental aspect of a contract between a
service user and provider, and thus should be taken into account
when searching for components. Moreover, the additional
information needed for describing context sensitive information
(e.g. session IDs) should be derived automatically from a user
friendly description. Instead of having to specify the whole pan-

client view for service discovery, only a specification in terms of
the ADTs has to be provided.
Having a way of searching for services with specifications that
match the user’s perspective and considering protocol information
when plugging services into workflow processes was the original
motivation for this research in the context of the AristaFlow
project.
For service development, where a software engineer actually
creates the service specification, the approach also has significant
advantages. As can be seen from figure 9, even without protocol
information, the managed ADTs and the per-client interface are
much simpler and more concise than the pan-client representation
of a component. When protocol (method sequencing) information
is taken into account the difference in clarity and expressiveness
is even greater. Human developers will have a much easier time
defining services, and the associated sequencing rules, in terms of
managed ADTs and per-client interfaces than in terms of the
traditional pan-client interfaces in WSDL.
Since it reinforces the idea of defining services in terms of
different viewpoints, the approach works particularly well with
view-based methods for describing or modeling components, such
as the KobrA approach [2]. The explicit modeling of all
abstractions handled by a component is already a key aspect of
this method, and is strongly reinforced by the approach described
in this paper.
The idea of defining distinct viewpoints on a service has some
things in common with the role object pattern of Dirk Bäumer et
al [3]. The key difference is that the goal of those patterns is to
allow a given service to take on different roles during its lifetime,
based on the needs and desires of specific clients. These roles
may be defined and attached to the service dynamically. This is
not the goal of our approach however. In our case the different
views on the service are fixed at definition time.
The other important point to note about the approach is that it
enhances the level of semantic information in service
specifications. It does this by clearly denoting the role and
“meaning” of the additional ID parameters that are introduced in
each transformation step. The fact that the derivation of
representation abstraction can only take place from top to bottom
in figure 9 is significant because it highlights the fact that
information is lost as the context sensitive management and
session information on the top is "folded into" the pan-client view
in the lower part of the figure. In other words, fully elaborating
the managed ADTs and the per-session interface provides
additional semantic information about the ID parameters which is
simply not present in the WSDL-style pan-client view.

6. ACKNOWLEDGEMENTS
This research is being performed as part of the AristaFlow Project
which is supported by the State of Baden-Württemberg.

7. REFERENCES
[1] AristaFlow Project, Next Generation Enterprise Process

Management: Component-oriented Development of
Adaptive Process-oriented Enterprise Software,
http://www.aristaflow.de/, visited Feb. 2006

[2] Atkinson, C., Bayer, J., Bunse, C., Kamsties, E.,
Laitenberger, O., Laqua, R., Muthig, D., Paech, B., Wüst, J.,
Zettel, J.: Component-based Product Line Engineering with
UML, Addison Wesley, 2002.

[3] Bäumer, D., Riehle, D., Siberski, W., and Wulf M., The Role
Object Pattern, The 4th Pattern Languages of Programming
Conference, Sept. 3-5, 1997

[4] BEA, IBM, Microsoft, SAP; Web Services Policy
Framework (WS-Policy), http://www-
106.ibm.com/developerworks/library/ws-polfram/, May
2003, visited Feb. 2006

[5] IBM, BEA Systems, Microsoft, Arjuna, Hitachi, IONA. Web
Services Transactions specifications, August 2005, visited
Feb. 2006

[6] IBM, Microsoft, BEA, RSA Security, VeriSign Web Services
Federation Language (WS-Federation),
ftp://www6.software.ibm.com/software/developer/library/ws
-fed.pdf, July 2003, visited Feb. 2006

[7] IBM, Microsoft, RSA Security, VeriSign, et al. Web
Services Secure Conversation Language (WS-
SecureConversation),
ftp://www6.software.ibm.com/software/developer/library/ws-
secureconversation.pdf, May 2004, visited Feb. 2006

[8] IBM, Microsoft, VeriSign. Web Services Security (WS-
Security) 1.0,
http://www-128.ibm.com/developerworks/webservices/librar
y/ws-secure/, April 2002, visited Feb. 2006

[9] Malan, R., Letsinger, R., and Coleman D., Editors, Object-
Oriented Development at Work: Fusion in the Real World,
Prentice Hall/HP Press, 1996.

[10] Milner, R. Communicating and Mobile Systems: the Pi-
Calculus, Cambridge University Press, May 1999

[11] Milner, R., Parrow, J., and Walker, D. A calculus of mobile
processes, part I/II, Journal of Information and Computation,
100:1–77, September 1992

[12] The OWL Services Coalition, OWL-S 1.0: Semantic Markup
For Web Services, Whitepaper,
http://www.daml.org/services/owl-s/1.0/, Jan. 2004, visited
Feb. 2006

[13] W3C, Web Services Choreography Description Language
Version 1.0, http://www.w3.org/TR/2005/CR-ws-cdl-10-
20051109/, Nov. 2005, visited Feb. 2006

[14] W3C. Simple Object Access Protocol (SOAP) 1.2,
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/,
visited Feb. 2006

[15] W3C. Web Services Description Language (WSDL) 1.1,
March 2001, http://www.w3.org/TR/2001/NOTE-wsdl-
20010315, visited Feb. 2006

[16] W3C. Web Services Description Working Group,
WSDL 2.0, http://www.w3.org/2002/ws/desc/, visited Feb.
2006

	Text1: Proc. IW-SOSE '06, Int'l Workshop on Service Oriented Software Engineering, Shanghai, China, May 2006 (to appear)

