
Analyzing the Impact of Process Change Operations on Time-Aware
Processes

Andreas Lanz∗, Manfred Reichert∗

Institute of Databases and Information Systems, Ulm University, Germany

Abstract

The proper handling of temporal process constraints is crucial in many application domains. Contemporary
process-aware information systems (PAIS), however, lack a sophisticated support of time-aware processes.
As a particular challenge, the enactment of time-aware processes needs to be flexible as time can neither be
slowed down nor stopped. Hence, it should be possible to dynamically adapt time-aware process instances to
cope with unforeseen events. In turn, when applying such dynamic changes, it must be re-ensured that the
resulting process instances are temporally consistent; i.e., they still can be completed without violating any of
their temporal constraints. This paper extends existing process change operations, which ensure soundness
of the resulting processes, with temporal constraints. In particular, it provides pre- and post-conditions for
these operations that guarantee for the temporal consistency of the changed process instances. Further, we
analyze the effects a change has on the temporal properties of a process instance. In this context, we provide
a means to significantly reduce the complexity when applying multiple change operations. The presented
change operations have been prototypically implemented in the AristaFlow BPM Suite.

Keywords: time-aware processes, dynamic process change, process flexibility, process-aware information
system

1. Introduction

Time is a crucial factor regarding the support of various business processes [1]. Moreover, in many
application areas (e.g., patient treatment, automotive engineering), the proper handling of temporal constraints
is vital in order to successfully execute and complete processes [2, 3, 1]. However, contemporary process-aware
information systems (PAIS) lack a more sophisticated support of such time-aware business processes [1]. To
remedy this drawback, the proper integration of temporal constraints with both the design and run-time
components of a PAIS has been identified as a key challenge [2, 3, 4].

As a prerequisite for robust process execution in PAISs, the executable process models must be sound [5].
Moreover, in the context of time-aware process models, i.e., process models enriched with temporal constraints,
the consistency of the temporal constraints must be ensured [6, 3, 4]. Checking consistency of time-aware
process models at design-time has been extensively studied in literature [6, 2, 7]. By contrast, only little
attention has been paid to the proper run-time support of time-aware processes [4]. During run-time, the
temporal consistency of process instances needs to be continuously monitored and re-checked to avoid
constraint violations. Particularly, note that activity durations and deadlines may be specific to the enacted
process instance and solely become known during run-time [4].

As a particular challenge, temporal constraints cannot be considered in isolation, but might interact
with each other. Hence, complex algorithms are required for checking the temporal consistency of a process
model [4, 8]. However, at run-time respective calculations should be reduced to a minimum to ensure

∗Corresponding author
Email addresses: andreas.lanz@uni-ulm.de (Andreas Lanz), manfred.reichert@uni-ulm.de (Manfred Reichert)

scalability of the PAIS [4]. Otherwise, a run-time support of time-aware processes will not be possible at the
presence of a large number of process instances.

As another challenge, time can neither be slowed down nor stopped. Accordingly, time-aware processes
need to be flexible to cope with unforeseen events or delays during run-time [9]. For example, it is common
that deadlines are re-scheduled or temporal constraints are dynamically modified in order to successfully
complete a process instance being in trouble. Moreover, in certain scenarios the instances of time-aware
processes must be structurally changed (e.g., by moving, deleting, or inserting activities) to be able to meet
a particular deadline. In the context of such dynamic process changes, we must re-ensure that the resulting
process instances are sound and temporally consistent. While soundness has been extensively studied in
literature [10, 11, 5], this work shows how temporal consistency of a time-aware process instance can be
efficiently ensured in the context of dynamic changes. Furthermore, we analyse the effects, changes have on
the temporal constraints of the respective process instance. In particular, we show how the results of this
analysis can be utilized to significantly reduce the complexity when applying multiple change operations. For
example, the latter becomes crucial in the context of process evolution, where a possibly large set of process
instances needs to be migrated on-the-fly to a changed process model [5].

The remainder of the paper is organized as follows: Section 2 considers existing proposals relevant for
our work. Section 3 provides background information on time-aware processes and defines the notion of
temporal consistency. Section 4 first introduces the set of change operations we consider, followed by an
in-depth discussion on how these change operations work in the context of time-aware processes. Section 5
analyzes the impact a change has on the temporal constraints of a process and proposes useful optimizations.
Section 6 evaluates the proposed approach. Finally, Section 7 concludes with a summary and outlook.

2. Related Work

In literature, there exists considerable work on managing temporal constraints for business processes [6,
2, 7, 4, 12]. The focus of these approaches is on design-time issues like the modeling and verification of
time-aware processes. By contrast, only few approaches consider execution issues of time-aware processes [3, 4].
In particular, none of the latter considers dynamic changes in this context.

Most approaches dealing with the verification of time-aware processes use a specifically tailored time model
to check for the temporal consistency of process models. This becomes necessary since the interdependencies
between the various temporal constraints of a process model can be quite complex and cannot be suitably
captured in the respective process model. A specific conceptual model for temporal constraints is defined
in [12]. In turn, [3, 7] use an extended version of the Critical Path Method (CPM) known from project
planning. Simple Temporal Networks (STN) are used in [6] as basic formalism, whereas [4] suggests using
Conditional Simple Temporal Networks with Uncertainty for checking the controllability of process models,
i.e., a more restrictive form of temporal consistency. This paper relies on Conditional Simple Temporal
Networks (CSTN), an extension of STN that allows for the proper handling of exclusive choices [8].

In [1], we presented 10 empirically evidenced time patterns (TP), that represent temporal constraints
relevant in the context of time-aware processes (cf. Table 1). In particular, time patterns facilitate the
comparison of existing approaches based on a universal set of notions with well-defined semantics [13].
Moreover, [13, 1] elaborated the need for a proper run-time support of the time patterns and time-aware
processes.

Dynamic process changes were extensively studied in the past. Particularly, there exists considerable work
on ensuring structural and behavioural soundness in the context of dynamic process instance changes [10, 11].
Further, [14] presents an overview of frequently used patterns for changing process models whose semantics is
described in [11]. Finally, a comprehensive survey of approaches enabling dynamic changes is provided in [5].
To the best of our knowledge, [9] is the only work considering dynamic changes in the context of time-aware
processes. As opposed to this paper, however, [9] only provides a high level discussion of the different aspects
to be considered when changing time-aware process instances, temporal consistency being one of them.

2

Category I: Durations and Time Lags
TP1 Time Lags between two Activities
TP2 Durations
TP3 Time Lags between Events

Category II: Restricting Execution Times
TP4 Fixed Date Elements
TP5 Schedule Restricted Elements
TP6 Time-based Restrictions
TP7 Validity Period

Category III: Variability
TP8 Time-dependent Variability

Category IV: Recurrent Process Elements
TP9 Cyclic Elements
TP10 Periodicity

Table 1: Process Time Patterns TP1 – TP10 [1]

A

Activity

Data object

d

AND-Block

XOR-Block

Control Edge

Data Edge

A

B

D

C

E

H

F

G

Process Schema S

[5, 25]

LE

S [30, 120] S

d

E [5, 60] S

[5, 25]

[5, 25]

[5, 25]

[5, 40] [10, 25]

[10, 25] [60, 120]

Process Duration: [90, 200]

Fixed Date Element

Activity Duration

Date value for
Fixed Date Element G

Time Lag between two Activities

Time Lag between two Activities

Figure 1: Core Concepts of a Time-Aware Process Model

3. Basic Notions

This section provides basic notions. First, it defines a basic set of elements for modeling time-aware
processes. Second, it introduces the concept of temporal consistency for time-ware processes.

3.1. Time-aware Processes
For each business process exhibiting temporal constraints, a time-aware process schema needs to be defined

(cf. Figure 1). In our work, a process schema corresponds to a process model; i.e., a directed graph, that
comprises a set of nodes—representing activities and control connectors (e.g., Start-/End-nodes, XORsplits,
or ANDjoins)—as well as a set of control edges linking these nodes and specifying precedence relations
between them. We assume that process models are well structured [5], e.g., sequences, and branchings (i.e.,
parallel and exclusive choices) are specified in terms of nested blocks with unique start and end nodes of
same type. These blocks—also known as SESE regions [15]—may be arbitrarily nested, but must not overlap;
i.e., their nesting must be regular [16]. Figure 1 depicts an example of a well structured process model with
the grey areas indicating respective blocks. Each process model contains a unique start and end node, and
may be composed of control flow patterns like [17]: sequence, parallel split (ANDsplit), synchronization
(ANDjoin), exclusive choice (XORsplit), and simple merge (XORjoin) (cf. Figure 1). Note that we do not
consider loops in this paper. However, in the context of time-aware processes a loop may be mapped to a set
of nested XOR blocks [4].

In addition, a process model contains data objects as well as data edges linking activities with data objects.
More precisely, a data edge either represents a read or write access of the referenced activity to the referred
data object.

At run-time, process instances may be created and executed according to the defined process model. We
assume that a process instance is logically represented by a clone of the respective process model augmented
with instance-specific information. In turn, activity instances represent executions of single process steps
(i.e., activities) of such a process instance.

If a process model contains XOR-blocks, uncertainty is introduced since not all instances perform exactly
the same set of activities. The concept of execution path allows us to identify which activities and control
connectors are actually performed during one execution of a process instance. Particularly, given a process
model, an execution path denotes a connected maximal subgraph of the process model containing its start
and end node, in which all XORsplit connectors have exactly one branch. An execution path can be also
briefly described by a string containing the activity identifiers of the execution path sorted with respect to

3

their execution order and separated by a dash if the order is sequential or by a vertical bar if it is parallel [2].
As example, considering the process model from Figure 1, the string A-((B-D)|(E-F))-G-H represents an example
of an execution path, where A is followed by a parallel execution of two sequential paths (B-D) (i.e., , for the
XORsplit the upper path is selected) and (E-F); then, G and H are sequentially executed. Note that the set
of execution paths may have an exponential cardinality with respect to the number of XOR blocks in the
process model.

We base our work on the 10 time patterns (TP) we presented in [1] (cf. Section 2). To set a focus,
this work specifically considers the patterns being most relevant in practice [1]; i.e., time lags between two
activities (TP1), durations of activities and processes (TP2), and fixed date elements of activities (TP4). In
detail:

An activity durations (TP2) defines the minimum and maximum time span allowed for executing a
particular activity (or node, in general), i.e., the time span between start and completion of the activity [1].
We assume that each activity has an assigned duration. Activity durations are described in terms of minimum
and maximum values [dmin, dmax] where 0 ≤ dmin ≤ dmax. Since control connectors are automatically
performed, one may assume that they have a fixed duration defined by the PAIS (e.g., [0, 1]).

Process durations (TP2) represent the time span allowed for executing an instance of the process
model, i.e., the time span between start and completion of the process instance [1]. Again, a process duration
is described in terms of minimum and maximum values [dmin, dmax] where 0 ≤ dmin ≤ dmax.

Time lags between two activities (TP1) restrict the time span allowed between the starting and/or
ending instants of two arbitrary activities of a process model [1]. Such a time lag may not only be defined
between directly succeeding activities, but between any two activities that may be conjointly executed in the
context of a particular process instance, i.e., the activities must not belong to exclusive branches. In Figure 1,
a time lag is visualized through a dashed edge with a clock symbol between the source and target activity.
The label of the edge specifies the constraint according to the following template: 〈IS〉[tmin, tmax]〈IT 〉;
〈IS〉 ∈ {S,E} and 〈IT 〉 ∈ {S,E} mark the instant (i.e., starting or ending) of the source and target activity
the time lag applies to; e.g., 〈IS〉 = S marks the starting instant of the source activity and 〈IT 〉 = E the
ending instant of the target activity. In turn, [tmin, tmax] (−∞≤ tmin ≤ tmax ≤∞) represents the range
allowed for the time span between instants 〈IS〉 and 〈IT 〉. In particular, time lags may be used to specify
minimum delays and maximum waiting times between succeeding activities. Finally, note that a control edge
implicitly represents an E[0,∞]S time lag between its source and target activity, i.e., the target activity may
only be started after completing the source activity.

Fixed date elements (TP4) refer to activities and allow restricting their execution in relation to a
specific date [1], e.g., a fixed date element may define that the activity must not be started before or must
be completed by a particular date.1 Generally, the value of a fixed date element is specific to a process
instance, i.e., it is not known before creating the process instance or even becomes known only during run
time. Therefore, the respective date of a fixed date element is stored in a data object. When evaluating
the fixed date element during run-time, the current value of the respective data object is retrieved [13].
Figure 1 visualizes a fixed date element through a clock symbol attached to the activity. In this context,
label 〈D〉 ∈ {ES , LS , EE , LE} represents the activity’s earliest start date (ES), latest start date (LS), earliest
completion date (EE), or latest completion date (LE), respectively.

Figure 1 shows an example of a process model exhibiting temporal constraints. Even though we use
the notation defined by BPMN for illustration purpose, the approach described in the following is not
BPMN-specific. Further note that, although some of the symbols used for visualizing the temporal constraints
resemble BPMN timer events, their semantics is quite different and should not be mixed up. As can be
easily verified, in Figure 1 all activities have a corresponding activity duration. The duration of activity A,
for example, expresses that A has a minimum duration of 5 and a maximum duration of 25. Between B and G
there is a time lag described by S[30, 120]S, i.e., between the start of B and the start of G there must be a
minimum delay of 30 time units and a maximum waiting time of 120 time units. Additionally, there is a
time lag between E and F. Next, G has a fixed date element attached to it, whereby label LE indicates that

1Fixed date elements are often referred to as “deadlines”. However, this does not completely meet the intended semantics.

4

the latest end date of the activity is restricted by the temporal constraint. In turn, the date of the fixed date
element is provided by activity D through data object d.

3.2. Temporal Consistency of Time-Aware Processes
A time-aware process model is executed by performing its activities and control connectors, thereby

obeying any structural or temporal constraints of the process model. We denote a process model as
temporally consistent if it is possible to perform all execution paths without violating the temporal constraints
involved. Temporal consistency of a time-aware process model (as well as respective process instances)
constitutes a fundamental prerequisite for its robust and error-free execution. In particular, executing a
process instance whose model is not temporally consistent leads to a waste of resources [6, 3]. Therefore, for
any PAIS supporting time-aware processes, a crucial task is to check temporal consistency of the process
model at design-time as well as to monitor and re-check corresponding instance during run-time. This
is particularly challenging since different temporal constraints might interact with each other resulting
in complex interdependcies (e.g., a future deadline might restrict the duration of some or all preceding
activities).

Whether or not a time-aware process model is temporally consistent can be checked by mapping it to a
conditional simple temporal network (CSTN)—a problem known from artificial intelligence [8, 18]. In our
work, we use CSTN since it allows us to exploit and reuse checking algorithms for a well founded model for
representing temporal constraints. Finally, CSTN allows capturing the complex interdependencies between
constraints, which cannot be suitably captured in time-aware process models.

Definition 1 (Conditional Simple Temporal Network). A Conditional Simple Temporal Network (CSTN)
is a 6-tuple 〈T , C, L,OT ,O, P 〉, where:2
• T is a set of real-valued variables, called time-points;
• P is a finite set of propositional letters (or propositions);
• L : T → P ∗ is a function assigning a label to each time-point in T ; a label is any (possibly empty)
conjunction of (positive or negative) letters from P .3
• C is a set of labeled simple temporal constraints (constraint in the following); each constraint cXY ∈ C
has the form cXY = 〈[x, y]XY , β〉, where X,Y ∈ T are any time-points, −∞ ≤ x ≤ y ≤ ∞ are any real
numbers, and β ∈ P ∗ is a label.
• OT ⊆ T is a set of observation time-points;
• O : P → OT is a bijection that associates a unique observation time-point to each propositional letter
from P .

Time-points represent instantaneous events that may be, for example, associated with the start or
end of activities. In turn, observation time-points represent the time point at which relevant information
for the execution of the CSTN is acquired, i.e., it represents the time-point a decision regarding possible
execution paths is made. More formally, when executing observation time-point P , the truth-value of the
associated proposition (i.e., O−1(P)) is determined (observed in CSTN jargon). A constraint cXY = 〈[x,
y]XY , β〉 expresses that the time span between time-points X and Y must be at least x and at most y, i.e.,
Y −X ∈ [x, y]. The label attached to each time-point and constraint, respectively, indicates the different
possible executions of the CSTN, i.e., a particular time-point or constraint will be only considered if the
corresponding label is satisfiable in the respective instance. Figure 2 depicts the CSTN corresponding to the
process model from Figure 1.

The solution to a CSTN can be defined as follows [18]:

Definition 2 (Scenario & Solution). Given a CSTN S = 〈T , C, L,OT ,O, P 〉, a scenario over set P is a
function sP : P → {true, false}, which assigns a truth-value to each proposition in P .

A solution for CSTN S under scenario sP then corresponds to a complete set of assignments to all time-
points X ∈ T with sP (L(X)) = true, which satisfies all constraints 〈[x, y]XY , β〉 ∈ C for which sP (β) = true
holds.

2For a more complete definition and a characterization see [18].
3In the following we use small Greek letters α, β, . . . to denote arbitrary labels. The empty label is denoted by �.

5

AS AE

FS FE

GS GE

DS DE

HS HE

ES EE

BS BE

CS CE

PS PE

Time Model M

Z

ANDsplit G HA

B

C
ANDjoin

XORsplit
p?

XORjoin D

‹[5, 25], □›

‹[5, 40], □› ‹[10, 25], □›

‹[0, 1], □› ‹[0, 1], □› ‹[60, 120], □›‹[10, 25], □›

‹[0, 1], □›

‹[5, 25], p›

‹[5, 25], ¬p›

‹[0, 1], □› ‹[5, 25], □›

‹[0, 1], p›

‹[0
, 1], ¬

p›

‹[5, 60], □›

‹[90, 200], ◊›

‹[0, ∞], □›

‹[30, 120], p›

‹[0, ∞], p
›

‹[0, ∞], ¬p›

E F

Time-PointObservation
Time-Point

Activity Mapping
Temporal Constraint

Figure 2: CSTN Representation of the Process Model from Figure 1

We denote the CSTN corresponding to a time-aware process model as its time model. The required
mapping can roughly be described as follows:4 First, the control flow of the process model is mapped to a
CSTN as illustrated in the left part of Figure 3. Particularly, each control flow element implicitly represents
a temporal constraint, e.g., a control edge is equivalent to an E[0,∞]S time lag (cf. Figure 3). Each activity,
ANDsplit, ANDjoin, and XORjoin ni is represented as a pair of time-points NiS and NiE , corresponding to
the starting and ending instant of the respective node (cf. Figure 3). In turn, for an XORsplit, the ending
instant (i.e., NiE) is represented by an observation time-point (cf. Figure 3). Next, a constraint 〈[dmin,
dmax]NiSNiE ,�〉 is added between NiS and NiE representing the duration [dmin, dmax] of the respective node.
Furthermore, for any control edge between nodes ni and nj , a constraint 〈[0,∞]NiENjS ,�〉 is added between
the time-points representing the ending instant of ni and starting instant of nj (cf. Figure 3). If the source
of the control edge corresponds to an XORsplit, in addition, the label of the constraint is augmented by
proposition p = O−1(P). The latter represents the decision made at the corresponding observation time-point
P, i.e., the label of the constraint 〈[0,∞]NiENjS , β〉 belonging to the “true”-branch is set to βp and the
label of the “false”-branch to β¬p (cf. Figure 3).5 Further, the labels of all constraints and time-points
corresponding to activities, connectors and control edges in the XOR-block are augmented by either p or ¬p
depending on the branch they belong to.

Next, temporal constraints are mapped to the CSTN as depicted in the right part of Figure 3. A time
lag 〈IS〉[tmin, tmax]〈IT 〉 corresponds to a constraint 〈[tmin, tmax]Ni〈IS〉Nj〈IT 〉 , L(Ni〈IS〉)∧L(Nj〈IT 〉)〉 between the
two time-points representing the respective instants of nodes ni and nj (cf. Figure 3). In turn, a fixed
date element is initially represented as a constraint 〈[0,∞]ZN〈D〉 , L(N〈D〉)〉 with Z being a special time-point
representing time “0” (cf. Figure 3). During run-time, value [0,∞] of the constraint will be updated according
to the actual fixed date chosen. Finally, process duration [dmin, dmax] is represented as constraint 〈[dmin,
dmax]N0SNkE ,�〉 between the time-points representing the starting instant N0S of the first and the one
representing the ending instant NkE of the last node of the process.

As example re-consider Figure 2. In particular, note that the labels of the constraints representing
the XOR-block are either set to p or ¬p. Further, note that for the sake of readability, all edges without
annotation are assumed to have bounds 〈[0,∞],�〉.

Based on Definition 2, we formally define the notion of temporal consistency for time-aware process
models.

Definition 3 (Temporal Consistency). A CSTN 〈T , C, L,OT ,O, P 〉 is called weakly consistent iff for each
scenario sP at least one viable solution exists [8].

A time-aware process model is denoted as temporally consistent iff the corresponding time model (i.e., its
CSTN representation) is weakly consistent.

When executing a time-aware process model, temporal consistency of the respective instances needs to
be continuously monitored and re-checked. For this purpose, the minimal network of a CSTN6 must be
determined.

4For further details we refer to [4], where we show how time-aware processes can be transformed to CSTNU—a special kind
of CSTN.

5Note that this can be easily extended to consider more than two branches, but for the sake of simplicity, we only consider
two branches in this paper.

6The minimal network of a CSTN is also called its dispatchable form.

6

Time Model

<[dmin, dmax], β>

AS AE

<[0, ∞], β> <[0, ∞], β> <[tmin, tmax], β>

AEAS BS BE

<[0, 1], β>

GS GE

<[0, ∞], β>

<[0, ∞], β>

<[0, ∞], β
>

<[0, 1], β>

PS PE

<[0, ∞], β>

<[0, ∞], β¬p>

<[0, ∞], β
 p>

p?

<[0, 1], β>

GS GE

<[0, ∞], β>

<[0, ∞], β>

<[0, ∞], β
>

<[0, 1], β>

GS GE

<[0, ∞], β>

<[0, ∞], β p>

<[0, ∞], β
¬p>

Time Model

Aktivity

<[0, ∞], β>

AEAS BS BE

Control Edge

Time Lag

Fixed Date Element

ANDsplit

ANDjoin

XORsplit

XORjoin

A B

E [tmin, tmax] S

<[tmin, tmax], β>

AEAS BS BE

<[0, ∞], β>A B

S [tmin, tmax] S

AEAS BS BE

<[tmin, tmax], β>

<[0, ∞], β>A B

E [tmin, tmax] E

AEAS BS BE

<[tmin, tmax], β>

<[0, ∞], β>A B

S [tmin, tmax] E

end-start

start-start

end-end

start-end

earliest start latest start

earliest completion latest completion

A

EE

A

LE

A

ES

A

LS

AEAS

Z
<[tmin, ∞], β>

AEAS

Z
<[tmin, ∞], β>

AEAS

Z
<[0, tmax], β>

AEAS

Z
<[0, tmax], β>

A
[dmin,dmax]

A B

Process Model Process Model

G

G

G

P

Time-Point

Time-Point “0”

Observation
Time-Point

Temporal Constraint

Figure 3: Process Modeling Elements and their Mapping to CSTN

Definition 4 (Minimal Network). The minimal network of a CSTN S = 〈T , C, L,OT ,O, P 〉 is the unique
CSTN M = 〈T , C′, L,OT ,O, P 〉 having the same set of solutions as S and each value allowed by any
constraint c = 〈[x, y]XY , β〉 ∈ C′ being part of at least one solution of S for every scenario sP for which
sP (β) = true.

For any CSTN S a minimal network exists iff S is weakly consistent. In particular, such a minimal
network provides a restricted set of constraints: As long as the value of each time-point is consistent with all
constraints referring to it whose labels are still satisfiable, we can guarantee that the entire CSTN is weakly
consistent. Besides explicit constraints c ∈ C we obtain when mapping the process model to the CSTN, the
minimal network contains implicit constraints between any pair of time-points that may occur in the same
execution path. Note that these implicit constraints represent the effects the explicit constraints have on the
overall CSTN (i.e., they represent interdependencies between explicit constraints). The implicit constraints
are derived from the explicit ones when determining the minimal network. How to determine the latter is
described in [8]. In the following, we denote the time model resulting from the mapping of the process model
to a CSTN as base time model and its minimal network as minimal time model of the process model.

As example consider Figure 4 which depicts a process model, its base time model and the corresponding
minimal time model. Note that for the sake of readability most implicit constraints of the minimal time
model are only indicated through light grey arrows. Further note, that explicit constraints which are
restricted when minimizing the time model are highlighted in green. The example also illustrates some of
the possible interdependencies between the various temporal constraints of a process model. In particular,
the time lag between the start of activity B and start of C restricts the maximum duration of B to 20; note
the constraint between BS and BE in the minimal time model. Moreover, the time lags between A and C
and B and C introduces an additional interdependency between activities A and B (the respective implicit
temporal constraint is highlighted in red in Figure 4). In particular, although activities A and B are seemingly
temporally unrelated, B may be started the earliest 5 time units after the start of A. Otherwise, some temporal
constraints of the process model cannot be satisfied. As a consequence, B may be started the earliest 5 time
units after completion of the ANDsplit node. Furthermore, B must be started the latest 30 time units after
the start of A. Note that representing all these interdependencies of different temporal constraints as part of
the process model is not feasible as they can be quite numerous. Particularly, this would render the process
model unreadable.

7

‹[10, 25], □›

‹[0, 1], □› ‹[0, 1], □› ‹[5, 10], □›

‹[30, 35], □›

‹[0, 20], □›

‹[0
, ∞

], □
›

‹[0
, ∞

], □
›

‹[0
, ∞

], □
›

‹[0, ∞], □›
‹[0, ∞], □›

‹[0, ∞], □›
‹[5, 10], □›

BS BE

CS CE

AS AE

Z

ANDsplit CANDjoin

A

B

Base Time Model

‹[10, 20], □›

‹[5, 30], □›‹[0, 1], □› ‹[0, 1], □› ‹[5, 10], □›

‹[30, 35], □›

‹[10, 20], □›

‹[0
, ∞

], □
›

‹[0
, ∞

], □
›

‹[0
, 1

0], □
›

‹[0, 10], □›
‹[5, ∞], □›

‹[10, 30], □›

‹[5, 10], □›

BS BE

CS CE

AS AE

Z

ANDsplit CANDjoin

A

B

Minimal Time Model

A

B

C

E [30, 35] E

S [0, 20] S

[5, 10]

[10, 25]

[5, 10]

Process Model

Figure 4: Basic and Minimal Time Model

When executing a process instance, the two time models created at design-time are cloned. These clones
are then kept up-to-date with the actual temporal state of the process instance (e.g., activity start and
completion times) and used to monitor and re-check temporal consistency of the process instance [4].

4. Change Operations for Time-aware Processes

Standard change patterns adapting process models without temporal constraints have been extensively
studied in literature [5]. This section discusses how respective change operations may be transferred to time-
aware processes. Section 4.1 presents the change operations applicable to time-aware processes. Section 4.2
then provides an in-depth discussion of these change operations and shows how they can be extended to
ensure temporal consistency of a changed process model.

4.1. Basic Change Operations
When changing a process schema or process instance, respectively, or—more generally—when changing a

process model, the soundness of the latter must be ensured. To achieve this, our framework abstracts from
low-level change primitives (e.g., adding an edge or node) to higher-level change operations with well-defined
pre-/post-conditions [5]. When being applied to a sound process model, such a high-level change operation
(e.g., inserting a node in serial between two succeeding nodes) guarantees that the resulting process model
will be structurally and behaviourally sound as well [5]. The upper part of Table 2 gives an overview of the
most important change operations required for structurally modifying a process model. Note that these
change operations may be combined to realize more complex change patterns [14] (e.g., move activity). We
extend the set of structural change operations by a new set of change operations enabling us to modify
the temporal constraints of a process model as well, e.g., inserting a time lag (see the bottom of Table 2).
Altogether, these change operations allow changing a time-aware process model, while guaranteeing structural
and behavioural soundness of the resulting process model.

4.2. Applying Change Operations to Time-aware Processes
When modifying the model of a time-aware process, it must be ensured that the resulting process model is

temporally consistent. This section defines basic criteria ensuring that the application of a change operation
does not result in a temporally inconsistent process model. We further analyze the local impact a particular
change operation has on the temporal properties of the respective process model, i.e., its temporal constraints.

If a change operation is applied to a process instance, additional state-specific pre- and post-conditions
need to be met [5]. These are not considered in the following since they apply to time-aware processes as
well. Further, note that any time-related instance-specific information is captured in the corresponding time

8

Operation Description

Control Flow
InsertSerial(n1, n2, nnew, [dmin, dmax]) Inserts node nnew with duration [dmin, dmax] between directly

succeeding nodes n1 and n2.
InsertPar(n1, n2, nnew, [dmin, dmax]) Inserts node nnew with duration [dmin, dmax] as well as an AND

block surrounding the SESE block defined by n1 and n2.
InsertCond(n1, n2, nnew, [dmin, dmax], c) Inserts node nnew with duration [dmin, dmax] and condition c as

well as an XOR block between succeeding nodes n1 and n2.
InsertBranch(g1, g2, c) Inserts an empty branch with condition c between XORsplit g1

and XORjoin g2.
DeleteActivity(n) Deletes activity n.

Temporal Constraints
InsertT imeLag(n1, n2, typetl, [tmin, tmax]) Inserts a time lag [tmin, tmax] between nodes n1 and n2. Thereby,

typetl ∈ {start-start, start-end, end-start, end-end} describes
whether the time lag is inserted between the start of the two
activities, the start of n1 and the end of n2, the end of n1 and
the start of n2, or the end of the two activities.

InsertFDE(n, typefde) Adds a fixed date element of type typefde ∈ {ES , LS , EE , LE}
to node n.

DeleteT imeLag(n1, n2, typetl) Deletes the time lag of type typetl between nodes n1 and n2.
DeleteFDE(n, typefde) Deletes any fixed date element of type typefde from node n.

Table 2: Basic Change Operations

model (cf. Section 3.2). In particular, we will show that it is sufficient to only consider the current minimal
time model of the process instance.

4.2.1. Serial Activity Insertion.
As first change operation we consider InsertSerial(n1, n2, nnew, [dmin, dmax]). It allows inserting a node

nnew with duration [dmin, dmax] between two directly succeeding nodes n1 and n2 (cf. Figure 5). In terms
of change primitives, this can be realized by deleting the control edge between nodes n1 and n2, followed
by adding node nnew with duration [dmin, dmax] to the process model and properly connecting it to n1 and
n2 by adding two new control edges (cf. Figure 5 and Table 3). Regarding the temporal properties of the
resulting process model, one can observe that the insertion of nnew will first and foremost increase the
minimum time distance between n1 and n2 to dmin. By contrast, the maximum distance between the two
nodes is not affected by the change as the newly added control connectors do not constrain it. Accordingly, if
for the minimal time model the minimum duration dmin is compliant with any implicit or explicit constraint
〈[cmin, cmax]N1EN2S , β〉 between the ending instant of n1 and the starting instant of n2 (i.e., dmin ≤ cmax),
the node insertion will not affect temporal consistency of the process model.7 Remember that each value of
each constraint in the minimal time model is part of at least one solution (cf. Definition 4), i.e., one viable
execution of the process model. Consequently, the time-aware process model is still temporally consistent.

After inserting the node into the process model, the mapping of this node and the control edges must be
added to the time models as well (i.e., the base time model and minimal time model). Furthermore, the minimal
time model must be locally adapted in order to properly cover the changes. In particular, the constraint
between the ending instant of n1 and the starting instant of n2 must be updated to [max{cmin, dmin}, cmax]
to consider the new minimum distance between the two nodes (cf. Figure 5), i.e., certain values permitted
by the old constraint might no longer be part of any viable solution. It further becomes evident that the
constraints corresponding to the two control edges must be initialized to [0, cmax − dmin] (cf. Figure 5).
Algorithm 1 defines the pre- and post-conditions for applying change operation InsertSerial to a process
model.

7Note that any implicit constraint 〈[cmin, cmax]N1EN2S , β〉 is always at least as restrictive as any explicit time lag
E[tmin, tmax]S between n1 and n2.

9

<[max{cmin,dmin}, cmax], β>
<[dmin,dmax], β>

<[0, cmax-dmin], β> <[0, cmax-dmin], β>AS AE XS XE BS BE
<..., β> <..., β>

<[cmin, cmax], β>

<..., β> <..., β>AS AE BS BE

dmin ≤ tmax

A X
[dmin,dmax]

BA

X
[dmin,dmax]

B

E [tmin, tmax] S E [tmin, tmax] S

A

X
[dmin,dmax]

B

InsertSerial(A, B, X,
[dmin,dmax])

E [tmin, tmax] S

Process Model

Time Model

Figure 5: Change Operation: Insert Serial

Algorithm 1: InsertSerial(n1,n2,nnew, [dmin,dmax])
Pre succ(n1) = n2,

∀〈[cmin, cmax]N1EN2S , β〉 ∈ C : cmax ≥ dmin

Init γ = L(N1E) ∧ L(N2S)
Post // Update process model:

RemoveEdge(n1, n2),
AddNode(nnew, [dmin, dmax], Activity), AddEdge(n1, nnew), AddEdge(nnew, n2)
// Update basic and minimal time model:
AddT imePoint(NnewS , γ), AddT imePoint(NnewE , γ),
AddConstraint(NnewS , NnewE , [dmin, dmax], γ),
AddConstraint(N1E , NnewS , [0,∞], γ), AddConstraint(NnewE , N2S , [0,∞], γ),
// Adapt minimal time model:
∀〈[cmin, cmax]N1EN2S , β〉 ∈ C :

AddConstraint(N1E , NnewS , [0, cmax − dmin], β),
AddConstraint(NnewE , N2S , [0, cmax − dmin], β),
UpdateConstraint(N1E , N2S , [max{cmin, dmin}, cmax)], β)

Table 3: Algorithm 1: InsertSerial

After adding the node to the process model, the mapping of this node and the control edges must be
added to the time models as well (i.e., the base time model and minimal time model). Further, the minimal
time model must be locally adapted to properly cover the changes. In particular, the constraint between
the ending instant of n1 and the starting instant of n2 must be updated to [max{cmin, dmin}, cmax] in order
to consider the new minimum distance between the two nodes (cf. Figure 5), i.e., certain values permitted
by the old constraint might no longer be part of any viable solution. It further becomes evident that the
constraints corresponding to the two control edges must be initialized to [0, cmax − dmin] (cf. Figure 5).
Algorithm 1 defines the pre- and post-conditions for applying change operation InsertSerial to a process
model.

After applying InsertSerial the changes made to the minimal time model need to be propagated to all other
constraints to remove values no longer contributing to any solution. Note that this must be accomplished
before performing any other change or resuming the execution of the process instance. Practically, this
means that the minimality of the changed minimal time model needs to be restored. This may be achieved
by applying the same algorithm initially used for determining the minimal time model (cf. Section 3.2).

4.2.2. Parallel Activity Insertion.
The next change operation considered by us is operation InsertPar(n1, n2, nnew, [dmin, dmax]). It inserts

node nnew together with an ANDsplit- and ANDjoin-gateway surrounding the SESE-region defined by n1
and n2 (cf. Figure 6 and Table 4). This is achieved by serially inserting ANDsplit gs between n1 and its
predecessor and ANDjoin gj between n2 and its successor (cf. InsertSerial-operation). Next, node nnew with
duration [dmin, dmax] is added to the process model and properly connected to gs and gj by adding two new
control edges (cf. Figure 6). Concerning temporal constraints, we again observe that inserting the node
solely increases the minimum time distance between the predecessor np of n1 and the successor ns of n2.
Consequently, if the minimum duration dmin is compliant with any implicit (or explicit) constraint 〈[cmin,

10

<[dmin,dmax], β>

XS XE

<[max{cmin,dmin},cmax], β>

AS

GsS GsE GjS GjE

BE

<[0, cmax-dmin], β> <[0, cmax-dmin], β>

<[cmin, cmax], β>

AS BE

dmin ≤ tmax

X
[dmin,dmax]

E [tmin, tmax] S

SESE
A BGs Gj

X
[dmin,dmax]

InsertPar(A, B, X, [dmin,dmax])

SESE
A B

E [tmin, tmax] S

Process Model

Time Model

Figure 6: Update Operation: Insert Parallel

Algorithm 2: InsertPar(n1,n2,nnew, [dmin,dmax])
Pre (n1, n2) is SESE-region,

∀〈[cmin, cmax]NpENsS , β〉 ∈ C : cmax ≥ dmin,
Init np = pred(n1) , ns = succ(n2),

γ = L(N1E) ∧ L(N2S)
Post // Update process model:

AddNode(gs, [0, 1], AND), AddNode(gj , [0, 1], AND),
RemoveEdge(np, n1), AddEdge(np, gs), AddEdge(gs, n1),
RemoveEdge(n2, ns), AddEdge(n2, gj), AddEdge(gj , ns),
AddNode(nnew, [dmin, dmax], Activity), AddEdge(gs, nnew), AddEdge(nnew, gj),
// Update basic and minimal time model:
AddT imePoint(GsS , γ), AddT imePoint(GsE , γ), AddConstraint(GsS , GsE , [0, 1], γ),
AddT imePoint(GjS , γ), AddT imePoint(GjE , γ), AddConstraint(GjS , GjE , [0, 1], γ),
AddConstraint(NpE , GsS , [0,∞], γ), AddConstraint(GsE , N1E , [0,∞], γ),
AddConstraint(N2E , GjS , [0,∞], γ), AddConstraint(GjE , NsS , [0,∞], γ),
AddT imePoint(NnewS , γ), AddT imePoint(NnewE , γ),
AddConstraint(NnewS , NnewE , [dmin, dmax], γ),
AddConstraint(NpE , NnewS , [0,∞], γ), AddConstraint(NnewE , NsS , [0,∞], γ),
AddConstraint(GsE , NnewS , [0,∞], γ), AddConstraint(NnewE , GjS , [0,∞], γ)
// Adapt minimal time model:
∀〈[cmin, cmax]NpENsS , β〉 ∈ C :

AddConstraint(NpE , GsS , [0, cmax − dmin], β),
AddConstraint(GsE , NnewS , [0, cmax − dmin], β),
AddConstraint(NnewE , GjS , [0, cmax − dmin], β),
AddConstraint(GjE , NsS , [0, cmax − dmin], β),
AddConstraint(NpE , NnewS , [0, cmax − dmin], β),
AddConstraint(NnewE , NsS , [0, cmax − dmin], β),
UpdateConstraint(NpE , NsS , [max{cmin, dmin}, cmax], β)

Table 4: Algorithm 2: InsertPar

cmax]NpENsS , β〉 between the respective instants of np and ns, performing the change operation does not
impact consistency of the process model. Note that the added ANDsplit and ANDjoin gateways constitute
silent nodes.

Again, after structurally modifying the process model, the time models needs to be adapted to reflect the
change. Particularly, in the minimal time model the temporal constraint between the ending instant of np
and the starting instant of ns must be updated to [max{cmin, dmin}, cmax] (cf. Figure 6). Moreover, the
constraints representing the newly added control edges must be initialized to [0, cmax − dmin] to reflect the
impact the other constraint have on the time to executed the new activity (cf. Figure 6). Algorithm 2 (cf.
Table 4) formally defines these pre- and post-conditions for performing operation InsertPar.

At last, the changes made to the minimal time model need to be propagated to the other constraints

11

<[max{cmin,dmin}, tmax], β c>

<[cmin, cmax], β ¬c>

<[cmin, cmax], β ¬c>

<[dmin,dmax], β c><[0, cmax-dmin], β c> <[0, cmax-dmin], β c>

AS AE

XS XE

BS BE

GsS GsE GjS GjE<[cmin, cmax], β>

AS AE BS BE

dmin ≤ tmax

A

X
[dmin,dmax]

B

E [tmin, tmax] S

c
¬cGs GjA

X
[dmin,dmax]

B

InsertCond(A, B, X, [dmin,dmax])

E [tmin, tmax] S

Process Model

Time Model

Figure 7: Change Operation: Insert Conditional

Algorithm 3: InsertCond(n1,n2,nnew, [dmin,dmax], c)
Pre succ(n1) = n2,

∀〈[cmin, cmax]N1EN2S , β〉 ∈ C : cmax ≥ dmin

Init γ = L(N1E) ∧ L(N2S)
Post // Update process model:

RemoveEdge(n1, n2),
AddNode(gs, [0, 1], XOR), AddNode(gj , [0, 1], XOR),
AddEdge(n1, gs), AddEdge(gs, gj), AddEdge(gj , n2),
AddNode(nnew, [dmin, dmax], Activity), AddEdge(gs, nnew), AddEdge(nnew, gj),
UpdateCondition(gs, nnew, c), UpdateCondition(gs, gj ,¬c),
// Update basic and minimal time model:
AddT imePoint(GsS , γ), AddObservationT imePoint(GsE , c, γ),
AddConstraint(GsS , GsE , [0, 1], γ),
AddT imePoint(NnewS , γ), AddT imePoint(NnewE , γc),
AddConstraint(NnewS , NnewE , [dmin, dmax], γc),
AddT imePoint(GjS , γ), AddT imePoint(GjE , γ), AddConstraint(GjS , GjE , [0, 1], γ),
AddConstraint(N1E , GsS , [0,∞], γ), AddConstraint(GjE , N2S , [0,∞], γ),
AddConstraint(NnewE , GjS , [0,∞], γc), AddConstraint(GsE , NnewS , [0,∞], γc),
AddConstraint(N1E , NnewS , [0,∞], γc), AddConstraint(NnewE , N2S , [0,∞], γc),
AddConstraint(GsE , GjS , [0,∞], γ¬c),
// Update minimal time model:
∀〈[cmin, cmax]N1EN2S , β〉 ∈ C :

AddConstraint(N1E , GsS , [0, cmax − dmin], β),
AddConstraint(GsE , NnewS , [0, cmax − dmin], βc),
AddConstraint(NnewE , GjS , [0, cmax − dmin], βc),
AddConstraint(GjE , N2S , [0, cmax − dmin], β),
AddConstraint(N1E , NnewS , [0, cmax − dmin], βc),
AddConstraint(NnewE , N2S , [0, cmax − dmin], βc),
AddConstraint(GsE , GjS , [cmin, cmax], β¬c),
UpdateConstraint(N1E , N2S , [cmin, cmax], β¬c),
AddConstraint(N1E , N2S , [max{cmin, dmin}, cmax], βc)

Table 5: Algorithm 3: InsertCond

before performing any other change operation, i.e., the minimality of the modified time model needs to be
restored.

4.2.3. Conditional Activity Insertion.
Change operation InsertCond(n1, n2, nnew, [dmin, dmax], c) inserts node nnew conditionally between suc-

ceeding nodes n1 and n2. This change is accomplished by first inserting XORsplit gs and XORjoin gj
sequentially between n1 and n2 and then inserting nnew conditionally between gs and gj (cf. Figure 7). The
transition condition of the control edge linking gs and nnew is set to c and the one of the control edge linking

12

<[tmin, cmax], β>
<..., β> <..., β>AS AE BS BE

<[cmin, cmax], β>

<[dmin,dmax], β>

<..., β> <..., β>AS AE XS XE BS BE
<..., β> <..., β>

Process Model

Time Model

A B

E [tmin, tmax] S

A X
[dmin,dmax]

B
min

XX
,dmax

DeleteActivity(X)

E [tmin, tmax] S

Figure 8: Update Operation: Delete Activity

gs and gj to ¬c. Note that when adding XORsplit gs and condition c / ¬c to the process model, this results
in a set of additional execution paths; i.e., each execution path of the old process model, which contains
n1 and n2, can now be mapped to two execution paths: one path with c = false (i.e., ¬c) representing the
previous execution path and one with c = true representing the new one containing nnew between n1 and n2.
Hence, for any execution path containing nnew, InsertCond has similar effects as InsertSerial. In turn, any
execution path not containing nnew remains unchanged (except for the added XORsplit and XORjoin, that
constitute silent nodes). Altogether, for operation InsertCond similar pre-conditions hold as for InsertSerial
(cf. Table 3).

After changing a process model, the corresponding time model needs to be adapted by adding the
mappings of the inserted elements as shown in Figure 7. In particular, note that this adds a new observation
time-point GsE and proposition c to the time model (cf. Section 3.2). Accordingly, the labels of the temporal
constraints representing nnew and the two control edges connecting it with gs and gj , respectively, must be
set to βc with β being the label of the original constraint between N1E and N2S . In turn, the label of the
constraint corresponding to the control edge between gs and gj must be set to β¬c. Finally, the constraint
between the ending instant of n1 and the starting instant of n2 needs to be updated as follows: The label of
the original constraint must be augmented by proposition ¬c resulting in constraint 〈[cmin, cmax]N1EN2S ,
β¬c〉. Further, another constraint 〈[max{cmin, dmin}, cmax]N1EN2S , βc〉 containing proposition c must be
added between the two time-points. The latter corresponds to the case where nnew is executed between
the two nodes. Algorithm 3 defines the pre- and post-conditions of operation InsertCond. After applying
this operation, again the minimality of the adapted minimal time model has to be restored. This must be
accomplished before performing any other change or resuming the execution of the process instance.

4.2.4. Branch Insertion.
Operation InsertBranch is similar to InsertCond, except that no node is added. Since only a control edge

is added, no specific time-related pre-conditions must be satisfied.

4.2.5. Activity Deletion.
Change operation DeleteActivity allows deleting activities from a process model as depicted in Figure 8.

Particularly, it removes activity n and replaces it by a new control edge between its predecessor and successor.
From a temporal point of view, deleting an activity is always possible as temporal constraints are only
removed from the time model, but no new ones are added. As only pre-condition, we require that the activity
to be removed has no remaining incoming or outgoing explicit temporal constraint (i.e., time lag or fixed date
element). If necessary, these have to be removed in advance using respective change operations (cf. Table 2).

Algorithm 4 (cf. Table 6) defines the respective pre- and post conditions of operation DeleteActivity.
Unfortunately, when deleting an activity from the process schema it is not possible to restore minimality of
the modified minimal time model. In particular, it is not possible to determine which of the values previously
removed from the constraints when establishing minimality of the time model may now be added again.
Instead it is necessary to recalculate the minimal time model from the base time model.

13

Algorithm 4: DeleteActivity(n)
Pre n has no incoming or outgoing explicit temporal constraint,
Init np = pred(n), ns = succ(n),

tmin is the minimum distance of the explicit constraint between np and ns if any,
or tmin = 0 if there is no explicit constraint

Post // Update process model:
RemoveEdge(np, n), RemoveEdge(n, ns), RemoveNode(n), AddEdge(np, ns)
// Update basic time model:
RemoveConstraint(NS , NE)
∀t ∈ T \ {NS , NE} : RemoveConstraint(t,NS), RemoveConstraint(t,NE),

RemoveConstraint(NS , t), RemoveConstraint(NE , t)
RemoveT imePoint(NS), RemoveT imePoint(NE),
AddConstraint(np, ns, [0,∞], L(np) ∧ L(ns))
// Recreate minimal time model from updated basic time model.

Table 6: Algorithm 4: Delete Activity

<[max(cmin,tmin), min(cmax,tmax)], β>

AS AE BS BE

<[cmin, cmax], β>

AS AE BS BE

tmin ≤ cmax
tmax ≥ cmin

A B

E [tmin, tmax] SInsertTimeLag(A, B, start-start,
 [tmin,tmax])

A B
E [tmin, tmax] S

Process Model

Time Model

Figure 9: Change Operation: Insert Time Lag

4.2.6. Time Lag Insertion.
Change operation InsertTimeLag(n1, n2, typetl, [tmin, tmax]) allows adding a time lag between activities

n1 and n2. The instants the time lag refers to (i.e., start vs. end) are specified by parameter typetl.
Adding a time lag is only possible if there exists at least one execution path containing both nodes (i.e.,
L(N1〈IS〉) ∧ L(N2〈IT 〉) is satisfiable; cf. Table 7) [13].

The two time models are then adapted by adding a constraint 〈[tmin, tmax]N1〈IS〉N2〈IT 〉
, β〉 between the

time-points representing the respective instants (start vs. end) of the two nodes. Basically, this updates
each existing implicit constraint 〈[cmin, cmax]N1〈IS〉N2〈IT 〉

, β〉. Note that this is only possible if the resulting
constraint [max{cmin, tmin},min{cmax, tmax}] in the adapted minimal time model still permits at least one
value, i.e., allows for at least one possible solution. Accordingly, for the operation to be applicable, for
any implicit constraint between N1〈IS〉 and N2〈IT 〉 the following must hold: cmin ≤ tmax ∧ tmin ≤ cmax.8
Algorithm 5 defines the respective pre- and post-conditions. After updating the temporal constraints,
minimality of the adapted minimal time model must be restored.

4.2.7. Fixed Date Element Insertion.
Inserting a fixed date element (i.e., operation InsertFDE) is equivalent to adding a time lag between the

special time-point Z (indicating time “0”) and the respective instant of the node (cf. Section 3.2). However,
in some cases the actual date is not known when inserting the fixed date element. Accordingly, in these cases,
no time-specific preconditions have to be observed and no changes to the minimal time model are required
(cf. Figure 10). Note that there already exists an implicit constraint between Z and the respective instant
of the node. Algorithm 6 (cf. Table 8) defines the respective pre- and post-conditions. After updating the
temporal constraints, if the date of the fixed date element is known, minimality of the adapted minimal time
model must be restored.

8Note that tmin ≤ tmax and cmin ≤ cmax is guaranteed by the time lag and the minimal time model, respectively.

14

Algorithm 5: InsertTimeLag(n1,n2, typetl, [tmin, tmax])

Pre 〈IS〉 =
{
S typetl = start-*
E typetl = end-* , 〈IT 〉 =

{
S typetl = *-start
E typetl = *-end

(L(N1〈IS〉) ∧ L(N2〈IT 〉)) is satisfiable
∀〈[cmin, cmax]N1〈IS〉N2〈IT 〉

, β〉 ∈ C : cmin ≤ tmax ∧ tmin ≤ cmax

Post // Update process model:
AddT imeLag(n1, n2, 〈IS〉[tmin, tmax]〈IT 〉)
// Update basic and minimal time model:
AddConstraint(N1〈IS〉, N2〈IT 〉, [tmin, tmax], L(N1E) ∧ L(N2S))
// Update minimal time model:
∀〈[cmin, cmax]N1EN2S , β〉 ∈ C :

UpdateConstraint(N1〈IS〉, N2〈IT 〉, [max{cmin, tmin},min{cmax, tmax}], β)

Table 7: Algorithm 5: Insert Time Lag

AS AE

Z
<[cmin, cmax], β><[cmin, cmax], β>

AS AE

Z

A

LE

InsertFDE(A, LE)

A

Process Model

Time Model

Figure 10: Change Operation: Insert Fixed Date Element

4.2.8. Time Lag and Fixed Date Element Deletion.
Deleting a time lag (operation DeleteTimeLag(n1, n2, typetl)) or fixed date element (operation DeleteFDE(n,

typefde)) is always possible as in both cases no structural restriction is violated and temporal constraints
are only removed from the time model. However, as with operation DeleteActivity (cf. Table 6), it is not
possible to restore minimality of the modified minimal time model. Hence, the minimal time model has to be
recalculated from the base time model.

5. Analyzing the Effects of Change Operations on Time-Aware Processes

When changing a time-aware process schema or instance both the corresponding process model and
the time models (i.e., basic and minimal time model) must be updated. In this context the minimality of
the minimal time model must be restored after each change operation. Only then it becomes possible to
ensure that another change within the same transaction may still be applied without violating temporal
consistency of the process model. However, calculating the minimal network of a CSTN is expensive regarding
computation time. To be more precise its complexity is O(n32k) with n being the number of time-points and
k being the number of observation time-points in the time model. Consequently, there might be significant
delays when applying multiple change operations to large time-aware process models. This issue becomes
even more pressing in the context of process schema evolution [5] when a potentially large set of process
instances shall be dynamically migrated to a new process schema version (i.e., process model). Hence, the
maximum effect a particular change has on the minimal time model must be estimated. Based on this, it
becomes possible to decide whether or not another change operation may be applied without need to restore
minimality of the minimal time model first.

Regarding the change operations introduced in Section 4.2, two different types may be distinguished
based on their impact on the time model: 1. Change operations which add a new temporal constraint or
further restrict an existing one (cf. change operations InsertSerial, InsertPar, InsertCond, InsertBranch,
and InsertTimeLag) and 2. change operations which relax some temporal constraints by removing others (cf.
change operations DeleteActivity, DeleteTimeLag, and DeleteFDE).

15

Algorithm 6: InsertFDE(n, typefde)

Pre N =
{
NS if typefde ∈ {ES , LS}
NE if typefde ∈ {EE , LE}

Init t = current value of the fixed-date element or undefined

tmin =

0 if t = undefined

t if typefde ∈ {ES , EE}
0 if typefde ∈ {LS , LE}

tmax =

∞ if t = undefined

∞ if typefde ∈ {ES , EE}
t if typefde ∈ {LS , LE}

Post // Update process model:
AddFixedDateElement(n, typefde)
// Update basic and minimal time model:
AddConstraint(Z,N, [0,∞], L(N))
// Update minimal time model:
∀〈[cmin, cmax]ZN , β〉 ∈ C :

UpdateConstraint(Z,N, [max{cmin, tmin},min{cmax, tmax}], β)

Table 8: Algorithm 6: Insert Fixed Date Element

5.1. Changes Adding or Restricting a Temporal Constraint
Regarding changes making an existing constraint more restrictive, Theorem 1 shows how their maximum

effects can be estimated.

Theorem 1 (Restricting a constraint in a minimal network). Let M = 〈T , CM , L,OT ,O, P 〉 be a minimal
CSTN and M∗ = 〈T , CM∗ , L, OT ,O, P 〉 the CSTN derived from M by replacing constraint cAB = 〈[x, y]AB ,
β〉 ∈ CM with the more restrictive constraint c∗AB = 〈[x+σ, y−ρ]AB , β〉; σ, ρ ≥ 0; i.e., C∗M = CM \cAB∪{c∗AB}.

Then: For the minimal network N = 〈T , CN , L,OT ,O, P 〉 of M∗ the following holds: for any constraint
c′XY = 〈[x′, y′]XY , γ〉 ∈ CN the lower bound is increased by at most δ = max{σ, ρ} and the upper bound is
decreased by at most δ compared to the original constraint cXY = 〈[x, y]XY , γ〉 ∈ CM . Formally:

∀〈[x, y]XY , γ〉 ∈ CM , 〈[x′, y′]XY , γ〉 ∈ CN : (x ≤ x′ ≤ x+ δ) ∧ (y ≥ y′ ≥ y − δ)

To proof Theorem 1 we start by showing how a CSTN can be mapped to a more simple kind of temporal
problem, so called simple temporal networks [19]:

Definition 5 (Simple Temporal Network). A Simple Temporal Network (STN) is a pair (T , C), where T is a
set of real-valued variables, called time-points, and C is a set of simple temporal constraints. Each constraint
cXY ∈ C has the form cXY = [x, y]XY , where X and Y are any time-points in T , and −∞ ≤ x ≤ y ≤ ∞ are
any real numbers (compare Definition 1).

A solution to the STN (T , C) is a complete set of assignments to the variables in T that satisfies all of
the constraints in C.

A STN S = (T , C) is called consistent if at least one viable solution exists.

For a STN and respective constraints the following relations can be defined [19]:

Definition 6 (Tighter, Equivalence). A constraint cXY = [xc, yc]XY is tighter than constraint dXY =
[xd, yd]XY , denoted as cXY ⊆ dXY , if every value allowed by cXY is also allowed by dXY , i.e., cXY ⊆ dXY ⇔
xd ≤ xc ≤ yc ≤ yd.

A STN S = (T , CS) is tighter than STN T = (T , CT), denoted as S ⊆ T , if for all corresponding
constraints cXY ∈ CS and dXY ∈ CT it holds cXY ⊆ dXY . In particular, ⊆ forms a partial order on the set
of STNs over a set of time-points T .

Two STNs S and T are equivalent—denoted as S ≡ T— if they represent the same solution set.

Based on these notions the minimal network of a STN is defined as follows [19]:

16

Definition 7 (Minimal Network of a STN). The minimal network of a STN S = (T , C)—denoted as
minimalSTN (S)—is the unique STN M = (T , C′) which represents the same solution set as S and where
each value allowed by any constraint c ∈ C′ is part of at least one viable solution of S. More formally, the
minimal network is the tightest STN M which is equivalent to S, i.e.,

M = minimalSTN (S) ⇐⇒ M ≡ S ∧ (@N = (T , CN) : N ⊆M ∧N ≡ S)

By definition the minimal network for S exists if and only if S is consistent.

Note the similarity between Definition 7 and the one of the minimal network of a CSTN in Definition 4 [18].
We now come back to CSTN and its relationship with STN as discussed in [18]:

Definition 8 (Scenario Projection). Let S = 〈T , C, L,OT ,O, P 〉 be a CSTN, and sP be a scenario for the
letters in P (cf. Definition 2). The projection of S onto the scenario sP—denoted by scProj(S, sP)—is a
STN Q = (T +

s , C+
s), where:

• T +
s = {T ∈ T : sP (L(T)) = true}; and

• C+
s = {[x, y]XY | for some β, 〈[x, y]XY , β〉 ∈ C and sP (β) = true}

Based on this we can define the following corollary to Definition 3:

Corollary 1 (Weak Consistency). A CSTN S = 〈T , C, L,OT ,O, P 〉 is weakly consistent iff for each scenario
sP over P the respective scenario projection scProj(S, sP) is consistent.

Thus, for the minimal network of a CSTN we can define the following lemma based on the minimal
network of STN:

Lemma 1 (Minimal Network). Let minimalCSTN (S) denote the minimal network of CSTN S (cf. Defini-
tion 4) and minimalSTN (T) the minimal network of STN T (cf. Definition 7). Then, it holds that:

∀sP : scProj(minimalCSTN (S), sP) ≡ minimalSTN (scProj(S, sP))

Proof. This follows directly from Definition 4 and Corollary 1. Particularly, according to Definition 4
minimalCSTN (S) must have the same set of solutions as S which, in turn, are given by minimalSTN (scProj(S,
sP)).

We will now show that Theorem 1 holds for STN. But first we need to introduce some additional concepts
and properties of STNs.

Definition 9 (Inverse, Composition, Intersection). For a constraint cXY = [x, y]XY the inverse constraint is

cY X = −cXY = [−y,−x]Y X .

The composition of two constraint cXY = [xc, yc]XY and dY Z = [xd, yd]Y Z is defined as

cXY ⊕ dY Z = [xc + xd, yc + yd]XZ .

The intersection of two constraint cXY = [xc, yc]XY and dXY = [xd, yd]XY is defined as

cXY ∩ dXY =
{

[max{xc, xd},min{yc, yd}]XY if max{xc, xd} ≤ min{yc, yd}
∅ else

.

Table 9 details useful properties of the operations defined by Definition 6 and Definition 9.
A path in an STN is a sequence of time-points which does not contain any subsequent pair of time-points

twice, formally:

17

Operator Precedence ⊕ → ∩

Associativity (cXY ∩ dXY) ∩ eXY = cXY ∩ (dXY ∩ eXY)
(cWX ⊕ dXY)⊕ eY Z = cWX ⊕ (cXY ⊕ eY Z)

Commutativity cXY ∩ dXY = dXY ∩ cXY
Distributivity cXY ⊕ (cY Z ∩ dY Z) = (cXY ⊕ cY Z) ∩ (cXY ⊕ dY Z)
Negation −(−cXY) = −cY X = cXY

−(cXY ⊕ cY Z) = (−cZY)⊕ (−cY X)

Reflexivity cXY ⊆ cXY
Transitivity (cXY ⊆ dXY ∧ dXY ⊆ eXY)⇒ cXY ⊆ eXY

Table 9: Properties of Composition, Intersection and Tighter

Definition 10 (Path). Let S = (T , C) be a STN. Then for n ≥ 3 a path p from X to Y is a sequence
of time-points p = 〈K1, . . . ,Kn〉 ;K1, . . . ,Kn ∈ T with K1 = X, Kn = Y and ∀i ∈ 1, . . . , n − 1 : @j ∈
1, . . . , n− 1 : (Ki = Kj ∧Ki+1 = Kj+1)∨ (Ki = Kj+1 ∧Ki+1 = Kj), i.e., a path does not contain any cycles.

The constraint cp of path p = 〈K1, . . . ,Kn〉 on constraint set C is given by cp = cK1K2 ⊕ cK2K3 ⊕ . . .⊕
cKn−2Kn−1 ⊕ cKn−1Kn ; cK1K2 . . . cKn−1Kn ∈ C.

Furthermore, PXY ⊆ 2T denotes the set of all paths from X to Y in T .

These definitions enable us to provide a more productive characterization of a minimal STN [19, 20]:

Lemma 2 (Minimal STN). A STN S = (T , C) is minimal iff for each constraint cXY ∈ C it holds that cXY
is tighter than the constraint cp of any path p = 〈X,Z, Y 〉 of length three from X to Y . Formally:

S is minimal⇔ ∀cXY ∈ C,∀Z ∈ T , p = 〈X,Z, Y 〉 ∈ PXY : cXY ⊆ cp = cXZ ⊕ cZY

Proof. See proof of Lemma 5.10 in [19]. In particular, it is easy to verify that if ∃cXY ∈ C,∃Z ∈ T : ∃x ∈
cXY : x /∈ cXZ ⊕ cZY then x cannot be part of any solution of S and thus S cannot be minimal.

This gives rise to the following two corollaries, which show how to calculate the minimal STN M of
STN S:

Corollary 2 (Minimal STN). The minimal STN M = (T , C′) for STN S = (T , C) can be calculated as
follows:

Let N1 = (T , C1) = S and let Nk+1 = (T , Ck+1) with

ck+1
XY = cXY ∩

⋂
Z∈T

ckXZ ⊕ ckZY

where cXY ∈ C, ckXZ , ckZY ∈ Ck and cn+1
XY ∈ Ck+1. Then, either ∃n ≥ 1 such that Nn = Nn+1 = M is the

minimal STN or ∃n ≥ 1 such that ∃cnXY ∈ Cn : cnXY = ∅ in which case STN S is not consistent (i.e., no
minimal network exists).

Proof. This follows directly from the fact that the minimal network of an STN can be derived by enforcing
3-path consistency [19]. Also compare the PC1-Algorithm for calculating the minimal network presented
in [19], which is shown to be correct as well as complete. In particular, if Nn = Nn+1 it is easy to
see that ∀cnXY , cnXZ , cnZY ∈ Cn : cnXY ⊆ cnXZ ⊕ cnZY and hence Nn is minimal. Furthermore, for each
ck+1
XY it holds that ckXY ⊇ ck+1

XY and because in each step k → k + 1 at least one ck+1
XY is modified (i.e.,

ckXY ⊃ ck+1
XY) for k →∞ it follows that either ∃n ≥ 1 : ∀k ≥ n : ∀ckXY ∈ Ck,∀c

k+1
XY ∈ Ck+1 : ckXY = ck+1

XY or
∃n ≥ 1 : ∃cnXY ∈ Cn : cnXY = ∅, i.e., a fix point exists.

18

Corollary 3 (Minimal STN). The minimal STN M = (T , C′) for STN S = (T , C) is given by c′XY ∈ C′
with:

c′XY = cXY ∩
⋂

K1∈T
(cXK1 ⊕ cK1Y) ∩

⋂
K1,K2∈T

(cXK1 ⊕ cK1K2 ⊕ cK2Y) ∩ . . .

∩
⋂

K1,...,Kn∈T
(cXK1 ⊕ cK1K2 ⊕ . . .⊕ cKn−1Kn ⊕ cKnY)

= cXY ∩
⋂

p∈PXY

cp

where n = |T | − 2 and cij ∈ C.
In particular, note that without loss of generality we assume that ∀cXY ∈ C : cY X = −cXY ∈ C (cf.

Definition 9).

Proof. Based on Corollary 2 we know that for M = Nn+1 it holds that

cn+1
XY = cXY ∩

⋂
K1∈T

(
cnXK1

⊕ cnK1Y

)
(1)

furthermore we know that for any N i, 2 ≤ i ≤ n

ciXK1
= cXK1 ∩

⋂
K2∈T

(
ci−1
XK2

⊕ ci−1
K2K1

)
(2)

and similarly for ciK1Y
. Applying equation 2 to equation 1 we obtain

cn+1
XY

= cXY ∩
⋂

K1∈T

((
cXK1 ∩

⋂
K2∈T

(
cn−1
XK2

⊕ cn−1
K2K1

))

⊕

(
cK1Y ∩

⋂
K2∈T

(
cn−1
K1K2

⊕ cn−1
K2Y

)))
= cXY ∩

⋂
K1∈T

(cXK1 ⊕ cK1Y) ∩
⋂

K1,K2∈T

(
cXK1 ⊕ cn−1

K1K2
⊕ cn−1

K2Y

)
∩

⋂
K1,K2∈T

(
cn−1
XK2

⊕ cn−1
K2K1

⊕ cK1Y

)
∩

⋂
K1,K2∈T

(
cn−1
XK2

⊕ cn−1
K2K1

⊕ cn−1
K1K2

⊕ cn−1
K2Y

)
= cXY ∩

⋂
K1∈T

(cXK1 ⊕ cK1Y) ∩
⋂

K1,K2∈T

(
cXK1 ⊕ cn−1

K1K2
⊕ cn−1

K2Y

)
If we repeat the same steps for cn−1

ij , . . . , c2
ij and note that c1

ij = cij , we obtain

cn+1
XY = cXY ∩

⋂
K1∈T

(cXK1 ⊕ cK1Y) ∩
⋂

K1,K2∈T
(cXK1 ⊕ cK1K2 ⊕ cK2Y) ∩ . . .

∩
⋂

K1,...,Kn∈T
(cXK1 ⊕ cK1K2 ⊕ . . .⊕ cKn−1Kn ⊕ cKnY)

which completes the proof.

This finally brings us to Theorem 2 which is the equivalence of Theorem 1 for STN.

19

Theorem 2 (Restricting a constraint in a minimal STN). Let M = (T , CM) be the minimal network for
STN S = (T , CS) (i.e., minimalSTN (S) = M). Further, let M∗ = (T , CM∗) be the STN derived from M
by replacing constraint cAB = [x, y]AB ∈ CM with c∗AB = [x+ σ, y − ρ]AB; σ, ρ ≥ 0 (i.e., c∗AB ⊆ cAB and
C∗M = CM \ cAB ∪ {c∗AB}).

Then for the minimal network N = (T , CN) = minimalSTN (M∗) of M∗ it holds that for any constraint
c′XY = [x′, y′]XY ∈ CN the lower bound is increased by at most δ = max{ρ, σ} and the upper bound is
decreased by at most δ compare to the corresponding constraint cXY = [x, y]XY ∈ CM . Formally,

∀ [x, y]XY ∈ CM , [x
′, y′]XY ∈ CN :

[x, y]XY ⊇ [x′, y′]XY ⊇ [x+ δ, y − δ]XY
Proof. The first part, i.e., [x, y]XY ⊇ [x′, y′]XY follows directly from the definition of the minimal network
(cf. Definition 7).

For the second part, i.e., [x′, y′]XY ⊇ [x+ δ, y − δ]XY , remember that according to Corollary 3 it holds,
that for any STNM = (T , CM) the minimal network N = (T , CN) can be calculated based on the intersection
of all paths between two time-points. Formally:

∀c′XY ∈ CN , cXY ∈ CM : c′XY = cXY ∩
⋂

p∈PXY

cp (3)

where p ∈ PXY is a path p = 〈X,K1, . . . ,Kn, Y 〉 from X to Y , cp is the corresponding constraint in CM , and
c′XY ∈ CN .

Furthermore, for the constraint cp of any path p = 〈K1, . . . ,Kn〉 on constraint set CM with constraints
cK1K2 , . . . , cKn−1Kn ∈ CM it holds that

cp = (cK1K2 ⊕ . . .⊕ cKn−1Kn) =

 ∑
l=2,...,n

xKl−1Kl ,
∑

l=2,...,n
yKl−1Kl


K1Kn

= [xp, yp]K1Kn

(4)

and for
⋂
p∈PXY cp it holds (cf. Definition 9)⋂

p∈PXY

cp =
⋂

p∈PXY

[xp, yp]p =
[

max
p∈PXY

{xp}, min
p∈PXY

{yp}
]
XY

Now, if constraint cAB = [xAB , yAB]AB ∈ CM is restricted to c∗AB = [xAB + σ, yAB − ρ]AB in CM∗ the
constraint cp of any path p = 〈K1, . . . ,Ki, A,B,Ki+3, . . . ,Kn〉 ∈ PXY containing A,B in equation 3 will be
replaced by c∗p, where according to equation 4 for the constraint c∗p =

[
x∗p, y

∗
p

]
XY

of path p on constraint set
CM∗ the following holds

x∗p =

 ∑
l=2,...,i

xKl−1Kl

+ xKiA + x∗AB + xBKj +

 ∑
l=j+1,...,n

xKl−1Kl


=

 ∑
l=2,...,n

xKl−1Kl

+ σ x∗
AB

= xAB+σ

= xp + σ

and correspondingly

y∗p =

 ∑
l=2,...,i

yKl−1Kl

+ yKiA + y∗AB + yBKj +

 ∑
l=j+1,...,n

yKl−1Kl


= yp − ρ

20

Consequently, it holds:
c∗p =

[
x∗p, y

∗
p

]
XY

= [xp + σ, yp − ρ]XY (5)
i.e., the lower bound of the constraint of any path p containing A,B is increased by σ and the upper bound is
decreased by ρ. With similar argument we can show that for any path p = 〈K1, . . . , B,A, . . . ,Kn〉 containing
the inverse cBA of cAB the lower bound of the constraint is increased by ρ and the upper bound is decreased
by σ, i.e.,

[
x∗p, y

∗
p

]
XY

= [xp + ρ, yp − σ]XY . Any path not containing cAB (or cBA) remains unchanged.
Hence for any path p ∈ Pxy we know that

[xp, yp]XY ⊇
[
x∗p, y

∗
p

]
XY
⊇ [xp + max{σ, ρ}, yp −max{σ, ρ}]XY = [xp + δ, yp − δ]XY (6)

with δ = max{σ, ρ}.
Due to M being minimal (cf. Theorem 2) cXY = cXY ∩

⋂
p∈PXY cp must hold for any path in CM

(including the ones containing cAB). Furthermore, c′XY = cXY ∩
⋂
p∈PXY c

∗
p and ∀p ∈ PXY : c∗p ⊆ cp hold for

any path in CM∗ . Hence, with cXY = [xc, yc]XY it follows:

c′XY =cXY ∩
⋂

p∈PXY

c∗p =

cXY ∩ ⋂
p∈PXY

cp

 ∩ ⋂
p∈PXY

c∗p with cXY =cXY ∩
⋂
p∈PXY

cp

=cXY ∩

 ⋂
p∈PXY

cp ∩
⋂

p∈PXY

c∗p


=cXY ∩

[
max

{
max
p∈PXY

{xp}, max
p∈PXY

{x∗p}
}
,

min
{

min
p∈PXY

{yp}, min
p∈PXY

{y∗p}
}]

XY

cf. Definition 9 and cp =
[
xp, yp

]
p
; c∗p =[

x∗p, y
∗
p

]
p

⊇cXY ∩
[

max
p∈PXY

{xp + δ}, min
p∈PXY

{xp − δ}
]
XY

cf. Equation 6

=cXY ∩
[

max
p∈PXY

{xp}+ δ, min
p∈PXY

{xp} − δ
]
XY

⊇cXY ∩ [xc + δ, yc − δ]XY
M minimal, i.e., maxp∈PXY {xp}≤xc
and minp∈PXY {yp}≥yc

= [xc + δ, yc − δ]XY cXY =[xc,yc]XY

which completes the proof.

We know show, that since Theorem 2 holds for STN, Theorem 1 must hold for the minimal network of a
weakly consistent CSTN.

Proof (Theorem 1). Based on the definition of the minimal network for CSTN we know that for the constraints
CN of the minimal network N = minimalCSTN (M∗) of CSTN M∗ it holds that

∀cXY = 〈[x, y]XY , γ〉 ∈ CM∗ , c′XY = 〈[x′, y′]XY , γ〉 ∈ CN :
[x, y] ⊇ [x′, y′]

Let restrictSTN δ(S) = (T , C−) denote the STN derived from STN S = (T , C) where for each constraint
in C the bounds are restricted by δ, i.e., the upper bound is decreased by δ and the lower bound is increased
by δ:

∀ [x, y]XY ∈ C :
[
x−, y−

]
XY
∈ C− ∧ (x− = x− δ) ∧ (y− = y − δ)

Likewise, let restrictCSTN δ(T) = 〈T , C−, L,OT ,O, P 〉 denote the CSTN derived from CSTN T = 〈T , C, L,
OT ,O, P 〉 where for each constraint in C the bounds are restricted by δ. Then it can be easily verified that
for CSTN T the following holds:

scProj(restrictCSTN δ(T), sP) ≡ restrictSTN δ(scProj(T, sP))

21

In particular, from Definition 8 it follows that scProj(·, sP) does not alter the values of the involved
constraints.

Hence, we can conclude that for each scenario it follows:

∀sP : scProj(N, sP) ⊇ minimalSTN (scProj(M∗, sP))
⊇ restrictSTN δ(scProj(M, sP)) (cf. Theorem 2)
= scProj(restrictCSTN δ(M), sP)

As scProj(·, sP) does not alter the values of the involved constraints (cf. Definition 2) it follows that

N ⊇ restrictSTN δ(M)

and thus it holds:

∀〈[x′, y′]XY , γ〉 ∈ CN ,∀〈[x, y]XY , γ〉 ∈M : 〈[x′, y′]XY , γ〉 ⊇ 〈[x+ δ, y − δ]XY , γ〉

which completes the proof.

Finally, note that with similar argument this can also be shown for other consistency notions of CSTN,
i.e., strong consistency and dynamic consistency (cf. [8]). Particularly, in both cases a corresponding STN
representation exists [8]. But this is out of scope of this paper.

To illustrate Theorem 1, assume that due to a change operation a constraint [x, y]XY in the minimal
time model is restricted to [x∗, y∗]XY = [x+ ρ, y − σ]XY and afterwards minimality of the time model is
restored. Theorem 1 now states that any constraint [u, v]UV in the original minimal time model is restricted
to at most [u′, v′]UV = [u+ δ, v − δ]UV ; δ = max{ρ, σ} in the new minimal time model.

Reconsider change operation InsertSerial (cf. Table 3). Assume that the minimal time model is adapted
as described by Algorithm 1. The next step would be to restore minimality of this time model. First,
note that the constraints introduced by the newly added control edges as well as activity do not affect
the other constraints when restoring minimality. By construction, their effects are already incorporated
in the constraint between time-points N1E and N2S , which is updated in the context of the operation (cf.
Algorithm 1). In particular, the added constraints are nested and consistent with the constraint between N1E
and N2S (see [21] for details). The only change having an effect on the resulting minimal time model is the
one restricting constraint [cmin, cmax] between N1E and N2S to [max{cmin, dmin}, cmax]. Note that if the
constraint is not changed (i.e., dmin ≤ cmin), the existing constraints of the minimal time model also need
not be changed. Otherwise, the lower bound of the constraint is increased by δ = dmin − cmin. Theorem 1
implies that the upper and lower bound of any other constraint in the new minimal time model will be
restricted by at most δ as well. Thus we are able to approximate the maximum difference between the new
minimal time model and the original one.

From this we can conclude that when applying another insert operation, it is sufficient to verify that any
precondition referring to a constraint 〈[x, y]XY , β〉 of the minimal time model is satisfied for the respective
approximated constraint 〈[x+ δ, y− δ]XY , β〉 as well. In this case the insert operation may be applied without
violating the temporal consistency of the process model. In particular, and this is a fundamental advantage
of our work, we need not restore minimality of the adapted minimal time model prior to the application of
the operation. By contrast, if the precondition is not met for the approximated constraint, it might still be
possible to apply the change without violating temporal consistency. However, in this case minimality of the
modified minimal time model must be first restored before deciding whether the change may be applied.

Similar rules apply for all other change operations adding or restricting a temporal constraint. For
change operation InsertPar (cf. Algorithm 2), in particular, the change relevant to the minimal time model
is the one restricting the constraint between time-points NpE and NsS to [max{cmin, dmin}, cmax]NpENsS ,
i.e., its impact is at most δ = max{0, dmin − cmin}. Similar, for InsertCond (cf. Algorithm 3) the change
relevant to the minimal time model is the one restricting the constraint between time-points N1E and N2S to
[max{cmin, dmin}, cmax], i.e., the impact on the other constraints is at most δ = max{0, dmin−cmin}. Finally,
for InsertTimeLag and InsertFDE the maximum impact corresponds to δ = max{0, tmin−cmin, tmax−cmax}
(cf. Algorithm 5 and 6).

22

5.2. Changes Relaxing or Removing an Existing Constraint
When removing an existing explicit constraint from the time model this basically results in the possible

relaxation of some implicit constraints. As discussed in Section 4.2 it is not possible to restore minimality of
a modified minimal time model after relaxing one of its constraints. This is due to the fact, that it is not
easily possible to determine which other constraints have to be relaxed and to what extend.

However, relaxing a constraint in the minimal time model only results in the relaxation of other constraints.
Particularly, no existing constraint in the minimal time model is restricted by this change, i.e., the impact is
at most δ = 0 (i.e., δ ≤ 0). Thus, it is not necessary to restore minimality of the minimal time model after
each change operation. Instead it is sufficient to only restore minimality of the minimal time model in case
the precondition of a subsequent change operations cannot be met. Particularly, in such a case it is necessary
to check whether the change operation indeed violates temporal consistency of the process model or whether
the current approximation of the minimal time model is too strict.

5.3. Applying Multiple Change Operations
Based on these observations it becomes possible to apply a sequence of change operations to a process

model within a single transaction (e.g., to insert and/or delete multiple activities) without need to restore
minimality of the minimal time model after each change. Particularly, in case a sequence of change operations
op1, . . . , opn with impacts δ1, . . . , δn shall be applied to a process model, it will be sufficient to consider the
aggregated impacts of the previously applied change operations. Practically, for operation opi approximated
constraint [x+

∑i−1
j=1 δj , y −

∑i−1
j=1 δj]XY needs to be considered to determine whether the change operation

may be applied. Note that this will significantly reduce complexity when applying multiple change operations.
However, the actual savings depend on the strictness of the constraints of the time-aware process model;
if the latter is “heavily” constrained, only few change operations can be applied without need to restore
minimality of the minimal time model. In turn, if the constraints are “weak” multiple change operations may
be applied at once, without having to restore minimality of the minimal time model between changes.

We illustrate our approach along the example from Figure 11. It depicts a process model and corresponding
minimal time model to which a series of three change operations a©- c© shall be applied. First, X having
duration [4, 9] shall be inserted between A and ANDsplit (Figure 11 a©). This is possible without violating
temporal consistency of the process model since the minimum duration of X is lower than the maximum time
distance between A and ANDsplit (i.e., 4 ≤ 7). After performing the change, the value used for approximating
the minimal time model becomes δ = 4− 0 = 4. Next, Y shall be inserted between B and C (Figure 11 b©).
Again this is possible since the minimum duration is lower than the approximated maximum time distance
(i.e., 9 ≤ 14 − δ = 10). Afterwards δ is increased to δ = 4 + (9 − 7) = 6. Subsequently, inserting Z with
duration [5, 8] between D and ANDjoin (Figure 11 c©) is not possible based on the approximated minimal
time model as the precondition of the respective change operation cannot be met (i.e., 5 6≤ 10−δ = 4). Hence,
minimality of the minimal time model must be restored (Figure 11 d©). Afterwards, inserting Z becomes
possible as for the new minimal time model the precondition of the operation is met. Finally, minimality of
the last minimal time model must be restored (Figure 11 e©).

6. Evaluation

The presented approach was implemented as a proof-of-concept prototype based on the AristaFlow BPM
Suite [5]. This prototype enables users to create time-aware process models and to automatically generate
respective time models based on CSTN (cf. Figure 12). Further, the presented change operations may
be applied to both process models and corresponding instances. Overall, the prototype demonstrates the
applicability of our approach. The screenshot from Figure 12 shows four windows: at the top, a process
model from the healthcare domain comprising several temporal constraints is shown. At the bottom left,
the automatically generate base time model is depicted. At the bottom right, the corresponding minimal
time model is shown. Finally, the right side displays the available set of change operations. Whether a
particular change operation may be applied is decided by checking both structural and temporal preconditions.
When applying the operation to the process model (i.e., schema or instance) all three models are updated

23

Process Model

Time Model

Process Model

Time Model

[11, 20]

[0, 7]
[6, 8]

[3, 5]

AS AE

BS BE

[10, 15]DS DE

[7, 14]
[3, 5]CS CE

[5, 7]FS FE[0, 10]

[0, 7] [0, 7]

[0, 10]

[0, 7]

A
[6, 8]

X
[4, 9]

B
[3, 5]

D
[10, 15]

C
[3, 5]

F
[5, 7]

InsertSerial(A, ANDsplit, X, [4, 9])

E [10, 20] S

ANDsplit ANDjoin
E [7, 15] S

δ = 0
[11, 20]

[4, 7]

[6, 8]

[3, 7]

AS AE
[4, 7]XS XE

BS BE

[10, 15]DS DE

[7, 14]
[3, 5]CS CE

[5, 7]FS FE[0, 10]

[0, 7] [0, 7]

[0, 10]

[0, 7][0, 3] [0, 3]

A
[6, 8]

B
[3, 5]

D
[10, 15]

C
[3, 5]

F
[5, 7]

Y
[9, 15]

InsertSerial(B, C, Y, [9, 15])

E [10, 20] S

E [7, 15] S
ANDsplit ANDjoin

X
[4, 9]

4 ≤ 7

δ = 4

9 ≤ 14 - δ = 10

[11, 20]

[4, 7]

[6, 8]

[3, 5]

AS AE
[4, 7]XS XE

BS BE

[10, 15]DS DE

[9, 14]

[3, 5]CS CE
[5, 7]FS FE[0, 10]

[0, 7] [0, 7]

[0, 10]

[0, 9][0, 3] [0, 3]
[9, 15]YS YE

[0, 5] [0, 5]

[19, 20]

[4, 5]

[6, 8]

[3, 4]

AS AE
[4, 5]XS XE

BS BE

[10, 15]DS DE

[9, 10]

[3, 4]CS CE
[5, 7]FS FE[0, 6]

[0, 1] [0, 1]

[0, 6]

[0, 1][0, 1] [0, 1]
[9, 10]YS YE

[0, 1] [0, 1]

A
[6, 8]

B
[3, 5]

D
[10, 15]

C
[3, 5]

F
[5, 7]

Z
[5, 8]

InsertSerial(D, ANDjoin, Z, [5, 8])
E [10, 20] S

E [7, 15] S

ANDsplit ANDjoin
X

[4, 9]

Y
[9, 15]

δ = 4+2

δ = 0 restore minimality

[19, 20]

[4, 5]

[6, 8]

[3, 4]

AS AE
[4, 5]XS XE

BS BE

[10, 15]DS DE
[5, 8]ZS ZE

[9, 10]

[3, 4]CS CE
[5, 7]FS FE[0, 6]

[0, 1] [0, 1]

[0, 1]

[0, 1][0, 1] [0, 1]
[9, 10]YS YE

[0, 1] [0, 1]

[0, 1]

[5, 6]

restore minimality

done!

A
[6, 8]

B
[3, 5]

D
[10, 15]

C
[3, 5]

F
[5, 7]

E [10, 20] S

E [7, 15] S

ANDsplit ANDjoin
X

[4, 9]

Y
[9, 15]

Z
[5, 8]

5 ≤ 10 - δ = 4 δ = 5

5 ≤ 6
9 ≤ 10

*)

*)

a
b

c

e

d

*Note that for sake of compactness only relevant constraints and no labels are shown for the minimal time models.

Figure 11: Applying Multiple Change Operations to a Process Model

simultaneously as described in Section 4.1. Altogether the prototype allows us to efficiently provide the
required flexibility for time-aware processes.

7. Conclusion

Time constitutes a fundamental concept regarding the operational support of business processes in a
PAIS. In business, where missed deadlines and violations of temporal constraints might cause significant
problems, it is crucial for enterprises to be able to efficiently control and monitor these temporal constraints
during run-time. Since process execution does not always stick to the plan in practice, enterprises must be
further able to flexibly react to deviations in a time-aware process without affecting other properties of the
process. This paper considered dynamic process changes in the context of time-aware processes. First, we
defined change operations for time-aware processes. Second, we specified pre- and post-conditions for these
operations, which ensure that changed process models remain temporally consistent. Third, we analyzed
the effects respective change operations have on the temporal constraints of the process model. Fourth, we
approximated the resulting temporal properties of the entire process model. In particular, this allows us to
significantly reduce the complexity of the required time calculations in the context of subsequent changes. In
order to demonstrate the feasibility of the presented approach, a powerful proof-of-concept prototype was
implemented.

We are currently investigating the pre- and post-conditions as well as the impact of more complex change
patterns (e.g., move activity). In future work we will examine how the presented results can be applied to
the evolution of time-aware processes and the migration of a large set of process instances to a new process
model. Finally, we are integrating advanced time-management capabilities into the AristaFlow BPM Suite
to obtain a fully-fledged time- and process-aware information system.

24

Figure 12: Screenshot of the Prototype (based on the AristaFlow BPM Suite)

References

[1] A. Lanz, B. Weber, M. Reichert, Time patterns for process-aware information systems, Requirements Engineering(online
first). doi:10.1007/s00766-012-0162-3.

[2] C. Combi, M. Gozzi, R. Posenato, G. Pozzi, Conceptual modeling of flexible temporal workflows, ACM Transactions on
Autonomous and Adaptive Systems 7 (2) (2012) 19:1–19:29. doi:10.1145/2240166.2240169.

[3] J. Eder, P. Euthimios, H. Pozewaunig, M. Rabinovich, Time management in workflow systems, in: Proceedings of the 3rd
International Conference on Business Information Systems (BIS’99), Springer Berlin / Heidelberg, 1999, pp. 265–280.

[4] A. Lanz, R. Posenato, C. Combi, M. Reichert, Controllability of time-aware processes at run time, in: Proceedings of the
21st International Conference on Cooperative Information Systems (CoopIS’13), no. 8185 in Lecture Notes in Computer
Science, Springer, 2013, pp. 39–56. doi:10.1007/978-3-642-41030-7_4.

[5] M. Reichert, B. Weber, Enabling Flexibility in Process-aware Information Systems: Challenges, Methods, Technologies,
Springer Berlin / Heidelberg, 2012. doi:10.1007/978-3-642-30409-5.

[6] C. Bettini, X. S. Wang, S. Jajodia, Temporal reasoning in workflow systems, Distributed and Parallel Databases 11 (3)
(2002) 269–306. doi:10.1023/A:1014048800604.

[7] J. Eder, W. Gruber, E. Panagos, Temporal modeling of workflows with conditional execution paths, in: M. T. Ibrahim,
J. Küng, N. Revell (Eds.), Proceedings of the 11th International Conference on Database and Expert Systems Applications
(DEXA’00), Vol. 1873 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2000, pp. 243–253.

[8] I. Tsamardinos, T. Vidal, M. Pollack, CTP: A new constraint-based formalism for conditional, temporal planning,
Constraints 8 (4) (2003) 365–388. doi:10.1023/A:1025894003623.

[9] S. W. Sadiq, O. Marjanovic, M. E. Orlowska, Managing change and time in dynamic workflow processes, International
Journal of Cooperative Information Systems 9 (1-2) (2000) 93–116. doi:10.1142/S0218843000000077.

[10] S. Rinderle, M. Reichert, P. Dadam, Correctness criteria for dynamic changes in workflow systems: A survey, Data &
Knowledge Engineering 50 (1) (2004) 9–34.

[11] S. Rinderle-Ma, M. Reichert, B. Weber, On the formal semantics of change patterns in process-aware information systems,
in: Q. Li, S. Spaccapietra, E. Yu, A. Olivé (Eds.), Proceedings of the 27th International Conference on Conceptual
Modeling (ER’08), Vol. 5231 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2008, pp. 279–293.
doi:10.1007/978-3-540-87877-3_21.

[12] O. Marjanovic, M. E. Orlowska, On modeling and verification of temporal constraints in production workflows, Knowledge
and Information Systems 1 (2) (1999) 157–192.

[13] A. Lanz, M. Reichert, B. Weber, A formal semantics of time patterns for process-aware information systems, Tech. Rep.
UIB-2013-02, University of Ulm (2013).
URL dbis.eprints.uni-ulm.de/894/

25

http://dx.doi.org/10.1007/s00766-012-0162-3
http://dx.doi.org/10.1145/2240166.2240169
http://dx.doi.org/10.1007/978-3-642-41030-7_4
http://dx.doi.org/10.1007/978-3-642-30409-5
http://dx.doi.org/10.1023/A:1014048800604
http://dx.doi.org/10.1023/A:1025894003623
http://dx.doi.org/10.1142/S0218843000000077
http://dx.doi.org/10.1007/978-3-540-87877-3_21
dbis.eprints.uni-ulm.de/894/

[14] B. Weber, M. Reichert, S. Rinderle-Ma, Change patterns and change support features - enhancing flexibility in process-aware
information systems, Data & Knowledge Engineering 66 (3) (2008) 438–466. doi:10.1016/j.datak.2008.05.001.

[15] J. Vanhatalo, H. Völzer, F. Leymann, Faster and more focused control-flow analysis for business process models through
sese decomposition, in: B. Krämer, K.-J. Lin, P. Narasimhan (Eds.), Proceedings of the 5th International Conference on
Service-Oriented Computing (ICSOC’07), Vol. 4749 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg,
2007, pp. 43–55. doi:10.1007/978-3-540-74974-5_4.

[16] M. Reichert, S. Rinderle, U. Kreher, P. Dadam, Adaptive process management with ADEPT2, in: Proceedings of the
International Conference on Data Engineering (ICDE’05), IEEE Computer Society Press, 2005, pp. 1113–1114.

[17] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, A. P. Barros, Workflow patterns, Distributed and Parallel
Databases 14 (1) (2003) 5–51. doi:10.1023/A:1022883727209.

[18] L. Hunsberger, R. Posenato, C. Combi, The dynamic controllability of conditional STNs with uncertainty, in: Proceedings
of the Planning and Plan Execution for Real-World Systems: Principles and Practices (PlanEx), 2012.

[19] R. Dechter, I. Meiri, J. Pearl, Temporal constraint networks, Artificial Intelligence 49 (1991) 61–95. doi:http://dx.doi.
org/10.1016/0004-3702(91)90006-6.

[20] R. Dechter, Constraint Processing, Morgan Kaufmann, 2003.
[21] J. Chen, Y. Yang, Temporal dependency based checkpoint selection for dynamic verification of temporal constraints in

scientific workflow systems, ACM Transactions on Software Engineering and Methodology 20 (3) (2011) 9:1–9:23.

26

http://dx.doi.org/10.1016/j.datak.2008.05.001
http://dx.doi.org/10.1007/978-3-540-74974-5_4
http://dx.doi.org/10.1023/A:1022883727209
http://dx.doi.org/http://dx.doi.org/10.1016/0004-3702(91)90006-6
http://dx.doi.org/http://dx.doi.org/10.1016/0004-3702(91)90006-6

	Introduction
	Related Work
	Basic Notions
	Time-aware Processes
	Temporal Consistency of Time-Aware Processes

	Change Operations for Time-aware Processes
	Basic Change Operations
	Applying Change Operations to Time-aware Processes
	Serial Activity Insertion.
	Parallel Activity Insertion.
	Conditional Activity Insertion.
	Branch Insertion.
	Activity Deletion.
	Time Lag Insertion.
	Fixed Date Element Insertion.
	Time Lag and Fixed Date Element Deletion.

	Analyzing the Effects of Change Operations on Time-Aware Processes
	Changes Adding or Restricting a Temporal Constraint
	Changes Relaxing or Removing an Existing Constraint
	Applying Multiple Change Operations

	Evaluation
	Conclusion

