
University of Ulm | 89069 Ulm | Germany Faculty of
Engineering and
Computer Science
Institute of Databases and
Information Systems

A Process Engine Independent Architecture
Enabling Robust Execution of Mobile Tasks
in Business Processes
Master Thesis at the University of Ulm

Submitted by:
Steffen Musiol
steffen.musiol@uni-ulm.de

Reviewers:
Prof. Dr. Manfred Reichert
Prof. Dr. Thomas Bauer

Adviser:
Rüdiger Pryss

2014

Copy April 15, 2014

c© 2014 Steffen Musiol

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Composition: PDF-LATEX 2ε

Abstract

With the fast improvements of mobile technology in the last century, the importance

of mobile and pervasive computing has increased in all disciplines of computer sci-

ence. The new technologies have set the stage for a whole set of new applications

(e.g., medical- [8][3] and business-applications). Since Business Process Management

Systems (BPMSs) are an established and widely used technique in various businesses

and industries to manage recurring workflows and to support people in performing their

tasks efficiently, the integration of mobile support into a business process environment is

desirable.

In prior research work, a framework to foster the execution of business processes on

mobile devices was introduced. It describes a life cycle for mobile tasks based on an

automated delegation mechanism and a backup operation for escalation handling.

In this work, the framework will be extended to cope with crucial shortcomings such

as the execution of mobile tasks in an unreliable network. Using this, an architectural

concept for integrating mobile processes into an existing business process environment

will be introduced. A three layer architecture that introducing an intermediate service

layer for the mobile task execution will be used to minimize the impact on underlying

systems. Additionally, a prototype has been implemented, which will be evaluated

against three BPMSs, to prove the feasibility of this approach.

Contents

1. Introduction and Motivation 1

2. Related Work 3

2.1. Execution Languages and Extensions . 4

2.2. Middleware Architectures . 4

2.3. Classification of Mobile Workflow Middleware 7

2.3.1. Classification Attributes . 7

2.3.2. Classification of Related Approaches 10

2.4. Further Aspects of Mobile Task Execution 10

3. A Framework for Mobile Task Integration 13

3.1. Challenges for Executing Processes with Mobile Tasks 14

3.1.1. Location Representation in Mobile Environments 16

3.1.2. Measuring and Evaluating User Behavior 17

3.2. Declaration of Mobile Tasks . 19

3.3. Pre-Filters . 20

3.4. Mobile Delegation Service . 20

3.4.1. User List Management . 21

3.4.2. Service Execution Flow . 25

3.4.3. Introducing Mobile Offline Tasks 26

3.5. Escalation Handling: Backup Service . 27

3.6. Mobile Task Life cycle . 31

i

Contents

4. A Generic Architecture for Mobile Task Execution 33

4.1. Supporting Mobile Tasks in Business Process Management Systems . . . 34

4.2. Requirements . 36

4.3. Integration Concept . 38

4.3.1. Execution Filters . 39

4.3.2. The Process Engine and Process Definition Tools 42

4.3.3. The Mobile Execution Layer . 44

4.3.4. The Mobile Client . 50

5. Proof of Concept 53

5.1. MEL Prototype . 54

5.1.1. REST Services . 56

5.1.2. Freely Programmable Interface Layer 59

5.1.3. Life Cycle Management . 60

5.1.4. Mobile Clients . 63

5.2. Integration Scenarios . 66

5.3. Evaluating Business Process Management Systems 68

5.3.1. JBoss jBPM 6 . 68

5.3.2. Activiti . 70

5.3.3. AristaFlow . 71

5.3.4. Conclusion . 71

6. Summary and Outlook 73

6.1. Conclusion and Future Work . 74

A. Additional Figures 77

B. REST Service Index 85

C. Prototype Installation and Configuration 99

ii

1
Introduction and Motivation

Mobile and smart devices are becoming increasingly important in today’s life. The

amount of worldwide smartphone ownerships has been increased by 21% within the last

two years [1]. With high investments in the development of new mobile technologies, the

devices have become more powerful and are replacing the classic PC in many situations

of our daily life by providing flexibility and constant availability of information. This trend

does not stop at the private sector. Concepts like “Bring your own device” (BYOD) [2] and

the increasing amount of mobile enterprise applications are showing, that business and

knowledge workers want the same flexibility for their work as they have in their private

life. In other sectors, mobile technologies open up possibilities for streamlining and

optimizing existing processes by making information ubiquitously available and put them

into the current context. For example, Pryss et al. [3] propose a mobile infrastructure to

support physicians and nurses on daily ward rounds.

1

1. Introduction and Motivation

Business Process Management Systems (BPMSs) are an established and widely used

technique to manage recurring workflows and to support people in performing their

tasks efficiently. There are applications in business, industrial and public sectors, that

have a wide range of different requirements (e.g., an ordering procedure or a medical

examination). BPMSs are providing tools to map these workflows on a process model

(e.g., BPMN 2.0 [4]) and execute them with respect to an according organization model.

Regarding the wide spread of BPMSs, integrating mobile devices into a work environment

and its IT infrastructure requires a discussion about the challenges emerging for those.

Pryss, Musiol, and Reichert [5] identified the origin of these challenges in the error-

proneness of mobile devices caused by their limited resources and unsound user

behavior. A connection loss or an instant shutoff may harm the execution of processes

and can hardly be detected by current monitoring tools. To cope with these shortcomings,

an automated delegation process and a distinct life cycle for mobile tasks were introduced.

This thesis will extend the concepts proposed in [5] with a detailed user prioritization

model and offline tasks to foster the delegation service and improve its flexibility. Based

on this, an integration concept for mobile devices into an existing BPMS, using a three

layer architecture to decouple the mobile task execution from the underlying BPMS,

will be introduced. To proof the feasibility of the integration concept, a prototype using

REST1 services was implemented and validated against real BPMSs.

This work is structured as follows: In Chapter 2, related projects handling the integration

of mobility into business processes will be discussed and categorized. Chapter 3 will

recap the concepts of prior research work [5] and introduce a user prioritization model

and offline tasks. In Chapter 4, different aspects of integrating mobile task execution

into existing business process environments will be discussed. Based on these findings,

an integration concept implementing the mobile task life cycle [5] will be introduced.

Chapter 5 will discuss implementation details of the prototype and will validate it against

three real BPMSs. Finally, Chapter 6 will give a conclusion and will show the possibilities

for future research work.

1Representational State Transfer (REST)

2

2
Related Work

With the fast improvements of mobile technology in the last century, the importance of

mobile and pervasive computing has increased in all disciplines of computer science. The

new challenges of mobile computing were already discussed during the nineteen-nineties

[6] [7]. Furthermore, the new technologies have set the stage for a whole set of new

applications (e.g., medical- [8][3] and business-applications [barnes2003enterprise]).

In this chapter, the current research work on introducing mobility into business workflow

environments will be presented. Subsequently, a classification model for mobile workflow

middleware will be introduced.

The practical approaches which tackle the challenges of combining business-process

management and mobile computing can be categorized in two groups: First, new

business-process execution languages or extensions for existing ones, which are able

to handle mobility in a workflow environment. Second, middleware architectures and

3

2. Related Work

frameworks, which use existing paradigms to manage mobility and error handling in a

mobile workflow environment.

2.1. Execution Languages and Extensions

Philips, Van Der Straeten, and Jonckers [9] [10] introduced the workflow language NOW.

Its main focus is on the execution of mobile tasks in decentralized, nomadic networks

(e.g., Mobile Ad-hoc Networks (MANETs)). Each participating device has to provide a

specific set of services, which are populated into the network by an underlying service

discovery mechanism. Furthermore, NOW provides a set of high-level control-flow

patterns and a mechanism for error handling and resolving at service and network level.

Hackmann, Gill, and Roman [11] described a set of extensions for the process execution

language BPEL [12], which eliminates shortcomings of BPEL in terms of inter-operable

pervasive computing. Therefore, partner links which can be bound to multiple endpoints,

so called partner groups, have been introduced. Moreover, a multicast messaging option

is provided and multiple messages can be sent using one partner link. All of these

extensions aim to handle an arbitrary number of clients. More importantly, the paper

points out, that the amount of actually available devices is unknown, which is a common

challenge in mobile computing.

MobWEL [13][14] is an context-aware workflow execution language for mobile processes.

It adapts established approaches of context management and content behavior manage-

ment to define a new language. Contrary to the approaches described before, MobWEL

takes the context of a mobile device into account. For example, a low battery level can

influence the decision whether certain operations may be executed or not.

2.2. Middleware Architectures

DEMAC [15] is a project at the University of Hamburg, trying to realize a service based

environment for the execution of distributed business processes. Therefor, different

4

2.2. Middleware Architectures

mobile services and messaging protocols are defined to archive a complete decentralized

infrastructure. The distributed members (e.g., mobile devices, laptops, or stationary

PCs) use the services to exchange messages with the task and process information

according to their context. Due to the absence of a central authority (e.g., process

engine), the process handling is up to the service infrastructure and the applications

themselves. DEMAC represents a new approach in workflow management systems.

Therefore, a new infrastructure is needed. Interfaces to integrate legacy systems (e.g.,

classic workflow management systems) are not provided. Furthermore, without a central

authority, monitoring and organizing such distributed systems may become a crucial

challenge.

MARPLE [16] is a heavyweight approach to execute business process on mobile devices.

It implements a process engine on the mobile device itself, partitions the main process

and executes this partition on the device. A critical point of this approach is the higher

workload for the mobile devices. The engine’s footprint has to be minimal to run properly

on the limited resources of today’s mobile devices. Furthermore, MARPLE does not

provide an explicit error handling for mobile related failures (e.g., lost connections or

broken devices).

Sliver [17] is another workflow engine, running on mobile devices. Its main focus is

to provide a minimal footprint. For this reason, it implements a pluggable component

architecture with a lightweight XML/SOAP parser using features which J2SE, Java

Foundation Profile, and MIDP 2.0 have in common. Hence, it can be deployed on any

device which supports any of these standards. Its current footprint is about 114 KB.

Additionally, it implements the BPEL extension by Hackmann, Gill, and Roman [11]

mentioned earlier.

Rome4U [18] is a commercial solution for a mobile business process management

infrastructure. It uses a process engine as a central authority and implements services

as communication interfaces. Rome4U represents a complete solution with its own

process engine and a specialized data format and process representation. Interfaces to

integrate standard BPM systems are not provided. Additionally, Rome4U uses adaptive

processes for escalation and error handling. If errors occur (e.g., a mobile device is not

available), the user has to adapt the process to proceed.

5

2. Related Work

The SAMPROC project [19], which has been developed at the University of Ulm, has

a more technical and generic view. The project tries to offer a framework for realizing

distributed, mobile applications and is not particularly focused on business processes.

To fulfill this goal, distributed systems are mapped on process flows. Every activity in the

control flow represents a node in the distributed system. To handle escalations, adaptive

processes are used. For execution, SAMPROC uses web-services and an extended

BPEL version.

CiAN [20] is a workflow engine designed for MANETs. Due to the nature of such

networks, CiAN uses a choreography approach instead of an orchestration approach.

This means, that it has no central authority. Each node in the network has its own

workflow management system instance running. Task specifications are propagated into

the network and each node may allocate them. As soon as a predecessor is finished,

the next task has to be invoked on the responsible node. CiAN provides two modes:

First, the planning mode, in which each participating node will be informed about its role

in a workflow. Second, the standard mode, in which the execution takes place.

Tuysuz, Avenoglu, and Eren [21] introduced a workflow based guidance framework for

managing personal activities. It is designed to support users in every day tasks in a

pervasive environment. The framework consists of a mobile application, a workflow

management system and a central coordination management system (CoMS). Tasks are

represented by control flows and executed in the petri net based workflow management

system YAWL [22]. The CoMS is responsible for processing and delivering messages

on a bidirectional communication channel between the server and the mobile devices.

Furthermore, it can use additional context information for automated operations. The

message interface between CoMS and mobile clients assumes that there is always

a network connection available. Therefore, no recovering mechanisms are provided.

However, the communication is designed to minimize the network usage by using the

topic-based publish/subscribe protocol MQTT [23].

6

2.3. Classification of Mobile Workflow Middleware

2.3. Classification of Mobile Workflow Middleware

A first classification of the related work was already achieved by subdividing it into

execution languages and middleware frameworks. Since the integration concept in this

works represents a middleware, it is important to define a refined classification model

for mobile workflow middleware. Therefore, a set of classification attributes has to be

defined. Based on the related work, the following attributes can be identified:

1. The underlying integration paradigm

2. The underlying infrastructure

3. How the mobile process execution is implemented

4. The degree of integration dimensions

With these attributes, mobile workflow middleware solutions can be set into perspective

and hence become comparable. The attributes will subsequently be discussed in more

detail.

2.3.1. Classification Attributes

Integration paradigm: It is important to define what type of integration an approach

follows. Basically, there are three integration paradigms in terms of mobile process

support:

1. Integration of mobile task into an existing business process environment

2. Introduction of workflow support for a specific infrastructure (e.g., a MANET)

3. Use of mobile tasks to implement a distributed environment

The underlying integration paradigm constitutes an approach’s focus. Approaches with

distinct paradigms are often not compatible because of different preconditions and

requirements.

Infrastructure: This property describes the communication structure of the target

infrastructure. In Sen, Roman, and Gill [20], this was categorized into orchestration and

choreography (cf. Figures 2.1 A and B).

7

2. Related Work

C. centralized communicationA. orchestration B. choreography

BPMS

client client

client client
BPMS

+
client

BPMS
+

client

BPMS
+

client

BPMS
+

client

BPMS
+

client

BPMS
+

client

BPMS
+

client
comm.
service

Figure 2.1.: Communication Infrastructures

• An orchestration infrastructure has a central authority. It represents the workflow

management system which is responsible for task allocation and invocation.

• A choreography infrastructure relies on a decentralized infrastructure, using net-

work propagation- and service discovery protocols to allocate and invoke mobile

tasks.

Furthermore, there is the possibility of a central service which does not orchestrate

the workflow, but serves as an communication interface instead (cf. Figure 2.1 C), as

seen in Kunze [15]. This can be called a choreography infrastructure with a centralized

communication service.

Implementation of mobile process execution: In [5], three approaches of realizing

mobile process execution were introduced. The approaches are shown in Figure 2.2:

1. Physical process fragmentation: A process (i.e., process schema) is physically

partitioned during design time. The resulting process fragments and their tasks

are then assigned to a number of mobile devices before run time.

2. Logical process fragmentation: A process schema is partitioned logically. In this

case, the resulting process fragments and their tasks are executed on different

mobile devices. Opposed to the first approach, the original process schema will

be preserved during run time when executing the process fragments. Usually,

migration techniques are applied in this context (Zaplata et al. [24]); e.g., based

8

2.3. Classification of Mobile Workflow Middleware

single mobile task handlingphysical process fragmentation logical process fragmentation

approach 1 approach 2 approach 3

statically
determined

statically
determined dynamically

determined
dynamically
determined

mobile
task

mobile
task

mobile
fragment

mobile
fragment central process :

coordinating the fragments

migration: dynamically
determined

migration: dynamically
determined

migration: dynamically
determined

Figure 2.2.: Approaches for realizing mobile task execution

on the original process schema, it can be determined how the migration between

logical process fragments is to be accomplished at run time. Accordingly, the

device to execute each process fragment is determined dynamically. This allows,

in particular, dynamic exchanges of devices already assigned to a fragment.

3. Single mobile task handling: Single process tasks are executed on mobile devices.

For this purpose, a mobile device must cover a subset of a stationary process

client’s functionality; e.g., a worklist component that is continuously updated by the

process engine.

Degree of integration: This attribute describes, whether an approach provides inter-

faces for integrating existing infrastructures (e.g., other BPMSs or user repositories).

Due to the rather abstract nature of this attribute, further values have to be defined:

• High: The architecture provides well documented interfaces for integration pur-

poses.

• Medium: The architecture provides no interfaces for integration purposes, but

it is possible to integrate other technologies by implementing own interfaces or

extensions.

• Low: Integration is not intended.

9

2. Related Work

2.3.2. Classification of Related Approaches

Based on the classification model, the related work can be classified as shown in Table

2.2. To improve readability, attributes are denoted with the keys introduced in Table 2.1.

Attribute 1 2 3

Integration
paradigm

Mobile tasks into
existing BPMS

Introducing workflow
support

Implementation

Infrastructure Orchestration Choreography Centralized
communication

Implemen-
tation

Physical process
fragmentation

Logical process
fragmentation

Single mobile task
handling

Table 2.1.: Keys for Table 2.2

Project Integration
paradigm

Infra-
structure

Implemen-
tation

Degree of
integration

DEMAC 2 3 2 medium

MARPLE 1 3 1 medium

Sliver 2 2 2 low

Rome4U 1 1 3 low

CiAN 2 2 2 low

SAMPROC 3 3 2 high

Mobile guidance
framework

3 1 3 low

Table 2.2.: Classification of related projects

2.4. Further Aspects of Mobile Task Execution

Wakholi and Chen [25] discussed the challenges of process fragmentation in a mobile

workflow environment under the assumption of a unstable network connection. They

argue, that in a centralized workflow environment, the fragmentation of processes into

groups to execute them on disconnected mobile clients, needs special treatment which

10

2.4. Further Aspects of Mobile Task Execution

provides an option that enables the server to maintain control. Therefore, additional

workflow partitioning rules on top of existing fragmentation approaches have been

introduced. They are based on structural and behavioral aspects of the original process

model. Furthermore, an automatic partitioning algorithm has been developed, which

uses the fragmentation rules to discover valid fragments.

The approach of Hahn and Schweppe [26] copes with correctness in mobile service

environments. It argues, that the strict mechanisms of traditional systems (e.g., database

management systems) are not sufficient in highly flexible infrastructures, since they

would lead to blocking states. Hence, a relaxed atomicity for composite services based

on transactional service properties is introduced. Composite Services, which are de-

signed as control flows of single services, provide attributes such as compensatability,

redoability and recoverability. Furthermore, the designer can declare multiple sets of

services, whose completion reflect the successful execution of a composite service.

In this way, the services can be dynamically adapted, based on the current execution

context. After the dynamic service adjustment, an automatic recovery mechanism is

used to satisfy all service dependencies and guarantee a correct completion.

11

3
A Framework for Mobile Task Integration

Providing mobility in a workflow infrastructure implies new challenges caused by the

nature of mobile technologies. To be able to handle these challenges and enable a

proper integration of mobile tasks into a process environment, our prior research work

[5][27] proposed a framework which forms the foundation of an integration concept for

mobile support in BPMSs. It introduces a set of operations that defines a life cycle for

mobile tasks, and uses a delegation and backup approach to avoid deadlocks in mobile

workflows, caused by network errors or malicious user behavior. For example, if a user

goes offline while executing a mobile task, the task is automatically delegated to the

next best matching mobile user. If there is no appropriate user available, the task will go

into a backup state, in which it can be executed by a stationary client. Since a stable

network connection is expected in this scenario, the backup operation is considered as

an exception and not a desirable way to perform a task.

13

3. A Framework for Mobile Task Integration

This chapter will recapitulate the framework’s main concepts and extend them at some

point. In Section 3.1, the main challenges resulting from a mobile context will be recapped

and evaluation models for location and user behavior will be introduced. In the following

sections, the framework’s main operations will be discussed. Section 3.2 explains how a

mobile task can be declared and in Section 3.3, pre-filters will be introduced. The main

concepts, the Mobile Delegation Service (MDS) and the backup service will be reviewed

in Sections 3.4 and 3.5. Additionally, a prioritization model for the user list management

and the concept of offline tasks will be added. Finally, Section 3.6 will summarize the

chapter by introducing a life cycle for mobile tasks.

3.1. Challenges for Executing Processes with Mobile Tasks

The introduction of mobility to a business process environment imposes a set of new

challenges which has to be dealt with properly. On one hand, this is caused by the

fast changing context of a mobile environment (e.g., changes in location or count of

participating devices). This changing context is often handled by context-aware systems

[28] [13]. Four context related challenges can be identified, which are either caused by

the characteristics of a mobile environment or by the users’ behavior. On the other hand,

challenges emerging from the process infrastructure have to be considered. In total

there are seven challenges, described below:

Challenge 1: Connectivity (Environment)

Connectivity refers to the availability of users and the mobile devices assigned to them.

In turn, unavailability might be caused by an undesired status of a device (e.g., broken

device) or a specific personal status (e.g., user is on vacation). Finally, a mobile device

will only be considered as a target device for executing mobile tasks if it is connected to

a network.

Challenge 2: Low Battery (Environment)

A mobile device with a low battery status should not be considered as target platform for

executing a mobile task until its battery has been recharged; i.e., a low battery status

indicates that the device (and its user) shall not be considered at the moment.

14

3.1. Challenges for Executing Processes with Mobile Tasks

Challenge 3: Instant Shutdown (User Behavior)

In practice, users might instantly shut down their mobile device without reflecting on the

consequences. This usually constitutes a short-term problem and the device can be

restarted soon in most cases. If a user exhibits many instant shutdowns, however, this

misbehavior needs to be considered. The presented approach maintains the numbers

of the instant shutdowns applied.

Challenge 4: User Location (User behavior)

At run time, attribute UserLocation maintains the current location of a mobile user. If the

latter is to execute a mobile task at a location different from the present one, this needs

to be considered.

Challenge 5: Data Consistency (Process)

Data dependencies between process activities result from the order in which activities

read and write process data objects. In the presented approach, mobile tasks providing

data for other tasks are specially treated in order to ensure data consistency in case of

task failures.

Challenge 6: Location (Process)

Each mobile task has an attribute Location that optionally stores the location where this

task shall be performed. Note that in certain cases, data or physical objects needed to

accomplish a task are only available at a certain location. If the user is performing her

work while continuously moving, it cannot be guaranteed that she is on the right spot to

gather the data needed.

Challenge 7: Urgency (Process)

The urgency of a mobile task needs to be considered as well. For example, if a lab test

is required in the context of an emergency surgery, the urgency of the task performing

this lab test will be high. The value of the respective mobile task attribute either is null or

describes the point in time the task shall be performed, i.e., either a concrete point in

time or a period. In the latter case, the mobile task must be finished within the specified

period after having been allocated it to a mobile user.

15

3. A Framework for Mobile Task Integration

3.1.1. Location Representation in Mobile Environments

When discussing mobile environments, location is a crucial factor because of its variability

and alteration rate. Challenges 4 and 6 take this into account by defining the task location

and the user location, but this is not enough for practical use. Therefore, a well defined

location model is needed. Becker and Dürr [29] identified two basic categories of location

models:

1. Symbolic location models: The location can be represented in a symbolic do-

main (e.g., Coordinates).

2. Geometric location models: The location is represented by geometric figures,

describing a location (e.g., a circle representing an area). The figures have to be

transferable into a symbolic domain.

To provide a complete location model for mobile business process environments, the

properties of mobile tasks, which are affected by these models, have to be discussed.

In particular, these are where a task can be executed, which is the equivalent to a task

position, and who may execute the task, which needs an evaluation of the user position

related to a task position. Based on these assumptions, a task can be executed only in

an exact position (e.g., exact coordinates) or in a region, surrounding an exact location

(e.g., in a radius around exact coordinates). Furthermore, it can be only executed by

persons who are at the task’s location (e.g., inside the radius) or nearby (e.g., within a

certain radius surrounding the task location).

task location

catchment area

valid match

invalid match

Figure 3.1.: Location model for mobile tasks

16

3.1. Challenges for Executing Processes with Mobile Tasks

Therefore, the attributes task location and user location can be defined as follows:

• Task location is represented by an Execution Location, which can be the position

or region where the task needs to be executed, and by a Catchment Area within

which users are still considered as a valid match (cf. Figure 3.1).

• User location is represented by an exact position in a symbolic location model.

Additionally, the model has to provide a possibility to compare distinct matching user

locations. This can easily be done by calculating and comparing distances between the

task location and all matching user locations. Therefore, distance distMU is defined as

distMU = locT − locMU where locT is the task location and locMU is the position of a

distinct mobile user, who is entitled to execute the task. To make the model usable in a

system with more variables, the distances have to be normalized. Thus, the normalized

location factor (nlfMU) for a mobile user MU is introduced. In the following, let locCA

be the catchment area and distmaxCA the distance between locT and the furthermost

border of this area. Then nlfMU can be written as:

nlfMU =

distmaxCA

distMU
= distmaxCA

locT −locMU
∀MU ∈ locCA

0 ∀MU /∈ locCA

(3.1)

3.1.2. Measuring and Evaluating User Behavior

Next to location, Challenge 3 identifies instant shutdowns as the second important user

related factor in mobile networks. It proposes a single counter to track and evaluate the

users behavior. Since a counter shows quantity only and does not give any information

about the quality (e.g., how long was a device offline), this approach is not sufficient.

Furthermore, other aspects of user behavior, for example how does a user perform tasks

or where are common locations for a user, have not been discussed yet.

Location dependent behavior: Since in most mobile scenarios, the location of mobile

devices is constantly tracked, it can be used for long-term evaluations and system

optimization as well [30] [31] [32] [33]. Location-based behavior patterns [34] can thus

be used to analyze a user’s behavior during design time and adapt a process according

17

3. A Framework for Mobile Task Integration

to these patterns. For example, a user who is rarely in the location in which a task has to

be performed may not be assigned to this task.

Unsound user behavior: Another important impact on the overall robustness of mobile

task execution is unsound user behavior. This includes inappropriate device handling like

instant shutdowns or running the device constantly on low battery. But actions directly

related to task execution, for example, taking over tasks, but constantly running into the

time-out, also have to be considered. It is important to determine whether an event is

caused by unsound user behavior or by technical issues. Accordingly, different cases

have to be discussed, especially as relates to connectivity. Three different reasons for a

connection loss can be identified:

• Device issues (e.g., broken device, low battery)

• Network issues (e.g., no WiFi signal)

• User issues (e.g., unexpected instant shutdowns)

Device issues are easy to identify, by constantly advertising a device’s technical status

(e.g., battery status and battery draining). On the contrary, to determine if a connection

loss was caused by network issues or because of a user action, is only trivial to handle,

as long as a standard procedure to shut down the device was used. However, if someone

just pulls out the battery, this is hard to distinguish it from a normal network connection

loss. A solution to this could be to not just advertise the battery status, but also the

used connection and the signal strength. On the other hand, the long term impact

of both, network issues and recurring instant shutdowns, is the same: it delays and

compromises the execution of a mobile task. Since network issues are mostly caused by

the user as well (e.g., leaving the network area), these two aspects should be handled

equally. Furthermore, the time a user is usually offline after losing the connection, and

the average time, a device is run on low battery, have to be taken into account as well.

Based on the prior assumptions, it is possible to define a model to measure unsound

user behavior. Accordingly, two different user behavior factors have to be introduced

for a mobile user MU . First, the device behavior factor (dbfMU), which represents the

degree of device issues by taking the number of connection losses, the average time of

a connection loss and the average time a user is running his device on low battery, into

18

3.2. Declaration of Mobile Tasks

account:

dbfMU =

1

#conn. losses + �conn. loss time + �low battery time if #conn. losses 6= 0

1 if #conn. losses = 0
(3.2)

It follows that if #conn. losses ∈ N\{0}, then 0 < dbfMU < 1 holds.

The second factor is called execution behavior factor (ebfMU), which utilizes a users

task execution behavior based on the number of started and delegated tasks:

ebfMU =

#tasks started by MU

#tasks delegated by MU if #tasks delegated by MU 6= 0

1 if #tasks delegated by MU = 0
(3.3)

3.2. Declaration of Mobile Tasks

Mobile tasks have to be modeled by the designer when creating a process. Therefore, a

set of attributes, considering the challenges in Section 3.1, has to be added (e.g., task

location and urgency). Furthermore, a threshold, representing the minimal amount of

active mobile users for delegation, is needed. This operation is called mobile process

transformation (cf. Figure 3.2 1).

mobile process

transformation
task mobile task mobile task

backup service

dependency

check

addLocation()
addUrgency()

addThreshold()

addBackup()
setSkippable()1 2

Figure 3.2.: Declaration of mobile tasks

Following the assumption that exception handling is only mandatory if a mobile task

has to satisfy data dependencies, an automated dependency check appends a backup

service to the task if necessary. Otherwise it will be marked as optional, so that it can

19

3. A Framework for Mobile Task Integration

be skipped during run time. This can be changed manually by the designer as well (cf.

Figure 3.2 2).

3.3. Pre-Filters

To provide more flexible user configuration abilities on the process instance level, user

filters can be applied when a mobile process gets initiated. Therefore, an additional

filter-list with mobile user entries is added to a mobile task (cf. Figure 3.3). The users on

the lists will then be ignored in the user list calculations during run time. For example, if

mobile task

backup service

mobile task

backup service
{ �lter list }

add pre-�lters

(optional)

Figure 3.3.: Adding pre-filters to a mobile task

a supervisor initiates an every day task and knows that some workers are exclusively

assigned to another project, he can define pre-filters targeting them so they will not be

considered for this process instance during execution.

3.4. Mobile Delegation Service

While the mobile task declaration takes place during design time, the Mobile Delegation

Service (MDS) manages the execution of mobile tasks at run time by using an automated

delegation approach, which ensures, that already assigned mobile tasks are automati-

cally re-delegated to another authorized mobile user in the case of errors. Compared to

the traditional user-to-user interaction pattern, where a user explicitly transfers rights to

another user [35], the delegation service follows a system-to-user pattern. Therefore,

the system enforces a task delegation as soon as an execution error occurs (cf. Figure

3.4).

20

3.4. Mobile Delegation Service

task
execution

execution
error

mobile task
execution

authorization rights
delegation

enforced
task delegation

transfer rights error handling

user-to-user system-to-user

purpose

functionality

delegation interaction pattern

Figure 3.4.: Different delegation mechanisms

3.4.1. User List Management

The MDS has to maintain three different user lists to guarantee a robust execution of

mobile tasks: an initial user list ulinit, a mobile user list ulmob, and a delegation list dlmob.

ulinit containing all mobile users umob authorized to execute a mobile task tmob and is

provided by the process engine (cf. Figure 3.5).

mobile delegation list

fallback
delegation

list

matching
delegation

list

delegation

service
on activation

mobile
user list delegation

service
on delegation

process engine

user
management

initial
user list

output input

Figure 3.5.: User list management

Mobile user list calculation: Based on ulinit, the MDS calculates ulmob by evaluating

the connectivity, location and battery status of each user’s device in ulinit. The location

is represented by the location model proposed in Chapter 3.1.1. The requirements for a

mobile user umob, to be regarded as a proper member of dlmob for a mobile task tmob are:

21

3. A Framework for Mobile Task Integration

1. umob is currently online. → umob.connectivity = true

2. The user location of umob is within the catchment area of tmob. → umob.loc ∈

tmob.locCA

3. The current battery status is not critical. → umob.lowBattery = false

4. umob is not subject to pre-filter. → umob.preF ilter = false

The user behavior factors dbf and ebf from Chapter 3.1.2 can also be used as criteria

by evaluating thresholds thdbf and thebf . Hence, the following optional requirements

have to be added to the list above:

5. dbfumob
≥ thdbf

6. ebfumob
≥ thebf

mobile task

backup service
{ �lter list }

{ mobile user list }

mobile task

backup service
{ �lter list }

delegation

service
calculateMobileUserList

on connectivity change

Figure 3.6.: Calculating the mobile user list

As soon as a mobile task is activated or the connectivity of a mobile user in ulinit

changes while the task has not been started or delegated yet, the MDS calculates ulmob

by applying the following procedure (cf. Figure 3.6):

procedure CALCULATEMOBILEUSERLIST(tmob , ulinit)

ulmob ← {}

for all umob in ulinit do

if umob.connectivity and ¬(umob.lowBattery) and ¬(umob.preF ilter) then

evalBehavior ← (dbfumob
≥ thdbf and ebfumob

≥ thebf)

evalLoc← TRUE

isLocSet← tmob.loc 6= ∅

if isLocSet then evalLoc← umob.loc ∈ tmob.locCA

if evalLoc and evalBehavior then

ulmob.append(umob)

22

3.4. Mobile Delegation Service

Each time, the procedure is called, it will empty ulmob and re-add each mobile user in

ulinit who matches the requirements mentioned before.

Prioritization model for delegation lists: While ulmob is an unsorted list, dlmob is

used to determine the best fitting user for an upcoming delegation and therefore has

to be prioritized. So far, a static prioritization based on the battery status and an

instant shutdown counter, which records the user’s instant shutdown behavior, has been

proposed. A more flexible approach is a prioritization model which can be used to

calculate a normalized numeric priority value Prumob
for each mobile user umob. For the

calculation, the following factors have to be taken into account:

• User location (nlf)

• Unsound user behavior (dbf and ebf)

• Location dependent behavior by using location based behavior patterns (lbbp)

• Constraint related prioritization factors (cpf)

• User defined prioritization factors (upf)

The used lbbp can be chosen freely. The only condition is that it has to be represented in

a single numeric value. upf is a user specific prioritizing factor defined by the designer

and can be used to down- or upgrade specific users individually. cpf is defined by the

constraint management to foster the mobile execution with entailment constraints [27].

Since different scenarios may have various requirements, a static combination of all

factors is not sufficient. Therefore, a weighting has to be provided.

Finally, the following model can be used to calculate a priority Prumob
for a mobile user

umob:

Prumob
= (a · nlf) + (b · dbf) + (c · ebf) + (d · lbbp) + (e · cpf) + (f · upf) (3.4)

It is imperative that if Prumob1 > Prumob2 , then umob1 has a higher priority than umob2.

Delegation list calculation: As soon as a delegation is pending, the MDS refreshes

ulmob and calculates dlmob (cf. Figure 3.7). To enhance flexibility, dlmob is subdivided into

the matching delegation list dlmatch and the fallback delegation list dlfb.

23

3. A Framework for Mobile Task Integration

mobile task

backup service
{ �lter list }

{ mobile user list }
refreshed

mobile task

backup service
{ �lter list }

{ mobile user list }
outdated

mobile task

backup service
{ �lter list }

{ mobile user list }

{ delegation list }

delegation

service
calculateMobileUserList

delegation

service
calculateMobileDelegationList

initial user list
connectivity
user location

input:
initial & mobile user list

connectivity
user location & priority

input:

Figure 3.7.: Calculating the mobile delegation list

The requirements for dlmatch, which is used as the main look-up repository, are the same

as for ulmob. Additionally, dlfb contains the users, who matches all requirements but the

location. If dlmatch runs out of members, users outside of the task’s catchment area can

thus be used as delegation target. Moreover, the battery status is used as a prioritization

factor only and not as a disqualification criterion. The following procedure implements

the calculation process.

procedure CALCULATEMOBILEDELEGATIONLIST(tmob , ulmob)

dlmatch ← (), dlfb ← ()

dlmob ← (dlmatch, dlfb)

for all umob in ulmob do

evalBehavior ← (dbfumob
≥ thdbf and ebfumob

≥ thebf)

if umob.connectivity and ¬(umob.preF ilter) and evalBehavior then

evalLoc← TRUE

isLocSet← tmob.loc 6= ∅

if isLocSet then evalLoc← umob.loc ∈ tmob.locCA

if evalLoc then

dlmatch.put(umob, P rumob
) [

else

dlfb.put(umob, P rumob
)]

24

3.4. Mobile Delegation Service

3.4.2. Service Execution Flow

While executing a mobile task, the MDS assigns different states to it. Tasks may enter

seven distinct states, denoted as t(<STATE>), and the respective transitions as Tx (cf.

Figure 3.8).

transitions:

T1 build mobile user list
T2 handle user state changes
T3 start task
T4 �nish task
T5.1 mobile delegation
T5.2 force mobile delegation
T5.3 force backup / skip
T6.1 �nish delegated task
T6.2 mobile delegation
T6.3 force backup

T1

T2

T3

T5.1
T6.1

T6.2
T6.3

T5.2

T5.3

T4

starting state intermediate
state

�nishing
state TransactionTx

Figure 3.8.: MDS execution flow

The execution flow starts, as soon as the task is initiated and therefore enters the state

ACTIVATED. After creating ulmob (T1), the task enters PENDING. From here on, ulmob

may be recalculated because of user base changes, hence it stays PENDING(T2). At

some point, the execution flow has to continue to ultimately end in one of three finishing

states:

• FINISHED: the task has been finished correctly.

• SKIPPED: the task has to be skipped.

• BACKUP: the task needs a backup.

Therefore, taking an urgency tou (tou = 0 denotes a timeout) and a user list threshold

thmul as given, the following four execution flows are possible:

Normal task execution:

usera ∈ ulmob starts mobile task t and performs it.

t(PENDING)→ T3 → t(STARTED)→ T4 → t(FINISHED)

Delegated task execution:

usera ∈ ulmob starts mobile task t. Then she goes offline. t will now automatically be

delegated to another user userb ∈ ulmob, who finally finishes the mobile task.

25

3. A Framework for Mobile Task Integration

T3 → t(STARTED)→ T5.1 → t(DELEGATED)→ T6.1 → t(FINISHED)

Forced delegation:

A forced delegation becomes necessary if the task is pending and |ulmob| < thmul, or

tou = 0. Additionally, if the task has already been delegated to userb, whose state

changes to offline, t must be delegated to another user usern ∈ ulmob.

t(PENDING)→ T5.2 → t(DELEGATED)

t(DELEGATED)→ T6.2 → t(DELEGATED)

Skip or Backup:

If t is pending and ulmob is empty or if the task is delegated and dlmob is empty, a skip or

backup will be performed.

t(PENDING)→ T5.3 → t(SKIPPED) ∨ t(BACKUP)

t(DELEGATED)→ T5.3 → t(SKIPPED) ∨ t(BACKUP)

3.4.3. Introducing Mobile Offline Tasks

So far, an environment with constant network connectivity is implied. For instance, as

soon as a user takes responsibility for a mobile task, he has to stay connected until the

task has been completed. Otherwise, it will be delegated to another user. This behavior

is not always desirable, namely, if the network coverage in an area is not very good or if

mobile tasks are used by field crews. Hence, the introduction of Mobile Offline Tasks is

necessary.

Mobile Offline Tasks represent mobile tasks, which will not be delegated if the performing

user’s state changes to offline. Therefore, one can still perform a task while being offline

and only has to come online again to transfer the collected data to the BPMS and to

finish the task. The ability to perform tasks offline does, however, weaken the stability of

the mobile execution, since the MDS will be bypassed. Therefore, to avoid deadlocks

and set the MDS back in place, an urgency tou has to be set for each mobile offline task.

Figure 3.9 shows the semantic of an offline task with defined urgency.

If a mobile user usera goes offline while performing a mobile task tmob, the task will not be

delegated until tou = 0 holds. If one comes back online before this, tmob can be finished

26

3.5. Escalation Handling: Backup Service

tou

usera
starts task

usera
o�ine

usera
online

usera
�nishes task

usera
starts task

usera
o�ine

userb
�nishes task

delegate to
userb

time

Figure 3.9.: Offline task semantics

regularly by usera. Otherwise, it will be delegated to another mobile user userb. Once

the task has been delegated, it will be handled as a regular mobile task. Hence, if userb

goes offline, tmob will be delegated, skipped or backed up. Accordingly, the execution

flow of a delegated task execution has to be complemented by this requirement.

3.5. Escalation Handling: Backup Service

While the MDS fosters the execution of mobile tasks by introducing an automated

delegation from one mobile device to another, it needs a minimum number of online

mobile users. If this cannot be guaranteed anymore, deadlocks become unavoidable,

resulting in a crucial decrease in execution stability. To handle such a worst case

scenario, the backup service is introduced as an escalation handling for the MDS. With

this service, a mobile task can be performed on a stationary client as a last resort, if

there are not enough mobile users available to complete this task in a mobile manner (cf.

Figure 3.10).

execution delegation �nish

backup

best case

average case

worst case

Figure 3.10.: Best, average and worst case scenario for mobile task execution

27

3. A Framework for Mobile Task Integration

According to the challenges in Chapter 3.1, the backup service is mandatory if a mobile

task has to satisfy data dependencies. If this is not the case, the task can simply be

skipped. However, the process designer is still able to add the backup service manually.

Furthermore, an optional validation procedure can be applied, to ensure the validity of

the provided data.

Basically, the service consists of two operations, which are added to a process fragment

replacing the mobile task in case the aforementioned exceptional situation occurs. The

first one is called simple backup operation while the second is called complex backup

operation. This will be followed by a discussion on how they are implemented and in

which context they are applied.

Simple Backup Operation: During design time, all mobile tasks producing data for

other tasks are determined. Each of these tasks is then, in turn, automatically associated

with a simple backup operation by applying the following steps: If a backup operation is

needed for a mobile task B1, the latter is substituted by the process fragment depicted in

Figures 3.11 and 3.12. During run time, the execution of backup task B2 on a stationary

XOR

B1
mobile task

validation
task

C

B2
backup task

data

sync �ag

Figure 3.11.: Simple backup operation

computer will then guarantee that subsequent tasks of B1 will not be affected by a failure

of this mobile task, i.e., backup task B2 will provide the same data as mobile task B1.

In this context, a sync flag guarantees that B2 will be only executed if mobile task B1

fails (cf. Figure 3.11). B1 thus writes the sync flag according to its execution state. If B1

has been executed correctly, the sync flag is set to true, otherwise it will be set to false.

Depending on the respective value, the succeeding XOR process fragment will then be

28

3.5. Escalation Handling: Backup Service

executed as follows: If the sync flag is false, the upper branch will be chosen and B2 will

be executed.

In turn, if the sync flag is true, the lower branch will be chosen and nothing happens;

i.e., B2 will only be executed if B1 fails. As shown in Figure 3.11, the simple backup

operation comprises another task, i.e., the validation task. It is used to manually confirm

the execution of B2. The following action will therefore be performed during run time, if

the sync flag is set to true and was assigned to the validation task during design time:

The mobile user responsible for handling the failed mobile task will have to confirm that

the backup task has been completed correctly.

B1
uMob A
uMob B
uMob C

B2
List not

calculated

on activation
(sync �ag = false)

B2
List not

calculated

B1
uMob A
uMob B
uMob C

delegated to uMob B
(sync �ag = false)

B2
List not

calculated

B1
uMob A
uMob B
uMob C

started by uMob A
(sync �ag = false)

on backup
(sync �ag = true)

B1
uMob A
uMob B
uMob C

B2
uStat A
uStat B
uStat C

Figure 3.12.: User lists during the simple backup operation

Complex Backup Operation: The complex backup operation shown in Figures 3.14

and 3.13 is provided to deal with urgent mobile tasks. With this operation, backup task

B2 can be performed more quickly, based on two changes in comparison to the simple

backup operation described above.

First, a userlist task is added. The backup task is then executed in parallel to the mobile

task. In order to perform B2 more quickly, the complex backup operation works as

follows: First, the user list task determines the lists of authorized users for B1 and

B2 respectively (cf. Figure 3.13, on activation). Then, at the time B1 is started, B2

is started synchronously. Following this, task B2 will be locked for all users from the

user list of B2. After assigning B1 to a user (cf. Figure 3.13, started by uMob A), the

29

3. A Framework for Mobile Task Integration

B2
backup task

AND

B1
mobile task

validation
task

user list
task C

data

sync �ag

Figure 3.13.: Complex backup operation

user list will be adapted for both tasks. Note that the user list for B2 assigns the task to

the same user who performed it on the mobile device as a mobile task. Applying this

procedure offers advantages in many respects: First, all other users who may perform

B2 are able to monitor which mobile user is currently working on this task. Second, if no

other authorized mobile users are available to B1 for delegation, the user list for backup

task B2 has been already determined concurrently. Compared to the simple backup

operation, for which the user list of B2 is only determined when B1 has been finished,

this procedure speeds up user assignment.

B1
uMob A
uMob B
uMob C

B2
uMob A
uMob B
uStat D

on activation
(sync �ag = false)

delegated to uMob B
(sync �ag = false)

B1 B2
uMob A
uMob B
uStat D

uMob A
uMob B
uMob C

B1
uMob A
uMob B
uMob C

B2
uMob A
uMob B
uStat D

started by uMob A
(sync �ag = false)

on backup
(sync �ag = true)

B1 B2
uMob A
uMob B
uStat D

uMob A
uMob B
uMob C

Figure 3.14.: User lists during the complex backup operation

30

3.6. Mobile Task Life cycle

3.6. Mobile Task Life cycle

Based on the operations and concepts discussed in this chapter, a complete life cycle

can be defined for mobile tasks, covering design time, instantiation time and run time (cf.

Figure 3.15). During a full life cycle, a mobile task can possess nine distinct state:

S1 Mobile Task Transformation: This state implies the transformation of a standard

task into a mobile task and the calculation of necessary process flow changes (i.e.

adding a backup operation) as shown in Section 3.2.

S2 Pre-Filter Definition: During Instantiation Time, pre-filters can be defined as

shown in Section 3.3.

S3 Task Activated: As soon as a mobile task is initiated and enters run time it will

be considered as activated. It will stay in this state until ulmob is generated by the

MDS. The state is equivalent to the MDS state ACTIVATED.

S4 Task Pending: This state may be entered as soon as ulmob is generated and is

equivalent to the MDS state PENDING.

S5 Task Running: A mobile task may enter this state as soon as it is started by a

mobile user. It is equivalent to the MDS state STARTED.

S6 Task Delegated: This state implies, that there is an ongoing delegation process.

It is equivalent to the according MDS state.

S7 Task Backed up / Skipped: In this state, the mobile task has to be backed up

or skipped, depending on the task context. This state groups the MDS states

BACKUP and SKIPPED. Next, the task has to enter state S8 Task Completed.

S8 Task Completed: This state marks the end of task execution. At this point, all

provided data has to be written or discarded, depending on the final execution sta-

tus and the task’s settings. Furthermore the task has to be marked as FINISHED,

BACKUP or SKIPPED, to allow process execution to continue.

S9 Process Completed: This state marks the end of process instance execution.

31

3. A Framework for Mobile Task Integration

activation time

delegation time

mobile task
transformation

pre-�lter
de�nition

task
activated

task
pending

task
running

task
delegated

task
completed

process
completed

task
backed up
/ skipped

design time

instantiation time

runtime

Figure 3.15.: Mobile task life cycle

The MDS introduced activation time and delegation time, two more specific time slots

during run time in which the user lists are generated. Based on the mobile task life cycle,

an architecture handling mobile task execution will be introduced in the next chapter.

32

4
A Generic Architecture for Mobile Task

Execution

Today, process-based architectures are widely used in various scenarios. These systems

are often intertwined with existing legacy environments and changes would imply high

efforts regarding time and money. Approaches implying new implementations or changes

in existing components, or the introduction of a completely new infrastructure are expen-

sive to integrate into existing systems. For example, as soon as an interface has to be

altered, it has to be verified against all other components in the system to avoid side

effects. If a new environment has to be set up, all interfaces for legacy integration have to

be changed and tested. A generic integration approach for mobile task execution, which

provides interfaces for mobile clients as well as for existing BPMSs, is thus desirable.

In this approach, current interfaces remain untouched to avoid interferences with other

system components.

33

4. A Generic Architecture for Mobile Task Execution

While related work often proposes new implementation approaches for mobile BPMSs,

the need of integration paradigms for mobile task execution into existing process envi-

ronments and live systems has not yet been discussed. This chapter will introduce a

generic approach for the integration of mobile task execution. In Section 4.1 different

integration and implementation concepts will be discussed, and the requirements for the

target architecture will be identified in Section 4.2. Finally, Section 4.3 will explain all

components contributing to the integration will in more detail.

4.1. Supporting Mobile Tasks in Business Process

Management Systems

The foundation for all approaches providing mobile support in a process environment are

the functionalities of contemporary BPMSs. The traditional architecture can be described

as a centralized authority providing a user repository, process definition tools, and a

process engine (cf. Figure 4.1 A) [36]. All registered users and the according rights

management are stored in the user repository.

client

process engine

user repossitory

process engine

process de�nition tools

user repository

mobile client
and process engine

central communication unit
(optional)

process de�nition tools

mobile client

mobile task management

process engine

process de�nition tools

mobile client

process engine with
mobile task management

process de�nition tools

user repository user repository
user repository

process engine with
mobile task management

engine independent mobile
task management layer

mobile client with integrated
process engine

contemporary BPMS

Figure 4.1.: Components of traditional and mobile BPMSs

34

4.1. Supporting Mobile Tasks in Business Process Management Systems

The process definition tools are used to create process models at design time, which

then can be instantiated by the process engine for run time. The process engine serves

as an execution environment for process instances and holds the process repository,

which contains all available process models. It provides interfaces to process initiation

and execution control. Distributed, non-mobile clients enable users to initialize processes

and perform tasks by using the engine’s interfaces.

Whilst all base components can be found in related projects, the structure and imple-

mentation may differ crucially. So far, two approaches for introducing mobile execution

support to a process environment can be identified. First, the reimplementation of a

central process engine including a mobile task management as shown in Figure 4.1 B

(e.g., Rome4U [18]). Second, mobile clients running a process engine on each device

and communicating either directly (e.g., in a MANET as done by CiAN [20] and Sliver

[17]) or through a central communication unit (e.g., MARPLE [16] and DEMAC [15])

as shown in Figure 4.1 C . In both cases, the process model has to be updated with

additional functionalities for a proper representation of mobile tasks either by extending

the existing concepts or by introducing a new notation. Thus, the process definition tools

have to be updated as well.

The downside of such approaches is the lack of integration interfaces for legacy systems.

All existing interfaces have to be changed and re-evaluated. The second approach, if

not using a central communication unit, does not allow an integration at all, since it is

designed for a certain infrastructure.

An engine independent approach is a promising way of tackling these shortcomings.

Therefore, a new mobile task management layer between process engine and mobile

clients is introduced (cf. Figure 4.1 D). The engine delegates all upcoming mobile

processes to the layer, which then handles the complete life cycle of this task at run time

and manages the status of mobile devices and according users. Hence, a mobile client

must communicate only with the management layer. For the communication between

layer and process engine, the engine’s existing communication interfaces have to be

used (e.g., a HTTP interface) and therefore have to be implemented by the management

layer. Following this approach, the only part of the basic BPMS which has to be altered,

35

4. A Generic Architecture for Mobile Task Execution

are the process definition tools. If the framework of Chapter 3 is used, only small efforts

are necessary, since most of the used concepts can be implemented in existing business

process languages.

4.2. Requirements

In the following sections, a concept for a mobile management layer which uses the

mechanisms of Chapter 3 will be introduced. For this purpose, the requirements not

just for the layer itself, but also for the used BPMS and the mobile clients, have to be

addressed. The requirements for the management layer mostly emerge from the used

framework and can be determined as follows:

L1 Mobile user management: The management layer has to provide a mobile user

repository which has to be a subset of the repository of the underlying BPMS. Also

needed is a generic authentication mechanism which evaluates authentication

requests and forwards them to the underlying process engine.

L2 Mobile device management: All available mobile devices have to be managed

by the mobile management layer. This includes a unique identification mechanism,

a link between the device and the current mobile user who is using it, and tracking

of the current device status (e.g., battery status or available sensors).

L3 Handling mobile task life cycle: The management layer has to support all run

time states of the mobile task life cycle. Thus, the user list management, the

delegation service, and the backup service have to be provided and it must also be

possible to track the current state of a mobile task (e.g., provided data and status).

L4 Process instance tracking (optional): A desirable feature would be the possi-

bility to track the status of a process instance with mobile tasks. This can then

be used to evaluate the average user behavior at process instance level and, in

addition to initiate global settings for all mobile tasks in a certain process instance

(e.g., a global pre-filter).

36

4.2. Requirements

Due to the integration context, only a minimal set of interfaces is required to communicate

with the underlying process engine and the mobile clients:

IF1 User repository: The management layer must be able to access the underlying

user repository and synchronize its own user repository.

IF2 Authentication: Authentication requests by a mobile client need to be accepted

and can then be forwarded to the process engine. The engine’s response has to

be evaluated and provided to the client.

IF3 Process execution: All process and task related execution operations have to

be provided. Task initiation requests by the process engine have to be accepted,

task information has to be published to the mobile clients, and task status updates

by the mobile clients have to be handled. The final execution results of a mobile

task have to be provided to the process engine. Additionally, process instantiation

information has to be gathered for process instance tracking.

IF4 Device status: The management layer needs access to a device’s current status

information (e.g., battery-status, location or sensor data), either by accessing this

information directly or by letting the device publish it constantly or on request.

The underlying BPMS has to provide the components described in Section 4.1 and has

to fulfill the following requirements:

W1 Process engine communication interface: The process engine has to provide

a communication interface which can be used for authentication purposes and to

initiate process models and to control business processes. The interface has to

enable single process instances to communicate with external components (e.g., a

REST service via HTTP).

W2 Accessible process language format: Mobile tasks can only be declared and the

mobile process transformation and the automated dependency check performed

if the definitions of the used modeling and execution languages (e.g., BPEL or

BPMN 2.0) are known and accessible. Furthermore, either the process definition

tools have to be extendible (e.g., with plug-ins) or the process model repository

has to be accessible during design time.

37

4. A Generic Architecture for Mobile Task Execution

Since mobile clients are used for presentation and interaction purposes only, the following

user interfaces have to be offered:

UI1 Authentication: A form where the user has to provide credentials in order to

authenticate towards the process engine.

UI2 Working list: A list containing all mobile tasks which can be performed by the

current user.

UI3 Task execution: A form which can be used to perform a mobile task by providing

data and changing the task’s state.

Additionally, the clients have to provide a communication interface which can be used to

exchange data with the mobile management layer (e.g., via HTTP).

4.3. Integration Concept

Based on the requirements in Section 4.2, Figure 4.2 describes a concept to integrate

mobile task execution into conventional BPMSs. A central aspect is the Mobile Execution

Layer (MEL), a service layer between the process engine and the mobile client. It

handles the mobile task life cycle during run time, provides services for the mobile

clients, implements interfaces for process engine related operations (i.e., authentication

and user repository access), and provides task execution services which can be used

by the process engine. Furthermore, the process definition tools have to be extended

by a mobile task transformation module, which has access to the underlying process

definition model and can be used to define mobile tasks as described in Chapter 3. The

mobile client represents the user interface for mobile users. It provides a communication

interface which is compatible to the mobile client services of the MEL. Contrary to

the stationary client, which is provided by the BPMS, the mobile client communicates

exclusively with the service layer. It does not implement any execution logic. Instead, all

user interactions and provided data are sent to the MEL for further processing. A detailed

view of the integration concept can be found in Appendix A, Figure A.1. Following this,

38

4.3. Integration Concept

mobile client services

mobile user
repository

process engine interfaces & execution services

mobile execution layer (MEL)

process de�nition tools

mobile task transformation module

process engine user repository

process engine
stationary

client

communication interface

mobile client

communication interface

user
interface

service layer
underlying BPM

S

Figure 4.2.: Integration concept

the respective components will be discussed subsequently in more detail and the concept

of execution filters will be introduced.

4.3.1. Execution Filters

Currently, during the life cycle of a mobile task, multiple concepts are used to define

values and properties. On the one hand, every mobile task has properties such as a

location or an urgency. On the other hand, pre-filters and operations are used during

initiation time and delegation time. Tracking and evaluating these properties in a complex

process structure can become more challenging than it should be, since all participating

object classes in a mobile life cycle have to be taken into account, which are:

• The process instance

• The mobile task instance

• The mobile user list (ulmob) and the mobile delegation list (dlmob)

• The backup operation / skip

39

4. A Generic Architecture for Mobile Task Execution

To minimize the resulting complexity, the concept of execution filters, which can be

assigned to each of the object classes, is now introduced. A filter is associated with one

or multiple states in the mobile task life cycle and can only be applied there. Three types

of execution filters can be identified:

1. Process Instance Filters can be used to define global default settings for all

mobile tasks in accordant process instances. They can be overwritten by other

filters.

2. Task Instance Filters can be used to define properties like urgency or the list

threshold for a single mobile task instance. They can be used to overwrite process

instance filters.

3. User List Filters can be used to manipulate the user list management of the MDS

by adjusting the prioritization model and defining pre-filters.

With this set of filters, all concepts used in Chapter 3 can be represented. Implemented

filters can easily be changed or the whole set can be extended without interfering with

other components. Thus, a highly modular implementation becomes possible. All

necessary execution filters fitting the requirements in Section 4.2 are listed in Tables 4.1,

4.2 and 4.3.

Process Instance Filters

Filter Mandatory Description

Default List
Threshold

Implements the setThreshold() method for mobile
task transformation. Can be overwritten by the
corresponding task instance filter.

Default Priority
Weighting

Defines the weights for priority calculation. Can be
overwritten by the corresponding task instance
filter.

Global Pre-Filter
Excludes a specific user for all mobile tasks in a
process instance. The user will not be considered
for user- and delegation list calculation.

Table 4.1.: Process instance filters

40

4.3. Integration Concept

Task Instance Filters

Filter Mandatory Description

List Threshold
Implements the setThreshold() method for mobile
task transformation.

Task Location
Implements the setLocation() method for mobile
task transformation.

Urgency
Implements the setUrgency() method for mobile
task transformation.

Skip
Implements the isSkippable() method of the
mobile task.

Force Skip
Forces a task to be skipped, even if a backup
operation is necessary.

Offline Execution
Indicates whether a task can be executed as an
offline task.

Table 4.2.: Task instance filters

User List Filters

Filter Mandatory Description

Location
Matching

Implements the nlf calculation.

User Behavior Implements the dbf and ebf calculation.

User Priority Sets the upf for a specific mobile user.

User Constraints Defines the cpf based on user constraints.

Priority
Weighting

Defines the weights the priority calculation.

Local Pre-Filter
Excludes a specific user for a specific mobile task
instance. The user will not be considered for the
user- and delegation list calculation.

List Priority
Calculation

Combines other user list filters for user priority
calculation (Prumob

).

Table 4.3.: User list filters

41

4. A Generic Architecture for Mobile Task Execution

So far, the execution filters can be defined globally on a process instance or locally on a

single mobile task instance. To improve the flexibility, the current execution status of a

process instance or task instances can be used as a precondition, if a filter is applied or

not. An execution status is defined by:

• The status of data elements (e.g., the value of a data element)

• The current execution state of a task instance (i.e., pending, started, finished,

backed up, skipped)

• An execution log, which holds records of all users, who worked on a task instance.

• Which filters were applied during execution.

A filter precondition can be denoted by boolean expressions based on these aspects.

For example, a local pre-filter lpf on the mobile task t1mob will only be applied if task

t2 has been finished and data element d1 has been written. Then the precondition for

t1mob can be written as pret1mob.lpf = (t2.state ≡ finished) ∧ ¬(d1 ≡ null). lbf will be

only applied if pret1mob.lpf ≡ true holds.

Execution filters and their preconditions can be defined during design time and instan-

tiation time and will be evaluated and applied during run time. Hence, the mobile task

transformation module and the MEL have to provide corresponding components for filter

management.

4.3.2. The Process Engine and Process Definition Tools

Regarding the introduction of mobile task execution support by using a service layer,

the underlying BPMS has to provide a minimal set of functionalities. This set is defined

by the standard components of a BPMS [36] and the requirements W1 and W2 stated

in Section 4.2. Furthermore, the process definition tools have to be extended by a

mobile task transformation functionality. Figure 4.3 shows the structure of a BPMS

which provides all necessary functionalities, and how its components interact with higher

layers. Most modules are standard components and interfaces of a conventional BPMS.

The execution environment and user management stay untouched, only the tools for the

process definition have to be extended. Following this, all relevant components of a valid

42

4.3. Integration Concept

BPMS and the internal and external communication patterns will be discussed in more

detail.

Process engine user repository: The user repository holds the information of all regis-

tered users in the system. A user’s identity, credentials and authorization information are

non-transiently saved and can be accessed by other modules (e.g., by an authentication

module). The repository does not have to differentiate between stationary user and

mobile user. This will occur in a higher service layer.

external communicationinternal communication

communication interface

business process run time environment

process engine

stationary
client

authentication
management

user management

process de�nition tools

�lter de�nition tool

transformation tool

mobile task declaration
tool

dependency validation

mobile task transformation module

tools provided by the
BPMS

process de�nition
data model

process engine user repository

user repository interface authentication interface process execution interface & service
mobile execution layer (MEL)

Figure 4.3.: The underlying BPMS

BPMS process definition tools and data model: Process models based on a process

data model definition (e.g., BPMN 2.0, BPEL) are designed by using the standard pro-

cess definition tools provided by the BPMS. A finished process model is then transferred

to the business process run time environment of the process engine, in which it can be

instantiated and started.

43

4. A Generic Architecture for Mobile Task Execution

Mobile task transformation module: This module extends the provided definition tools

by enabling the process designer to declare mobile tasks, and run the mobile task

transformation based on the underlying data model. Therefore, the transformation tool

and the filter definition tool have to be implemented. The transformation tool is used

to mark a task as mobile and provides an automated dependency validation in order

to add a backup service. Execution filters can be declared and validated by using the

filter definition tool. The module can be implemented as an integrated module or as an

external application with access to the process definition data model and the process

repository.

Process engine: The core module of a process engine is the business process run

time environment. It manages the initiation and execution of processes and tasks, and

manages a repository of all available process models. The engine provides a user

management and authentication management, which inquire the process engine user

repository to handle user authentication requests and task assignments based on the

user rights management (e.g., Role Based Access Control (RBAC) [37]).

Communication interface: A communication interface has to be provided to enable

external applications to access the user management and the process execution en-

vironment (e.g., to provide data or perform a task). It is used for the communication

between the process engine and the MEL. It can also be used by user clients and

external management tools.

Stationary client: A stationary client represents the standard user interface running

on non-mobile devices. It enables users to authenticate themselves at the BPMS and

to initiate and perform tasks. In particular, it uses the process engine’s communication

interface to interact with the execution environment and the user management. If a

mobile task has to be backed up, it will always be delegated to a user on stationary

clients.

4.3.3. The Mobile Execution Layer

The Mobile Execution Layer (MEL) is a crucial component of the integration concept.

It is responsible for managing the MDS execution flow and therefore has to track the

44

4.3. Integration Concept

status of all available mobile devices and mobile users. It has to provide an execution

filter management on both task and process instance level. Moreover, it acts as a

communication relay between mobile clients and the underlying BPMS by providing

services for both of them and implementing parts of the process engine communication

interface. The MEL enables the tracking and analysis of mobile processes on a process

instance level (cf. Figure 4.4). Henceforth, all components of the MEL shown in Figure

4.4 will be discussed subsequently.

authentication service device status service task execution service

user repository interface authentication interface process execution interface & service

�lter management

working list management

logging and recovery

life cycle management

execution �ow
handler

user list factory

data handler

task execution module

process instance management

�lter management

logging

process instance module

mobile user module

user management

synchronization handler

authentication handler

session handler

device management

device binding
handler

device status
handler

mobile user repository

by
pa

ss

communication interface

process engine user repository

process engine

communication interface
mobile client

Figure 4.4.: The mobile execution layer

Mobile user repository: To avoid interferences with other components, the process

engine user repository does not support the declaration of mobile users. Consequently,

the MEL has to manage a mobile user repository which is a subset of the process engine

user repository and references all users, who can be considered as mobile users. To

reduce data redundancy, the repository holds only a unique identifier for each mobile

user, which has to be provided by the process engine user repository. All additional

45

4. A Generic Architecture for Mobile Task Execution

information is gathered during the authentication process. Furthermore, the repository

persists device bindings, which are used to identify authorized mobile devices. Thus,

a unique identifier (e.g., a device’s MAC address) and a shared secret (e.g., a security

token) are saved for each authorized mobile device.

Mobile user module: The mobile user module provides user management and device

management functionalities. The main task of the user management is to implement a

model for mobile users, to manage online users, and to bind online users to devices.

The authentication handler administers the authentication process by handing over a

user’s authentication requests to the corresponding module of the process engine. If the

request was verified by the process engine, the session handler initiates a session for

this user which holds the user’s credentials and a temporary shared secret (e.g., a token).

This enables the MEL to impersonate the mobile user towards the user management of

the process engine for future communication (cf. Figure 4.5).

authentication handler

session handler

other modules

BPMS

1. authentication
request

4. shared secret

2. forward authentication request

3. validation
result

5. request with
shared secret

6. secret
veri�cation

7. user impersonation

Figure 4.5.: User authentication and impersonation

The synchronization of the mobile user repository with the process engine user repos-

itory is conducted by the synchronization handler. For this purpose, operations are

provided to request all user data from the BPMS and to mark certain users as mobile

users.

To be able to control access not just on a user level, but also on a device level, all

participating devices have to be bound to the system. Thus, a device has to send a

binding request containing a unique identifier (e.g, MAC address). The request is then

validated by the device binding handler of the device management. In the case of a

positive validation, namely if the device was authorized by an administrator, a permanent

shared secret will be exchanged, which has to be provided by the device in all future

46

4.3. Integration Concept

communication attempts. If one side looses the shared secret, the device has to send a

new binding request, to re-initiate the binding process.

A crucial aspect during a mobile task execution is the status of mobile users, which

is used for user list calculation. In most cases, a mobile user’s status can be derived

from the status of the device he is using (e.g., connectivity or location). The device

status handler thus tracks all participating devices by gathering information about their

connectivity, location, battery health and available sensors which can then be accessed

by other modules (e.g., the life cycle management). Different approaches are possible

for collecting the device status information:

• The status is requested by the MEL as soon as it is needed.

• Once a mobile user is authenticated, the MEL requests the device’s status con-

stantly.

• A mobile device has to send alive messages at a specific interval containing the

devices current status information.

Using the first approach, an additional mechanism to detect connection losses is needed.

The other two approaches imply this, since a constant polling mechanism is used.

In particular, the middleware sided polling uses a request-response mechanism and

therefore increases the complexity and generates a higher network load. As opposed to

this, the client alive messages use a single message communication which nominates

this approach as the most desirable method to track the status of mobile devices.

User repository interface: To be able to access the process engine user repository

for user synchronization, MEL has to implement parts of the process engine’s com-

munication interface. If the communication interface does not provide access to the

user repository, a bypass has to be implemented, for instance, a direct access to the

persistence layer (cf. Figure 4.4).

Authentication interface: To be able to forward authentication requests and imper-

sonate a mobile user, the authentication interface implements the user management

modules of the process engine’s communication interface which can then be used by

the mobile user module.

47

4. A Generic Architecture for Mobile Task Execution

Task execution module: The mobile task execution is mainly administered by the task

execution module. It consists of four sub modules, handling different aspects of the

execution process (cf. Figure 4.4). The life cycle management represents the MDS.

It implements an execution flow handler, which controls the MDS execution flow and

verifies state changes. It triggers automated state transitions by listening to the device

status changes provided by the device status handler. The user list factory calculates

the mobile user- and the mobile delegation lists. The data fields of mobile tasks are

managed by the data handler. When a mobile user provides data for a task, it will be

cached by the data handler for further processing. Thus, if a task is delegated, the

previously entered fields can be provided to the new user. The data will not be published

to the process engine until the task has been finished or has to be backed up.

When a mobile task is instantiated, the filter management will evaluate all attached

execution filters. Furthermore, it applies process instance filters, which are used to

set default values, and all task instance filters. During execution, the user list factory

consults the filter management to gather the user list filters in order to calculate and

prioritize the user lists.

All mobile tasks which can be performed by a particular mobile user have to be published

in a way in which they can be efficiently processed by a mobile client. Therefore, the

working list management organizes them in working lists, with one list each per mobile

user. A list entry reveals information about the identifier (e.g., a unique task ID), the

name, the data dependencies, and the current status of a mobile task. The entries are

distinct, which means, that the same task can be only once in the same working list.

However, one task can appear in multiple distinct lists. The working lists are linked to the

MDS execution flow and will be updated each time a task state transition occurs, or the

mobile user list or the mobile delegation list is recalculated.

Finally, the logging and recovery module implements the recovery strategy for handling

system crashes. Hence, log files have to track all active tasks which have not yet been

published to the BPMS. To recover all properties of a running task, log entries for state

transitions and provided data have to be considered.

Process instance module: With regard to tracking the mobile execution on a process

instance level, processes can be registered in the process instance module once they are

48

4.3. Integration Concept

instantiated. On registration, all process instance execution filters have to be advertised

and additional information (e.g., total number of mobile tasks) can be provided. This

information can then be linked to the task execution to enable overarching tracking and

analyzing functionalities.

Process execution interface & service: The communication between the MEL mod-

ules and the BPMS is based on the implementation of parts of the process engine’s

communication interface and on services which can be used by the process engine. The

process execution interface implements the components of the communication interface

used to preform single tasks. It has to be able to finish a started task and write all

depending data fields. For process and task instantiation, the process execution service

is provided. It has to use a transfer protocol which is supported by the communication

interface (e.g., HTTP). The service accepts instantiation requests which will then be

forwarded to the task execution module or the process instance module (cf. Figure 4.4).

While a process instantiation request has to provide only a unique process identifier and

a list of execution filters, a proper task instantiation request has to provide the following

information:

• a unique task identifier

• the task’s name

• all data dependencies

• a list of execution filters

• the initial user list

• the unique identifier of its parent process instance

To track the whole process instance life cycle, a process finish notification has to be sent,

once a process instance has reached its final state. However, communication between

the process engine and the MEL only occurs during the execution of a mobile process:

1. when a process is instantiated,

2. if a single mobile task is started,

3. if a mobile task is finished or has to be backed up, or

4. when a process instance finishes.

49

4. A Generic Architecture for Mobile Task Execution

Client services: Mobile clients can use the client services, i.e., the authentication

service, the device status service and the task execution service to communicate and

interact with the MEL. Hence, authentication requests have to be sent to the authenti-

cation service that forwards them to the user management. The device status service

accepts alive messages from the devices and forwards them to the device management,

while a mobile client may publish task progress and data values to the MEL via the task

execution service. Moreover, the service is used to distribute the working lists to the

mobile clients.

4.3.4. The Mobile Client

Contrary to other integration approaches, where the mobile client is an essential part of

the execution processing (e.g., MARPLE [16]), the integration concept described in this

chapter uses mobile clients only as a user interface. However, to fulfill the requirements

UI1 to UI3 in Section 4.2, a well-defined communication and data processing between

the mobile client and the MEL is mandatory.

communication interface

GUI

authentication
management

user module device status
management

location management

device binding

device module

task execution
 management

data management

working list management

task execution module

external communicationinternal communication

authentication service device status service task execution service
mobile execution layer (MEL)

Figure 4.6.: The mobile client

Figure 4.6 shows a three-layer model of a mobile client based on the Model View

Controller (MVC) pattern. It consists of a Graphical User Interface (GUI), three internal

management modules and a communication interface. The GUI enables entering user

credentials in order to authenticate to the system, to view a user’s working list, and

50

4.3. Integration Concept

task details as well as to enter data in order to perform a task. All visible information is

gathered, and user input is processed by the underlying management modules.

The user module handles the authentication process by taking the user input from the

GUI and compiling it into a message format which is accepted by the authentication

service. Once a user is authenticated, the module provides all information needed for

further communication attempts.

The main task of the device module is to track the current device status and location,

and provide this data to the MEL by sending alive messages. Additionally, it invokes

device binding requests and holds the device binding information, i.e., the shared secret

and the MAC address.

To perform a mobile task, the task execution module requests the working list and further

task information from the MEL. The data, which is provided by the user, will be verified

and forwarded by the data management. Furthermore, the task execution management

handles task state transitions, namely if a user wants to start or finish a task.

Finally, the communication interface is used to interconnect the client with the MEL. It

has to implement the same transfer protocol as the client services (e.g., HTTP) and is

used by the management modules as a single access point.

In this chapter, a concept for the integration of mobile task support into BPMSs and the

requirements for such integration have been introduced step by step. The full structure

can be reviewed in Figure A.1 in Appendix A. To show the feasibility of this concept,

it was partially implemented as a prototype, which will be discussed in the following

chapter.

51

5
Proof of Concept

The integration concept, proposed in the last chapter, aims to have as little impact

as possible on the underlying BPMS by managing the execution of mobile tasks in

an intermediate service layer. A MEL prototype focusing on the execution time of the

mobile task life cycle has been implemented to show the feasibility of this approach.

It uses the REST framework play [38] as execution environment and service provider,

and the java-python integration library jython [39] for the implementation of a freely

programmable engine interface. A GUI- and an interaction concept for mobile clients

have been developed to show possible interaction patterns and how information provided

by the MEL could be presented.

This chapter addresses the implementation details of the prototype’s core features,

its shortcomings and the interaction concept. To show the significance of the impact

on the underlying BPMS, multiple integration scenarios will be discussed regarding

53

5. Proof of Concept

provided interfaces and supported communication patterns. Finally, these scenarios will

be evaluated by applying them to three actual BPMSs: Activiti [40], JBoss jBPM6 [41]

and AristaFlow [42].

5.1. MEL Prototype

The REST framework play [38] was used for the implementation of the MEL prototype.

It provides a lightweight application server for applications written in java or scala [43],

a complete REST API supporting all standard HTTP actions (i.e., GET, POST, PUT

and DELETE), a session management, and object relational mappers (i.e., EBean

ORM and JPA). Regarding the limited resources of mobile devices, using a lightweight

communication model such as REST is a promising approach. However, since REST

play application server

service endpoints (as declared in the routes �les)

BPMS mobile device

MySQL
database

play application ressources

service implementation (controllors package)

MEL API (mel package)EBean ORM
models

con�guration
module

jython
interpreter

cfg

con�guration �le
.py

python scripts

Figure 5.1.: The MEL prototype deployed on a play application server

paradigms are not supported by all legacy or established BPMSs, a freely programmable

data translation interface based on python scripts is provided. The java-python integration

jython [39] is used to integrate the scripts into a java environment. Figure 5.1 illustrates

the structure of the deployed MEL application. The core functionalities of mobile user

management, mobile device management and task execution management are located

in the MEL API. It also manages the required EBean ORM models and initiates the

54

5.1. MEL Prototype

jython interpreter. The configuration module loads global configurations, and provides

methods to edit them (all available configuration options can be found in Appendix C).

A configuration user management is in place to manage access to the configuration.

Python scripts and configuration files are placed in a public resource folder which can

be accessed by the MEL API and will be loaded on demand. To define endpoints for

services, play provides the routes file. The implementations of all services listed in

this file can be found in the controllers package. They use the MEL API and the jython

interface to process requests and return valid responses to the underlying BPMS and

mobile clients. The features supported by the prototype are listed in Tables 5.1 and 5.2.

Core features will subsequently be discussed in more detail.

Mobile Users

Authentication and impersonation

Session-handling

User repository synchronization

Mobile Devices

Device binding management

Device status tracking

Task Execution

Execution flow handling

User list generation

User list prioritization model

Data handling

Execution filter management

Execution filter preconditions 5

Offline tasks

Working list management

Logging and recovery 5

Table 5.1.: Supported prototype features (1)

55

5. Proof of Concept

Process Instance

Process instance management 5

Process instance tracking 5

Logging 5

Table 5.2.: Supported prototype features (2)

5.1.1. REST Services

As mentioned before, the communication interfaces for the mobile clients and the

underlying BPMS are implemented as REST services. JSON is used as data format

to keep the communication footprint on a minimum and benefit from the advantages of

the jackson JSON parser. The client services, described in Tables 5.3 and 5.4, provide

fundamental functionalities for authentication, device status tracking and task execution

on mobile clients. Before being able to use other client services, mobile users have to be

Authentication Services

Endpoint Method

/auth/login POST

Accepts a mobile user’s credentials for
authentication. If the authentication was
successful, a user session, which will be used
for further identification, is initiated.

/auth/logout GET Removes the current user session.

/auth/dam POST
A device has to send DAMs1constantly,
containing the mac-address, the current
location and supported sensors.

Table 5.3.: Services for mobile clients (1)

authenticated by the MEL to initiate a user session by using the according authentication

service. Although play is a stateless middle-ware, it provides a session handling by

adding an encrypted cookie to each response, which then has to be included in every

following request sent by a client [38]. The authentication information is stored in the

1Device Alive Message (DAM)

56

5.1. MEL Prototype

session and will be used for all further service calls. As soon as a user is authenticated,

the device has to continuously send Device Alive Messages (DAMs) to the /auth/dam

endpoint within a certain timeout. This will ensure that the mobile user is considered to

be online.

Task Execution Services

Endpoint Method

/task/<taskID> GET
Returns detailed information about properties,
execution status and data fields of the
requested mobile task.

/task/<taskID> POST

Changes the task’s execution state to
STARTED and sets the current session user as
person responsible. The mobile task will be
removed from all working lists except the one of
the current session user.

/task/<taskID> PUT

Accepts data field updates by the responsible
user. The data will not be populated to the
BPMS yet, but cached by the MEL and
provided on further requests.

/task/<taskID> DELETE

Changes the task’s execution state to
FINISHED, populates all data fields to the
BPMS and removes the mobile task from all
working lists.

/working list GET
Returns the working list for the current session
user.

Table 5.4.: Services for mobile clients (2)

After a successful authentication, a mobile client can use the services listed in Table 5.4

to get the working list of the currently logged in user, to start and finish a mobile task and

to write data fields. A mobile task can be identified by its unique task ID, which has to be

provided as resource identifier in the respective service endpoints, noted as <taskID>.

To maintain a better compatibility with older BPMSs, which do not support the REST

paradigm, the BPMS services in Table 5.5 use only the more common HTTP methods

GET as well as POST, and accepts plain text data. The POST service initiates a mobile

task which will then be available to the mobile clients for execution. Before initiating a

57

5. Proof of Concept

BPMS Services

Endpoint Method

/engine/task/<taskID> POST

Accepts mobile task initiation requests,
containing the task’s unique ID, name,
description, a set of data fields, a initial
set of users and a set of execution filters.
On a valid request, a new mobile task will
be initiated and activated.

/engine/task/<taskID> GET

Returns all information about the
requested mobile task, if task polling is
activated and the task has already been
finished.

Table 5.5.: Services for the underlying BPMS

task, the request sent by the BPMS will be parsed by the Freely Programmable Interface

Layer (FPIL). The communication data format can thus be chosen freely by the BPMS,

which increases legacy compatibility even more.

The prototype supports two methods for publishing a finished mobile task to the BPMS:

First, the task is handled by the FPIL and therefore will be sent directly to the communi-

cation interface of the BPMS. Second, all finished tasks are provided by a service, which

can constantly be polled by the BPMS (cf. Table 5.5, GET). To reduce redundancy and

to avoid side effects, only one method, which can be set in the MEL configuration file,

can be used at the same time.

BPMS Services

Endpoint Method

/config/mobileusers/import GET
Returns a list of all available
BPMS users.

/config/mobileusers/<userID> GET
Returns information about the
requested mobile user.

/config/mobileusers POST
Adds a BPMS user to the mobile
user repository.

/config/mobileusers/<userID> DELETE
Removes a mobile user from the
mobile user repository.

Table 5.6.: Services for the synchronization of the mobile user repository
58

5.1. MEL Prototype

In addition to the previous services, the MEL provides a configuration service interface

for the configuration module. It is only accessible for configuration users which represent

a privileged user role within the MEL. The interface provides an authentication method

similar to the one used by the mobile client services. After authentication, a configuration

user has access to services for managing configuration users and mobile device bindings

and for synchronizing the engine user repository with the mobile user repository (cf.

Table 5.6). A full list of all available services can be found in Appendix B.

5.1.2. Freely Programmable Interface Layer

For decoupling the MEL from the underlying BPMSs, the prototype provides a Freely

Programmable Interface Layer (FPIL). It manages data translation interfaces that are

either used by services to translate incoming data into a format which can be handled

by other modules (i.e., data transformation interfaces, cf. Figure 5.2 A), or by modules

to send data with a supported data format directly to the underlying BPMS (i.e., com-

munication interfaces, cf. Figure 5.2 B). The interfaces are implemented as python

scripts and loaded on demand from a public resource folder. The java-python integration

jython is used for the execution within the play java environment. It maps the scripts to

BPMS
data format provided by the BPMS

MEL
MEL internal data format

python
interfacesMEL modules

process engine

BPMS

MEL

communication interfaces

MEL services

python
interfacesMEL modules

process engine

BPMS

BPMS
MEL

MEL

data transformation interfaces

Figure 5.2.: Data translation interfaces

59

5. Proof of Concept

java interface classes to load and run python scripts and to use the results within a java

implementation. Hence, all python scripts have to implement one of the supported java

interfaces provided by the mel.common.interfaces.engine package:

• IAuth: Used by the authentication service to pass user credentials to the BPMS.

Scripts have to implement authenticate(username, credentials) which

accepts the user name as string and further credentials as an array of strings. On

success, the method has to return the user’s engine ID or -1 on failure.

• ITaskActivation: Used by the task activation service to translate incoming data

into the json format. Scripts have to implement toJson(body), which accepts

the HTTP request body as string and returns a valid json string.

• ITaskExecution: This interface is used, if polling of finished tasks is deacti-

vated. Scripts have to implement callRPC(taskId, finalStatus, Data,

userEngineId, userName, credentials) with the task data and the user

credentials as parameters, which will then be sent to the communication interface

of the BPMS.

• IUserManagement: Provides the getUser() method which queries all users in

the user repository of the BPMS. This interface is used to synchronize the mobile

user repository.

For each interface, multiple implementation scripts can be placed in the according folder.

The script to be used is set in the MEL configuration file. This enables the prototype to

support multiple BPMSs without changing their implementation details. In addition to

the java interface mapping, jython provides a full integration of java into python. This

enables the freely programmable interfaces to use java APIs within python scripts [44].

5.1.3. Life Cycle Management

The main focus of the MEL prototype is on the life cycle management. This includes

initiating mobile tasks and managing their execution flow, calculating the mobile user

lists and managing the working lists for all active mobile users. For this reason, the MEL

60

5.1. MEL Prototype

API provides multiple manager classes and implements mobile tasks as parallel running

threads. Figure 5.3 illustrates the initiation process of a mobile task. The task execution

manager provides a method which is used by the activation service to initiate a new

mobile task. The mobile task class implements the java.lang.Runnable interface

and manages its own execution state, data dependencies and execution filters. To initiate

a task, all requested task instance filters will be applied and the thread will be started

and added to a managing list within the task execution manager containing all active

mobile tasks. When started, the mobile task calculates the mobile user list ulmob, sends

an update notification to the working list manager and changes its execution state to

PENDING. It then waits until the task has been finished by a user or until the task is due.

It will only be activated for device status updates and data field updates. The working

list manager is responsible for all working lists of active mobile users and provides them

through the working list service. When notified by a new mobile task, the manager will

add this task to all working lists of active mobile users in ulmob.

ac
tiv

at
io

n
se

rv
ic

e

w
orking list service

mobile
tasks

task execution manager

working
lists

workinglist manager<ID>
<STATE>
<EXECUTION FILTER LIST>
<DATA DEPENDENCIES>

mobile task <<thread>>

calcuate ulmob

request
activation

init mobile task
and start execution

update noti�cation provide
working lists

add

Figure 5.3.: Mobile task initiation

After task initiation, the further task execution is handled as shown in Figure 5.4. As

soon as a mobile user starts to work on a task t, the task execution service requests a

state change of t to STARTED. The request will then be forwarded to the mobile task

thread. If a task has already been started or delegated, the task execution manager has

to listen for mobile device state changes of performing users.

A mobile device is considered to be in one of four states: ONLINE, PENDING, OFFLINE

and UNBOUND. A device with no active user session (i.e., no user is logged in on

this device) is UNBOUND. As mentioned before, device status tracking is done by

61

5. Proof of Concept

collecting Device Alive Messages (DAMs) of all devices which are not unbound. DAMs

are managed by the device activity manager and have a device alive listener attached.

There is only a single DAM for each device d, which will be refreshed as soon as d sends

a new message. If the manager receives an initial DAM (i.e., when a user has logged

in), the according device alive listener will notify the task execution manager. The latter

will then publish these changes to all pending mobile tasks so that they can refresh

ulmob if the new user is in ulinit. After handling an initial DAM, the respective device will

be considered as ONLINE. If d fails to send the next DAM within a configurable alive

timeout, this device will be considered as PENDING. This status was introduced to cope

with short time shutdowns or connection losses and reduces the amount of unnecessary

delegations. Technically, the device is offline but the delegation will be postponed to give

the mobile user the chance to reconnect to the network within a pending timeout. If this

fails, the device will be considered as being OFFLINE and offline time measurement

will be started. Additionally, the device alive listener notifies the task execution manager

task execution manager

device activity manager

device alive listener
device alive message

calcuate ulmob | dlmob

mobile task <<thread>>

working
lists

working list manager

D
AM

 se
rv

ic
e

task execution services

w
orking list service

send device
alive message update noti�cation

provide
working lists

request state change

publish changes

notify

Figure 5.4.: Handling mobile task execution

which will then publish the changes to all pending tasks and all started or delegated tasks

currently performed by the mobile user who just went offline. While pending tasks will

recalculate ulmob, started and delegated tasks, unless they are offline tasks, will calculate

dlmob and set the best fitting user in charge. Following the list calculation, the working

list manager is notified to update all affected working lists. If the offline device fails to

reconnect after an offline timeout, it will be considered as UNBOUND and the respective

user session will be terminated. Otherwise, the device status is ONLINE and it can be

62

5.1. MEL Prototype

used for further user list calculations. In both cases, the offline time measurement will be

stopped and the result will be saved and may be used for following list prioritization runs.

working list manager

process engine

mobile task <<thread>>

ta
sk

 e
xe

cu
tio

n
se

rv
ic

e

working list service

�nished task polling service

python interface

�nish task

add task to „�nished task list“

send task status

request �nished tasks

mobile
tasks

task execution manager

remove

<if polling activated>

<else>update noti�cation

provide �nished tasks

provide working lists

Figure 5.5.: Finishing a mobile task

If a mobile task has to be finished, the task execution manager removes the respective

thread from the managing list and notifies the task to initiate the finishing procedure (cf.

Figure 5.5). The mobile task therefore sends an update notification to the working list

manager, which will remove this task from all working lists. If task polling is activated,

the mobile task instance will be added to the finished task list of the task execution

manager and can be queried with the finished task polling service. Otherwise, the task

data will be sent directly to the BPMS using the configured python interface and the

thread execution will be terminated. This procedure can be invoked manually by a mobile

client, using the task execution service, or automatically by the mobile task instance, if a

backup is required.

5.1.4. Mobile Clients

The integration concept in Chapter 4 has introduced mobile clients as a user interface on

mobile devices, such as mobile phones or tablets. A GUI prototype has been developed

to show possible interactions with the MEL prototype regarding the user interface re-

quirements listed in chapter 4.2. Figure 5.6 shows the corresponding interaction model

as a flow chart, where nodes represent different user views, and transitions user interac-

tions. The login view is the application’s entry point. It shows a simple form for entering

63

5. Proof of Concept

login perform task

start task

perform o�ine task

WORKING LIST
your tasks

WORKING LIST
your o�ine tasks

WORKING LIST
open tasks

wrong login

on logout

on connection loss

tab navigation

on login click list item

click list item

click list item

click „start task“

click „�nish task“ or back button

click back button

re-gaining
connection

re-gaining
connection

Figure 5.6.: Interaction model for the mobile client

user credentials. This form has to be adapted to the needs of the underlying BPMS.

The BPMS AristaFlow [45], for example, needs a user’s name, role and password for

authentication, which has to be reflected by the login form.

After a successful login procedure, the working list view will be entered, showing the

current user’s working list. It is divided into two sub-views to improve visibility and to

reduce the cognitive load of the user. One shows started or delegated mobile tasks the

user is working on (cf. Figure 5.7a), and another activated tasks which can be started by

the user (cf. Figure 5.7b).

open tasksyour tasks

WORKING LIST

X-Ray delegated 3h 02m
task status due in

Vital Signs delegated 3h 20m

Check Medication started 4h 11m

Ajust Treatment started 4h 20m

X-Ray started 10h 03m

(a) Your tasks

your tasks open tasks

WORKING LIST

X-Ray 3h 02m
task due in

Vital Signs 3h 20m

Check Medication 4h 11m

Ajust Treatment 4h 20m

X-Ray 10h 03m

(b) Open tasks

No connection to the Server.
Only o�ine tasks are available!

WORKING LIST

X-Ray delegated 3h 02m
task status due in

Vital Signs delegated 3h 20m

Check Medication started 4h 11m

(c) No connection

Figure 5.7.: Working list views

64

5.1. MEL Prototype

Patient: Alice Wonder
Room: 506

Vital Signs

Heart frequency

data �elds

Blood pressure

Fever

start task

(a) Start a task

Patient: Alice Wonder
Room: 506

Vital Signs

Heart frequency

Blood pressure

Fever

mark task as �nished

data �elds

(b) Standard task view

Patient: Alice Wonder
Room: 506

No connection to the Server.
Changes will be published on reconenct.

Vital Signs

Heart frequency

Blood pressure

Fever

data �elds

(c) Offline task view

Figure 5.8.: Task views

A tabbed navigation bar has been used to switch between the two sub-views. The initial

list is sorted by due time to indicate the urgency of tasks. Touching the table headers will

sort the list by name or status. A third working list view is displayed if devices loose the

network connection (cf. Figure 5.7c). In this state, only started offline tasks are available

to the user. This error view will be entered on any connection loss, regardless of view

displayed before.

By touching a working list entry, a task view will be entered. If a pending task is selected,

the view will display fundamental task information such as task name, description and

needed data fields (cf. Figure 5.8a). When pressing the start task button, the client will

send a status change request to the MEL. After a task has been started, the view has

to provide possibilities to enter required data fields and to mark the task as finished (cf.

Figure 5.8b). Suitable input fields have to be displayed to handle different data types

(e.g., text fields for string values, checkboxes for Boolean values). Entered data will be

transferred to the MEL immediately. If the task view is entered while the device is not

connected to the network, entered data will be cached and sent to the MEL as soon as

it reconnects. It is not possible to mark a task as finished, as long as the device is not

connected (cf. Figure 5.8c). The task view can be left at any time by pressing the back

button next to the task name. This, as well as marking a task as finished, will bring the

65

5. Proof of Concept

user back to the working list view. Pressing the logout button next to the user name in

the top right corner will log the user out of the system by removing the MEL user session

and bring her back to the initial login view.

5.2. Integration Scenarios

To evaluate the prototype’s generic approach and the feasibility of the integration concept,

they have to be applied to actual BPMSs. In this context, various integration scenarios

can be identified emerging from differing communication interfaces and organization

models of BPMSs. Since the pitch points of the MEL and the underlying BPMS are well

defined, the integration scenarios can be classified by the following aspects:

User repository access (URA): The MEL needs access to the user repository of the

BPMS to synchronize the mobile user repository. This can be done either through

interfaces provided by the BPMS (e.g., a SOAP web service) and implemented as part

of the FPIL, or by using a direct access to the persistence layer of the organization

model, bypassing the access control of the BPMS. The latter will increase the complexity

and error-proneness of the user management interface, since the detailed data structure

of the used organization model has to be known and handled.

Authentication (AUTH): BPMSs have to provide an authentication interface which the

MEL can use to authenticate and impersonate a mobile user. There are no restrictions in

the used authentication method, since an arbitrary number of generic user credentials is

supported. Depending on the capabilities of the mobile devices and the implementation

of the authentication interface used by the FPIL, even a multi factor authentication (e.g.,

username, password and swipe card) is feasible. The absence of an authentication

interface is unlikely, taking into account that most BPMSs are designed for distributed

environments.

Supported communication patterns and protocols (COM): While the data format

used for the communication between process engine and MEL will be translated by the

FPIL and can thus be chosen freely, all underlying BPMSs have to support basic HTTP

features to communicate with the services provided by the MEL. Regarding the initiation

66

5.2. Integration Scenarios

MEL services

in
it

on
ce

AC
K

/N
AC

K
IF NACK

IF ACK

MEL services

in
it

AC
K

/N
AC

K

IF ACK

MEL services

in
it

AC
K

single-task polling looped polling asynchronous
communication

emulatet async.
communication

process �ow communication

MEL services

engine interface

in
it AC

K

Figure 5.9.: Communication patterns

and termination of mobile tasks, at least one of the communication patterns shown in

Figure 5.9 has to be supported by the provided process model, while an asynchronous

approach is more desirable to save networking resources.

A Single-task polling: A synchronous communication pattern between the BPMS

and the MEL services handled by a single, automated task instance. On activation,

the instance sends an initiation request to the activation service. After handling

the initiation response, the task starts a polling loop, sending recurring requests to

the task finished service. On obtaining a positive response (i.e., the task has been

finished), the loop will be left, the task’s data fields and status will be written and

the task instance will be marked as valuated.

B Looped polling: This pattern represents an implementation of A using standard

features of process control flows. It can be used if a native implementation of

the polling behavior is not available. To avoid multiple initiation attempts of the

same task instance, an initiation flag has to be set which will be checked on each

iteration. The XOR gateway can use data fields provided by the backup operation

(e.g., the sync flag) to check the current polling status.

C Asynchronous communication: If a BPMS supports asynchronous service com-

munication (e.g., by providing callback methods), this can be used by the task

execution interface to implement the back-channel by sending the finishing status

67

5. Proof of Concept

of a mobile task as asynchronous callback. By using this method, the polling

service can be deactivated.

D Emulated asynchronous communication: If the BPMS provides a communi-

cation interface to control the task execution, this can be used to implement an

asynchronous communication as shown in Figure 5.9 D . In this case, the task

execution interface script has to implement the communication interface and is

used as asynchronous callback.

An integration scenario ISbpms for a specific BPMS can be described as a tuple ISbpms =

(URA, AUTH, COM). An integration becomes impossible as soon as a single member

of this tuple is not compatible with the MEL implementation. In the following section,

integration scenarios for multiple BPMSs will be identified and used to evaluate whether

the BPMS can be integrated.

5.3. Evaluating Business Process Management Systems

As a final step in showing the feasibility of the integration concept in Chapter 4, this

section will evaluate the MEL prototype by applying it to three integration scenarios. The

used scenarios will be derived from existing BPMS implementations by analyzing them

with regard to the aspects discussed in the last section. The reviewed BPMSs will be the

open source projects activiti and JBoss jBPM 6, and the commercial BPMS AristaFlow.

5.3.1. JBoss jBPM 6

JBoss jBPM [41] is an open source project, aiming to provide a full BPM suit for human

and automated task execution. It uses BPMN 2.0 as modeling and execution language

and provides tools for managing and modeling business processes. The implementation

of the execution model is based on java and meant to be extended by using the provided

API. All standard BPMN 2.0 functionalities are already implemented and can be used

out of the box.

68

5.3. Evaluating Business Process Management Systems

Regarding the integration context, the module jBPM workbench provides a REST API

[46], which can be used to control the process execution. For REST clients, a java API

is provided, which wraps all possible endpoints and the session invocation. Since jython

supports the integration of java APIs into python scripts, this can be used for the interface

implementation. No interfaces are available to access the organization model. jBPM

supports a variety of relational databases. If the deployment does not use the in-memory

database H2, bypassing the system for synchronization becomes a vivid option.

For task automation, jBPM provides the WorkItemHandler interface and a set of im-

plementations, including the ServiceTaskHandler. This class supports synchronous

communication between a task instance and a REST service. There are no imple-

mented features for an asynchronous HTTP communication. Hence, both, the polling

communication patterns and the emulated asynchronous communication are possible.

A summary of all findings regarding this integration scenario is shown in Table 5.7. Based

on this, a compatible integration scenario ISjbpm can be found and the integration of

mobile task execution using the MEL prototype thus is possible.

URA No interface. By-pass to relational database

AUTH Session handling using the java REST API

COM

single-task polling ServiceTaskHandler

looped polling ServiceTaskHandler

asynchronous communication not implemented 5

emulated async.
communication

ServiceTaskHandler and
REST API

Table 5.7.: Integration scenario for JBoss jBPM (ISjbpm)

69

5. Proof of Concept

5.3.2. Activiti

The open source project activiti [40] provides a java-based process execution API for

BPMN 2.0 processes. The main goal of the project is not to provide a fully blown BPMS,

but an execution environment which may be integrated with other java applications.

However, multiple tools and extensions are available to deploy a fully functional BPMS.

Concerning the integration requirements, a REST API implemented with java servlets

is available which can be deployed on any java application server [47]. The API is

a fully functional wrapper of the java API providing HTTP basic authentication, full

management access to the organization model and full control over process deployment

and execution. Invoking web services from a task instance can be realized with a

web service task [47] [45]. This is an experimental feature, providing a synchronous

HTTP communication with external services. As an alternative, activiti supports BPMN

extensions, which can be used to implement a proprietary HTTP handler which also

supports asynchronous communication. However, since the REST interface provides full

control over the execution of task instances, the emulated asynchronous communication

pattern can be used. This makes a self-implementation of asynchronous communication

obsolete.

As shown in Table 5.8, a compatible integration scenario ISactiviti can be found using

the java API and the REST extension.

URA REST API provides full user management

AUTH HTTP Basic Authentication

COM

single-task polling WebServiceTask

looped polling WebServiceTask

asynchronous communication
has to be manually
implemented

−

emulated async.
communication

WebServiceTask and REST
API for task execution

Table 5.8.: Integration scenario for activiti (ISactiviti)

70

5.3. Evaluating Business Process Management Systems

5.3.3. AristaFlow

Aristaflow [42][48] is a commercial BPMS developed at the University of Ulm. It fo-

cuses on the “component-oriented development of adaptive process-oriented enterprise

software” [49] and provides a BPMN 2.0 modeling and execution environment [50], an

organization model supporting RBAC [45] and an open java API [51]. For the communica-

tion with external services from within an activity, AristaFlow provides a set of connector

plugins.

A SOAP web service provides interfaces to the organization model, the user session

management and the task execution management. To authenticate a user, the user’s

name, the role and the password is needed. After a successful authentication, a user

session, identified by a token which has to be provided in all further communication, is

created.

Based on the SOAP web services and provided standard connectors for HTTP and web

service calls, the integration scenario shown in Table 5.9 can be identified.

URA Organization model access via SOAP web service

AUTH Token based authentication via SOAP web service

COM

single-task polling HTTP or WS connector

looped polling HTTP or WS connector

asynchronous communication
no standard connector
available

5

emulated async.
communication

HTTP or WS connector and
SOAP web service

Table 5.9.: Integration scenario for AristaFlow (ISaristaflow)

5.3.4. Conclusion

The integration scenarios investigated in this section have shown the loose coupling

of the MEL prototype. By supporting a variety of communication patterns, even older

systems can be used for integration. Modern BPMSs, which support multiple patterns,

71

5. Proof of Concept

have the freedom of choice and may use this to optimize mobile processes for different

architectures and environments. The FPIL enables the prototype to handle highly diverse

data formats, and makes the need for new interface implementations obsolete. Widely

supported protocols and formats as SOAP (cf. AristaFlow) can be used without adaption.

72

6
Summary and Outlook

In the course of this work, a concept for integrating mobile tasks into BPMSs, based

on the mobile task life cycle [5] has been introduced. The main goal was to provide a

method that enables a BPMS executing tasks on mobile devices, considering challenges

arising from the mobile context. In particular, aspects as connectivity, battery status and

location in respect of a task’s urgency have to be considered during the execution. The

concept follows a generic approach, introducing a decoupled service layer for executing

mobile tasks to reduce effort and costs for the integration into an existing IT infrastructure.

Additionally, a prototype has been implemented to show the feasibility of this approach.

Chapter 2 made a comprehensive analysis and categorization of related projects in

order to position this work in the current research context. Chapter 3 recapped the

concepts which had been introduced in earlier research works [5]. In particular, these

included the mobile task transformation, defining operations during design time to denote

73

6. Summary and Outlook

a task as mobile executable, the delegation service, which introduced an automated

delegation process based on a prioritized user list, and the backup service for escalation

handling. Based on these concepts, a life cycle for mobile tasks had been defined.

However, this approach provides only a rudimentary algorithm for user list prioritization

and expects full time connectivity of mobile devices. Facing these shortcomings, an

extendible prioritization model, considering location and unsound user behavior (e.g.,

instant shutdowns), and the concept of offline tasks, which enables mobile users to go

offline, while performing a mobile task without the task getting delegated, have been

introduced.

Chapters 4 and 5 represent the main part of this work. In Chapter 4, requirements of

a generic integration approach for mobile task execution were postulated, providing

interfaces for mobile clients as well as for underlying BPMSs, and leaving existing

interfaces untouched to avoid problems with other system components. With these

requirements and the mobile task life cycle in mind, a three layer architecture has

been developed, introducing the mobile task transformation module as extension of

the standard process definition tools, the Mobile Execution Layer (MEL) as a service

layer between mobile clients and the underlying BPMS, and a detailed concept for a

mobile client implementation. A MEL prototype, providing REST services and a Freely

Programmable Interface Layer (FPIL), based on python scripts, has been implemented

to prove the feasibility of such an approach. The main features, implementation details,

and an interaction concept for mobile clients were discussed in Chapter 5. Section 5.2

described a set of possible integration scenarios regarding common communication

patterns and provided interfaces to analyze the impact on different BPMSs. They were

used in Section 5.3 in order to evaluate the prototype against three real BPMSs: JBoss

JBPM 6, Activiti and AristaFlow.

6.1. Conclusion and Future Work

The main goal of this work was to show the feasibility of the concepts introduced by Pryss,

Musiol, and Reichert [5]. This was achieved by introducing a comprehensive integration

74

6.1. Conclusion and Future Work

concept for mobile task execution into an existing business process environment, and

by the MEL prototype implementation. Moreover, the basic concepts were extended to

remedy shortcomings, such as offline task execution and user list prioritization. The

prototype evaluation shows the feasibility of the proposed concepts and their small

impact on the existing IT infrastructure. Hence, this builds the foundation for further

research topics.

So far, the prototype does not implement all functionalities described by the integration

concept. The tracking of process instances may open new possibilities for monitoring,

mining as well as optimization and thus has to be discussed in more detail. Furthermore,

a comprehensive evaluation of the mobile task transformation and a proof of concept

for the mobile task transformation module is necessary. It is also possible to integrate

other aspects of the business process environment. For example, in [27], the mobile

task execution with respect to entailment constraints was discussed. Another possibility

could be the combination of this integration concept and related approaches (e.g.,

fragmentation). Besides the technical aspects, the usability of client applications, which

has not been discussed yet, is crucial for the acceptance of an IT system. Finally, the

current prototype has to be evaluated and optimized with regards to security, stability

and scalability in order to use it in a productive environment.

75

A
Additional Figures

77

A. Additional Figures

external communicationinternal communication

m
obile client

m
obile execution layer

underlying BPM
S

by
pa

ss

communication interface

business process run time environment

process engine

stationary
client

authentication
management

user management

process de�nition tools

�lter de�nition tool

transformation tool

mobile task declaration
tool

dependency validation

mobile task transformation module

tools provided by the
BPMS

process de�nition
data model

process engine user repository

authentication service device status service task execution service

user repository interface authentication interface process execution interface & service

�lter management

working list management

logging and recovery

life cycle management

execution �ow
handler

user list factory

data handler

task execution module

process instance management

�lter management

logging

process instance module

mobile user module

user management

synchronization handler

authentication handler

session handler

device management

device binding
handler

device status
handler

mobile user repository

communication interface

GUI

authentication
management

user module device status
management

location management

device binding

device module

task execution
 management

data management

working list management

task execution module

Figure A.1.: Detailed integration concept

78

mel.models

ConfigUserModel

DeviceModel

MobileUserModel

mel.devices

DeviceActivityManager

DeviceAliveMessage

DeviceAliveListener

DeviceManager

« Enumeration »
DeviceAliveMessage.Status

mel.config

system

user

SystemPropertyManager

« Enumeration »
Interfaces

« Enumeration »
PropertyNames

ConfigUserManager

AuthenticationManager

mel.mobileusers

MobileUserManager

auth

Authentication Manager

AuthenticationThread

mel.common

helpers interfaces location

models

DataBaseHelper

HashFactory

« Interface »
IAuth

« Interface »
ITaskExecution

« Interface »
IUserManagement

JythonFactory

Location

DeviceLocation

TaskLocation

« Interface »
MELBaseModel

ModelOperations

values

ErrorMessages

JsonKeys

Sensors

« Enumeration »
Sensors.Sensor

mel.taskexecution

MobileTaskDataFieldTaskExecutionManager « Enumeration »
DataField.DataTypes

« Enumeration »
MobileTask.State

filter

workinglist

logging

« Interface »
IBaseFilter

FilterFactory IBaseFilter.FilterNames

« Enumeration »
IBaseFilter.Type

WorkingListManager

WorkingList

WorkingListEntry

WorkingListUpdateThread

BaseLogEntry

TaskLogEntry

list taskinstance

ListPriorityFilter

LocationMatchingFilter

PriorityWeightingFilter

UserBehaviourFilter

UserFilter

UserPriorityFilter

« Enumeration »
PriorityWeightingFilter.Weights

ForceSkipFilter

ListThresholdFilter

LocationFilter

OfflineExecutionFilter

SkipFilter

UrgencyFilter

Figure A.2.: Package and class overview

79

A. Additional Figures

« Interface »
mel.common.models.MELBaseModel

toJson(): JsonNode

ConfigUserModel

userID: Integer
userName: String
pwHash: String

getUserID(): Integer
getUserName(): String
getPwHash(): String
setUserID(Integer): void
setUserName(String): void
setPw(String): void
setPwHash(String): void

DeviceModel

TABLENAME: String
baseModel: ModelOperations
deviceID: Integer
macAddress: String
pairingToken: String

getDeviceID(): Integer
getMacAddress(): String
getPairingToken(): String
setPairingToken(String): void

MobileUserModel

TABLENAME: String
baseModel: ModelOperations
userID: Integer
engineID: Integer
name: String
averageLowBattery: Long
lowBatteryCount: Integer
averageOfflineTime: Long
offlineCount: Integer
startedTaskCount: Integer
delegatedTaskCount: Integer

getUserID(): Integer
getEngineID(): Integer
getName(): String
getAverageOfflineTime(): Long
getDelegatedTaskCount(): Integer
getAverageLowBatteryTime(): Long
getLowBatteryCount(): Integer
getOfflineCount(): Integer
getStartedTaskCount(): Integer
setEngineID(Integer): void
setName(String): void
setAverageLowBatteryTime(String): void
setLowBatteryCount(Integer): void
setAverageOfflineTime(Long): void
setOfflineCount(Integer): void
calculateNewLowBatteryTime(Long): void
calculateNewOfflineTime(Long): void
increaseStartedTaskCount(): void
increaceDelegatedTaskCount(): void

play.db.ebean.Model

Figure A.3.: Package mel.models

80

DeviceActivityManager

INSTANCE: DeviceActivityManager
attribute: undefined
mDeviceAliveMessageMap: DeviceAliveMessage[*]
mDeviceBindingMap: MobileUserModel[*]

DeviceActivityManager(): DeviceActivityManager
getInstance(): DeviceActivityManager
addDeviceAliveMessage(String, DeviceAliveMessage): void
bindDevice(DeviceModel, MobileUserModel): void
getBoundDeviceToken(MobileUserModel): String
getBoundMobileUser(String): MobileUserModel
getDeviceAliveMessage(String): DeviceAliveMessage
hasDeviceAliveMessage(String): Boolean
refreshDeviceAliveMessage(DeviceAliveMessage, Long, DeviceLocation, String[*]): void
unbindDevice(DeviceModel): void

DeviceAliveMessage

mAliveListener: DeviceAliveListener
mBatteryStatus: Long
mDevicePairingToken: String
mLocation: DeviceLocation
mMobileUser: MobileUserModel
mSensors: Sensors.Sensor[*]
mStatus: DeviceAliveMessage.Status
mTimeStamp: Long

setDeviceAliveListener(): void
setSensors(String[1..*]): void
getBatteryStatus(): Long
getDevicePairringToken(): String
getLocation(): DeviceLocation
getMobileUser(): MobileUserModel
getSensors(): Sensors.Sensor[*]
getStatus(): DeviceAliveMessage.Status
getTimeStamp(): Long
hasSensor(Sensors.Sensor): Boolean
refresh(Long, DeviceLocation, String[*]): void
setStatus(DeviceAliveMessage.Status): void

DeviceAliveListener

TASKEXECUTIONMANAGER: TaskExecutionManager
isActive: Boolean
lastTimestamp: Long
mAliveMessage: DeviceAliveMessage

fireUpdate(): void
handleLowBattery(Long): void
handleOfflineTime(Boolean): void
onStatusAlive(): void
onStatusPending(): void
onStatusOffline(): void

DeviceManager

INSTANCE: DeviceManager
mDeviceMacAddressMap: DeviceModel[*]
mDeviceTokenMap: DeviceModel[*]

DeviceManager(): DeviceManager
getInstance(): DeviceManager
checkPairing(String, String): DeviceModel
getDeviceByMacAddress(String): DeviceModel
getDeviceByToken(String): DeviceModel
getPairedDevices(): DeviceModel[*]
paireDevice(String, String): DeviceModel
unpairDevice(String): DeviceModel

« Enumeration »
DeviceAliveMessage.Status

ALIVE
OFFLINE
PENDING

mel.models.MobileUserModel

« Enumeration »
mel.common.helpers.values.Sensors.Sensor

LOC_GPS
LOC_NETWORK
CAMERA

mel.taskexecution.TaskExecutionManager

java.lang.Thread

mel.models.DeviceModel

Figure A.4.: Package mel.devices

« Interface »
IBaseFilter

apply(MobileTask): void
getName(): String
getType(): IBaseFilter.Type

FilterFactory

createFilter(String, Object[*]): IBaseFilter

« Enumeration »
IBaseFilter.Type

LIST
PROCESSINSTANCE
TASKINSTANCE

mel.taskexecution.MobileTask

Figure A.5.: Package mel.taskexecution.filters

81

A. Additional Figures

TaskExecutionManager

INSTANCE: TaskExecutionManager
mMobileTaskMap: MobileTask[*]
mFinishedMobileTaskMap: MobileTask[*]
mMobileUserManager: MobileUserManager
usesPolling: Boolean

TaskeExecutionManager(): TaskExecutionManager
getInstance(): TaskExecutionManager
finishMobileTask(MobileTask, MobileUserModel): void
ativateMobileTask(Integer, String, Integer[*], DataField[*], IBaseFilter[*]): void
catchFinishedTask(Integer): MobileTask
getMobileTask(Integer): MobileTask
initPolling(): void
isUsingPolling(): Boolean
onTaskBackupAndSkip(MobileTask): void
postData(Integer, String, Object, Integer): void
publishDeviceBaseChanges(String, MobileUserModel): void
updateMobileTask(Integer, String, Integer): void

MobileTask

mTaskId: Integer
mTaskDescription: String
mState: MobileTask.State
location: TaskLocation
mFilterMap: IBaseFilter[*]
mInitialUserList: MobileUserModel[*]
mInputDataFields: DataField[*]
mOutputDataFields: DataField[*]
delegationTime: Long
dueTime: Long
offlineTask: Boolean
skippable: Boolean
forceSkip: Boolean
listThreshold: Integer
mResponsibleUser: MobileUserModel
mUserList: MobileUserModel[*]
mAuthenticationManager: Authentication Manager
mDeviceActivityManager: DeviceActivityManager
mMobileUserManager: MobileUserManager
mTaskExecutionManager: TaskExecutionManager
mWorkingListManager: WorkingListManager
mHistory: TaskLogEntry[*]
mListPriorityFilter: ListPriorityFilter[*]
mLock: MobileTask.Lock

calcUrgency(): void
callEngine(): void
checkStateChange(MobileTask.State, MobileTask.State): void
updateUserList(String, MobileUserModel): void
handleUpdateState(): MobileUserModel
isUserOnList(MobileUserModel): Boolean
logHistory(MobileUserModel): void
checkForDelegation(MobileUserModel): void
activate(): void
getFilter(IBaseFilter.Type, String): IBaseFilter
getForceSkip(): Boolean
getInitialUsers(): MobileUserModel[*]
getInputDataFields(): DataField[*]
getListThreshold(): Integer
getLocation(): TaskLocation[0..1]
getOutputDataField(String): DataField
getOutputDataFields(): DataField[*]
getResponsibleUser(): MobileUserModel
getState(): MobileTask.State
getTaskId(): Integer
getTaskDescription(): String
getUrgency(): Long[*]
getUserList(): Integer[*]
hasLocation(): Boolean
isOfflineTask(): Boolean
isSkippable(): Boolean
onDeviceUpdate(String): void
postDataField(String, Object): void
setForceSkip(Boolean): void
setListThreshold(Integer): void
setLocation(TaskLocation): void
setOfflineTask(Boolean): void
setSkippable(Boolean): void
setUrgency(Long, Long): void
updateState(MobileTask.State, MobileUserModel): void

DataField : E

mFieldName: String
mValue: E

factory(String, DataField.DataTypes, Object): DataField
getDataType(): DataField.DataTypes
getFieldName(): String
getValue(): E
setValue(E): void

« Enumeration »
DataField.DataTypes

BOOLEAN
INTEGER
LONG
STRING

« Enumeration »
MobileTask.State

ACTIVATED
PENDING
STARTED
DELEGATED
FINISHED
SKIPPED
BACKUP

mel.mobileusers.MobileUserManager

« Interface »
java.lang.Runnable

MobileTask.Lock

mUser: MobileUserModel

getUser(): MobileUserModel
setUser(MobileUserModel): void

mel.models.MobileUserModel

mel.common.location.TaskLocation

mel.devices.DeviceActivityManager

mel.mobileusers.auth.AuthenticationManager

mel.mobileusers.MobileUserManager

filter.IBaseFilter

workinglist.WorkingListManager

logging

TaskLogEntry

mDelegatedFromUser: MobileUserModel
mDelegatedToUser: MobileUserModel
mFromState: MobileTask.State
mLogTimestamp: Long
mTaskId: Integer
mTaskDescription: String
mToState: MobileTask.State

BaseLogEntry

SEPERATOR: String
TAG_TASK: String

recoverFromLogString(String): void
toLogString(): String

Figure A.6.: Package mel.taskexecution

82

WorkingList

mMobileUserId: Integer

addOrReplace(WorkingListEntry): void
getEntries(): WorkingListEntry[*]
getMobileUserId(): Integer
getTaskIds(): Integer[*]
removeEntry(Integer): WorkingListEntry
size(): Integer

WorkingListEntry

mTaskId: Integer
mTaskDescription: String
mLocation: TaskLocation
mTaskState: MobileTask.State
mUrgency: Long

WorkingListManager

INSTANCE: WorkingListManager
mTaskListMapping: WorkingList[*]
mUserListMapping: WorkingList[*]

getInstance(): WorkingListManager
addWorkingListTaskLink(Integer, WorkingList): void
getCurrentUserIdsForTask(Integer): Integer[*]
getWorkingList(Integer): WorkingList
removeWorkingListTaskLink(Integer, Integer): void
updateWorkingList(MobileTask): void

WorkingListUpdateThread

mMobileTask: MobileTask
mWorkingListManager: WorkingListManager

handleStarted(Integer[*], Integer): void
handlePending(Integer[*], Integer): void
cleanUp(Integer[*], Integer): void

mel.taskexecution.MobileTask

mel.common.location.TaskLocation
« Enumeration »

mel.taskexecution.MobileTask.State

« Interface »
java.lang.Runnable

*

1

*

1

Figure A.7.: Package mel.taskexecution.workinglists

MobileUserManager

INSTANCE: MobileUserManager
mMobileUserList: MobileUserModel[*]

MobileUserManager(): MobileUserManager
getInstance(): MobileUserManager
addMobileUser(Integer, String): MobileUserModel
getMobileUser(Integer): MobileUserModel
getUsers(): MobileUserModel[*]
removeMobileUser(Integer): MobileUserModel

mel.models.MobileUserModel

« Interface »
java.lang.Runnable

mel.devices.DeviceActivityManager mel.devices.DeviceManager mel.mobileusers.MobileUserManager

auth

AuthenticationManager

INSTANCE: AuthenticationManager

AuthenticationManager(): Authentication Manager
getInstance(): Authentication Manager
authenticate(String, String, String, String[*]): AuthenticationThread.Latch
logout(): void

AuthenticationThread

mAuthenticationManager: Authentication Manager
mCredentials: String[1..*]
mDeviceActivityManager: DeviceActivityManager
mDeviceMacAddress: String
mDeviceManager: DeviceManager
mLock: AuthenticationThread.Latch
mMobileUserManager: MobileUserManager
mPairingToken: String
mUserName: String

getLockAndStart(): AuthenticationThread.Latch

AuthenticationThread.Latch

authError: String

getAuthError(): String
publishResults(): void
waitForResult(): void

Figure A.8.: Package mel.mobileusers

83

B
REST Service Index

Mobile User Authentication

POST /auth/login

Parameters: <none>

Payload:

HTTP 200 <empty>

HTTP 400 <Missing Parameter >

{ " userName " : S t r ing , HTTP 401 <Er ro r Message>

" macAddress " : S t r ing , HTTP 500 <Er ro r Message>

" pai r ingToken " : S t r ing ,

" c r e d e n t i a l s " : S t r i n g [] }

85

B. REST Service Index

GET /auth/logout

Parameters: <none>

Payload: <empty>

HTTP 200 <empty>

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

POST /auth/dam

Parameters: <none>

Payload:

HTTP 200 <empty>

HTTP 400 <Missing Parameter >

{ " pai r ingToken " : S t r ing , HTTP 401 <Er ro r Message>

" macAddress " : S t r ing , HTTP 500 <Er ro r Message>

" ba t t e r yS ta tus " : Long ,

" l o c a t i o n " : {

" x " : Long ,

" y " : Long

} ,

" sensors " : S t r i n g [] }

Mobile Task Execution

GET /workinglist

Parameters: <none>

Payload: <empty>

HTTP 200

{ " wo rk ingL i s t " : [

{ " t ask Id " : In teger ,

" t askDesc r i p t i on " : S t r ing ,

" taskSta tus " : S t r i n g }] }

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

86

GET /task/<taskId>
Parameters: <none>

Payload: <empty>

HTTP 200

{ " t ask Id " : In teger ,

" t askDesc r i p t i on " : S t r ing ,

" inputData " : [

{ " dataFieldName " : S t r ing ,

" dataType " : S t r ing ,

" dataValue " : S t r i n g }] ,

" outputData " : [

{ " dataFieldName " : S t r ing ,

" dataType " : S t r ing ,

" dataValue " : <dataType> }] }

HTTP 400 <No Task>

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

POST /task/<taskId>
Parameters: <none>

Payload: <empty>

HTTP 200

{ " t ask Id " : In teger ,

" t askDesc r i p t i on " : S t r ing ,

" inputData " : [

{ " dataFieldName " : S t r ing ,

" dataType " : S t r ing ,

" dataValue " : S t r i n g }] ,

" outputData " : [

{ " dataFieldName " : S t r ing ,

" dataType " : S t r ing ,

" dataValue " : <dataType> }] }

HTTP 400 <No Task>

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

87

B. REST Service Index

PUT /task/<taskId>
Parameters: <none>

Payload:

HTTP 200

{ " t ask Id " : In teger ,

{ " dataFieldName " : S t r ing , " t askDesc r i p t i on " : S t r ing ,

" dataType " : S t r ing , " inputData " : [

" dataValue " : <dataType> } { " dataFieldName " : S t r ing ,

" dataType " : S t r ing ,

" dataValue " : S t r i n g }] ,

" outputData " : [

{ " dataFieldName " : S t r ing ,

" dataType " : S t r ing ,

" dataValue " : <dataType> }] }

HTTP 400 <Er ro r Message>

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

DELETE /task/<taskId>
Parameters: <none>

Payload: <empty>

HTTP 200

{ " t ask Id " : In teger ,

" t askDesc r i p t i on " : S t r ing ,

" inputData " : [

{ " dataFieldName " : S t r ing ,

" dataType " : S t r ing ,

" dataValue " : S t r i n g }] ,

" outputData " : [

{ " dataFieldName " : S t r ing ,

" dataType " : S t r ing ,

" dataValue " : <dataType> }] }

HTTP 400 <No Task>

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

88

Engine Services

POST /engine/task/<taskId>
Parameters: <none>

Payload:

HTTP 200 <empty>

HTTP 400 <Missing Parameter >

{ " task Id " : In teger , HTTP 401 <Er ro r Message>

" taskDesc r i p t i on " : S t r ing , HTTP 500 <Er ro r Message>

" u s e r L i s t " : I n tege r [] ,

" inputData " : [

{ " dataFieldName " : S t r ing ,

" dataType " : S t r ing ,

" dataValue " : S t r i n g }] ,

" outputData " : [

{ " dataFieldName " : S t r ing ,

" dataType " : S t r ing ,

" dataValue " : S t r i n g }] ,

" e x e c u t i o n F i l t e r s " : [

{ " f i l t e rName " : S t r ing ,

" f i l t e r V a l u e s " : [] }] }

GET /engine/task/<taskId>
Parameters: <none>

Payload: <empty>

HTTP 200

{ " t ask Id " : In teger ,

" t askDesc r i p t i on " : S t r ing ,

" outputData " : [

{ " dataFieldName " : S t r ing ,

" dataType " : S t r ing ,

" dataValue " : <dataType> }] }

HTTP 400 <No Task>

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

89

B. REST Service Index

Configuration User Authentication

POST /config/authrequest

Parameters:

token : S t r i n g

HTTP 200

{ " userName " : S t r ing ,

Payload: " kNonce " : S t r i n g }

{ " userName " : S t r ing ,

" reqHash " : S t r ing , HTTP 400 <Missing Parameter >

" anonce " : S t r i n g HTTP 401 <Er ro r Message>

} HTTP 500 <Er ro r Message>

POST /config/authfinal

Parameters:

token : S t r i n g

HTTP 200

{ " userName " : S t r ing ,

Payload: " token " : S t r i n g }

{ " userName " : S t r ing ,

" token " : S t r i n g HTTP 400 <Missing Parameter >

} HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

GET /config/logout

Parameters:

token : S t r i n g

HTTP 200 <empty>

HTTP 401 <Er ro r Message>

Payload: <empty> HTTP 500 <Er ro r Message>

90

Configuration User Management

GET /config/configusers

Parameters:

token : S t r i n g

HTTP 200

{ " token " : S t r ing ,

Payload: <empty> " cfgUser " : [{

" userID " : In teger ,

" userName " : S t r ing ,

"pwHash " : S t r i n g

}] }

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

GET /config/configusers/<id>

Parameters:

token : S t r i n g

HTTP 200

{ " token " : S t r ing ,

Payload: <empty> " cfgUser " : {

" userID " : < id > In teger ,

" userName " : S t r ing ,

"pwHash " : S t r i n g } }

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

POST /config/configusers

Parameters:

token : S t r i n g

HTTP 200

{ " token " : S t r ing ,

Payload: " cfgUser " : {

{ " userName " : S t r ing , " userID " : < id > In teger ,

" password " : S t r i n g } " userName " : S t r ing ,

91

B. REST Service Index

"pwHash " : S t r i n g } }

HTTP 400 <Missing Parameter >

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

PUT /config/configusers/<id>

Parameters:

token : S t r i n g

HTTP 200

{ " token " : S t r ing ,

Payload: " cfgUser " : {

{ " userName " : S t r ing , " userID " : < id > In teger ,

" password " : S t r i n g } " userName " : S t r ing ,

"pwHash " : S t r i n g } }

HTTP 400 <Er ro r Message>

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

DELETE /config/configusers/<id>

Parameters:

token : S t r i n g

HTTP 200

{ " token " : S t r ing ,

Payload: <empty> " cfgUser " : {

" userID " : < id > In teger ,

" userName " : S t r ing ,

"pwHash " : S t r i n g } }

HTTP 400 <Er ro r Message>

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

92

Mobile User Management

GET /config/mobileusers/import

Parameters:

token : S t r i n g

HTTP 200

{ " token " : S t r ing ,

Payload: <empty> " engineUsers " : {

" users " : [{

" engineID " : In teger ,

" username " : S t r ing ,

"name" : S t r i n g }] } }

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

GET /config/mobileusers

Parameters:

token : S t r i n g

HTTP 200

{ " token " : S t r ing ,

Payload: <empty> " mobileUsers " : [{

" userID " : In teger ,

" engineID " : In teger ,

"name" : S t r ing ,

" o f f l i n e C o u n t " : In teger ,

" lowBatteryCount " : In teger ,

" averageOff l ineTime " : In teger ,

" averageLowBatteryTime " : In teger ,

" star tedTaskCount " : In teger ,

" delegatedTaskCount " : I n tege r }] }

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

93

B. REST Service Index

GET /config/mobileusers/<id>

Parameters:

token : S t r i n g

HTTP 200

{ " token " : S t r ing ,

Payload: <empty> " mobUser " : {

" userID " : In teger ,

" engineID " : In teger ,

"name" : S t r ing ,

" o f f l i n e C o u n t " : In teger ,

" lowBatteryCount " : In teger ,

" averageOff l ineTime " : In teger ,

" averageLowBatteryTime " : In teger ,

" star tedTaskCount " : In teger ,

" delegatedTaskCount " : I n tege r } }

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

POST /config/mobileusers

Parameters:

token : S t r i n g

HTTP 200

{ " token " : S t r ing ,

Payload: " mobUser " : {

{ " engineID " : In teger , " userID " : In teger ,

"name" : S t r i n g } " engineID " : In teger ,

"name" : S t r ing ,

" o f f l i n e C o u n t " : In teger ,

" lowBatteryCount " : In teger ,

" averageOff l ineTime " : In teger ,

" averageLowBatteryTime " : In teger ,

" star tedTaskCount " : In teger ,

" delegatedTaskCount " : I n tege r } }

94

HTTP 400 <Missing Parameter >

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

DELETE /config/mobileusers/<id>

Parameters:

token : S t r i n g

HTTP 200

{ " token " : S t r ing ,

Payload: <empty> " mobUser " : {

" userID " : In teger ,

" engineID " : In teger ,

"name" : S t r ing ,

" o f f l i n e C o u n t " : In teger ,

" lowBatteryCount " : In teger ,

" averageOff l ineTime " : In teger ,

" averageLowBatteryTime " : In teger ,

" star tedTaskCount " : In teger ,

" delegatedTaskCount " : I n tege r } }

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

95

B. REST Service Index

Mobile Device Management

GET /config/devices

Parameters:

token : S t r i n g

HTTP 200

{ " token " : S t r ing ,

Payload: <empty> " devices " : [{

" deviceID " : In teger ,

" macAddress " : S t r ing ,

" pai r ingToken " : S t r i n g }] }

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

GET /config/devices/<pairingToken>

Parameters:

token : S t r i n g

HTTP 200

{ " token " : S t r ing ,

Payload: <empty> " device " : {

" deviceID " : In teger ,

" macAddress " : S t r ing ,

" pai r ingToken " : S t r i n g } }

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

POST /config/devices

Parameters:

token : S t r i n g

HTTP 200

{ " token " : S t r ing ,

Payload: " device " : {

{ " macAddress " : S t r i n g } " deviceID " : In teger ,

" macAddress " : S t r ing ,

" pai r ingToken " : S t r i n g } }

96

HTTP 400 <Missing Parameter >

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

DELETE /config/devices/<pairingToken>

Parameters:

token : S t r i n g

HTTP 200

{ " token " : S t r ing ,

Payload: <empty> " device " : {

" deviceID " : In teger ,

" macAddress " : S t r ing ,

" pai r ingToken " : S t r i n g } }

HTTP 401 <Er ro r Message>

HTTP 500 <Er ro r Message>

97

C
Prototype Installation and Configuration

Installation

The prototype requires a MYSQL database installation. Before installing the application,

make sure, you have a database in place.

To install the application on a server, the following steps have to be taken:

1. Download and install the play v 2.1.2.

(http://downloads.typesafe.com/play/2.1.2/play-2.1.2.zip)

2. Copy the source-folder to the server (the location can be freely chosen).

3. Edit the /conf/application.conf file as follows:

a) Replace <dbname> in db.default.url and db.default.jndiName with the name

of your database.

99

http://downloads.typesafe.com/play/2.1.2/play-2.1.2.zip

C. Prototype Installation and Configuration

b) Replace <host> in db.default.url with your database host name.

c) Replace <dbuser> in db.default.user with the database user.

d) Replase <password> in db.default.password with the respective password

4. Open a terminal in the application folder and run the play run command.

5. After the application started, the services are available at port 9000. Open up a

browser and query an arbitrary service (e.g., /config/authrequest). Confirm

the dialog to apply the initial SQL script.

6. The application is now installed and all services can be used. An initial configuration

user admin with the password pass was created.

Configuration User Authentication

The authentication process for the configuration services needs a two step authentication.

For all further service calls, a security token, which is calculated during the authentication,

has to be provided as url parameter (i.e., ?token=<token>). Each token has a time

to live (TTL), which can be configured in the configuration file. When when the TTL is

over, the server may create a new token and will send it with the response. From now

on the new token has to be used. The following steps have to be taken for a successful

authentication:

1. The client generates a random anonce.

2. The client calculates the reqHash with reqHash = SHA256(password, anonce).

3. The client sends the user name, reqHash and anonce to the server (endpoint:

/config/authrequest).

4. The Server validates the reqHash and sends a random knonce as response

5. Both calculate the session token with token = SHA256(reqHash, knonce).

6. To finish the authentication, the client sends teh token to the /config/authfinal

endpoint.

100

Configuration

The service behaviour can be configured in the configuration file /public/settings.properties.

An overview of all possible properties can be found in Table C.1.

Property Type Description

config_Nonce_LENGTH int
Lengh of anonce and
knonce. Default: 10

config_Token_TTL int
TTL for security tokens

(in ms). Default: 300000

config_interface_usepolling=0 int
Enables task polling

(0=disabled, 1=enabled)

dam_timeout_alive int
ALIVE timeout for DAMs
(in ms). Default: 5000

dam_timeout_pending int
PENDING timeout for DAMs

(in ms). Default: 5000

dam_timeout_offline int
OFFLINE timeout for DAMs

(in ms). Devices will be
unbounded. Default: 5000

dam_lowbattery_threshold int
% when a battery status is

considered as low. Default: 10

interface_root String Interface root folder

interface_folder_auth String Authentication scripts folder

interface_folder_taskexecution String Task execution scripts folder

interface_folder_taskactivation String Task activation scripts folder

interface_folder_usermanagement String User import scripts folder

interface_AUTH String Authentication script (.py)

interface_TASKEXECUTION String Task Execution script (.py)

interface_TASKACTIVATION String Task Activation script (.py)

interface_USERMANAGEMENT String User import script (.py)

Table C.1.: Prototype configuration properties

101

List of Figures

2.1. Communication Infrastructures . 8

2.2. Approaches for realizing mobile task execution 9

3.1. Location model for mobile tasks . 16

3.2. Declaration of mobile tasks . 19

3.3. Adding pre-filters to a mobile task . 20

3.4. Different delegation mechanisms . 21

3.5. User list management . 21

3.6. Calculating the mobile user list . 22

3.7. Calculating the mobile delegation list . 24

3.8. MDS execution flow . 25

3.9. Offline task semantics . 27

3.10.Best, average and worst case scenario for mobile task execution 27

3.11.Simple backup operation . 28

3.12.User lists during the simple backup operation 29

3.13.Complex backup operation . 30

3.14.User lists during the complex backup operation 30

3.15.Mobile task life cycle . 32

4.1. Components of traditional and mobile BPMSs 34

4.2. Integration concept . 39

4.3. The underlying BPMS . 43

4.4. The mobile execution layer . 45

103

List of Figures

4.5. User authentication and impersonation . 46

4.6. The mobile client . 50

5.1. The MEL prototype deployed on a play application server 54

5.2. Data translation interfaces . 59

5.3. Mobile task initiation . 61

5.4. Handling mobile task execution . 62

5.5. Finishing a mobile task . 63

5.6. Interaction model for the mobile client . 64

5.7. Working list views . 64

5.8. Task views . 65

5.9. Communication patterns . 67

A.1. Detailed integration concept . 78

A.2. Package and class overview . 79

A.3. Package mel.models . 80

A.4. Package mel.devices . 81

A.5. Package mel.taskexecution.filters . 81

A.6. Package mel.taskexecution . 82

A.7. Package mel.taskexecution.workinglists 83

A.8. Package mel.mobileusers . 83

104

List of Tables

2.1. Keys for Table 2.2 . 10

2.2. Classification of related projects . 10

4.1. Process instance filters . 40

4.2. Task instance filters . 41

4.3. User list filters . 41

5.1. Supported prototype features (1) . 55

5.2. Supported prototype features (2) . 56

5.3. Services for mobile clients (1) . 56

5.4. Services for mobile clients (2) . 57

5.5. Services for the underlying BPMS . 58

5.6. Services for the synchronization of the mobile user repository 58

5.7. Integration scenario for JBoss jBPM (ISjbpm) 69

5.8. Integration scenario for activiti (ISactiviti) 70

5.9. Integration scenario for AristaFlow (ISaristaflow) 71

C.1. Prototype configuration properties . 101

105

List of Acronyms

API Application Programming Interface

BPMS Business Process Management System

DAM Device Alive Message

FPIL Freely Programmable Interface Layer

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

MANET Mobile Ad-hoc Network

MDS Mobile Delegation Service

MEL Mobile Execution Layer

MVC Model View Controller

RBAC Role Based Access Control

REST Representational State Transfer

SOAP Simple Object Access Protocol

107

Bibliography

[1] State of Mobile 2013 (Infographic) - Super Monitoring Blog. Sept. 2013.

http://www.supermonitoring.com/blog/2013/09/23/state-of-mobile-2013-infographic/.

[2] Georg Disterer and Carsten Kleiner. “BYOD — Bring Your Own Device”. In: HMD

Praxis der Wirtschaftsinformatik 50.2 (2013), pp. 92–100.

[3] Rüdiger Pryss et al. “Supporting Medical Ward Rounds through Mobile Task and

Process Management”. In: Information Systems and e-Business Management

(2014), pp. 1–40.

[4] Thomas Allweyer. BPMN 2.0: Introduction to the Standard for Business Process

Modeling. BoD–Books on Demand, 2010.

[5] Rüdiger Pryss, Steffen Musiol, and Manfred Reichert. “Extending Business Pro-

cesses with Mobile Task Support: A Self-Healing Solution Architecture”. In: Hand-

book of Research on Architectural Trends in Service-Driven Computing. IGI Global,

2014.

[6] George H. Forman and John Zahorjan. “The Challenges of Mobile Computing”. In:

Computer 27.4 (Apr. 1994), 38–47.

[7] M. Satyanarayanan. “Fundamental Challenges in Mobile Computing”. In: In ACM

Symposium on Principles of Distributed Computing. 1996, 1–7.

[8] Rüdiger Pryss et al. “Mobile Task Management for Medical Ward Rounds – The

MEDo Approach”. In: Business Process Management Workshops. Ed. by Marcello

La Rosa and Pnina Soffer. Lecture Notes in Business Information Processing 132.

Springer Berlin Heidelberg, 2013, pp. 43–54.

109

Bibliography

[9] E. Philips, R. Van Der Straeten, and V. Jonckers. “NOW: Orchestrating Services

in a Nomadic Network using a Dedicated Workflow Language”. In: Science of

Computer Programming 78.2 (Feb. 1, 2013), pp. 168–194.

[10] Eline Philips, Ragnhild Van Der Straeten, and Viviane Jonckers. “NOW: A Workflow

Language for Orchestration in Nomadic Networks”. In: Coordination Models and

Languages. Ed. by Dave Clarke and Gul Agha. Lecture Notes in Computer Science

6116. Springer Berlin Heidelberg, 2010, pp. 31–45.

[11] Gregory Hackmann, Christopher Gill, and Gruia-catalin Roman. “Extending BPEL

for Interoperable Pervasive Computing”. In: Pervasive Services, IEEE International

Conference on. IEEE. 2007, pp. 204–213.

[12] Web Services Business Process Execution Language. Apr. 11, 2007.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[13] Anna Kocurova et al. “Context-Aware Content-Centric Collaborative Workflow

Management for Mobile Devices”. In: COLLA 2012, The Second International

Conference on Advanced Collaborative Networks, Systems and Applications.

June 24, 2012, pp. 54–57.

[14] Anna Kocurova et al. “MobWEL - Mobile Context-Aware Content-Centric Work-

flow Execution Language”. In: COLLA 2013, The Third International Conference

on Advanced Collaborative Networks, Systems and Applications. July 21, 2013,

pp. 61–70.

[15] Christian P Kunze. “DEMAC: A Distributed Environment for Mobility Aware Com-

puting”. In: Proc. 3rd Int. Conf. on Pervasive Computing. Citeseer. 2005, pp. 115–

121.

[16] Rüdiger Pryss, Julian Tiedeken, and Manfred Reichert. “Managing Processes

on Mobile Devices: The MARPLE Approach”. In: CAiSE’10 Demos. Hammamet,

Tunisia, June 2010.

[17] Gregory Hackmann et al. “Sliver: A BPEL Workflow Process Execution Engine for

Mobile Devices”. In: in: Proceedings of 4th International Conference on Service

Oriented Computing (ICSOC). Springer Verlag, 2006, 503–508.

110

Bibliography

[18] Daniele Battista et al. “ROME4EU: A Web Service-Based Process-Aware Sys-

tem for Smart Devices”. In: Service-Oriented Computing – ICSOC 2008. Ed. by

Athman Bouguettaya, Ingolf Krueger, and Tiziana Margaria. Lecture Notes in

Computer Science 5364. Springer Berlin Heidelberg, 2008, pp. 726–727.

[19] Holger Schmidt and Franz J. Hauck. “SAMProc: Middleware for Self-adaptive

Mobile Processes in Heterogeneous Ubiquitous Environments”. In: Proceedings

of the 4th On Middleware Doctoral Symposium. MDS ’07. New York, NY, USA:

ACM, 2007, 11:1–11:6.

[20] Rohan Sen, Gruia-Catalin Roman, and Christopher Gill. “CiAN: A Workflow Engine

for MANETs”. In: Coordination Models and Languages. Ed. by Doug Lea and

Gianluigi Zavattaro. Vol. 5052. Lecture Notes in Computer Science. Springer

Berlin - Heidelberg, 2008, pp. 280–295.

[21] G. Tuysuz, B. Avenoglu, and P.E. Eren. “A Workflow-Based Mobile Guidance

Framework for Managing Personal Activities”. In: 2013 Seventh International Con-

ference on Next Generation Mobile Apps, Services and Technologies (NGMAST).

2013 Seventh International Conference on Next Generation Mobile Apps, Services

and Technologies (NGMAST). 2013, pp. 13–18.

[22] YAWL: Yet Another Workflow Language.

http://www.yawlfoundation.org/.

[23] MQ Telemetry Transport Protocol.

http://www.mqtt.org/.

[24] Sonja Zaplata et al. “Flexible Execution of Distributed Business Processes based

on Process Instance Migration”. In: Journal of Systems Integration (JSI) 1.3 (2010),

pp. 3–16.

[25] Peter Khisa Wakholi and Weiqin Chen. “Workflow Partitioning for Offline Distributed

Execution on Mobile Devices”. In: Process Aware Mobile Systems. Applied to

mobile-phone based data collection (2012).

[26] Katharina Hahn and Heinz Schweppe. “Exploring Transactional Service Properties

for Mobile Service Composition.” In: MMS 146 (2009), pp. 39–52.

111

Bibliography

[27] Rüdiger Pryss, Steffen Musiol, and Manfred Reichert. “Collaboration Support

through Mobile Processes and Entailment Constraints”. In: 9th International Con-

ference on Collaborative Computing: Networking, Applications and Worksharing

(Collaboratecom). 2013, pp. 178–187.

[28] Gregory D. Abowd et al. “Towards a Better Understanding of Context and Context-

Awareness”. In: Handheld and Ubiquitous Computing. Ed. by Hans-W. Gellersen.

Lecture Notes in Computer Science 1707. Springer Berlin Heidelberg, 1999,

pp. 304–307.

[29] Christian Becker and Frank Dürr. “On Location Models for Ubiquitous Computing”.

In: Personal Ubiquitous Comput. 9.1 (2005), 20–31.

[30] Peter Fricke et al. “Towards Adjusting Mobile Devices to User’s Behaviour”. In: Pro-

ceedings of the 2010 International Conference on Analysis of Social Media and

Ubiquitous Data. MSM’10/MUSE’10. Berlin, Heidelberg: Springer-Verlag, 2011,

99–118.

[31] Arthur M. Keller et al. “Zippering: Managing Intermittent Connectivity in DIANA”.

In: Mob. Netw. Appl. 2.4 (Dec. 1997), 357–364.

[32] Samir Bellahsene and Leïla Kloul. “A New Markov-based Mobility Prediction Algo-

rithm for Mobile Networks”. In: Proceedings of the 7th European Performance En-

gineering Conference on Computer Performance engineering. EPEW’10. Berlin,

Heidelberg: Springer-Verlag, 2010, 37–50.

[33] Kun-Che Lu, Chen-Wei Hsu, and Don-Lin Yang. “A Novel Approach for Efficient and

Effective Mining of Mobile User Behaviors”. In: 2010 4th International Conference

on Multimedia and Ubiquitous Engineering (MUE). 2010, pp. 1–6.

[34] Seung-Cheol Lee et al. “Extracting Temporal Behavior Patterns of Mobile User”.

In: Fourth International Conference on Networked Computing and Advanced In-

formation Management, 2008. NCM ’08. Vol. 2. 2008, pp. 455–462.

[35] K. Gaaloul et al. “A Secure Task Delegation Model for Workflows”. In: Second

International Conference on Emerging Security Information, Systems and Tech-

nologies, 2008. SECURWARE ’08. Second International Conference on Emerging

112

Bibliography

Security Information, Systems and Technologies, 2008. SECURWARE ’08. 2008,

pp. 10–15.

[36] Hermann Gehring and Andreas Gadatsch. Eine Rahmenarchitektur für Workflow-

Management-Systeme. Fernuniv., 1999.

[37] R.S. Sandhu et al. “Role-based Access Control Models”. In: Computer 29.2 (Feb.

1996), pp. 38–47.

[38] Play Framework - Build Modern & Scalable Web Apps with Java and Scala.

http://www.playframework.com/documentation/2.1.x/Home.

[39] The Jython Project.

http://www.jython.org/.

[40] Activiti BPM Platform.

http://www.activiti.org/.

[41] jBPM - JBoss Community.

https://www.jboss.org/jbpm.

[42] AristaFlow - AristaFlow R© Next generation Business Process Management.

http://www.aristaflow.com/.

[43] Martin Odersky et al. An overview of the Scala programming language (second

edition). Tech. rep. École Polytechnique Fédérale de Lausanne (EPFL), 2006.

[44] The Jython Book v1.0 Documentation.

http://www.jython.org/jythonbook/en/1.0/.

[45] Marco Berroth. “Konzeption und Entwurf einer Komponente für Organisationsmo-

delle”. Diplom Thesis. University of Ulm, June 2005.

[46] jBPM6 user Guide.

http://docs.jboss.org/jbpm/v6.0.1/userguide.

[47] Activiti Userguide.

http://www.activiti.org/userguide.

113

Bibliography

[48] Peter Dadam et al. “From ADEPT to AristaFlow BPM Suite: A Research Vision

has become Reality”. In: Proceedings Business Process Management (BPM’09)

Workshops, 1st Int’l. Workshop on Empirical Research in Business Process Man-

agement (ER-BPM ’09). LNBIP 43. Springer, Sept. 2009, pp. 529–531.

[49] AristaFlow Project Page.

http://www.aristaflow.de/.

[50] Manfred Reichert et al. “Enabling Poka-Yoke Workflows with the AristaFlow BPM

Suite”. In: Proc. BPM’09 Demonstration Track. CEUR Workshop Proceedings 489.

2009.

[51] Andreas Lanz et al. “Enabling Process Support for Advanced Applications with

the AristaFlow BPM Suite”. In: Proc. of the Business Process Management 2010

Demonstration Track. CEUR Workshop Proceedings 615. Sept. 2010.

114

Name: Steffen Musiol Matrikelnummer: 647792

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Steffen Musiol

	Introduction and Motivation
	Related Work
	Execution Languages and Extensions
	Middleware Architectures
	Classification of Mobile Workflow Middleware
	Classification Attributes
	Classification of Related Approaches

	Further Aspects of Mobile Task Execution

	A Framework for Mobile Task Integration
	Challenges for Executing Processes with Mobile Tasks
	Location Representation in Mobile Environments
	Measuring and Evaluating User Behavior

	Declaration of Mobile Tasks
	Pre-Filters
	Mobile Delegation Service
	User List Management
	Service Execution Flow
	Introducing Mobile Offline Tasks

	Escalation Handling: Backup Service
	Mobile Task Life cycle

	A Generic Architecture for Mobile Task Execution
	Supporting Mobile Tasks in Business Process Management Systems
	Requirements
	Integration Concept
	Execution Filters
	The Process Engine and Process Definition Tools
	The Mobile Execution Layer
	The Mobile Client

	Proof of Concept
	MEL Prototype
	REST Services
	Freely Programmable Interface Layer
	Life Cycle Management
	Mobile Clients

	Integration Scenarios
	Evaluating Business Process Management Systems
	JBoss jBPM 6
	Activiti
	AristaFlow
	Conclusion

	Summary and Outlook
	Conclusion and Future Work

	Additional Figures
	REST Service Index
	Prototype Installation and Configuration

