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Abstract. Cyber-Physical Systems (CPS) are usually developed by an
incremental approach. A changing environment like demanding user re-
quirements or legislation amendments lead often to multiple development
paths in an evolving CPS. Hence, software variability plays an increas-
ingly important role adapting the characteristics of such CPS to different
contexts. This paper focuses on software variability realized through a
Software Product Line (SPL) more specifically. Thereby, variability and
evolution are usually managed in different tools. However with respect
to software defects, a holistic handling of variability and evolution is
necessary to ensure a reliable software defect removal. Particularly, de-
tecting software defects in different evolution stages and derived vari-
ants is ordinary, but complex and error-prone. To close the gap between
variability and evolution, this paper presents a systematic approach to
combine both disciplines. In particular, we apply existing variant man-
agement techniques in combination with software configuration manage-
ment methods to determine a software defect’s origin and distribution in
an evolving SPL. We apply our approach to a CPS from the automotive
domain to show its industrial relevance and usefulness.
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1 Introduction

Cyber-Physical Systems (CPS), like advanced automobile systems, modern med-
ical systems, and progressive electric power grids, connect computational entities
in a collaborative manner with physical processes [1, 2]. In more detail, advanced
automobile systems interact with digital networks, like the cyberspace, to realize
new in-vehicle services, increase road safety, and encourage an efficient control
of the growing traffic volume. CPS typically operates in different as well as par-
tially predictable contexts and comprises a plurality of already existing embed-
ded systems. Thereby, variability plays an increasingly important role adapting
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the characteristics of such CPS. This paper focuses on software variability of a
CPS more specifically. With it, Software Product Lines (SPL) are used to re-
alize similar software variants of a CPS in an effective and manageable way. In
the following, two software engineering challenges (variability and evolution) are
described in more detail in the context of a CPS.

First, SPL facilitate a planned and systematic reuse of software artifacts in
similar circumstances (e.g., different vehicles, markets). Benefits of a SPL include
improved quality results, reduced costs, and shorter time-to-market aspects with
respect to adaptable software products [3–6]. Common as well as variant spe-
cific software parts across a SPL constitute a challenge in software engineering
projects. While common parts are included in every product (e.g., every vehicle
has an engine), variability describes different shapes of a product at the same
time (e.g., standard, sportive, classic) [4]. The common parts, enhanced by a
selection of different variable objects, characterizes a software variant of a SPL.1

In the context of CPS, software variability plays an increasingly important role
adapting their characteristics to different contexts. Thereby, a comprehensive
reuse of software between similar, but not identical CPS is a common objective.
In the following, this paper focuses on SPLs in the context of CPSs.

Second, a continuous changing environment demands a successive adaption
of a CPS in industrial projects. In more detail, an evolving CPS leads to a
successive adaption of the software and results in an evolving SPL. Maintain-
ability, traceability, and consistency get increasingly important and are affected
by the additional complexity of an evolving system [7]. Such evolution depends
on a changing context of a SPL, like emerging user requirements or legisla-
tion changes, and results in an incremental development process of a long run-
ning SPL [8]. Enhancements for only a subset of software variants at a specific
time or maintenance of SPLs evolution stages may lead to multiple develop-
ment paths. Each development path can have its individual number of evolution
stages. Thereby, evolution of SPLs is more complex than in single software prod-
uct development, through additional variability aspects [9]. On the one hand,
software configuration management systems are well-known, established and ma-
ture tools. On the other, they do not explicitly distinguish between variability
and evolution [3]. Besides that, many existing SPL approaches assume a fairly
stable environment, which cannot be assumed in an industrial environment. The
variability characteristics of a SPL can evolve like other software. With it, exist-
ing SPL approaches often disregard evolutionary aspects [8]. Certainly, several
industrial use cases require a holistic consideration of an evolving SPL. This
paper focuses on one common use case: Maintain an evolving SPL in case of

1 As many terms in software engineering, the term variant is overloaded with different
meanings. In this context, we understand variants as similar software products at a
specific time. In contrast, versions are used to handle consecutively evolution stages
of a software element. A version describes the characteristics of a software element
at a specific time. For a better comprehension, we use the term evolution stage for
different versions of a SPL.
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a systematic removal of software defects. Therefore, a precise understanding of
variability and evolution dependencies is required.

This paper describes an approach to find the origin of a detected software de-
fect and determines potentially affected variants across all evolution stages of a
SPL. Therefore, a configuration management system and a variant management
system will be utilized together, supporting software experts to identify an in-
correct software object (iso) in a specific SPL evolution stage. An iso represents
an identifiable software object (e.g., a specific requirement, system design ele-
ment, or source code object) or an object of the appropriated variability model
(e.g. features, restrictions) in an evolving SPL. Further, software experts are
supported in finding the origin and the distribution of a software defect in an
evolving SPL. Thereby, the origin characterizes the initial faulty SPL evolu-
tion stage of the iso. Finally, software experts are guided to determine evolved,
potentially affected, and derived variants in each SPL evolution stage of that
origin.

The rest of this paper is organized as follows: Section 2 describes a small
part of a CPS and their related evolving SPL to understand the evolution ob-
servations and real world scenarios. Section 3 represents our approach to face
industrial challenges, using existing variant management techniques in combi-
nation with a software configuration management system. In order to guarantee
the functioning of our approach preconditions are characterized. Further, ini-
tial tasks are described to ensure a reliable software defect removal. Besides, a
workflow description illustrates our approach in a software expert point of view.
In Section 4, we apply our approach to an application scenario to illustrate the
benefits. Section 5 discusses related work. The paper is summarized in Section
6 and exhibits future research.

2 Industrial Example

To understand our industrial observations regarding CPS evolution, Figure 1 il-
lustrates a small part of an evolving Advanced Driver Assistant System (ADAS),
based on several CPS and model-driven development projects from the automo-
tive domain [10]. This paper focuses on the software functionality of an ADAS.
The software encompassed SPL architecture. The functionality was incremen-
tally extended due to several evolution stages. In our experience, SPLs in the
automotive domain typically consist of a double-digit number of evolution stages.
Thereby, the ADAS comprises multiple comfort and safety functions to assist a
car driver in usual traffic scenarios. More specifically, it provides basic func-
tions (e.g., cruise control and break assistant) in the first evolution stage and
advanced functions (e.g., autonomous driving and autonomous emergency brak-
ing) in later evolution stages. The complete ADAS variability is managed in a
variability model [11] which comprises several hundred features and individual
dependencies (e.g., autonomous driving requires signals of the high-end EE-
architecture). The ADAS is offered in different vehicles classes (e.g., mid-size
or luxury) and multiple markets (e.g., Europe EU, North American Free Trade
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Agreement NAFTA, and China CHN ) with multiple characteristics and differ-
ent behavior. Figure 1 represents the ADAS SPL evolution stages by rectangles
and software variants by ellipses.
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Fig. 1. The evolving Advanced Driver Assistance System (ADAS)

The ADAS SPL Evo1 originates with the derived software variants EU lux-
ury 1 and NAFTA luxury 1. All variants are derived from a specific ADAS SPL
evolution stage. A further development of already derived variants is not in-
tended. In consequence, the development and maintenance is exclusively done
at the ADAS SPL and not on already derived variants. A diversifying context of
the ADAS, like emerging user requirements, results in a new ADAS SPL Evo2.
At this point, only variant EU luxury 2 was derived. In this regard, variant EU
luxury 1 and EU luxury 2 can have different characteristics. Consequently, vari-
ants EU luxury 1 and EU luxury 2 may evolve similarly to the ADAS SPL. In
the automotive domain, maintaining existing software variants is usual concern-
ing prevalent hardware and software restrictions (e.g., software architecture or
missing hardware components). Accordingly, variant EU luxury 1 can exist in
parallel with variant EU luxury 2. As a consequence, ADAS SPL Evo1 has to be
maintained in parallel with ADAS SPL Evo2. Subsequently, legislation changes
for only a subset of software variants of the SPL and additional technical rea-
sons (e.g., dependencies between systems) required a subdivision of the existing
ADAS SPL in an independent development path ADAS SPL Evo2.1. A fur-
ther separation of the development path was created due to software robustness
(ADAS SPL Evo2.2 ) and additional software capability (ADAS SPL Evo2.3 )
efforts. Independently, a new ADAS SPL Evo3 occurred. In addition, Figure 1
illustrates a variety of derived variants at different SPL evolution stages.

In the ADAS CPS, software variants are validated in long running testing
procedures before start of production. For example, software variants are tested
incrementally by module tests, component tests, system tests, and vehicle tests.
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Meanwhile, the software development proceeds further in parallel, meaning a
detected software defect during the aforementioned tests may corresponds to an
earlier development stage. Consequently, the software defect has to be detected
and fixed in all interim SPL evolution stages and derived variants. Additionally,
derived variants cannot always be replaced by successor variants. As a result,
variants of different SPL evolution stages have to be maintained in parallel.
Summing up, the observed evolution patterns of the SPL are described in the
following: (1)Evolving SPL: Legislation changes, technical reasons, or diver-
sifying customer expectations lead to evolving SPLs in all pieces of software
[9, 8, 12]. (2)Differing derived variants: Each evolution stage of a SPL may
derive additional variants, replace existing variants, or change their characteris-
tics. Derived variants and the SPL can evolve independently. (3)Maintaining
multiple SPL evolution stages: Software improvements, enhanced function-
ality, or software defect removal for existing SPL evolution stages may lead to
multiple maintenance paths with detached evolution stages (e.g., ADAS SPL
Evo2.2 in Figure 1). This is essential in the development of CPS due to exist-
ing and unchangeable hardware components (e.g., sensors, actors, processor, or
memory) and associated software restrictions. A specific variant, for instance,
may not receive the latest software release, if the hardware requirements are not
fulfilled. (4)Quality aspects versus enhanced capability: Through different
time-to-market schedules of differing variants, a conflict between quality aspects
(e.g., software defect management, stability) and enhanced software capability
(e.g., new features) may lead to a further subdivision of the SPL development.

3 Approach

In this section, we describe our approach to face the existing challenge of de-
tecting the origin of a described software defect and its distribution in evolving
SPLs in the context of variable CPSs. First, Section 3.1 characterizes precondi-
tions in order to guarantee the functioning of our approach. Second, Section 3.2
describes tasks to ensure a later software defect removal in more detail. Third,
Section 3.3 describes the workflow using the given preconditions and tasks for a
software expert.

3.1 Preconditions

Precondition 1 - Use of Explicit Variant Management The SPL needs to
be under explicit variant management control. Current SPLs are developed and
maintained using techniques like feature oriented modelling ([13, 14, 11]), orthog-
onal variability models (OVM) [4], or decision-based approaches [15] to manage
variability in an explicit manner. Variable product characteristics have to be
described in the problem space. For example, different variation types are uti-
lized to express optional, mandatory, or alternative variability characteristics.
Constraints can be used to express require and exclude relationships between
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variability characteristics. Additionally, the concrete variability realization (so-
lution space) has to be explicitly described. Relations between the problem and
solution space are assumed.

Precondition 2 - Use of Configuration Management Regardless of the
used SPL approach, the described industrial application context of the SPL
requires treating maintenance and evolution aspects. However, SPLs can evolve
in different speed in their solution space (e.g., emerging requirements) as well as
in their problem space (e.g., emerging features) [8, 16].

A unified and mature configuration management has to provide a compre-
hensible evolution process and specific SPL evolution stages. Each SPL evolution
stage has to correlate with a particular stage of the utilized evolving variabil-
ity model. Hence, the adequate management of evolving variability models is
necessary. However, an evolving variability model can be considered as a usual
artifact. As such, an evolving variability model is manageable in the same way
as evolving architecture models, implementation artifacts, or test cases. Conse-
quently, all artifacts representing an evolution stage need to be under control
of a configuration management system. Since each evolving variability model
allows dedicated derived variants, these have to be managed in a configuration
management system, too. This ensures that software variants refer to their cor-
responding SPL evolution stage. Due to a variety of parallel evolution stages and
multiple development paths of a SPL, an assignment of a specific variant to its
corresponding SPL evolution stage is given by the explicit variant management.
In the ADAS CPS we used baselines to define specific SPL evolution stages.
Based on the definition of CMMI, a baseline represents “[..] a set of specifica-
tions or work products that has been formally reviewed and agreed on, which
thereafter serves as the basis for further development [..]” [17].
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Fig. 2. Variability model in the ADAS configuration management system.
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Figure 2 illustrates a part of the ADAS configuration management system
with different software artifacts (vertical axis) and their individual evolution
(horizontal axis). For the sake of simplicity, Figure 2 illustrates evolution with-
out subdivided development paths. As a general remark, it should be noted that
each artifact can evolve independently. For example, the software architecture
does not evolve between ADAS SPL Evo2 and ADAS SPL Evo3. As a result,
evolution of ADAS, their corresponding variability model, and the derived vari-
ants is comprehensible in a configuration management system.

Precondition 3 - Use of Software Defect Management Emerging software
defects have to be characterized in a software defect management system. At
least, the software defect description has to characterize the faulty behavior,
describes the expected behavior, and refers to the variant, which itself refers to
the SPL evolution stage, where the software defect was detected.

3.2 Tasks to be Carried Out

Supposing the aforementioned preconditions, software experts using a variant
management system and a configuration management system are able to deter-
mine the iso, its origin and distribution. To ensure a later reliable software defect
removal in the context of an evolving SPL with multiple development paths and
multiple derived variants, the following tasks have to be carried out.

Task 1: Determine the ISO in a Specific SPL Evolution Stage A soft-
ware defect may affect the common or the variable functionality of a SPL. In
more detail, a software defect of a SPL can affect an individual software variant,
multiple software variants, or each software variant at a specific evolution stage.
Investigating the entire SPL functionality can become complex due to the high
amount of existing parts.

Common part of 

ADAS

Break

Assist
Limiter

Cruise

Control

ADAS SPL Evo1

NAFTA 

luxury 

1

Fig. 3. NAFTA luxury 1 functionality in contrast to provided ADAS SPL Evo1 func-
tionality.

As the software defect is detected in a specific software variant, software
experts have to look only on those software artifacts that are relevant for that
variant. Neglecting the residual SPL functionality reduces the effort and allow
software experts to determine the iso in less time. For instance, the Limiter
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functionality is not contained in the NAFTA luxury 1 variant (see Figure 3) and
thus need not to be considered. As a result, variant management helps software
experts to determine the relevant software artifacts of the to be investigated
variant. Finding which part of that set of artifacts is actually the iso needs
a deeper and thoroughly look into the parts in combination with the defect
description.

Task 2 - Determine Affected SPL Evolution Stages Determining the
origin and distribution of a software defect can become complex in an evolv-
ing SPL. Multiple development paths can complicate this even more. Several
development activities can be carried out between software defect introduction
and software defect detection. For example, a software defect may be introduced
in ADAS SPL Evo2 (see Figure 1) but the software defect may be initially
detected in ADAS SPL Evo3. Especially, the branching of development paths
(e.g., ADAS SPL Evo2.1 ) complicates such an intention. Regarding software
maintenance, the knowledge of all affected SPL evolution stages supports man-
agement decisions and is necessary in industrial projects. Stakeholders have to
be informed about affected SPL evolution stages and derived affected variants.
Consequently, stakeholders may dispose variant specific maintenance effort. For
example, variants containing the iso, but currently in a deactivated state, may
not be maintained until the iso gets activated. In contrast, variants that po-
tentially show the faulty behavior should be maintained immediately. For such
decisions, all affected variants in an evolving SPL need to be known, too (see
Task3).

Based on the determined iso (Task1), the following algorithms determine
its origin and a list of all SPL evolution stages that contains it and thus are
potentially affected. We define an evolvingSPL (eSPL) = (V,E, r) as a directed
tree with connected edges, vertices, and a defined root vertex. Each vertex v =
(p; c;A) represents a specific SPL evolution stage in a configuration management
system. p is the parent vertex (previous SPL evolution stage) and c are [0..n] child
vertices (successor SPL evolution stages) of v. A comprises development artifacts
like requirements, architecture models, and variability models. Each directed
edge e = (s; d) represents a relationship and is associated with an ordered pair
of vertices(s; d); s is the source and d is the destination of e. r represents a
defined root vertex of an evolvingSPL. Based on this, we call eSPL = (V,E, r)
an evolvingSPL if:

– For every vertex v ∈ V \{r}, there exist exactly one p ∈ V with e = (p, v). In
other words, any vertex that is not the root vertex has exactly one incoming
edge.

– There exists no v ∈ V with e = (v, r). In other words, the root vertex has
no incoming edge.

– For every vertex v ∈ V , there exist v1, v2, . . . , vn ∈ V with e1 = (r, v1), . . . ,
en = (vn, v). In other words, for every vertex v ∈ V , there exists a path that
starts at r and ends at v.

– As a consequence, eSPL has no circles, no self loops, and no incoming edges.
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Determining the software defect’s origin is essential to understand its further dis-
tribution and to support stakeholder’s maintenance decisions. A software defect
can be introduced either in v or in an ancestor of v. Based on the determined iso
and the corresponding SPL evolution stage vDetected, an eSPL can be exam-
ined to determine the origin SPL evolution stage vOrigin of the software defect.
Algorithm 1 calculates that origin SPL evolution stage vOrigin.

Algorithm 1: Software defect
origin

input : vDetected ∈ V, iso ∈ A
output: vOrigin ∈ V

vOrigin = vDetected;
while (vOrigin has parent AND
vOrigin.parent contains iso) do

vOrigin = vOrigin.parent;
end

Algorithm 2: Software defect
distribution

input : vOrigin ∈ V , iso ∈ A
output: vAffected ⊆ V

Vector vAffected; Stack stack;
stack.push(vOrigin);
while stack is not empty do

Vertex v = stack.pop();
if v contains iso then

vAffected.add(v);
for vertex
child:v.getAllChildren() do

stack.push(child);
end

end

end

Algorithm 1 assumes one common vOrigin. Well defined and approved con-
figuration management processes ensure such an assumption. Therefore, assum-
ing one common vOrigin is no restriction for industrial software projects. Like-
wise, an evolving SPL in a configuration management system may not fulfill
the aforementioned demands of an evolvingSPL. For example, merging individ-
ual development paths, result in two incoming edges of a vertex and violates
subsequently the first demand of an evolvingSPL. In this cases, we propose a
preprocessing conversion that remove merge edges to fulfill the demands.

After determining the software defect’s origin and its distribution the SPL
needs to be examined in more detail. Algorithm 2 calculates a list of potentially
affected SPL evolution stages. Based on the determined SPL evolution stage
vOrigin, all children are investigated regarding the iso. This will be iteratively
executed until no child contains the determined iso.

Currently, the two described algorithms work as long as the iso is identifi-
able in an evolving SPL. However, renaming, substitution, division, or merging
activities are currently not handled, but as long as such activity information is
accessible in a predefined manner, for instance in the configuration management
system, the algorithms may be extended, easily. Alternatively, the algorithms
can be executed iteratively with a new identified iso and a determined SPL evo-
lution stage. In the considered ADAS, such activities are not common and are
handled manually by software experts.



10 Christian Manz, Michael Schulze, Manfred Reichert

The result of the aforementioned algorithms can be concluded in more detail.
If an iso is unchanged between two SPL evolution stages, these two stages are
probably affected by the detected software defect. If an iso is changed between
two SPL evolution stages, these two stages have to be investigated further by
software experts. Changes (e.g., a new or reengineered implementation) of an
iso are indicators for further investigations, because the faulty behavior could
be fixed already or exists furthermore in a same or different manner.

Task 3 - Determine Affected Variants Based on the determined iso, an ex-
plicit variant management is beneficial to determine the derived and potentially
affected variants in each SPL evolution stage. An existing set of all potentially
affected SPL evolution stages (determined in Task 2 described above) can be
analyzed in more detail. Expert knowledge is required to evaluate a correct or
incorrect classification of a calculated SPL evolution stage. If a derived variant
of that calculated SPL evolution stage contains the iso, it is potentially affected.
Supplementary expert knowledge is needed to evaluate the correct or incorrect
classification of a determined variant. Beneficially, only relevant variants, which
contains the iso, have to be investigated. Even though, the variation type (e.g.,
mandatory, optional, OR, XOR, AND) of iso is negligible. As a result, all affected
SPL evolution stages and in turn derived affected variants are known.

3.3 Workflow

In the following, a holistic view will be illustrated and described in more detail.
The aforementioned tasks are utilized in a predefined manner to determine the
affected SPL evolution stages and their corresponding derived variants. This re-
sult will be used for further management decisions regarding maintenance effort.

Figure 4 illustrates our approach from the point of view of a software expert.
The Artifact layer comprises several software artifacts which are managed by the
Tool layer. Specified tools, like the software defect management system, comprise
their related artifacts. The configuration management system comprises several
evolution stages with individual software artifacts, variability models and its
derived variants.

Figure 4 describes eight activities in the upper part, whereby activity four,
five, and seven are realized through algorithms. The workflow is initiated by a
software expert in A1 to analyse a specific bug report. Thereafter, a software
expert configures and derives the indicated software variant utilizing the variant
management system (A2). Within this software variant, the iso is determined
in A3. Thereby, relations between the derived software variant and correlated
software development artifacts permits to ignore irrelevant software artifacts
(Task1). Nevertheless, expert knowledge is required to determine the iso. A4
expects the iso as an input parameter and determines the defect origin. There-
fore, Algorithm 1 is executed. Next, Algorithm 2 is initiated in A5 to investigate
the distribution of the software defect. As a result, a list of all potentially af-
fected SPL evolution stages (vAffected) is created. In A6, the vAffected is
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Determine potentially affected software variants

                              Software

expert

Software

expert

Algorithms

A1:Analyse 

bug report

A2:Configure 

defect variant

A3:Determine 

iso

A4:Determine 

defect origin

A5:Determine 

defect distribution

A7:Determine 

affected variants

Bug reportBug report
Software

requirments

Software

requirments

Configuration 

management system

Variablity 

model

Software

architecture

Software

architecture
Software

realiziation

Software

realiziation

Start

iso

End

Software 

variant

vAffected

A6:Review affected 

evolution stages

pAffected

A8:Review affected 

variants

iso: incorrect software object vAffected: affected evolution stages pAffected: affected variants

Artifact layerArtifact layer

Tool layer Variant management 

system

Software defect 

management system

Fig. 4. Determine potentially affected software variants.

reviewed and updated by the software expert. For example, a determined SPL
evolution stage will be removed from vAffected, if it still contains the iso but
has a correct behavior or is not maintained any more. Afterwards, A7 creates a
list of all potentially affected variants (pAffected). Also, pAffected is reviewed
and updated by the software expert to remove variants with a correct behavior
(A8). pAffected can be used for further maintenance decisions regarding soft-
ware defect removal. Active or maintained variants can consequently be updated
in the determined SPL evolution stages vAffected.

4 Application Scenario

We applied our approach to a CPS software development project in the au-
tomotive industry [10]. The application scenario refers to the ADAS CPS of
Section 2 and is inspired by an industrial software defect. Furthermore, we ful-
filled the aforementioned preconditions: First, the SPL is under explicit variant
management control. In the ADAS CPS we use a feature model [11] to man-
age the variability (for more details we refer to Section 2). Second, a mature
configuration management system provides a comprehensible evolution process
and specifies SPL evolution stages through baselines. Third, a software defect
management system comprises all emerged software defects.

Figure 5 illustrates our iterative approach to determine all potentially affected
SPL evolution stages and derived variants. It shows how we use the information
of the variant management system and the configuration management system in
concert to expose potentially affected software variants. First, the initial state of
a detected software defect is illustrated in Figure 5(a), where the software defect
is initially detected in software variant EU luxury 2.2 and subsequently in the
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corresponding ADAS SPL Evo2.2. Through workflow activities A2− A3 irrele-
vant software artifacts can be ignored and a software expert is able to determine
the iso in less time than investigating the whole SPL evolution stage. Second,
the software origin can be determined through Algorithm 1 in A4. As Figure
5(b) illustrates, the software defect originates from ADAS SPL Evo2. Third, ac-
tivity A5 can be initiated in ADAS SPL Evo2 to investigate the distribution of
the software defect using Algorithm 2. Figure 5(c) illustrates the software defect
distribution. The SPL evolution stages ADAS SPL Evo2, ADAS SPL Evo2.1,
ADAS SPL Evo2.2, and ADAS SPL Evo3 are exposed as potentially affected.
Conversely, ADAS SPL Evo2.3 is not concerned, because the iso was removed
in this evolution stage. Fourth, all derived variants can be examined through
activity A7. Figure 5(d) illustrates the evolving SPL and all potentially affected
variants. ADAS SPL Evo2.1 is potentially affected but no variant contains the
iso. However, ADAS SPL Evo2.1 may be maintained, because future derived
variants will be affected. Furthermore, the iso became mandatory in ADAS SPL
Evo3 and all derived variants are potentially affected. Figure 5(d) illustrates
the result of carrying out the workflow. All affected SPL evolution stages and
derived variants are listed in a clear manner. This result, can be used for further
management decisions.
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Fig. 5. Software defect illustration.
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5 Related Work

Despite its importance, related work investigating an evolving SPL in general
as well as in the context of a CPS is very limited [12]. Most of these work focus
on modelling techniques or analyzes variability evolution and neglects practical
application aspects. Thereby, authors address the evolution of particular types
of variability models and focus on special challenges in the context of an evolving
SPL [12, 18–21]. However, the integration of new techniques in running industrial
projects and their existing infrastructure is not considered sufficiently. System-
atic approaches that utilize existing techniques are rarely available.

In particular, Svahnberg and Bosch discusses in [9] their observations of two
long running SPLs’ in Swedish organizations. They recognized similar evolution
scenarios as in our industrial example. Also, they described partial existing in-
frastructure and software dependencies. Thereby, they focus more detailed on
software artifact changes, like requirements or architecture evolution and de-
scribe a set of seven guidelines to facilitate an evolving or new established SPL.
Contrary, an approach to investigate an evolving SPL to determine software
defects distribution is missing.

Dhungana et al. motivates in [8] the need to treat evolution of a SPL as a
normal case instead of an exception. To reduce complexity, they describe a model
fragment based approach. Composing several model fragments into a variability
model and recording merge decisions at a given time, supports maintenance and
evolution. Further, they validated their approach in an industrial model-based
SPL and remark to consider engineer and tool demands. In contrast, they focus
on forward evolution aspects and disregard an investigating approach.

Elsner et al. provides in [22] an overview of existing approaches that deal with
product line variability and evolution aspects. They recognized a different usage
of variability and evolution in literature. Therefore, Elsner et al. generalized and
used three types of variability over time: Maintenance/evolution, configuration
management, and product derivation. They identified tasks and aspects for a
detailed evolution research agenda and applied the three types of variability on
two product lines. They considered product derivation and configuration man-
agement separately. In contrast, our approach combines all types of variabilities.

Passos et al. hypothesize in [23], that changes in an evolving SPL can be han-
dled more effectively at the level of features. They motivate the need for traces
between features and their realizations. Also they motivate evolution traces for
features, artifacts and relations. Following, Passos et al. listed existing work and
postulated several research questions regarding traceability and evolution at the
level of features. Again, an approach to investigate an evolving SPL is missing.

Seidel et al. describes in [16] a conceptual basis for the evolution of model
based SPLs. The concept maintains consistency of artifacts and features regard-
ing an evolving SPL. Further, they describe evolving feature operators (e.g.,
move, copy, remove, split, or merged) which may improve the given algorithms
of this paper.

Heider et al. presents in [24] a meta-model for tracking model-based product
line evolution. They developed EvoKing to automatically maintaining a devel-
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opment history. In contrast, Heider et al. consider evolution in a technical point
of view and disregard an investigating approach in case of software defects.

6 Conclusion

The work presented in this paper provides an approach to investigate software
defects in an evolving CPS. Furthermore, we focus on software variability which
is realized through a SPL. For this purpose, evolution observations of a SPL
development projects from the automotive domain were explained. Our approach
supports software experts in case of software defects in an evolving SPL. As basis,
well established configuration management methods and variability modelling
techniques are used. Furthermore, the approach particularly describes tasks to
be performed, to detect a software defect’s origin and distribution in an evolving
SPL. As a result, all affected SPL evolution stages and derived variants are listed
in a clear manner. This can be used for further management and maintenance
decisions. An application scenario to expose potentially affected software variants
was illustrated to show the relevance and usefulness of the topic in real industrial
scenarios. The approach investigates the complex field of an evolving SPL and
presents a holistic view for a software expert. Nevertheless, we are aware of the
current limitations of the two algorithms. In this field, we will conduct further
research and enhance our approach.

Evolving SPLs require further investigations to combine variability and evo-
lution in industrial approaches. Especially, guidelines and best practices using
established methods and tools have to be described in more detail. Replacement
rules or maintaining information for derived variants in evolving variability mod-
els may enhance accuracy of the aforementioned approach.
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