Semantic Correctness in Adaptive Process
Management Systems

Linh Thao Ly, Stefanie Rinderle, and Peter Dadam

Dept. DBIS, University of Ulm, Germany
{thao.ly, stefanie.rinderle, peter.dadam}@uni-ulm.de

Abstract. Adaptivity in Process Management Systems (PMS) is key to
their successful applicability in pratice. Approaches have already been de-
veloped to ensure the system correctness after arbitrary process changes
at the syntactical level. However, still errors may be caused at the se-
mantical level. Therefore, the integration of application knowledge will
flag a milestone in the development of process management technology.
In this paper, we introduce a framework for defining semantic constraints
over processes in such a way that they can express real-world applica-
tion knowledge. On the other hand, these constraints are still manageable
concerning the effort for maintenance and semantic process verification.
This can be used, for example, to detect semantic conflicts when ap-
plying process changes (e.g., drug incompatibilities). In order to enable
the PMS to deal with such semantic conflicts we also introduce a notion
of semantic correctness and discuss how to (efficiently) verify semantic
correctness in the context of process changes.

Keywords: Semantic Correctness, Semantic Process Verification, Se-
mantic Constraints, Adaptive Process Management Systems.

1 Introduction

Due to steadily changing conditions at the global market, companies are forced
to frequently adapt their business processes [1-4]. Therefore, adaptivity is the
key factor for the successful application of process management technology in
practice. Generally, process changes can take place at two levels — process type
and instance level [5, 6]. Therefore, it is crucial for an adaptive process manage-
ment system (PMS) to support both kinds of changes. However, it is still not
sufficient to support process type and instance changes in an isolated manner.
An adaptive PMS must also allow for the interplay between process type and
instance changes [7]. A framework for the support of process type and instance
changes as well as for their interplay (i.e., the support of change propagation to
already individually modified instances) has been developed [3,8]. Within this
framework the structural (syntactical) correctness of the system is always pre-
served after arbitrary process changes. For example, it is automatically checked
by the PMS whether process changes will lead to structural errors, like deadlock-
causing cycles or not properly supplied input parameters, or to inconsistent in-
stance states. However, the framework abstracts from semantical aspects. Thus,

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 193 2006.
© Springer-Verlag Berlin Heidelberg 2006

194 L.T. Ly, S. Rinderle, and P. Dadam

semantic errors may arise, especially in the context of process changes intiti-
ated under time pressure. Consider, for example, process instance I reflecting
the treatment process for patient Smith as depicted in Fig. 1. Assume that, due
to suddenly arising headache, the drug Aspirin is administered to patient Smith.
This is achieved by inserting activity Administer Aspirin into instance I in an
ad-hoc manner by, for example, a nurse at her workplace.

Dependencies of ,Perform Surgery*
To be

Process Instance I (Treatment for Patient Smith)
performed

after ,Perform '|:|
Insert Insert Surgery:--~"
LAdminister Aspirin“ »Administer Aspirin“ ~Perform Surgery* -~~~ Make Appointment

imcompatible with =T for Follow-Up
LAdminister Marcumar* ~—a Examination

Administer Perform o S
Aspirin Surgery Tobe ~~--__
@ performed

\ before
Prepare
. oo }r surgeny

Administer Node states: Edge states:

Marcumar A Activated * True-signaled
D Running ° False-signaled
¥ Completed

Fig. 1. Semantic conflicts after process changes due to drug incompatibility and de-
pendencies between activities

However, in this treatment process, the drug Marcumar, which is not com-
patible to Aspirin, is already administered some activities ahead (semantic con-
flict). Even if the process change is syntactically correct, it is not semantically.
Especially when the process instance is often modified in an ad-hoc manner
(for instance, Administer Marcumar was previously inserted as an ad-hoc mo-
dification) or when process changes at scheme level and at instance level occur
together, it is likely that those conflicts remain undetected by users. If the PMS
was aware of the incompatibility of these activities, it could prevent the user
from causing semantic conflicts by, for example, warn the user accordingly. In
Fig. 2, the user (a doctor with the appropriate authorization) still performs the
change operation but has to document the reason for overriding the semantic
constraint. Thus, it is possible to trace back semantic conflicts.

As motivated, it is crucial to be able to also integrate application knowledge
(i-e., semantic knowlegde) within the process change framework in order to avoid
semantic conflicts. In this context, many challenging questions arise:

How to formalize and integrate application knowledge within an adaptive
PMS?

— How to define a notion of semantic correctness of processes after changes?
— How to support the efficient verification of the semantic correctness?

— How to maintain the knowledge base?

Semantic Correctness in Adaptive Process Management Systems 195

Process Instance T
(Treatment for Patient Smith)

Insert Still execute insert
JAdminister Aspirin* Syntax check Enter reason:

k.
Fiay! Semantic check:
semantic conflict
) [[Reeeon)

Fig. 2. Interaction scenario when a semantic conflict occurs

In this paper, we extend the framework presented in [3,8] by integrating appli-
cation knowledge into adaptive PMS. First of all, we provide a formalization for
semantic constraints imposed on business processes. In particular, we introduce
two fundamental kinds of semantic constraints (mutual exclusion constraints and
dependency constraints) which serve as a basis for the following considerations.
However, the set of semantic constraints can be easily extended. Based on the
notion of semantic constraints, a general criterion for the semantic correctness
of business processes (independently from the underlying process meta model) is
provided. We show how to verify semantic correctness of processes based on this
criterion, in particular in the context of process changes. For this, we exploit the
semantics of the applied change operations, for example when applying single
change operations (e.g., adhoc changes of process instances), or when applying
concurrent changes (e.g., propagating process schema changes to biased process
instances). Afterwards, we discuss different possibilities to realize verification of
semantic process correctness in an efficient manner. One way based on exploit-
ing certain process meta-model properties is discussed in more detail. Finally, we
show how the semantic constraints can be organized within a domain repository.

This paper is structured as follows. In Sect. 2, a framework for the definition
of semantic constraints and the notion of semantic correctness are introduced.
In Sect. 3, we show how the semantic correctness of processes can be verified.
In Sect. 4, we show the application of the criterion when, for example, a block-
structured process model is used. In Sect. 5, a framework for organizing semantic
constraints is introduced. Related work is discussed in Sect. 6. Finally, Sect. 7
concludes with a summary and an outlook on future research.

2 Semantic Constraints and Semantic Correctness in
Adaptive Process Management Systems

As motivated in Sect. 1, it is desirable to integrate (semantic) application know-
ledge in the PMS in order to avoid semantic conflicts. It is in principle possible
to integrate even very complex application knowledge in adaptive PMS. By con-
necting the PMS with a knowledge-based system or an expert system (e.g. [9,
10]), for instance, application knowledge maintained in the external system can
be used by the PMS to avoid semantic conflicts. However, two important as-
pects influence the possibilities of integrating application knowledge in adaptive
PMS. First of all, it is an important question how and by whom the knowledge
base is maintained. The more application knowledge, and in particular the more

196 L.T. Ly, S. Rinderle, and P. Dadam

complex the knowledge, the greater is the effort to keep the knowledge base
up-to-date. Thus, there is a risk that the knowledge, according to which the
semantic checks are performed, is outdated. In fact, this might be even more
dangerous than not performing semantic checks at all. Users might rely on the
semantic checks to ensure the semantic correctness of the process not knowing
that the knowledge base is outdated. As a consequence, it seems reasonable to
only integrate that kind of application knowledge which is really important and
which will really be kept up-to-date. Second, the goal of integrating application
knowledge is to enable the PMS to also perform process checks at the semantic
level. However, the effort to perform these semantic checks must not lead to a
bottleneck, especially when changes on process schemes are propagated to many
running (and possibly ad-hoc modified) instances. This restricts the complexity
of application knowledge to be integrated in adaptive PMS.

The two aspects mentioned above need to be kept in mind when thinking about
integrating application knowledge in adaptive PMS. In future work, we will inves-
tigate the influence of these aspects in more detail. In this paper, we introduce two
fundamental kinds of semantic constraints which can be imposed on processes: mu-
tual exclusion constraints and dependency constraints. These constraints refer to
activities and impose certain conditions on how these activities can be used in the
process. By enabling the PMS to be aware of these fundamental constraints, many
semantic errors, for example the ones depicted in Fig. 1, can be avoided. On the
other hand, the introduced kinds of constraints are still manageable regarding the
effort for maintenance and for semantic verification.

Mutual exclusion constraints express that two activities are not compatible
and should not be executed together, for instance administering two incompa-
tible drugs. Please note, that this does not mean that these activities must
not occur in the same process. Due to the process structure, it depends on the
position of the activities whether the constraint is satisfied or not. In Fig. 3, a
semantic conflict occurs in the first process fragment while the second process
fragment is semantically correct. Mutual exclusion constraints are symmetric.

Semantic conflict ically correct s
Aspirin

v -

Administer
Aspirin
Administer Administer

Marcumar Marcumar

Fig. 3. Semantic conflict dependent of process structure

Dependency constraints express that an activity is dependent of another activity,
i.e. these activities need to occur together in the process. In Fig. 1 for instance,
activity Perform Surgery is added to the process. However, in the treatment
process the activity Prepare Blood Bottles needs to be performed before and
Make Appointment for Follow-Up Examination needs to be performed after
Perform Surgery. These semantic dependencies of Perform Surgery cause a
semantic conflict, when only Perform Surgery is inserted to the process.

Semantic Correctness in Adaptive Process Management Systems 197

Whether a process change can be applied to a concrete process is, therefore,
not only a question of structural correctness or data flows but also a question
of whether the semantic constraints over the process are violated by the process
change. For our following considerations we assume the uniqueness of activities
in a process (i.e. each activity may occur only once in a business process).

Definition 1 (Semantic constraint). Let A be a set of activities'. A se-
mantic constraint ¢ is defined as a tuple (type,source,target,position,userDefined)
whereas

type € {Exclusion, Dependency}

source, target € A, source # target
position € {pre, post, notSpeci fied}

— userDefined is a user-defined parameter

The parameter type denotes whether the semantic constraint is a mutual ex-
clusion constraint or a dependency constraint. The second parameter source
denotes the source activity the constraint refers to while target denotes the tar-
get activity related to the source activity. Parameter position specifies the order
the source and target activity are to be related to each other within the process
(e.g., the surgery depends on the preparation of blood bottles and the bottles
have to be prepared before (pre) the surgery). The last parameter user De fined
can be used for several purposes, for instance for additionally describing the
constraint. Furthermore, it might also be used to indicate the importance of the
constraint. For instance, to indicate whether a constraint is merely a recom-
mendation or whether it is more severe. This information can be used by the
PMS client to create an appropriate feedback for the user. As an example, the
constraint mentioned above would look like this:

(Dependency, Perform surgery, Prepare blood bottles, pre,
Blood bottles need to be prepared for the patient and stored in
the surgery room before the surgery can take place)

In Def. 2, the satisfaction of semantic constraints is defined taking the notion
of execution trace as a basis. According to Def. 2, the constraint above, for
example, is satisfied over a process if the source activity (Perform surgery) is
not included in this process. In case it is, the constraint is satisfied, if Prepare
blood bottles is always performed before Perform surgery in each possible
execution trace of the process, in which Perform surgery appears.

Definition 2 (Satisfaction of semantic constraints). Let A be a set of ac-
tivities which can be used to specify a process p of type T. Let Q be the set of
all possible execution traces of p. A trace q € Q is defined by q :=<ey,...,ex >
with events e; = End(t)?, t € A. Then, we define the following functions:

! Within the ADEPT framework, for example, A refers to the activity repository
containing all relevant activities in the context of a certain process type T.
2 We abstract from start events in the traces.

198 L.T. Ly, S. Rinderle, and P. Dadam

— activities: Q — A with activities(q):= {t1,...,t,} with
g=<el,...,ep > AVt e withe; =End(t;),l=1,....,n,i=1, ..., k (ie.,
activities denotes a function that returns the set of all activities included in
an ezxecution trace q).

— processActs(p):={t1,...,tn} with
Vit 3 g€ Q with t; € activities(q), | = 1, ..., n (i.e., processAtcs returns
all activities included in the process p).

— traceSucc: A x Q — A with traceSucc(t,o):= {t1,...,tn} with
o =<e,...,ex >, t1,...,t, € activities(c) AV t; 1 T e, ej € o with
ei = End(ti), e; = End(t), l =1, ..., n; 4, =1, ..., k Ni < j (ie,
traceSucc denotes a function which returns all direct or indirect successors
of a given actiity t within an execution trace o).

— tracePred: A x Q w— A with tracePred(t,o):= {t1,...,t,} with
o =<e,...,ex >, t1,...,t, € activities(c) AV t; 1 T e, ej € o with
ei = End(t;), e; = End(t), l =1, ..., n; 4, j =1, ..., k ANi > j (ie,
tracePred denotes a function which returns all direct or indirect predecessors
of a given activity t within an execution trace o).

Let a1, as € A be two activities, a1 # as. Then, a semantic constraint ¢ =
(type, source, target, position, userDefined) with source=a; and target=as is
satisfied over process p (formally: satisfied(c, p) = True) iff one of the fol-
lowing conditions holds:

— type € {Exclusion,Dependendency} and ay ¢ processActs(p)

— type = FExclusion, position = pre and ¥ execution traces ¢ € Q:
a1 € activities(d) = as ¢ tracePred(ay, @)

— type = Exclusion, position = post and ¥V execution traces ¢ € Q:
a1 € actiities(¢p) = ag ¢ traceSucc(ay, @)

— type = Exclusion, position = notSpecified and ¥ execution traces ¢ € Q:
a1 € activities(¢) = ag ¢ traceSucc(ar, @) and as ¢ tracePred(ay, ¢)

— type = Dependendency, position = pre and ¥ execution traces ¢ € Q:
a1 € activities(¢) = ag € tracePred(ay, @)

— type = Dependendency, position = post and ¥V execution traces ¢ € Q:
a1 € actiwities(¢p) = ag € traceSucc(ay, P)

— type = Dependendency, position = notSpecified and ¥ execution traces ¢ € Q:
a1 € activities(¢p) = (ag € tracePred(aq, ¢) or ag € traceSucc(ay, P))

Otherwise, ¢ is violated over p (formally: satisfied(c, p) = False).

For a process type (e.g., the treatment process), many constraints might be
relevant. Even if the process was modelled semantically correct at buildtime,
due to possible (unforeseen) process changes, activities might be deleted from
or added to the process at runtime. Furthermore, mutual exclusion constraints
cannot be modelled in the control-flow of a process. In these cases, the constraints
imposed on the process will help to ensure a semantically correct execution. Now,
based on the notion of satisfaction of constraints, a semantic correctness criterion
for business processes can be defined.

Semantic Correctness in Adaptive Process Management Systems 199

Definition 3 (Semantic correctness of business processes). Let T be a
process type and let p be a process of type T. Let further C, be the set of all
semantic constraints defined over p. Process p is semantically correct <=

Ve € Cp: satisfied(c,p) = True

Using Def. 1-3, it is possible to state for each business process whether the
business process is semantically correct or not.

3 On Preserving Semantic Correctness of Processes

As specified in Def. 3, a process (no matter whether it is a process instance or
a process schema) is semantically correct only if all of its semantic constraints
are satisfied. Consequently, the semantic constraints of the process need to be
analyzed when checking the process’ semantic correctness. Not all the constraints
on a process, however, are relevant. Depending on the situation in which the
semantic check is initiated, it is possible to restrict the set of relevant constraints
to be verified and thus to reduce the effort for semantic process verification. We
now have a closer look on that.

In Sect. 3.1, we show how the semantic correctness of process schemes can be
verified. In Sect. 3.2, we show how to ensure the semantic correctness of a process
when ad-hoc process adaptations are carried out. In Sect. 3.3, we consider how
to maintain the semantic correctness when schema evolution is performed. For
the remainder of this section, let p be the process to be verified and let C,, be
the set of the constraints to be verified in the respective situation.

3.1 Semantic Correctness of Process Schemes

Basically, there are two ways of ensuring the semantic correctness of process
schemes depending on the way the process models are constructed. If a process
model is built by applying process changes to an “empty” schema the PMS
might perform a semantic check each time a change operation is applied and
check whether the semantic correctness of the process is still preserved after
the change or not (cf. 3.2). The second possibility is to take an already existing
process model® and to verify the correctness of the complete process schema
at once. In this case, it is necessary to verify, whether the constraints imposed
on the process are satisfied or not. However, constraints, for which the source
activity is not included in the process, are always satisfied over this process by
definition. Thus, these constraints need not be considered.
More formally: Cyp schema={c € Cp; c(source)* € processActs(p)}

3.2 Semantic Correctness After Applying Ad-Hoc Process Changes

In our framework, an ad-hoc process change is considered semantically applicable
to a process if its application still preserves the semantic correctness of the

3 This is, for instance, relevant when a process model is imported to the PMS or the
process schema is obtained by applying process mining techniques.
4 ¢(source) denotes the source parameter of the constraint c.

200 L.T. Ly, S. Rinderle, and P. Dadam

process. The naive way of verifying the semantic correctness of a process after a
process change is to verify the complete process model, as described in Sect. 3.1.
However, this effort can be reduced by exploiting the semantics of the applied
change operations (e.g., which activity has been inserted at which position).
Thus, depending on which change operation is requested, only a smaller subset
of constraints on the process needs to be verified. In the following, we discuss
the interplay between change operations of type Insert, Delete and Move and
the set of constraints to be verified.

When inserting an activity ¢ into process p, all semantic constraints over p
which have ¢ as source parameter need to be verified since they might be violated.
However, since dependency constraints which do not have ¢ as source parameter
cannot be violated by the addition of ¢, only mutual exclusion constraints with ¢
as target parameter need to be considered. We can even further restrict the set of
interesting exclusion constraints to those constraints whose source parameter is
among the activities of p and whose target parameter corresponds to the inserted
activity t. That is because all exclusion constraints, whose source parameter are
not included in the process, are satisfied by definition.

More formally: Cyp rnsertion={c € Cp; (c(source)=t) or (c(type)>=Exclusion
and c(source) € processActs(p) and c(target)S=t)}.

When deleting an activity ¢ from process p, all semantic constraints over p
with ¢ as source parameter are satisified by definition. Similar to the insertion of
activities, all constraints for which ¢ occurs as target parameter are potentially
interesting for correctness checks. However, mutual exclusion constraints with ¢
as target parameter cannot be violated by the deletion of ¢. Only dependency
constraints with ¢ as target parameter and for which the source parameter is
included in p might be violated by the deletion operation and therefore need to
be verified.

More formally: Cyp petetion=1{c € Cp; c(type)=Dependency and c(source) €
processActs(p) and c(target)=t}.

The moving of an activity ¢ from its original position within process p to
a new position pos can be understood as being equivalent of deleting ¢ and
inserting ¢ at pos afterwards”. Consequently, all constraints that which might be
violated after applying deletion and insertion operations need to be verified.

More formaﬂyl Cvp Move — Cvp Deletion U Cvp Insertion-

3.3 Semantic Correctness for Process Schema Evolution

In addition to ad-hoc changes at the instance level, adaptive PMS must support
the modification of process schemes at the type level followed by the migra-
tion of running instances to the modified process schema as well. The semantic
correctness of the process schema after applying the changes can be verified

® ¢(type) denotes the type of the constraint ¢ (Dependency or Exclusion).

6 c(target) denotes the target parameter of the constraint c.

" In conjunction with data flow aspects, moving is not always equivalent to deleting
and inserting. However, this assumption can be used to derive statements about
possible semantic conflicts here.

Semantic Correctness in Adaptive Process Management Systems 201

by using the considerations for ad-hoc changes made in Sect. 3.2. In case the
schema change is semantically correct, it will also be semantically correct when
being applied to unbiased instances (i.e., instances which still run according to
the process schema they have been started on). However, the direct applica-
tion of the schema change to biased instances (i.e., instances which have already
been individually modified) might lead to semantic conflicts between type and
instance changes. Assume that at instance level drug Marcumar has been ad-
ministered for process instance I as an ad-hoc change. Afterwards, at process
type level, activity Administer Aspirin is inserted into the associated process
schema and is to be propagated to I. Migrating I to the modified process schema
then causes a semantic conflict, even though the migration can be performed in
a syntactically correct manner. Therefore, we have to check whether the process
changes at type level are semantically applicable to the biased instances. We
assume that the biased instances are semantically correct after the individually
applied process instance changes. The propagation of changes at type level to
a biased instance is semantically correct if the type changes are semantically
applicable to the biased instance as ad-hoc instance change or vice versa (cf.
Sect. 3.2).

Due to only considering biased instances, the number of instances to be
checked is highly decreased. However, it is possible to further decrease the num-
ber of instances and relevant constraints to be verified. For example, if the change
operations applied to a process instance constitute a superset of the change op-
erations applied to the process schema (or vice versa), no semantic conflicts can
occur. Due to space restrictions, we omit further details. For details on superset
relations between change operations we refer to [8, 11].

For an efficient implementation of the considerations in Sect. 3, employing
indexing techniques in order to easily access the relevant constraints in the re-
spective situations seems very useful. After having considered, which constraints
need to be verified in different situations, in the next section we consider how to
verify those constraints.

4 On Optimizing Semantic Process Verification

The semantic correctness criterion for business processes defined in Sect. 2 is
generic and can be applied to any process meta-model (e.g., Petri Nets [1] or
BPEL4WS Nets [12]). For verifying the criterion, reachability analysis can be
applied (i.e., by calculating all possible execution traces and checking them for
certain order relations between activities according to the semantic constraints)
which might be very costly. Therefore, we want to investigate different meth-
ods to ensure the semantic correctness criterion which are less expensive. In
this paper, we present an approach which makes use of certain properties of
the underlying process meta-model, namely block-structuring (e.g., WSM Nets
[3]). However, we intend to also develop model-independent methods in future
work.

202 L.T. Ly, S. Rinderle, and P. Dadam

4.1 Background Information

This section summarizes background information on WSM Nets [13, 14] as pro-
cess description formalism in order to present an optimized verification method
for semantic correctness.

A process schema is represented by a WSM Net which defines the process
activities as well as the control and data flow between them. When using WSM
Nets the control flow schema can be represented by attributed, serial-parallel
graphs. In order to synchronize activities from parallel paths additional links
can be used [15]. In this paper we abstract from cyclic structures within the
process meta model in order to provide a fundament for an optimized semantic
correctness verification. Further on, a WSM Net comprises a set of data elements
and a set of data edges. A data edge links an activity with a data element and
either represent a read access of this activity or a write access. The total set of
data edges constitutes the data flow schema.

Definition 4 (WSM Net). A tuple S = (N, D, NT, CtrlEdges, SyncEdges,
DataEdges, BC) is called a WSM Net, if the following holds:

— N is a set of process activities and D a set of process data elements
— NT: N+ {StartFlow, EndFlow, Activity, AndSplit, AndJoin,
X0rSplit, XOrJoin, StartLoop, EndLoop}

NT assigns to each node of the process schema a respective node type.

— CtrlEdges C N x N is a precedence relation definining the valid order of
activities (notation: Ngre — Ngst = (Nsre, Nast) € CtriEdges)

— SyncEdges C N x N is a precedence relation between activities of parallel
branches

— DataEdges C N x D x {read, write} is a set of read/write data links between
activities and data elements

— BC: N+ Conds(D) where Conds(D) denotes the set of all valid transition
conditions on data elements from D. BC(n) is undefined for nodes n with
NT(n) # X0rSplit.

Which constraints have to hold such that a process schema S is well-structured
is summarized in [15,8] (e.g., absence of deadlock—causing cycles and correctly
supplied input parameters). In the context of this paper, the block-structuring
property is important, i.e., for all activities of node type AndSplit (X0rSplit)
there is a unique activity of node type AndJoin (XOrJoin) and blocks (sequences
as well as parallel and alternatives branchings can be nested but must overlap).

In this paper we abstain from defining process instances (see [3]) since this is
not relevant for the following considerations.

4.2 On Exploiting Process Meta Model Properties

From the general constraint satisfaction criteria presented in Sect. 2 we derived
meta-model specific conditions on WSM Nets. Using these meta-model specific
criteria the satisfaction of semantic constraints and thus the semantic correctness
of a process can be verified in an optimized way. For all semantic constraints in

Semantic Correctness in Adaptive Process Management Systems 203

Def. 1, such meta-model specific criteria can be derived. Due to space restrictions,
however, we abstain from presenting all the criteria. Instead, as an example, we
show how a particular meta-model specific criterion can be derived. Consider
the following semantic constraint over the treatment process from Sect. 1:

c1: (Dependency, Perform surgery, Prepare blood bottles, pre, ...)

If Perform surgery does not occur in the treatment process, then c; is satis-
fied by definition and consequently not of further interest for semantic process
verification (cf. Sect. 3). In case Perform surgery occurs in the process, it is
necessary that Prepare Blood Bottles is a direct or indirect predecessor of
Perform surgery in the treatment process for c¢; to be satisfied. Otherwise,
it is not possible that Prepare Blood Bottles is performed before Perform
Surgery, each time Perform Surgery is performed. However, this is not suf-
ficient, since this execution order is not guaranteed. When verifying semantic
constraints, it is necessary to also take the process structure into account. If
Prepare Blood Bottles is contained in the inner part of an XOR-block while
Perform Surgery is not, Prepare Blood Bottles is not sure to be performed
each time Perform Surgery is performed. Therefore, c; is not satisfied over the
process depicted in Fig. 4.

Perform surgery

Prepare blood
bottles

Fig.4. Prepare blood bottles is not sure to be performed each time Perform
surgery is performed

From this example we conclude the following conditions for the satisfaction
of that kind of dependency constraints over block-structured meta models:
A semantic dependency constraint cgep= (Dependency, source, target, pre, ...)
over a process p represented by a WSM Net S = (N, D, NT,...) with source €
N (i.e. source € processActs(p)) is satisfied (i.e., satisfied(cgep,p) = True) if
and only if the two following conditions hold:

— target € pred*(S, source) (necessary condition)
— Vs € N with NT(S) = X0rSplit: target € inBlock(S,s) = source €
inBlock(S, s) (sufficient condition), where:
e pred*(S,n) (succ*(S,n)) denotes the set of all direct and indirect prede-
cessors (successors) of n in %
e inBlock(S,s) := succ*(S,s) Npred*(S, join(S))
e join(S,s) yields the unique associated join for split node s

8 Note that pred* (succ*) refers to structural predecessors (successors) whereas
tracePred (traceSucc) refers to predecessors (successors) within execution traces.

204 L.T. Ly, S. Rinderle, and P. Dadam

In the following we show that these conditions ensure the semantic correctness.

Proof sketch. Let cqep= (Dependency, source, target, pre, user De fined) be a
semantic dependency constraint over a process p represented by a WSM Net
S = (N,D,NT,...) with the set of all execution traces @ for which source € N
holds. Then, the following proposition x is to be proven (cf. Def. 2):

satisfied(cgep, p) = True <=
(target € pred*(S, source)) N
(Vs € N with NT(S) = X0rSplit: target € inBlock(S,s) =
source € inBlock(S, s))
X <——
Vo € @: source € activities(p) = target € tracePred(source, ¢) (1) <
(target € pred* (S, source)) N
(Vs € N with NT(S) = X0rSplit: target € inBlock(S,s) =
source € inBlock(S, s)) (ii)
“=—": Proof by contradiction (i.e. ((i) = (ii)) < (—(ii) = —(i)))

Let us assume that (ii) does not hold (i.e. —(ii) holds). Let us first assume that
the necessary condition does not hold, i.e. target ¢ pred*(S, source). This means
that there is no path from source to target in p. Then, there are four possibilities:

target ¢ N = source ¢ tracePred(target,®)

target € succ* (S, source) = source ¢ tracePred(target,)

target and source are in an parallel block

target € N and target in an XOR-path while source is in the other XOR-
path

=W

Possibilities 1 and 2 are clear. If the third possibility is true, then cqep is also
violated since, due to the interleavings of parallelly executed activities, there
might be at least one trace, where target and source do not occur in the required
ordering relation. If the fourth possibility is true, then either source or target are
executed during an process execution. Thus cgep, is violated as well. As shown,
all possibilites that are left when the necessary condition is not true lead to the
violation of cgep (—(1)).

Now let us assume that the necessary condition holds, but not the sufficient
condition. This means: 3s, NT'(S) = X0rSplit with target € inBlock(S,s) A
source ¢ inBlock(S, s). Since target € pred*(source)) holds (necessary condi-
tion), we can construct an execution trace of p by not chosing the XOR-path
which target is on while still executing source. This leads to —(i). O

The reverse direction ”<=" can be proven analogously.

The satisfaction criterion for dependency constraints for block-structured pro-
cess meta-models presented above can be verified very efficiently. Special con-
structs of the meta-models, for instance references to the split and join nodes,
can be exploited by the PMS in order to find out whether the respective con-
straint is satisfied or not. However, using the meta-model specific criterion it
is also possible to leave the verification to an external reasoning system (e.g.
RACER [9]). In this case, information about the process structure need to be

Semantic Correctness in Adaptive Process Management Systems 205

mapped to rules in the reasoning system in order enable it to apply inference
techniques. We intend to further investigate these implementation alternatives
in future work.

5 A Framework for Semantic Constraints

In our approach, a set of semantic constraints is assigned to a process. However,
several processes may share constraints. In this section, we present a framework
for organising semantic constraints such that they can be reused easily.

Treatment Process 3

| Process Activity
@E@w V| Reposior posi
ﬂ Process Engineer

Additional)
' Domain
process specific !
constraints

constraints
Domain: Minimally

ﬂ ™ invasive cardiac surgery

Domain Constraints
Repository

Constraints:...

Selection of relevant domain
constraints

{

‘ Constraints on Treatment Process ‘

Fig. 5. Organisation of constraints in a domain constraints repository

The three main components of the framework are the domain repository, the
process repository, and the activity repository (cf. Fig. 5). Semantic constraints
are organised in the domain repository. In particular, constraints are assigned
to domains, for instance the domain Minimally invasive cardiac surgery. Thus,
a domain contains a set of constraints that are typical of this domain. The
constraints presented in this paper refer to activities which are organized in an
activity repository. For future work, we also plan to introduce constraints that
refer to other abstraction levels, for instance abstraction levels in the activity
repository. Process types (process schemes) are organized in a process repository.
Each process type is assigned a domain of the domain repository. Thus, it is
possible to assign a default set of domain constraints to a process. However,
processes that are assigned to the same domain might still have different semantic
constraints that are not captured in the domain. Therefore, for each process type,
the process designer can specify additional semantic constraints for the process
or leave out some unnecessary domain constraints.

6 Related Work

The issue of integrating semantics in process management systems has often been
adressed in literature. In particular, there are interesting approaches from the

206 L.T. Ly, S. Rinderle, and P. Dadam

clinical domain concerning the formalization of clinical guidelines in a computer-
readable way, e.g. [16,17] and GLIF3 [18] or GUIDE [19]. However, so far, this
information cannot be directly used for automatical analyses by the PMS.

Current approaches on adaptive PMS mainly focus on structural aspects
(e.g., [3,4,8,20]) or have a different notion of semantic correctness (e.g., [21,
1]). Many related approaches focus on the aspect of integrating heterogenous
resources. In particular, activities and their parameters are often described us-
ing ontologies, e.g. [22-24] and also many approaches concerning semantic web
service composition, for instance [25,26]. When a process is composed, the PMS
can check, whether the activities and their parameters semantically fit together.
However, these approaches do not consider semantic constraints over processes,
for instance mutual exclusion constraints, the way we do.

As discussed in Sect. 2, approaches from the field of Artificial Intelligence,
in particular knowledge-based systems, e.g. [27,10,9], can be used to integrate
application knowledge in PMS. This is also closely related to approaches con-
cerning the integration of business rules in PMS. Application knowledge can be
sourced out into a Business Rule Engine, e.g. commercially available systems
like ILOG [28]. Thus, decision processes, for instance, which outgoing paths of
an activity to follow, can be supported taking also background knowledge into
account. This approach, however, is not directly suitable for situations like the
one outlined in our example scenario since this situation concerns not only the
occurrence of an activity in the process but also the relations between activi-
ties (cf. Fig. 3). In [29,30], an approach to ensure the integrity of processes is
introduced. Rules, realized as database triggers, are applied, when certain data
conditions occur. Using the change framework presented in [3, 8] the process is
adapted in an ad-hoc manner according to the triggered rule. Our approach,
however, goes further since for the semantic verification, structural information
about the process is needed.

In [31] van der Aalst et al. introduced an approach for verifying given proper-
ties of past processes by applying process mining techniques. This approach can
help detecting constraint violations. However, the approach introduced in [31]
is orthogonal to our work because it aims on analysing past processes on cer-
tain aspects while our intention is to ensure the semantic correctness of running
processes. Thus, these two approaches can complement each other.

We consider our approach to be orthogonal to the approaches mentioned in
this section.

7 Conclusion and Outlook

In this paper, we introduced a framework for the integration of application
knowledge within an adaptive PMS by using semantic constraints. Based on
these constraints, a generic criterion for semantic correctness of processes has
been provided. We have shown how this criterion can be generally ensured.
Furthermore, we have addressed the issue of verifying semantic correctness after
process changes. Exemplarily for block-structured process meta-models, we have
shown how semantic process verification can be realized in an efficient manner.

Semantic Correctness in Adaptive Process Management Systems 207

Finally, an architecture for the integration of semantic constraints within an
adaptive PMS has been presented.

Using our approach, all semantic conflicts caused by violation of dependency
and mutual exclusion constraints can be avoided. However, the expressiveness
of the presented constraints is limited. Therefore, in future work we will extend
our framework, e.g. by introducing context restrictions on constraints concerning
their validity (e.g., time or location) or by introducing constraints on other
levels of granularity than the activity level (e.g. data). Furthermore, we want
to develop further methods to efficiently verify semantic correctness within an
adaptive PMS. For example, we want to analyze how the information referred
to by semantic constraints can be organized (e.g., within an ontology) in order
to decrease evaluation effort. All considerations are to be implemented within
the adaptive PMS ADEPT (e.g. [15]).

Acknowledgement. We thank Michael Nahler for the valuable results of his
Master thesis ([32]) which have partially been incorporated in this paper.

References

1. v.d. Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoret. Comp. Science 270 (2002) 125-203

2. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data and Knowledge
Engineering 24 (1998) 211-238

3. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. DPD 16 (2004) 91-116

4. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: HICSS-34. (2001)

5. Kochut, K., Arnold, J., Sheth, A., Miller, J., Kraemer, E., Arpinar, B., Cardoso,
J.: IntelliGEN: A distributed workflow system for discovering protein-protein in-
teractions. DPD 13 (2003) 43-72

6. Reichert, M., Rinderle, S., Dadam, P.: On the modeling of correct service flows
with BPEL4WS. In: EMISA’04. (2004) 117-128

7. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems — a survey. DKE 50 (2004) 9-34

8. Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis,
University of Ulm (2004)

9. Haarslev, V., Moller, R.: Description of the racer system and its applications. In:
Proceedings International Workshop on Description Logics (DL-2001), Stanford,
USA, 1.-3. August. (2001) 131-141

10. Hayes-Roth, F.: Rule-based systems. Commun. ACM 28 (1985) 921-932

11. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating process learning and
process evolution - a semantics based approach. In: BPM’05. (2005)

12. Andrews, T., Curbera, F., Dholakia, H., et al., Y.G.: BPELWS - Business Process
Execution Language for Web Services. (2003) BEA Systems, International Business
Machines Corporation, Microsoft Corporation, SAP AG, Siebel Systems.

13. Rinderle, S., Reichert, M., Dadam, P.: On dealing with structural conflicts between
process type and instance changes. In: BPM’04. (2004) 274-289

14. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and overlapping process changes:
Challenges, solutions, applications. In: CooplS’04. (2004) 101-120

208

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

L.T. Ly, S. Rinderle, and P. Dadam

Reichert, M., Dadam, P.: ADEPT ., - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93-129

Maviglia, S., Zielstorff, R., Paterno, M., Teich, J., Bates, D., Kuperman, G.: Au-
tomating complex guidelines for chronic disease: Lessons learned. Journal of Amer-
ican Medical Inf. Ass. 10 (2003) 154-165

Blaser, R., Schnabel, M., Heger, O., Opitz, E., Lenz, R., Kuhn, K.: Improving
pathway compliance and clinician performance by using information technology.
In: MIE'05. (2005)

Boxwala, A., Peleg, M., Tu, S.: GLIF3: a representation format for sharable
computer-interpretable clinical practice guidelines. Biomed Inform. 37 (2004)
147-61

Quaglini, S., Stefanelli, M., Cavallini, A., G, G.M., Fassino, C., C, C.M.: Guideline-
based careflow systems. Artif Intell Med 20 (2000) 5-22

Weske, M.: Flexible modeling and execution of workflow activities. In: Proc. Hawaii
Int’l Conf. on System Sciences, Hawaii (1998) 713-722

van der Aalst W. M. P., Basten, T., Verbeek, H.M.W., Verkoulen, P.A.C., Voorho-
eve, M.: Adaptive workflow: On the interplay between flexibility and support.
Interprise Information Systems (2000) 63-70

Pathak, J., Caragea, D., Honovar, V.: Ontolgy-extended component-based work-
flows: A framework for constructing complex workflows from semantically hetero-
geneous software components. In: SWDB’04. (2005) 41-56

Bowers, S., Lin, K., Ludéscher, B.: On integrating scientific resources through
semantic registration. In: SSDBM’04. (2004)

Kim, J., Gil, Y., Spraragen, M.: A knowledge-based approach to interactive work-
flow composition. In: ICAPS 04. (2004)

Cardoso, J., Sheth, A.: Semantic e-workflow composition. JIIS. 21 (2003) 191-225
Zhang, R., Arpinar, I.B., Aleman-Meza, B.: Automatic composition of semantic
web services. In: Intl. Conf. on Web Services, Las Vegas NV, June 2003. (2003)
Hayes-Roth, F., Jacobstein, N.: The state of knowledge-based systems. Commun.
ACM 37 (1994) 26-39

Ader, M.: Tlog components for business process management solutions (2002)
Greiner, U., Ramsch, J., Heller, B., Loffler, M., Miiller, R., Rahm, E.: Adap-
tive guideline-based treatment workflows with adaptflow. In: CGP 2004. (2004)
113-117

Miiller, R., Greiner, U., Rahm, E.: Agentwork: A workflow system supporting
rule-based workflow adaption. DKE 51 (2004) 223-256

v. d. Aalst, W., de Beer, H., van Dongen, B.: Process mining and verification of
properties: An approach based on temporal logic. In: CoopIS’05. (2005) 130-147
Nahler, M.: Semantical conflicts in adaptive process managament systems (2005)
(in german).

	Introduction
	Semantic Constraints and Semantic Correctness in Adaptive Process Management Systems
	On Preserving Semantic Correctness of Processes
	Semantic Correctness of Process Schemes
	Semantic Correctness After Applying Ad-Hoc Process Changes
	Semantic Correctness for Process Schema Evolution

	On Optimizing Semantic Process Verification
	Background Information
	On Exploiting Process Meta Model Properties

	A Framework for Semantic Constraints
	Related Work
	Conclusion and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

