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Abstract. The proper handling of temporal process constraints is crucial
in many application domains. Contemporary process-aware information
systems (PAIS), however, lack a sophisticated support of time-aware pro-
cesses. As a particular challenge, the execution of time-aware processes
needs to be flexible as time can neither be slowed down nor stopped.
Hence, it should be possible to dynamically adapt time-aware process
instances to cope with unforeseen events. In turn, when applying such dy-
namic changes, it must be re-ensured that the resulting process instances
are temporally consistent; i.e., they still can be completed without violat-
ing any of their temporal constraints. This paper presents the ATAPIS
framework which extends well established process change operations with
temporal constraints. In particular, it provides pre- and post-conditions
for these operations that guarantee for the temporal consistency of the
changed process instances. Furthermore, we analyze the effects a change
has on the temporal properties of a process instance. In this context, we
provide a means to significantly reduce the complexity when applying
multiple change operations. Respective optimizations will be crucial to
properly support the temporal perspective in adaptive PAIS.

1 Introduction

Time is a crucial factor regarding the proper support of business processes [10].
Moreover, in many application areas (e.g., patient treatment, automotive engi-
neering), the handling of temporal constraints is vital in order to successfully
execute and complete processes [3,4,10]. However, contemporary process-aware
information systems (PAIS) lack a comprehensive support of such time-aware
processes [10]. To remedy this drawback, the proper integration of temporal
constraints with both the design and run-time components of a PAIS has been
identified as a key challenge [3,4,7]. Our ATAPIS framework aims to provide com-
prehensive support for the specification, execution and monitoring of time-aware
processes in adaptive PAIS.

As a prerequisite for robust process execution in PAISs, the executable process
models must be sound [12]. Moreover, in the context of time-aware process models,
i.e., process models enriched with temporal constraints, the consistency of the
temporal constraints must be ensured [1,4,7]. Checking consistency of time-aware
? A more complete and formally rigor version of this work is described in a technical
report [8]
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process models at design time has been extensively studied in literature [1,3,5].
By contrast, only little attention has been paid to the proper run-time support
of time-aware processes [7]. During run time, the temporal consistency of process
instances needs to be continuously monitored and re-checked to avoid constraint
violations. Particularly, note that activity durations and deadlines are specific to
the executed process instance and only become known at run time [7].

As a particular challenge, temporal constraints cannot be considered in isola-
tion, but might interact with each other. Hence, complex algorithms are required
for checking the temporal consistency of a process model [7,15]. At run time,
however, respective calculations should be reduced to a minimum to ensure scal-
ability of the PAIS [7]. Otherwise, no run-time support of time-aware processes
will be possible at the presence of a large number of process instances.

As another challenge, time can neither be slowed down nor stopped. Accord-
ingly, time-aware processes need to be flexible to cope with unforeseen events
or delays during run time [14]. For example, it is common that deadlines are
re-scheduled or temporal constraints are dynamically modified in order to success-
fully complete a process instance being in trouble. Moreover, in certain scenarios
the instances of time-aware processes must be structurally changed (e.g., by
moving, deleting or inserting activities) to be able to meet a particular deadline.
In the context of such dynamic process changes, we must re-ensure that the
resulting process instances are sound and temporally consistent. While soundness
has been extensively studied in literature [13,12], this work shows how temporal
consistency of a time-aware process instance can be efficiently ensured in the
context of dynamic changes. Furthermore, we analyse the effects, changes have
on the temporal constraints of the respective process instance. In particular, we
show how the results of this analysis can be utilized to significantly reduce the
complexity when applying multiple change operations. For example, the latter
becomes crucial in the context of process evolution, where a possibly large set of
process instances needs to be migrated on-the-fly to a changed process model [12].

The remainder of the paper is organized as follows: Sect. 2 considers existing
proposals relevant for our work. Sect. 3 provides background information on
time-aware processes and defines the notion of temporal consistency. Sect. 4 first
introduces the set of change operations we consider, followed by an in-depth
discussion on how these change operations work in the context of time-aware
processes. Sect. 5 analyzes the impact a change has on the temporal constraints
of a process and proposes useful optimizations. Sect. 6 evaluates the proposed
approach. Finally, Sect. 7 concludes with a summary and outlook.

2 Related Work

In literature, there exists considerable work on managing temporal constraints for
business processes [1,3,5,7,11]. The focus of these approaches is on design-time
issues like the modeling and verification of time-aware processes. By contrast,
only few approaches consider run-time issues of time-aware processes [4,7]. In
particular, none of the latter considers dynamic changes in this context.
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Category I: Durations and Time Lags
TP1 Time Lags between two Activities
TP2 Durations
TP3 Time Lags between Events

Category II: Restricting Execution Times
TP4 Fixed Date Elements
TP5 Schedule Restricted Elements
TP6 Time-based Restrictions
TP7 Validity Period

Category III: Variability
TP8 Time-dependent Variability

Category IV: Recurrent Process Elements
TP9 Cyclic Elements
TP10 Periodicity

Table 1. Process Time Patterns TP1 – TP10 [10]

Most approaches dealing with the verification of time-aware processes use a
specifically tailored time model to check for the temporal consistency of process
models. This becomes necessary since the interdependencies between the various
temporal constraints of a process model can be quite complex and cannot be
suitably captured in the respective process model. A specific conceptual model
for temporal constraints is defined in [11]. In turn, [4,5] use an extended version
of the Critical Path Method known from project planning. Simple Temporal
Networks (STN) are used as basic formalism in [1], whereas [7] uses Conditional
Simple Temporal Networks with Uncertainty for checking the controllability of
process models, i.e., a more restrictive form of temporal consistency. This paper
relies on Conditional Simple Temporal Networks (CSTN), an extension of STN
that allows for the proper handling of exclusive choices [15].

In [10], we presented 10 empirically evidenced time patterns (TP), that repre-
sent temporal constraints of time-aware processes (cf. Tab. 1). In particular, time
patterns facilitate the comparison of existing approaches based on a universal set
of notions with well-defined semantics [9]. Moreover, [9,10] elaborated the need
for a proper run-time support of time-aware processes.

Dynamic process changes were extensively studied in the past. Particularly,
there exists considerable work on ensuring structural and behavioural soundness
in the context of dynamic process changes [13]. A survey of approaches enabling
dynamic changes is provided in [12]. To the best of our knowledge, [14] is the
only work considering dynamic changes in the context of time-aware processes.
As opposed to our work, however, [14] only provides a high level discussion of the
different aspects to be considered when changing time-aware process instances,
temporal consistency being one of them.

3 Basic Notions

This section provides basic notions. First, it defines a set of elements for modeling
time-aware processes. Second, it introduces the notion of temporal consistency.

3.1 Time-aware Processes

For each business process exhibiting temporal constraints, a time-aware pro-
cess schema needs to be defined (cf. Fig. 1). In our work, a process schema
corresponds to a process model; i.e., a directed graph, that comprises a set of
nodes—representing activities and control connectors (e.g., Start-/End-nodes,
XORsplits, or ANDjoins)—as well as a set of control edges linking these nodes and
specifying precedence relations between them. We assume that process models
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Fig. 1. Core Concepts of a Time-Aware Process Model

are well structured [12], e.g., sequences and branchings are specified in terms of
nested single-entry single-exit (SESE) blocks. Fig. 1 depicts an example of a well
structured process model with the grey areas indicating respective blocks. Each
process model contains a unique start and end node, and may be composed of
control flow patterns like sequence, parallel split (ANDsplit), synchronization
(ANDjoin), exclusive choice (XORsplit), and simple merge (XORjoin) (cf. Fig. 1).

At run time, process instances may be created and executed according to the
defined process model. We assume that a process instance is logically represented
by a clone of the respective process model augmented with instance-specific
information. If a process model contains XOR-blocks, uncertainty is introduced
since not all instances perform exactly the same set of activities. The concept of
execution path allows us to identify which activities and control connectors are
actually performed during the execution of a particular process instance.

We base our ATAPIS framework on the time patterns (TP) (cf. Sect. 2).
Specifically, we focus on the patterns being most relevant in practice [10]. In detail:

An activity duration (TP2) defines the minimum and maximum time span
[dmin, dmax] (0≤ dmin ≤ dmax) allowed for executing a particular activity (or
node, in general). We assume that each activity has an assigned duration. Since
control connectors are automatically executed, we may assume a fixed duration
for them (e.g., [0, 1]). In turn, a process duration [dmin, dmax] represents the
time span allowed for executing a process instance.

Time lags between two activities (TP1) restrict the time span allowed
between the starting and/or ending instants of two arbitrary activities of a process
model [10]. In Fig. 1, a time lag is visualized through a dashed edge between
the source and target activity. The label of the edge specifies the constraint ac-
cording to the following template: 〈IS〉[tmin, tmax]〈IT 〉 (−∞≤ tmin≤ tmax≤∞);
〈IS〉, 〈IT 〉 ∈ {S,E} mark the instant (i.e., starting or ending) of the source and
target activity the time lag applies to. In turn, [tmin, tmax] represents the range
allowed for the time span between instants 〈IS〉 and 〈IT 〉. Finally, note that a
control edge implicitly represents an E[0,∞]S time lag between the two activities.

Fixed date elements (TP4) allow restricting activity execution in relation
to a specific date (e.g., a deadline). Generally, the value of a fixed date element
is specific to a process instance. Fig. 1 visualizes a fixed date element through
a clock symbol attached to the activity. Thereby, label 〈D〉 ∈ {ES , LS , EE , LE}
represents the activity’s earliest start date (ES), latest start date (LS), earliest
completion date (EE), or latest completion date (LE).

Fig. 1 shows an example of a process model exhibiting temporal constraints.
Note that, although some of the symbols used for visualizing the temporal con-
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straints resemble BPMN timer events, their semantics is quite different and
should not be mixed up.

3.2 Temporal Consistency of Time-Aware Processes

A time-aware process model is executed by performing its activities and control
connectors, while obeying a set of temporal constraints. We denote a process
model as temporally consistent if it is possible to perform all execution paths
without violating the temporal constraints involved. Temporal consistency of
a time-aware process model (and its instances) constitutes a fundamental pre-
requisite for its robust and error-free execution [1,4]. For any PAIS supporting
time-aware processes, therefore, a crucial task is to check temporal consistency of
the process model at design time as well as to monitor and re-check corresponding
instances during run time. This is particularly challenging since temporal con-
straints might interact with each other resulting in complex interdependcies (e.g.,
a future deadline might restrict the duration of some or all preceding activities).

Whether a time-aware process model is temporally consistent can be checked
by mapping it to a conditional simple temporal network (CSTN)—a problem
known from artificial intelligence [6]. In ATAPIS, we use CSTN since it allows us
to exploit and reuse checking algorithms for a well founded model representing
temporal constraints. Finally, CSTN allows capturing the complex interdepen-
dencies between constraints, which cannot be captured in process models.

Definition 1 (Conditional Simple Temporal Network). A Conditional
Simple Temporal Network (CSTN) is a 6-tuple 〈T , C, L,OT ,O, P 〉, where:
– T is a set of real-valued variables, called time-points;
– P is a finite set of propositional letters (or propositions);
– L : T → P ∗ is a function assigning a label to each time-point in T ; a label is
any (possibly empty) conjunction of (positive or negative) letters from P .1

– C is a set of labeled simple temporal constraints (constraint in the following);
each constraint cXY ∈ C has the form cXY = 〈[x, y]XY , β〉, where X,Y ∈ T ,
−∞ ≤ x ≤ y ≤ ∞, and β ∈ P ∗ is a label.

– OT ⊆ T is a set of observation time-points;
– O : P → OT is a bijection that associates a unique observation time-point to
each propositional letter from P .

Time-points represent instantaneous events that may be, for example, associated
with the start / end of activities. In turn, at observation time-points a decision
regarding possible execution paths is made. More formally, when executing obser-
vation time-point P , the truth-value of the associated proposition (i.e., O−1(P ))
is determined. A constraint cXY = 〈[x, y]XY , β〉 expresses that the time span be-
tween time-points X and Y must be at least x and at most y, i.e., Y −X ∈ [x, y].
The label attached to each time-point (constraint) indicates possible executions
of the CSTN, i.e., a particular time-point (constraint) will be only considered if
1 In the following we use small Greek letters α, β, . . . to denote arbitrary labels. The
empty label is denoted by �.
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Fig. 2. CSTN Representation of the Process Model from Fig. 1

the corresponding label is satisfiable in the respective instance. Fig. 2 depicts the
CSTN corresponding to the process model from Fig. 1.

The solution to a CSTN can be defined as follows [6]:

Definition 2 (Scenario and Solution). Given a CSTN S = 〈T , C, L,OT ,O, P 〉,
a scenario over set P is a function sP : P → {true, false} that assigns a truth-
value to each proposition in P .

A solution for CSTN S under scenario sP then corresponds to a complete set
of assignments to all time-points X ∈ T with sP (L(X)) = true, which satisfies
all constraints 〈[x, y]XY , β〉 ∈ C for which sP (β) = true holds.

We denote the CSTN corresponding to a time-aware process model as its time
model. The required mapping can roughly be described as follows [7]: First, the
control flow of the process model is mapped to a CSTN. Particularly, each control
flow element implicitly represents a temporal constraint. Each activity, ANDsplit,
ANDjoin, and XORjoin ni is represented as a pair of time-points NiS and NiE ,
corresponding to the starting / ending instant of the respective node. In turn,
for an XORsplit, the ending instant (i.e., NiE) is represented by an observation
time-point. Next, a constraint 〈[dmin, dmax]NiSNiE

,�〉 is added between NiS and
NiE representing the duration [dmin, dmax] of the node. Further, for any control
edge between nodes ni and nj , a constraint 〈[0,∞]NiENjS

,�〉 is added between
the time-points representing the ending instant of ni and starting instant of nj .
If the source of the edge is an XORsplit, in addition, the label of the constraint is
augmented by proposition p = O−1(P). The latter represents the decision made
at the corresponding observation time-point P, i.e., the label of the constraint
〈[0,∞]NiENjS

, β〉 belonging to the “true”-branch is set to βp and the one of the
“false”-branch to β¬p.2 Further, the labels of all constraints and time-points
corresponding to activities, connectors and control edges in the XOR-block are
augmented by either p or ¬p depending on the branch they belong to.

Next, temporal constraints are mapped to the CSTN. A time lag 〈IS〉[tmin,
tmax] 〈IT 〉 corresponds to a constraint 〈[tmin, tmax]Ni〈IS〉Nj〈IT 〉

, L(Ni〈IS〉)∧L(Nj〈IT 〉)〉
between the two time-points representing the respective instants of nodes ni

and nj . In turn, a fixed date element is initially represented as a constraint 〈[0,
∞]ZN〈D〉 , L(N〈D〉)〉 with Z being a special time-point representing time “0”. During
run time, value [0,∞] of the constraint will be updated according to the actual
2 Note that this can be easily extended to consider more than two branches, but for
the sake of simplicity, we only consider two branches in this paper.
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fixed date chosen. Finally, process duration [dmin, dmax] is represented as con-
straint 〈[dmin, dmax]N0SNkE

,�〉 between the time-points representing the starting
instant N0S of the first and the ending instant NkE of the last node of the process.

As example consider Fig. 2. Note that the labels of the constraints represent-
ing the XOR-block are either set to p or ¬p. For the sake of readability, all edges
without annotation are assumed to have bounds 〈[0,∞],�〉.

Based on Def. 2, we formally define the notion of temporal consistency for
time-aware process models.

Definition 3 (Temporal Consistency). A CSTN 〈T , C, L,OT ,O, P 〉 is called
weakly consistent iff for each scenario sP at least one solution exists [15].

A time-aware process model is denoted as temporally consistent iff the corre-
sponding time model (i.e., its CSTN representation) is weakly consistent.

When executing a time-aware process model, temporal consistency of the re-
spective instances needs to be continuously monitored and re-checked. For this
purpose, the minimal network of a CSTN must be determined.

Definition 4 (Minimal Network). The minimal network of a CSTN S =
〈T , C, L,OT ,O, P 〉 is the unique CSTN M = 〈T , C′, L,OT ,O, P 〉 having the
same set of solutions as S and each value allowed by any constraint c ∈ C′ being
part of at least one solution of S.

For any CSTN S a minimal network exists iff S is weakly consistent. In particular,
such a minimal network provides a restricted set of constraints: As long as the
value of each time-point is consistent with all constraints referring to it, we can
guarantee that the entire CSTN is weakly consistent. Besides explicit constraints
c ∈ C we obtain when mapping the process model to the CSTN, the minimal
network contains implicit constraints between any pair of time-points that may
occur in the same execution path. Note that these implicit constraints represent
the effects the explicit constraints have on the overall CSTN (i.e., they represent
interdependencies between explicit constraints). The implicit constraints are
derived from the explicit ones when determining the minimal network. How to
determine the minimal network is described in [15].

When executing a process instance, the minimal network of the time model
created at design time is cloned. This instance time model is then kept up-to-date
with the actual temporal state of the process instance (e.g., deadline, activity
start and completion times). Further, it is used to monitor and re-check temporal
consistency of the instance [7]. Cloning the time model becomes necessary as
the temporal state of each process instance is unique; i.e., no two instances have
exactly the same instance time model.

4 Change Operations for Time-aware Processes

Standard change patterns adapting process instances without temporal con-
straints have been extensively studied in literature [12]. This section discusses how
respective change operations may be transferred to time-aware processes. Sect. 4.1
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Operation Informal Description
Control Flow Changes
InsertSerial(n1, n2, nnew,

[dmin, dmax])
Inserts node nnew with duration [dmin, dmax] between directly
succeeding nodes n1 and n2.

InsertP ar(n1, n2, nnew,
[dmin, dmax])

Inserts node nnew with duration [dmin, dmax] in parallel to the
SESE block defined by n1 and n2.

InsertCond(n1, n2, nnew,
[dmin, dmax], c)

Inserts node nnew with duration [dmin, dmax] and condition c as
well as an XOR block between succeeding nodes n1 and n2.

DeleteActivity(n) Deletes activity n.†

Temporal Constraints Changes
InsertT imeLag(n1, n2, typetl,

[tmin, tmax])
Inserts a time lag [tmin, tmax] between nodes n1 and n2. Thereby,
typetl ∈ {start-start, start-end, end-start, end-end} describes
whether the time lag is inserted between the start of the two ac-
tivities, the start of n1 and the end of n2, the end of n1 and the
start of n2, or the end of the two activities.

InsertF DE(n, typefde) Adds a fixed date element of type typefde ∈ {ES , LS , EE , LE}
to node n.

DeleteT imeLag(n1, n2, typetl) Deletes the time lag of type typetl between nodes n1 and n2.†

DeleteF DE(n, typefde) Deletes a fixed date element of type typefde from node n.†

† Delete operations are not considered in this paper, but are discussed in a technical report [8].
Table 2. Basic Change Operations

presents the change operations applicable to time-aware processes. Sect. 4.2 then
provides an in-depth discussion of these operations and shows how they can be
extended to ensure temporal consistency of a changed process instance.

4.1 Basic Change Operations

When changing a process instance or—more generally—its process model, sound-
ness must be ensured. To achieve this, ATAPIS abstracts from low-level change
primitives (e.g., adding an edge or node) to higher-level change operations with
well-defined pre- and post-conditions (e.g., inserting a node serially between
two succeeding nodes) [12]. Applied to a sound process model, such a high-level
change operation guarantees that the modified process model is structurally
and behaviourally sound as well [12]. The upper part of Tab. 2 shows selected
change operations required for structurally modifying a process instance. Note
that respective operations may be combined to realize more complex change
patterns [12] (e.g., move activity). ATAPIS extends the set of structural change
operations by change operations that allow modifying the temporal constraints of
a process model, e.g., inserting a time lag (see the bottom of Tab. 2). Altogether,
the operations allow changing a time-aware process instance, while guaranteeing
soundness of the corresponding process model. Due to lack of space, this paper
restricts itself to insert operations. A detailed presentation of delete operations
is provided in a technical report [8].

4.2 Applying Change Operations to Time-aware Processes

When modifying the model of a time-aware process instance, it must be ensured
that the resulting process instance is temporally consistent. This section defines
basic criteria ensuring that the application of a change operation does not result
in a temporally inconsistent process instance. We further analyze the local impact
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Fig. 3. Change Operation Insert Serial
InsertSerial(n1,n2,nnew, [dmin,dmax])*

Pre succ(n1) = n2, ∀〈[cmin, cmax]N1EN2S , β〉 ∈ C : cmax ≥ dmin
Init γ = L(N1E) ∧ L(N2S)
Post // Update process model:

. . .
// Add mapping to instance time model:
AddTimePoint(NnewS, γ), AddTimePoint(NnewE, γ),
AddConstraint(NnewS,NnewE, [dmin, dmax], γ),
AddConstraint(N1E,NnewS, [0,∞], γ), AddConstraint(NnewE,N2S, [0,∞], γ),
// Adapt instance time model:
∀〈[cmin, cmax]N1EN2S , β〉 ∈ C : UpdateConstraint(N1E,NnewS, [0, cmax − dmin], β),

UpdateConstraint(NnewE,N2S, [0, cmax − dmin], β),
UpdateConstraint(N1E,N2S, [max{cmin, dmin}, cmax)], β)

*The complete version of the algorithm is provided in [8].

Algorithm 1: InsertSerial
a particular change operation has on the temporal properties of the respective
process model, i.e., its temporal constraints.

When applying a change operation to a process instance, state-specific pre-
and post-conditions must be met [12]. Although these are not explicitly consid-
ered in this paper, they apply to time-aware processes as well. Furthermore, any
time-related, instance-specific data (e.g., activity start and completion times) is
maintained in the corresponding instance time model (cf. Sect. 3.2), i.e., it is
sufficient to only consider the current instance time model of the process instance.
Inserting an Activity Serially. InsertSerial(n1, n2, nnew, [dmin, dmax]) is the
first change operation we consider. It allows inserting node nnew with duration
[dmin, dmax] between directly succeeding nodes n1 and n2 (cf. Fig. 3). Regarding
the temporal properties of the resulting process model, the insertion of nnew

might first and foremost increase the minimum time distance between n1 and
n2 to dmin. By contrast, the maximum distance between the two nodes is not
affected by the change as the newly added control connectors do not constrain it.
Accordingly, if for the instance time model the minimum duration dmin is compli-
ant with any implicit or explicit constraint 〈[cmin, cmax]N1EN2S , β〉 between the
ending instant of n1 and the starting instant of n2 (i.e., dmin ≤ cmax), the node
insertion will not affect temporal consistency of the process instance.3 Remember
that each value of each constraint in the instance time model is part of at least one
solution (cf. Def. 4), i.e., one viable execution of the process model. After adding
the node to the process instance, the mapping of this node and the control edges
must be added to the instance time model as well. Further, the instance time
model must be locally adapted to properly reflect the changes. In particular, the
constraint between the ending instant of n1 and the starting instant of n2 must
be updated to [max{cmin, dmin}, cmax] in order to consider the new minimum
3 Note that any implicit constraint 〈[cmin, cmax]N1EN2S , β〉 is always at least as restric-
tive as any explicit time lag E[tmin, tmax]S between n1 and n2.
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InsertCond(n1,n2,nnew, [dmin,dmax], c)*

Pre succ(n1) = n2, ∀〈[cmin, cmax]N1EN2S , β〉 ∈ C : cmax ≥ dmin
Init γ = L(N1E) ∧ L(N2S)
Post // Update process model:

. . .
// Add mapping to instance time model:
AddTimePoint(GsS, γ), AddObservationTimePoint(GsE, c, γ),
AddConstraint(GsS,GsE, [0, 1], γ),
AddTimePoint(NnewS, γ), AddTimePoint(NnewE, γc),
AddConstraint(NnewS,NnewE, [dmin, dmax], γc),
. . .
AddConstraint(GsE,GjS, [0,∞], γ¬c),
// Adapt instance time model:
. . .
∀〈[cmin, cmax]N1EN2S , β〉 ∈ C : UpdateConstraint(N1E,N2S, [cmin, cmax], β¬c),

AddConstraint(N1E,N2S, [max{cmin, dmin}, cmax], βc)

*The complete version of the algorithm is provided in [8].

Algorithm 2: InsertCond
distance between the two nodes (cf. Fig. 3), i.e., certain values permitted by the
old constraint might no longer be part of any solution. It further becomes evident
that the constraints corresponding to the two newly added control edges must
be initialized to [0, cmax − dmin] (cf. Fig. 3). Algorithm 1 defines the pre- and
post-conditions for applying change operation InsertSerial to a process instance.

The changes applied to the instance time model need to be propagated to all
other constraints in order to remove values no longer contributing to any solution.
Note that this must be accomplished before performing any other change or
resuming the execution of the process instance. Practically, this means that the
minimality of the changed instance time model needs to be restored. This may be
achieved by applying the same algorithm as the one initially used for determining
the minimal time model (cf. Sect. 3.2).
Inserting an Activity in Parallel. From a temporal point of view, change
operation InsertPar (cf. Tab. 2) is similar to InsertSerial. Node nnew (together
with ANDsplit and ANDjoin nodes) is inserted “serially” between nodes n1 and
n2—the temporal effects of the enclosed SESE block are already considered in the
implicit constraint between n1 and n2. A detailed discussion is provided in [8].
Inserting an Activity Conditionally. Change operation InsertCond(n1, n2,
nnew, [dmin, dmax], c) inserts node nnew conditionally between succeeding nodes
n1 and n2. This change is accomplished by first inserting XORsplit gs and XOR-
join gj sequentially between n1 and n2 and then nnew conditionally between
gs and gj (cf. Fig. 4). The transition conditions of the control edges linking gs

and its successors are set to c and ¬c, respectively. When adding XORsplit gs

and condition c/¬c to the process model, a set of additional execution paths
results; i.e., each execution path of the old process model, which contains n1 and
n2, can now be mapped to two execution paths: one with c = false (i.e., ¬c)



Dealing with Changes of Time-Aware Processes 11

<[max(cmin,tmin), min(cmax,tmax)], β>

AS AE BS BE

<[cmin, cmax], β>

AS AE BS BE

tmin ≤ cmax
tmax ≥ cmin

A B

E [tmin, tmax] SInsertTimeLag(A, B, start-start, 
            [tmin,tmax])

A B
E [tmin, tmax] S

Process Model

Time Model

Fig. 5. Change Operation Insert Time Lag
InsertTimeLag(n1,n2, typetl, [tmin, tmax])

Pre 〈IS〉 =
{
S typetl = start-*
E typetl = end-* , 〈IT 〉 =

{
S typetl = *-start
E typetl = *-end

(L(N1〈IS〉
) ∧ L(N2〈IT 〉

)) is satisfiable
∀〈[cmin, cmax]N1〈IS〉

N2〈IT 〉
, β〉 ∈ C : cmin ≤ tmax ∧ tmin ≤ cmax

Post // Update process model:
AddTimeLag(n1, n2, 〈IS〉[tmin, tmax]〈IT 〉)
// Add mapping to instance time model:
AddConstraint(N1〈IS〉

, N2〈IT 〉
, [tmin, tmax], L(N1E) ∧ L(N2S))

// Adapt instance time model:
∀〈[cmin, cmax]N1EN2S , β〉 ∈ C :

UpdateConstraint(N1〈IS〉
, N2〈IT 〉

, [max{cmin, tmin},min{cmax, tmax}], β)

Algorithm 3: InsertTimeLag
representing the previous execution path and one with c = true representing
the new path containing nnew between n1 and n2. Hence, for any execution
path containing nnew, InsertCond has similar effects as InsertSerial. In turn, any
execution path not containing nnew remains unchanged (except for the added
XORsplit and XORjoin, that constitute silent nodes). Altogether, for InsertCond
similar pre-conditions as for InsertSerial hold (cf. Algorithm 1).

In the context of a process instance change, the corresponding instance time
model needs to be adapted by adding the mappings of the inserted elements
as shown in Fig. 4. Note that this results in a new observation time-point GsE

and proposition c to the instance time model (cf. Sect. 3.2). Accordingly, the
labels of the temporal constraints representing nnew and the two control edges
connecting it with gs and gj must be set to βc with β being the label of the
original constraint between N1E and N2S . In turn, the label of the constraint
corresponding to the control edge between gs and gj must be set to β¬c. Fi-
nally, the constraint between the ending instant of n1 and the starting one of n2
needs to be updated: The label of the original constraint must be augmented by
proposition ¬c resulting in constraint 〈[cmin, cmax]N1EN2S , β¬c〉. Further, another
constraint 〈[max{cmin, dmin}, cmax]N1EN2S , βc〉 containing proposition c must be
added between the two time-points. The latter corresponds to the case nnew is
executed between the two nodes. Algorithm 2 defines the pre- and post-conditions
of InsertCond. When applying this operation, again the minimality of the adapted
instance time model must be restored. This is required before performing any
other change or resuming the execution of the process instance.
Inserting a Time Lag. Operation InsertTimeLag(n1, n2, typetl, [tmin, tmax])
allows adding a time lag between activities n1 and n2. The instants the time lag
refers to are specified by parameter typetl. Adding a time lag is only possible if
there exists at least one execution path containing both nodes [9]. The instance
time model is then adapted by adding a constraint 〈[tmin, tmax]N1〈IS〉N2〈IT 〉

, β〉 be-
tween the time-points representing the respective instants (start vs. end) of the two
nodes. Basically, this updates each implicit constraint 〈[cmin, cmax]N1〈IS〉N2〈IT 〉

,

β〉. Note that this is only possible if the resulting constraint [max{cmin, tmin},
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min{cmax, tmax}] in the adapted instance time model still permits at least one
value, i.e., it allows for at least one possible solution. Accordingly, in order to
apply the operation it must hold cmin ≤ tmax ∧ tmin ≤ cmax. Algorithm 3 defines
the pre- and post-conditions. After updating the temporal constraints, minimality
of the adapted instance time model must be restored.
Inserting a Fixed Date Element. Inserting a fixed date element (i.e., opera-
tion InsertFDE) is equivalent to adding a time lag between the special time-point
Z (indicating time “0”) and the respective instant of the node (cf. Sect. 3.2) [8].

5 Analyzing the Effects of Change Operations

When changing a time-aware process instance both the process model and the
instance time model must be updated. In this context, the minimality of the
instance time model must be restored after each change operation. Only then it
can be ensured that another change within the same change transaction may be
applied without violating temporal consistency of the process instance. However,
calculating the minimal network of a CSTN is expensive regarding computation
time, i.e., its complexity is O(n32k) with n being the number of time-points and k
the number of observation time-points in the CSTN. Consequently, there might be
significant delays when applying multiple change operations to large time-aware
process instances. This becomes even more pressing in the context of process
schema evolution [12] when migrating a potentially large set of process instances
to a new schema version (i.e., process model). Hence, the maximum effect a par-
ticular change has on the instance time model must be estimated. Based on this
estimation, it becomes possible to decide whether another change operation may
be applied without need to restore minimality of the instance time model first.

When applying the change operations from Sect. 4.2 to the respective instance
time model, two types of changes result: adding a temporal constraint or making
an existing one more restrictive. Hence, it is sufficient to consider the effects a
basic change has on a minimal time model. Regarding changes that make an
existing constraint more restrictive, Theorem 1 shows how their maximum effects
can be estimated.
Theorem 1 (Restricting a constraint in a minimal network). Let M =
〈T , CM , L,OT ,O, P 〉 be a minimal CSTN and M∗ = 〈T , CM∗ , L, OT ,O, P 〉
the CSTN derived from M by replacing constraint cAB = 〈[x, y]AB , β〉 ∈ CM

with the more restrictive constraint c∗AB = 〈[x + σ, y − ρ]AB , β〉; σ, ρ ≥ 0; i.e.,
C∗M = CM \ cAB ∪ {c∗AB}.

Then: For the minimal network N = 〈T , CN , L,OT ,O, P 〉 of M∗ it holds:
for any constraint c′XY = 〈[x′, y′]XY , γ〉 ∈ CN the lower bound is increased by at
most δ = max{σ, ρ} and the upper bound is decreased by at most δ compared to
the original constraint cXY = 〈[x, y]XY , γ〉 ∈ CM . Formally:

∀〈[x, y]XY , γ〉 ∈ CM , 〈[x′, y′]XY , γ〉 ∈ CN : (x ≤ x′ ≤ x+ δ) ∧ (y ≥ y′ ≥ y − δ)

A proof of Theorem 1 can be found in [8]. Assume that due to a change a con-
straint [x, y]XY in the time model is restricted to [x∗, y∗]XY = [x+ ρ, y − σ]XY
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and afterwards minimality of the time model is restored. Theorem 1 now states
that any constraint [u, v]UV in the original time model is restricted to at most
[u′, v′]UV = [u+ δ, v − δ]UV with δ = max{ρ, σ} in the new time model.

Reconsider operation InsertSerial. Assume that the instance time model is
adapted as described by Algorithm 1. The next step would be to restore minimal-
ity of this instance time model. First of all, note that the constraints introduced
by the newly added activity and control edges do not affect the other constraints
when restoring minimality. By construction, their effects are already incorporated
in the constraint between time-points N1E and N2S , which is updated in the
context of the operation (cf. Algorithm 1; see [2] for details). The only change
having an effect on the resulting instance time model is the one restricting con-
straint [cmin, cmax] between N1E and N2S to [max{cmin, dmin}, cmax]. Note that
if the constraint is not changed (i.e., dmin ≤ cmin), the existing constraints of
the instance time model also need not be changed. Otherwise, the lower bound of
the constraint is increased by δ = dmin− cmin. Theorem 1 implies that the upper
and lower bound of any other constraint in the new instance time model will be
restricted by at most δ as well. Thus we are able to approximate the maximum
difference between the new instance time model and the original one.

From this we can conclude that when applying another insert operation, it will
be sufficient to verify that any precondition referring to a constraint 〈[x, y]XY , β〉
of the instance time model is satisfied for the respective approximated constraint
〈[x + δ, y − δ]XY , β〉 as well. In this case, the insert operation may be applied
without violating the temporal consistency of the process instance. In particular,
and this is a fundamental advantage of ATAPIS, we need not restore minimality
of the modified instance time model prior to the application of the operation. By
contrast, if the precondition is not met for the approximated constraint, it might
still be possible to apply the change without violating temporal consistency. In
this case, however, minimality of the modified instance time model must be first
restored before deciding whether the change may be applied.

Similar rules apply to all other insert operations. Regarding InsertCond (cf.
Algorithm 2), in particular, the change relevant to the instance time model
is the one restricting the constraint between time-points N1E and N2S to
[max{cmin, dmin}, cmax], i.e., the impact on the other constraints is at most
δ = max{0, dmin − cmin}. Finally, for InsertTimeLag, the maximum impact
corresponds to δ = max{0, tmin − cmin, tmax − cmax} (cf. Algorithm 3).

Based on these observations it becomes possible to apply a sequence of change
operations to a process instance within the same transaction without need to
restore minimality of the instance time model after each change. If a sequence
of change operations op1, . . . , opn with impacts δ1, . . . , δn shall be applied to
a process instance, it will be sufficient to consider the aggregated impact of
the previously applied operations. Practically speaking, for operation opi, ap-
proximated constraint [x +

∑i−1
j=1 δj , y −

∑i−1
j=1 δj ]XY needs to be considered to

determine whether the operation may be applied. Note that this will significantly
reduce complexity when applying multiple change operations. However, the actual
savings depend on the strictness of the constraints of the time-aware process
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Process Instance
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*Note that for sake of compactness only relevant constraints and no labels are shown for the instance time models.

Fig. 6. Applying Multiple Change Operations to a Process Model

model; if the latter is “heavily” constrained, only few change operations can be
applied without need to restore minimality of the instance time model. In turn,
if the constraints are “weak”, multiple change operations may be applied at once,
without having to restore minimality of the instance time model between changes.

We illustrate our approach along the example from Fig. 6. It depicts a process
instance and corresponding instance time model to which a series of three change
operations a©- c© shall be applied. First, activity X with duration [4, 9] shall be
inserted between A and ANDsplit (Fig. 6 a©). This is possible without violating
the temporal consistency of the process instance since the minimum duration of
X is lower than the maximum time distance between A and ANDsplit (i.e., 4 ≤ 7).
After performing the change, the value used for approximating the instance time
model becomes δ = 4−0 = 4. Next, Y shall be inserted between B and C (Fig. 6 b©).
Again this is possible since the minimum duration is lower than the approximated
maximum time distance (i.e., 9 ≤ 14 − δ = 10). Afterwards δ is increased to
δ = 4 + (9 − 7) = 6. However, inserting Z with duration [5, 8] between D and
ANDjoin (Fig. 6 c©) is then not possible based on the approximated instance
time model as the precondition of the respective change operation cannot be
met (i.e., 5 6≤ 10− δ = 4). Hence, minimality of the instance time model must
be restored (Fig. 6 d©). Afterwards, inserting Z becomes possible as for the new
instance time model the precondition of the operation is met. Finally, minimality
of the last instance time model must be restored (Fig. 6 e©).

6 Proof of Concept

The presented approach was implemented as a proof-of-concept prototype in
our ATAPIS Toolset, which is based on the AristaFlow BPM Suite [12]. This
prototype enables users to create time-aware process models and to automatically
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Fig. 7. Screenshot of the Prototype (based on the AristaFlow BPM Suite)

generate respective time models based on CSTN. Further, the presented change
operations may be applied to both process models and corresponding instances.
Particularly, they are based on AristaFlow’s well-founded set of change opera-
tions [12]. Overall, the prototype demonstrates the applicability of our approach.
The screenshot from Fig. 7 shows the ATAPIS Toolset4: at the top, a process
model from the healthcare domain comprising several temporal constraints is
shown. At the bottom, the automatically generated time model and its minimal
network are depicted. Finally, the right side displays the available set of change
operations. Whether a particular change operation may be applied is decided by
checking both structural and temporal preconditions. When applying an opera-
tion to the process model (i.e., schema or instance) all three models are updated
simultaneously as described in Sect. 4.1. A first simulation based on our prototype
shows a significantly improved performance of our approximation-based approach
for applying multiple change operations compared to the “classical approach” [8].

7 Conclusion

Time constitutes a fundamental concept for the operational support of business
processes in PAISs. In business, where missed deadlines and violations of temporal
constraints might cause significant problems, it is crucial for enterprises to be
able to efficiently control and monitor these temporal constraints during run
time. Since process execution does not always stick to the plan, enterprises must
be further able to flexibly react to deviations in a time-aware process instance
without affecting other properties of the instance. This paper considered dynamic
changes of time-aware process instances. First, we defined change operations for
time-aware processes. Second, we specified pre- and post-conditions for these

4 A screencast demonstrating the toolset is available at dbis.info/atapis

http://dbis.info/atapis
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operations, which ensure that changed process instances remain temporally con-
sistent. Third, we analyzed the effects respective change operations have on
the temporal constraints of the process instance. Fourth, we approximated the
resulting temporal properties of the entire process instance. In particular, this
allows us to significantly reduce the complexity of the required time calculations
in the context of subsequent changes. In order to demonstrate the feasibility of
the presented approach, a powerful proof-of-concept prototype was implemented.

We are currently investigating the pre- and post-conditions as well as the
impact of more complex change patterns (e.g., move). We further will examine
how the presented results can be applied to evolve time-aware processes and
migrate a large set of process instances to a new process model. Finally, we are
integrating advanced time-management capabilities into the AristaFlow BPM
Suite to obtain a fully-fledged time- and process-aware information system.
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