
Lifecycle Management for Business Process Variants

Manfred Reichert1, Alena Hallerbach2, and Thomas Bauer3

1University of Ulm, Ulm, Germany
2Daimler TSS GmbH, Ulm, Germany
3Neu-Ulm University of Applied Science, Neu-Ulm, Germany

Abstract This chapter deals with advanced concepts for the configuration and management of
business process variants. Typically, for a particular business process, different variants exist.
Each of them constitutes an adjustment of a master process (e.g., a reference process) to
specific requirements building the process context. Contemporary Business Process
Management tools do not adequately support the modeling and management of such process
variants. Either the variants have to be specified in separate process models or they are
expressed in terms of conditional branches within the same process model. Both methods can
result in high model redundancies, which make model adaptations a time-consuming and
error-prone task. In this chapter, we discuss advanced concepts of our Provop approach,
which provides a flexible and powerful solution for managing business process variants along
their lifecycle. Such variant support will foster more systematic process configuration as well
as process maintenance.

1 Introduction

Process support is required in almost all business domains (Mutschler et al. 2008; Weber and
Reichert 2012). As examples, consider healthcare (Lenz and Reichert 2007), automotive
engineering (Müller et al. 2006), and public administration (Becker et al. 2007). Characteristic
process examples from the automotive industry, for instance, include product change
management (VDA 2005), release management (Müller et al. 2006), and product creation.

Usually, there exists a multitude of variants of a particular process model, whereby each of
these variants is valid in a specific scenario or in the context of a particular business objective
(Lohrmann and Reichert 2012); i.e., the configuration of a particular process variant depends
on concrete requirements building the process context (Hallerbach et al. 2008b). Regarding
release management, for example, we have identified more than twenty process variants
depending on the considered product series, involved suppliers, or development phases.
Similar observations can be made with respect to the product creation process in the
automotive domain for which dozens of variants exist. Thereby, each variant is assigned to a
particular product type (e.g., car, truck, or bus) with different organizational responsibilities
and strategic goals, or varying in some other aspects.

In the following, we refer to the service process handling vehicle repair in a garage (cf. Fig.
1a). Basically, this process works as follows: It starts with the reception of a vehicle. After a
diagnosis is made, the vehicle is repaired (if necessary). During diagnosis and repair, the
vehicle is maintained; e.g., oil and wiping water may be checked and refilled. The process
completes when handing the repaired and maintained vehicle back to the customer.
Depending on the process context, different variants of this process are required, whereas the

context is described by country- specific, garage-specific, and vehicle-type-specific variables.
In our case studies, we have identified hundreds of such variants and we have learned that
existing process modeling tools do not provide sophisticated support for modeling and
maintaining such large number of process variants.

Figure 1b–d show three such variants of a vehicle repairs process. Variant 1, as depicted in
Fig. 1b, assumes that the damaged vehicle requires a checklist of Type 2 to perform the
diagnosis. Therefore, activity Diagnosis is adapted by modifying its attribute Checklist to
value “Type 2”. Additionally, the garage omits maintenance of the vehicle as this is
considered as a special service not offered conjointly with the repair process. At the model
level, this is realized by skipping activity Maintenance. As another example, consider Variant
2 as depicted in Fig. 1c. Due to country-specific legal regulations, a final security check is
required, before handing over the vehicle back to the customer. Regarding this variant, the
new activity Final Check has to be added when compared to the standardized process from
Fig. 1a. Finally, Variant 3 will become relevant if a checklist of Type 2 is required for
diagnosis, the garage does not link maintenance to the repair process, and there are legal
regulations requiring a final check (cf. Fig. 1d).

Fig. 1 Variants of a standardized vehicle repair process (simplified view)

As can be seen from these simple examples, variants exist for many processes, and thus have
to be adequately managed. This chapter presents selected concepts of the Provop (PROcess
Variants by OPtions) approach for managing large collections of process variants. More
precisely, Provop allows to configure relevant process variants out of one basic process model
(Hallerbach et al. 2008a; Hallerbach et al. 2008c; Hallerbach 2010) and to manage them along
their lifecycle. This chapter focuses on the technical issues, which become relevant in this
context. Also very important, but out of the scope of this chapter, are governance issues (e.g.,

Who selects or enforces configurations? What does variant management mean for process
ownership?).

The chapter is structured as follows: First, we present problems, which will arise if we do not
treat variants as first class objects and only model them conventionally. Second, we describe
key requirements with respect to process variant management. Then, we introduce our Provop
approach and selected concepts for process variant management. Following this we compare
Provop with other process configuration approaches and then discuss other relevant aspects.
The chapter concludes with a summary and an outlook.

2 Dealing with Process Variants in Existing BPM Tools

Solutions for managing variants in existing BPM tools can be divided into two approaches:
the multi-model and the single-model approach.

Multi-model approach. In existing BPM tools, process variants often have to be defined and
kept in separate process models as shown in Fig. 1. Typically, this results in highly redundant
model data as the variant models are identical or similar for most parts. Furthermore, the
variants cannot be strongly related to each other; i.e., their models are only loosely coupled
(e.g., based on naming conventions). Furthermore, there is no support for (semi-)
automatically combining existing variants to a new one; e.g., Variant 3 of our repair process
(cf. Fig. 1d) combines the adjustments made by Variant 1 and Variant 2, and applies them to
the standardized process. However, it cannot be created out of the existing models of these
two variants as there is no indication which model parts are variant-specific and which are
common for all models.

This multi-model approach will therefore be only feasible if few variants exist or the variants
differ to a large degree from each other. Considering the large number of variants occurring in
practice, however, the aforementioned drawbacks increase modeling and maintenance efforts
significantly. Particularly, the efforts for maintaining and changing process variants become
high since more fundamental process changes have to be accomplished for each variant
separately (e.g., due to changed or new legal regulations). This is both time-consuming and
error-prone. As another consequence, over time models representing the variants more and
more differ from each other; e.g., when optimizations are only applied to single variants
without considering their relations to other ones (Weber and Reichert 2008b). This, in turn,
makes it a hard job for process designers to analyze, compare, and unify business processes
and to implement the multiple variants within a common IT system. As conclusion, generally,
modeling all process variants in separate models does not constitute an adequate solution for
variant management.

Single-model approach. Another approach, frequently applied in practice, is to capture
multiple variants in one single model using conditional branchings (i.e., XOR-/OR-Splits).
Consider Fig. 2 as an example, which shows the repair process together with different variants
(cf. Fig. 1a–d). Each execution path in the model represents a particular variant. Therefore,
branching conditions indicate which path belongs to which variant.

Generally, specifying all variants in one process model can result in a large model, which is
difficult to comprehend and expensive to maintain. Note that in realistic scenarios there might
be dozens to up to hundreds of variants of a particular process type (Weber et al. 2011; Li et
al. 2011). As another drawback, variants are then mixed with “normal” process logic; i.e.,
branchings relevant for all process variants cannot be distinguished from the ones
representing a variant selection. For example, our repair process includes a decision to only
perform activity Repair if necessary. Therefore, on the model side, there is a conditional
branching to either perform or skip the repair step. This branching is relevant for all discussed
variants of the repair process; i.e., it is no variant-specific branching. However, the user
cannot distinguish between normal and variant-specific branchings, unless there are special
conventions to represent variant specific conditions or other model extensions used to mark a
branching as normal or variant-specific. In summary, variants are neither transparent nor
explicitly defined in this approach. As a consequence, the supporting IT system is unaware of
the different process variants and only treats them as “normal” branchings within a single
process model.

Fig. 2 Process variants realized by conditional branches

Discussion. Neither the use of separate models for capturing process variants nor their
definition in one model based on conditional branchings constitutes adequate methods. Both
approaches do not treat variants as first class objects; i.e., the variant-specific parts of a
process are maintained and hidden either in separate models (multi-model approach) or in
control flow logic (single-model approach). Another drawback of these approaches is the lack
of context-awareness. Contextual knowledge might only be integrated and used in terms of
process meta-data or branching conditions. As the process context mainly influences variant
configuration, however, this fundamental aspect has to be considered more explicitly.

Note that these limitations also apply to popular business process modeling tools like ARIS
Business Architect or WBI Modeler. ARIS Business Architect (IDS Scheer 2008), for
example, allows to create a new process variant by copying the respective model directory
and its objects, resulting in high redundancy of model data. Though the derived variant
objects refer to the original objects (denoted as master objects in ARIS) afterwards, changes
of the latter are not propagated to the variants. In principle, this corresponds to the multi-
model approach as described above. However, through the explicit documentation of relation
structures (between original and variant objects) some improvement is achieved.

3 Requirements

We conducted several case studies not only in the automotive industry (Müller et al. 2006,
VDA 2005) but also in other domains like healthcare (Lenz and Reichert 2007), to elaborate
key requirements for the configuration, adaptation, and management of process variants. This
strong linkage to practice was needed in order to realize a complete and solid approach for
process variant management. The requirements we identified are related to different aspects
including the modeling of process variants, their linkage to process context and context-driven
configuration, their execution in workflow management systems (WfMS), and their
continuous optimization to deal with evolving needs; i.e., we have to deal with requirements
related to the whole process life cycle (Hallerbach et al. 2008c, e, Weber et al. 2006, Weber et
al. 2009). The standard process life cycle is depicted in Fig. 3. It consists of three phases,
namely the design and modeling of the process, the creation of a particular process variant,
and the deployment of this variant in a runtime environment. The process life cycle can be
described as a (feedback) loop of these phases during which a process is continuously
optimized and adapted (Weber et al. 2006, Weber et al. 2009). The major requirements to be
met are described in the following.

Fig. 3 Process life cycle

Modeling. Efforts for modeling process variants should be kept as minimal as possible. Reuse
of the variant models (or parts of them) has to be supported. In particular, it should be
possible to create new variants by taking over properties from existing ones, but without
creating redundant or inconsistent model data. Thus, the hierarchical structure of such
“variants of variants” has to be adequately represented and should be easy to adapt.

Variant configuration. The configuration of a process variant (i.e., its derivation from a given
master or base process) should be done automatically if possible. Therefore, the specific
circumstances (i.e., the process context) under which this configuration takes place have to be
considered. In particular, an elaborated procedure for context-aware, automated variant
configuration is required. At the same time, consistency and correctness of the configured
process variants have to be ensured throughout the entire process life cycle.

Execution. To execute a process variant, its model has to be interpreted by a workflow engine.
In this context, it is important to keep information about the configured process variant and its
relation to a master or base process (and to other variants) in the runtime system. To deal with
dynamic changes of the process context, the runtime system should additionally allow to
dynamically switch process execution from one variant to another if required (i.e., to
reconfigure the corresponding process variant on-the-fly). Finally, if context information is
only available during runtime, the specific variant will have to be determined (i.e.,
configured) at runtime as well.

Maintenance and optimization. To reduce maintenance efforts and cost of change,
fundamental changes affecting multiple process variants should be conducted only once. As a
consequence, all process variants concerned by the respective change should be adapted
automatically and correctly.

There exist other requirements addressed by Provop, but not treated here. Examples include
the consistency of configured variants, adequate visualization of the variants in all life cycle
phases, and provision of intuitive user interfaces for variant configuration. In this chapter, we
focus on the main requirements discussed above, covering the complete process life cycle.

4 The Provop Approach

In practice, process variants are often created by cloning and adjusting an existing process
model of a particular type according to the given context. For example, regarding the three
process variant models from Fig. 1b–d, one can notice that they can be derived from the
standardized process as depicted in Fig. 1a by adding, removing, or modifying activities.
Generally, every process model can be derived out of another one by adjusting it accordingly,
i.e., by applying a set of change operations and change patterns, respectively, to it (Weber et
al., 2008). Starting from this observation, Provop provides an operational approach for
managing process variants based on a single process model (see Fig. 4a). In particular,
process variants can be configured by applying a set of high-level change operations to a
given process model. We denote the latter as base process.

Fig. 4 Variant configuration by process model adaptation

In the following, we provide an overview of our Provop approach and describe it along the
different phases of the process lifecycle.

4.1 Modeling

In the modeling phase, first of all, a base process, from which the different process variants
can be derived through configuration, has to be defined. Following this, high-level change
operations, which can be applied to this base process, are specified (Hallerbach et al. 2008a;
Hallerbach et al., 2008d).

Defining the base process. Basic to the configuration of process variants is a base process,
which serves as reference for the high-level change operations. When considering typical use
cases as well as the overall process landscape in an enterprise, different policies for defining
such base process are relevant. Basically, Provop supports the following ones:

 Policy 1 (standard process): Here, the base process represents a domain-specific
standard or reference process. In the automotive domain, for example, such reference
processes exist for Engineering Change Management. Usually, a standard process has
to be adjusted to meet specific requirements; i.e., it must be possible to derive variants
from it. Provop assists designers in correctly defining the necessary adjustments when
configuring a process variant out of the reference process.

 Policy 2 (most frequently used process): If one process variant is used more frequently
than others, it can be chosen as base process. This reduces configuration efforts in
terms of the number of processes for which adjustments become necessary. Provop
maintains statistics on the use of process variants to enable Policy 2. Generally, Policy
2 does not ensure that the average number of change operations needed to configure
the variants out of the base process becomes minimal.

 Policy 3 (minimal average distance): When applying change mining to a collection of
variants, we can derive a base model such that average distance between this model
and its variants (i.e., the number of high-level operations needed to transform the base
process into the process variant) becomes minimal (Li et al. 2008a). Thus,
configuration efforts can be reduced accordingly. For mining process variants, we
utilize algorithms we developed in the MinAdept project (Li et al. 2008b).

 Policy 4 (superset of all process variants): The base process is created by merging all
variants into one process model using conditional branchings; i.e., the base process
realizes a “superset” of all relevant variants. Consequently, every element that is part
of at least one variant belongs to the base process as well. When deriving process
variants, therefore, only DELETE operations have to be applied.

 Policy 5 (intersection of all process variants): The base process comprises only those
elements that are part of all variants; i.e., the base process realizes a kind of
“intersection” of relevant variants. Therefore, the base process covers the identical
elements of the process variants. When deriving process variants, no DELETE
operations have to be performed, but elements may have to be moved, modified, or
inserted.

Policies 1–5 differ in one fundamental aspect: When using Policy 1 or 2, the respective base
process serves a specific use case; i.e., it represents one process variant valid in a specific
context. Policies 3–5, in turn, have been especially designed for configuring variants and thus
do not necessarily represent a semantically valid process model. Which policy to choose
mainly depends on the modeling scenario and the present process landscape; e.g., if a standard
process already exists, Policy 1 will be recommended.

Change operations. A base process can be adjusted in different ways to configure a specific
variant. Provop supports the following adaptation patterns: INSERT, DELETE, and MOVE
process fragments, and MODIFY process element attributes. And fragments constitute
connected process sub-graphs (including single activity nodes and edges respectively), which

not necessarily have a single entry and single exit. To refer to fragments and elements of the
base process within such change operations, we use adjustment points, which correspond to
the entry or exit of an activity or connector node (e.g., split and join nodes) of the base
process.1 Adjustment points are labeled with unique names. As example consider “adjustment
point X” in Fig. 4, which corresponds to the entry of activity B.

1If only single elements are affected by a particular change operation, their process element
IDs may be used alternatively.

Table 1 Change operations (i.e., change patterns) supported by Provop

1. INSERT-Operation
Symbol

Purpose Addition of process fragments (A process fragment consists of at least one
process element, e.g., activity nodes or control edges).

Parameters Process fragment to be added with entries and exits marked by
adjustment points

 Target position of the process fragment within the base process,
marked by adjustment points for entries and exits

 Mapping between entries and exits of the added fragment to the
target position within the base process (i.e., mapping of the
respective adjustment points)

2. DELETE-Operation
Symbol

Purpose Removal of process elements
Parameters Process fragment to be deleted with entries and exits marked by

adjustment points
 Alternatively: deleting single elements by referring to their ID

3. MOVE-Operation
Symbol

Purpose Change execution order of activities
Parameters Process fragment to be moved with entries and exits marked by

adjustment points
 Target position of the process fragment marked by adjustment points

4. MODIFY-Operation
Symbol

Purpose Change attributes of process elements
Parameters Element ID

 Attribute name
 Value to be assigned

Table 1 gives an overview of the change operations currently supported by Provop. Each
entry describes the purpose of the respective operation, its parameters, and the symbol
representing it. The formal semantics of respective change patterns is described in Rinderle-
Ma et al. (2008). Note that Provop covers only a subset of the change patterns presented in
Weber et al. (2007, 2008), which have turned out to be the most relevant ones needed for
variant configuration in practice; i.e., we were able to capture the different scenarios

discussed in the introduction section based on these change patterns. It is also worth
mentioning that Provop provides an extensible approach, to which other change patterns may
be added later.

Grouping change operations into options. As the number of change operations required to
configure all relevant variants might become large, Provop allows structuring multiple change
operations by grouping them into the so-called options. This is useful, for example, if the
same change operations are always applied in conjunction with each other when configuring
certain variants. Think of, for example, the handling of a medical examination in the
radiology unit of a hospital. While for ambulant patients no transport between ward and
radiology room is required, basic patients first have to be transferred from the ward to the
radiology unit and later back to the ward. To capture the latter variant, we need to add two
activities at different positions of the respective base process. This can be achieved by
defining the two insert operations and grouping them in one option.

Constraint-based use of options. Our case studies have revealed that options are often
correlated in a structural or semantic manner. To capture this, Provop considers three types of
relations between options, which can be explicitly defined by the user: dependency, mutual
exclusion, and hierarchy.

 Dependency: When applying different options conjointly to the base process (e.g., due
to semantic dependencies), the user can explicitly define a dependency relation
between them. Dependency relations are directed; i.e., if relation “Option 1 depends
on Option 2” holds, the inverse relation (i.e., “Option 2 depends on Option 1”) is not
true.

 Mutual exclusion, in turn, is helpful to describe which options must not be used in
conjunction with each other when configuring variants.

 Hierarchy: The definition of option hierarchies allows for the inheritance of change
operations. If an option is selected to configure a particular variant and has an ancestor
in the option hierarchy, the change operations defined by the ancestor options will be
applied as well. This reduces the amount of change operations defined in options and
also structures the options landscape; i.e., maintenance is improved.

When defining relations between options, generally, the designer does not only use one
relation type but may also apply them in combination with each other as well. Provop allows
for the combined use of multiple relations and ensures consistency of a set of relations applied
in a given context. For example, contradictory relations (e.g., a mutual exclusion between an
option and its parental option) must not be applied. Due to lack of space, we omit further
details on how such contradicting constraints can be identified.

The ability to define explicit relations between different options eases their use significantly.
Additionally, Provop excludes semantic errors when configuring a process variant, as we will
discuss in the sequel.

Context model. Provop allows for context-aware process configurations; i.e., it allows for the
configuration of a process variant by applying only those options relevant in the given process

context (Hallerbach et al. 2008b). This, in turn, necessitates a model capturing the process
context. In Provop, such context model comprises a set of context variables. Each context
variable represents one specific dimension of the process context, and is defined by a name
and value range.

Table 2 Context model of a vehicle repair process
Variable name Range of values Behavior
Vehicle type Type 1, Type 2, Type 3,

Type 4
Static

Maintenance Yes, No Static
Security level low, medium, high Static
Workload low, medium, high Dynamic

Table 2 shows an example of the context model defined for the vehicle repair process from
Fig. 1. The depicted context variables do not only differ in their names and range of values
but also in another important aspect. While some context variables are defined as static,
others are classified as dynamic. For example, the value of the context variable Workload is
raised or lowered from time to time according to the current workload of the garage (e.g.,
switching from “medium” to “high” if many new repair orders emerge at the same time).
Thus, this variable is of dynamic nature, as its value may change during process execution.
The context variable Vehicle Type, in turn, is static as the vehicle type is set once and does not
change during the repair process.

4.2 Variant Configuration

In the configuration phase, the base process, the options defined for it, and the context model
are used to configure the models of the different variants. More precisely, a particular variant
is configured by applying a sequence of options and their corresponding change operations to
the base process. We describe the steps needed for configuring a variant in Provop:

Step 1: Select relevant options. To configure a particular variant, usually, only a subset of the
defined options is relevant. Therefore, as a first step in the configuration phase, the set of
relevant options has to be identified. One possible approach is to ask users to manually select
the relevant options. However, this would require sufficient knowledge about available
options and their effects (i.e., change operations). In particular, if users have to choose among
a large number of options, this approach will get error-prone (e.g., relevant options might be
omitted or wrong ones chosen).

A more sophisticated approach is to select relevant options based on contextual knowledge.
Rather than mapping already configured process variants to a context description, context-
aware process configuration allows for the combination of the concepts provided by options
and context models. In Provop, this linkage is realized by the use of context rules. Such rules,
can be assigned to the options and make use of the defined context model. Regarding a given
context, all options whose context rules evaluate to true, are applied to the base process and
therefore determine the respective variant. As special case, the base process itself may serve

as variant (i.e., no option is applied). In Step 3, we describe the order in which the selected
options are applied to the base process.

Fig. 5 Example of context dependent options

Figure 5 illustrates how the three variants of the repair process (cf. Figure 1) are captured in
Provop: The standardized process of Figure 1a is defined as the base process out of which the
variants are configured. This base process contains several adjustment points (e.g., “Start
Maintenance” at the entry of activity Maintenance). As mentioned, adjustment points may be
referred to by options and their change operations. Furthermore, Figure 5b depicts three
options: Option 1 performs a modification of activity Diagnosis. It will be applied if the type
of the vehicle is of value Type 2. Option 2, in turn, will delete the maintenance activity if no
maintenance of the vehicle is requested. Finally, Option 3 inserts a final security check
activity in case of high security levels. The variants of Figure 1b–d can now be configured by
applying a subset of these options to the base process. For example, if the context of a process
variant is defined by the expression “Vehicle-Type=Type 2 AND Maintenance=No AND
Security-Level=Low,” Options 1 and 2 will be applied resulting in Variant 1 (cf. Figure 1b).

Step 2: Evaluate relations between selected options. As aforementioned, options may be
related. Generally, for a sequence of options to be applied to the base process, compliance
with explicitly defined constraints has to be ensured. For example, if a selected option
depends on another one, not yet contained in the set of selected options, this set will have to
be adjusted accordingly. Generally, this can be achieved either by adding missing options to
the selection list or by removing the ones that cause the constraint violation. Another
constraint violation will occur if the selection set comprises mutually excluding options. In
this case, one of the conflicting options has to be removed by the user in order to restore
consistency. In summary, option constraints are considered to ensure semantic correctness and
consistency of the selected set of options at configuration time.

Step 3: Determine the order in which options shall be applied. Generally, selected options
have to be applied in sequence; i.e., their order has to be specified when configuring a variant.
A naïve approach would be to sort these options in the order they were created; e.g., by
making use of their creation time stamps. Obviously, this approach will only make sense if the
options and their change operations are commutative. Otherwise, unintended and inconsistent
variant models can result, particularly when applying options in the wrong order. Figure 6
shows an example: After applying Option 1 to the base process, an intermediate model is

derived with activity D and adjustment point Y being deleted.2 This model is now used as
“reference model” for applying Option 2. In the present case, Option 2 cannot be applied as
the adjustment point Y it refers to was deleted when applying Option 1. In order to avoid such
inconsistencies, Provop allows defining the order in which selected options shall be applied.
Furthermore, wrong option sequences, resulting in erroneous variant models afterwards, are
excluded based on well-defined correctness criteria (see Step 5). Finally, by evaluating
predefined sequencing constraints, a correct application order can be determined.

Step 4: Applying options and their change operations. After selecting the options and
determining their order, their change operations are applied to the base process in order to
configure the model of the respective variant. Generally, change operations have specific pre-
and postconditions, which allow us to guarantee their correct application.3 As one
precondition, for example, process elements to which an operation refers have to be present in
the respective model. Thus, the problem depicted in Fig. 6 would be recognized before
applying the INSERT-operation of Option 2; i.e., Provop would disallow to apply the two
options in the depicted order.

Step 5: Checking consistency. The variant models resulting from the sketched configuration
procedure are supposed to be executed in the process enactment phase. Therefore, consistency
and correctness of the models have to be guaranteed. In addition to the already described
constraint-based selection approach (cf. Step 2), Provop validates the resulting models by
checking the consistency and correctness of data and control flow. Unlike other variant
configuration approaches (van der Aalst et al. 2008), Provop does not necessarily require a
consistent and correct base process as starting point when configuring variants. This follows
from the above described policies for defining the base process. Assume, for example, a base
process being defined as intersection of its variants. If two variants have different activities to
write a data object, read by a common activity, the base process would only contain the
reading activity and thus be inconsistent in terms of data flow. Of course, Provop excludes
such flaws for the configured variant models.

Fig. 6 Syntactical error after applying options in wrong order

2Note that this example indicates that we need more advanced change support that considers
the special semantics of adjustment points. Generally, the user should be able to define
whether adjustment points may be deleted when applying certain change operations or shall
be kept in the intermediate model. In the latter case, the deleted activities and nodes
respectively are replaced by silent activities without associated actions. Generally, silent
activities and adjustment points are removed after application of all selected options.

3For a formal semantics of respective change patterns, we refer to (Rinderle-Ma et al. 2008).

4.3 Deployment and Execution

After the configuration phase, the resulting variant model needs to be translated into an
executable workflow model. Common tasks emerging in this context are to assign graphical
user interfaces, to subdivide workflow activities into human and automated tasks, or to choose
the right level of granularity for the workflow model. In Provop, we are focusing on problems
arising in the context of variant management.

One major aspect concerns the context-aware configuration of the different variants. To also
capture context changes during process instance execution, Provop supports dynamic context
variables; i.e., variables whose values may change during process execution. When using
dynamic context variables for defining a context rule of an option, the decision whether to
apply the corresponding change operations or not has to be made at runtime. As a
consequence, the respective process variant either cannot be completely configured when
creating the process instance or it has to be reconfigured during runtime. To allow for the
dynamic reconfiguration of a process instance of a variant model, Provop supports variant
branches. Basic idea is to encapsulate the adjustments of single options within these variant
branches. The split condition at a variant branching corresponds to the context rule of the
option. Whenever process execution reaches a variant branch, the current context is evaluated.
If the split condition evaluates to true, the variant branch will be executed, i.e., the change
operations will be applied to the base process. Otherwise, the variant branch is skipped and
therefore all adjustments of the option are ignored. Provop ensures the constraints regarding
the use of options in the context of such dynamic reconfigurations as well. However, the
handling of respective correctness issues is outside the scope of this chapter.

Figure 7 shows an example of a variant branch definition in conjunction with the INSERT
operation.4 If the workload of a garage is high, subcontractors will be commissioned to
provide maintenance activities. Thus, Option 4 will be applied adding corresponding activities
Commissioning Sub-contractor and Support Maintenance to the base process. As the context
variable Workload is dynamic (cf. Table 2), these activities are encapsulated in a variant
branch (indicated by the encircled “less than” and “greater than” symbols). Furthermore,
context rule of Option 4 is used as split condition. Whenever a variant branch is reached
during process execution, corresponding context rules are evaluated. If they evaluate to true
(cf. Figure 8a), the variant branch will be executed; otherwise, it will be skipped (cf. Figure
8b).

Fig. 7 Dynamic configuration of process variants

Fig. 8 Determine variant at runtime

4Note that every change operation supported by Provop requires specific considerations here.

4.4 Maintenance and Optimization

When evolving base processes in Provop (e.g., due to organizational optimization efforts), all
related process variants (i.e., their models) are reconfigured automatically. Thus, maintenance
efforts can be significantly reduced. However, evolving and optimizing the base process may
affect existing options, for example, when referred adjustment points are moved to a new
position or are even deleted. Such problems are detected in Provop; e.g., by checking whether
the definitions of existing options are affected by the adaptations of the base process model.
Furthermore, solving those conflicts is largely automated.

4.5 Proof-of-Concept Implementation

We implemented the described concepts in a powerful proof-of-concept prototype. When
developing this prototype, we had to decide whether to realize a process configuration tool
from scratch or to enhance an existing process modeling tool with respective configuration
features. On one hand, the first option offers the flexibility to implement the presented
concepts in a native and consistent way. On the other, it is accompanied by high development
costs; e.g., basic functionality of the process modeling tool would have to be re-implemented

from scratch. Therefore, we decided to base our implementation on an existing process
modeling tool and to enhance this tool with the process configuration facilities described. To
be more precise, we decided to use the ARIS Business Architect (IDS Scheer 2008), which
belongs to the ARIS Design Platform and constitutes a widespread tool supporting a variety
of modeling notations (e.g., EPCs and BPMN) as well as use cases (e.g., modeling, analyzing
and optimizing business processes).

The general limitations of commercial BPM tools with respect to the handling of process
variability, which have been described in Section 2, apply to ARIS Business Architect as well.
Basically, this tool allows creating new process variants by cloning (i.e., copying) existing
process models (and their objects) and modifying them afterwards. However, this might result
in model redundancies. Although the derived variant objects still refer to the original objects,
which are called master objects in ARIS Business Architect, changes of the latter are not
propagated to the variants.

Another decision we had to make when implementing the Provop prototype concerns the
choice of the language for modeling base processes and change options as well as for
representing the variant models resulting from the configurations applied. We first started
with Event-Process-Chains (EPCs) as this notation is widely used in practice. However, EPCs
do not offer grouping functions which become relevant in our context for grouping parameters
of a particular change operation as well as for grouping multiple change operations into one
change option. To enable grouping in ARIS Business Architect, in principle, model folders
may be used as workaround. However, we decided to use the BPMN notation instead since it
provides different grouping mechanism as required in our approach (cf. Figure 9).

Fig. 9 Architecture of the Provop prototype

Figure 9 shows the overall architecture of our proof-of-concept prototype. Each change option
is realized as a single BPMN model. Within these models the change operations
corresponding to the respective option are encapsulated in pools, which correspond to
graphical as well as logical containers. The relevant parameters of a particular change
operation (e.g., the adjustment points marking a process fragment to be deleted) are specified
by using lanes, which constitute sub-containers of a particular pool (or another lane
respectively). A particular ARIS report, which we implemented using ARIS Script (i.e., Java-
Script extended by specific functions), realizes the transformation of a base process model to
a specific process variant. More precisely, for a base process represented as BPMN model,
variant configuration can be started by selecting a set of options. Following this, the change
operations of selected options are applied to the base process resulting in a new BPMN
model, which then represents the configured process variant.

Figures 10 and 11 depict two screens of this proof-of-concept prototype. Thereby, new objects
and symbols (e.g., operation types and adjustment points) were designed using the ARIS
Symbol Editor. Figure 10 shows a base process, together with its adjustment points, as it can
be modeled with Provop. In turn, Figure 11 depicts an option comprising exactly one change
operation. More precisely, the depicted option allows inserting activity Final Check between
the specified adjustment points of the base process if the corresponding context rule (i.e.,
Security-Critical = “Yes”) is satisfied.

Fig. 10 Modeling a base process in Provop

Fig. 11 Example of a change option in Provop

5 Comparing Provop with other Process Configuration Approaches

Generally, there is a great interest in capturing common process knowledge only once and re-
using it in terms of configurable process models that represent a collection of related process
variants (i.e., a process family). In the following, we make use of the process carried out when
checking-in at an airport (Ayora et al. 2012a) in order to illustrate commonalities and
differences of existing approaches for capturing such variability (including Provop). We
choose this process since it shows a high degree of variability; e.g., occurring due to the type
of check-in (e.g., online, or at a counter), which also determines the type of boarding card
(e.g., electronic vs. paper-based). Other sources of variability include the type of passenger
(e.g., unaccompanied minors requiring extra assistance) and the type of luggage (e.g.,
overweight luggage).

In a systematic literature review, we identified 25 proposals (including Provop) dealing with
the modeling and management of process variants (Ayora et al. 2013a; Ayora et al. 2013b).
Common to them is the extension of existing process modeling languages with variability-
specific constructs that enable the creation of configurable process models. By treating
variability as a first class citizen, these extensions help avoiding redundancies, fostering
reusability, and reducing process modeling efforts (Torres et al 2012). In particular, we
identified the following language constructs commonly used by existing proposals capturing
variability (including Provop) in addition to standard process modeling elements:

 Language Construct LC1 (configurable region): A configurable region is a region in a
configurable process model for which different configuration choices may exist
depending on the application context, e.g., an airline may offer different ways of
obtaining the boarding cards depending on the check-in type: printing a boarding card
at the airline desk, download an electronic boarding card, or obtaining it via a mobile
phone.

 Language Construct LC2 (configuration alternatives). A configuration alternative is
defined as a particular configuration choice that may be selected for a specific
configurable region, e.g., there exist different types of boarding card: paper-based,
electronic, or in the mobile phone.

 Language Construct LC3 (context condition). A context condition defines the
conditions under which a particular configuration alternative of a configurable region
shall be selected, e.g., passengers with overweight luggage pay a fee.

 Language Construct LC4 (configuration constraint). A configuration constraint is
defined as a (structural) restriction of the selection of configuration alternatives of the
same or different configurable regions. Respective constraints are based on semantic
restrictions to ensure the proper use of configuration alternatives, e.g., staff members
need to be localized when unaccompanied minors are travelling.

In the following, we describe a well-known approach for realizing configurable process
models in more detail and compare it with Provop. More precisely, we consider process
models with configurable nodes, which take a fundamentally different approach to realize and
describe the variability-specific parts of a process model when compared to the Provop
approach.

Process models with configurable nodes: A possible way of specifying a configurable
process model is by means of configurable nodes. Modeling languages supporting this
approach include, for example, C-EPC and C-YAWL (Gottschalk et al. 2007; Gottschalk
2009; Gottschalk et al. 2009). Basically, these proposals extend an existing process modeling
language (e.g., EPC and YAWL) by adding configurable elements for explicitly representing
variability in process families. In particular, E-EPCs provide support for the specification and
customization of reference process models.

Figure 12 illustrates the configurable process model as C-EPC for the check-in process.
Configurable nodes are depicted with a thicker line. A configurable region (LC1) in C-EPC is
specified by a process fragment of the configurable process model with exactly one entry and
one exit, and may take two different forms. First, the process fragment may consist of a
splitting configurable connector, immediately followed by a set of branches representing
configuration alternatives, and a joining configurable connector; i.e., the configurable
connectors delimit the configurable region (e.g., configurable region 2 in Figure 12).
Alternatively, the process fragment may consist of a configurable function (i.e., activity), e.g.,
configurable regions 1 and 3 in Figure 12, which may be configured as ON (i.e., the function
is kept in the model), OFF (i.e., the function is removed from the model), or OPT (i.e., a
conditional branching is included in the model deferring the decision to run-time). In turn, a
configuration alternative (LC2) is specified by a process fragment that may be included as a
branch between two configurable connectors (e.g., Print electronic boarding card in
configurable region 2 in Figure 12). Context conditions (LC3) are represented in C-EPC
separately in a questionnaire model (Rosa et al. 2007). Finally, a configuration constraint
(LC4) may be specified in terms of a configuration requirement linked to the configurable
nodes that delimit the configurable region to which the respective configuration alternatives
belong; e.g., configuration requirement 1 in Figure 12 states that the inclusion of the function
Fill in UM form implies the inclusion of the function Localize staff.

Fig. 12 C-EPC configurable process model for the check-in process

A similar approach is presented in Gottschalk et al. (2007), which transfers the concepts for
configuring a reference process model (i.e., to enable, hide, or block a configurable workflow
element) to workflow models.

Provop: The Provop approach presented in this chapter constitutes a fundamentally different
way of handling process families, which is based on the observation that process variants are
often derived by adapting a pre-specified base process model to the given context through a
sequence of structural adaptations.

Figure 13 illustrates how the process family dealing with the check-in process can be
represented using Provop. Figure 13A shows the base process model from which the process
variants may be derived. As discussed, in Provop, a configurable region (LC1) is specified by
a fragment of the base process, delimited by two adjustment points; i.e., black diamonds (e.g.,
configurable region 1 comprises the process fragment delimited by adjustment points A and B
in Figure 13). In turn, a configuration alternative (LC2) is specified by a change option that
includes (1) the list of change operations modifying the base process at a specific
configurable region and (2) a context rule that defines the context conditions under which the
change operations shall be applied (e.g., Opt. 1 in Figure 13B). Context conditions (LC3) are
specified by context rules which include a set of context variables and their values specifying
the conditions under which a configuration alternative (i.e., a change option) shall be applied
(e.g., Opt. 2 is applied if the check-in type is online). All context variables and their allowed
values are gathered in the context model (cf. Figure 13C). Finally, configuration constraints
(LC4) are specified as constraints (e.g., mutual exclusion) between two change options in the
option constraint model; e.g., if Opt. 2 is applied then Opt. 3 has to be applied as well (cf.
Figure 13C).

Fig. 13 Provop model for the check-in process

Basically, both approaches described enable reference process modeling (Rosemann and van
der Aalst 2007; vom Brocke 2007). Usually, a reference process has recommending character,
covers a family of process models, and may be customized in different ways to meet the needs
of the specific application environment.

When comparing the two approaches, one can notice that they both realize the
aforementioned language constructs for capturing process variability (i.e., LC1 – LC4),
although this is accomplished in a completely different way. On one hand, proposals like C-
EPC and C-YAWL represent a configurable process model (and process family respectively)
in one artifact, capturing both the commonalities and particularities of the different process
variants. Hence the configurable process model reflects all possible behavior. On the other,
proposals such as the presented Provop approach or the one suggested by Kumar and Wen
(2012) propose a gradual construction of the process family by modifying the structure of a
specific process variant (i.e., base process model) at specific points (i.e., variation points)
through change operations. Both approaches have their pros and cons, and additional research
is needed to learn which of them fits better in a given application environment.

In principle, the C-EPC approach constitutes an optimization of the single model approach
introduced in Section 2. As opposed to Provop, the suggested methods does not allow moving
or adding model elements, or adapting element attributes when configuring a process variant
out of a reference process model. Basically, the provided configuration support corresponds to
the one of Policy 4 for which the chosen base process (i.e., reference process) constitutes the
superset of all process variants. Obviously, in this specific scenario, only delete or optional
delete operations (i.e., dynamic delete operations in Provop) become necessary in order to
configure a particular process variant out of a reference process model. However, Policy 4 is
only one out of several configuration policies supported by Provop; i.e., a base process can be
defined in a more flexible way.

A qualitative comparison of these and other approaches supporting business process
variability is provided by Torres et al. (2012). In particular, this work considers
understandability issues that emerge when configuring concrete process variants with either

C-EPC or Provop. Furthermore, Ayora et al. (2013a; 2013b) presents a set of empirically
evidenced change patterns for defining and changing configurable process models. Thereby,
the proposed change patterns are based on the general language elements presented above
(i.e., LC1 – LC4) and hence abstract from the concrete process configuration approach taken.

6 Further Issues and Related Work

This section discusses further aspects that should be considered by any framework enabling
configurable process models.

Capturing variability of process perspectives other than control flow. The previous sections
have focused on the variability of activities and their control flow, whereas the variability of
other process perspectives (e.g., data and resources) has yet to be considered. To overcome
this limitation, for example, La Rosa et al. (2008; 2011) suggest a configurable process
modeling notation, which incorporates features for capturing resources, data, and physical
objects involved in the performance of activities. Similarly, Provop considers variability of
the information and organization perspective (Hallerbach 2010).

Ensuring soundness of configured process variants. A big challenge for any process
configuration approach is to ensure that configured process variants are sound. When
considering the large number of process variants that may be configured out of a configurable
process model, as well as the many syntactic and semantic constraints these process variants
have to obey, this constitutes a nontrivial task. In particular, manually correcting potential
errors would hamper any process configuration approach. Instead, efficient and automated
techniques for ensuring the soundness of process variant models are required.
Van der Aalst et al. (2010) propose a formal foundation for incrementally deriving process
variants from a configurable reference process model, while preserving correctness in respect
soundness. Specifically, assuming the configurable reference process model itself is sound,
the derived process variants are guaranteed to be sound as well. The underlying theory was
developed in the context of Petri nets and then extended to EPCs.
To ensure the soundness of configured process variants, van der Aalst et al. (2010b) suggest a
verification approach inspired by the operating guidelines used in the context of partner
synthesis (Lohmann and Wolf, 2011). For this purpose, the configuration process itself is
viewed as external service. Using partner synthesis, a configuration guideline is computed
that constitutes a compact characterization of all feasible configurations. In particular, this
allows ruling out configurations that lead to soundness violations. The approach is generic
and imposes no constraints on the configurable process models to which it may be applied.
Moreover, all computations are done at design time (i.e., when defining a configurable
process model) and not at configuration time; i.e., there is no need for repeatedly checking
each individual configuration when configuring a process variant model. Thus, once the
configuration guideline has been generated, the response time is instantaneous, thus
encouraging the practical use of configurable process models.
Hallerbach et al. (2009) show how the soundness of process variants can be ensured in the
context of Provop. Thereby, advanced concepts are introduced that enable a context- as well
as constraint-based configuration of process variants. In particular, it is shown how respective
information can be utilized to effectively ensure soundness of the configured process variants.

Merging process variants. Designing a configurable process model is usually not done from
scratch, but rather by analyzing existing process variants. Hence, merging these variants
constitutes an important task that is also particularly relevant in today’s world of company
mergers and organizational consolidations. Considering the large number of process variants
that may exist in enterprises, however, manually merging process models would be a tedious,
time consuming, and error-prone task. Instead, techniques are required for automatically
merging process variants in order to derive a configurable process model.
Regarding approaches like C-EPC or C-YAWL, variant merging needs to meet the following
requirements. First, the behavior of the produced process model should subsume that of the
input variant models (via the union of these input models). Second, it should be possible to
trace back from which process variants an element has originated (via annotations). Third, one
should be able to derive each input process variant from the merged one (via variation points).
La Rosa et al. (2010) present an algorithm producing a single configurable process model
from a pair of process variant models. This algorithm works by extracting the common parts
of the input process variants, creating a single copy of them, and then appending the
differences as branches of configurable connectors. This way, the merged process model is
kept as small as possible, while still capturing all the behavior of the two input models.
Moreover, analysts are able to trace back from which model(s) a given element in the merged
model originated. The algorithm has been prototypically implemented and tested based on
process models from several application domains.
Regarding structural approaches like Provop, a family of algorithms for merging process
variants has been suggested by Li et al. (2011). These algorithms discover a process model by
mining a given collection of process variants. Thereby, the discovered process model has a
minimum average weighted distance to the considered process variants. By adopting the
discovered model as new reference process model, future process configurations become
more efficient, since the efforts (in terms of changes to be applied) for deriving the variants
will be reduced.

Retrieval of process variants. There exist approaches that provide support for the management
and retrieval of separately modeled process variants (i.e., optimizations of the multi-model
approach). For example, Lu and Sadiq (2006) allow storing, managing, and querying large
collections of process variants within a process repository. Graph-based search techniques are
used in order to retrieve process variants that are similar to a user-defined process fragment
(i.e., the query is represented as graph). Obviously, this approach requires profound
knowledge about the structure of stored processes, an assumption that does not always hold in
practice. Variant search based on process metadata (e.g., the process context) is not
considered.

Run-time flexibility for process families. Existing approaches for managing process variability
focus on the modeling and configuration of process variants. However, Ayora et al. (2012)
show that run-time configuration and re-configuration as well as the evolution of process
variants are essential requirements as well. Effectively handling process variants in these
lifecycle phases requires deferring certain configuration decisions to the run-time,
dynamically re-configuring process variants in response to contextual changes, adapting
process variants to emerging needs, and evolving process families over time. Ayora et al.

(2012) characterize these flexibility needs for process families, discuss fundamental
challenges to be tackled, and provide an overview of existing proposals made in this context.

Applying object-oriented concepts to deal with process variability. Different work exits on
how specialization can be applied to deal with process model variability taking advantage of
the generative power of a specialization hierarchy (Wyner and Lee 2003; van der Aalst and
Basten 2002). In the context of the MIT Process Handbook, for example, Wyner and Lee
(2003) show how specialization is enabled for simple state diagrams and dataflow diagrams,
respectively. For both kinds of diagrams, a corresponding set of transformation rules is
provided that result in process specializations when being applied to a particular model.
Similarly, van der Aalst and Basten (2002) discuss transformation rules to define
specialization for process models based on Petri Nets. Finally, Wyner and Lee (2003) show
how specialization can be used to generate a taxonomy of processes to facilitate the
exploration of design alternatives and the reuse of existing designs. Obviously, specialization
and process taxonomies also allow capturing process variants to some degree. As opposed to
the discussed approaches, Provop follows an operational approach, which is independent of
the underlying process meta-model. In addition, Provop provides comprehensive support for
the context- and constraint-based configuration of process variants.
A similar contribution stems from the PESOA project (Bayer et al. 2005, Puhlmann et al.
2005), which provides basic concepts for variant modeling based on UML. More precisely,
different variability techniques like inheritance, parameterization, and extension points are
provided and can be used when describing UML models. As opposed to PESOA, the
operational approach enabled by Provop provides a more powerful instrument for describing
variance in a uniform and easy manner; i.e., no distinction between different variability
mechanisms is required.

Software variability. Variants are relevant in many other domains as well, including product
line engineering and software engineering. For example, fundamental characteristics of
software variability have been described in Bachmann and Bass (2001). In particular,
software variants exist in software architectures and software product lines (Becker et al.
2001, Halmans and Pohl 2003). In many cases, feature diagrams are used for modeling
software systems with varying features. A similar approach is offered by the so-called plus-
minus-lists known from variant management in bill- of-materials. Correctness issues are not
considered in both cases.

7 Summary and Outlook

We have described the Provop approach for configuring and managing process variants.
Provop considers the whole process life cycle and supports variants in all phases. This
includes advanced techniques for modeling variants in a unified way and within a single
process model, but without resulting in too complex or large model representations. Based on
well-defined change operations, on the ability to group change operations into reusable
options and on the possibility to combine options in a constrained way, necessary adjustments
of the base process can be easily and consistently realized when creating and configuring a
variant.

We successfully applied Provop in several case studies in the automotive, healthcare and
governmental domains. Thereby, we were able to demonstrate the applicability of the Provop
framework as well as to elaborate its benefits (Hallerbach 2010). As pointed out by Torres et
al. (2012), however, empirical research is required to evaluate Provop and other process
configuration approaches (e.g., C-EPC) in respect to understandability issues that emerge
when configuring concrete process variants out of a configurable process model.

Issues related to the evolution and change of process families (Ayora et al. 2013a) as well as
the flexible execution of process variants (e.g., to dynamically switch between variants during
runtime; see Ayora et al. (2012)) need to be addressed in future work. Moreover, process
variability needs to be considered for other process support paradigms like, for example, data-
and object-centric modeling approaches (Künzle and Reichert 2012; Reichert 2012a). Finally,
proper techniques for visualizing process variant collections are required (Reichert and Weber
2012, Reichert 2012b).

References

1. Ayora C., Torres V., Reichert M., Weber B., Pelechano V.: Towards run-time flexibility
for process families: open issues and research challenges. In: Proceedings BPM'12
Workshops, LNBIP 132, Tallinn, Estonia, pp. 477-488 (2012)

2. Ayora C., Torres V., Weber B., Reichert M., Pelechano V.: Enhancing modeling and
change support for process families through change patterns. In: Proceedings 14th
International Working Conference on Business Process Modeling, Development, and
Support (BPMDS'13), LNBIP 147, Valencia, Spain, pp. 246-260 (2013)

3. Ayora C., Torres V., Weber B., Reichert M., Pelechano V.: Change patterns for process
families. Technical report PROS-TR-2013-06, University of Valencia, Spain (2013)

4. Bachmann F., Bass L.: Managing variability in software architectures. In: Proceedings
Symposium on Software Reusability, New York, ACM Press, pp. 126–132 (2001)

5. Bayer J., Buhl W., Giese C., Lehner T., Ocampo A., Puhlmann F., Richter E., Schnieders
A., Weiland J., Weske M.: PESOA: process family engineering – modeling variant-rich
processes. TR 18/2005, Hasso-Plattner Institute, Potsdam, Germany (2005)

6. Becker M., Geyer L., Gilbert A., Becker K.: Comprehensive variability modeling to
facilitate efficient variability treatment. In: Proceedings 4th International Workshop of
Product Family Engineering (PFE'01), LNCS 2290, Bilbao, Spain, pp. 294–303 (2001)

7. Becker J., Lis L., Pfeiffer D., Räckers M.: A process modeling language for the public
sector – the PICTURE approach. In: Wybrane Problemy Elektronicznej Gospodarki, pp.
271–281 (2007)

8. Gottschalk F., van der Aalst W.M.P., Jansen-Vullers M.H., La Rosa M.: Configurable
workflow models. International Journal of Cooperative Information Systems 17(2),177–
221 (2007)

9. Gottschalk F.: Configurable process models. PhD thesis, Eindhoven University of
Technology, The Netherlands (2009)

10. Gottschalk F., Wagemakers T., Jansen-Vullers M., van der Aalst, W.M.P., La Rosa, M.:
Configurable process models: experiences from a municipality case study. In:
Proceedings CAiSE'09, LNCS 5565, Amsterdam, The Netherlands, pp. 486-500 (2009)

11. Hallerbach A., Bauer T., Reichert M.: Modellierung und Darstellung von
Prozessvarianten in Provop. In: Proceedings Modellierung'08, Berlin, Germany, LNI P-
127, pp. 41–56 (2008 a)

12. Hallerbach A., Bauer T., Reichert M.: Context-based configuration of process variants.
In: Proceedings 3rd International Workshop on Context-Aware Business Process
Management (TCoB'08), Barcelona, Spain, pp. 31–40 (2008 b)

13. Hallerbach A., Bauer T., Reichert M.: Managing process variants in the process life
cycle. In: Proceedings 10th International Conference on Enterprise Information Systems
(ICEIS'08), Barcelona, Spain, pp. 154–161 (2008 c)

14. Hallerbach A., Bauer T., Reichert M.: Issues in modeling process variants with Provop.
In: Proceedings BPM'08 Workshops, LNBIP 17, Milan, Italy, pp. 56–67 (2008 d)

15. Hallerbach A., Bauer T., Reichert M.: Anforderungen an die Modellierung und
Ausführung von Prozessvarianten. Datenbank Spektrum 24, 48–58 (2008e)

16. Hallerbach A., Bauer T., Reichert M.: Guaranteeing soundness of configurable process
variants in Provop. In: Proceedings 11th IEEE Conference on Commerce and Enterprise
Computing (CEC’09), Vienna, Austria, pp. 98-105 (2009)

17. Hallerbach A.: Management von Prozessvarianten. PhD thesis, University of Ulm,
Germany (2010)

18. Halmans G., Pohl K.: Communicating the variability of a software-product family to
customers. Software Syst Model 2(1),15–36 (2003)

19. IDS Scheer: ARIS platform method 7.1, Technical Handbook, IDS Scheer GmbH,
Germany (2008)

20. Kumar A., Wen Y.: Design and management of flexible process variants using templates
and rules. Computers in Industry 63(2), 112-130 (2012)

21. Künzle V., Reichert M.: Striving for object-aware process support: how existing
approaches fit together. In: Proceedings 1st International Symposium on Data-driven
Process Discovery and Analysis (SIMPDA'11), LNBIP 116, Campione d'Italia, Italy, pp.
169-188 (2012)

22. La Rosa M., Lux J., Seidel S., Dumas M., ter Hofstede A.H.M.: Questionnaire-driven
configuration of reference process models. In: Proceedings 19th International Conference
on Advanced Information Systems Engineering (CAiSE’07), LNCS 4495, Trondheim,
Norway, pp. 424–438 (2007)

23. La Rosa M., Dumas M., ter Hofstede A.H.M., Mendling J., Gottschalk F.: Beyond
control-flow: extending business process configuration to roles and objects. In:
Proceedings ER'08 Conference, Barcelona, Spain, pp. 199–215 (2008)

24. La Rosa M., Dumas M., Uba R., Dijkman R.M.: Merging business process models. In:
Proceedings OTM Conferences (1), LNCS 6426, pp. 96–113 (2010)

25. La Rosa M., Dumas M., ter Hofstede A.H.M., Mendling J.: Configurable multi-
perspective business process models. Information Systems 36(2), 313–340 (2011)

26. Lenz R., Reichert M.: IT support for healthcare processes – premises, challenges,
perspectives. Data Knowl Eng 61(1),39–58 (2007)

27. Li C., Reichert M., Wombacher A.: Mining process variants: goals and issues. In: IEEE
5th International Conference on Services Computing (SCC'08), Honolulu, Hawaii, USA,
pp. 573–576 (2008 a)

28. Li C., Reichert M., Wombacher A.: Discovering reference process models by mining
process variants. In: Proceedings 6th International Conference on Web Services
(ICWS'08), Beijing, China, IEEE Computer Society Press, pp. 45–53 (2008 b)

29. Li C., Reichert M., Wombacher A.: Mining business process variants: challenges,
scenarios, algorithms. Data & Knowledge Engineering 70(5), 409-434 (2011)

30. Lohrmann M., Reichert M.: Modeling business objectives for business process
management. In: Proceedings S-BPM ONE 2012 Scientific Research, LNBIP 104,
Vienna, Springer, pp. 106-126 (2012)

31. Lohmann N., Wolf K.: Compact representations and efficient algorithms for operating
guidelines. Fundam Inform 108(1–2), 43–62 (2011)

32. Lu R., Sadiq S.: On managing process variants as an information resource. Technical
report No. 464, University of Queensland, Australia (2006)

33. Müller D., Herbst J., Hammori M., Reichert M.: IT support for release management
processes in the automotive industry. In: Proceedings 4th International Conference on
Business Process Management (BPM'06), LNCS 4102, Vienna, Austria, pp. 368–377
(2006)

34. Mutschler B., Reichert M., Bumiller J.: Unleashing the effectiveness of process-oriented
information systems: problem analysis, critical success factors and implications. IEEE
Trans Syst Man Cyberm C 38(3), 280–291 (2008)

35. Puhlmann F., Schnieders A., Weiland J., Weske M.: PESOA – variability mechanisms for
process models. Technical Report, Hasso-Plattner-Institute, Potsdam, Germany (2005)

36. Reichert M., Kolb J., Bobrik R., Bauer T.: Enabling personalized visualization of large
business processes through parameterizable views. In: Proceedings 27th ACM
Symposium on Applied Computing (SAC'12), Trento, Italy, ACM Press, pp. 1653-60
(2012)

37. Reichert M.: Process and data: two sides of the same coin. In: OTM 2012 Proceedings
Part I, 20th International Conference on Cooperative Information Systems (CoopIS'12),
LNCS 7565, Rome, Italy, pp. 2-19 (2012)

38. Reichert M.: Visualizing large business process models: challenges, techniques,
applications. In: Proceedings BPM’12 Workshops, LNBIP 132, Tallinn, Estonia, pp. 725-
736 (2012)

39. Reichert M., Weber B.: Enabling flexibility in process-aware information systems:
challenges, methods, technologies. Springer, Berlin-Heidelberg (2012)

40. Rinderle-Ma S., Reichert M., Weber B.: On the formal semantics of change patterns in
process-aware information systems. In: Proceedings 27th International Conference on
Conceptual Modeling (ER'08), LNCS 5231, Barcelona, Spain, pp. 279–293 (2008)

41. Rosemann M., van der Aalst W.M.P.: A configurable reference modeling language.
Information Systems 32, 1–23 (2007)

42. Torres V., Zugal S., Weber B., Reichert M., Ayora C., Pelechano V.: A qualitative
comparison of approaches supporting business process variability. In: Proceedings
BPM'12 Workshops, Tallinn, Estonia, LNBIP 132, pp. 560-572 (2012)

43. van der Aalst W.M.P., Basten T.: Inheritance of workflows: an approach to tackling
problems related to change. Theor Comput Science 270(1–2), 125–203 (2002)

44. van der Aalst W.M.P., Dumas M., Gottschalk F., ter Hofstede A.H.M, La Rosa M.,
Mendling J.: Correctness-preserving configuration of business process models. In:
Proceedings Fundamental Approaches to Software Engineering, LNCS 4961, Budapest,
Hungary, pp. 46–61 (2008)

45. van der Aalst W.M.P., Lohmann N., La Rosa M., Xu J.: Correctness ensuring process
configuration: an approach based on partner synthesis. In: Proceedings BPM’10
Conference, LNCS 6336, pp. 95–111 (2010)

46. van der Aalst W.M.P., Dumas M., Gottschalk F., ter Hofstede A.H.M., La Rosa M.,
Mendling J.: Preserving correctness during business process model configuration. Formal
Asp Comput 22(3–4), 459-482 (2010)

47. VDA: Engineering change management (ECM) – Part 1 Engineering Change Request
(ECR) Version 1.1, Recommendation 4965 T1(2005)

48. vom Brocke J.: Design principles for reference modelling - Reusing information models
by means of aggregation, specialization, instantiation, and analogy. In: Fettke P, Loos P
(eds) Reference modelling for business systems analysis. Idea Group Publishing,
Hershey, PA, pp. 47–75 (2007)

49. Weber B., Reichert M.: Refactoring process models in large process repositories. In:
Proceedings 20th International Conference on Advanced Information Systems
Engineering (CAiSE'08), LNCS 5074, Montpellier, France, pp. 124–139 (2008 b)

50. Weber B., Reichert M., Rinderle S., Wild W.: Towards a framework for the agile mining
of business processes. In: Proceedings BPM'05 Workshops, LNCS 3812, pp. 191–202
(2006)

51. Weber B., Rinderle S., Reichert M.: Change patterns and change support features in
process-aware information systems. In: Proceedings 11th International Conference on
Advanced Information Systems Engineering (CAiSE'07), LNCS 4495, Trondheim,
Norway, pp. 574–588 (2007)

52. Weber B., Rinderle S., Reichert M.: Change patterns and change support features –
enhancing flexibility in process-aware information systems. Data Knowl Eng 66(3), 438–
466 (2008)

53. Weber B., Reichert M., Wild W., Rinderle-Ma S.: Providing integrated life-cycle support
in process-aware information systems. Int J Cooper Inform Syst 18(1),115–165 (2009)

54. Weber B., Reichert M., Mendling J., Reijers H.: Refactoring Large Process Model
Repositories. Computers in Industry 62(5), 467-486 (2011)

55. Wyner G.M., Lee J.: Defining specialization for process models. In: Malone TW,
Crowston K, Herman GA (eds) Organizing business knowledge – the MIT process
handbook. MIT Press, Cambridge, MA, pp. 131–174 (2003)

