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Abstract This chapter deals with advanced concepts for the configuration and management of 
business process variants. Typically, for a particular business process, different variants exist. 
Each of them constitutes an adjustment of a master process (e.g., a reference process) to 
specific requirements building the process context. Contemporary Business Process 
Management tools do not adequately support the modeling and management of such process 
variants. Either the variants have to be specified in separate process models or they are 
expressed in terms of conditional branches within the same process model. Both methods can 
result in high model redundancies, which make model adaptations a time-consuming and 
error-prone task. In this chapter, we discuss advanced concepts of our Provop approach, 
which provides a flexible and powerful solution for managing business process variants along 
their lifecycle. Such variant support will foster more systematic process configuration as well 
as process maintenance. 

1 Introduction 

Process support is required in almost all business domains (Mutschler et al. 2008; Weber and 
Reichert 2012). As examples, consider healthcare (Lenz and Reichert 2007), automotive 
engineering (Müller et al. 2006), and public administration (Becker et al. 2007). Characteristic 
process examples from the automotive industry, for instance, include product change 
management (VDA 2005), release management (Müller et al. 2006), and product creation. 

Usually, there exists a multitude of variants of a particular process model, whereby each of 
these variants is valid in a specific scenario or in the context of a particular business objective 
(Lohrmann and Reichert 2012); i.e., the configuration of a particular process variant depends 
on concrete requirements building the process context (Hallerbach et al. 2008b). Regarding 
release management, for example, we have identified more than twenty process variants 
depending on the considered product series, involved suppliers, or development phases. 
Similar observations can be made with respect to the product creation process in the 
automotive domain for which dozens of variants exist. Thereby, each variant is assigned to a 
particular product type (e.g., car, truck, or bus) with different organizational responsibilities 
and strategic goals, or varying in some other aspects.  

In the following, we refer to the service process handling vehicle repair in a garage (cf. Fig. 
1a). Basically, this process works as follows: It starts with the reception of a vehicle. After a 
diagnosis is made, the vehicle is repaired (if necessary). During diagnosis and repair, the 
vehicle is maintained; e.g., oil and wiping water may be checked and refilled. The process 
completes when handing the repaired and maintained vehicle back to the customer. 
Depending on the process context, different variants of this process are required, whereas the 



context is described by country- specific, garage-specific, and vehicle-type-specific variables. 
In our case studies, we have identified hundreds of such variants and we have learned that 
existing process modeling tools do not provide sophisticated support for modeling and 
maintaining such large number of process variants. 

Figure 1b–d show three such variants of a vehicle repairs process. Variant 1, as depicted in 
Fig. 1b, assumes that the damaged vehicle requires a checklist of Type 2 to perform the 
diagnosis. Therefore, activity Diagnosis is adapted by modifying its attribute Checklist to 
value “Type 2”. Additionally, the garage omits maintenance of the vehicle as this is 
considered as a special service not offered conjointly with the repair process. At the model 
level, this is realized by skipping activity Maintenance. As another example, consider Variant 
2 as depicted in Fig. 1c. Due to country-specific legal regulations, a final security check is 
required, before handing over the vehicle back to the customer. Regarding this variant, the 
new activity Final Check has to be added when compared to the standardized process from 
Fig. 1a. Finally, Variant 3 will become relevant if a checklist of Type 2 is required for 
diagnosis, the garage does not link maintenance to the repair process, and there are legal 
regulations requiring a final check (cf. Fig. 1d). 

 

Fig. 1 Variants of a standardized vehicle repair process (simplified view) 

As can be seen from these simple examples, variants exist for many processes, and thus have 
to be adequately managed. This chapter presents selected concepts of the Provop (PROcess 
Variants by OPtions) approach for managing large collections of process variants. More 
precisely, Provop allows to configure relevant process variants out of one basic process model 
(Hallerbach et al. 2008a; Hallerbach et al. 2008c; Hallerbach 2010) and to manage them along 
their lifecycle. This chapter focuses on the technical issues, which become relevant in this 
context. Also very important, but out of the scope of this chapter, are governance issues (e.g., 



Who selects or enforces configurations? What does variant management mean for process 
ownership?). 

The chapter is structured as follows: First, we present problems, which will arise if we do not 
treat variants as first class objects and only model them conventionally. Second, we describe 
key requirements with respect to process variant management. Then, we introduce our Provop 
approach and selected concepts for process variant management. Following this we compare 
Provop with other process configuration approaches and then discuss other relevant aspects. 
The chapter concludes with a summary and an outlook. 

2 Dealing with Process Variants in Existing BPM Tools 

Solutions for managing variants in existing BPM tools can be divided into two approaches: 
the multi-model and the single-model approach. 

Multi-model approach. In existing BPM tools, process variants often have to be defined and 
kept in separate process models as shown in Fig. 1. Typically, this results in highly redundant 
model data as the variant models are identical or similar for most parts. Furthermore, the 
variants cannot be strongly related to each other; i.e., their models are only loosely coupled 
(e.g., based on naming conventions). Furthermore, there is no support for (semi-) 
automatically combining existing variants to a new one; e.g., Variant 3 of our repair process 
(cf. Fig. 1d) combines the adjustments made by Variant 1 and Variant 2, and applies them to 
the standardized process. However, it cannot be created out of the existing models of these 
two variants as there is no indication which model parts are variant-specific and which are 
common for all models. 

This multi-model approach will therefore be only feasible if few variants exist or the variants 
differ to a large degree from each other. Considering the large number of variants occurring in 
practice, however, the aforementioned drawbacks increase modeling and maintenance efforts 
significantly. Particularly, the efforts for maintaining and changing process variants become 
high since more fundamental process changes have to be accomplished for each variant 
separately (e.g., due to changed or new legal regulations). This is both time-consuming and 
error-prone. As another consequence, over time models representing the variants more and 
more differ from each other; e.g., when optimizations are only applied to single variants 
without considering their relations to other ones (Weber and Reichert 2008b). This, in turn, 
makes it a hard job for process designers to analyze, compare, and unify business processes 
and to implement the multiple variants within a common IT system. As conclusion, generally, 
modeling all process variants in separate models does not constitute an adequate solution for 
variant management. 

Single-model approach. Another approach, frequently applied in practice, is to capture 
multiple variants in one single model using conditional branchings (i.e., XOR-/OR-Splits). 
Consider Fig. 2 as an example, which shows the repair process together with different variants 
(cf. Fig. 1a–d). Each execution path in the model represents a particular variant. Therefore, 
branching conditions indicate which path belongs to which variant. 



Generally, specifying all variants in one process model can result in a large model, which is 
difficult to comprehend and expensive to maintain. Note that in realistic scenarios there might 
be dozens to up to hundreds of variants of a particular process type (Weber et al. 2011; Li et 
al. 2011). As another drawback, variants are then mixed with “normal” process logic; i.e., 
branchings relevant for all process variants cannot be distinguished from the ones 
representing a variant selection. For example, our repair process includes a decision to only 
perform activity Repair if necessary. Therefore, on the model side, there is a conditional 
branching to either perform or skip the repair step. This branching is relevant for all discussed 
variants of the repair process; i.e., it is no variant-specific branching. However, the user 
cannot distinguish between normal and variant-specific branchings, unless there are special 
conventions to represent variant specific conditions or other model extensions used to mark a 
branching as normal or variant-specific. In summary, variants are neither transparent nor 
explicitly defined in this approach. As a consequence, the supporting IT system is unaware of 
the different process variants and only treats them as “normal” branchings within a single 
process model. 

 

Fig. 2 Process variants realized by conditional branches 

Discussion. Neither the use of separate models for capturing process variants nor their 
definition in one model based on conditional branchings constitutes adequate methods. Both 
approaches do not treat variants as first class objects; i.e., the variant-specific parts of a 
process are maintained and hidden either in separate models (multi-model approach) or in 
control flow logic (single-model approach). Another drawback of these approaches is the lack 
of context-awareness. Contextual knowledge might only be integrated and used in terms of 
process meta-data or branching conditions. As the process context mainly influences variant 
configuration, however, this fundamental aspect has to be considered more explicitly. 

Note that these limitations also apply to popular business process modeling tools like ARIS 
Business Architect or WBI Modeler. ARIS Business Architect (IDS Scheer 2008), for 
example, allows to create a new process variant by copying the respective model directory 
and its objects, resulting in high redundancy of model data. Though the derived variant 
objects refer to the original objects (denoted as master objects in ARIS) afterwards, changes 
of the latter are not propagated to the variants. In principle, this corresponds to the multi-
model approach as described above. However, through the explicit documentation of relation 
structures (between original and variant objects) some improvement is achieved. 



3 Requirements 

We conducted several case studies not only in the automotive industry (Müller et al. 2006, 
VDA 2005) but also in other domains like healthcare (Lenz and Reichert 2007), to elaborate 
key requirements for the configuration, adaptation, and management of process variants. This 
strong linkage to practice was needed in order to realize a complete and solid approach for 
process variant management. The requirements we identified are related to different aspects 
including the modeling of process variants, their linkage to process context and context-driven 
configuration, their execution in workflow management systems (WfMS), and their 
continuous optimization to deal with evolving needs; i.e., we have to deal with requirements 
related to the whole process life cycle (Hallerbach et al. 2008c, e, Weber et al. 2006, Weber et 
al. 2009). The standard process life cycle is depicted in Fig. 3. It consists of three phases, 
namely the design and modeling of the process, the creation of a particular process variant, 
and the deployment of this variant in a runtime environment. The process life cycle can be 
described as a (feedback) loop of these phases during which a process is continuously 
optimized and adapted (Weber et al. 2006, Weber et al. 2009). The major requirements to be 
met are described in the following. 

 

Fig. 3 Process life cycle 

Modeling. Efforts for modeling process variants should be kept as minimal as possible. Reuse 
of the variant models (or parts of them) has to be supported. In particular, it should be 
possible to create new variants by taking over properties from existing ones, but without 
creating redundant or inconsistent model data. Thus, the hierarchical structure of such 
“variants of variants” has to be adequately represented and should be easy to adapt. 

Variant configuration. The configuration of a process variant (i.e., its derivation from a given 
master or base process) should be done automatically if possible. Therefore, the specific 
circumstances (i.e., the process context) under which this configuration takes place have to be 
considered. In particular, an elaborated procedure for context-aware, automated variant 
configuration is required. At the same time, consistency and correctness of the configured 
process variants have to be ensured throughout the entire process life cycle. 

Execution. To execute a process variant, its model has to be interpreted by a workflow engine. 
In this context, it is important to keep information about the configured process variant and its 
relation to a master or base process (and to other variants) in the runtime system. To deal with 
dynamic changes of the process context, the runtime system should additionally allow to 
dynamically switch process execution from one variant to another if required (i.e., to 
reconfigure the corresponding process variant on-the-fly). Finally, if context information is 
only available during runtime, the specific variant will have to be determined (i.e., 
configured) at runtime as well. 



Maintenance and optimization. To reduce maintenance efforts and cost of change, 
fundamental changes affecting multiple process variants should be conducted only once. As a 
consequence, all process variants concerned by the respective change should be adapted 
automatically and correctly. 

There exist other requirements addressed by Provop, but not treated here. Examples include 
the consistency of configured variants, adequate visualization of the variants in all life cycle 
phases, and provision of intuitive user interfaces for variant configuration. In this chapter, we 
focus on the main requirements discussed above, covering the complete process life cycle. 

4 The Provop Approach 

In practice, process variants are often created by cloning and adjusting an existing process 
model of a particular type according to the given context. For example, regarding the three 
process variant models from Fig. 1b–d, one can notice that they can be derived from the 
standardized process as depicted in Fig. 1a by adding, removing, or modifying activities. 
Generally, every process model can be derived out of another one by adjusting it accordingly, 
i.e., by applying a set of change operations and change patterns, respectively, to it (Weber et 
al., 2008). Starting from this observation, Provop provides an operational approach for 
managing process variants based on a single process model (see Fig. 4a). In particular, 
process variants can be configured by applying a set of high-level change operations to a 
given process model. We denote the latter as base process. 

 

Fig. 4 Variant configuration by process model adaptation 

In the following, we provide an overview of our Provop approach and describe it along the 
different phases of the process lifecycle. 

4.1 Modeling 

In the modeling phase, first of all, a base process, from which the different process variants 
can be derived through configuration, has to be defined. Following this, high-level change 
operations, which can be applied to this base process, are specified (Hallerbach et al. 2008a; 
Hallerbach et al., 2008d). 



Defining the base process. Basic to the configuration of process variants is a base process, 
which serves as reference for the high-level change operations. When considering typical use 
cases as well as the overall process landscape in an enterprise, different policies for defining 
such base process are relevant. Basically, Provop supports the following ones: 

 Policy 1 (standard process): Here, the base process represents a domain-specific 
standard or reference process. In the automotive domain, for example, such reference 
processes exist for Engineering Change Management. Usually, a standard process has 
to be adjusted to meet specific requirements; i.e., it must be possible to derive variants 
from it. Provop assists designers in correctly defining the necessary adjustments when 
configuring a process variant out of the reference process. 

 Policy 2 (most frequently used process): If one process variant is used more frequently 
than others, it can be chosen as base process. This reduces configuration efforts in 
terms of the number of processes for which adjustments become necessary. Provop 
maintains statistics on the use of process variants to enable Policy 2. Generally, Policy 
2 does not ensure that the average number of change operations needed to configure 
the variants out of the base process becomes minimal. 

 Policy 3 (minimal average distance): When applying change mining to a collection of 
variants, we can derive a base model such that average distance between this model 
and its variants (i.e., the number of high-level operations needed to transform the base 
process into the process variant) becomes minimal (Li et al. 2008a). Thus, 
configuration efforts can be reduced accordingly. For mining process variants, we 
utilize algorithms we developed in the MinAdept project (Li et al. 2008b). 

 Policy 4 (superset of all process variants): The base process is created by merging all 
variants into one process model using conditional branchings; i.e., the base process 
realizes a “superset” of all relevant variants. Consequently, every element that is part 
of at least one variant belongs to the base process as well. When deriving process 
variants, therefore, only DELETE operations have to be applied. 

 Policy 5 (intersection of all process variants): The base process comprises only those 
elements that are part of all variants; i.e., the base process realizes a kind of 
“intersection” of relevant variants. Therefore, the base process covers the identical 
elements of the process variants. When deriving process variants, no DELETE 
operations have to be performed, but elements may have to be moved, modified, or 
inserted. 

Policies 1–5 differ in one fundamental aspect: When using Policy 1 or 2, the respective base 
process serves a specific use case; i.e., it represents one process variant valid in a specific 
context. Policies 3–5, in turn, have been especially designed for configuring variants and thus 
do not necessarily represent a semantically valid process model. Which policy to choose 
mainly depends on the modeling scenario and the present process landscape; e.g., if a standard 
process already exists, Policy 1 will be recommended. 

Change operations. A base process can be adjusted in different ways to configure a specific 
variant. Provop supports the following adaptation patterns: INSERT, DELETE, and MOVE 
process fragments, and MODIFY process element attributes. And fragments constitute 
connected process sub-graphs (including single activity nodes and edges respectively), which 



not necessarily have a single entry and single exit. To refer to fragments and elements of the 
base process within such change operations, we use adjustment points, which correspond to 
the entry or exit of an activity or connector node (e.g., split and join nodes) of the base 
process.1 Adjustment points are labeled with unique names. As example consider “adjustment 
point X” in Fig. 4, which corresponds to the entry of activity B. 

1If only single elements are affected by a particular change operation, their process element 
IDs may be used alternatively. 

Table 1 Change operations (i.e., change patterns) supported by Provop 

 
1. INSERT-Operation 
Symbol 

Purpose Addition of process fragments (A process fragment consists of at least one 
process element, e.g., activity nodes or control edges). 

Parameters  Process fragment to be added with entries and exits marked by 
adjustment points 

 Target position of the process fragment within the base process, 
marked by adjustment points for entries and exits 

 Mapping between entries and exits of the added fragment to the 
target position within the base process (i.e., mapping of the 
respective adjustment points) 

2. DELETE-Operation 
Symbol 

 
Purpose Removal of process elements 
Parameters  Process fragment to be deleted with entries and exits marked by 

adjustment points 
 Alternatively: deleting single elements by referring to their ID 

3. MOVE-Operation 
Symbol 

 
Purpose Change execution order of activities 
Parameters  Process fragment to be moved with entries and exits marked by 

adjustment points 
 Target position of the process fragment marked by adjustment points 

4. MODIFY-Operation 
Symbol 

 
Purpose Change attributes of process elements 
Parameters  Element ID 

 Attribute name 
 Value to be assigned 

 

Table 1 gives an overview of the change operations currently supported by Provop. Each 
entry describes the purpose of the respective operation, its parameters, and the symbol 
representing it. The formal semantics of respective change patterns is described in Rinderle-
Ma et al. (2008). Note that Provop covers only a subset of the change patterns presented in 
Weber et al. (2007, 2008), which have turned out to be the most relevant ones needed for 
variant configuration in practice; i.e., we were able to capture the different scenarios 



discussed in the introduction section based on these change patterns. It is also worth 
mentioning that Provop provides an extensible approach, to which other change patterns may 
be added later. 

Grouping change operations into options. As the number of change operations required to 
configure all relevant variants might become large, Provop allows structuring multiple change 
operations by grouping them into the so-called options. This is useful, for example, if the 
same change operations are always applied in conjunction with each other when configuring 
certain variants. Think of, for example, the handling of a medical examination in the 
radiology unit of a hospital. While for ambulant patients no transport between ward and 
radiology room is required, basic patients first have to be transferred from the ward to the 
radiology unit and later back to the ward. To capture the latter variant, we need to add two 
activities at different positions of the respective base process. This can be achieved by 
defining the two insert operations and grouping them in one option. 

Constraint-based use of options. Our case studies have revealed that options are often 
correlated in a structural or semantic manner. To capture this, Provop considers three types of 
relations between options, which can be explicitly defined by the user: dependency, mutual 
exclusion, and hierarchy. 

 Dependency: When applying different options conjointly to the base process (e.g., due 
to semantic dependencies), the user can explicitly define a dependency relation 
between them. Dependency relations are directed; i.e., if relation “Option 1 depends 
on Option 2” holds, the inverse relation (i.e., “Option 2 depends on Option 1”) is not 
true. 

 Mutual exclusion, in turn, is helpful to describe which options must not be used in 
conjunction with each other when configuring variants. 

 Hierarchy: The definition of option hierarchies allows for the inheritance of change 
operations. If an option is selected to configure a particular variant and has an ancestor 
in the option hierarchy, the change operations defined by the ancestor options will be 
applied as well. This reduces the amount of change operations defined in options and 
also structures the options landscape; i.e., maintenance is improved. 

When defining relations between options, generally, the designer does not only use one 
relation type but may also apply them in combination with each other as well. Provop allows 
for the combined use of multiple relations and ensures consistency of a set of relations applied 
in a given context. For example, contradictory relations (e.g., a mutual exclusion between an 
option and its parental option) must not be applied. Due to lack of space, we omit further 
details on how such contradicting constraints can be identified. 

The ability to define explicit relations between different options eases their use significantly. 
Additionally, Provop excludes semantic errors when configuring a process variant, as we will 
discuss in the sequel. 

Context model. Provop allows for context-aware process configurations; i.e., it allows for the 
configuration of a process variant by applying only those options relevant in the given process 



context (Hallerbach et al. 2008b). This, in turn, necessitates a model capturing the process 
context. In Provop, such context model comprises a set of context variables. Each context 
variable represents one specific dimension of the process context, and is defined by a name 
and value range. 

Table 2 Context model of a vehicle repair process 
Variable name Range of values Behavior 
Vehicle type Type 1, Type 2, Type 3, 

Type 4 
Static 

Maintenance Yes, No Static 
Security level low, medium, high Static 
Workload low, medium, high Dynamic 

Table 2 shows an example of the context model defined for the vehicle repair process from 
Fig. 1. The depicted context variables do not only differ in their names and range of values 
but also in another important aspect. While some context variables are defined as static, 
others are classified as dynamic. For example, the value of the context variable Workload is 
raised or lowered from time to time according to the current workload of the garage (e.g., 
switching from “medium” to “high” if many new repair orders emerge at the same time). 
Thus, this variable is of dynamic nature, as its value may change during process execution. 
The context variable Vehicle Type, in turn, is static as the vehicle type is set once and does not 
change during the repair process. 

4.2 Variant Configuration 

In the configuration phase, the base process, the options defined for it, and the context model 
are used to configure the models of the different variants. More precisely, a particular variant 
is configured by applying a sequence of options and their corresponding change operations to 
the base process. We describe the steps needed for configuring a variant in Provop: 

Step 1: Select relevant options. To configure a particular variant, usually, only a subset of the 
defined options is relevant. Therefore, as a first step in the configuration phase, the set of 
relevant options has to be identified. One possible approach is to ask users to manually select 
the relevant options. However, this would require sufficient knowledge about available 
options and their effects (i.e., change operations). In particular, if users have to choose among 
a large number of options, this approach will get error-prone (e.g., relevant options might be 
omitted or wrong ones chosen). 

A more sophisticated approach is to select relevant options based on contextual knowledge. 
Rather than mapping already configured process variants to a context description, context-
aware process configuration allows for the combination of the concepts provided by options 
and context models. In Provop, this linkage is realized by the use of context rules. Such rules, 
can be assigned to the options and make use of the defined context model. Regarding a given 
context, all options whose context rules evaluate to true, are applied to the base process and 
therefore determine the respective variant. As special case, the base process itself may serve 



as variant (i.e., no option is applied). In Step 3, we describe the order in which the selected 
options are applied to the base process. 

 

Fig. 5 Example of context dependent options 

Figure 5 illustrates how the three variants of the repair process (cf. Figure 1) are captured in 
Provop: The standardized process of Figure 1a is defined as the base process out of which the 
variants are configured. This base process contains several adjustment points (e.g., “Start 
Maintenance” at the entry of activity Maintenance). As mentioned, adjustment points may be 
referred to by options and their change operations. Furthermore, Figure 5b depicts three 
options: Option 1 performs a modification of activity Diagnosis. It will be applied if the type 
of the vehicle is of value Type 2. Option 2, in turn, will delete the maintenance activity if no 
maintenance of the vehicle is requested. Finally, Option 3 inserts a final security check 
activity in case of high security levels. The variants of Figure 1b–d can now be configured by 
applying a subset of these options to the base process. For example, if the context of a process 
variant is defined by the expression “Vehicle-Type=Type 2 AND Maintenance=No AND 
Security-Level=Low,” Options 1 and 2 will be applied resulting in Variant 1 (cf. Figure 1b). 

Step 2: Evaluate relations between selected options. As aforementioned, options may be 
related. Generally, for a sequence of options to be applied to the base process, compliance 
with explicitly defined constraints has to be ensured. For example, if a selected option 
depends on another one, not yet contained in the set of selected options, this set will have to 
be adjusted accordingly. Generally, this can be achieved either by adding missing options to 
the selection list or by removing the ones that cause the constraint violation. Another 
constraint violation will occur if the selection set comprises mutually excluding options. In 
this case, one of the conflicting options has to be removed by the user in order to restore 
consistency. In summary, option constraints are considered to ensure semantic correctness and 
consistency of the selected set of options at configuration time. 

Step 3: Determine the order in which options shall be applied. Generally, selected options 
have to be applied in sequence; i.e., their order has to be specified when configuring a variant. 
A naïve approach would be to sort these options in the order they were created; e.g., by 
making use of their creation time stamps. Obviously, this approach will only make sense if the 
options and their change operations are commutative. Otherwise, unintended and inconsistent 
variant models can result, particularly when applying options in the wrong order. Figure 6 
shows an example: After applying Option 1 to the base process, an intermediate model is 



derived with activity D and adjustment point Y being deleted.2 This model is now used as 
“reference model” for applying Option 2. In the present case, Option 2 cannot be applied as 
the adjustment point Y it refers to was deleted when applying Option 1. In order to avoid such 
inconsistencies, Provop allows defining the order in which selected options shall be applied. 
Furthermore, wrong option sequences, resulting in erroneous variant models afterwards, are 
excluded based on well-defined correctness criteria (see Step 5). Finally, by evaluating 
predefined sequencing constraints, a correct application order can be determined. 

Step 4: Applying options and their change operations. After selecting the options and 
determining their order, their change operations are applied to the base process in order to 
configure the model of the respective variant. Generally, change operations have specific pre- 
and postconditions, which allow us to guarantee their correct application.3 As one 
precondition, for example, process elements to which an operation refers have to be present in 
the respective model. Thus, the problem depicted in Fig. 6 would be recognized before 
applying the INSERT-operation of Option 2; i.e., Provop would disallow to apply the two 
options in the depicted order. 

Step 5: Checking consistency. The variant models resulting from the sketched configuration 
procedure are supposed to be executed in the process enactment phase. Therefore, consistency 
and correctness of the models have to be guaranteed. In addition to the already described 
constraint-based selection approach (cf. Step 2), Provop validates the resulting models by 
checking the consistency and correctness of data and control flow. Unlike other variant 
configuration approaches (van der Aalst et al. 2008), Provop does not necessarily require a 
consistent and correct base process as starting point when configuring variants. This follows 
from the above described policies for defining the base process. Assume, for example, a base 
process being defined as intersection of its variants. If two variants have different activities to 
write a data object, read by a common activity, the base process would only contain the 
reading activity and thus be inconsistent in terms of data flow. Of course, Provop excludes 
such flaws for the configured variant models. 

 

Fig. 6 Syntactical error after applying options in wrong order 



2Note that this example indicates that we need more advanced change support that considers 
the special semantics of adjustment points. Generally, the user should be able to define 
whether adjustment points may be deleted when applying certain change operations or shall 
be kept in the intermediate model. In the latter case, the deleted activities and nodes 
respectively are replaced by silent activities without associated actions. Generally, silent 
activities and adjustment points are removed after application of all selected options. 

3For a formal semantics of respective change patterns, we refer to (Rinderle-Ma et al. 2008). 

4.3 Deployment and Execution 

After the configuration phase, the resulting variant model needs to be translated into an 
executable workflow model. Common tasks emerging in this context are to assign graphical 
user interfaces, to subdivide workflow activities into human and automated tasks, or to choose 
the right level of granularity for the workflow model. In Provop, we are focusing on problems 
arising in the context of variant management. 

One major aspect concerns the context-aware configuration of the different variants. To also 
capture context changes during process instance execution, Provop supports dynamic context 
variables; i.e., variables whose values may change during process execution. When using 
dynamic context variables for defining a context rule of an option, the decision whether to 
apply the corresponding change operations or not has to be made at runtime. As a 
consequence, the respective process variant either cannot be completely configured when 
creating the process instance or it has to be reconfigured during runtime. To allow for the 
dynamic reconfiguration of a process instance of a variant model, Provop supports variant 
branches. Basic idea is to encapsulate the adjustments of single options within these variant 
branches. The split condition at a variant branching corresponds to the context rule of the 
option. Whenever process execution reaches a variant branch, the current context is evaluated. 
If the split condition evaluates to true, the variant branch will be executed, i.e., the change 
operations will be applied to the base process. Otherwise, the variant branch is skipped and 
therefore all adjustments of the option are ignored. Provop ensures the constraints regarding 
the use of options in the context of such dynamic reconfigurations as well. However, the 
handling of respective correctness issues is outside the scope of this chapter. 

Figure 7 shows an example of a variant branch definition in conjunction with the INSERT 
operation.4 If the workload of a garage is high, subcontractors will be commissioned to 
provide maintenance activities. Thus, Option 4 will be applied adding corresponding activities 
Commissioning Sub-contractor and Support Maintenance to the base process. As the context 
variable Workload is dynamic (cf. Table 2), these activities are encapsulated in a variant 
branch (indicated by the encircled “less than” and “greater than” symbols). Furthermore, 
context rule of Option 4 is used as split condition. Whenever a variant branch is reached 
during process execution, corresponding context rules are evaluated. If they evaluate to true 
(cf. Figure 8a), the variant branch will be executed; otherwise, it will be skipped (cf. Figure 
8b). 



 

Fig. 7 Dynamic configuration of process variants 

 

 

Fig. 8 Determine variant at runtime 

4Note that every change operation supported by Provop requires specific considerations here. 

4.4 Maintenance and Optimization 

When evolving base processes in Provop (e.g., due to organizational optimization efforts), all 
related process variants (i.e., their models) are reconfigured automatically. Thus, maintenance 
efforts can be significantly reduced. However, evolving and optimizing the base process may 
affect existing options, for example, when referred adjustment points are moved to a new 
position or are even deleted. Such problems are detected in Provop; e.g., by checking whether 
the definitions of existing options are affected by the adaptations of the base process model. 
Furthermore, solving those conflicts is largely automated. 

4.5 Proof-of-Concept Implementation 

We implemented the described concepts in a powerful proof-of-concept prototype. When 
developing this prototype, we had to decide whether to realize a process configuration tool 
from scratch or to enhance an existing process modeling tool with respective configuration 
features. On one hand, the first option offers the flexibility to implement the presented 
concepts in a native and consistent way. On the other, it is accompanied by high development 
costs; e.g., basic functionality of the process modeling tool would have to be re-implemented 



from scratch. Therefore, we decided to base our implementation on an existing process 
modeling tool and to enhance this tool with the process configuration facilities described. To 
be more precise, we decided to use the ARIS Business Architect (IDS Scheer 2008), which 
belongs to the ARIS Design Platform and constitutes a widespread tool supporting a variety 
of modeling notations (e.g., EPCs and BPMN) as well as use cases (e.g., modeling, analyzing 
and optimizing business processes). 
 
The general limitations of commercial BPM tools with respect to the handling of process 
variability, which have been described in Section 2, apply to ARIS Business Architect as well. 
Basically, this tool allows creating new process variants by cloning (i.e., copying) existing 
process models (and their objects) and modifying them afterwards. However, this might result 
in model redundancies. Although the derived variant objects still refer to the original objects, 
which are called master objects in ARIS Business Architect, changes of the latter are not 
propagated to the variants.  
 
Another decision we had to make when implementing the Provop prototype concerns the 
choice of the language for modeling base processes and change options as well as for 
representing the variant models resulting from the configurations applied. We first started 
with Event-Process-Chains (EPCs) as this notation is widely used in practice. However, EPCs 
do not offer grouping functions which become relevant in our context for grouping parameters 
of a particular change operation as well as for grouping multiple change operations into one 
change option. To enable grouping in ARIS Business Architect, in principle, model folders 
may be used as workaround. However, we decided to use the BPMN notation instead since it 
provides different grouping mechanism as required in our approach (cf. Figure 9). 

 

Fig. 9 Architecture of the Provop prototype 



Figure 9 shows the overall architecture of our proof-of-concept prototype. Each change option 
is realized as a single BPMN model. Within these models the change operations 
corresponding to the respective option are encapsulated in pools, which correspond to 
graphical as well as logical containers. The relevant parameters of a particular change 
operation (e.g., the adjustment points marking a process fragment to be deleted) are specified 
by using lanes, which constitute sub-containers of a particular pool (or another lane 
respectively). A particular ARIS report, which we implemented using ARIS Script (i.e., Java-
Script extended by specific functions), realizes the transformation of a base process model to 
a specific process variant. More precisely, for a base process represented as BPMN model, 
variant configuration can be started by selecting a set of options. Following this, the change 
operations of selected options are applied to the base process resulting in a new BPMN 
model, which then represents the configured process variant. 
 
Figures 10 and 11 depict two screens of this proof-of-concept prototype. Thereby, new objects 
and symbols (e.g., operation types and adjustment points) were designed using the ARIS 
Symbol Editor. Figure 10 shows a base process, together with its adjustment points, as it can 
be modeled with Provop. In turn, Figure 11 depicts an option comprising exactly one change 
operation. More precisely, the depicted option allows inserting activity Final Check between 
the specified adjustment points of the base process if the corresponding context rule (i.e., 
Security-Critical = “Yes”) is satisfied.  
 

 

Fig. 10 Modeling a base process in Provop 

 



 

 

Fig. 11 Example of a change option in Provop 

 

5 Comparing Provop with other Process Configuration Approaches 

Generally, there is a great interest in capturing common process knowledge only once and re-
using it in terms of configurable process models that represent a collection of related process 
variants (i.e., a process family). In the following, we make use of the process carried out when 
checking-in at an airport (Ayora et al. 2012a) in order to illustrate commonalities and 
differences of existing approaches for capturing such variability (including Provop). We 
choose this process since it shows a high degree of variability; e.g., occurring due to the type 
of check-in (e.g., online, or at a counter), which also determines the type of boarding card 
(e.g., electronic vs. paper-based). Other sources of variability include the type of passenger 
(e.g., unaccompanied minors requiring extra assistance) and the type of luggage (e.g., 
overweight luggage). 
 
In a systematic literature review, we identified 25 proposals (including Provop) dealing with 
the modeling and management of process variants (Ayora et al. 2013a; Ayora et al. 2013b). 
Common to them is the extension of existing process modeling languages with variability-
specific constructs that enable the creation of configurable process models. By treating 
variability as a first class citizen, these extensions help avoiding redundancies, fostering 
reusability, and reducing process modeling efforts (Torres et al 2012). In particular, we 
identified the following language constructs commonly used by existing proposals capturing 
variability (including Provop) in addition to standard process modeling elements: 

 Language Construct LC1 (configurable region): A configurable region is a region in a 
configurable process model for which different configuration choices may exist 
depending on the application context, e.g., an airline may offer different ways of 
obtaining the boarding cards depending on the check-in type: printing a boarding card 
at the airline desk, download an electronic boarding card, or obtaining it via a mobile 
phone. 

 Language Construct LC2 (configuration alternatives). A configuration alternative is 
defined as a particular configuration choice that may be selected for a specific 
configurable region, e.g., there exist different types of boarding card: paper-based, 
electronic, or in the mobile phone. 



 Language Construct LC3 (context condition). A context condition defines the 
conditions under which a particular configuration alternative of a configurable region 
shall be selected, e.g., passengers with overweight luggage pay a fee. 

 Language Construct LC4 (configuration constraint). A configuration constraint is 
defined as a (structural) restriction of the selection of configuration alternatives of the 
same or different configurable regions. Respective constraints are based on semantic 
restrictions to ensure the proper use of configuration alternatives, e.g., staff members 
need to be localized when unaccompanied minors are travelling. 

In the following, we describe a well-known approach for realizing configurable process 
models in more detail and compare it with Provop. More precisely, we consider process 
models with configurable nodes, which take a fundamentally different approach to realize and 
describe the variability-specific parts of a process model when compared to the Provop 
approach.  
 
Process models with configurable nodes:  A possible way of specifying a configurable 
process model is by means of configurable nodes. Modeling languages supporting this 
approach include, for example, C-EPC and C-YAWL (Gottschalk et al. 2007; Gottschalk 
2009; Gottschalk et al. 2009). Basically, these proposals extend an existing process modeling 
language (e.g., EPC and YAWL) by adding configurable elements for explicitly representing 
variability in process families. In particular, E-EPCs provide support for the specification and 
customization of reference process models.  

Figure 12 illustrates the configurable process model as C-EPC for the check-in process. 
Configurable nodes are depicted with a thicker line. A configurable region (LC1) in C-EPC is 
specified by a process fragment of the configurable process model with exactly one entry and 
one exit, and may take two different forms. First, the process fragment may consist of a 
splitting configurable connector, immediately followed by a set of branches representing 
configuration alternatives, and a joining configurable connector; i.e., the configurable 
connectors delimit the configurable region (e.g., configurable region 2 in Figure 12). 
Alternatively, the process fragment may consist of a configurable function (i.e., activity), e.g., 
configurable regions 1 and 3 in Figure 12, which may be configured as ON (i.e., the function 
is kept in the model), OFF (i.e., the function is removed from the model), or OPT (i.e., a 
conditional branching is included in the model deferring the decision to run-time). In turn, a 
configuration alternative (LC2) is specified by a process fragment that may be included as a 
branch between two configurable connectors (e.g., Print electronic boarding card in 
configurable region 2 in Figure 12). Context conditions (LC3) are represented in C-EPC 
separately in a questionnaire model (Rosa et al. 2007). Finally, a configuration constraint 
(LC4) may be specified in terms of a configuration requirement linked to the configurable 
nodes that delimit the configurable region to which the respective configuration alternatives 
belong; e.g., configuration requirement 1 in Figure 12 states that the inclusion of the function 
Fill in UM form implies the inclusion of the function Localize staff. 



 

Fig. 12 C-EPC configurable process model for the check-in process 

A similar approach is presented in Gottschalk et al. (2007), which transfers the concepts for 
configuring a reference process model (i.e., to enable, hide, or block a configurable workflow 
element) to workflow models.  

Provop: The Provop approach presented in this chapter constitutes a fundamentally different 
way of handling process families, which is based on the observation that process variants are 
often derived by adapting a pre-specified base process model to the given context through a 
sequence of structural adaptations.  

Figure 13 illustrates how the process family dealing with the check-in process can be 
represented using Provop. Figure 13A shows the base process model from which the process 
variants may be derived. As discussed, in Provop, a configurable region (LC1) is specified by 
a fragment of the base process, delimited by two adjustment points; i.e., black diamonds (e.g., 
configurable region 1 comprises the process fragment delimited by adjustment points A and B 
in Figure 13). In turn, a configuration alternative (LC2) is specified by a change option that 
includes (1) the list of change operations modifying the base process at a specific 
configurable region and (2) a context rule that defines the context conditions under which the 
change operations shall be applied (e.g., Opt. 1 in Figure 13B). Context conditions (LC3) are 
specified by context rules which include a set of context variables and their values specifying 
the conditions under which a configuration alternative (i.e., a change option) shall be applied 
(e.g., Opt. 2 is applied if the check-in type is online). All context variables and their allowed 
values are gathered in the context model (cf. Figure 13C). Finally, configuration constraints 
(LC4) are specified as constraints (e.g., mutual exclusion) between two change options in the 
option constraint model; e.g., if Opt. 2 is applied then Opt. 3 has to be applied as well (cf. 
Figure 13C). 



 

Fig. 13 Provop model for the check-in process 

Basically, both approaches described enable reference process modeling (Rosemann and van 
der Aalst 2007; vom Brocke 2007). Usually, a reference process has recommending character, 
covers a family of process models, and may be customized in different ways to meet the needs 
of the specific application environment.  

When comparing the two approaches, one can notice that they both realize the 
aforementioned language constructs for capturing process variability (i.e., LC1 – LC4), 
although this is accomplished in a completely different way. On one hand, proposals like C-
EPC and C-YAWL represent a configurable process model (and process family respectively) 
in one artifact, capturing both the commonalities and particularities of the different process 
variants. Hence the configurable process model reflects all possible behavior. On the other, 
proposals such as the presented Provop approach or the one suggested by Kumar and Wen 
(2012) propose a gradual construction of the process family by modifying the structure of a 
specific process variant (i.e., base process model) at specific points (i.e., variation points) 
through change operations. Both approaches have their pros and cons, and additional research 
is needed to learn which of them fits better in a given application environment.  

In principle, the C-EPC approach constitutes an optimization of the single model approach 
introduced in Section 2. As opposed to Provop, the suggested methods does not allow moving 
or adding model elements, or adapting element attributes when configuring a process variant 
out of a reference process model. Basically, the provided configuration support corresponds to 
the one of Policy 4 for which the chosen base process (i.e., reference process) constitutes the 
superset of all process variants. Obviously, in this specific scenario, only delete or optional 
delete operations (i.e., dynamic delete operations in Provop) become necessary in order to 
configure a particular process variant out of a reference process model. However, Policy 4 is 
only one out of several configuration policies supported by Provop; i.e., a base process can be 
defined in a more flexible way. 

A qualitative comparison of these and other approaches supporting business process 
variability is provided by Torres et al. (2012). In particular, this work considers 
understandability issues that emerge when configuring concrete process variants with either 



C-EPC or Provop. Furthermore, Ayora et al. (2013a; 2013b) presents a set of empirically 
evidenced change patterns for defining and changing configurable process models. Thereby, 
the proposed change patterns are based on the general language elements presented above 
(i.e., LC1 – LC4) and hence abstract from the concrete process configuration approach taken.  

6 Further Issues and Related Work 

This section discusses further aspects that should be considered by any framework enabling 
configurable process models. 

Capturing variability of process perspectives other than control flow. The previous sections 
have focused on the variability of activities and their control flow, whereas the variability of 
other process perspectives (e.g., data and resources) has yet to be considered. To overcome 
this limitation, for example, La Rosa et al. (2008; 2011) suggest a configurable process 
modeling notation, which incorporates features for capturing resources, data, and physical 
objects involved in the performance of activities. Similarly, Provop considers variability of 
the information and organization perspective (Hallerbach 2010). 

Ensuring soundness of configured process variants. A big challenge for any process 
configuration approach is to ensure that configured process variants are sound. When 
considering the large number of process variants that may be configured out of a configurable 
process model, as well as the many syntactic and semantic constraints these process variants 
have to obey, this constitutes a nontrivial task. In particular, manually correcting potential 
errors would hamper any process configuration approach. Instead, efficient and automated 
techniques for ensuring the soundness of process variant models are required. 
Van der Aalst et al. (2010) propose a formal foundation for incrementally deriving process 
variants from a configurable reference process model, while preserving correctness in respect 
soundness. Specifically, assuming the configurable reference process model itself is sound, 
the derived process variants are guaranteed to be sound as well. The underlying theory was 
developed in the context of Petri nets and then extended to EPCs. 
To ensure the soundness of configured process variants, van der Aalst et al. (2010b) suggest a 
verification approach inspired by the operating guidelines used in the context of partner 
synthesis (Lohmann and Wolf, 2011). For this purpose, the configuration process itself is 
viewed as external service. Using partner synthesis, a configuration guideline is computed 
that constitutes a compact characterization of all feasible configurations. In particular, this 
allows ruling out configurations that lead to soundness violations. The approach is generic 
and imposes no constraints on the configurable process models to which it may be applied. 
Moreover, all computations are done at design time (i.e., when defining a configurable 
process model) and not at configuration time; i.e., there is no need for repeatedly checking 
each individual configuration when configuring a process variant model. Thus, once the 
configuration guideline has been generated, the response time is instantaneous, thus 
encouraging the practical use of configurable process models.  
Hallerbach et al. (2009) show how the soundness of process variants can be ensured in the 
context of Provop. Thereby, advanced concepts are introduced that enable a context- as well 
as constraint-based configuration of process variants. In particular, it is shown how respective 
information can be utilized to effectively ensure soundness of the configured process variants. 



Merging process variants. Designing a configurable process model is usually not done from 
scratch, but rather by analyzing existing process variants. Hence, merging these variants 
constitutes an important task that is also particularly relevant in today’s world of company 
mergers and organizational consolidations. Considering the large number of process variants 
that may exist in enterprises, however, manually merging process models would be a tedious, 
time consuming, and error-prone task. Instead, techniques are required for automatically 
merging process variants in order to derive a configurable process model. 
Regarding approaches like C-EPC or C-YAWL, variant merging needs to meet the following 
requirements. First, the behavior of the produced process model should subsume that of the 
input variant models (via the union of these input models). Second, it should be possible to 
trace back from which process variants an element has originated (via annotations). Third, one 
should be able to derive each input process variant from the merged one (via variation points). 
La Rosa et al. (2010) present an algorithm producing a single configurable process model 
from a pair of process variant models. This algorithm works by extracting the common parts 
of the input process variants, creating a single copy of them, and then appending the 
differences as branches of configurable connectors. This way, the merged process model is 
kept as small as possible, while still capturing all the behavior of the two input models. 
Moreover, analysts are able to trace back from which model(s) a given element in the merged 
model originated. The algorithm has been prototypically implemented and tested based on 
process models from several application domains. 
Regarding structural approaches like Provop, a family of algorithms for merging process 
variants has been suggested by Li et al. (2011). These algorithms discover a process model by 
mining a given collection of process variants. Thereby, the discovered process model has a 
minimum average weighted distance to the considered process variants. By adopting the 
discovered model as new reference process model, future process configurations become 
more efficient, since the efforts (in terms of changes to be applied) for deriving the variants 
will be reduced. 

Retrieval of process variants. There exist approaches that provide support for the management 
and retrieval of separately modeled process variants (i.e., optimizations of the multi-model 
approach). For example, Lu and Sadiq (2006) allow storing, managing, and querying large 
collections of process variants within a process repository. Graph-based search techniques are 
used in order to retrieve process variants that are similar to a user-defined process fragment 
(i.e., the query is represented as graph). Obviously, this approach requires profound 
knowledge about the structure of stored processes, an assumption that does not always hold in 
practice. Variant search based on process metadata (e.g., the process context) is not 
considered. 

Run-time flexibility for process families. Existing approaches for managing process variability 
focus on the modeling and configuration of process variants. However, Ayora et al. (2012) 
show that run-time configuration and re-configuration as well as the evolution of process 
variants are essential requirements as well. Effectively handling process variants in these 
lifecycle phases requires deferring certain configuration decisions to the run-time, 
dynamically re-configuring process variants in response to contextual changes, adapting 
process variants to emerging needs, and evolving process families over time. Ayora et al. 



(2012) characterize these flexibility needs for process families, discuss fundamental 
challenges to be tackled, and provide an overview of existing proposals made in this context. 

Applying object-oriented concepts to deal with process variability. Different work exits on 
how specialization can be applied to deal with process model variability taking advantage of 
the generative power of a specialization hierarchy (Wyner and Lee 2003; van der Aalst and 
Basten 2002). In the context of the MIT Process Handbook, for example, Wyner and Lee 
(2003) show how specialization is enabled for simple state diagrams and dataflow diagrams, 
respectively. For both kinds of diagrams, a corresponding set of transformation rules is 
provided that result in process specializations when being applied to a particular model. 
Similarly, van der Aalst and Basten (2002) discuss transformation rules to define 
specialization for process models based on Petri Nets. Finally, Wyner and Lee (2003) show 
how specialization can be used to generate a taxonomy of processes to facilitate the 
exploration of design alternatives and the reuse of existing designs. Obviously, specialization 
and process taxonomies also allow capturing process variants to some degree. As opposed to 
the discussed approaches, Provop follows an operational approach, which is independent of 
the underlying process meta-model. In addition, Provop provides comprehensive support for 
the context- and constraint-based configuration of process variants. 
A similar contribution stems from the PESOA project (Bayer et al. 2005, Puhlmann et al. 
2005), which provides basic concepts for variant modeling based on UML. More precisely, 
different variability techniques like inheritance, parameterization, and extension points are 
provided and can be used when describing UML models. As opposed to PESOA, the 
operational approach enabled by Provop provides a more powerful instrument for describing 
variance in a uniform and easy manner; i.e., no distinction between different variability 
mechanisms is required. 

Software variability. Variants are relevant in many other domains as well, including product 
line engineering and software engineering. For example, fundamental characteristics of 
software variability have been described in Bachmann and Bass (2001). In particular, 
software variants exist in software architectures and software product lines (Becker et al. 
2001, Halmans and Pohl 2003). In many cases, feature diagrams are used for modeling 
software systems with varying features. A similar approach is offered by the so-called plus-
minus-lists known from variant management in bill- of-materials. Correctness issues are not 
considered in both cases. 

7 Summary and Outlook 

We have described the Provop approach for configuring and managing process variants. 
Provop considers the whole process life cycle and supports variants in all phases. This 
includes advanced techniques for modeling variants in a unified way and within a single 
process model, but without resulting in too complex or large model representations. Based on 
well-defined change operations, on the ability to group change operations into reusable 
options and on the possibility to combine options in a constrained way, necessary adjustments 
of the base process can be easily and consistently realized when creating and configuring a 
variant.  



We successfully applied Provop in several case studies in the automotive, healthcare and 
governmental domains. Thereby, we were able to demonstrate the applicability of the Provop 
framework as well as to elaborate its benefits (Hallerbach 2010). As pointed out by Torres et 
al. (2012), however, empirical research is required to evaluate Provop and other process 
configuration approaches (e.g., C-EPC) in respect to understandability issues that emerge 
when configuring concrete process variants out of a configurable process model.  

Issues related to the evolution and change of process families (Ayora et al. 2013a) as well as 
the flexible execution of process variants (e.g., to dynamically switch between variants during 
runtime; see Ayora et al. (2012)) need to be addressed in future work. Moreover, process 
variability needs to be considered for other process support paradigms like, for example, data- 
and object-centric modeling approaches (Künzle and Reichert 2012; Reichert 2012a). Finally, 
proper techniques for visualizing process variant collections are required (Reichert and Weber 
2012, Reichert 2012b). 
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