
A Tool for Supporting Object-Aware Processes

Carolina Ming Chiao, Vera Künzle, Kevin Andrews, Manfred Reichert
Institute of Databases and Information Systems

University of Ulm, Germany
Email: {carolina.chiao, vera.kuenzle, kevin.andrews, manfred.reichert}@uni-ulm.de

Abstract—Although the popularity of activity-centric pro-
cess management systems (PrMS) has increased during the
last decade, there still exist business processes that cannot be
adequately supported by these PrMS. A common characteristic
of these processes, which is neglected by current activity-centric
PrMS, is their need for object-awareness; i.e., the explicit pro-
cessing of business data and business objects respectively. In the
PHILharmonicFlows project, characteristic properties of object-
aware processes were identified and an advanced framework for
their proper support was designed. In this paper, we present a
proof-of-concept prototype implementing some of the fundamen-
tal concepts of the PHILharmonicFlows framework. Overall, this
initiative will result in a new generation of process management
technology.

I. INTRODUCTION

The increasing economic pressure obliges enterprises to
adopt process management systems (PrMS) with the aim
to properly manage and automate their business processes.
Traditional PrMS are activity-centric [13]; i.e., the business
processes to be supported are defined in terms of “black-box”
activities as well as the control flow elements expressing the
orders and constraints for executing these activities. However,
activity-centric PrMS treat business objects only as second-
class citizens [2], [5], which are usually stored in external
databases; i.e., outside the control of the activity-centric PrMS.
Moreover, the strict separation of concerns realized by tra-
ditional PrMS does not allow providing an integrated view
to the end-user; i.e., business data, business functions and
business processes are managed by different kinds of systems,
making it impossible for users to access required context
information during process execution [2]. Instead, respective
information can only be accessed when invoking external
application systems implementing the activities.

Despite their widespread popularity, there still exist numer-
ous processes that cannot be properly supported by traditional
PrMS. These processes can be characterized as knowledge-
intensive, relying on user decisions being characterized as
semi-structured or unstructured [14]. Hence, they cannot be
“straight-jacketed” into a set of activities [2]. Recent works
[1]–[3], [5], [10]–[12], [15] confirmed that the limitations of
existing activity-centric PrMS can be traced back to the lacking
integration of processes, data, and users.

In the PHILharmonicFlows1 project, characteristic pro-
cesses from a variety of domains were analyzed [4], [6], [9].
In the respective studies, we contrasted different application
scenarios with a set of properties, which were extracted from a
systematic literature study. This way, we showed that the prop-
erties are related to each other and their support is required

1Process, Humans and Information Linkage for harmonic Business Flows
http://www.uni-ulm.de/en/in/dbis/research/projects/philharmonic-flows.html

by a variety of processes from different application domains;
i.e., generalization is possible. Common to all these processes
is their need for object-awareness; i.e., business processes
and business objects must not be treated independently from
each other. In general, object-aware processes present three
major characteristics. First, they can be based on two levels
of granularity. On one hand, the behavior of individual object
instances needs to be considered during process execution; on
the other, the interactions among different object instances
must be taken into account as well. Second, the execution
of these processes is data-driven; i.e., the progress of a
process depends on available object instances and the values
of their attributes. Third, flexible activity execution is crucial.
In particular, activities do not have to coincide with particular
process steps. In this paper, we officially present for the first
time a proof-of-concept prototype implementing the concepts
of the PHILharmonicFlows framework. This prototype com-
prises both a build-time and a run-time environment, which
enables the modeling, execution and monitoring of object-
aware processes.

Section II summarizes the basic concepts of the PHIL-
harmonicFlows framework, whereas Section III presents the
architecture and features of the implemented proof-of-concept
prototype. Section IV concludes the paper.

II. PHILHARMONICFLOWS FRAMEWORK

The PHILharmonicFlows framework enforces a well-
defined modeling methodology governing the object-centric
specification of business processes based on a well-defined
formal semantics [7], [9]. More precisely, the framework
enforces the definition of processes at two levels of granularity.
While object behavior is defined at micro process level, object
interactions are captured at macro process level. Due to the
lack of space, we only give an overview of PHILharmon-
icFlows in this paper. For more details, please refer to [7],
[9]. For related work, please refer to [8].

As a fundamental prerequisite, first of all, object types and
their relations need to be captured in a data model (cf. Fig. 1a).
Then, for each object type, a corresponding micro process type
has to be specified (cf. Fig. 1b). The latter defines the behavior
of related object instances, and consists of a set of micro
steps as well as the transitions between them. In turn, each
micro step is associated with an object type attribute. Further,
micro steps are grouped in object states. At run-time, for
each object instance a corresponding micro process instance
is created. A micro process instance being in a particular
state may only proceed if specific values are assigned to the
object instance attributes associated with this state; i.e., a data-
driven process execution is provided. In turn, optional data
access is enabled asynchronously to micro process execution

RUN-TIME

BUILD-TIME Data Model

Micro Process

Macro Process

Object Type States

Micro Steps

Micro
Transitions

Macro Steps

Macro
Transitions

Relations

Attributes

Coordination
Overview

Tables
Worklists

Forms

Authorization

Process Context

Aggregation

Transverse

Permissions

User Assignment

a

b

f

c

g

Black-box
activities e

d

Fig. 1. The PHILharmonicFlows framework

based on the permissions granted for reading or writing object
attributes. In particular, access rights for an object instance
may also depend on the progress of the corresponding micro
process instance. For this purpose, the framework maintains
an authorization table assigning data permissions to user roles
which may additionally depend on the respective state of the
micro process type (cf. Fig. 1c). Based on this authorization
table, PHILharmonicFlows automatically generates user forms
at run-time. Which input fields are displayed to the respective
user depends on the permissions he has in the currently
activated state (cf. Fig. 1d). Additionally, PHILharmonicFlows
allows for the integration of black-box activities, enabling the
realization of more complex business functions for which a
specific implementation is required (cf. Fig. 1e).

Taking the relations between the object instances of the
overall data structure into account, the corresponding micro
process instances form a complex process structure; i.e., their
execution needs to be coordinated in compliance with the given
data structure. In PHILharmonicFlows, this is accomplished by
means of macro processes. A macro process type consists of
macro steps linked by macro transitions (cf. Fig. 1f). Opposed
to micro steps, which refer to single attributes of a particular
object type, a macro step refers to a particular state of an object
type. In addition, for each macro transition, a coordination
component must be specified (cf. Fig. 1g). The latter hides
the complexity of large process structures from modelers as
well as end-users. More precisely, a coordination component
coordinates the interactions among the object instances of the
same type as well as different types. Opposed to existing
approaches, the semantic relations between the object instances
and their cardinalities are taken into account as well.

III. PROOF-OF-CONCEPT PROTOTYPE

This section describes the basic features of the PHILhar-
monicFlows tool we implemented. Besides demonstrating the
practical feasibility of the PHILharmonicFlows framework, the
following requirements were considered when developing this
proof-of-concept prototype:
• Use of visual models: The tool shall allow for the

graphical definition of data models, micro process
types, macro process types, and authorization tables.

• Enabling correctness-by-construction: The tool
shall enable extensive correctness checks, including

.NET Framework

MS SQL Server 2008

yFiles

C#

ASP.NET

WPF

XAML

Build-time Environment

Graphical Modeling

Correctness Rules

Run-time Environment

Operational Semantics

Instance DataType Data
Deployment

PHILharmonicFlows

Schema

generated

Application Schema

defines /

loads

reads /

writes
reads

generates User Interfaces

LinqLinq

Fig. 2. Architecture of the PHILHarmonicFlows tool and technologies used
(from [9])

a proper visualization of modeling errors.

• Persistent model storage: All model artifacts created
(e.g., object and process types) as well as run-time
data (i.e., object and process instances) shall be stored
persistently.

• Automated generation of user interface compo-
nents: The tool shall automatically generate end-user
components (e.g., overview tables, user forms, and
worklists) based on the defined models.

• Correct process enactment: The tool shall allow for
correct execution of object-aware processes. For this
purpose, it must implement the operational semantics
defined for micro and macro processes by the PHIL-
harmonicFlows framework.

A. Architecture

The PHILharmonicFlows tool comprises both a build- and
a run-time environment (cf. Fig. 2).

The build-time environment provides graphical user inter-
faces for defining data models, micro and macro process types,
and user authorizations. In this context, a “correctness-by-
construction” principle is applied, and correctness checks for
the various models are provided. For example, it is not possible
to have two micro step types referring to the same attribute type
at the same state type. Further, all created models are stored
in the build-time database.

Before creating and enacting instances of an object-aware
process, the respective models need to be deployed to the run-
time environment. For the run-time database, a corresponding
application schema is automatically generated based on the
pre-specified models. This run-time database is then used to
store instance data persistently. Opposed to the build-time

a Build-time architecture

b Run-time architecture

Fig. 3. Run-time and build-time architectures (from [9])

environment, which corresponds to a single-user system, the
run-time environment is implemented as web application that
may be accessed concurrently by various users. In particular,
the run-time environment provides generic support for au-
tomatically generating user interface components (e.g., user
forms and worklists) taking the defined data and process
models as input. Furthermore, the run-time environment im-
plements the logic required to correctly execute micro and
macro process instances; i.e., it fully supports the operational
semantics described by the PHILharmonicFlows framework
[9].

The main components of the build-time environment are
as follows (cf. Fig. 3a):
• The build-time DB manager controls the database con-

nection and provides methods for inserting, deleting,
and changing database entries.

• The permission manager checks permissions and re-
sponsibilities, e.g., which attributes may be accessed
by a particular user.

• The consistency manager ensures the “correctness-by-
construction” principle.

• The view manager updates the view of the workspace
according to which dimension (i.e., data structure,
process structure, or user integration) the user selects
on the sidebar (cf. 4).

• The project manager opens, saves, and closes model-
ing projects.

The implemented run-time environment comprises the fol-
lowing components (cf. Fig. 3b):
• The run-time DB manager communicates with the

database of the run-time environment and manages
instance data; i.e., read and write access is provided.

• The build-time DB manager communicates with the
database of the build-time environment and manages
model data.

• The process manager allows creating and enacting
micro as well as macro process instances.

• The form manager automatically generates user forms
based on the various build- and run-time artifacts.

• The permission manager allows for the integration of
user roles; i.e., depending on the currently activated
states of the micro process instances, it controls which
users may access which data at a certain point in time.

• The activity manager controls the functions (e.g., alter
data or handle errors) that may be applied to object
instances.

• The run-time manager is responsible for creating
object instances and assigning attribute values to them.

• The model manager maintains all models for which
there are running instances.

B. Used Technologies

The tool is implemented based on .NET Framework (i.e.,
C#) and Visual Studio. In this context, the graphical frame-
work Windows Presentation Foundation (WPF) was applied
in conjunction with yFiles framework in order to develop the
user interface of the various modeling components. The latter
are based on the usability concepts presented in [16]. The
user interface provides extensive features for creating graphical
models. In addition, user interface components are defined in
a declarative way using the Extensive Application Markup
Language (XAML). In particular, XAML allows separating
design from behavior, which enables the re-use of components;
i.e., overall development time can be reduced significantly.
The run-time environment, in turn, is based on ASP.NET and
MS SQL Server 2008 is the database management system.
To establish the database connections, we use the Language-
Integrated Query (Linq) (cf. Fig. 2).

C. End-User View

The build-time environment of the PHILharmonicFlows
prototype is split into three main components: a menu, a
sidebar, and a workspace (cf. Fig. 4). The sidebar applies
the accordion navigation pattern and permits the user to
select and access areas representing the different modeling
dimensions of a particular object-aware process (i.e., data
structure, process structure, and user integration). In addition,
each area comprises sub-areas. When selecting an area, it
becomes expanded and highlighted. The screen depicted in
Fig. 4 represents the data structure dimension, where the
user defines the data model with its object types and their
relations. In particular, a data model serves as compass for the
corresponding process structures; i.e., by using the data model
as compass, the user may directly indicate in the data model,
for which object type he wants to define a micro process type
(cf. Fig. 5). When modeling a macro process type, in turn, both
data model and micro process type may be used as structure
compasses.

In the run-time environment, the user may choose among
three different views: data, task, and monitoring. The data-
oriented view comprises a panel for selecting the desired
object type on the left and an overview table listing the object
instances (the respective user may access) on the right (cf.
Fig. 6). Based on the data-oriented view, users may search for
object types, filter object instances, create new object instances,

menu

sidebar

workspace

selected
object type

modeling
components

table listing the
attribute types of the
selected object type

Fig. 4. Build-time user interface - Data structure (from [9])

information box

error box

modeling
components

micro process type of the
selected object type

structure compass

selected object
type

Fig. 5. Build-time user interface - Micro process modeling (from [9])

Fig. 6. Data-oriented user view (from [9])

and execute optional as well as mandatory activities on object
instances.

The process-oriented view (i.e., task view) presents a
matrix representing micro process types and corresponding
states as rows, and tasks as columns. In particular, each column

indicate a particular user task; i.e., the user can whether input
data to corresponding attributes, monitor the instances under
his responsibility, or handle instance errors. The user may
select one of the cells of this matrix and accomplish the corre-
sponding task; i.e., the overview table can be considered as a
worklist. In the monitoring view, in turn, users may visualize
the macro process instances as well as related object instances.
In this context, activities for handling macro process instances
(and micro process instances respectively) are provided; e.g.,
for dissolving deadlocks.

IV. CONCLUSION

In this paper, we presented a proof-of-concept tool we
developed in order to validate the technical feasibility of the
PHILharmonicFlows framework. This tool supports the mod-
eling, execution, and monitoring of object-aware processes.
For this purpose, it provides a build-time as well as a run-
time environment. The build-time environment is divided into
three dimensions: data structure, process structure, and user
authorization. In turn, the run-time environment provides three
user views: data-oriented view, process-oriented view, and
monitoring view.

As future work, we will extend the framework and its
implementation by addressing other issues related to object-
aware process management; e.g., historization, traceability,
process variability, and process flexibility (including ad-hoc
changes and schema evolution of object aware processes).

REFERENCES

[1] W. M. P. van der Aalst, P. Barthelmess, C. A. Ellis and J. Wainer,
“Workflow Modeling using Proclets”, Proc. CoopIS’00, pp. 198–209,
2000.

[2] W. M. P. van der Aalst, M. Weske and D. Grünbauer, “Case Handling:
A New Paradigm for Business Process Support”, Data & Know. Eng.,
53(2), pp. 129–162, 2005.

[3] K. Bhattacharya, R. Hull and J. Su, “A Data-Centric Design Methodol-
ogy for Business Processes”, Handbook of Research on Business Process
Modeling, pp. 503–531, 2009.

[4] C. M. Chiao, V. Künzle and M. Reichert, “Object-aware Process
Support in Healthcare Information Systems: Requirements, Conceptual
Framework and Examples”, Int’l Journal of Advances in Life Sciences,
5(1 & 2), pp. 11–26, 2013.

[5] D. Cohn and R. Hull, “Business Artifacts: A Data-centric Approach to
Modeling Business Operations and Processes”, Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, 32(3), pp.
3–9, 2009.

[6] V. Künzle and M. Reichert, “Towards Object-aware Process Manage-
ment Systems: Issues, Challenges, Benefits”, Proc. BPMDS’09, LNBIP
29, pp. 197–210, 2009.

[7] V. Künzle and M. Reichert, “PHILharmonicFlows: Towards a Frame-
work for Object-aware Process Management”, Journal of Software
Maintenance and Evolution: Research and Practice, 23(4), pp. 205–244,
2011.

[8] V. Künzle, B. Weber and M. Reichert, “Object-aware Business Pro-
cesses: Fundamental Requirements and their Support in Existing Ap-
proaches”, Int’l Journal of Information Systems Modeling and Design,
2(2), pp. 19–46, 2011.

[9] V. Künzle, “Object-aware Process Management”, Ph.D. Thesis, Univer-
sity of Ulm, Germany, 2013.

[10] D. Müller, M. Reichert and J. Herbst, “Data-Driven Modeling and
Coordination of Large Process Structures”, Proc. CoopIS’07, LNCS
4803, pp. 131–149, 2007.

[11] D. Müller, M. Reichert and J. Herbst, “A New Paradigm for the
Enactment and Dynamic Adaptation of Data-driven Process Structures”,
Proc. CAiSE’08, LNCS 5074, pp. 48–63, 2008.

[12] G.M. Redding, M. Dumas, A. H. M. ter Hofstede and A. Iordachescu,
“A Flexible, Object-centric Approach for Business Process Modelling”,
Proc. SOCA’09, pp. 1–11, 2009. Reichert and P. Dadam, A Frame-
work for Dynamic Changes in Workflow Management Systems, Proc.
DEXA’97, pp. 42–48, 1997.

[13] M. Reichert and B. Weber, “Enabling Flexibility in Process-Aware
Information Systems: Challenges, Methods, Technologies”, Springer,
2012.

[14] Silver, B., “Case Management: Addressing Unique BPM Require-
ments”, BPMS Watch, Industry Trend Reports, 2009.

[15] I. Vanderfeesten, H. A. Reijers and W. M. P. van der Aalst,
“Product-Based Workflow Support: Dynamic Workflow Execution”, Proc.
CAiSE’08, LNCS 5074, pp. 571–574, 2008.

[16] N. Wagner, “Entwicklung eines Usability-Konzepts für die
Modellierungsumgebung eines datenorientierten Prozess-Management-
Systems”, Diploma thesis, Ulm University, 2010 (in German).

