
Ulm University | 89069 Ulm | Germany Faculty of
Engineering and
Computer Science
Institute of Databases and
Information Systems

Development of a Cloud Platform
for Business Process Administration,
Modeling, and Execution
Master Thesis at Ulm University

Author:
Stefan Büringer
stefan.bueringer@uni-ulm.de

Reviewers:
Prof. Dr. Manfred Reichert
Prof. Dr. Peter Dadam

Advisor:
Dipl.-Inf. Jens Kolb

2014

Version July 24, 2014

c© 2014 Stefan Büringer

Abstract

Current business process management systems (BPMS) are laid out for large enterprises

with business process management (BPM) expertise. Hence, there is a lack of tailored

BPMS for small and medium-sized enterprises (SMEs) targeting at users with hardly

BPM expertise. Clavii BPM cloud is a compact solution for web-based business process

administration, modeling, and execution. Therefore, Clavii BPM cloud offers features to

easily manage and share process models, as well as features for collaborative process

modeling and execution. Moreover, Clavii BPM cloud has a unique feature set, which

includes process views to reduce process model complexity and an easily extendable

object-oriented data model. It also provides unique capabilities for process visualization

with different notations like business process model and notation (BPMN) and a newly

developed Transit Map. Created process models can be executed directly in the cloud

as part of the seamlessly integrated modeling and execution environment.

iii

Contents

1. Introduction 1

1.1. Problem Statement . 2

1.2. Contribution . 3

1.3. Organization of the Thesis . 5

2. Fundamentals 7

2.1. Business Process Management . 7

2.1.1. Process Lifecycle . 8

2.1.2. Activiti BPM Platform . 9

2.1.3. Elements and Structure of a Process Model 11

2.2. Web Applications with Google Web Toolkit 13

2.2.1. Overview . 14

2.2.2. Fundamental GWT Technologies 16

2.3. Summary . 25

3. State-of-the-art Business Process Management Systems 27

3.1. Architecture . 28

3.2. User Interface . 30

3.3. Summary . 35

4. Requirements 37

4.1. User Stories . 38

4.2. General Requirements . 40

4.3. Process Visualization Requirements . 43

v

Contents

4.4. Modeling Requirements . 44

4.5. Execution Requirements . 47

4.6. Summary . 47

5. Overview Clavii BPM cloud 51

5.1. Architecture . 52

5.2. Data Model . 57

5.3. Summary . 60

6. User Interface of the Web Application 61

6.1. Site Map . 62

6.2. Individual Pages of the Web Application 63

6.2.1. Login Page . 63

6.2.2. Registration Page . 63

6.2.3. GroupOverview Page . 64

6.2.4. ProcessOverview Page . 66

6.2.5. ModelView Page . 67

6.2.6. Settings Page . 73

6.2.7. UserProfile Page . 74

6.3. Summary . 74

7. Implementation Aspects of the Web Application 79

7.1. General Implementation Aspects . 80

7.1.1. Navigator Component . 80

7.1.2. Event Bus Component . 82

7.1.3. Data Storage Component . 85

7.1.4. Request Management . 87

7.2. User Interface Implementation Aspects . 88

7.2.1. Structure of GroupOverview and ProcessOverview Page 89

7.2.2. Details on Implementation of ModelView Page 94

7.2.3. Structure of the Sidebar Component 105

7.2.4. Details on Implementation of the ViewSettings Panel 108

vi

Contents

7.2.5. Localization . 110

7.3. Summary . 112

8. Summary and Outlook 113

A. Layouting Examples 117

vii

1
Introduction

Business process management (BPM) is a management approach to align business

processes of an enterprise to the economic necessities of the daily business. The

increasing focus on compliance has led to the necessity to take control of business

processes [EK12]. This can be achieved by capturing the as-is business processes and

defining the to-be business processes in explicit process models. This also leads to a

continuous optimization of existing process models, which is a major benefit of BPM

[Rud07].

BPM may contribute to reduced costs, enhanced efficiency, increased productivity, and

minimized risks by increasing process-awareness in the enterprise. Especially since

business processes can be only analyzed and optimized, if they are documented in

process models [Zai97, KH07]. Process models can then also be executed within a

business process management system (BPMS).

1

1. Introduction

Even though there are a lot of BPMS on the market [SWKN11], the majority of them are

laid out for large enterprises and do not consider requirements of small and medium-

sized enterprises (SMEs). In particular, this includes the price policy and the amount of

specialized knowledge necessary to operate such a system. Furthermore, few BPMS try

to keep the interactions with the system as simple as possible, for the benefit of good

usability for non-technical end-users. The resulting market gap is the starting point of

this thesis.

1.1. Problem Statement

A major obstacle for the usage of a BPMS in an enterprise are the investments necessary

for the introduction of a BPMS [Ric11]. The expense factors are the costs for the

purchasing and operation of the required hardware, which is a problem for SMEs, as

well as expensive licenses for a BPMS [MR13]. These problems may be solved by a

cloud-based BPMS. A cloud-based BPMS is a BPMS which can be operated by an

external service provider in the cloud. Therefore, it can be used on demand and no

additional internal resources are required. Figure 1.1 shows that the usage of cloud

services is increasing in many areas, and, thus, that cloud-based platforms are a viable

option for many enterprises. Especially, such a platform can be hosted internally and

externally.

Introducing a cloud-based BPMS, at first, process models can be modeled, implemented,

analyzed, and executed in such a cloud-based BPMS. The coverage of business pro-

cesses integrated in a cloud-based BPMS can then be increased gradually. Finally,

such a BPMS may be hosted internally, since the external storage of critical data is an

important security issue for enterprises [SK11].

Another obstacle for the introduction of a BPMS is the required expertise to set up and

operate a BPMS. For large enterprises this is no obstruction, since they usually rely

on a bigger IT budget than SMEs. Therefore, it is essential that a BPMS is as easy as

possible to set up and operate for a SME.

2

1.2. Contribution

Figure 1.1.: Growth Rate of Cloud Services [Gar13]

Despite the big improvements BPM technology offers to an enterprise, there are also

difficulties when a BPMS is established in an enterprise. A prerequisite for a successful

BPM project is the necessary expertise for the used BPMS. Because SMEs can not

rely on big IT budgets, the used BPMS should be as easy to understand as possible

for users to reduce expertise-building costs. In particular, this includes an intuitive user

interface and an understandable administration of process models.

The following section provides insights about the contribution of this thesis addressing

this issues.

1.2. Contribution

The contribution of this thesis is the development of the web application for the Clavii

BPM cloud (cf. Figure 1.2), based on the Google Web Toolkit (GWT). For the execution

of process models, the Activiti BPM Platform is integrated. Additional information

3

1. Introduction

about server-side components and technologies of the Clavii BPM cloud is provided in

[And14, Kam14]. Clavii BPM cloud allows the usage in multiple languages, currently

German and English. Compatibility with all major browsers is facilitated by the usage of

GWT [THET13].

Figure 1.2.: Clavii BPM cloud

The main focus of the development of the web application is on a user-centered design,

i.e., it should be as easy as possible to administrate, model, and execute process models

for non-technical end-users. Clavii BPM cloud allows the creation of so-called groups,

which can be easily shared between different users. Next, process models can be

stored within such groups. Further, properties of groups and process models can be

administrated in a sidebar, e.g., access rights and textual descriptions.

Two different process notations are provided, i.e., business process model and notation

(BPMN) [OMG11] and a newly developed Transit Map, to assist users in understanding

process models. The user interface provides capabilities for drag and drop modeling

of the control and data flow of process models. Process models can be enriched with

technical information, for the execution of automated tasks. Changes on process models

are propagated to all users logged in, to support collaborative process modeling.

Without an explicit deployment process models can be directly started, which is enabled

by a seamlessly integrated modeling and execution environment. Tasks in a process

model can be executed at run-time by simply clicking on them. If necessary, users

can provide input data by entering them in a sidebar, without loosing the context of the

4

1.3. Organization of the Thesis

process. Thus, user always have an overview on the process model and its current

execution state. Clavii BPM cloud also provides a process instance overview integrated

in the sidebar to get a quick summary, which process models are being executed or

which have been completed.

1.3. Organization of the Thesis

The thesis starts with a discussion of fundamentals regarding BPM and web applications

with GWT (cf. Section 2). A comprehensive analysis of the capabilities of state-of-the-art

BPMS on the basis of the IBM Business Process Manager (IBM BPM) and the Activiti

BPM Platform (Activiti for short) is provided in Section 3. Based on the potential of the

Activiti BPM Platform and GWT, and capabilities of state-of-the art BPMS, requirements

are specified in Section 4.

The following sections illustrate the concrete implementation of Clavii BPM cloud (Clavii

for short). Section 5 describes the high-level architecture of the Clavii BPM cloud.

Section 6 gives an overview and details on the user interface. In Section 7 selected

implementation aspects are singled-out and explained thoroughly. Finally, Section 8

summarizes the thesis and gives a brief outlook on possible extensions of the Clavii

BPM cloud.

5

2
Fundamentals

This section introduces fundamentals for the design of a cloud-based BPMS. In particular,

Section 2.1 describes the fundamentals of BPM, including elements and structure of

a process model. Since this thesis relies on GWT, Section 2.2 presents the basic

structure of a GWT application. Furthermore, some fundamental technologies of GWT

are described in detail. Finally, Section 2.3 summarizes this section.

2.1. Business Process Management

In the following, fundamentals on BPM are introduced. At first, the understanding of the

lifecycle of a process model is discussed. To implement this lifecycle, Clavii BPM cloud

integrates the Activiti engine [Rad12]. Hence, it is essential to explain capabilities of

Activiti. Activiti, and therefore Clavii BPM cloud uses process models based on the BPMN

7

2. Fundamentals

2.0 specification [OMG11]. BPMN 2.0 is a graphical notation for business processes,

which has been standardized by the Business Process Management Initiative (BPMNI).

Because Clavii BPM cloud has a few restrictions on process models, the supported

elements of a process model and the block-structure of process models are discussed.

2.1.1. Process Lifecycle

The process lifecycle describes the evolution of a process model from its modeling,

execution, monitoring, and optimization [Wes07, GT98]. It is essential for the design of a

BPMS, to determine how different phases of the process lifecycle should be supported

by a BPMS. Figure 2.1 visualizes the process lifecycle.

Developer

Staff

Manager

Process Analyst

Process Analyst

Figure 2.1.: The Process Lifecycle

Generally, modeling a business process is separated in two phases: functional and

technical modeling. Whereby, functional modeling corresponds to the first phase of

the lifecycle: Model & Simulate. In this phase, the business process is analyzed and

modeled at a high abstraction level. This phase is typically conducted by a process

analyst. However, it would be a substantial improvement if the process participants could

model their own process models. Studies have shown when the process is modeled by

8

2.1. Business Process Management

one of the process participants it results in better process models [KZWR14]. This is

only possible if the used BPMS is beginner-friendly enough for inexperienced users.

Process models of the functional modeling phase are the basis for technical modeling.

Thereby, a process model is enriched with implementation details by a developer. For

example, users are assigned to tasks or server URLs are configured. When technical

modeling is completed, which usually includes testing in a test environment, the process

model is deployed on an execution environment.

After the process model is deployed, the users can execute the process model. For

this, a publicly accessible internet or intranet platform is used. Such a platform usually

provides work lists to users. Each work list assigns tasks to user. During the execution

phase, so-called Key Performance Indicators (KPI) are calculated. An example for

a KPI may be the average time for the completion of a task. KPIs can be used to

create performance dashboards or to analyze a process model. Thus, bottlenecks and

inefficiencies are made visible. Findings of the optimization phase are used for further

process optimizations (cf. Figure 2.1).

The process lifecycle is repeated for continuous business process improvement. Changes

in the process can be easily introduced in the optimization phase. As a result, it is possi-

ble to react quickly to evolving business demands.

2.1.2. Activiti BPM Platform

Activiti BPM Platform (Activiti for short) is selected in this thesis as starting point for

extending to provide a cloud-based BPMS. To be more precise, the Activiti engine,

without the additional environments, is integrated in Clavii BPM cloud. Hence, the focus

of this section is on the functionality of the Activiti engine (cf. Figure 2.2).

Core component of the Activiti engine is the ProcessEngine, which is responsible for

the execution of process models. Additionally to its main task, it provides access to

several other components, so-called services. The Activiti services are explained in the

following:

9

2. Fundamentals

Activiti Modeler Activiti DesignerActiviti Explorer

Activiti Engine

ProcessEngine

RepositoryService

TaskService

IdentityService

FormServiceRuntimeService

ManagementService

HistoryService

Figure 2.2.: Structure of Activiti Engine

RepositoryService. The RepositoryService offers methods for managing deployments

of process models. A deployment contains process definitions and other resources. A

process definition encapsulates the process model, which is represented by an XML file.

Additional resources like a process model as an image can be added. These resources

can be accessed through the RepositoryService. When a deployment is deployed, it

is uploaded to the Activiti engine. Afterwards, contained process models are validated

before they are stored in a database. From that point on, these process models are

known by the process engine and can be started.

RuntimeService. The RuntimeService is responsible for starting and stopping a process

instance, which is the representation of an executed process model. In addition, it

provides functionality to query for running process instances. Furthermore, process

variables of an instance, which contain the data of a process instance, can be retrieved

and manipulated.

TaskService. The TaskService provides all methods necessary to execute so-called

user tasks, which are tasks with user interaction (e.g., user forms). These tasks can be

queried and filtered by attributes, for example, the assigned user groups or users. The

most important methods are claiming and completion of tasks. Additionally, tasks can be

reassigned to other users, for example, if a user is temporary not available.

10

2.1. Business Process Management

HistoryService. Historical data is collected during process execution and can be

accessed with the HistoryService. This data can be used for advanced monitoring

services, like performance dashboards.

IdentityService. The IdentityService provides capabilities to create, update, delete,

and query user groups and individual users. Therefore, it is possible to realize complex

organization models.

FormService. The FormService provides support for user forms. These forms can be

defined within the process definition.

ManagementService. The ManagementService provides methods to retrieve informa-

tion about database tables and table meta data. For example, it is possible to retrieve the

table name for a specific class, like the HistoricProcessInstance, which encapsulates

the historic data of a process instance. Thus, custom SQL queries can be build.

2.1.3. Elements and Structure of a Process Model

Process models are typically visualized as directed graphs. In particular, the building

blocks being nodes and edges. Nodes represent tasks, also called activities, or gate-

ways. Gateways can have different control flow indicators and, thus, a wide range of

process patterns is supported [RHAM06]. Edges between nodes represent the transition

behavior during process execution, which is also called control flow. Business objects,

which contain the process data, and data flow are built on top of the original process

model. In the following, supported process elements and control flow constructs are

discussed in detail. In this context, BPMN has been established as a de-facto process

modeling language [OMG11]. Hence, we apply it in this thesis.

Figure 2.3 shows an example of a process model. We restrict ourselves on process

models having exactly one start and exactly one end event. The process model in

Figure 2.3 also contains a user task and a service task.

A user task can be further detailed as either a check mark task or a user form. In

particular, the user task is a check mark task, when no business object is connected to it.

Hence, the task is executed by just clicking on the node. In contrast, for a user form a

11

2. Fundamentals

Figure 2.3.: Simple Process Model

form is generated, depending on its connected business objects, which has to be filled

out by an assigned user.

In Figure 2.3, the service task is a calendar task. The task “Add Calendar Event” can

be, for example, configured to add an event to a calendar. Service tasks are used to

integrate external services, for example, OneDrive, Google Calendar, or Dropbox, in the

process model.

A more complex process model, which contains supported gateways in Clavii BPM cloud,

is illustrated in Figure 2.4. We restrict ourselves to a subset of all specified elements

in BPMN [ZMR08]. The first gateway block, which is a combination of a join and a split

gateway, in the process model is a XOR gateway block. After the gateway, the path,

whose expression is evaluated to true, is followed. In Figure 2.4, task A is only executed

if expression Age < 9 evaluates to true, task B is executed if Age > 9 evaluates to true,

and none of them is executed if Age == 9. To be more precise, only one outgoing branch

is selected at a time.

Figure 2.4.: A Process Model including Gateways

The next gateway block is a LOOP gateway block. Task C is executed as long as the

expression on the edge between LOOP join and LOOP split gateway evaluates to true.

Therefore, it is possible to build arbitrary loops. For example, a loop with exactly two

12

2.2. Web Applications with Google Web Toolkit

repetitions or a loop which is executed until the task inside the loop returns a specific

result. The last gateway block is an AND gateway block. It expresses that both task D

and task E are executed in parallel.

We restrict in this thesis to block-oriented process models [Rei00], to enforce well-

structured process models [MRA10]. Block-oriented process models can be nested

indefinitely (cf. Figure 2.5, 1) and disjunct gateway blocks are also allowed (cf. Figure

2.5, 2). However, it is forbidden to model overlapping gateway blocks (cf. Figure 2.5,

3).

Figure 2.5.: Examples for Block-oriented Process Models

2.2. Web Applications with Google Web Toolkit

Google Web Toolkit (GWT) is a framework for creating web applications with a Java-

based approach [Bur06, Dew07, THET13]. The basic concept behind GWT is that web

applications can be written mostly using Java as programming language. Although,

some additional CSS and HTML files are required, the major benefit of GWT is that

Java developers can reuse their knowledge of Java and that no JavaScript expertise

is required. Furthermore, developers can profit from Java support given by existing

integration development environments (IDEs). Therefore, the productivity with GWT is

higher than with plain JavaScript [Vaa13].

13

2. Fundamentals

In Section 2.2.1, an overview of GWT is given. Therefore, the structure of an example

GWT application is broken down. In Section 2.2.2, the compilation process, which

transforms the sources to a .war file deployable on an application server, is examined.

Finally, several fundamental technologies of GWT are illustrated.

2.2.1. Overview

Figure 2.6 displays an example GWT application. The src.main folder is the source

folder of the application, i.e., it contains all source files of the application. The war folder

is generated by the compilation process. The content of the latter is then packaged into

a .war file and deployed on an application server. Hence, the content of the war folder is

the deployed structure of the GWT application.

war

WEB-INF

lib

<module>

classes

java

HTML, CSS,

Multimedia

server shared client

web.xml

libraries classes

GWT Compiler

<module>.

gwt.xml

src.main

webapp

WEB-INF

lib

web.xml

libraries

HTML, CSS,

Multimedia

Figure 2.6.: Structure of a GWT Application

The webapp folder contains static resources like HTML or CSS files, libraries for Java

classes on the server, and the deployment descriptor, the web.xml file. In the web.xml

file, deployment parameters are specified, e.g., the welcome page, or servlets, which

are explained later.

The java folder contains all Java packages of a GWT application and is divided into a

client- and server-side. The client-side includes all files in the client and shared package.

Whereas the client and shared packages, which are later compiled to JavaScript, can

contain all common Java types, e.g., classes, interfaces, and enumerations. They can

also contain UiBinder files and ClientBundles, which are both explained in Section

2.2.2.The shared package is also part of the server-side. In addition, the server-side

14

2.2. Web Applications with Google Web Toolkit

contains all classes of the server package. The server package usually consists of

servlets, which are used to communicate with the client-side and the backend of the

application.

The .gwt.xml file specifies necessary parameters for the compilation process (cf. Listing

2.1). Libraries can be imported by referencing them with inherits. Packages and their

sub-packages, which should be compiled, are specified with source. Tag entry-point

defines the class called at start up.

<module>

< i n h e r i t s name= ’com. google . gwt . user . User ’ / >

< i n h e r i t s name="com. google . gwt . u i b i nde r . UiBinder ’ / >

<source path = ’ c l i e n t ’ / >

<source path = ’ shared ’ / >

<entry−po in t c lass = ’ c l i e n t . En t rypo in t ’ / >

</module>

Listing 2.1: .gwt.xml File

When compiling a GWT application, the content of the webapp folder is copied to the

war folder. Next, the Java classes of the server package are copied to the classes folder.

Furthermore, the content of the client and shared packages is compiled to JavaScript,

as specified in the .gwt.xml file. JavaScript code is then copied to a folder within the

war directory, which has the name of the so-called module. In particular, module is the

collection of all compiled client files. Finally, the .war file is created.

The compilation process of the GWT compiler is illustrated in Figure 2.7. At first, the

so-called code generation is started. The GWT compiler uses code generators based

on the technologies used in the source code. For example, if the source code leverages

the client-server communication technologies of GWT, the respective code is produced

in this phase. This includes code to serialize, deserialize, and send the involved Java

objects. The generators also optimize CSS or images for quicker loading times in the

browser.

In the second phase, the final JavaScript is generated. Unused code is removed, to

achieve smaller JavaScript files. Because each browser has its own quirks, GWT

15

2. Fundamentals

Client-Side

Code

Run Code

Generators

UiBinder Java

Code

Client-Bundle

Java Code

Client-Side

Java Code

Remove dead

Code

Determine Browser-

specific Implementation

Bootstrap Loader

Weave in

JavaScript

Convert to

JavaScript JavaScript for

Internet Explorer

JavaScript for

Firefox

JavaScript for

Chrome

GWT Compiler

Code Generation Compile, Weave, Optimize

Figure 2.7.: GWT Compilation Process

provides different implementations for each browser. These implementations are used

here to create customized Java files for each browser. Thereafter, the Java code

is converted to JavaScript. This results in browser-specific JavaScript files and an

additional bootstrap loader. The bootstrap loader is used to determine on start up which

browser-specific file should be used.

2.2.2. Fundamental GWT Technologies

GWT is called a toolkit, because it consists of a collection of technologies, which

can be leveraged to make the development of a web application as easy as possible.

These technologies are the basis of all client-side Java code of Clavii BPM cloud. It

is essential to gain a basic knowledge about these technologies to understand the

implementation aspects singled out in Section 7. In the following, we introduce the

fundamental technologies:

Remote Procedure Calls

Remote Procedure Calls (RPCs) enable the usage of Asynchronous JavaScript and

XML, known as AJAX [Pau05], in GWT applications [Wal98]. RPCs are the main

communication method between client- and server-side. The major difference to classic

web applications is the asynchronous communication with the server-side in modern

web applications with AJAX. Classic web applications use synchronous communication

16

2.2. Web Applications with Google Web Toolkit

by sending HTTP requests after user activity and waiting for the result. Hence, there are

a lot of disruptions during the usage of a classic web application.

GWT encapsulates an AJAX engine to provide a convenient way to implement RPCs.

The involved classes and interfaces are shown in Figure 2.8. To implement an RPC, a

servlet on the server-side and two interfaces on the client-side have to be created. The

GWT compiler creates a RPCServiceProxy class in the code generation phase of the

compilation (cf. Figure 2.7). In the following, an example demonstrates how an RPC is

implemented.

<<interface>>

RPCServiceAsync

sendMsg(msg: string, async:

AsyncCallback<Void>)

<<interface>>

RPCService

sendMsg(msg: string)

related

<<interface>>

RemoteService RemoteServiceServlet

RPCServiceServlet

sendMsg(msg: string)

RPCServiceProxy

sendMsg(msg: string, async:

AsyncCallback<Void>)

related

imported from GWT

custom

automatically generated

Client-Side Server-Side

Figure 2.8.: Class Structure for RPC in GWT

First, the synchronous interface for the communication is created, to specify the methods

of the RPC (cf. Listing 2.2).

package shared ;

public inter face RPCService extends RemoteService {

public S t r i n g sendMsg (S t r i n g msg) ;

class Impl {

private s t a t i c f i n a l RPCServiceAsync i n s t =

(RPCServiceAsync) GWT. create (RPCService . class) ;

public s t a t i c RPCServiceAsync get Ins tance () { return i n s t ; }

}

}

Listing 2.2: RPCService Interface

17

2. Fundamentals

Another interface, based on RPCService, has to be created (cf. Listing 2.3). Each

method in the synchronous interface, must have a corresponding method in the asyn-

chronous interface. An additional parameter of the type AsyncCallback must be added,

which enables the server to send a response to the client. The latter can then respond.

package shared ;

public inter face RPCServiceAsync extends RemoteService {

public void sendMsg (S t r i n g msg, AsyncCallback <St r ing > async) ;

}

Listing 2.3: RPCServiceAsync Interface

Listing 2.4 shows the servlet on the server-side. This servlet has to extend RemoteSer-

viceServlet, in order to handle the communication with the client-side. The servlet also

implements the previously created RPCService interface. When the servlet receives a

method call from the client-side, the sendMsg method is called. With a return statement,

an object can be send back to AsyncCallback on the client-side.

package shared ;

public class RPCServiceServlet extends RemoteServiceServlet implements RPCService {

public S t r i n g sendMsg (S t r i n g msg) {

return msg ;

}

}

Listing 2.4: RPCServiceServlet Class

The application server has to be notified that the application contains servlets. Therefore,

a servlet specification is provided in the deployment descriptor (cf. Listing 2.5).

< s e r v l e t >

< se rv l e t −name>RPC Serv ice< / se r v l e t −name>

< se rv l e t −c lass>server . RPCServiceServlet< / s e r v l e t −c lass>

< / s e r v l e t >

< se rv l e t −mapping>

< se rv l e t −name>RPC Serv ice< / se r v l e t −name>

< u r l −pa t t e rn > / RPCServiceServlet< / u r l −pa t te rn >

< / se r v l e t −mapping>

Listing 2.5: Servlet Configuration in the web.xml File

18

2.2. Web Applications with Google Web Toolkit

Finally, the RPC can be executed from the client-side (cf. Listing 2.6). In this example,

the static field from the RPCService is retrieved and method sendMsg is called. Thus,

the RPC is sent through the RPCServiceProxy object, which has been automatically

created. If the method call is successful, method onSuccess is called. If an exception is

thrown on the server-side, method onFailure is called.

RPCService . Impl . ge t Ins tance () . sendMsg (" He l lo World " ,

new AsyncCallback <St r ing > () {

public void onFa i lu re (Throwable caugt) {

}

public void onSuccess (S t r i n g r e s u l t) {

}

} ;

Listing 2.6: Client-Side RPC Call

RequestFactory

All data used in Clavii BPM cloud is encapsulated in entities, which are stored on the

server-side. These entities can be edited through RPCs, which would require at least

four RPCs for every entity: to create, to fetch, to update, and to delete it. Because every

class that is used on the client-side needs to be located in the shared or client package,

it is necessary to locate all entity classes in these packages. Alternatively, duplicate

proxy classes on the client-side for every entity on the server-side may be created.

However, a lot of effort is required to create and synchronize these entity classes as well

as additional create converter, to convert the entity to its proxy class and vice versa.

GWT provides RequestFactories for this. We use RequestFactory to retrieve and modify

entities from the client-side. (cf. Figure 2.9). Every entity of the server-side is represented

by an EntityProxy on the client-side. RequestFactory is used to create a RequestCon-

text. Every EntityProxy can be changed on the client-side, and changes are then sent

to the RequestFactoryServlet on the server-side. The client-server communication is

handled by GWT. To be precise, the GWT compiler automatically creates code for the

communication between client and server.

19

2. Fundamentals

Server

RequestFactoryRequestContext

Entity

Proxy

RequestFactory

Servlet

Service

Locator
Service

Entity

Class

c
re
a
te

fe
tc
h

p
e
rs
is
t

create

re
q
u
e
s
t

re
s
p
o
n
s
e

c
a
ll

lookup

m
a
n
a
g
e

Client

Entity

Proxy

Entity

Proxy

Figure 2.9.: RequestFactory

When the RequestFactoryServlet receives a request, it calls the ServiceLocator to

retrieve the Service of the respective entity. The Service is then used to access the

server-side entity. This mechanism has the capabilities to connect the client-side to

arbitrary data storage on the server-side.

GWT Injection

GWT injection (GIN) facilitates the usage of the inversion of control pattern [Fow].

Inversion of control avoids that dependent components, like user interface components,

create objects of general components, like components for centralized data storage.

Instead, the general components are provided by the injection mechanism. GIN allows

the developer to describe dependencies between components and inject components.

Inversion of control increases modularity and extensibility of an application.

GIN is based on Guice, which is a Java dependency injection framework [Van08]. Since

Guice uses Java reflection [FFI04], it can not be used on GWT client-side. Therefore,

GIN has been created [THET13]. The basic principle of GIN is shown in Figure 2.10.

20

2.2. Web Applications with Google Web Toolkit

Binding Definition
public class GinModule extends AbstractGinModule{

 protected void configure(){

 bind(Service.class).to(ServiceImpl.class);

 }

}

Code generated by the GWT Compiler

service = GWT.create(ServiceImpl.class);

Custom Code

@Inject

public SubSystem(Service service){

 .

 .

 service.method(Hello World);

 .

 .

}

GIN Injection

Injector Definition
@GinModules(GinModule.class)

public interface Injector extends Ginjector{

 Service getService();

}

Figure 2.10.: GWT Injection

Binding definition specifies implementation classes for interfaces. Therefore, a imple-

mentation class can be exchanged by changing a binding definition. The GWT compiler

generates code for the creation of dependencies. Injector definition provides access to

the interfaces which have been connected to classes in binding definition. In custom

code dependencies can be injected by the annotation @Inject. Hence, a developer only

has to provide binding and injector definition and components are available everywhere

without additional code.

GIN provides several types of injection: on-demand, constructor, field, and method

injection (cf. Listing 2.7).

public class SubSystem {

@Inject

Serv ice se rv i ce ;

@Inject

public SubSystem (Serv ice se rv i ce) {

GWT. create (I n j e c t o r . class) . ge tServ ice () ;

}

@Inject

public se tServ ice (Serv ice se rv i ce) {

}

}

Listing 2.7: Examples for GWT Injection

On-demand injection is implemented, for example, by creating an Injector object and

calling method getService. Gwt.create is replaced when compiling with a concrete

implementation. On-demand injection is useful when a component needs to be created

21

2. Fundamentals

at a specific time. Constructor, field, and method injection are all realized by the @Inject

annotation. Therefore, the latter is placed at constructors, methods, and fields. The

advantage of constructor injection is that the required component is already available in

the constructor. The field and method injection is only executed after the constructor is

completed.

ClientBundles

ClientBundles are used to bundle static resources, like images or CSS files. Typically, a

web application requests each static resource individually. Since every request opens a

new connection, loading times of the web application increase. Therefore, ClientBundles

bundle images and CSS files.

Listing 2.8 displays the definition of such a ClientBundle. ClientBundle class has to be

extended and an instance of ClientBundle object is stored in a static field, for centralized

access to the bundle.

public inter face Stat icResources extends Cl ien tBund le {

Stat icResources Impl =

(Stat icResources) GWT. create (Stat icResources . class) ;

@Source (" smi ley . png ")

ImageResource smi ley () ;

@Source (" s t y l e s . css ")

BundledCssResource css () ;

public inter face BundledCssResource extends CssResource {

S t r i n g redbackground () ;

S t r i n g b l u e t e x t () ;

}

}

Listing 2.8: Creation of a ClientBundle

Listing 2.9 shows the corresponding CSS file to Listing 2.8. Methods, defined in the

BundledCssResource interface, refer to classes in the CSS file. It is also possible to

define constants and to call static methods, which deliver property values for CSS values.

The Theme class in Listing 2.9 contains the static method getMargin called in the CSS

file. Hence, a central Java class can be created, which contains all constants used

22

2.2. Web Applications with Google Web Toolkit

in CSS files. Therefore, constants can be defined at one place and used throughout

the entire application. This pattern is implemented in Clavii BPM cloud. The following

section discusses how the example ClientBundle created in Listing 2.8 can be accessed

in a UiBinder file.

@def COLOR red ;

@eval MARGIN c l i e n t . Theme . getMargin () ;

. redbackground {

background−co lo r : COLOR;

}

. b l u e t e x t {

co l o r : b lue ;

margin− l e f t : MARGIN;

}

public class Theme{

private s t a t i c i n t margin = 10;

public s t a t i c S t r i n g getMargin () {

return margin + " px " ;

}

}

Listing 2.9: CSS File and CSS Theme

UiBinder

UiBinder enables developers to create a user interface in a declarative manner, which is

leveraged for all user interface components in Clavii BPM cloud. A user interface defined

by UiBinder consists of two files: a Java class and a corresponding .ui.xml file. Both are

compiled to JavaScript by the GWT compiler.

An example UiBinder file is shown in Listing 2.10. At first, the namespaces are declared.

The first namespace imports common UiBinder tags. The second namespace imports

a package with a set of predefined components. It is also possible to import packages

with custom components. Next, the StaticResources ClientBundle is imported by the

ui:with tag. Thereafter, first components are declared. During compilation, HTMLPanel

element is replaced by a div element, with the CSS class specified in the ClientBundle.

Label element is transformed to a div element with the text content HelloWorld and

23

2. Fundamentals

the bluetext CSS class. The Image element is transformed to a HTML image element,

which shows the image linked of the StaticResources ClientBundle.

< u i : U i B i n d e r xmlns :u i= ’ u rn :u i :com . google . gwt . u i b i nde r ’ xmlns:g= ’

urn : impor t :com . google . gwt . user . c l i e n t . u i ’ >

< u i : w i t h f i e l d = " res " type=" c l i e n t . Stat icResources " / >

<g:HTMLPanel addStyleNames=" { res . css . redbackground } " / >

<g:Label u i : f i e l d = " Text " t e x t = " He l lo World "

addStyleNames=" { res . css . b l u e t e x t } " / >

<g:Image u i : f i e l d = " Image " resource=" { res . smi ley } " / >

< / g:HTMLPanel>

< / u i : U i B i n d e r >

Listing 2.10: UiBinder File HelloWorld.ui.xml

To create dynamic behavior, a Java class is attached to the .ui.xml file (cf. Listing

2.11). In the constructor, the initWidget method is called, to connect the fields annotated

with @UiField to their corresponding user interface element, declared in the .ui.xml file.

Handlers for user interface elements can be declared with the annotation @UiHandler.

In this example, if the Image element is clicked, the Text element is modified by calling

the setText method on the Text field.

public class HelloWorldPanel extends Composite {

@UiTemplate (" Hel loWorld . u i . xml ")

in ter face UIBinder extends UiBinder <Widget , Hel loWorldPanel > { }

private s t a t i c UIBinder he l loWor ldUiB inder =

GWT. create (UIBinder . class) ;

@UiField

Label t e x t ;

@UiField

Image image ;

public HelloWorldPanel () {

i n i t W i d g e t (he l loWor ldUiB inder . createAndBindUi (th is)) ;

}

@UiHandler (" image ")

void onCl ick (Cl ickEvent b lurEvent) {

t e x t . se tText (" Bye World ") ;

}

}

Listing 2.11: Java Class for UiBinder

24

2.3. Summary

2.3. Summary

This section discusses the fundamentals of BPM and web applications with GWT. The

process lifecycle is explained to give insights in the evolution of a process model and

which capabilities a BPMS must have to support the entire process lifecycle. In the

following, the functionality of the Activiti engine, which is integrated in Clavii BPM cloud,

is explained. Thus, it is illustrated on which functionality of the Activiti engine Clavii BPM

cloud can build to implement the process lifecycle, which is explained later in detail in

Section 5.1. Subsequently, the elements and structure of the used process models are

specified, including the restriction to block-oriented process models.

In the following, web applications with GWT are discussed. First, an overview on the

structure is given on the basis of an example application. Next, fundamental GWT tech-

nologies, which lay the groundwork for Clavii BPM cloud, are defined. The application of

the fundamental technologies in the implementation of Clavii BPM cloud is explained

in detail in Section 7. RPC and RequestFactory are used in Clavii BPM cloud to ease

communication between client- and server-side (cf. Section 7.1). Furthermore, modular-

ization is facilitated by dependency injection with GIN. ClientBundles and UiBinder make

it possible to create the entire user interface in a declarative manner, which is leveraged

in all user interface components in Clavii BPM cloud (cf. Section 7.2).

25

3
State-of-the-art Business Process

Management Systems

In this section, state-of-the-art BPMS are analyzed to gain the necessary knowledge for

implementing a cloud-based BPMS for SMEs. To gain insights into a broad bandwidth

of BPMS, IBM Business Process Manager (IBM BPM) and Activiti BPM Platform are

examined. IBM BPM is a large-scale commercial BPMS from IBM, which is laid out for

large enterprises. In contrast, Activiti BPM Platform is a light-weight open-source BPMS

and, thus, provides insights in the architecture and the user interface of a small-scale

BPMS. Activiti BPM Platform is distributed under the Apache license and can therefore

be integrated free of charge in another system, which enables the integration of the

Activiti engine, which is part of Activiti BPM Platform, in Clavii BPM cloud.

The core components of a BPMS typically are: modeling environment, execution en-

vironment, and process repository [Hol95]. Individual components may have different

27

3. State-of-the-art Business Process Management Systems

scopes. A process repository, for example, can be just a simple database, which stores

process definitions, or it can be a complex repository with functionality for versioning of

process models and access control to these process models.

The architectures of both BPMS are discussed in Section 3.1, to get insights how the

architecture of a BPMS should be designed. Finally, Section 3.2 analyzes the user

interface of IBM Business Process Manager and Activiti BPM Platform, to discover

best practices and potential problems of an user interface for a BPMS. Section 2.3

summarizes this section.

3.1. Architecture

The architecture of IBM BPM is illustrated in Figure 3.1 [AAG+13]. The central environ-

ment of IBM BPM is the Process Center. The Process Center stores all resources, like

process models and related artifacts. Process modeling and deployment is conducted

in the Process Designer and Integration Designer. They are both desktop applications

and have to be downloaded to a local computer and connected to the Process Center.

Process models can be administrated through the Process Center Console.

Process execution on the backend takes place either directly in the Process Center or

in an external execution environment. Therefore, external execution environments can

be managed in the Process Center Console. Per default, process models are deployed

to the Process Center. Subsequently, they can be deployed to external execution

environments if necessary.

Process Portal and Process Admin Console are used as frontends for both the Process

Center and the execution environments. Next, Process Portal provides access to

the execution of process models for end-users. The Process Admin Console has

administrative capabilities, i.e., process models can be started or stopped and process

data of executed process models may be manipulated.

Individual components of the IBM BPM architecture, also called conceptual nodes, can

be operated on different physical machines. This allows for a high redundancy and high

28

3.1. Architecture

Process Designer Process Center Console Integration Designer

Process Center

Repository Server

Execution Environments

Staging Test Production

Process Admin ConsoleProcess Portal

Process

Repository

Modeling

Environments

Execution

Environments

Figure 3.1.: IBM BPM Architecture

availability, but requires highly specialized knowledge for setting up and operating a

production system.

In contrast to IBM BPM, Activiti has a simple architecture (cf. Figure 3.2) [Act14]. The

core component of Activiti is the Activiti engine. The Activiti engine is responsible for

storing and executing process models (cf. Section 2.1.2). The latter can be accessed

by the web-based Activiti Explorer, which allows the user to execute and administrate

process models. Furthermore, Activiti provides two modeling environments. The Activiti

Modeler is a simple web-based modeling environment integrated in the Activiti Explorer.

Activiti Designer is an eclipse-based environment for modeling BPMN 2.0 process

models. These process models can then be deployed to the Activiti engine to execute.

Due to the simple architecture, Activiti is easy to understand and use. Hence, Activiti

requires less expertise than IBM BPM to operate. This simple architecture facilitates the

integration of Activiti in another system. That is why the Activiti engine is used as an

integrated process engine in Clavii BPM cloud. The outcome of the discussion of both

architectures is that the architecture of a cloud-based BPMS should be as simple as

possible to facilitate the usage in SMEs.

29

3. State-of-the-art Business Process Management Systems

Activiti Modeler Activiti Designer

Activiti Explorer

Activiti Engine

Repository Server

Process

Repository

Modeling

Environments

Execution

Environment

Figure 3.2.: Activiti Architecture

3.2. User Interface

After discussing architecture of BPMS, this section discusses the user interface of IBM

BPM and Activiti BPM Platform. First, the user interface of IBM BPM is discussed.

Figure 3.3 shows the start page of the Process Designer. On this page Business

Process Applications (BPA) can be administrated, i.e., they can be created, removed,

exported, and imported. A BPA is a collection of Business Process Definitions (BPD),

which can be seen as process models. It is possible to configure the user access to the

BPAs, imported libraries, so-called Toolkits, and associated execution environments.

Figure 3.3.: Process Designer - Start Page

The modeling view (cf. Figure 3.4) is opened by accessing a BPA. In the modeling

view new BPDs can be created and existing BPDs edited. Process elements can be

30

3.2. User Interface

dragged onto the process model from the palette on the right side. Basic elements are:

activities, gateways, start events, end events, and intermediate events. An activity can be

implemented by a user task, a system task, a script task, or a decision task. Whereby a

user task consists of a sub flow, which specifies the user interaction. A system task can

be, for example, a Java implementation or a web service call. The script task consists of

JavaScript, which allows for modifying process variables. Decision tasks integrate rule

services with the process model.

Figure 3.4.: Process Designer - Modeling View

The control flow of a process model is defined through edges between the process

elements, which can be modeled using drag and drop. Process variables are created in

an additional variables tab and have no graphical representation in the process model.

Process variables can be connected to activities by specifying their name as an in- or

output parameter.

Figure 3.5 shows how a sub flow of a user task is modeled. Individual user forms are

represented by so-called coaches, which are represented by yellow rectangles with a

user icon. In this example, at first, the Create Requisition coach is shown to the user.

Depending on the output of the Create Requisition coach, the user is forwarded either to

31

3. State-of-the-art Business Process Management Systems

Specify Existing Position coach or to Confirm Position Details coach. This kind of user

interaction modeling enables complex interaction scenarios.

Figure 3.5.: Modeling a User Task in the Process Designer

After the process model is deployed, it can be executed in the Process Center. The user

can then open the Process Portal and execute the process model. Figure 3.6 shows

how the user task, modeled in Figure 3.5, is executed in the Process Portal. A panel

on the right side displays additional information. This includes details, like the name of

the current task, the due date of the task, and a graphical representation of the process

model, the so-called process diagram. The stream tab shows when and who executed

previous tasks. The experts tab provides capabilities to contact experienced users, who

can help with the execution of the current task.

Figure 3.6.: Process Execution in the Process Portal

32

3.2. User Interface

In contrast to IBM BPM, Activiti provides only a rudimentary user interface. The process

models can be modeled in the Eclipse-based Activiti Designer (cf. Figure 3.7). Process

elements and edges can be create, by dragging them onto the process model from

the palette on the right side. The palette contains all process elements and edges

specified in the BPMN 2.0 specification [OMG11]. The process elements can be edited,

by selecting them and changing their properties in the properties tab on the bottom. The

process models are stored in .bpmn20.xml files according to the BPMN 2.0 specification.

Figure 3.7.: Process Modeling with the Activiti Designer

The resulting .bpmn20.xml files can be deployed to the Activiti engine and are then

available in the Activiti Explorer (cf. Figure 3.8). The Activiti Explorer is a web-based

user interface, similar to the Process Portal of IBM BPM. An overview on all deployed

process models can be found in the processes tab. The tasks tab contains a work list,

which lists all tasks currently assigned to the logged in user. The user can execute the

tasks by clicking on them in the work list. The task is then opened in the center and can

be completed.

33

3. State-of-the-art Business Process Management Systems

Figure 3.8.: Process Execution with the Activiti Explorer

The user interfaces of IBM BPM and Activiti BPM Platform rely both on desktop applica-

tions for process modeling. Therefore, they both require additional effort before the user

can create process models. This effort can be reduced by providing one comprehensive

web application with an integrated modeling environment. It is also useful to integrate

the execution of process models in the web application, to avoid the necessity of process

model deployment.

In both BPMS, the process elements are modeled by dragging them onto the process

model. This concept has proven to be effective and should be used in a BPMS. However,

the data flow can not be explicitly modeled. The data flow has to be modeled by setting

properties on the process elements. It is desirable that data flow can be explicitly

modeled and displayed. Thus, it is considerably easier to understand the data flow of a

process model, especially for inexperienced users.

Both BPMS provide a wide range of process elements which can be used in a process

model. In Activiti, it is even possible to model all elements defined in the BPMN

specification. For inexperienced users it would be better to provided a restricted set of

process elements in favor of better usability [ZMR08].

34

3.3. Summary

3.3. Summary

This section analyzes IBM BPM and Activiti regarding their architecture and user interface.

The architecture of IBM BPM turned out to be relatively complex. Thus, IBM BPM

requires a lot of expertise to set up and operate. Activiti has a simple architecture which

also enables the integration of the Activiti engine in another BPMS. A cloud-based BPMS

for SMEs should have a architecture which is as simple as possible, to reduce the effort

and required expertise for set up and operation.

In the following, the user interfaces of IBM BPM and Activiti are analyzed. The modeling

environments of both BPMS are desktop applications. To facilitate the roll out in an

enterprise, these desktop applications could be replaced by a cloud-based BPMS with

an integrated modeling environment. The process modeling approach of both BPMS

is to drag new process nodes onto the process model, which is an effective concept

that should be taken over. However, both BPMS lack the capabilities for graphical

modeling of data flow, which could be a major improvement towards intuitive process

modeling. Finally, it would be sufficient to provide only a restricted set of most used

process elements, to facilitate the process modeling for inexperienced users.

The findings of this section are used to specify the requirements for a cloud-based BPMS

for SMEs in the next section.

35

4
Requirements

According to findings of the previous section, major problems of existing BPMS can be

identified. Especially for small and medium-sized enterprises, an introduction of a BPMS

poses a substantial challenge. The greatest obstacles are:

• High expertise necessary to setup and operate a BPMS

• Modeling environment not tailored to inexperienced users

• Separation between process modeling and execution

Addressing these problems functions of a complex BPMS should be unified in one web

application. This facilitates easy setup and operation of the BPMS through an easy

deployment of the web application on an application server.

First, user stories are developed (cf. Section 4.1), to define the typical usage of a BPMS

in a SME. In the following, requirements are formulated to achieve a clear understanding

37

4. Requirements

of the needs, to realize these stories, and other basic demands on a BPMS based

on the discussion in Section 3. Requirements are separated into the following groups:

general requirements (cf. Section 4.2), process visualization requirements (cf. Section

4.3), modeling requirements (cf. Section 4.4), and execution requirements (cf. Section

4.5). Section 4.6 concludes with a summary.

4.1. User Stories

The development of user stories is suitable to obtain clarification on what a BPMS should

achieve [Coh04]. Therefore, stories based on the daily work with a BPMS in a SME are

created (cf. Table 4.1).

Table 4.1.: User Stories
Story Description
1 An enterprise starts a project to capture their process models. All

employees, many of them without any modeling experience, should
create process models for business processes of their everyday working
life.

2 A complex process model has been modeled and refined by several
users. Participating users are only involved in parts of it. Therefore,
each respective user has its own perspective, which includes only
relevant process fragments.

3 A set of process models are shared within an enterprise. This includes,
for example, further education applications, vacation forms, and travel
expenses accounting. All employees can file these applications and
human resources department can process them.

4 A new plugin is developed to integrate an existing enterprise information
system (EIS). It is imported to the BPMS and all users can use the
plugin in their process models.

User Story 1 describes how a BPM project can be started in a SME. All employees

create process models, which describe their view of the business processes in the

enterprise. By combining these process models, process models of the real business

processes, which include the perspectives of all participating employees, can be derived.

This process models are more detailed and, thus, better than process models created

by an outside observer [KZWR14]. To enable all employees of an enterprise, including

38

4.1. User Stories

employees inexperienced with BPM, to create process models, the BPMS should be as

intuitive and easy to use as possible.

User Story 2 shows a scenario, where a complex process model has been first modeled

collaboratively and then is shared between users. For example, at first, a process model

is shared within a department. Every participating user models his steps in the process

model in detail. Thus a complex process model is created. Because not every user has

to know every detail of the process model, custom perspectives can be created. These

perspectives only show the fragments of the process model relevant to the respective

user. Thus, a complex process model can be modeled and executed and every user still

has an overview on his relevant parts of the process model.

In User Story 3, it is illustrated how process models, which are the same for most

employees, can be leveraged for a SME. This process models are created once for an

enterprise and then shared to provide uniform business processes to all users. These

process models accelerate the execution of business processes in an enterprise. For

example, the submission of a vacation form with a BPMS can be optimized by storing

previously submitted forms and reuse them with changed values regarding the time

period of the vacation. Subsequently, the vacation forms can be processed in a uniform

way by the human resources department. As a result, uniform process models facilitate

the reduction of unnecessary bureaucracy or at least can reduce the costs of necessary

bureaucracy [IGRR09].

User Story 4 shows how existing EISs and other external systems can be integrated

in a BPMS. This is necessary because business processes in an enterprise usually

involve EIS [PCBV10]. Because a BPMS typically does not provide tasks types to access

a specific EIS, a plugin for the BPMS has been developed. For example, this plugin

provides methods to retrieve stock levels from an enterprise resource planning (ERP)

system. The plugin can be uploaded to the BPMS and, thus, provided to all users, which

can then integrate the ERP system in their process models.

The user stories developed in this section are the basis for the requirements specified in

the following.

39

4. Requirements

4.2. General Requirements

Following general requirements are identified based on the analysis in Section 3.1 and

basic functionality of state-of-the-art BPMS (cf. Section 3). The architecture of IBM

BPM shows how complicated it can be to set up and operate a BPMS. This complexity

originates from the separation in several environments, which all have to be set up and

operated individually. To reduce the effort to set up and operate a BPMS for SMEs, a

BPMS should be a comprehensive platform (cf. Requirement REQ-1). Hence, all the

required functionality should be bundled in one web application. Furthermore, it should

be easy to deploy, i.e., it should consist of only one .war file and should only require little

configuration effort.

Requirement REQ-1 (Comprehensive Cloud Platform). A BPMS should be a com-

prehensive cloud platform comprising all functionality of the process lifecycle in one

platform.

Just like in any other state-of-the-art BPMS, multi-user operations should be supported

(cf. Requirement REQ-2) [IRRG09]. Therefore, such a BPMS should be aware which

users are logged in at any time. A major point of emphasis should be that actions from

one user are propagated to all other logged in users. In particular, changes to process

models as well as their execution. If the modeling actions would not be propagated, it

would not be possible to collaboratively create a process model. The propagation of

process model execution is mandatory because otherwise a task could be completed

twice at the same time from different users.

Requirement REQ-2 (Multi-User Operation). Multiple users should be able to use a

BPMS at the same time. Results of actions should be propagated to all logged in users.

For a BPMS with a large target group, it is essential that several languages are supported

(cf. Requirement REQ-3). To be precise, English and German should be supported

out of the box. Further, it should be possible to extend such a BPMS with additional

languages, by adding new language files. This facilitates the translation of a BPMS,

because no technical knowledge is necessary to translate the user interface.

40

4.2. General Requirements

Requirement REQ-3 (Localization). A BPMS should support a wide range of lan-

guages.

For the usage in an enterprise it is fundamental that the existing organizational model

can be integrated in a BPMS (cf. Requirement REQ-4). If it can not be integrated, it

has to be stored in duplicate, which results in additional effort for synchronization of

these organizational models. Therefore, a BPMS should enable authentication via an

external LDAP1 directory. A BPMS should also support an organizational model with

organizational units, roles, and users, to be able to implement realistic organizational

structures of an enterprise.

Requirement REQ-4 (Organization Model). It should be possible to use an existing

organizational model in a BPMS.

To make the user experience as comfortable as possible, a BPMS should, like any other

state-of-the-art website, support sessions and bookmarks (cf. Requirement REQ-5),

i.e., the current state of the application is represented in the uniform resource locator

(URL). This could be used, for example, to represent a specific open process model in

the page URL. This URL can be bookmarked in a browser and re-opened or shared to

anybody allowed to access. A logged in user should be identified by setting a cookie in

his browser, to avoid the necessity to log in every time the BPMS is opened.

Requirement REQ-5 (Support for Bookmarks and Sessions). A BPMS should enable

bookmarks to share URLs between users. It should also support sessions to hold the

current application state.

To provide the prerequisites for sharing process models as mentioned in User Story

3, it should be possible to group process models (cf. Requirement REQ-6). Without

grouping process models, it is not possible to share process models in specific categories

throughout an enterprise. The grouping also enables users to organize the process

models and maintain an overview on them.

Requirement REQ-6 (Shared and Private Groups). A BPMS should offer shared and

private groups, for process grouping.

1LDAP is a protocol for accessing directory information services. Additional information can be found in
[HSG03].

41

4. Requirements

Another prerequisite to share process models (cf. User Story 3) throughout an enterprise

is an access control system. An access control system manages access rights for

users, because not every user should have access to every group and process model (cf.

Requirement REQ-7). Considering that, it should be possible restrict the access of users,

to view, edit, and execute groups and process models. These access rights should be

assignable to all organizational entities, which are organizational units, roles, and users.

If access rights could be only assigned to users, it would be necessary to assign every

user, which should have an access right to a group or process model, individually.

Requirement REQ-7 (Access Control). An access control system should be available

for groups and process models.

A BPMS should facilitate the handling of group and process model attributes, which

are basic functions of every BPMS (cf. Requirement REQ-8). To ease the entry for

inexperienced users this basic functions should be as intuitive as possible. Groups

should have the following attributes: name, description, icon, attached files, and access

rights. Process models should have the attributes: name, description, icon, attached

files, default instance name, due date time span, and access rights. Whereby, a default

instance name specifies the name of the process instance, when started. The due date

time span indicates how long the process is allowed to take.

Requirement REQ-8 (Administration of Group and Process Model Attributes). A BPMS

should enable users to edit the attributes of groups and process models. Furthermore,

A BPMS should enable users to add documentation to most important artifacts (cf.

Requirement REQ-9) [IGRR09]. To be precise, it should be possible to attach files and a

description or a comment to every group, process model, process node, and executed

task. This documentation should then be available to all users. Documentation facilitates

the reuse of groups and process models throughout an enterprise, because it is easier

for other users to understand the process models with additional documentation.

Requirement REQ-9 (Documentation). A BPMS should enable users to enrich all arti-

facts with documentation.

Modeling and execution of process models should be seamlessly integrated in one

environment (cf. Requirement REQ-10). It is significantly easier for users if they can just

42

4.3. Process Visualization Requirements

execute the process models without any kind of deployment, like in IBM BPM or Activti. It

should also be possible to execute a process model in every state, even if process nodes

are not completely specified, for example, if a configuration parameter of a service task

is not specified. In this case, missing configuration parameter of the service task should

be prompted during process execution. Thus, process models can already be tested

when they are not completely modeled, which facilitates the testing of a process model.

Requirement REQ-10 (Integration of Modeling and Execution). Modeling and execution

should be integrated in one environment.

4.3. Process Visualization Requirements

Visually appealing process visualizations should be provided, to facilitate the usage

of a BPMS. For a user it is easier to understand of a process model if he already

knows the used process modeling notation or it is easy to understand. Experienced

users are accustomed to BPMN 2.0 [OMG11], because it is a de-facto industry-wide

standard, which is also the reason that it is used in IBM BPM and Activiti [Sch08]. Hence,

a process visualization based on BPMN 2.0 should be supported (cf. Requirement

REQ-11) [PCBV10, IRRG09].

Requirement REQ-11 (Support of BPMN 2.0). A BPMS should provide a process

visualization based on BPMN 2.0.

To provide an easy entry for inexperienced users simple alternative process visualiza-

tions are required (cf. Requirement REQ-12) [KRW12, LKR13, KLMR13, KFRMR+12].

These process visualizations should be suited especially for users not accustomed to

conventional process modeling notations (cf. User Story 1). Therefore, they should

provide a quick understanding of a process model with simple means.

Requirement REQ-12 (Alternative Process Visualizations). A BPMS should deliver

alternative process visualizations to provide an easy entry for inexperienced users.

In contrast to IBM BPM and Activiti, the data flow should be visualized to facilitate a

clearer understanding of a process model and especially its data flow (cf. Requirement

43

4. Requirements

REQ-13) [KR13a]. Without a visualized data flow it is not easily understandable to which

process nodes a business object is connected and, thus, how the business objects are

used in the process model. Therefore, the business objects should be listed in a sidebar

and it should be possible to display data edges individually per business object, because

if all data edges are displayed at once the data flow could be confusingly complex.

Requirement REQ-13 (Data Flow). A BPMS should provide data flow visualization for

all process visualizations.

To implement User Story 2, a BPMS should support so-called process views, which

provide abstracted views on process models (cf. Requirement REQ-14). For example,

only the tasks assigned to the logged in user are displayed, which facilitates the un-

derstanding of the process model for the user. The process views should be available

during the modeling and execution of process models. It should be also possible to

define new process views [KKR12b, KR13b, KR13a, RKBB12].

Requirement REQ-14 (Process Views). It should be possible to apply process views

to process models.

4.4. Modeling Requirements

The following requirements are related to process model updates, i.e., user interaction

to model process nodes and business objects. It is essential to provide simple modeling

capabilities, especially for inexperienced, but also for advanced users. Like IBM BPM

and Activiti, a BPMS should provide interactions for inserting, modifying and deleting

of process nodes, which includes AND, XOR, and LOOP gateways (cf. Requirement

REQ-15) [PCBV10]. These interactions should include mouse interactions as well as

keyboard shortcuts for advanced users.

Requirement REQ-15 (Insertion, Modification, and Deletion of Process Nodes). A

BPMS should enable users to insert, modify, and delete process nodes, including AND,

XOR, and LOOP gateways.

Furthermore, it should be possible to drag and drop process nodes, to achieve a intuitive

modeling environment (cf. Requirement REQ-16). This includes dragging of new nodes

44

4.4. Modeling Requirements

from a sidebar onto a process model. Next, users should be able to drag one or more

nodes from one place in the process model to another. This requirement is also aligned

to the modeling capabilities observed in IBM BPM and Activiti.

Requirement REQ-16 (Drag & Drop Modeling of Nodes). Drag and drop should be

supported for creating and moving process nodes.

A BPMS should enable the modeling of business objects (cf. Requirement REQ-17).

This comprises the creation and deletion of business objects. To model the data flow

of a process model, it is mandatory that business objects can be connected as in- or

output to the nodes of the process model. To improve the business object modeling

capabilities seen in IBM BPM, the latter should be supported by using drag and drop

interaction. This is an improvement, because drag and drop modeling is more intuitive

than specifying in- and output parameters by name in the properties of a process node.

Requirement REQ-17 (Insertion, Modification, and Deletion of Business Objects). A

BPMS should support creation, modification, and deletion of business objects.

As mentioned in Section 2.1.3, a BPMS should support check mark tasks (cf. Require-

ment REQ-18). If a check mark task is connect to a business object, it should become

a user task. User tasks are forms, which have to be filled out by user. To determine

the user that has to execute these tasks, they should be assignable to users, roles,

and organizational units. Check mark tasks are necessary because not every task of a

process model can be executed inside a BPMS, e.g., calls to a customer, but should be

documented in a BPMS. User tasks are leveraged to integrate user input into a process

model and are typically an essential part of every business process (cf. Figure 3.6).

Requirement REQ-18 (Check Mark and User Tasks). A BPMS should support check

mark tasks and user tasks.

A process model usually contains technical tasks to integrate external systems (cf.

User Story 4) [PCBV10]. These tasks should be implemented by service tasks (cf.

Requirement REQ-19). Several service task types, also called plugins, should be

delivered with a BPMS. For example, to connect to database or file storages. It should

be possible to upload and integrate custom plugins. This requirement is mandatory,

45

4. Requirements

because when a BPMS can not be integrated with external systems in an enterprise, a

media break is the result, which generates additional effort for the user.

Requirement REQ-19 (Service Tasks). A BPMS should support service tasks to pro-

vide technical capabilities. Service tasks to connect to database or file storages should

be predelivered.

To enable alternative execution paths in a process model, like seen in the user task

modeled in IBM BPM (cf. Figure 3.5), it should be possible to define decisions in a

process model. Decisions are represented by XOR gateways (cf. Requirement REQ-20).

Three different kinds of XOR gateways should be supported. The first kind, which

enables great flexibility during the execution, is a run-time decision, which means a

user is prompted at run-time with a question and several textual answers. His answer

decides which succeeding path is selected. The second and third kind are decisions

based on business objects. Whereby, the second kind is limited to one variable, but in

return provides additional validation, which is especially suitable for inexperienced users.

The third kind is an arbitrary condition, which is primarily intended for advanced users,

because it can implement a wide range of conditions at expenses of a complicated

syntax.

Requirement REQ-20 (XOR Gateways). XOR gateways should be supported to model

alternative execution paths based on decisions in a process model.

In addition, to manually started process models, it should be possible to start process

models by a defined trigger, without further input from a user (cf. Requirement REQ-21).

For example, a time-based trigger, which starts a process model once a day. The trigger

should be configurable at the start event of a process. This feature enables the user to

execute process models automatically, when a specific event occurs. Thus it is possible,

for example, to automate entire process models, without any user involvement.

Requirement REQ-21 (Trigger). It should be possible to define a trigger, which starts

a process model after a specific event.

46

4.5. Execution Requirements

4.5. Execution Requirements

Beside the requirements for business process management, visualization, and modeling,

there are requirements regarding the execution of process models. First of all, it is

important to provide a good overview on currently executed process instances (cf.

Requirement REQ-22). Thus, a user can quickly find out which tasks he has to complete

and does not waste time searching for open tasks.

Requirement REQ-22 (Overview Executed Process Instances). It should be possible

to get an overview on executed process instances.

A BPMS should provide an execution view of the process model, i.e., the current state of

a process instance is shown (cf. Requirement REQ-23) [PCBV10]. To be more precise,

the state of a process instance is described by the execution states of individual process

nodes. This feature is necessary to make the current state of a process model traceable

to the user. Furthermore, this can be used to detect errors during the process execution.

Requirement REQ-23 (Monitoring). A BPMS should support monitoring of process

instances.

When the current state of a process instance is displayed, it should be possible to

execute tasks assigned to the current user (cf. Requirement REQ-24). Therefore, it

should be supported to start tasks with only one mouse click on the respective process

model. The task should then be opened next to the process model, without loosing the

context of the process model. This is an improvement of the stream tab of IBM BPM (cf.

Figure 3.6), which only showed previous tasks. Hence, the user always has the overview

on executed and succeeding tasks.

Requirement REQ-24 (Simple Task Execution). It should be possible to execute tasks

easily, when a process instance is opened.

4.6. Summary

The requirements for a BPMS (cf. Table 4.2) are presented in detail in this section. They

are identified on the basis of state-of-the-art BPMS, common demands on BPMS, and

47

4. Requirements

user stories. It is crucial to realize on which aspects a BPMS has to focus, to provide

additional value for SMEs, compared to current BPMS. Hence, the focus lies on an

intuitive and easy to use user interface, especially for an inexperienced user. A point

of emphasis is also that it is more important to provide a compact set of functionality,

which is easy to manage, instead of an extensive feature list resulting in a low level of

user-friendliness.

Table 4.2.: Requirements

Title Description

REQ-1 Comprehensive Cloud

Platform

A BPMS should be a comprehensive cloud

platform comprising all functionality of the

process lifecycle in one platform.

REQ-2 Multi-User Operation Multiple users should be able to use a BPMS at

the same time. Results of actions should be

propagated to all logged in users

REQ-3 Localization A BPMS should support a wide range of

languages.

REQ-4 Organization Model It should be possible to use an existing

organizational model in a BPMS.

REQ-5 Support for Bookmarks

and Sessions

A BPMS should enable bookmarks to share

URLs between users. It should also support

sessions to hold the current application state.

REQ-6 Shared and Private

Groups

A BPMS should offer shared and private groups,

for process grouping.

REQ-7 Access Control An access control system should be available

for groups and process models.

REQ-8 Administration of Group

and Process Model

Attributes

A BPMS should enable users to edit the

attributes of groups and process models.

REQ-9 Documentation A BPMS should enable users to enrich all

artifacts with documentation.

48

4.6. Summary

REQ-10 Integration of Modeling

and Execution

Modeling and execution should be integrated in

one environment.

REQ-11 Support of BPMN 2.0 A BPMS should provide a process visualization

based on BPMN 2.0.

REQ-12 Alternative Process

Visualizations

A BPMS should deliver alternative process

visualizations to provide an easy entry for

inexperienced users.

REQ-13 Data Flow A BPMS should provide data flow visualization

for all process visualizations.

REQ-14 Process Views It should be possible to apply process views to

process models.

REQ-15 Insertion, Modification,

and Deletion of Process

Nodes

A BPMS should enable users to insert, modify,

and delete process nodes, including AND, XOR,

and LOOP gateways.

REQ-16 Drag & Drop Modeling

of Nodes

Drag and drop should be supported for creating

and moving process nodes.

REQ-17 Insertion, Modification,

and Deletion of

Business Objects

A BPMS should support creation, modification,

and deletion of business objects.

REQ-18 Check Mark and User

Tasks

A BPMS should support check mark tasks and

user tasks.

REQ-19 Service Tasks A BPMS should support service tasks to

provide technical capabilities. Service tasks to

connect to database or file storages should be

predelivered.

REQ-20 XOR Gateways XOR gateways should be supported to model

alternative execution paths based on decisions

in a process model.

REQ-21 Trigger It should be possible to define a trigger, which

starts a process model after a specific event.

49

4. Requirements

REQ-22 Overview Executed

Process Instances

It should be possible to get an overview on

executed process instances.

REQ-23 Monitoring A BPMS should support monitoring of process

instances.

REQ-24 Simple Task Execution It should be possible to execute tasks easily,

when a process instance is opened.

50

5
Overview Clavii BPM cloud

On the basis of the knowledge gained in Section 2 and Section 3, requirements for

a BPMS are specified in Section 4. Originating from these requirements, the Clavii

BPM cloud was developed. The Clavii BPM cloud is is a cloud-based BPMS for SMEs,

which has the main focus on a user-friendly user interface. This section discusses

the architecture and data model of Clavii BPM cloud. Section 6 provides on overview

on the user interface of Clavii BPM cloud, by discussing the individual pages of the

web application. Section 7 singles out implementation aspects to give insights in the

implementation of the web application of Clavii BPM cloud.

As already mentioned, the architecture and data model of Clavii BPM cloud, which

are introduced in this section, were developed on the basis of the previously specified

requirements and the capabilities of GWT and Activiti. Whereby, the web application,

which is the contribution of this thesis, is only one part of the overall architecture. Section

51

5. Overview Clavii BPM cloud

5.1 gives an overview on the architecture and its components. In Section 5.2 the most

important data entities and their relations are discussed. Finally, Section 5.3 summarizes

this section.

5.1. Architecture

The architecture of Clavii BPM cloud comprises four tiers (cf. Figure 5.1). The four-

tier architecture is applied, because it facilitates large flexibility [CK03]. Each tier is

represented by individual components, which are connected by interfaces. Therefore,

it is possible to replace single tiers, for example, to replace the web application with a

desktop application.

Database Server

Application Server

Browser

Services

Activiti DatabaseLDAP Directory

Data Tier

Business Tier

Activiti

Engine
Hibernate

Web Tier
Web Interface

Client Tier

Web Application

Clavii Database

P
e

rs
is

t

P
e

rs
is

t

Invoke Invoke

In
v
o

k
e

In
te

g
ra

te

P
u

s
h

In
v
o

k
e

P
u

s
h

REQ-1

REQ-4

Figure 5.1.: Four-Tier Architecture of Clavii BPM cloud

The four tiers of the Clavii BPM cloud are: Data tier, Business tier, Web tier, and Client

tier. The data tier contains the data storage of Clavii BPM cloud. The business and

web tier are deployed together on an application server. Whereby, the business tier

accesses the data tier and provides additional methods for data modification. The web

tier provides an interface for the web application to the business tier. Finally, the web

52

5.1. Architecture

application, which runs in the browser of the user, leverages the underlying tiers to

provide a cloud-based BPMS. In the following, the individual tiers are described in detail:

Data tier. The Data tier contains the data storage of Clavii BPM cloud. To be more

precise, data tier comprises the following components: LDAP directory, Activiti database,

and Clavii database. LDAP directory stores the organizational model of Clavii BPM

cloud. Activiti database contains data of the Activiti engine, for example, deployed

process models and their execution data. Next, Clavii database stores all Clavii internal

data. The latter is explained in more detail in Section 5.2. Obviously individual databases

can be located on different physical machines than the application server to enable for

scalability. Furthermore, it is possible to integrate an already existing LDAP directory of

an enterprise.

Business tier. The Business tier, which is deployed on an application server, comprises

the business logic. The Activiti engine (cf. Section 2.1.2) is the foundation of the process

execution. Hibernate1 encapsulates the Clavii database, to provide access for the

service components. Service components contain interfaces, which the web interface of

the Web tier uses to access the Activiti engine and the underlying data tier. The service

components include additional functionality, for example, methods to modify process

models.

Web tier. The Web tier provides access to the business tier for the web application. It

consists mainly of servlets and helper classes. This tier enables the integration of new

front-ends, without the need to change the business tier. Hence, to create a desktop

application for Clavii BPM cloud, only a new client tier has to be developed.

Client tier. The Client tier consists of the web application, created using GWT (cf. Sec-

tion 2.2). All functionality is available through that single web application (cf. Requirement

REQ-1). The web application is delivered from an application server to the browser of the

end-user. The communication between the web application and the application server is

implemented through RPCs, RequestFactory, WebSockets, and HTTP requests.

In Figure 5.2 a more detailed view of the service components is provided. The com-

ponents may be seen as the backend of Clavii BPM cloud. Since the web application
1See www.hibernate.org for more information about Hibernate.

53

5. Overview Clavii BPM cloud

component leverages the service components, their range of methods is explained

briefly.

HistoryManager

PluginCallDispatcher

Identity

Authentication

Manager

OrgModelManager
Persistence

FileManager

RepositoryManager

TypeManager

ValidationManager

ProcessModel

ProcessFilter

Manager

ProcessModel

Manager

Run-time

Run-timeManager

TaskManager

Activiti Engine

ProcessEngine

RepositoryService

TaskServiceIdentityService

RuntimeService

ManagementService

HistoryService

Hibernate

Calls to another Component

Calls to Hibernate

Figure 5.2.: Overview on Service Components

Particularly, service components is divided into single components, which are introduced

in the following:

Identity Component. This component is responsible for authenticating a user. Further-

more, it comprises methods to access and modify the organizational model. This is used

by the web application to offer an editor for the organization model.

Monitoring Component. The monitoring component encapsulates the HistorySer-

vice of the Activiti engine. Hence, execution information of process instances can be

accessed. To be more precise, the instances of a process model can be retrieved.

Moreover, the states of individual nodes of a process instance are provided.

54

5.1. Architecture

Plugin Component. The plugin component is used to add new plugins as XML files.

This component is also used at run-time to execute plugins. Therefore, the Activiti engine

calls the PluginCallDispatcher.

Persistence Component. The persistence component provides access to all entities

of the underlying data tier. For example, it is used to save files when they are uploaded

to the web application as attachments. RepositoryManager is the central interface for

managing process models. All process modification methods and the methods to create

process views can be invoked by the RepositoryManager.

Validation Component. The validation component comprises methods to validate

branching conditions. If such conditions are invalid, meaningful responses are delivered,

which may then be presented to the user.

ProcessModel Component. The processmodel component is used internally by the

RepositoryManager to modify process models. Therefore, this component provides

low-level methods for process model modification. For example, methods to add nodes

to a process model. This component is externally accessible, but it is recommended to

use the RepositoryManager.

Run-time Component. The run-time component is the central component for process

execution. Particularly, it allows to start and stop process instances. In addition, it has

the capabilities to complete tasks and to deliver additional information about tasks.

The presented service components are accessed by the web application component

to provide a cloud-based BPMS. Figure 5.3 shows components of the web application

component and the web interface component. In principle, the web interface is a bridge

between the web application component and the service components. Because service

components cannot be accessed directly from the browser, the communication is handled

by several servlets and other mechanisms like WebSockets. Individual components are

described in the following:

Servlets Component. Servlet component can be categorized in servlets, which provide

server endpoints for RPCs and the RequestFactory, and servlets, which are used for

file uploads. Basically both are just throughput stations to enable the web application to

access the service components.

55

5. Overview Clavii BPM cloud

Servlets Converter

Group- &

ProcessOverView

Cells & CellWidgets

ProcessModel

Manager

ModellView

SettingsUserProfile

Login & Registration

RequestManager

UserInterface

ErraiClientServices

DataStorage

ClientBundlesDataStore

ErraiServerServices

EventBus

Communication

R
P
C

,R
e
q

u
e
s
t

F
a

c
to

ry

W
e
b

S
o

c
k
e
ts

Calls to another Component

Usage of ClientBundles

REQ-2

Figure 5.3.: Overview on Web Application and Web Interface

ErraiServerServices Component. ErraiServerServices component provide the capa-

bility to contact every client from the server-side. This is necessary to propagate updates,

like modified process models, to clients (cf. Requirement REQ-2). ErraiServerServices

are based on a framework called Errai, which provides communication capabilities

through WebSockets for GWT applications [Err].

Converter Component. As previously mentioned, RequestFactory component provides

an alternative to manually create proxy classes. However in some cases, it is not

possible to use the capabilities of RequestFactory. For example, the BpmnModel, the

Java representation of a process model in the Activiti engine, can not be sent to the client

using RequestFactory. In this case, the issue is that the BpmnModel uses 88 different

classes to represent a process model. This class structure can not simply be used with

the RequestFactory. Therefore, converter classes are necessary to convert server entity

classes to client entity classes. Based on RPCs client entity classes can then be sent

from the server- to the client-side and vice versa.

Communication Component. Communication component contains all classes used

for communication between server- and client-side as well as between client components.

56

5.2. Data Model

The RequestManager encapsulates server communication based on RPC and Request-

Factory. As an exception the ProcessModelManager comprises all methods to modify

process models. ErraiClientServices are client-side endpoints for the communication

with the ErraiServerServices component.

DataStorage Component. DataStorage component contains all components, to store

cache data on the client-side. DataStore component caches all entities retrieved from

the server, for example, groups and process models. The ClientBundles provide access

to all static resources, e.g., CSS files and images (cf. Section 2.2.2).

UserInterface Component. The User Interface component contains classes, directly

used by the user interface. The majority of the user interface is created utilizing UiBinder

(cf. Section 2.2.2). Visualization of process models is implemented based on a graphic

framework called Lienzo [Emi]. These aspects are explained in Section 6 and Section 7

in more detail.

5.2. Data Model

Besides the architecture, an appropriate data model is a prerequisite to develop an ap-

plication. The data model in the context of this thesis is separated into an organizational

model and a general model. The general model connects an organizational entity with

groups and process models.

Figure 5.4 shows the organizational model (cf. Requirement REQ-4). A user is repre-

sented by the agent entity. An agent has a first name, a last name, an e-mail, and a

string containing the avatar as an image URL [Mas98]. The orgunit, organization, and

role entities comprise a name and an icon. Whereby, the orgunit entity represents a

department of an enterprise, the organization entity represents the enterprise itself, and

the role entity represents the role of an agent, which can be for example secretary.

An agent can be assigned to one or more roles, exactly one organization and exactly one

orgunit. A new agent can also be created without assigning any orgunit, organization,

or role. An orgunit may contain any number of agents. Furthermore, it is possible that

57

5. Overview Clavii BPM cloud

Agent

FirstName

LastName

E-Mail

IconString

Role

Name

IconString

Organization

Name

IconString

OrgUnit

Name

IconString

0..*

0..*

0..*

0..1

0..*

0..1

0..*

0..1 parentOrgUnit

0..* 1 1 0..*

REQ-4

Figure 5.4.: Organizational Model Entities

orgunits contain orgunits. Orgunits are always linked to exactly one organization, and an

organization can have any number of orgunits. The organization can have several roles.

However, a role has always to be assigned to one specific organization.

An organizational model of a fictional enterprise which can be implemented by Clavii BPM

cloud is shown in Figure 5.5. The enterprise Contoso Ltd. contains the departments:

Accounting, Marketing, and Product Development. The employees of the enterprise,

represented by agents, are assigned to their respective department. Independent of

their organizational unit, they are also assigned to roles. For example, Ellen Adams is a

Secretary.

Contoso Ltd.

Accounting Marketing
Product

Development

Ellen Adams Allen Brewer

Secretary
Business

Manager

Software

Architect

Jay Calvin Austin Williams William Fox

Organization

OrgUnit

Agent

Role

Figure 5.5.: Example Organizational Model

The general model is shown in Figure 5.6. An organizationalentity may be an agent,

an orgunit, an organization, or a role. Access rights can be assigned to any kind of

organizational entity (cf. Requirement REQ-7). For example, when an orgunit has access

rights on a group, every agent within this orgunit has the same rights.

58

5.2. Data Model

OrganizationalEntity

Name

IconString

GroupRight

Level

ModelRight

Level

Group

Name

Description

IconString

ModelMetaData

ProcessName

DefaultInstanceName

Description

IconString

Model

Model

ProcessInstance

Name

InstanceNodeAttachment

Node_ID

Comment

Comment

1

0..*

1

0..*

0..*

1

0..*

1

11

1

0..*

1 0..*

0..*

1

1

0..*

1 0..*

NodeAttachment

Node_ID

Description

Attachments

Attachments

Attachments

Attachments

REQ-6 & REQ-7

REQ-9

REQ-9

REQ-7

REQ-8REQ-8

Figure 5.6.: General Model Entities

Groupright and modelright are used to assign access rights to an organizationalentity

(cf. Requirement REQ-7). Whereby, the groupright represents the access right to a

group. The level specifies if the user can only view the group or if he can also edit

the group. Therefore, it is possible to share groups between organizationalentities (cf.

Requirement REQ-6). The modelright represents the access right to a process model.

The level attribute of the modelright specifies, if the user can only view the process model,

if the user can only edit the process model, or if he can also execute the process model.

For example, if a user should be able to execute the process model FinancialReport, a

modelright entity is created and linked to the user and to the process model. The level of

the modelright would be Run.

A group entity contains attributes name, description, an icon, and attachments (cf. Re-

quirement REQ-8). The group entity is linked to a set of process models, which are

encapsulated by the modelmetadata entity. The modelmetadata entity contains any meta

data related to the process model. To fulfill Requirement REQ-9, the modelmetadata is

linked to a nodeattachment entity, which contains a description and attachments.

59

5. Overview Clavii BPM cloud

A processinstance entity is created when a process model is executed. Through the

processinstance entity, instancenodeattachments are linked to a process instance to

enable the user to add comments to a process instance.

5.3. Summary

This section provides insights in the architecture and data model of Clavii BPM cloud.

First, the four-tier architecture is discussed in detail. In the following, the individual

components of the business, web, and client tier are explained. Subsequently, the data

model, which consists of an organizational and a general model, is illustrated.

The architecture and data model fulfill several general requirements. Requirement

REQ-1 is met by delivering the entire functionality of Clavii BPM cloud in a single web

application. The ErraiServerServices and ErraiClientServices fulfill Requirement REQ-2

by propagating actions of one user to all users. Therefore, collaborative modeling is

facilitated. In order to meet Requirement REQ-4, the organizational model is provided.

By connecting the organizational entities to modelright and groupright, shared and private

groups and the access system is implemented (cf. Requirements REQ-6 & REQ-7). The

general model enables the modification of group and process model attributes and the

addition of documentation (cf. Requirements REQ-8 & REQ-9).

60

6
User Interface of the Web Application

After the previous section discussed the architecture of Clavii BPM cloud, this section

focuses on the user interface of Clavii BPM cloud. Requirements, discussed in Section 4,

are the basis for the user interface design of Clavii BPM cloud. Whereby, the main goal

is a simple and intuitive user interface (cf. Section 4), which should be easy to use, in

particular, for inexperienced users. Furthermore, a user interface should also provide as

much assistance as possible, during every step of the process modeling and execution

phase.

Section 6.1 gives an overview on the user interface of the web application on the basis

of a site map. Subsequently, Section 6.2 explains the entire user interface in detail.

Finally, Section 6.3 concludes this section with a summary and a discussion on how

the requirements specified in Section 4 are fulfilled by the individual pages of the web

application.

61

6. User Interface of the Web Application

6.1. Site Map

Figure 6.1 displays the site map of Clavii BPM cloud. Thereby, filled out rectangles

represent the individual pages. A user can navigate from one page to another if the

pages are connected by an arrow. Pages with bold printed borders (e.g., Login page)

are the starting pages of the region, which is the surrounding rectangle. This implies

that Login page is the start page of the entire web application. When the user logs in

the first page displayed is the GroupOverview page. When a process model is opened

in the ModelView page, the BuildtimeView page is shown per default.

Main Pages Region

Login Page

Registration

Page

GroupOverview

Page

ProcessOverview

Page

ModelViewPage

BuildtimeView

Page

RuntimeView

Page

Settings Page UserProfile Page

registrate

successful

login

open

Group

open

Process

Model

back

open

Settings

open

UserProfile

Web Application Region

execute

Figure 6.1.: Site Map

When a user is not logged in, he is only able to access the Registration and the Login

page. After the user is logged in, he is able to access all pages in the Main Pages

region. A GroupOverview page shows all groups accessible by the user. Furthermore,

he may open a group. As a result, he switches to the ProcessOverview page. On this

page he can switch back to the GroupOverview page and is able to open a process

model and, thus, gets to the ModelView page. The ModelView page is separated into

two pages: BuildtimeView page and RuntimeView page. The Settings page and the

UserProfile page can be opened on all Main Pages. The user can also always log out

and, thereby, leave the Main Pages region to the Login page. The following section

introduces individual pages in detail, to provide an impression of the user interface.

62

6.2. Individual Pages of the Web Application

6.2. Individual Pages of the Web Application

The individual pages shown in this section cover the most important parts of the user

interface of the web application. Therefore, this section provides a walkthrough through

the pages necessary to administrate, model, and execute a process model with Clavii

BPM cloud.

6.2.1. Login Page

The first page that is displayed when a user loads the web application of Clavii BPM

cloud is the Login page (cf. Figure 6.2). The Login page prompts the user for his e-mail

and his password. When the user is authenticated he is navigated automatically to the

GroupOverview page (cf. Figure 6.4).

Figure 6.2.: Login Page

6.2.2. Registration Page

In case a user has no account, he can navigate to the Registration page to create a

new account (cf. Figure 6.3). Like specified in Requirement REQ-4, a user account

63

6. User Interface of the Web Application

has the attributes first name, last name, and e-mail, which have to be provided when

registering. The avatar (i.e., user icon) can be uploaded later in the UserProfile page.

When a new user account is created at the Registration page, it is not assigned to any

organization, organizational unit, or role. If a user is a member of any organizational

entity, for example, organizational unit or organization, and wants to benefit from their

access rights, the user has to be assigned to this organizational entity in the Settings

page.

Figure 6.3.: Registration Page

After a user account is created, the user is able to go back to the Login page and, utilizing

his new account, he is now able to access the Main Pages region. Furthermore, users

are able to create new user accounts in the Settings page. This enables administrators

in enterprises to create accounts for all employees.

6.2.3. GroupOverview Page

After a successful log in, the GroupOverview page is shown (cf. Figure 6.4). The TopBar

panel on the top provides navigation features, to assist the user in navigating through

the pages of the web application. For example, the Back button enables the user to

64

6.2. Individual Pages of the Web Application

go back to the previous page. The Title label in the middle shows the name of the

currently opened group or process model, whereby the GroupOverview page is always

represented by the name Home. Icons on the right side enable the user to access

Settings page, UserProfile page, and to log out. The TopBar panel is visible throughout

pages GroupOverview, ProcessOverview, and ModelView.

Figure 6.4.: GroupOverview Page

In the center of the page, the groups of process models are displayed by GroupTile

panels with their icon and name. The Shared State icon describes if the group is shared

or private (cf. Requirement REQ-6). The Open Task Count label displays the number of

open tasks in this group of process models the current user has to do, to give a quick

overview on open tasks. The user can navigate to the ProcessOverview page (cf. Figure

6.5) by double clicking on a group.

65

6. User Interface of the Web Application

The ViewSettings panel 1 on the GroupOverview page provides advanced view options.

Groups can be filtered by access status, i.e., private or shared groups. Groups can

be sorted by last modified date, number of open tasks, and in an alphabetical manner.

Furthermore, the user can search for a specific group name. If the number of groups is

still too large, the list of groups can be zoomed out or fit-to-screen button can be pressed.

Hence, the ViewSettings panel is particularly useful for large numbers of groups.

If the user clicks on a group, properties of that group are shown in a sidebar 2 , to

enable users to quickly modify attributes of a group. If a user has only a View right for a

group, the sidebar opens in read-only mode. Otherwise, all properties can be edited (cf.

Requirement REQ-8). Thus, name and description can be changed. Furthermore, it is

possible to upload a new icon and to choose between an uploaded icon or an snapshot

of a contained process model as group icon. Additional documentation can be uploaded

as an attachment (cf. Requirement REQ-9).

To configure access to a group, access rights can be assigned to arbitrary organizational

entities by the AssignRights panel 3 , which is a form in the sidebar (cf. Requirement

REQ-7). In the AssignRights panel, is also possible to search for specific names and

filter by type (i.e., user, role, or organizational unit).

Groups can be deleted both by pressing the Delete key or by clicking the Delete button

in the sidebar. Furthermore, multiple groups can be selected and deleted at once. New

groups can be created in the Add tab 4 , by providing a group name.

6.2.4. ProcessOverview Page

As already mentioned, opening a group, displays the ProcessOverview page, which

shows the process models of the group (cf. Figure 6.5). This page has the same

structure as the GroupOverview page. However, in the TopBar panel a Breadcrumb is

shown. A click on the Breadcrumb, brings the user back to the GroupOverview page.

The user can not only open a process model by clicking on the Open button, but also

directly execute a process model, by clicking on the Run button. As a result, the started

process model is shown in the RuntimeView page of the ModelView page.

66

6.2. Individual Pages of the Web Application

Figure 6.5.: ProcessOverview Page

6.2.5. ModelView Page

The ModelView page is displayed when a process model is opened, showing the

BuildtimeView page per default (cf. Figure 6.6). The TopBar panel shows a Breadcrumb,

which is similar to the breadcrumbs in the ProcessOverview page. The opened process

model is placed in the center of the page. The default notation is BPMN (cf. Requirement

REQ-11), a Transit Map (cf. Requirement REQ-12) can be chosen in the ViewSettings

panel [Mey14]. In contrast to BPMN, TransitMap layouts the process model vertically and

with simple means (cf. Figure A.2). Therefore, it is especially suitable for inexperienced

users. Additional examples for the layouting of process models in Clavii BPM cloud are

provided in Figure A.1 and Figure A.2.

Process views (cf. Requirement REQ-14) can be applied through the ViewSettings

panel [KKR12a, KR13c]. Whereby, the default option CommonView corresponds to the

original process model. The slider in the ViewSettings panel can be used for zooming of

67

6. User Interface of the Web Application

Figure 6.6.: ModelView Page

the process model. The Outline panel gives an overview on the currently opened process

model. This is particularly helpful for large and complex process models [WRMR11].

The Selection panel shows the current viewport, which can be moved with the mouse to

navigate the process model.

Figure 6.7 displays the creation of a new process node. A new process node can be

created by dragging it from the Add tab of the sidebar onto a process model.

Figure 6.7.: Adding a Process Node via Drag and Drop

68

6.2. Individual Pages of the Web Application

The new node can be dragged onto an edge or onto a node of a process model. Dragging

the task onto a node in the process model results in an enclosing AND block, i.e., an

AND join gateway is inserted before and an AND split gateway is inserted after the

node. XOR and LOOP blocks can be also created by dragging the corresponding nodes

from the sidebar onto the process model (cf. Requirement REQ-20,). Multiple nodes

of the process model can be moved from one place in the process model to another

(cf. Requirement REQ-16) by simply dragging them to another location in the process

model.

Nodes of a process model can be further configured using the Properties tab of the

sidebar (cf. Requirement REQ-15), which opens automatically after selecting a node.

This tab allows the user to configure trigger, user tasks, service tasks, and gateways.

The Properties tabs of the sidebar for various node types are shown in Figure 6.8.

Figure 6.8.: Node Configuration Properties Tabs of the Sidebar

Common attributes (i.e., description and attachments) are editable for every node in a

process model. A trigger can be configured on the start event and allows for scheduling

a process execution, e.g., by configuring a timer (cf. Requirement REQ-21). In this case,

a mapping to a time span business object is necessary [And14]. A time span specifies

in which time period a process model should be repeatedly started. Output of a trigger

(i.e., the current time) can be mapped to a business object in the process model.

A user task has an in- and output parameter mapping, which specifies the business

objects which are the in- and output of the user task. Since in- and output parameters

69

6. User Interface of the Web Application

are variable, parameters can not be mapped for a user task. However, it is possible to

remove existing business object mappings, which were created with the Data tab, which

is explained later. As previously mentioned, a user task without a mapping to business

objects is a check mark task (cf. Requirement REQ-18).

In contrast to a user task, a service task has predefined in- and output parameters, which

can be mapped to business objects (cf. Requirement REQ-19).

A XOR gateway allows for configuration of three different kinds of decision types, as

specified in Requirement REQ-20. To be more precise, a decision can be configured

either by specifying a textual question and respective answers, by specifying a condition

based on a business object, or by specifying an arbitrary condition.

The Data tab allows for creating and modifying business objects (cf. Figure 6.9). The

business objects are listed in the Data tab of the sidebar. Edges represent the in- and

output mapping to nodes in a process model (cf. Requirement REQ-13). Process nodes,

not connected with a business object, are drawn slightly transparent.

Figure 6.9.: Modeling Business Objects in the BuildtimeView Page

70

6.2. Individual Pages of the Web Application

Furthermore, business objects can be added through the AddBusinessObject panel by

choosing a business object type and a name. Further, lists and maps of business objects

can be created. By connecting business objects to nodes of a process model, new data

mappings are created. They can be created by dragging an edge from the circle right

next to the business object onto a process node (cf. Requirement REQ-17).

To remove data mappings, the user has to open the Connection panel of a business

object, by clicking on the trash can. In this panel, all data mappings and their connected

nodes are listed and can be removed. Furthermore, start values for business objects,

which are prefilled at the start of the execution of the process model, can be set.

Figure 6.10 shows the RuntimeView page, which illustrates a process instance. Process

models can be started by only clicking the Create button in the Run tab of the sidebar

(cf. Requirement REQ-10).

Figure 6.10.: RuntimeView Page

71

6. User Interface of the Web Application

The Run tab also lists all running instances (cf. Requirement REQ-22). They can be

filtered by currently opened process models or the current group. The latter is the group

to which the current process model is assigned to. Furthermore, they can be filtered by

user participation, for example, only process models can be displayed with open tasks of

the current user.

All details of a process instance can be accessed by clicking on the “i” button on the top

right of the Instance panel. This includes instance name, process name, date, initiator of

the process model, due date, comments, and attachments. A instance can be canceled

using the Cancel Instance button. Moreover, user can switch back to the BuildtimeView

page by clicking on the “x” button on the top right (cf. Requirement REQ-10).

In the center of the page, the state of the current process instance is shown. In Figure

6.10 the process instance is drawn in the Transit Map notation (cf. Requirement REQ-23).

Already executed tasks are annotated with the user name, which executed the task, and

the corresponding time. Furthermore, executed tasks are colored in green. Executable

tasks, which can be executed by a simple click, have a green border. In Figure 6.10, the

user is asked by a popup window which path of the XOR block should be executed.

In case a task is executed, a user form is displayed in the Run tab of the sidebar (cf.

Figure 6.11). Whereby, the generation of the forms is not part of the contribution of

this thesis. The Add button allows the user to add comments. Finally, the task can be

completed with the Complete button (cf. Requirement REQ-24).

Figure 6.11.: User Form generated for the Task Execution

72

6.2. Individual Pages of the Web Application

6.2.6. Settings Page

On the Settings page, all important settings of Clavii BPM cloud can be configured (cf.

Figure 6.12). The organization model can be specified and modified in the OrgModel

tab (cf. Requirement REQ-4). In particular, this includes modification of users, roles,

organizational units, and organizations. Furthermore, an overview on assigned access

rights on groups and process models is provided.

Figure 6.12.: Settings Page

The Plugin tab contains a plugin catalogue. The plugins and their in- and output

parameters can be inspected. Further, new plugins can be uploaded in the form of a

.jar file, containing the implementation, and an XML file, which describes the plugin (cf.

Requirement REQ-19).

The Types tab lists all available business object types. New business object types can be

created either by extending existing business object types or by creating a new simple,

enum, or complex business object type [And14].

The Process View tab displays predefined process views. It also allows the creation

of custom process views (cf. Requirement REQ-14) [Kam14]. Details of the plugins,

73

6. User Interface of the Web Application

business object types, and process views are not discussed in the following, because

they are not part of the contribution of this thesis.

6.2.7. UserProfile Page

Figure 6.13 shows the UserProfile page. The first name, last name, and e-mail of the

current user can be changed. Furthermore, a new avatar may be uploaded and the user

language can be specified (cf. Requirement REQ-3). The user interface is always shown

in the language of the logged in user.

Figure 6.13.: UserProfile Page

6.3. Summary

In summary, this section discusses the individual pages of the web application of Clavii

BPM cloud. At first, an overview on the entire web application is given on the basis of a

site map. The site map explains the two regions of the web application, which are the

Web Application region and the Main Pages region. Whereby, the Main Pages region

can only be accessed by logged in users. In the following, the individual pages of the

web application are discussed in detail. The Login and Registration page enable the

74

6.3. Summary

user to log in to the web application and create new accounts. The GroupOverview page

provides access to the groups and enables the user to administrate them. The contained

process models of a group can be managed in the ProcessOverview page. Process

models can be modeled and executed in the ModelView page, which is separated into

BuildtimeView and RuntimeView page. Finally, additional capabilities for the modification

of settings and the user profile are provided by the Settings and UserProfile page. In

the following, the requirements which are met by the pages of the web application are

discussed.

The pages shown in this section fulfill several requirements, previously defined in Section

4. The localization requirement specified in Requirement REQ-3 is met by providing a

language setting to the user in the UserProfile page (cf. Figure 6.13). More details about

the implementation of this requirement are given in Section 7.2.5.

The organizational model (cf. Requirement REQ-4) can be edited on the Settings page

(cf. Figure 6.12). New accounts can be created both on the Registration and on the

Settings page (cf. Figure 6.3). The Settings page allows further modification of the

organizational model, e.g., adding new roles or organizational units.

The GroupOverview page complies with Requirement REQ-6, which specifies private

and shared groups. The groups are displayed by GroupTile panels with their icon and

name. Furthermore, the Shared State icon facilitates the distinction between private and

shared groups (cf. Figure 6.4). Moreover, the displayed groups can be filtered by access

status, for example, it is possible to show only private groups.

The access control system (cf. Requirement REQ-7) is implemented by GroupOverview

and ProcessOverview page. In both pages the Properties tab of the sidebar, for a

selected group or process model, contains the AssignRights panel (cf. Figure 6.4, 2).

In the AssignRights panel it is possible to assign access rights to every organizational

entity, i.e., organizational unit, role, or agent. An overview on all assigned access rights

is given in the OrgModel tab of the Settings page.

Requirements REQ-8 and REQ-9 state that attributes of groups and process models

should be editable by the user and it should be possible to add additional documentation

to all artifacts. The GroupOverview and ProcessOverview page provide a Properties

75

6. User Interface of the Web Application

tab in the sidebar, which allows the modification of all attributes of the selected group or

process model (cf. Figure 6.4, 2). Additional documentation can also be added in this

sidebar. Furthermore, it is possible to add comments, including attachments, during the

execution of a process model (cf. Figure 6.11).

Requirement REQ-10 states that modeling and execution environment should be in-

tegrated. This requirement is met by integrating both environments in the ModelView

page. The user can switch to the RuntimeView page by executing a process model

or by clicking on a process instance in the Run tab of the sidebar (cf. Figure 6.10).

Furthermore, the user can switch back to the BuildtimeView page by just clicking on the

“x” button of the Instance panel of the currently opened process model.

Process visualization Requirements REQ-11, REQ-12, REQ-13, and REQ-14 are fulfilled

by the ModelView page. The user can select the process modeling notation by choosing

between BPMN and Transit Map on the ViewSettings panel (cf. Figure 6.6). The

implementation of these process modeling notations is discussed in detail in Section

7.2.2. The data flow is visualized as shown in Figure 6.9. The data edges can be

displayed individually by clicking on the corresponding business object in the Data tab

of the sidebar. Process views can be applied by choosing the respective view in the

ViewSettings panel (cf. Figure 6.6). These process views can be applied during the

modeling and execution of the process model. New process views can be defined in the

Process View tab of the Settings page.

The requirements regarding modeling of process models (cf. Section 4.4) are met by

the ModelView page. New process nodes can be added by dragging them from the

Add tab of the sidebar onto the process model (cf. Figure 6.7). To fulfill Requirement

REQ-15, process nodes can be edited as well as deleted through the Properties tab

of the sidebar (cf. Figure 6.8). Process nodes can be moved from one place in the

process model to another by drag and drop (cf. Requirement REQ-16). The Data tab

of the sidebar (cf. Figure 6.9) provides all capabilities to satisfy Requirement REQ-17,

i.e., business objects can be created, modified, and deleted. The process node types

specified in Requirements REQ-18, REQ-19, REQ-20, and REQ-21 can be added to

a process model, as already mentioned, by dragging them onto a process model (cf.

76

6.3. Summary

Figure 6.7). Furthermore, all specified types of process nodes can be configured through

the Properties tab of the sidebar (cf. Figure 6.8).

The execution requirements, which are specified in Section 4.5, are fulfilled by the

GroupOverview, ProcessOverview, and ModelView page. The overview on process in-

stances (cf. Requirement REQ-22) is available in the GroupOverview, ProcessOverview,

and ModelView page. The overview can be accessed by opening the Run tab of the

sidebar. The listed process instances are filtered according to the current context. For

example, if the overview is opened in the ModelView page, all instances of the currently

shown process model are listed. A specific process instance can be displayed by clicking

on the corresponding Instance panel (cf. Figure 6.10), which leads to Requirement

REQ-23. Figure 6.10 shows how the ModelView page displays a process instance (cf.

Requirement REQ-23). A task can be executed by simply clicking on a process node (cf.

Requirement REQ-24). Subsequently, the user form for the task is shown in the sidebar

and the task can be completed (cf. Figure 6.11).

Section 5 and Section 6 show how the requirements specified in Section 4 (except

Requirement REQ-5, which is discussed in Section 7.1.1) are implemented by Clavii

BPM cloud. The following section singles out implementation aspects, which play an

important role in fulfilling the requirements.

77

7
Implementation Aspects of the Web

Application

Previous sections introduce general insights into the web application of Clavii BPM

cloud by discussing its architecture and user interface. In addition, it is analyzed how

the requirements specified in Section 4 are met by Clavii BPM cloud. In the following,

aspects of the implementation of the web application of Clavii BPM cloud are introduced.

General aspects in the context of navigation between pages, event handling, request

management, and data storage are addressed (cf. Section 7.1). Next, user interface

aspects are discussed in Section 7.2. In particular, insights into the implementation of the

Group- and ProcessOverview page, ModelView page, Sidebar component, ViewSettings

panel, as well as the localization are given. Finally, Section 7.3 summarizes this section.

79

7. Implementation Aspects of the Web Application

7.1. General Implementation Aspects

As already discussed, the web application of Clavii BPM cloud is built utilizing GWT

(cf. Section 2.2). In particular, GWT injection is leveraged to achieve a high degree of

modularization. Therefore, general components, explained in the following, are injected

into user interface components. As a result, user interface components are decoupled.

This leads to cleaner code and higher maintainability.

Section 7.1.1 discusses the implementation of the Navigator component, which is

responsible for the navigation between web pages. Subsequently, the propagation of

events between components with the Event Bus component is explained in Section 7.1.2.

Section 7.1.3 shows how the data on the client-side of the web application is stored.

Finally, Section 7.1.4 discusses the request management, which bundles the requests to

the server-side on the client-side of the web application.

7.1.1. Navigator Component

The Navigator component, which consists of the Navigator class, is responsible for the

navigation between pages of the web application of Clavii BPM cloud. As stated in

Requirement REQ-5, a URL referencing a BPMS should always reflect the current state

of a BPMS, to enable the users to share this URL and, thus, share the currently opened

group or process model. Because in AJAX applications new pages are loaded in the

background, the URL is not automatically adjusted. Therefore, it is necessary to adjust

the URL every time a user navigates to another page. Furthermore, if a user opens a

bookmark in the browser, it is necessary to open the corresponding page. For example,

Figure 7.1 shows the internal chain of events to open the URL:

localhost:8080/Clavii?locale=en#Main:filter=Private

Host Port HTML

Page
Language Page

Identifier
Parameter

First of all, method onModuleLoad of the Clavii class is invoked. The Clavii class

is specified as entrypoint in the .gwt.xml file (cf. Section 2.2.1). The onModuleLoad

80

7.1. General Implementation Aspects

:Navigator:Clavii

analyzeUrlAndOpenPage(URL)

parseParameters()

page!=Login & page!=Registration & !loggedin

loginFromSession()==Successful

showGroupOverview(FilterMode)

:MainPanel

showGroupOverview(FilterMode)

showLogin()

else

showGroupOverview(FilterMode)

showGroupOverview(FilterMode)

else

onModuleLoad()

Figure 7.1.: Opening a Page based on a specific URL

method calls the analyzeUrlAndOpenPage method in the Navigator class. This method

is also called if a URL changes after a user input. Next, the Navigator class parses

parameters of the current URL. In Figure 7.1, the only parameter is filter with value

Private (i.e., filter=Private). Particularly, filter specifies the filter of the GroupOverview

page and defines if private, shared, or all groups are displayed. The page identifier

is placed in front of the parameters in the URL, i.e., identifier Main corresponds to

GroupOverview page (cf. Section 6.2.3).

Afterwards, it is checked if the requested page is a page of the Main Pages region. If

the user is not logged in, the Navigator class looks for a cookie in the browser cache

and trys to log in based on the credentials in the cache. After a successful login, the

GroupOverview page is shown. Otherwise, the user is redirected to the Login page.

If the user only wants to open the Registration or Login page, the requested page is

opened directly, because no authentication is required.

Figure 7.1 presents a simplified view of the real procedure. For example, during the login

some basic data, like organizational model and plugins, are loaded. Furthermore, it is

81

7. Implementation Aspects of the Web Application

checked if the language in the URL is the same as the language specified for the user. If

this is not the case, the page is reloaded with the right language. Furthermore, several

clean-up methods are executed. For instance, potentially opened sidebars and popup

windows are closed.

The navigation between web pages is centralized in one component, because otherwise

redundant code would be necessary in the implementation of individual web pages.

The implementations of the web pages just have to analyze the user input and call the

respective method on the Navigator class to switch to another page. Furthermore, the

methods in the Navigator class contain common code, which can be reused for every

page switch. Another advantage of the Navigator component, is that the methods can

be reused when a web page should be opened based on a specific URL (cf. Figure 7.1).

7.1.2. Event Bus Component

Event propagation between components of the client-side is implemented by the Event

Bus component. The Event Bus component facilitates the decoupling of components,

i.e., the components do not have to hold references to each other to exchange infor-

mation, because they can communicate through events over the Event Bus component.

The Event Bus component uses the publish/subscribe pattern for event propagation

[EFGK03], i.e., several components can subscribe to a specific event. The latter may

be invoked by a component and, subsequently, all subscribed components are notified.

Figure 7.2 displays the basic principle of the implemented Event Bus component in the

context of this thesis.

Each user interface component, which visualizes an entity, e.g., a group or a process

model, has a subscription for corresponding events. To keep the visualization of the

entities up-to-date, RequestManager class publishes the respective event when an entity

is changed. Thereby, the user interface is updated to represent the new state of the

entity. For more details it may be referred to Section 7.2.

The implementation of the Event Bus component is provided by GWT. Several Event

and EventHandler classes are created to leverage the capabilities of the Event Bus

82

7.1. General Implementation Aspects

Event Bus

Sidebar

Component

s
u
b
s
ri

b
e

p
u

b
li
sh

s
u
b
s
rib

e

s
u
b
s
rib

e

s
u
b
s
rib

e

...
p
u

b
lish

Event nEvent 1

RequestManager

Component

GroupOverview

Page

ProcessOverview

Page
ModelView Page

...

Figure 7.2.: Event Bus Component

component. Table 7.1 lists the events, which are published when the corresponding

entity is changed. The only exception is that the NodeSelectionUpdate event is published

if the selection of nodes in the ModelView page changes.

Table 7.1.: Events for Propagation of Entity Updates and changed Node Selection of a
Process Model

Event Name Invoked if
AgentUpdate an Agent entity is changed
ModelMetaDataUpdate a ModelMetaData entity is changed
ModelUpdate a Model entity is changed
FilterUpdate a Filter entity is changed
NodeSelectionUpdate selected nodes of a process model are changed
GroupUpdate a Group entity is changed
OrganizationalEntityUpdate an organizational entity, e.g., a Group, is changed
PluginUpdate a Plugin entity is changed
ProcessInstanceUpdate a ProcessInstance entity is changed
TypeUpdate a Type entity is changed
TypeInstanceUpdate a TypeInstance entity is changed

A typical use case of Event Bus component is the propagation of the NodeSelection

event (cf. Figure 7.3). First of all, the LienzoWidget, which is responsible for process

visualization, receives a NodeClick event. The latter is invoked when a user clicks on a

node of a process model. Thereafter, the notifyFlowNodeSelectionHandler method is

called. This method creates a new NodeSelectionUpdate event, comprising references

83

7. Implementation Aspects of the Web Application

to all selected nodes. Subsequently, this event is published on the Event Bus component

using the fireEvent method.

:EventBus:LienzoWidget

fireEvent(Event)

:ModelView

onNodeClicked()

notifyFlowNodeSelectionHandler()

:SidebarPanel

onF lowNodeSelectionUpdate(Event)

createPropertySidebar(SidebarConfig)

Upload File

showSidebar(SidebarConfig)

Figure 7.3.: NodeSelection Event Propagation

Since the ModelView page has a subscription on NodeSelection events, it is notified

that a new event has been published. As a result, the ModelView page builds a Side-

barConfig object and calls the showSidebar method of the SidebarPanel class. The

SidebarConfig object contains information about the desired sidebar content. The Side-

barPanel class analyzes the configuration in SidebarConfig object, and decides that a

PropertySidebar sidebar should be opened (cf. Section 7.2.3). A more complex example,

showing the capabilities of the integration of DataStore class, ProcessModelManager

class and Event Bus component, is given in Section 7.1.4.

The event propagation between components is implemented by the Event Bus compo-

nent, to facilitate decoupling of components. Otherwise, a component which wants to be

notified when an events occurs has to register an event handler on every component

which invokes the event. Whereby, it is difficult to find out all components which invoke a

specific event. For example, if a component wants to be notified when an AgentUpdate

event is invoked, it is necessary to find out which components invoke this event. Fur-

thermore, if a component is updated that it newly invokes the AgentUpdate event, all

components which are interested in the event have to be determined and updated.

This problem is solved by a central Event Bus component, through which a component

can invoke events and register event handlers in a decoupled way. The Event Bus

component also provides methods to retrieve all components which are registered to a

specific event, to facilitate the usage of the Event Bus component for the developer.

84

7.1. General Implementation Aspects

7.1.3. Data Storage Component

The data storage on the client-side is centralized in the Data Storage component.

Whereby, the DataStore class is the main class of the Data Storage component. All

data, retrieved from the server-side, is stored and, thereby, cached in the DataStore

class. As a result, the DataStore class provides uniform data access for all components

and redundant requests to the server-side can be avoided. Figure 7.4 visualizes how

the DataStore class is leveraged by user interface components.

Organizational Entities ModelMetaDataAgent Model

Group ProcessInstance Filter Type

TypeInstance Plugin Trigger Attachment

G
e
t, P

u
t,

R
e
m

o
v
e

GroupOverview

Page

ProcessOverview

Page

ModelView

Page
Settings Page ...

Injection

Entities stored in the DataStore Class

Figure 7.4.: Usage of the DataStore Class

DataStore class stores all entities utilizing hash maps, to provide an efficient access to

the entities by an unique identifier. DataStore class also stores the current state of the

web application, for example, which process model a user has opened. The DataStore

class is injected through GIN into the user interface components to provide uniform

access to all entities on the client-side (cf. Section 2.2.2). Furthermore, DataStore class

provides methods to store, retrieve, and remove entities. For example, GroupOverview

page can inject the DataStore class and read all groups.

In addition, the web storage of the browser is used to store simple settings [Hic13]. This

includes the zoom factor of the GroupOverview page, the ProcessOverview page, and

the ModelView page, and preferred process notation. Otherwise, a user has to set his

85

7. Implementation Aspects of the Web Application

preferred zoom factor and process modeling notation every time he opens a process

model. The access to the web storage is encapsulated in the LocalStorage class. Listing

7.1 demonstrates the storage of a property in the web storage utilizing GWT. If a browser

does not support web storage, default values are used.

public class LocalStorage {

private s t a t i c f i n a l double MODELL_SCALE = 1;

public s t a t i c void setModel lScale (double scale) {

i f (l oca lS to rage == nul l)

l oca lS to rage = Storage . getLoca lStorageI fSuppor ted () ;

i f (l oca lS to rage != nul l) {

l oca lS to rage . set I tem (" modelscale " , sca le + " ") ;

}

}

public s t a t i c double getModel lScale () {

i f (l oca lS to rage == nul l)

l oca lS to rage = Storage . getLoca lStorageI fSuppor ted () ;

i f (l oca lS to rage == nul l)

return MODELL_SCALE;

return Double . parseDouble (loca lS to rage . get I tem (" model lsca le ")) ;

}

}

Listing 7.1: Accessing the Web Storage of a Browser utilizing GWT

In summary, all data retrieved from the server-side are stored in the DataStore class. In

addition, simple settings for the convenience of the user are stored in the web storage of

the users browser.

The reason for the centralized storage in the DataStore class is that it is difficult to main-

tain an overview on all stored entities, when they are stored distributed in user interface

components. For example, if the ModelMetaData entity is stored in the ProcessOverview

page, a component which wants to access a ModelMetaData entity, e.g., the ModelView

page, has to retrieve the entity from the ProcessOverview page. This forces the devel-

oper to access the entity through the respective user interface component, even if the

component is not available, because it has not been created yet. Another alternative

to the centralized data storage would be to store the entities redundant in multiple user

interface components. This is not feasible because additional effort would be necessary

to synchronize these entities if one of them is changed, to keep all entities up-to-date.

86

7.1. General Implementation Aspects

7.1.4. Request Management

Client-server communication is implemented based on RPCs and RequestFactory. Utility

classes RequestManager and ProcessModelManager encapsulate the implementation

for the communication between client and server. Details about the implementation of

individual requests can be found in Section 2.2.2. Figure 7.5 lists the entities that can be

modified and the operations that can be executed with these classes.

OrganizationalEntity ModelMetaDataAgent

Model Group Rights

File ProcessInstance

Task

Filter

TypeTypeInstance

Plugin

TriggerAttachment

InsertOperation

UpdateOperation

DeleteOperation

Entities which can be edited with the RequestManager Operations which can be executed

with the ProcessModelManager

Figure 7.5.: RequestManager and ProcessModelManager Classes

To explain how the utility classes are leveraged, Figure 7.6 shows the cooperation be-

tween DataStore class, Event Bus component, and ProcessModelManager class on the

basis of the insertNode method. The insertNode method of the ProcessModelManager

class is invoked when a new process node is dragged onto a process model.

:Request

Manager

:ProcessModel

Manager

updateModel(ModelChangeDescription)

:ProcessService

Impl

insertNode(NodeInfo)

:Repository

Manager

Model
Model

updateModel(ModelChangeDescription)

:DataStore :EventBus

updateModel(ModelChangeDescription)

putModel(Model)

fireEvent(Event)

:Model

View

:Lienzo

Widget

onModelUpdate(Event)

showModel(Model)

Figure 7.6.: Integration of DataStore Class, ProcessModelManager Class, and Event
Bus Component

When the insertNode method is called, the ProcessModelManager class calls the up-

dateModel method of the RequestManager class. Whereby, required data to insert a

87

7. Implementation Aspects of the Web Application

new process node is handed over to the RequestManager class. This includes, particu-

larly, predecessor and successor node, node type, and node name of the process node

to be inserted. The RequestManager class invokes an RPC on the server-side of Clavii

BPM cloud (cf. Section 2.2.2). Then, RepositoryManager class updates the process

model, saves the updated process model to the database, and delivers it back to the

client-side of Clavii BPM cloud. Subsequently, the RequestManger class stores the up-

dated version of the process model in the DataStore class. Next, a ModelUpdate event

is fired on the Event Bus component. Thereby, the ModelView page is notified that an

updated version of the process model is available. Therefore, it calls the LienzoWidget

to update the process visualization.

In summary, the classes RequestManager and ProcessModelManager encapsulate all

required methods to modify entities on the server-side. The advantage of centralized

requests is that they can be accessed and maintained in one central place. Clavii

BPM cloud uses various requests and it is easier to keep an overview on all requests

for the developer, if they are bundled in one component. Furthermore, if every user

interface component contains code to communicate with the server, there would be a lot

of redundant code, which makes the user interface components unnecessarily complex.

The components for centralized navigation, event propagation, data storage, and request

management, which have been discussed in this section, are injected in user interface

components to provide all general functionality required for the implementation of the

pages of the web application.

7.2. User Interface Implementation Aspects

Based on the user interface of the web application shown in Section 6, this section

describes implementation details of selected user interface components. The user

interface is implemented by combining UiBinder (cf. Section 2.2.2) and CSS, which are

integrated through ClientBundles (cf. Section 2.2.2).

First, Section 7.2.1 discusses the structure of the GroupOverview and ProcessOverview

page. Subsequently, the implementation of the ModelView page including the process

88

7.2. User Interface Implementation Aspects

visualization is explained in Section 7.2.2. Subsequently, Section 7.2.3 illustrates the

structure of the Sidebar component. Thereafter, ViewSettings panel is discussed in

Section 7.2.4. Finally, the implementation of the localization is explained in Section 7.2.5.

7.2.1. Structure of GroupOverview and ProcessOverview Page

The GroupOverview page is implemented by the GroupOverviewPanel class. Since

GroupOverview and ProcessOverview page have the same structure, only the imple-

mentation of the GroupOverview page is exemplarily described.

GroupOverview, ProcessOverview, and ModelView page are all embedded in the so-

called Main panel. The Main panel UiBinder file is shown in Listing 7.2 and Figure 7.7

displays the corresponding user interface.

<g:HTMLPanel>

<t:TopBarPanel u i : f i e l d = " Topbar " / > (1)

<s:SidebarPanel u i : f i e l d = " Sidebar " / > (2)

<g:HTMLPanel u i : f i e l d = " SidebarLef tContent " v i s i b l e =" f a l s e " / > (3)

<g:HTMLPanel u i : f i e l d = " MainContent " / > (4)

<v:V iewSet t ingsPanel u i : f i e l d = " ViewSet t ings " / > (5)

< / g:HTMLPanel>

Listing 7.2: Main Panel UiBinder file

Main panel arranges the omnipresent panels TopBar panel 1 , Sidebar panel 2 ,

SidebarLeftContent panel 3 , and ViewSettings panel 5 . The MainContent panel 4

is reserved for GroupOverview, ProcessOverview, and ModelView page. Because the

Main panel is the basis of all these pages, they share all the same structure. Therefore,

omnipresent panels like the TopBar panel can be provided to all pages without any

redundant code.

TopBar panel 1 describes the bar at the top of a page, which contains the breadcrumb,

the name of the logged in user, and additional navigation options. Sidebar panel 2

is the header of the sidebar and is always visible. The content of the Sidebar panel

is updated depending on the current page displayed and access rights of the current

user. When a sidebar is opened, it is shown in the SidebarLeftContent panel 3 . The

89

7. Implementation Aspects of the Web Application

Figure 7.7.: User Interface of the Main Panel

ViewSettings panel 5 provides view options for the current page, e.g., filtering, sorting,

or zooming.

These four panels are available in all pages of the Main Pages region. The MainContent

panel 4 is filled depending on the current page (cf. Figure 7.7). When a user navigates,

for example, from the ProcessOverview page to the ModelView page the Navigator

class replaces the content of the MainContent panel. Other panels are updated ac-

cordingly. In this case, the breadcrumb in the TopBar panel is updated, the Sidebar

panel gets an additional Data tab, and ViewSettings panel adds the possibility to switch

between process modeling notations. Because only affected parts of pages are replaced

or updated instead of entire pages, faster loading times of web pages are achieved.

Listing 7.3 shows the internal structure of the GroupOverview page and Figure 7.8

displays the user interface of the GroupOverview page. Groups are visualized through

GroupTile panels 6 , which are arranged on the Inner panel 2 . GroupTile panels are

encapsulated in an extra UiBinder file because it is not possible to specify dynamic

components in a UiBinder file, which is necessary because the amount and types of

groups which are shown to a user are dynamic. The Inner panel takes as much space

90

7.2. User Interface Implementation Aspects

as necessary to visualize all groups. The Outer panel represents the visible viewport of

the Inner panel. Therefore, the overlapping parts of the Inner panel are clipped. The

viewport itself can be moved either by clicking on the arrows on the side 3 4 or by

scrolling using the mouse wheel.

<g:HTMLPanel>

<g:FocusPanel u i : f i e l d = " OuterPanel "> (1)

<g:AbsolutePanel u i : f i e l d = " Inner " / > (2)

< / g:FocusPanel>

<c:Image u i : f i e l d = " Lef tArrow " resource=" { i . l e f t a r r o w } " / > (3)

<c:Image u i : f i e l d = " RightArrow " resource=" { i . r i g h t a r r o w } " / > (4)

<g:HTMLPanel u i : f i e l d = " Se lec t i on " / > (5)

< / g:HTMLPanel>

Listing 7.3: GroupOverview UiBinder File

Figure 7.8.: User Interface of the GroupOverview Page

Groups can be selected by clicking on the GroupTile panels. In addition, the Selection

panel 5 can be used to select several groups at once analog to the selection frame

in desktop applications. The Selection panel facilitates the administration of multiple

groups for user which are accustomed to desktop applications.

In the following, the composition of the GroupTile panels is broken down. The GroupTile

panel is defined with UiBinder (cf. Listing 7.4) and dynamically instantiated by the

GroupOverviewPanel class. Figure 7.9 illustrates the user interface of the GroupTile

panel.

91

7. Implementation Aspects of the Web Application

<g:HTMLPanel>

<g:HTMLPanel u i : f i e l d = " Options "> (1)

<g:But ton u i : f i e l d = "Open" / >

< / g:HTMLPanel>

<g:HTMLPanel u i : f i e l d = " Icon "> (2)

<c:Image u i : f i e l d = " GroupIcon " / >

< / g:HTMLPanel>

<g:HTMLPanel u i : f i e l d = " Bottom " > (3)

<c:Image u i : f i e l d = " SharedStateIcon " / >

<g:HTMLPanel u i : f i e l d = " GroupCount " >

<c :Labe l u i : f i e l d = " GroupCountLabel " t e x t = " +0 " / >

< / g:HTMLPanel>

< / g:HTMLPanel>

<c :Labe l u i : f i e l d = "GroupName" / > (4)

< / g:HTMLPanel>

Listing 7.4: GroupTile Panel UiBinder File

Figure 7.9.: User Interface of the GroupTile Panel

The Options panel 1 is only visible when the mouse is moved over a group on the

GroupOverview page or when a group is selected. A click on the Open button results in

invoking the Navigator class, which then opens the ProcessOverview page. The Icon

panel 2 contains the icon of a group. The Bottom panel 3 contains the SharedState-

Icon panel, which signals whether a group is private or shared. It also encloses the

GroupCount panel, to report the count of opened tasks for the current user in this group.

The GroupName label 4 displays the group name.

92

7.2. User Interface Implementation Aspects

Previous paragraphs introduce the building blocks of GroupOverview page. Figure 7.10

illustrates the chain of events when a new group is created through the Add tab of

the sidebar (cf. Figure 7.7). The corresponding panel for the content of this tab in the

GroupOverview page is the NewGroupContent panel. At first, the NewGroupContent

panel calls the createGroup method of the RequestManager class. Then, the group is

created on the server-side of Clavii BPM cloud and returned to the client. Next, the

created group is stored in the DataStore class and a GroupUpdate event is invoked.

:RequestManager

createGroup(fo lderName)

:DataStore :EventBus

putGroup(Group)

filterGroups()

:GroupOverview

Panel

fireEvent(Event)

updateContent(allGroups)

:NewGroupContent

Group

sortGroups()

loop Group

:GroupTilePanel
new(Group)

addHandler(this)

updateArrows()

Figure 7.10.: Creating a New Group of Process Models

To show the created group to the user, the GroupOverviewPanel is updated. Therefore,

the updateContent method is called containing a list of all groups as parameter. In the

following, groups are sorted and filtered according to selected policies of the ViewSet-

tings panel. Afterwards, groups are arranged in the Inner panel. Therefore, GroupTile

panels are instantiated and stored in a cache. However, if they already exist in the cache,

they are reused and updated to optimize the time necessary to display all groups. Finally,

arrows on the right and left are updated, because they should be only visible, if the Inner

panel is wider than the Outer panel.

This section explains the structure of the GroupOverview page. The GroupOverview

page is embedded in the Main panel to avoid redundant code for panels which are

93

7. Implementation Aspects of the Web Application

displayed on all pages of the MainPages region, e.g. TopBar panel. The individual

groups are represented by GroupTile panels, which can be dynamically created by the

GroupOverviewPanel class. Finally, it is shown how a new group is created by leveraging

RequestManager class, DataStore class, and Event Bus component.

7.2.2. Details on Implementation of ModelView Page

The ModelView page is like the overview panels, enclosed by the Main panel. This

allows the reuse of TopBar panel, Sidebar panel, and ViewSettings panel, which avoids

redundant code. The ModelView page consists of the panels LienzoWidget 1 and

Outline 2 . The structure of the ModelView page is shown in Listing 7.5 and the

corresponding user interface in Figure 7.11.

<g:HTMLPanel>

< l :L ienzoWidget u i : f i e l d = " LienzoWidget " / > (1)

<g:HTMLPanel u i : f i e l d = " Ou t l i ne " > (2)

<c:Image u i : f i e l d = " Outl ineImage " / >

<g:FocusPanel u i : f i e l d = " Se lec t i on " / > (3)

< / g:HTMLPanel>

< / g:HTMLPanel>

Listing 7.5: ModelView UiBinder File

Figure 7.11.: User Interface of the ModelView Page

94

7.2. User Interface Implementation Aspects

The LienzoWidget panel 1 is used for visualizing process models and is discussed later

in this section. The Outline panel 2 , which can be accessed through the ViewSettings

panel, contains a preview of the currently shown process model. Therefore, the Outline

panel is particularly convenient for complex process models. The Selection panel 3

displays the current viewport of the process model shown in the ModelView page.

Furthermore, the Selection panel can be moved to adjust the viewport.

In the following, it is introduced how the LienzoWidget panel visualizes process models

and handles events. First of all, when drawing a process model in the LienzoWidget

panel, the layout algorithms calculate the layout for the requested process modeling

notation (cf. Section 7.2.2). Next, the process model is drawn in several layers (cf.

Section 7.2.2). For example, the NodeLayer draws all nodes of a process model. The

separation into layers facilitates faster drawing times, since not all elements have to be

redrawn when only one node is added. The layers panels leverage so-called graphic

factories (cf. Section 7.2.2) to receive notation-specific representations of process

elements. When the process model is drawn, all occurring events are routed to the

event controller (cf. Section 7.2.2). The event controller is the central component for

internal event processing in the ModelView page. The previously discussed Event Bus

component is not used here, because the events should not be propagated between

multiple components and the event handlers are all attached to only one central event

controller. The individual aspects of the process visualization are explained in the

following.

Algorithms for Layouting Process Models

Layout algorithms are responsible for calculating the layout of a process model, based

on a Model entity. The Model entity, is a Java object representing a process model,

which contains its nodes and edges. Two very similar layout algorithms have been

implemented to calculate the layout for the BPMN and the Transit Map notation. The

main difference between them is that the BPMN layout algorithm arranges process

elements from left to right and the layout algorithm for the Transit Map notation from top

to bottom. Furthermore, branches of gateway blocks are layouted centered in BPMN and

95

7. Implementation Aspects of the Web Application

left-justified in the Transit Map. The parts of the layout algorithms which are explained in

the following are the same for both notations.

Generally, the layout algorithms are divided into two phases. First, the structure of the

process model is discovered. Second, the positions of process elements on the layout

of a process model are calculated. The layout algorithms are explained based on the

example in Figure 7.12.

Discovering the structure of the process model. During the first phase, the model

is divided in blocks and branches. The discovered blocks and branches are stored in

the so-called root block, which begins at the start event 1 and ends at the end event

11 . The layout algorithms create a branch for every direct successor of the start node

of a block, i.e., the root block contains a branch, which starts at 2 and ends at 10 .

Then, the next successor 3 is examined. Since the successor is a gateway, a new block

is created. The following branches are stored in the previously created block and are

examined subsequently. The layout algorithms terminate when the entire process model

is discovered. Additionally, the width and height of every block and branch is calculated

and stored.

Figure 7.12.: Process Model Structure Discovery

Arranging the process elements. Figure 7.13 presents the resulting data structure of

phase one of the layout algorithms (cf. Figure 7.12). The second phase arranges process

elements recursively, starting at the root block. First, the arrangeBlock method sets the

position of the start node 1 and end node 11 of the root block. These coordinates are

calculated from the start point of the process model and the width and height of the root

block, which have been determined in the first phase. Second, the starting points of the

branches, contained in the root block, are calculated and the arrangeBranch method

96

7.2. User Interface Implementation Aspects

is called for each branch in the root block with the branch and the starting point of the

branch as parameters.

 (Root Block)

arrange

Block

arrange

Branch

arrange

Branch

arrange

Block

arrange

Branch

Figure 7.13.: Arranging the Process Elements

The arrangeBranch method positions all process nodes in a branch. The first node is

positioned directly on the coordinates of the start point of the branch. Following process

nodes are placed next to the first node depending on the process modeling notation,

with a predefined margin. When a contained block is detected, e.g., block from 3 to

10 in branch 2 to 10 , the arrangeBlock method is called recursively.

The data structure, which is the result of the first phase, is processed until the entire

layout of the process model is calculated. As already stated, the difference between

the BPMN and Transit Map algorithm lies only in the recursive placement of the blocks,

branches, and nodes. The calculated process model layout is stored in ProcessElement

objects. To be precise, coordinates, width, and height of every node is stored. This data

is used to draw the process model on the layers.

Drawing the Process Model on the Layers

After the layout has been calculated, the process model is drawn originating from the

ProcessElement objects. The process model is drawn on a LienzoPanel panel, which is

97

7. Implementation Aspects of the Web Application

part of the Lienzo graphics library [Emi]. By utilizing Lienzo it is possible to separate the

visualization of a process model into several layers. The advantage of this separation

is that layers can be individually redrawn by the LienzoPanel panel, which results in

shorter drawing times for a process model. Figure 7.14 illustrates the overlay of the

layers, which assembles the process visualization. This example displays the NodeLayer,

SequenceFlowLayer, and DataLayer.

Figure 7.14.: Layers of the Process Visualization

The illustrated layers in Figure 7.14 are a subset of the layers used for process model

visualization. In the following, all involved layers and their functionality are described:

NodeLayer. The NodeLayer draws process elements (i.e., events, tasks, and gateways).

The coordinates for process elements have been calculated by the layout algorithm. The

graphical representation that is drawn onto the NodeLayer, is produced by the graphic

factories, which are described in Section 7.2.2. In addition, NodeLayer is capable of

updating the current process model visualization when, for example, a new node is

added to the process model. Therefore, NodeLayer calculates the difference between

the old and the new layout and starts a set of animations for a fluent transition. Whereby,

the animations highlight the differences between the old and the new process model.

SequenceFlowLayer. The SequenceFlowLayer draws edges between process ele-

ments. First, the set of edges is fetched from the Model entity. Thereafter, positions

of source and target node are retrieved and the shape of the edge is determined and

drawn. This layer also supports the transition from one layout to another, when a new

node is inserted, like the NodeLayer.

DataLayer. The DataLayer is only visible when the Data tab in the sidebar is opened.

The DataLayer displays the data connections between business objects and process

98

7.2. User Interface Implementation Aspects

nodes. The data edge that is shown during the creation of new data connections is also

drawn on this layer. In particular, only the DataLayer has to be redrawn when such a

edge changes and not the complete process model.

RuntimeLayer. The RuntimeLayer visualizes the current state of a process instance

and individual nodes when the RuntimeView page is active. This layer contains both

process elements and edges of a process instance.

DeltaLayer. The DeltaLayer is used when a process view is shown and highlights

differences between the original process model and a selected process view.

DragLayer. During dragging a node onto the process model from the Add tab of the

sidebar, this node is temporarily drawn on the DragLayer. The DragLayer also draws

gateways and edges, which are inserted if the dragging ends, i.e., if the user releases

the mouse button. For example, when a new process node is dragged onto an existing

process node a surrounding gateway is shown.

Figure 7.15 breaks down how a process model is drawn using the BPMN notation,

including how the NodeLayer draws process elements.

:BPMN

Layout
:LienzoWidget

clearAllLayers()

drawModel(Model)

:NodeLayer
:Event

Factory

generateLayout(Model)

drawElements(ProcessElements)

:Task

Factory

:Gateway

Factory

loop ProcessElement

Type

Event getEvent(Event)

Task getTask(Task)

Gateway getGateway(Gateway)

updateHandlers()

Figure 7.15.: Drawing Process Elements with the NodeLayer

99

7. Implementation Aspects of the Web Application

The drawModel method of the LienzoWidget class is responsible for the coordination

of process model visualization. This method is called every time a user opens the

ModelView page, a process view is activated, or the process notation is changed.

When the drawModel method is called the LienzoWidget clears all layers and, thus,

removes all currently drawn objects. Subsequently, the selected process modeling

notation is retrieved, in this case BPMN, and the respective layout is generated. In

the following, drawElements methods of all layers are invoked. In Figure 7.15, only the

execution of the drawElements method of the NodeLayer is displayed, for simplification

reasons. The drawElements method iterates over all ProcessElement objects to retrieve

the coordinates and the names of all process nodes. Depending on the type of the

process element, the corresponding graphic factory is leveraged to retrieve a graphical

representation of the process element. This graphical representation is used to draw the

process element to the layer and, thus, to the HTML canvas. Finally, event handlers of

the process elements are updated so the event controller retrieves all occurring events,

which is discussed later in Section 7.2.2.

Graphic Factories

Graphic factories provide process model notation-specific representations of process

elements (i.e., process nodes and edges between them). To provide centralized access

to these factories, the so-called GraphicFactory class provides a centralized factory

for the individual graphic factories. The GraphicFactory has methods for retrieving

the EventFactory, TaskFactory, GatewayFactory, and EdgeFactory. Each factory is

dedicated to the corresponding element type.

The factories build the graphical representation of process elements out of base elements,

delivered by Lienzo (cf. Figure 7.16). These base elements can be categorized into two

types: Container and Shape elements. Container elements contain zero or more Shape

or Group elements. For example, the NodeLayer, which is also a Container element,

contains all process nodes of a process model, whereby every process node is bundled

into a single Group element.

100

7.2. User Interface Implementation Aspects

Group

Shape

Layer

Container

Regular

Polygon
Circle BezierCurve Polyline Arrow TextRectanglePicture

Figure 7.16.: Base Elements of Lienzo Framework

The Group element which represents a process node contains several Shape elements,

which are used to assemble the visual representation of a process node. It is important to

mention that event handlers can be added to every Shape element. The event handlers,

which are used for the event controller, are attached to Group elements. Adding event

handlers on Shape elements would result in hundreds of event handlers for a process

model, which would have performance impacts to the entire web application. In contrast,

event handlers on layers would not be able to detect which process node is affected by

the event.

Figure 7.17 shows the composition of individual process elements. In general, the

elements of the Transit Map are smaller to save space, which is especially useful for

large process models. In return, the elements of BPMN are more detailed and the names

of the elements have more space. For example, names of process nodes in BPMN are

cut off at 50 characters. In contrast, names of process nodes in the Transit Map are

already cut off at 30 characters.

Figure 7.17.: Composition of Process Elements

Start and end events are represented by a Circle element. In BPMN, the circle of the end

event is thicker than the circle of the start event. Tasks are represented by a Rectangle

element and a Text element. In BPMN, an additional Picture element is used to signal

the task type of the task. The AND, XOR, and LOOP gateways are composed of a

101

7. Implementation Aspects of the Web Application

RegularPolygon and a Polyline element, which has the shape of a “+” or a “x” symbol.

Edges are visualized by a Polyline element. Whereby, edges in BPMN also contain

an Arrow element. Data edges are in both process modeling notations composed of a

BezierCurve and an Arrow element.

The graphic factories avoid redundant code by providing factories for the creation of

graphical representation of process nodes and edges. Otherwise, several layer would

have to implement methods to create graphical representations of process nodes and

edges. For example, both the NodeLayer and the DragLayer require the capability to

create graphical representations of process nodes.

Implementation of the Event Controller

As previously mentioned, all events issued by interaction with the process elements

drawn on the layers are routed to the event controller. Figure 7.18 illustrates the inter-

connections of the event controller, which shows that the event controller is the central

controller of the ModelView page, which implements the Model-View-Controller pattern

[KP+88].

Figure 7.18.: Interconnections of the Event Controller

102

7.2. User Interface Implementation Aspects

When events are routed to the event controller, they are processed according to their

type. To be more precise, the event controller handles the event types listed in Table 7.2.

Table 7.2.: Event Types issued by Process Elements on the Layers
Type Invoked if a user
NodeClickEvent clicks on a process node
NodeDoubleClickEvent double clicks on a process node
NodeDragEvent drags a process node
NodeMouseEnterEvent moves the mouse over an edge of the process model
NodeMouseExitEvent moves the mouse away from an edge of the process model
DragOverEvent drags the process node over the layers
DropEvent drops a process node on the layers

All node events are fired by nodes and edges of the process model. Thereby, several

interaction patterns are implemented. For example, clicking and double clicking on

process nodes, dragging of process nodes, and fading-in the plus icon on edges between

process nodes. The DragOverEvent and the DropEvent are fired when a new process

node is dragged from the sidebar onto the process model.

For example, when dragging a task the DragOverEvent is thrown to provide context

sensitive assistance to the user. When the task is dragged over an existing process node,

a surrounding gateway is displayed, which represents a preview for the case the node is

dropped. If the DropEvent occurs, the event controller determines where the user has

dropped the process node. If the node is dropped on a process node the corresponding

method on the ProcessModelManager class is called. If the node is dropped on an

edge, the insertNode method of the ProcessModelManager class is called (cf. Figure

7.6).

In the following, the processing of a click on a process node by the event controller is

explained. In case a user clicks on a process node on the BuildtimeView page the chain

of events displayed in Figure 7.3 occurs. In contrast, a click on an executable task on

the RuntimeView page leads to the chain of events illustrated in Figure 7.19.

In Figure 7.19, the onRuntimeNodeClick method retrieves the current state of a process

instance and the task the user clicked on. If a process model is already completed,

103

7. Implementation Aspects of the Web Application

:SidebarPanel:EventController

onNodeMouseClick(Event)

onRuntimeNodeClick(Event)

buildSidebarConfig()

showSidebar(SidebarConfig)

Figure 7.19.: Executing a Task

which is when the end event is executed or the process instance has been canceled,

only existing comments can be read by the user. Depending on the current state of the

selected node, the SidebarConfig object is created. The SidebarConfig object specifies

the type of sidebar that should be opened. Finally, the showSidebar method is called

and the sidebar is opened (cf. Section 7.2.3).

This section explains the implementation of the ModelView page. The ModelView page

is like the GroupOverview page embedded in the Main panel. The ModelView page

consists of LienzoWidget and Outline panel. The LienzoWidget displays the currently

opened process model. The Outline panel contains a preview of the process model.

The visualization of the process model on the LienzoWidget is split in several steps. At

first, the layout of the process model is calculated by the layout algorithms for BPMN and

TransitMap. Next, the layout is drawn on several layers. Whereby, the most important

layers are the NodeLayer, which draws the process nodes, and the SequenceFlowLayer,

which draws the edges between the process nodes. The layers leverage the graphic

factories to retrieve notation-specific graphical representation for the process nodes,

which avoids redundant code in the layers. When the process model is drawn all occur-

ring events are routed to the event controller. The event controller processes the events

according to their type, e.g., if a new node should be inserted the ProcessModelManager

class is called.

104

7.2. User Interface Implementation Aspects

7.2.3. Structure of the Sidebar Component

The Sidebar component implements the sidebar on the left of all pages of the Main

Pages region. The Sidebar component is build of SidebarContent panels (cf. Figure

7.20), which are added to the SidebarLeftContent panel of the Main panel on demand (cf.

Figure 7.7). When a sidebar is opened, a SidebarConfig object is created and handed

over to the showSidebar method of the SidebarPanel class. The SidebarPanel class

removes any previously added content of the SidebarLeftContent panel and creates

a new content, according to the SidebarConfig object. The SidebarPanel class is

subscribed to all events on the Event Bus component and calls the update method of

the current SidebarContent panel if necessary.

Properties Tab Execution Tab Data Tab

Properties Tab Execution Tab Data Tab

Properties Tab Execution Tab Data Tab Add Tab

Add Tab

Add Tab

Figure 7.20.: SidebarContent Panels available in the individual Pages

SidebarContent panels are assigned to the tabs: Properties, Execution, Data, and Add

(cf. Figure 7.20). The SidebarContent panels of the tabs are described in the following:

Properties Tab. The Properties tab can contain GroupContent, ProcessContent, and

NodeContent panel. The GroupContent panel provides access to the properties of a

group and can only be opened in the GroupOverview and the ProcessOverview page.

105

7. Implementation Aspects of the Web Application

ProcessContent panel shows properties of a process model and is designed analog

to the GroupContent panel. It is only available in the ProcessOverview and ModelView

page. NodeContent panel displays the attributes of selected process nodes in the

ModelView page.

Execution Tab. The Execution tab holds InstanceContent and FormContent panel.

The InstanceContent panel gives an overview on all running and completed process

instances and is available on every page of the Main Pages region. Thereby, the user

can always retrieve the running process instances and open them by clicking on the

process instance. The FormContent panel is used to show forms for the task execution.

Data Tab. The DataContent panel is only available in the ModelView page, and, there-

fore, the Data tab is only shown in the ModelView page. The DataContent panel lists all

business objects of the current process model. The Data tab enables the user to add

new edges between business objects and process nodes, to remove existing edges, to

set default values, and to add or remove business objects.

Add Tab. The Add tab has a specific content for every page of the Main Pages region.

On the GroupOverview page new groups of process models can be added. On the

ProcessOverview page new process models can be added. On the ModelView page

new process nodes can be dragged onto the process model.

Availability of SidebarContent panels is also dependent on access rights of the current

user. For example, if the user has only View access rights, the SidebarContent panels

are always opened in read-only mode and the Add tab is not available.

To demonstrate how a SidebarContent panel is built up, Figure 7.21 illustrates the struc-

ture of the NodeContent panel, whereby all optional panels are surrounded by dashed

lines. This example represents also the sidebar opened in Figure 7.3. NodeContent

panel allows multiple selection of process nodes. This results in multiple instances

of NodePanel panel; one instance for each process node. The NodeCompositePanel

panel is shown, when more than one process node is selected and contains the common

method Delete, for deleting all selected process nodes.

NodePanel panel contains a set of mandatory panels, which are displayed for every

process node type and a few optional panels. Common panels are the NodeIcon, which

106

7.2. User Interface Implementation Aspects

TitleLabel

DeletePanel
NodeIcon

NamePanel

TypeListBox

TriggerListBox

GatewayTypeListBox

MethodListBox

...

DescriptionPanel

AttachmentCellList

FileUploadButton

InputParameterPanel

OutputParameterPanel

TimePanel

AssignedUsersCellList

AddAssignedUserButton

Optional Panel

Mandatory Panel

SubPanel SubPanel

Figure 7.21.: Structure of the NodeContent Panel

signals the type of the process node, NamePanel, DescriptionPanel, and Attachment-

Panel. The PluginPanel panel is displayed for service and user tasks and allows the

user to switch the implementation of a process node between user forms and a specific

plugin. TriggerPanel panel is only available for the start event. GatewayPanel panel is

shown if a split XOR gateway is selected. Because a user task is the only task where a

user assignment can be set, the AssignedUsersPanel panel is only visible when a user

task is selected. DataPanel panel is displayed every time an in- or output mapping of

business objects can be specified, which is the case if a user task, a service task, or a

start event is selected.

This section discusses the structure of the Sidebar component. At first, the SidebarCon-

tent panels and their mapping to the tabs are explained. In the following, the structure of

the NodeContent panel is exemplarily for all SidebarContent panels broken down.

The SidebarContent panels are implemented independent from the currently opened

page to facilitate reuse in multiple pages, e.g., the GroupContent panel is available

in the GroupOverview and the ProcessOverview page. As already mentioned, the

SidebarPanel class is subscribed to all events on the Event Bus component. The

107

7. Implementation Aspects of the Web Application

SidebarPanel class analyzes which SidebarContent panel is opened and propagates

the respective events if necessary. Thus, there is a central point for event handling for all

SidebarContent panels and they do not have to subscribe to events every time they are

created. As a result, the SidebarContent panels can be just removed when the sidebar

is closed and they do not have to unsubscribe from the respective events on the Event

Bus component. A lot of redundant code in the SidebarContent panels is avoided, by

centralizing the interaction with the Event Bus component in the SidebarPanel class.

7.2.4. Details on Implementation of the ViewSettings Panel

The ViewSettings panel provides advanced view options for every page of the Main

Pages region. The ViewSettings panel, which is implemented by the ViewSettingsPanel

class, is updated, by calling the update method of the ViewSettingsPanel class every

time a page of the Main Pages region is opened. The update method adjusts the

ViewSettings panel according to the currently displayed page (cf. Figure 7.22). In

addition, the update method retrieves the state of the page and updates the settings

shown by the ViewSettings panel. For example, if the GroupOverview page is opened

originating from a URL, the filter setting is adjusted according to the filter specified in the

URL (cf. Figure 7.1). Individual settings of the ViewSettings panel have already been

discussed in Section 6.

Figure 7.22.: ViewSettings Panel

Figure 7.23 shows the propagation of an updated setting to the respective user interface

component. In particular, Figure 7.23 shows how a process view is applied to a process

model. First of all, the user opens the context menu for process views (implemented by

the ViewContextMenuPanel class) and selects a process view. This results in invoking

108

7.2. User Interface Implementation Aspects

the onClick method. Thereafter, the active process view of the LienzoWidget class is

set. Subsequently, the LienzoWidget invokes the getModelForView method of the Re-

questManager class. As a result, the RequestManager class creates an RPC, puts the

process view in the DataStore class, and returns the process view to the LienzoWidget

component. Subsequently, the currently shown process model is replaced with the

process view.

:LienzoWidget
:ViewContextMenu

Panel
onClick()

drawModel(Model)

setActiveView(ViewDefinition)

User Tasks

:ViewSettings

Panel

updateViewText()

getActiveView()

ViewDefinition

:Request

Manager

getModelForView(ViewDefinition)

Model

:DataStore

putModel(Model, ViewDefinition)

Figure 7.23.: Applying a Process View by the ViewSettings Panel

Finally, the ViewContextMenuPanel class calls the updateViewText method on the

ViewSettingsPanel class, to reflect the changed setting on the ViewSettings panel.

The updateViewText method retrieves the active process view from the LienzoWidget

component. In this case, the process view could have been handed over from the View-

ContextMenuPanel class. Since the updateViewText method is reused in the update

method of the ViewSettings panel, it is necessary to retrieve the active view from the

LienzoWidget class.

In summary, the ViewSettings panel has different appearances depending on the cur-

rently opened page. When the user navigates to another page, the ViewSettings panel

is updated by calling the update method on the ViewSettingsPanel class. This results in

faster loading times of the pages, because the ViewSettings panel does not have to be

created again. Subsequently, it is discussed how a process view is applied originating

from the ViewSettings panel.

109

7. Implementation Aspects of the Web Application

7.2.5. Localization

The realization of the localization feature (cf. Requirement REQ-3) is illustrated in

Figure 7.24. Localized text fragments are divided into the two parts: ClaviiInterface and

ClaviiHelper. ClaviiInterface localization contains all text fragments that are directly part

of the user interface, e.g., texts of buttons or labels. ClaviiHelper localization contains

titles and descriptions of tool tips that are used to assist the user when using Clavii BPM

cloud. Clavii BPM cloud delivers the German and English localizations out of the box,

whereby English is the default locale.

<<interface>>

ClaviiInterface

firstname(): String

lastname(): String

...

ClaviiInterface_de.properties

firstname=Vorname

lastname=Nachname

...

ClaviiInterface_en.properties

firstname=Firstname

lastname=Lastname

...

User Interface Components

UiBinder

files

Java UI

Classes <<interface>>

ClaviiHelper

edit(): String

run(): String

...

ClaviiHelper_de.properties

edit=Bearbeiten

run=Ausführen

...

ClaviiHelper_en.properties

edit=Edit

run=Run

...

<ui:with field="l" type="

 .ClaviiInterface"/>

<g:HTMLPanel>

 <g:Label text= {l.firstname} />

</g:HTML_Panel>

label.setText(ClaviiInterface

 .IMPL.firstname());

Figure 7.24.: Implementation of the Localization Feature

Localized text fragments are defined in ClaviiInterface and ClaviiHelper interface. Both

extend the Constants interface of GWT. Every localized text fragment has a method in

the interface and a translation for every language in the corresponding .properties file.

To extend Clavii BPM cloud with additional languages, only new language files have to

be provided.

Figure 7.24 demonstrates how localized text can be accessed in the user interface

components. In UiBinder files, the respective interface of a text fragment has to be

imported by the ui:with tag. Subsequently, text fragments can be accessed, for instance,

by the expression l.firstname. The interfaces have a static IMPL field, similar to the

110

7.2. User Interface Implementation Aspects

ClientBundles introduced in Listing 2.8, which contains an instance of the respective

interface. In Java classes, all localized text fragments can be retrieved through this field.

As already demonstrated in Figure 2.7, the GWT compiler produces browser-specific

JavaScript files. If more than one language is provided, the GWT compiler also creates

additional JavaScript files for each language. During the compilation, translated text

fragments are retrieved from the .properties files and, accordingly, used in the JavaScript

files. To reduce the traffic between server and client, the user receives only the JavaScript

file for the selected language.

Figure 7.25 illustrates how the delivered language is determined by GWT. First of all, it is

checked, if the current URL contains a query parameter that defines the user language.

If not, GWT tries to find a cookie that specifies the user language. Thereafter, GWT

searches for an HTML meta tag that specifies the user language. The last option are

the browser headers, which can specify accepted user languages. If none of these

definitions are found or the respective value is invalid, the default language is used.

Language defined in a

query parameter?

Language defined in a

cookie?

Language defined in a

HTML meta tag?

Language defined in

browser headers?

Use the language

Use the default

language

Language defined in

browser headers?

No

Yes

Yes

Yes

Yes

Yes

Figure 7.25.: Determining the User Language

This section describes how the localization feature is realized utilizing GWT. The text

fragments are defined in the interfaces ClaviiInterface and ClaviiHelper. The .properties

files contain the translation for the text fragments. Thus, it is possible to change the

localization of Clavii BPM cloud by adjusting the .properties files. Furthermore, it is

possible to add additional languages by providing .properties files without changing the

111

7. Implementation Aspects of the Web Application

source code of the web application which facilitates the localization of Clavii BPM cloud.

Finally, it is explained how GWT determines the language which is delivered to the user.

7.3. Summary

This section gives deep insights in the implementation aspects of the web application of

Clavii BPM cloud, which is introduced in Section 5 and Section 6.

At first, general components, which are used later in user interface components, are

discussed. The Navigator component is responsible for the navigation between web

pages and, therefore, enables the implementation of individual web pages to easily

navigate to another page. The Event Bus component implements the event propagation

between components, which facilitates the decoupling of components. The Data Storage

component provides centralized data storage on the client-side for all entities retrieved

from the server-side. Finally, the request management, which encapsulates the entire

client-server communication, is explained.

In the following, the user interface components are discussed in detail. First, the structure

of the GroupOverview and ModelView page is broken down. Next, the implementation

of the ModelView page is illustrated, including the process visualization. Subsequently,

the structure of the Sidebar component is explained and the individual panels of the

NodeContent panel are illustrated. Thereafter, the implementation of the ViewSettings

panel is discussed. Finally, the realization of the localization feature is clarified.

112

8
Summary and Outlook

The objective of this thesis is to develop a cloud-based platform for business process

administration, modeling, and execution, which is targeted at small and medium-sized

businesses. In order to build the foundation for the requirements analysis, fundamen-

tals of business process management and building web applications are introduced.

Therefore, the architecture of Activiti BPM Platform and its components is analyzed.

Afterwards, general elements and structure of the process model are presented. Subse-

quently, it is shown how a GWT application is built as well as fundamental technologies

are defined.

The analysis of the state-of-the-art BPMSs IBM Business Process Manager and Activiti

BPM Platform shows the typical capabilities of a BPMS. The points of emphasis are the

process lifecycle, architecture of a BPMS, and the user interface of a BPMS.

113

8. Summary and Outlook

Thereafter, requirements of a BPMS targeted at SMEs are defined. At the beginning,

several user stories are specified. Whereby, the focus is set to a user friendly user

interface, in particular, for inexperienced users. Another point of emphasis is the easy

administration and operation of such a platform. Capabilities of state-of-the-art BPMS are

factored into to provide the necessary basic functionality. In this context, it is important to

specify a detailed access rights system to enable users to share their process models.

After requirements are introduced, the following two sections show how the requirements

are implemented in Clavii BPM cloud. The architecture of Clavii BPM cloud is discussed

to provide a high-level understanding of Clavii BPM cloud. Hence, the four-tier archi-

tecture, which consists of the web application, the web interface, the services, and the

data tier, is discussed as well as the corresponding data model. Subsequently, the user

interface is illustrated by discussing individual pages of the web application of Clavii

BPM cloud. Finally, it is explained how the requirements are met by the individual pages.

In contrast, the following section gave deep insights in the implementation of Clavii BPM

cloud. At first, general components like the navigator or the event bus are explained. The

latter are used in several user interface components. Next, user interface components

and aspects are discussed, to give a broad understanding of the implementation of the

user interface. A special focus is set to GroupOverview and ProcessOverview page, the

ModelView page, and the Sidebar component.

Result of this thesis is the web application of Clavii BPM cloud. There are of course

restrictions compared to state-of-the-art BPMSs on the market, which offer more func-

tionality, e.g., regarding high availability. However, Clavii BPM cloud provides a unique

user-friendly process experience through a simple web-based user interface and features

like several process modeling notations and drag and drop process modeling.

For the future of Clavii BPM cloud there are several extensions feasible. The next

evolution of Clavii BPM cloud would be the addition of the so-called timeline. The timeline

is already visible in the ViewSettings panel, but not implemented yet. The timeline is a

dashboard, which provides a full-screen overview on all running and completed process

models. It allows filtering process instances by several criteria, like start time, involved

users, or current state. Such functionality is crucial to use a BPMS in enterprises.

114

Another possible future development step may be collaborative process modeling. There-

fore, the current synchronization mechanisms could be extended to allow screen mir-

roring between users, i.e., it would be possible to open group sessions and see the

actions of the other participating users. Related to this feature, a chat system could be

implemented.

It would also be feasible to integrate a store into Clavii BPM cloud. The store could

contain process models, plugins, and triggers to buy. Whereby, two different concepts

are conceivable. The first is a common store concept, where users can buy and unlock

store items. The second would be, that an enterprise uploads several process models

and plugins into the store, which are only unlocked for users with specific roles and,

thereby, can only be accessed by users with the necessary access rights.

Altogether, this thesis provides the web application of Clavii BPM cloud, which is a

cloud-based business process management system targeted at small and medium-sized

enterprises.

115

A
Layouting Examples

117

A. Layouting Examples

Figure A.1.: BPMN

118

Figure A.2.: Transit Map

119

List of Figures

1.1. Growth Rate of Cloud Services [Gar13] 3

1.2. Clavii BPM cloud . 4

2.1. The Process Lifecycle . 8

2.2. Structure of Activiti Engine . 10

2.3. Simple Process Model . 12

2.4. A Process Model including Gateways . 12

2.5. Examples for Block-oriented Process Models 13

2.6. Structure of a GWT Application . 14

2.7. GWT Compilation Process . 16

2.8. Class Structure for RPC in GWT . 17

2.9. RequestFactory . 20

2.10.GWT Injection . 21

3.1. IBM BPM Architecture . 29

3.2. Activiti Architecture . 30

3.3. Process Designer - Start Page . 30

3.4. Process Designer - Modeling View . 31

3.5. Modeling a User Task in the Process Designer 32

3.6. Process Execution in the Process Portal 32

3.7. Process Modeling with the Activiti Designer 33

3.8. Process Execution with the Activiti Explorer 34

5.1. Four-Tier Architecture of Clavii BPM cloud 52

121

List of Figures

5.2. Overview on Service Components . 54

5.3. Overview on Web Application and Web Interface 56

5.4. Organizational Model Entities . 58

5.5. Example Organizational Model . 58

5.6. General Model Entities . 59

6.1. Site Map . 62

6.2. Login Page . 63

6.3. Registration Page . 64

6.4. GroupOverview Page . 65

6.5. ProcessOverview Page . 67

6.6. ModelView Page . 68

6.7. Adding a Process Node via Drag and Drop 68

6.8. Node Configuration Properties Tabs of the Sidebar 69

6.9. Modeling Business Objects in the BuildtimeView Page 70

6.10.RuntimeView Page . 71

6.11.User Form generated for the Task Execution 72

6.12.Settings Page . 73

6.13.UserProfile Page . 74

7.1. Opening a Page based on a specific URL 81

7.2. Event Bus Component . 83

7.3. NodeSelection Event Propagation . 84

7.4. Usage of the DataStore Class . 85

7.5. RequestManager and ProcessModelManager Classes 87

7.6. Integration of DataStore Class, ProcessModelManager Class, and Event

Bus Component . 87

7.7. User Interface of the Main Panel . 90

7.8. User Interface of the GroupOverview Page 91

7.9. User Interface of the GroupTile Panel . 92

7.10.Creating a New Group of Process Models 93

7.11.User Interface of the ModelView Page . 94

122

List of Figures

7.12.Process Model Structure Discovery . 96

7.13.Arranging the Process Elements . 97

7.14.Layers of the Process Visualization . 98

7.15.Drawing Process Elements with the NodeLayer 99

7.16.Base Elements of Lienzo Framework . 101

7.17.Composition of Process Elements . 101

7.18.Interconnections of the Event Controller 102

7.19.Executing a Task . 104

7.20.SidebarContent Panels available in the individual Pages 105

7.21.Structure of the NodeContent Panel . 107

7.22.ViewSettings Panel . 108

7.23.Applying a Process View by the ViewSettings Panel 109

7.24.Implementation of the Localization Feature 110

7.25.Determining the User Language . 111

A.1. BPMN . 118

A.2. Transit Map . 119

123

Listings

2.1. .gwt.xml File . 15

2.2. RPCService Interface . 17

2.3. RPCServiceAsync Interface . 18

2.4. RPCServiceServlet Class . 18

2.5. Servlet Configuration in the web.xml File 18

2.6. Client-Side RPC Call . 19

2.7. Examples for GWT Injection . 21

2.8. Creation of a ClientBundle . 22

2.9. CSS File and CSS Theme . 23

2.10.UiBinder File HelloWorld.ui.xml . 24

2.11.Java Class for UiBinder . 24

7.1. Accessing the Web Storage of a Browser utilizing GWT 86

7.2. Main Panel UiBinder file . 89

7.3. GroupOverview UiBinder File . 91

7.4. GroupTile Panel UiBinder File . 92

7.5. ModelView UiBinder File . 94

125

List of Tables

4.1. User Stories . 38

4.2. Requirements . 48

7.1. Events for Propagation of Entity Updates and changed Node Selection of

a Process Model . 83

7.2. Event Types issued by Process Elements on the Layers 103

127

Bibliography

[AAG+13] AHUKANNA, Dawn ; ALMEIDA, Victor Paulo Alves d. ; GUCER, Vasfi

; NARAIN, Shishir ; PHAM, Bobby ; SALEM, Mohamed ; WARKENTIN,

Matthias ; WOOD, J.Keith ; XIE, Zhi Q. ; ZHANG, Cheng: IBM Business

Process Manager Version 8.0: Production Topologies. Vervante, 2013

[Act14] ACTIVITI: Activiti Components. 2014. – http://activiti.org/

components.html last visited on 03/07/2014

[And14] ANDREWS, Kevin: Design and Development of a Runtime Object Design

and Instantiation Framework for BPM Systems, University Ulm, Master

Thesis, 2014

[Bur06] BURNETTE, Ed: Google Web Toolkit. 2006

[CK03] CRAWFORD, William ; KAPLAN, Jonathan: J2EE Design Patterns. O’Reilly

Media, Inc., 2003

[Coh04] COHN, Mike: User Stories Applied: For Agile Software Development.

Addison-Wesley Professional, 2004

[Dew07] DEWSBURY, Ryan: Google Web Toolkit Applications. Pearson Education,

2007

[EFGK03] EUGSTER, Patrick T. ; FELBER, Pascal A. ; GUERRAOUI, Rachid ; KER-

MARREC, Anne-Marie: The Many Faces of Publish/Subscribe. In: ACM

Comput. Surv. (2) 35 (2003), S. 114–131

129

http://activiti.org/components.html
http://activiti.org/components.html

Bibliography

[EK12] EL KHARBILI, Marwane: Business Process Regulatory Compliance Man-

agement Solution Frameworks: A Comparative Evaluation. In: Proceed-

ings of the Eighth Asia-Pacific Conference on Conceptual Modelling -

Volume 130, Australian Computer Society, Inc., 2012 (APCCM ’12), S.

23–32

[Emi] EMITROM: Lienzo Documentation. – https://github.com/

emitrom/lienzo/wiki last visited on 29/05/2014

[Err] ERRAI: Errai Reference Guide. – http://docs.jboss.org/

errai/3.0-SNAPSHOT/errai/reference/html_single last vis-

ited on 13/05/2014

[FFI04] FORMAN, Ira R. ; FORMAN, Nate ; IBM, John V.: Java Reflection in Action.

(2004)

[Fow] FOWLER, Martin: Inversion of Control Containers and the Depen-

dency Injection Pattern. – http://martinfowler.com/articles/

injection.html last visited on 25/05/2014

[Gar13] GARDNER: Public IT Cloud Services five Year Com-

pound Annual Growth Rate from 2011 to 2016. 2013.

– http://www.statista.com/statistics/203578/

global-forecast-of-cloud-computing-services-growth/

last visited on 11/06/2014

[GT98] GEORGAKOPOULOS, Dimitrios ; TSALGATIDOU, Aphrodite: Technology

and Tools for Comprehensive Business Process Lifecycle Management.

In: Workflow Management Systems and Interoperability. Springer, 1998,

S. 356–395

[Hic13] HICKSON, Ian: Web Storage / W3C. 2013. – Technical Report

[Hol95] HOLLINGSWORTH, David: The Workflow Reference Model. (1995)

[HSG03] HOWES, Timothy A. ; SMITH, Mark C. ; GOOD, Gordon S.: Understand-

ing and Deploying LDAP Directory Services. Addison-Wesley Longman

Publishing Co., Inc., 2003

130

https://github.com/emitrom/lienzo/wiki
https://github.com/emitrom/lienzo/wiki
http://docs.jboss.org/errai/3.0-SNAPSHOT/errai/reference/html_single
http://docs.jboss.org/errai/3.0-SNAPSHOT/errai/reference/html_single
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://www.statista.com/statistics/203578/global-forecast-of-cloud-computing-services-growth/
http://www.statista.com/statistics/203578/global-forecast-of-cloud-computing-services-growth/

Bibliography

[IGRR09] INDULSKA, Marta ; GREEN, Peter ; RECKER, Jan ; ROSEMANN, Michael:

Business Process Modeling: Perceived Benefits. In: Conceptual

Modeling-ER 2009. Springer, 2009, S. 458–471

[IRRG09] INDULSKA, Marta ; RECKER, Jan ; ROSEMANN, Michael ; GREEN, Peter:

Business Process Modeling: Current Issues and Future Challenges. In:

Advanced Information Systems Engineering Springer, 2009, S. 501–514

[Kam14] KAMMERER, Klaus: Enabling Personalized Business Process Modeling:

The Clavii BPM Platform, University Ulm, Master Thesis, 2014

[KFRMR+12] KABICHER-FUCHS, Sonja ; RINDERLE-MA, Stefanie ; RECKER, Jan ;

INDULSKA, Marta ; CHAROY, Francois ; CHRISTIAANSE, Rob ; DUNKL,

Reinhold ; GRAMBOW, Gregor ; KOLB, Jens ; LEOPOLD, Henrik u. a.:

Human-centric Process-aware Information Systems (hc-pais). In: arXiv

preprint arXiv:1211.4986 (2012)

[KH07] KÜNG, Peter ; HAGEN, Claus: The Fruits of Business Process Manage-

ment: an Experience Report from a Swiss Bank. In: Business Process

Management Journal (4) 13 (2007), S. 477–487

[KKR12a] KOLB, Jens ; KAMMERER, Klaus ; REICHERT, Manfred: Updatable Process

Views for Adapting Large Process Models: The proView Demonstrator. In:

Proc of the Business Process Management 2012 Demonstration Track.

Tallinn, Estonia, 2012

[KKR12b] KOLB, Jens ; KAMMERER, Klaus ; REICHERT, Manfred: Updatable Process

Views for User-centered Adaption of Large Process Models. In: Service-

Oriented Computing. Springer, 2012, S. 484–498

[KLMR13] KOLB, Jens ; LEOPOLD, Henrik ; MENDLING, Jan ; REICHERT, Manfred:

Creating and Updating Personalized and Verbalized Business Process

Descriptions. In: The Practice of Enterprise Modeling. Springer, 2013, S.

191–205

[KP+88] KRASNER, Glenn E. ; POPE, Stephen T. u. a.: A Description of the Model-

View-Controller User Interface Paradigm in the smalltalk-80 System. In:

131

Bibliography

Journal of Object Oriented Programming (3) 1 (1988), S. 26–49

[KR13a] KOLB, Jens ; REICHERT, Manfred: Data Flow Abstractions and Adap-

tations through Updatable Process Views. In: Proceedings of the 28th

Annual ACM Symposium on Applied Computing ACM, 2013, S. 1447–

1453

[KR13b] KOLB, Jens ; REICHERT, Manfred: A Flexible Approach for Abstracting

and Personalizing Large Business Process Models. In: ACM SIGAPP

Applied Computing Review (1) 13 (2013), S. 6–18

[KR13c] KOLB, Jens ; REICHERT, Manfred: Supporting Business and IT through

Updatable Process Views: The proView Demonstrator. In: Demo Track

of the 10th Int’l Conference on Service Oriented Computing (ICSOC’12).

Shanghai, China, 2013, S. 460–464

[KRW12] KOLB, Jens ; REICHERT, Manfred ; WEBER, Barbara: Using Concur-

rent Task Trees for Stakeholder-centered Modeling and Visualization of

Business Processes. In: S-BPM ONE-Education and Industrial Develop-

ments. Springer, 2012, S. 237–251

[KZWR14] KOLB, Jens ; ZIMOCH, Michael ; WEBER, Barbara ; REICHERT, Manfred:

How Social Distance of Process Designers Affects the Process of Process

Modeling: Insights From a Controlled Experiment. In: 29th Symposium

On Applied Computing (SAC 2014), Enterprise Engineering Track, ACM

Press, 2014, 1364–1370

[LKR13] LANZ, Andreas ; KOLB, Jens ; REICHERT, Manfred: Enabling Personalized

Process Schedules with Time-aware Process Views. In: Advanced Infor-

mation Systems Engineering Workshops Springer, 2013, S. 205–216

[Mas98] MASINTER, Larry: The "data" URL Scheme. 1998. – http://tools.

ietf.org/html/rfc2397 last visited on 29/06/2014

[Mey14] MEYER, Britta: Conception, Design, and Evaluation of a Graphical User

Interface for a Cloud Platform for Business Process Management, Uni-

versity Ulm, Master Thesis, 2014

132

http://tools.ietf.org/html/rfc2397
http://tools.ietf.org/html/rfc2397

Bibliography

[MR13] MUTSCHLER, Bela ; REICHERT, Manfred: Understanding the Costs of

Business Process Management Technology. In: GLYKAS, Michael (Hrsg.):

Business Process Management - Theory and Applications. Springer,

2013 (Studies in Computational Intelligence 444), S. 157–194

[MRA10] MENDLING, Jan ; REIJERS, Hajo A. ; AALST, Wil M. d.: Seven Process

Modeling Guidelines (7PMG). In: Information and Software Technology

(2) 52 (2010), S. 127–136

[OMG11] OMG: Business Process Model and Notation (BPMN), Version 2.0.

http://www.omg.org/spec/BPMN/2.0. Version: 2011

[Pau05] PAULSON, Linda D.: Building Rich Web Applications with AJAX. In:

Computer 38(10) (2005), S. 14–17

[PCBV10] PATIG, Susanne ; CASANOVA-BRITO, Vanessa ; VÖGELI, Barbara: IT

Requirements of Business Process Management in Practice - an Empirical

Study. In: Business Process Management. Springer, 2010, S. 13–28

[Rad12] RADEMAKERS, Tijs: Activiti in Action : Executable Business Processes

in BPMN 2.0. Shelter Island, NY : Manning Publications, 2012

[Rei00] REICHERT, Manfred: Dynamische Ablaufänderungen in Workflow-

Management-Systemen, University Ulm, Dissertation, 2000

[RHAM06] RUSSELL, N. ; HOFSTEDE, A.H.M. ter ; AALST, W.M.P. van d. ; MULYAR,

N.: Workflow Control-Flow Patterns: A Revised View / BPM Center. 2006.

– Technical Report

[Ric11] RICHARDSON, Clay: The ROI Of BPM Suites. 2011. –

http://www.forrester.com/The+ROI+Of+BPM+Suites/

fulltext/-/E-RES60205 last visited on 03/07/2014

[RKBB12] REICHERT, Manfred ; KOLB, Jens ; BOBRIK, Ralph ; BAUER, Thomas:

Enabling Personalized Visualization of Large Business Processes through

Parameterizable Views. (2012)

133

http://www.omg.org/spec/BPMN/2.0
http://www.forrester.com/The+ROI+Of+BPM+Suites/fulltext/-/E-RES60205
http://www.forrester.com/The+ROI+Of+BPM+Suites/fulltext/-/E-RES60205

Bibliography

[Rud07] RUDDEN, Jim: Making the Case for BPM - A Benefits Checklist. In:

BPTrends 2007 (2007)

[Sch08] SCHMIETENDORF, Andreas: Assessment of Business Process Modeling

Tools under Consideration of Business Process Management Activities.

In: Software Process and Product Measurement. Springer, 2008, S. 141–

154

[SK11] SUBASHINI, Subashini ; KAVITHA, V: A Survey on Security Issues in

Service Delivery Models of Cloud Computing. In: Journal of Network and

Computer Applications (1) 34 (2011), S. 1–11

[SWKN11] SPATH, Dieter ; WEISBECKER, Anette ; KOPPERGER, Dietmar ; NÄGELE,

Rainer: Business Process Management Tools 2011. Stuttgart, Germany

: Fraunhofer IAO, 2011

[THET13] TACY, Adam ; HANSON, Robert ; ESSINGTON, Jason ; TOKKE, Anna:

GWT in Action. 2nd. Greenwich, CT, USA : Manning Publications Co.,

2013

[Vaa13] VAADIN: The Future of GWT Report. 2013.

– https://vaadin.com/documents/10187/

42fbbec4-51c8-426b-8aa8-fe46129353a3/ last visited on

19/05/2014

[Van08] VANBRABANT, Robbie: Google Guice: Agile Lightweight Dependency

Injection Framework. Apress, 2008

[Wal98] WALDO, Jim: Remote Procedure Calls and Java Remote Method Invoca-

tion. In: Concurrency, IEEE (3) 6 (1998), S. 5–7

[Wes07] WESKE, Mathias: Business Process Management - Concepts, Lan-

guages, Architectures. Springer, 2007

[WRMR11] WEBER, Barbara ; REICHERT, Manfred ; MENDLING, Jan ; REIJERS,

Hajo A.: Refactoring Large Process Model Repositories. In: Computers

in Industry (5) 62 (2011), S. 467–486

134

https://vaadin.com/documents/10187/42fbbec4-51c8-426b-8aa8-fe46129353a3/
https://vaadin.com/documents/10187/42fbbec4-51c8-426b-8aa8-fe46129353a3/

Bibliography

[Zai97] ZAIRI, Mohamed: Business Process Management: a Boundaryless Ap-

proach to Modern Competitiveness. In: Business Process Management

Journal 3(1) (1997), S. 64–80

[ZMR08] ZUR MUEHLEN, Michael ; RECKER, Jan: How much Language is enough?

Theoretical and Practical Use of the Business Process Modeling Notation.

In: Advanced Information Systems Engineering Springer, 2008, S. 465–

479

135

Name: Stefan Büringer Matrikelnummer: 691309

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Stefan Büringer

	Introduction
	Problem Statement
	Contribution
	Organization of the Thesis

	Fundamentals
	Business Process Management
	Process Lifecycle
	Activiti BPM Platform
	Elements and Structure of a Process Model

	Web Applications with Google Web Toolkit
	Overview
	Fundamental GWT Technologies

	Summary

	State-of-the-art Business Process Management Systems
	Architecture
	User Interface
	Summary

	Requirements
	User Stories
	General Requirements
	Process Visualization Requirements
	Modeling Requirements
	Execution Requirements
	Summary

	Overview Clavii BPM cloud
	Architecture
	Data Model
	Summary

	User Interface of the Web Application
	Site Map
	Individual Pages of the Web Application
	Login Page
	Registration Page
	GroupOverview Page
	ProcessOverview Page
	ModelView Page
	Settings Page
	UserProfile Page

	Summary

	Implementation Aspects of the Web Application
	General Implementation Aspects
	Navigator Component
	Event Bus Component
	Data Storage Component
	Request Management

	User Interface Implementation Aspects
	Structure of GroupOverview and ProcessOverview Page
	Details on Implementation of ModelView Page
	Structure of the Sidebar Component
	Details on Implementation of the ViewSettings Panel
	Localization

	Summary

	Summary and Outlook
	Layouting Examples

