
Towards Schema Evolution in
Object-aware Process Management Systems

Carolina Ming Chiao, Vera Künzle, Manfred Reichert

Institute of Databases and Information Systems
University of Ulm, Germany

{carolina.chiao, vera.kuenzle, manfred.reichert}@uni-ulm.de

Abstract: Enterprises want to improve the lifecycle support for their businesses pro-
cesses by modeling, enacting and monitoring them based on process management sys-
tems (PrMS). Since business processes tend to change over time, process evolution
support is needed. While process evolution is well understood in traditional activity-
centric PrMS, it has been neglected in object-aware PrMS so far. Due to the tight in-
tegration of processes and data, in particular, changes of the data and process schemes
must be handled in an integrated way; i.e., the evolution of the data schema might
affect the process schema and vice versa. This paper presents our overall vision on
the controlled evolution of object-aware processes. Further, it discusses fundamental
requirements for enabling the evolution of object-aware process schemas in PHILhar-
monicFlows, a framework targeting at comprehensive support of object-aware pro-
cesses.

1 Introduction
Aiming at improved process lifecycle support, a decade ago, many researchers started
working on process schema evolution. In general, business processes may evolve for sev-
eral reasons; e.g, due to changes in the business, technological environment, or legal con-
text [RW12]. Consequently, business process changes need to be rapidly mapped to the
process-aware information system (PAIS) implementing these processes.

Activity-centric process management systems (PrMS) like YAWL [vdAtH05] and ADEPT
[RD98, RRD04, RW12] already provide comprehensive process lifecycle support, includ-
ing the controlled evolution of business processes. Regarding object-aware processes
[Kün13], however, this does not apply yet. Due to the tighter integration of process and
data, changes of the data and process schemes must be handled in an integrated way. In
other words, changing the data schema may affect the schema of an object-aware process
and vice versa. Note that respective dependencies might become complex when taking
different levels of process granularity as well as authorization constraints into account as
well.

The example below is based on a real educational scenario. It comprises a process for
managing extension course projects. Extension courses target at professionals that want to
refresh and update their knowledge in a certain area. In order to propose a new extension
course, the course coordinator must create a corresponding project description. The latter
must then be approved by the faculty coordinator and the extension course committee.



Example 1 (Object-aware Process: Extension course proposal). The course

coordinator creates an extension course project using a form. In this context, he
must provide details about the course, like name, start date and description. Fol-
lowing this, professors may start creating the lectures of the extension course. In
turn, each lecture comprises study plan items, which describe the topics to be cov-
ered by the lecture. After creating the lectures, the coordinator may request an approval
of the extension course project. First, an approval must be provided by the faculty

director. If he wants to reject the proposal, the extension course must not take place.
Otherwise, the project is sent to the extension course committee, which will evalu-
ate it. If there are more rejections than approvals, the extension course project is
rejected. Otherwise, it is approved and hence may take place in future.

The process from Example 1 can be characterized by its need for object-awareness; i.e.,
business processes and business objects must not be treated independently from each other.
In general, object-aware processes show three major characteristics. First, they are based
on two levels of granularity. On the one hand, the behavior of individual object instances
needs to be considered during process execution; on the other, the interactions among
different object instances must be taken into account. Second, process execution is data-
driven; i.e., the progress of a process depends on available object instances as well as
the values of their attributes. Third, flexible activity execution is crucial. In particular,
activities need not always coincide with process steps.

The PHILharmonicFlows framework we are developing targets at a comprehensive support
of object-aware processes [KR09b, KR09a, KR11, Kün13]. It comprises modules for the
modeling, execution and monitoring of object-aware processes. In this framework, object
behavior is captured through micro processes. In turn, object interactions are captured by a
macro process. Furthermore, data is modeled separately from micro and macro processes.
Note that each of these models comprises different components. For example, a data model
comprises object types as well as their attributes and relations to other object types.

Schema evolution has neither been considered by PHILharmonicFlows nor other frame-
works for artifact-based or object-aware processes yet. As a major challenge, one must
cope with the complex interdependencies that exist between the models and components
(e.g., data model, object types, attributes, or micro process types) of the framework;
i.e., changing one component (e.g., deleting an object attribute) may require concomitant
changes of other components (e.g., changing the behavior of the object type). Moreover,
changes must be handled at both the static and dynamic (i.e., instance) level. Changing an
object-aware process without any user assistance will be error-prone and time-consuming.
Therefore, user interactions should be properly supported in order to guide the modeler
when changing an object-aware process. In particular, any guidance must hide complexity
from users, taking correctness constraints and component dependencies into account.

This paper presents requirements necessary to enable schema evolution for object-aware
processes. To illustrate how these requirements were derived, we sketch our vision on
how the user should interact with the PHILharmonicFlows tool when changing an object-
aware process. Sect. 2 provides an overview of the PHILharmonicFlows framework. Sect.
3 presents research questions to emphasize the scope of our work. In Sect. 4, we introduce



our vision on how the user (i.e., modeler) should be supported when evolving object-aware
processes. Sect. 5 presents major requirements emerging in this context. Sect. 6 discusses
the related work and Sect. 7 gives a summary and outlook.

2 The PHILharmonicFlows Framework

The PHILharmonicFlows framework enforces a modeling methodology governing the
object-centric specification of business processes based on a well-defined formal semantics
[KR11, Kün13]. In general, an object-aware process schema comprises the following sub-
schemas: data model (cf. Fig. 1a), micro process types (cf. Fig. 1b), macro process types
(cf. Fig. 1d), and authorization settings (cf. Fig. 1c). In turn, each sub-schema comprises
a set of components (e.g., a data model comprises object types, object type attributes and
relations to other object types), which may be related to components of other sub-schemas
(e.g., a micro step type depends on an attribute of an object type). When changing compo-
nents, hence, concomitant changes of dependent components become necessary as well.

RUN-TIME 

BUILD-TIME Data Model 

Micro Process 

Macro Process 

Object Type States 

Micro Steps 

Micro  
Transitions 

Macro Steps  

Macro  
Transitions  

Relations 

Attributes 

Coordination 
Overview  

Tables 
Worklists 

Forms 

Authorization 

Process Context 

Aggregation 

Transverse 

Permissions 

User Assignment 

a 

b 

d 

c 

e 

Figure 1: The PHILharmonicFlows framework

As a fundamental prerequisite, object types and their relations need to be captured in a data
model (cf. Fig. 1a). Furthermore, for each object type, a corresponding micro process type
needs to be specified (cf. Fig. 1b). The latter defines the behavior of related object in-
stances, and consists of a set of micro steps as well as the transitions between them. In
turn, each micro step is associated with an object type attribute. Further, micro steps are
grouped in object states. At run-time, for each object instance, a corresponding micro
process instance is created. A micro process instance being in a particular state may only
proceed if specific values are assigned to the object instance attributes associated with this
state; i.e., data-driven process execution is enabled. In addition, optional data access is ac-
complished asynchronously to micro process execution based on the permissions granted
for reading or writing object attributes. In this context, access rights for an object instance
depend on the progress of the corresponding micro process instance as well. Altogether,



the framework maintains an authorization table assigning data permissions to user roles
which may also depend on the respective state of the micro process type (cf. Fig. 1c).

Extension Course 
Project

name: string
start_date: date
credits: integer
description: string
decision_faculty: string
faculty: string
reason_rejection: string
date_rejection: date
date_approval: date

Study Plan Item

Decision 
Commitee

Lecture

1..n 1..n

1..10

a (Simplified) Data model b Micro process type Extension 
Course Project

under creation

name start_
date

faculty

under approval faculty

decision_faculty date_approval

reason_rejection

date_rejection

APPROVED

REJECTED

under approval 
committee

approved

rejected

Course coordinator

Faculty director

Object type

Attributes

State type

User role

Micro transition type

description
Micro step type

Figure 2: Data model and micro process type modeled with PHILharmonicFlows

Taking the relations between the object instances of the overall data structure (i.e., the
instance of a data model) into account, the corresponding micro process instances form a
complex process structure; i.e., their execution needs to be coordinated according to the
given data structure. In PHILharmonicFlows, this is accomplished by means of macro
processes. A macro process type consists of macro steps linked by macro transitions (cf.
Fig. 1d). Opposed to micro steps, which refer to single attributes of a particular object
type, a macro step refers to a particular state of an object type. In addition, for each macro
transition, a coordination component must be specified (cf. Fig. 1e). The latter hides the
complexity of large process structures from modelers as well as end-users. More precisely,
such a coordination component coordinates the interactions among the object instances of
the same type as well as different types. Opposed to existing approaches, the semantic
relations between the object instances and their cardinalities are also taken into account.

Figs. 2 and 3 show how Example 1 can be modeled based on PHILharmonicFlows. Micro
process type Extension course project is derived from the object type having same
name (cf. Figs. 2a+b). In this micro process type, the course coordinator must write
attributes name, start date, faculty, and description. Note that this configuration needs
to be reflected in the authorization settings (cf. Fig. 3a). Furthermore, attribute credits

may be optionally written. In turn, a macro process type (cf. Fig. 3b) is composed of
macro step types. The latter reference state types from the micro process types. For
example, macro step type Extension Course Project - under creation refers to state
type under creation of micro process type Extension Course Project (cf. Fig. 2b).

3 Research Questions

To emphasize the scope of our problem, we consider the following research questions:

Research Question 1 (RQ1): How to change an object-aware process schema without
violating correctness neither of the modified component itself nor any dependent compo-



a Authorization settings for micro process type Extension Course Project

Extension Course 
Project

under 
creation

Lecture

requested

Study Plan 
Item

create 
item

Study Plan Item

finished

Lecture

finished

Extension Course 
Project

under approval 
faculty

Extension Course 
Project

under approval 
committee

Decision 
Committee

requested

Decision 
Committee

approved

Decision 
Committee

rejected

Extension 
Course Project

approved

Extension 
Course Project

rejected

b Macro Process Type

 under 
creation 

under approval 
faculty 

under approval 
committee 

approved rejected 

Course 
coordinator 

Course 
coordinator 

Faculty 
Director 

Course 
coordinator 

Faculty 
Director 

Course 
coordinator 

Course 
coordinator 

name MW R R R R R R 
start_date MW R R R R R R 

faculty MW R R R R R R 

credits OW R R R R R R 

description MW R R R R R R 

decision_faculty  R MW R R R R 

date_approval  R MW R R R R 

reason_rejection  R MW R R R R 

date_rejection  R MW R R R R 
 

Macro step typeMacro transition type

Read attribute 
permission

User role

State type
Mandatory write 

attribute permission

Optional write 
attribute 

permission

refers to Object 
Type Lecture

refers to State 
type of Micro 
Process Type 
Lecture

Figure 3: Authorization settings and macro process type modeled with PHILharmonicFlows

nents?
Research Question 2 (RQ2): How to handle active instances (i.e., object and micro pro-
cess instances) when evolving the object-aware process schema?
Research Question 3 (RQ3): How to assist users in evolving an object-aware process
schema?

RQ1 refers to changes at the static level. It deals with structural changes of an object-aware
process schema; i.e., its sub-schemas and their components. In turn, RQ2 addresses issues
related to dynamic changes; i.e., managing different schema versions and adopting the best
policy to migrate active instances to the new schema version. Finally, RQ3 deals with user
issues, such as providing user guidance while hiding the complexity of schema changes
from them. These research questions guide our vision discussed in Sect. 4. Further, they
serve as starting point for eliciting requirements related to the evolution of object-aware
processes.

4 Overall Vision

To illustrate the scope of our research, we define a number of scenarios (i.e., user stories)
dealing with schema changes of our sample process. While some scenarios are rather
simple, not requiring any concomitant change, others are more complex involving several
schemas of the object-aware process. Thereby, a major challenge concerns user interaction
as changing an object-aware process schema constitutes an error-prone and complex task.
Hence, user guidance is required to assist users when changing the schema of an object-
aware process, e.g., by indicating the components affected by an intended change. For



Delete the attributes 
decision_faculty, 
reason_rejection, 
date_rejection, and 
date_approval from object type 
Extension Course Project!

Extension Course Project

name: string
start_date: date
credits: integer
description: string
decision_faculty: string
faculty: string
reason_rejection: string
date_rejection: date
date_approval: date

Decision CommiteeLecture

1..n 1..n

under 
creation

under approval faculty

decision_faculty date_approval

reason_rejection

date_rejection

3

1

APPROVED

REJECTED
2

under approval 
committee approved

rejected

 under creation under approval faculty under approval committee approved rejected 

Course coordinator Course coordinator Faculty 
Director 

Course coordinator Faculty 
Director 

Course coordinator Course 
coordinator 

name MW R R R R R R 

start_date MW R R R R R R 

faculty MW R R R R R R 

credits MW R R R R R R 

description MW R R R R R R 

decision_faculty  R MW R R R R 

date_approval  R MW R R R R 

reason_rejection  R MW R R R R 

date_rejection  R MW R R R R 

 
Study Plan Item

1..10

Create an empty 
micro step type

Deleting the following micro step types will leave 
an empty state type. What do you want to do?

Delete the empty 
state type

Lecture

finished

Extension Course Project

under approval 
faculty

Extension Course Project

under approval 
committee

(…)

(…)
Deleting the following macro step type will leave 

the respective macro step type inconsistent. 
Please review the macro transition types!

Ok!

(…)
You have realized the following changes:

Yes

Data model 
Object type Extension Course Project

Micro Process Type Extension Course Project
Authorization Settings
Macro Process Type

Total components on the schema changed: 34

+
-

+
+

Do you want to commit the changes and create a 
new schema version?

No

+

b c

d e

f

(…)
The following ongoing instance groups are allowed to be 

migrated to the new schema version:

· OAPi0001 – see more details
· OAPi0002 – see more details
· OAPi0008 – see more details

g
Instance group OAPi0001

Data model 
Object type Extension Course Project

Micro process 
Micro process type Extension Course Project

-
-

+
-

id name start_date faculty credits 

0001 Creative 
writing 

20/06/2015 English 4 

 

Total of object instances to be migrated: 1
Total of micro process instances to be migrated: 1
Total of macro process instances to be migrated: 1

Yes

Do you want to migrate the following 
instances to the new schema version?

No

a CHANGE IMPACT ANALYSIS
Change Operation: DELETE ATTRIBUTE SET (decision_faculty, 
reason_rejection, date_rejection, date_approval)

DATA MODEL MICRO PROCESS 
TYPES

AUTHORIZATION 
SETTINGS

MACRO PROCESS 
TYPE

Extension 
Course Project

Lecture

Decision 
Committee

Study Plan 
Item

R

R

R

Extension 
Course Project

Lecture

Decision 
Committee

Study Plan 
Item

Extension 
Course Project

Lecture

Decision 
Committee

Study Plan Item

Macro 
Process 
Type – 

Extension 
Course 
Project

Figure 4: Sketch of end-user guidance for object-aware process schema changing



illustration purpose, we provide a mockup showing how to guide a user in the context of a
concrete change scenario.

Change scenario (SC): The extension course project needs not be approved by the
faculty director anymore, and the overall schema shall be adapted accordingly.

Since for an extension course project the approval of the faculty director is no longer
needed, the user wants to delete the attributes referring to it (e.g., decision faculty,
reason rejection, date rejection, and date approval); i.e., he wants to change the data
model. In turn, this requires concomitant schema adaptations. First of all, the user should
be notified about the effects of the change; i.e., a change impact analysis is required. Based
on such an analysis, it can be visualized which sub-schemas and components are affected
by the change and how they are related. Regarding our mockup (cf. Fig. 4a), the object-
aware process schema is divided into four levels corresponding to the sub-schemas data
model, micro process types, authorization settings, and macro process type. The dotted
arrows represent potential effects caused by the change. In the given scenario, changing
object type Extension Course Project affects the corresponding micro process type as
well as the authorization settings. Changing the micro process type Extension Course

Project, in turn, may further affect the macro process type.

Being aware of the possible effects of the intended change, the user may then be guided
in performing required concomitant changes (cf. Fig. 4b). According to PHILharmon-
icFlows (cf. Sect. 2), micro steps of a particular micro process are directly related to the
attributes of the corresponding object type. Therefore, when an attribute is deleted, the
corresponding micro step type needs to be deleted as well. In Fig. 4c, in turn, the deletion
of the respective micro step types will result in an “empty” state type. According to the
correctness constraints of the framework, this is not possible, and would leave the micro
process type in an inconsistent state. Therefore, the user should be notified about this
problem and guided in resolving it. In Fig. 4d, the user decides to delete the entire state
type, which, in turn, causes another inconsistency in the macro process type. Again, the
user should be notified about this, enabling him to redefine the macro transition types that
link the respective macro step type. In general, every time the user changes a component,
respective correctness checks should be performed automatically in order to be able to
guide the user in resolving potential inconsistencies.

Since changes of one component might trigger changes of others, the user will not al-
ways be aware of the number of components actually changed. Hence, after guiding him
through required adaptations of the object-aware process, an overview of all components
to be changed should be provided; e.g., such overview could present information about
the components to be changed as well as quantitative metrics (e.g., number of components
and models to be changed) (cf. Fig. 4e). Finally, the user should explicitly commit the
changes, resulting in a new version of the object-aware process schema.

In addition to structural adaptations and structural consistency, active instances must be
taken into account; i.e., it should be possible to adapt the running instances according
to the changed object-aware process schema. Fig. 4f presents the active instances that
may be migrated to the new schema version without causing any run-time error. To foster



visualization, instances are grouped according to the underlying object type; i.e., each
instance group refers to one particular object type. In our example, the instances refer to
an extension course project. Then, the user may choose which group of instances he
wants to migrate. Further, he may retrieve more detailed information about the respective
instances (cf. Fig. 4g). Finally, like in the context of model changes, the user will get an
overview of the instances to be migrated.

5 Requirements

Based on our research questions, the sketched vision, and an extensive literature study, we
derived major requirements. The requirements of Sect. 5.1 are related to RQ1, while the
ones of Sect. 5.2 are related to RQ2. Finally, the requirements of Sect. 5.3 are related to
user guidance issues (i.e., RQ3).

5.1 Structural Changes at the Static Level

Requirement 1 (Change primitives). To accomplish structural adaptations of an object-
aware process schema, change primitives are required to directly operate on single schema
elements. In our context, such primitives denote atomic operations like add attribute

type, delete micro step type, and add state type. In general, the set of available
change primitives should be complete and minimal [CCPP98, RD98, RW12]. Complete-
ness means that the available set of change primitives shall allow transforming any object-
aware process schema S into any other object-aware process schema S’. In addition, the
core set of provided change primitives should be minimal; i.e., it should not contain any
primitive that can be simulated through the combination of other primitives. Finally,
for each change primitive, a precise definition of parameters, pre-conditions, and post-
conditions (i.e., effects) is required [CCPP98].

Example 2 (Requirement 1: Change primitives). For removing micro step type
date rejection of state type under approval faculty, change primitives for deleting
the micro step type and its related micro transition types are required (cf. Fig. 5).

under approval faculty

decision_faculty date_approval

reason_rejection

date_rejection

APPROVED

REJECTED
(…)

DELETE MICRO STEP TYPE 

date_rejection

DELETE MICRO 

TRANSITION TYPE

DELETE MICRO 

TRANSITION TYPE

(…)

Figure 5: Example of change primitives

Requirement 2 (Cascading effects). Fig. 6 presents the meta model of PHIlharmon-
icFlows, expressed in terms of an UML class diagram. The dependencies between the
different components of the framework are represented as bidirectional associations, com-
positions and aggregations. Regarding the class diagram, the bidirectional association



represents components linked with each other in the context of a particular model (e.g.,
micro step types are linked with micro transition types within a micro process type). A
composition dependency indicates a “strong” association between components, making
one component (i.e., parent component) responsible for the creation and destruction of
other components (i.e., child components). For example, an object type is strongly as-
sociated with attribute types. If the object type is deleted, all related attributes must be
deleted as well. In turn, the aggregation dependency constitutes a “weaker” relationship
between components: even when deleting the parent component, the child components
will not be removed. An example of an aggregation dependency is provided by the re-
lationship between the micro step types and attributes. If a micro step type is deleted,
the associated attribute is preserved. Due to these dependencies and associations among
different components of the framework, changing one of them might require changes of
dependent components as well. In turn, such concomitant changes might again trigger ad-
ditional changes on other components (i.e., a cascading change). In general, mechanisms
are required to detect necessary concomitant changes and to guide the user in applying
them.

Data Model

Object Type

*1

Value Type

User Type

* 1

Attribute Type

*

1

*

1
1

-source

1

1

-target

1

Micro Process Type

1

1

State Type

2..*

1

Micro Step Type

1..*

1

1

1

-source

0..1

1

-target0..1

1 External
Implicit

Explicit

Empty

Atomic

Value-Specific

Value Step Type

*

1

Macro Step Type

0..*

1

Macro Process Type

*

1

Port Type
*1

-source1

1

Macro Transition Type
-source

0..1

1 -target 1

1

Process Context Type

1

0..1

1

0..1

1

0..1

1..*
1

1

1

1..*

1

1

1

1

1

1..*

1

responsible

1

1

Backward Transition Type

-source

1

1

-target1
1

1..*

1

responsible

1..*

1

responsible

1..*

1

responsible

1..*

1
responsible

Relation Role Type
1

-source

1

1
-target1

Internal

1

*

1

1..*

1
*

*
1

*

1

1

1..*Black-box Activity Execution Permission

Black-box Activity Template

Black-box Activity

Object Permission

User Role

Micro Transition Type

Attribute Permission

Aggregation TypeTransverse TypeRelation

Figure 6: PHILharmonicFlows meta-model

Requirement 3 (Change operations and change patterns). Realizing structural adap-
tations based on change primitives might introduce errors and inconsistencies. Usually,
at such a low level of abstraction, the combined application of several change primitives
is required to ensure schema correctness. As an alternative, high-level change operations
may be used; e.g., it should be possible to move an entire state type within a micro pro-
cess type based on a single change operation. Like change primitives, high-level change
operations should have pre-conditions. Generally, empirically-grounded change patterns
should be defined, which capture the semantics of frequent changes, thus raising the level



of abstraction [WRRM08, RW12].

Example 3 (Requirement 3: Change operations). Deleting state type under approval

faculty (cf. Fig. 5) requires deleting all micro step types associated with this state type as
well (i.e., decision faculty, date approval, reason rejection, and date rejection).
Further, this deletion includes the micro transition types linking the micro steps and the
authorization settings of state type under approval faculty. In this context, a change
operation allowing for the deletion of the entire state type together with its components
would facilitate change definition significantly, and hence reduce errors and inconsisten-
cies of the object-aware process schema.

Requirement 4 (Complex changes). When adapting an object-aware process schema, the
integrity and consistency of the various sub-schemas must be preserved; i.e., the changes
applied to the sub-schemas will only be applied if this does not result in any inconsis-
tency. Like for database transactions, the changes applied jointly to an object-aware pro-
cess schema must be treated atomically (i.e., as transaction). Accordingly, modelers must
explicitly commit complex changes. Finally, multiple users may want to change the same
schema version at the same time, requiring proper concurrency control.

Requirement 5 (Change traceability). When changing an object-aware process, infor-
mation on who applied which changes, when and why shall be recorded in logs; i.e., change
traceability needs to be ensured.

Requirement 6 (Correctness). Changing an object-aware process schema must not result
in errors in any of the sub-schemas and not lead to soundness violations (e.g., deadlocks
due to data inconsistencies or missing data at run-time). Moreover, a changed object-
aware process schema must comply with the correctness criteria established in [Kün13].
Correctness checks are required at two different stages. First, when specifying the various
changes of an object-aware process schema, correctness checks are “soft”; i.e., they pro-
vide basis to inform the modeler about potential inconsistencies or missing components.
Second, correctness needs to be ensured when committing a change transaction; i.e., all
sub-schemas forming an object-aware process schema must be correct.

5.2 Changing Active Instances at the Dynamic Level

Requirement 7 (Versioning support). Active instances whose processing started before
the schema change must be properly handled. One strategy frequently applied in the con-
text of database and process evolution, is schema versioning [Rod96, GdSEM05, KG99].
Every time a schema is changed, a new schema version is created; already active instances
continue their processing based on the old schema version. In our context, there are various
sub-schemas forming the overall object-aware process schema (i.e., data model, micro and
macro process schemas, and authorization settings). Hence, for each object-aware process
schema version, the versions of its sub-schemas need to be maintained (cf. Fig. 7). In
particular, the instances are linked to a sub-schema version as well as the object-aware
process schema version.

If a change is performed, which concerns only a part of the entire object-aware process
schema, creating a new version of all sub-schemas involved (even the unchanged ones) will



Object-aware process 
schema version S‘

a

b c

a b c a

Sub-schemas Instances

a

b

a

c

b

a a

b b

c

MP-a

MP-a

MP-a

a

b c

Sub-schemas Instances

a a b

a a

b‘

MP-a
MP-a

a

b

c

a

b

c
a

b

c
a

b‘

c

a

b‘

c

a

b‘

c

a b c a

MP-a

Object-aware process 
schema version S

a

b
a c

b

aa

b b

c

b

MP-a
MP-a

Figure 7: Object-aware process schema versions

not be optimal. Hence, a new version of an object-aware process schema shall comprise
the new versions of the changed sub-schemas in combination with the versions of the
unchanged sub-schemas. Fig. 7 illustrates this concept. The object-aware process schema
S on the left side contains a data model with object types A, B and C. Each object type is
associated with a micro process type as well as authorization settings. The latter express
who may access which attributes at which stages during process execution. Finally, macro
process type MP-a describes the interaction of the object types. The small squares represent
the instances created according object-aware process schema version S and being active at
the moment. On the right side, a new version S’ of S is depicted; it resulted due to a change
of micro process type b. The latter led to a new version b’ of b and a change of related
authorization settings. Instead of generating copies for all sub-schemas, S’ comprises the
new version b’, the new version of the respective authorization settings, and references
to the versions of the unchanged sub-schemas. New instances run according to the new
schema version S’, while the older, but still active instances continue running on the old
schema version S; i.e., instances running on the two schema versions will co-exist. In Fig.
7, new instances are represented as triangles and old ones as squares.

Requirement 8 (Instance migration). To ensure that active instances may continue run-
ning on the old schema version is not sufficient. In addition, it shall be possible to re-
assign active instances to the new object-aware process schema version if desired. Like
in activity-centric PrMS [CCPP98, JH98, RD98, RRMD09], such migration of active in-
stances must be handled in a controlled manner. In general, not all instances can be mi-
grated to the new schema version, particularly if they have progressed too much in their
execution. Since there may be numerous concurrently running instances of an object-
aware process (i.e., object and micro process instances), the selection of the migratable
instances should not handle the instances individually. In the example from Fig. 8a, a new
state is inserted in micro process type A. Moreover, the progress of the instances of micro
process B now depends on the execution of micro process A; i.e., the instances of B will
only reach state s5 if all instances of A’ reach state s7 (cf. Fig. 8b). However, not all



active instances of micro process A can be migrated to A’. More precisely, micro process
instances A1 and A2 have already completed their executions, which means that they can-
not be migrated to A’. In turn, micro process instance A3 may be migrated. However, the
individual migration of A3 will cause a deadlock at run-time, since micro process instance
B1 will continue waiting for instances A1 and A2 to reach state s7. Therefore, a group of
instances associated to a particular changed component must not be migrated individually.

Micro Process A (before change)Object-aware process schema S‘Object-aware process schema S

Micro Process Type B

s4 s5 s6

s1 s2 s7 s3

Micro Process Type A‘Micro Process Type A

s1 s2

s7

s3

Micro Process Type B

s4 s5 s6

s1 s2 s3instance A1

instance A2 s1 s2 s3

s1 s2 s3instance A3

a b c

Micro Process B

instance B1 s4 s5 s6

d

Figure 8: Example of instance migration

Requirement 9 (Data consistency). One of the biggest issues concerning database schema
evolution is to prevent data loss when changing a database schema [Ra04]; i.e., the deletion
of object types or attributes must not delete the data associated to them, since there may be
software systems that still depend on this data. In the context of object-aware processes,
data inconsistency might cause run-time errors (e.g., deadlocks). Therefore, it becomes
necessary to prevent data inconsistencies (e.g., data loss or missing data important to the
logic of the process) relevant for process execution.

5.3 User Requirements

Requirement 10 (User guidance). Changing an object-aware process schema is a non-
trivial task from the viewpoint of the user (i.e., process modeler). Our experiences with
the change scenarios have shown that user guidance is required to hide this complexity and
hence to make schema changes more intuitive and less error-prone (cf. Sect. 4). Moreover,
user guidance not only eases the adaptation of an existing schema, but also the modeling
of new object-aware process schemas.

Requirement 11 (Change impact analysis and metrics). To better control potential costs
of a change, a change impact analysis should be performed before actually applying the
change. Such an analysis must consider the cascading effects; i.e., it must show to users
which components are going to be affected by the change. Moreover, metrics help users
to evaluate change complexity.

6 Related Work
The described requirements have been partially addressed by existing work. Fig. 9 sum-
marizes which requirements have been addressed by which approach. We investigated
data-centric approaches and traditional activity-centric ones.

Data-centric Approaches

Data-driven Process Coordination (COREPRO) [MRH07, MRH08] presents a set of change
primitives and operations to change both data and process structures. Since the latter
are directly related, the approach automatically adapts the process structure when chang-



 COREPRO Artifact-
centric 

processes 

Product- 
based 

workflow 

FLOWer ADEPT YAWL 

Req. 1 (Change primitives) + + o + + + 
Req. 2 (Cascading effect) + + o -   
Req. 3 (Change operations and 
change patterns) 

+ + - + + - 

Req. 4 (Complex changes) + - - + + + 
Req. 5 (Change traceability) + - - o + + 
Req. 6 (Correctness) + - + o + + 
Req. 7 (Versioning support) o - - + + + 
Req. 8 (Instance migration) o - - - + - 
Req. 9 (Data consistency) o - - -   
Req. 10 (User guidance) o - - - + - 
Req. 11 (Change impact analysis 
and metrics) 

- o - - o - 

 

 

+ supported 
o partially supported 
-  not supported 

Figure 9: Evaluation of different approaches

ing the corresponding data structure. Moreover, it enables change traceability as well as
change transactions. Correctness is ensured when changing the structures at static or in-
stance level. In case of inconsistencies, the modeler is notified accordingly. However, even
though the data objects are explicitly represented, the control of the data structures is still
realized outside the scope of the PrMS. Hence, versioning support and instance migration
is only available for the process structures.

Regarding artifact-centric processes, [WW14] proposes an approach for dealing with the
change impact analysis of three-level artifact-centric business processes (ACBP). The au-
thors first classify the types of changes that may be applied to an ACBP. This classification
provides the basis for the change analysis. For this analysis, a graph representing the
different element dependencies is created. Based on this graph, it becomes possible to
calculate the direct impact of a change. The approach, however, just covers the changes at
static level, without addressing the problems of complex changes and traceability. In turn,
[XSY+11] allows for ad-hoc changes on the artifacts’ life cycles. Such changes are based
rules and declarative constructs such as skip, add and replace and are applied to the tasks.
The artifacts, in turn, cannot be changed. Besides, the authors do not provide information
on how the active instances should be handled when a change is applied.

In the context of product-based workflows, [RVV10] presents four change primitives en-
abling changes of the product (i.e., data) structure. These are then reflected in the corre-
sponding process models without need for any manual adaptation. Changes at the process
level, however, are not considered. Moreover, information regarding change traceability
and run-time issues are neglected.

The case-handling system FLOWer [vdAWG05, MWR08] does not address cascading ef-
fects; i.e., inconsistencies in a dependent component caused by a change are not properly
handled by the system. Moreover, the system does not use formal correctness criteria in



the context of schema evolution [WRRM08]. Regarding schema versioning, FLOWer al-
lows for overwriting a process schema as well as for the co-existence of instance running
on different schema versions. Instance migration is not considered.

Activity-centric Approaches

In activity-centric approaches, the processes are described on a single level (i.e., the pro-
cess model). Additionally, data is managed outside the scope of the PrMS. For these
reasons, requirements regarding cascading effects (Req. 2) and data consistency (Req. 9)
were not addressed to the analyzed approaches. ADEPT [RD98, RRD04, RW12] is an
activity-centric PrMS that enables both schema evolution and ad hoc changes of single
process instances. Moreover, it focuses on the ease of use of its process support features.
Additionally, metrics regarding instance migration are provided. In turn, YAWL supports
evolutionary changes in workflows based on Worklets [vdAtH05]. The latter refer to an
extensive repertoire of self-contained sub-processes and association rules, which can be
inserted into the process model without any system downtime. Even though it provides
primitives for changing the process model, there are no change patterns or operations to
realize changes at a higher abstraction level. Regarding the user, no guidance or change
impact analysis are provided.

7 Summary and Outlook
Our overall vision is to enable schema evolution in object-aware processes. The major
challenge lies on the very tight integration of the components of the framework. Such
component dependencies might not only affect the object-aware process schema at static
level, but active instances as well; i.e., new versions of a particular sub-schema must co-
exist with unchanged versions of other sub-schemas. Moreover, we observed that user
guidance is crucial to hide the complexity from the modeler and to avoid schema errors.
In future work, we will provide detailed insights into our solution tackling the discussed
requirements.

References

[CCPP98] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. Data & Know Eng,
24(3):211–238, 1998.

[GdSEM05] R. Galante, C. Saraiva dos Santos, N. Edelweiss, and A. F. Moreira. Temporal and
Versioning Modeling for Schema Evolution in Object-oriented Databases. Data &
Know Eng, 53(2):99–128, 2005.

[JH98] G. Joeris and O. Herzog. Managing Evolving Workflow Specifications. In
Proc.CoopIS’98, pages 310–319, 1998.

[KG99] M. Kradolfer and A. Geppert. Dynamic Workflow Schema Evolution Based on Work-
flow Type Versioning and Workflow Migration. In Proc. CoopIS’99, pages 104–114,
1999.

[KR09a] V. Künzle and M. Reichert. Integrating Users in Object-aware Process Management
Systems: Issues and Challenges. In Proc. BPM’09 Workshops, pages 29–41, 2009.



[KR09b] V. Künzle and M. Reichert. Towards Object-aware Process Management Systems:
Issues, Challenges, Benefits. In Proc. BPMDS’09, pages 197–210, 2009.

[KR11] V. Künzle and M. Reichert. PHILharmonicFlows: Towards a Framework for Object-
aware Process Management. Journal of Software Mainteinance and Evolution: Re-
search and Practice, 23(4):205–244, 2011.

[Kün13] V. Künzle. Object-aware Process Management. PhD thesis, Ulm University, 2013.

[MRH07] D. Müller, M. Reichert, and J. Herbst. Data-driven Modeling and Coordination of
Large Process Structure. In Proc. CoopIS’07, pages 131–149, 2007.

[MRH08] D. Müller, M. Reichert, and J. Herbst. A New Paradigm for the Enactment and Dy-
namic Adaptation of Data-driven Process Structures. In Proc. CAiSE’08, pages 48–63,
2008.

[MWR08] B. Mutschler, B. Weber, and M. Reichert. Workflow Management versus Case Han-
dling: results from a Controlled Software Experiment. In Proc. SAC’08, pages 82–89,
2008.

[Ra04] Y.-G. Ra. Relational Schema Evolution for Program Independency. In Proc. CIT 2004,
volume 3356, pages 273–281, 2004.

[RD98] M. Reichert and P. Dadam. ADEPTflex - Supporting Dynamic Changes of Workflows
Without Losing Control. Journal of Intelligent Information Systems, 10(2):93–129,
1998.

[Rod96] J. F. Roddick. A Model for Schema Versioning in Temporal Database Systems. Aus-
tralian Computer Science Communications, 18:446–452, 1996.

[RRD04] S. Rinderle, M. Reichert, and P. Dadam. Flexible Support of Team Processes by Adap-
tive Workflow Systems. Distr. Parallel Databases, 16(1):91–116, 2004.

[RRMD09] M. Reichert, S. Rinderle-Ma, and P. Dadam. Flexibility in Process-Aware Information
Systems. Trans Petri Nets and other Models of Conc III, pages 115–135, 2009.

[RVV10] H. A. Reijers, J. Vogelaar, and I. Vanderfeesten. Changing Products, Changing Pro-
cesses: Dealing with Small Updates in Product-Based Design. In Proc. eKNOW’10,
pages 56–61, 2010.

[RW12] M. Reichert and B. Weber. Enabling Flexibility in Process-aware Information Sys-
tems: Challenges, Methods, Technologies. Springer, 2012.

[vdAtH05] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

[vdAWG05] W. M. P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New Paradigm
for Business Process Support. Data & Know Eng, 53(2):129–162, 2005.

[WRRM08] B. Weber, M. Reichert, and S. Rinderle-Ma. Change Patterns and Change Support
Features - Enhancing Flexibility in Process-Aware Information Systems. Data & Know
Eng, 66(3):438–466, 2008.

[WW14] Y. Wang and Y. Wang. Change Analysis for Artifact-Centric Business Processes. In
Proc. BIS 2014, pages 98–109, 2014.

[XSY+11] W. Xu, J. Su, Z. Yan, J. Yang, and L. Zhang. An Artifact-centric Approach to Dynamic
Modification of Workflow Execution. In Proc. OTM 2011, pages 256–273, 2011.


