
Ulm University | 89069 Ulm | Germany Faculty of Engineering
and Computer Science
Institute of Databases and
Information Systems

Design and Development of a
Run-time Object Design
and Instantiation
Framework for BPM Systems
Master’s Thesis at Ulm University

Submitted by:
Kevin Andrews
kevin.andrews@uni-ulm.de

Reviewer:
Manfred Reichert
Peter Dadam

Supervisor:
Jens Kolb

2014

Version September 4, 2014

c© 2014 Kevin Andrews

Abstract

Current Business Process Management (BPM) systems are not tailored to small or

medium-sized enterprises (SME) lacking expertise in BPM. This is a disadvantage

for SMEs wishing to document and/or automate their business processes. There are

multiple barriers that can hinder SMEs from automating their processes, such as the

lack of programming skills and general understanding of typical programming language

data types. Also the multitude of gateway and event types in traditional BPM systems

can have a deterring effect on potential process designers. Finally, most BPM systems

require deployment to on-site servers, which might not be feasable for SMEs lacking

dedicated systems administrators.

As a consequence this thesis and the work accompanying it define a concept for an

integrated solution for simple cloud-based business process modeling and execution.

This solution offers collaboration functions and rich process documentation via a modern

web-interface, sketching support for rapid iterative process development, and an object-

oriented (OO) data model. Created processes can be executed directly in a web-interface

as part of the seamlessly integrated modeling and runtime environment. The main focus

of the solution is simplicity in every aspect of the process creation and execution workflow.

This thesis contributes concepts and prototypical implementations for the engine modifi-

cations that need to be applied to a typical traditional BPM engine in order to support

these features. The basic concepts and their implementations can be put into the

following three categories, corresponding to the main chapters of this thesis:

• User-customizable data objects in process models, allowing for the creation of

data models that are more readable and better structured

• A simple programming interface allowing the use of external code in service tasks,

enabling non-professional programmers to integrate their code into processes

• Support for the manipulation of process flow to allow for advanced simplification

concepts, such as error resolution at process run-time or manually selectable

XOR-gateway paths

iii

Contents

1. Introduction 1

1.1. Motivation . 1

1.2. Contribution . 4

1.3. Structure of the Thesis . 6

2. Fundamentals 9

2.1. Fundamentals of Business Process Management 9

2.1.1. Business Process Model and Notation 10

2.1.2. Task Types . 11

2.1.3. Data Objects . 13

2.2. Fundamental Terminology . 14

2.2.1. Plug-Ins . 14

2.2.2. Business Objects . 15

2.2.3. Additional Terminology . 18

3. Requirements Analysis 19

3.1. Business Object Requirements . 19

3.1.1. Complex Business Objects . 19

3.1.2. Typed Business Objects . 21

3.1.3. Inheritance Capabilities for Business Object Types 22

3.1.4. Business Object Collections . 24

3.2. Service Task Requirements . 26

3.2.1. Complex Business Objects in Service Task Plug-Ins 26

v

Contents

3.2.2. Variable Length Arguments for Plug-Ins 27

3.3. Mapping and Ad-hoc Process Flow Requirements 28

3.3.1. Mapping Individual Parts of Complex Business Objects 28

3.3.2. Generation of User Forms Based on Complex Business Objects . 30

3.3.3. Manual Gateway Execution . 31

3.3.4. Correctness by Run-time Error Resolution 31

3.3.5. Rapid Process Model Prototyping 33

3.4. Summary . 34

4. Dynamically Structured Complex Business Objects 35

4.1. Persisting User-Definable Business Objects 37

4.1.1. Business Object Types . 38

4.1.2. Business Objects . 42

4.2. Creating Business Objects from Business Object Types 44

4.3. Instantiation of Business Objects . 45

4.3.1. Applying of the Visitor Pattern . 47

4.4. Serializing Default Values for Simple Business Objects 49

4.4.1. Handling of Byte Arrays . 50

4.4.2. Handling of Date Values . 51

4.5. Persisting of Defined Business Object Types and Business Objects 52

4.6. Definition of Business Objects Types Using XML Descriptors 54

4.6.1. Using Java Annotations to Prepare a Class for XML Serialization /

Deserialization . 56

4.7. Summary . 57

5. Service Task Plug-Ins and Process Triggers 59

5.1. Plug-In Types . 60

5.1.1. Integrated Plug-Ins . 60

5.1.2. OSGi Plug-Ins . 61

5.1.3. Web Service Plug-Ins . 61

5.2. Calling Plug-Ins Using the Java Reflection API 62

5.2.1. Use of Dynamic Dispatching for Calling Plug-Ins 63

vi

Contents

5.3. Using Complex Business Object Instances in Plug-Ins 64

5.4. Variable Length Arguments . 66

5.5. Triggering Process Instances . 69

5.5.1. Leveraging the Reflection and Executor Frameworks for Triggering

Process Instances . 70

5.6. XML Descriptors for Plug-Ins and Triggers 72

5.7. Summary . 74

6. Ad-hoc Process Model Execution Control 75

6.1. Concept for Handling Missing Parameters and Run-time Errors 77

6.2. Implementation of the Concept in the Clavii Engine 78

6.2.1. Use in Manual Gateway Execution 79

6.3. Implementation of Ad-hoc Pauses . 80

6.4. Detection of Errors Leading to Dynamic Ad-hoc Pauses 81

6.4.1. Determining Required Input Parameters 84

6.4.2. Comparing Required Service Parameters to Existing Ones 85

6.5. Displaying an Error Correction User Form 86

6.6. Re-invoking Service Tasks with Corrected Parameters 88

6.7. Summary . 90

7. State-of-the-Art & Related Work 91

7.1. State-of-the-Art BPMS . 91

7.1.1. IBM Process Designer . 91

7.1.2. Intalio|bpms . 92

7.1.3. Bonita BPM . 93

7.1.4. AristaFlow BPM Suite . 93

7.2. Related Work . 94

8. Conclusion 97

A. Figures 99

B. Sources 101

vii

1
Introduction

1.1. Motivation

Data objects are an integral part of almost any electronically supported business process.

They contain the information which instances of the business process models create,

read, and update. The contents of a data object can vary, ranging from simply a name

to the information of an entire person, e.g., birth date, address, and marital status.

Information contained in a data object must be retained in a form where it is of use either

to a human business process participant or a business process management system

(BPMS). In some cases the latter is not possible, for instance, when the data object in

question is a scanned image of a document. As long as the image is just an image,

with no attached meta-information, the BPMS does not have any understanding of its

contents and can not make any decisions based on its contents.

1

1. Introduction

This is where structured information in data objects, i.e., complex business objects,

come into play. Instead of a data object containing only simple information or being a

“black box” to the BPMS, information is structured into business object types that the

BPMS has knowledge of. In the context of this thesis, a business object is defined as

a structured data object. To be more precise, a business object contains not only the

data that an equivalent data object would contain, but also a reference to a business

object type. This business object type defines the business object’s internal structure

in a way that makes it usable in a BPMS. This allows us to define structures, such as

Person using attributes, such as Age, Name or, Marital Status, which themselves are

business objects.

There are multiple advantages of supporting such clearly structured business objects.

For one, they offer the ability to group the multitudes of data objects usually present in

a process model into fewer structured groups. Also, with the introduction of business

object types, acting as a template of sorts for these business objects, it is possible to

hide the internal complexity of the business objects from process model designers. This

allows them to introduce complex business objects into their models by simply adding

one new data object to the model. As this data object is a business object based on

a business object type, it brings all its internal structure information and even default

values for its attributes with it. This allows for a separation of concerns when building

process models as one person can model the business object types and another can

model the actual process model utilizing these complex structures in a simple, atomic

style.

Furthermore, through the use of complex business objects it is possible to generate user

forms at run-time automatically, based entirely on the internal structure of said business

objects. This means that by building well structured complex business object types one

can not only reduce the amount of data objects in a process model and hide information

from non-technical users, but also reduce the need for designing custom user forms, as

these can be generated. This is possible because the BPMS itself can read the structural

information of any business object which is determined by its business object type.

2

1.1. Motivation

Most currently available BPMSs support complex business object types in one way or

another [3, 9, 22]. A common approach, seen for instance in Intalio|bpms [10], is to allow

grouping of data object types, such as integers and strings, into XML <complexType>

elements. Parts of these XML types can then be mapped to parameters of automatically

executed tasks (service tasks) and form-based tasks for human interaction (user tasks).

The disadvantage of this approach is actually its generic nature. XML schema, the

description language for XML types, is so mighty and flexible that it is also inherently

error prone. Also, users wishing to incorporate business processes into their workflow in

small and medium-sized enterprises might not have the necessary know-how to create

complex XML schema types, as these can consist of up to 42 different XML tags.

Another issue when dealing with complex business objects in BPMS is their use in

external Java programs and algorithms which one might wish to use as part of a process

model. Some BPMSs, such as the AristaFlow BPM Suite [2], allow using complex

business objects using special Application Programming Interface (API) classes provided

by the BPMS. This, however, forces the programmers of such plug-ins to update their

programs when these APIs change. Usually this would not pose a problem, but in the

cloud-based context that this thesis is based around, updating such an API offered by

the BPMS can often break plug-ins already in use in various business processes. As

the Clavii BPM Cloud is still a prototype and, therefore, work in progress, a method was

developed to allow the use of complex business objects in external code without having

to use any supplied APIs.

As previously mentioned, business object types can be structured in a way that allows

the generation of user forms based on their structural information. This is also true when

a business object is missing at run-time, for instance because of an error in a plug-in, or

because the process model designer did not map it correctly. In this case the BPMS can

analyze the business object type that the task in question is requesting and, based on

its structure, generate a user form, allowing a user to input the entire business object at

run-time.

Utilizing this ability to generate user forms in an ad-hoc fashion that can resolve data

flow errors at run-time, this thesis also examines the possibilities of supporting iterative

3

1. Introduction

process model development. Iterative process model development as proposed in this

thesis allows process model designers to test process models without the data flow being

complete, showing them generated error resolution forms at run-time. This is something

many BPMSs do not support directly, Intalio|bpms, for instance, allows process model

designers to start process instances in almost any state of completion, e.g., without

data edges, end events or even without any control flow elements. This often results in

crashes which are hard to debug. The other extreme, the AristaFlow BPM Suite, uses

the so-called correctness by construction principle in which the process model design

tool forces process model designers to build correct process models [34]. This even

includes the correctness of the entire data flow. This does, however, limit the ability of

process model designers to test process models that are not “perfect” yet, e.g., if there

are some data edges missing in a branch of the model completely unrelated to the one

they wish to test. As both these approaches have their advantages, a concept for a

compromise is given in this thesis.

Finally, the main objective is to design the engine for a BPMS that has one primary goal:

simplicity. This desired simplicity starts with a cloud and browser-based approach to both

modeling and execution of process models, the simple design and usage of business

objects and the generated forms for user input at run-time. It even extends to the way

external code for use in Clavii BPM Cloud business processes is written. Offering a

cloud-based solution eliminates the need for SMEs to set up a specialized process

server infrastructure, including databases and web-servers, and employ administrators

to keep said infrastructure running.

1.2. Contribution

The concepts described in this thesis add important modifications to the basic methods

for handling complex business objects, such as the one seen in Intalio|bpms (cf. Section

1.1):

• Full flexibility for the definition business process types while the BPMS is running,

i.e., infinite nesting and collections as parts of business object types

4

1.2. Contribution

• Direct consumption and creation of complex business object instances through ser-

vice tasks, without the implementation language having specific class information

• Simple re-usage of business object types throughout process models by providing

global (or context specific) business object type definitions

These extensions to traditional BPMS are realized as proof of concept implementations

on top of the Activiti BPM engine [1]. As all operations related to business objects are

handled in our own code instead of relying on the Activiti BPM engine we can add

additional functionality to our BPMS. As the complex business object instances are not

just “black boxes” to our code, it was possible to implement so-called “run-time error

resolution”. Run-time error resolution not only allows re-running of failed service tasks

with different input values directly in the user interface, but also supports rapid process

model prototyping. Rapid process model prototyping allows process model designers

to test incomplete process models by asking them for missing input parameters when

a service task located in an incomplete process model tries to execute, instead of just

failing. Additionally, rapid process model prototyping is enhanced by the addition of

“empty” tasks to the engine, i.e., tasks that can be completed with a simple double-click

on the empty task at run-time. As empty tasks can be added to a process model with a

single click and data flow does not have to be complete while testing, process models

can be prototyped and tested very quickly.

Furthermore, when supporting complex business objects, the development of plug-ins,

i.e., Java code that can be executed as part of a service task, has to be considered

as well as there is a significant increase in complexity when utilizing complex business

objects. Along with this support for advanced plug-in concepts this thesis also highlights

the implementation concept of a trigger, a type of a plug-in that can be used to start

the execution of a process instance. Plug-ins and triggers can both be coded without

using any special Java class libraries. Also, plug-ins and triggers can be integrated into

the BPMS while it is running. Furthermore, they can consume and create the complex

business object instances that users can define. The approach commonly used in BPMS

is to allow complex objects but force service tasks to only accept primitive or very simple

complex types as valid input and output parameters. Plug-ins and triggers created as

5

1. Introduction

described in this thesis can actually handle the complex business objects and collections

of these objects natively, without using any special Java class library.

1.3. Structure of the Thesis

Figure 1.1 shows the topics covered in this thesis at a glance, including the sections in

which the topics are covered in detail.

Contribution

Section 4: Dynamic

Business Objects

Ad-hoc Process

Changes

Plug-ins

Triggers

Section 5: External

Code

Section 6:

Correctness-by-error-

resolution

Process Model

Sketching

Business Object

Instances

Business Object

Types

Business Objects

Manual Gateways Instantiation

XML Descriptors

Pausing and

Resuming Execution

Persistence

Reflection

Figure 1.1.: Topics Covered in this Thesis

Section 2, defines the terminology used across the other sections of this thesis, including

this introduction. Next, the requirements that were stated for the Clavii engine are listed

and explained in Section 3. The three main implementation-related chapters are located

directly after the requirements section. The first main section is Section 4 which explains

the concept and implementation of complex business objects and the method the Clavii

engine uses for allowing them to be instantiated. Then Section 5 explains how the Clavii

engine supports the usage of external Java code and web services inside a Clavii BPM

Cloud business process. Finally, Section 6 explains how ad-hoc pauses and rerouting of

business process flow is implemented to allow for correcting data flow errors at run-time.

After the main content sections of the thesis, Section 7 describes other, BPMSs that

6

1.3. Structure of the Thesis

have similar mechanics to Clavii in some regards. Section 7 also lists papers working on

similar problems to this thesis. Finally, Section 8 contains the conclusion to this thesis.

7

2
Fundamentals

This section introduces terminology and concepts commonly referred to in this thesis.

Section 2.1 introduces the notions of business processes, process models, and process

instances. Different types of tasks supported in process models are introduced in Section

2.1.2. The Clavii BPM Cloud supports the integration of Java programs into the business

process flow by allowing tasks to use “plug-ins”, which are explained in Section 2.2.1.

Furthermore, Section 2.2.2 explains the three incarnations of business objects that exist

in the Clavii BPM Cloud context.

2.1. Fundamentals of Business Process Management

A definition of a business process is given by Rummler & Brache: “A business process

is a series of steps designed to produce a product or service” [35].

9

2. Fundamentals

A process model is a graphical representation of a business process, i.e., a documen-

tation of these steps and their interoperation, as well as the logic for executing the

individual steps. BPMS enables process designers to create such a process model

of a business process they wish to execute. This includes letting them define logic for

executing the steps of the business process.

Furthermore, a process instance describes one business case, performing steps of a

process model in a BPMS to produce the “product or service”.

To illustrate relations between the notions of “business process”, “process model” and

“process instance”, regard Example 1a:

Example 1a (Candy Shipping, process model versus process instance):

Alice wants to automate the online shopping for her weekly supply of candy on candyde-

livery.com. The service that the necessary business process provides is automating the

ordering process on the web-site. Alice may use a BPMS to document the latter in a

process model. To be more precise, all tasks required to order the candy are described in

a BPMN process model. Later on she executes the process model in a BPMS. Executing

the business process creates a process instance of said business process, ordering

one weeks worth of candy. Each time the orders new candy a new process instance is

created.

Order Candy

Figure 2.1.: Process Model for Example 1a

2.1.1. Business Process Model and Notation

The notation used in Figure 2.1 is the business process model and notation (BPMN)

which is used throughout the thesis. The elements of BPMN that are used in this thesis

are shown in a minimal example in Figure 2.2.

10

2.1. Fundamentals of Business Process Management

Start Event

Sequence Flow

XOR-Split

User Task

Service Task

XOR-Join End Event

Data Object

Read Access

Write Access

Figure 2.2.: BPMN Example

The start event denotes the starting point of the process model, this is where the control

flow of the process, i.e., the execution, begins. Opposed to this is the end event, which

symbolizes the end of the process model. The control flow of the process model follows

the sequence flow arrows, which connect the tasks and gateways. The gateways used

in the examples in this thesis are all of the XOR type, which can be seen used in Figure

2.2, denoted by the labels “XOR-Split” and “XOR-Join”. An XOR-gateway forces the

control flow of the process to continue on exactly one of the sequence flows leaving the

XOR-split gateway. The XOR-join gateway denotes the point in the control flow of the

process model where the branches are rejoined.

2.1.2. Task Types

Apart from the sequence flows and gateways, a process model can contain various

tasks. Tasks are the nodes of a process model on which actions can be performed by

human process participants or the BPMS itself. A task may be further categorized as:

empty task, user task, service task.

11

2. Fundamentals

User tasks require a user to fill out a user form or provide information to a user. This

is often done through the use of a web interface and is the primary way for a user to

interact with a process instance.

Service tasks are tasks that are not meant for user interaction, i.e., they are executed

by the BPMS. Examples of service tasks could be tasks that fetch information from

a database or call a web service. The “logic” behind such service tasks is bundled

into so-called plug-ins, which are reusable implementation artifacts (cf. Section 2.2.1)

containing service task logic.

Empty tasks are tasks that are not yet set up as a user task or service task, i.e., they

perform no specific action. Empty tasks do not perform any operations except allowing

the execution of the process instance to continue after they are completed. They are

mostly be used as placeholders for other task types in the early stages of process model

creation (cf. Section 3.3.5). They can be used to symbolize work that can not be done at

a computer, similar to a BPMN manual task.

Example 1b (Candy shipping, utilizing additional task types):

Adding tasks to the process from Example 1a, Alice specifies a user task Input Order,

which provides a user form asking for type and quantity of candy to order. Additionally,

Alice adds a service task to the process model which automatically sends an e-mail

before the business process is completed, notifying Trudy that a new shipment has

arrived.

Send EmailInput Order Order Candy

Figure 2.3.: Process Model for Example 1b

12

2.1. Fundamentals of Business Process Management

2.1.3. Data Objects

Tasks in process models interact with data objects by reading or writing their values.

Data objects can contain many kinds of values and act as containers for these. Concepts

for extending these data objects to more sophisticated and complex business objects is

one of the main focuses of this thesis.

Example 1c shows how data objects can be used in the context of the candy shipping

process.

Example 1c (Candy shipping, utilizing data objects):

CandyOrder is a data object attached to the candy shipping process model. It can be

mapped to the output parameter of the user task Input Order and to the input parameter

of the service task Order Candy. The user task Input Order at the beginning of the

process model shows Alice a form where she can write data to the CandyOrder data

objects. Once she is done creating her order, the plug-in operation assigned to the

Order Candy service task receives the data object CandyOrder, containing the ordering

information, and places the order.

Send EmailInput Order Order Candy

CandyOrder

Figure 2.4.: Process Model for Example 1c

13

2. Fundamentals

2.2. Fundamental Terminology

2.2.1. Plug-Ins

Plug-ins are executable components to be assigned to service tasks, i.e. they are

generic implementations of the functionality a service task can offer. For example a

plug-in could contain the logic required to connect to a file transfer protocol (FTP) server,

allowing a service task to upload or download files using the FTP protocol. Plug-ins can

contain multiple “operations”, each offering a different variant of the plug-in’s functionality.

In the case of the FTP plugin-in possible operations could for instance be “upload” and

“download”. An analogy in object-oriented programming languages for the relation of a

plug-in to an operation would be to view the plug-in as a class and an operation as a

method of said class.

A plug-in operation may have a fixed set of input and output parameters, which must be

mapped to data objects using data edges (cf. Figure 2.5) in order for the operation to

function.

In the context of Example 1b, the service task responsible for ordering items from

candyshop.com has to have a plug-in and respective operation assigned to order candy.

Business objects mapped to input parameters of this plug-in operation contain the

amounts and sorts of candy to order. Furthermore, to send the e-mail notifying Trudy,

the respective service task requires an e-mail plug-in offering an operation for sending

e-mail messages.

14

2.2. Fundamental Terminology

Plug-in P1

Service Task S1

Operation O1

IN OUT

Operation O2

IN OUT

Input Mapping

Output Mapping

Data Object D1 Data Object D2

Read Data
Write Data

Figure 2.5.: Mapping of Data Objects to Parameters via a Service Task

2.2.2. Business Objects

In an object-oriented language such as Java or C#, an object is the instance of a type1.

The type defines a structure of fields and the object, or “instance”, of said type holds

concrete values for each field defined by the type. The creation of such an instance of a

type is called instantiation. Business objects on the other hand are objects that represent

an entity participating in a business process. Examples of business objects could be

a person, an event, a document or any other structured information that a business

process has to handle.

The “two-tier” approach used for normal objects (object type and object instance) is

extended to a “three-tier” model for business objects in the Clavii BPM Cloud. The

1A broader term for “class”, including primitives, enums, structs, etc.

15

2. Fundamentals

reasons for this are explained later in Section 3.1.2. The three “tiers” of business objects

are as follows:

• Business object type

• Business object

• Business object instance

A business object type is a template for a business object defined globally, i.e., it is not

process model specific. Such a template contains structural information of a business

object, such as which forms of data it can hold, or, if the business object is more

complex, which other business objects it contains. Business object types have a name,

for example, “WordDocument”. A business object type can be used in a model, thereby

creating a business object. This is necessary if a process model is supposed to use a

business object of said type.

A business object is a process model-specific business object type. Its structure is

defined by the corresponding business object type it was created from. Business objects

are given a name which is unique in the context of a specific process model they are

assigned to. A name for a business object of the WordDocument business object type

might be “Recruitment Document”. Business objects may be mapped to input and output

parameters of tasks in a business process by assigning respective data edges. Once

the process model is executed, instances of all business objects are instantiated in the

context of the new process instance. Business objects may be given default values

that are used as the initial values for the business object instances. The data type of

the default value, e.g., string, integer, is also defined in the business object type that

corresponds to the business object that the default value belongs to. Any business object

instances created from this business object can also only hold values of said data type.

A business object instance is an instance of a business object that is associated with

exactly one process instance. Its structure and default values are defined by the business

object it was instantiated from. Business object instances can hold values that can be

manipulated by tasks of the process instance.

16

2.2. Fundamental Terminology

Example 1d shows how business objects can be used in the context of the candy

shipping process.

Example 1d (Candy shipping, utilizing business objects):

A CandyOrder is a business object type collection capable of containing Candy business

object types. In order for Alice to use the CandyOrder and Candy business object

types in her business process, she has to use the business object type CandyOrder

in her process model by giving it a name, e.g., “WeeklyCandyOrder”. The resulting

business object is a collection of Candy business objects, which is empty by default.

The “WeeklyCandyOrder” business object can be mapped to the output parameter

of the user task “Input Order” and to the input parameter of the service task “Order

Candy”. The user task “Input Order” at the beginning of the process model shows Alice

a form where she can create instances of Candy business objects and add them to the

“WeeklyCandyOrder” business object instance. Once she is done creating her list of

orders, the plug-in operation assigned to the “Order Candy” service task receives the

“WeeklyCandyOrder” business object instance, containing all the Candy instances, and

places the order.

Send EmailInput Order Order Candy

WeeklyCandyOrder: CandyOrder

Candy
n

1

Figure 2.6.: Process Model for Example 1d

17

2. Fundamentals

2.2.3. Additional Terminology

To better understand the different points in time referred to in this thesis the following

definitions should be noted:

• Build-time

• Run-time

Build-time is the time span in which a process model designer creates a process model,

this is only possible while the BPMS is running. Finally, run-time is the time span in

which a process instance is executed, i.e., users are working with the finished process.

18

3
Requirements Analysis

The following sections contain requirements in order to support non-technical users in

specifying complex data flow. All requirements concerning business objects are located

in Section 3.1. Requirements concerning the interplay between complex data flow,

service tasks and plug-ins can be found in Section 3.2. Finally, Section 3.3 describes the

requirements concerning the mapping capabilities of complex data flow, process flow

and resulting capabilities allowing for ad-hoc resolution of data flow errors.

3.1. Business Object Requirements

3.1.1. Complex Business Objects

In order to stand out from the multitude of existing BPMS, we offer a new approach

to central aspects of business process modeling: the modeling of data flow and the

19

3. Requirements Analysis

mapping of business objects to service and user tasks. The approach proposed in this

thesis has multiple advantages, as explained in this section.

The engine of this new BPMS should support capsuling complex sets of attributes, like

the server settings for an SMTP account, hiding typical attributes from the non-technical

user, furthering the goal of simplicity [29]. An example is shown in the UML class diagram

[32] in Figure 3.1.

SMTPServerSettings

-Username: String
-Password: String
-IP: String
-Port: Short
-SSL: Boolean
-STARTTLS: Boolean

<<Stereotype (if applicable)>>

Class Name

-Member Name: Member Type

Figure 3.1.: Encapsulating SMTP Server Settings

The business object type SMTPServerSettings is defined by the IT department of the

fictional “Contoso Ltd.” enterprise and given the default values of the enterprise’s

SMTP server. Two things can be achieved by doing this, firstly the individual business

objects that comprise the complex business object are capsuled and do not clutter the

process model and thereby confuse users and secondly, users do not have to know the

individual attributes and values necessary to communicate with the Contoso Ltd. SMTP

Server. This is also in the interest of information hiding, a well established principle in

programming.

These two advantages and the simplicity for users resulting from them lead us to

formulate Requirement REQ-1.

Requirement REQ-1: (Complex Business Objects)

A BPMS should support complex business objects.

20

3.1. Business Object Requirements

3.1.2. Typed Business Objects

Consider the base SMTPServerSettings business object type, which consists of the

properties listed in Table 3.1 (also cf. Figure 3.1).

Username String

Password String

IP String

Port Short

SSL Boolean

Table 3.1.: SMTPServerSettings business object type

In a traditional BPMS implementation the input parameters for configuring a typical

SMTP mailer operation would most likely consist of exactly those six properties. The

problem here is that forcing process model designers to enter this data once for every

usage of the SMTP mailer operation in the process model is error prone for two reasons:

replication of the same data input at multiple places in the process model and, more

importantly, the inability to type-check the data input. The BPMS might be intelligent

enough to detect that a password entered into the IP address box is not valid and would

not allow entering the port number in a field where a simple yes/no answer is expected.

Most BPMS however, could not protect from mapping the username to the password

input and vice versa, as they have no knowledge of the format that these two fields have

to be in.

This is where the BPMS should offer help. Firstly, in this use case, the process model

designer should only see the SMTPServerSettings business object type, created by a

professional from the IT department, as a match for the input field of an emailing plug-in

which expects a business object of exactly that business object type. Secondly, if the

business object type framework proposed in this thesis is used in its strictest form, the

internal structure of the SMTPServerSettings business object type shown in Table 3.2

would be plausible.

21

3. Requirements Analysis

Username Username

Password Password

IP IP Address

Port Port Number

SSL Decision

Table 3.2.: Strongly Typed SMTPServerSettings business object type

This means that the business object type SMTPServerSettings would not only consist

of attributes represented by standard Java types, e.g., String, Integer, etc., but would

in itself contain further custom or predefined business object types, like IP Address or

Port Number. Again, this has multiple advantages: it allows the structure of business

objects and the data model to be more readable for people who are not accustomed

to the standard programming data types. Furthermore it also allows the designers of

the business object types to define properties, like custom user interface display colors

and even icons for each type. Additionally, custom regular expressions for applicable

string-based simple business object types can be defined for form validation uses.

This increase of form input safety at build and run-time through the additional meta-

information that can be added to simple business object types lead us to formulate

Requirement REQ-2.

Requirement REQ-2: (Strongly Typed Business Objects)

A BPMS should support strongly typed business objects.

3.1.3. Inheritance Capabilities for Business Object Types

Consider an extension to the example business object type SMTPServerSettings given

in Section 3.1.2, based on the UML class diagram shown in Figure 3.1. The basic

SMTPServerSettings business object type is extended to be the Contoso enterprise-

specific ContosoSMTPServerSettings business object type. The “Username” field from

the original business object type is changed from being of the normal Username business

object type to a new ContosoUsername business object type, which itself extends the

22

3.1. Business Object Requirements

Username business object type. This leaves the new ContosoSMTPServerSettings

business object type fully type-compatible with the base SMTPServerSettings business

object type, but allows changing of the regular expression assigned to the “Username”

field (cf. Section 3.1.2). As the basic Username business object type has no regular

expression assigned to it, since there is no general rule on username composition, a

great amount of validation safety can be achieved by adding a simple regular expression

to the derived business object type, thus limiting the valid values to those matching the

Contoso internal username schema.

Apart from swapping a simple business object type with a simple business object

that inherits from it to change the regular expression or other validation properties,

inheritance, as proposed as a requirement here, has an additional use. As can be seen

in Figure 3.2, the derived business object type ContosoSMTPServerSettings contains a

field “InhouseServerLocation” which is not present in the parent business object type.

This means that a derived business object type can contain additional fields holding

information which is only relevant to the sub-type, in this case a textual description of the

physical server location of the SMTP server in the Contoso enterprise headquarters.

SMTPServerSettings

-Username: Username
-Password: Password
-IP: IP Address
-Port: Port Numer
-SSL: Decision
-STARTTLS: Decision

Inheritance

ContosoSMTPServerSettings

-Username: ContosoUsername
-Password: Password
-IP: IP Address

-Port: Port Numer
-SSL: Decision

-STARTTLS: Decision

-InhouseServerLocation: Text

Figure 3.2.: Inheritance Example

Keep in mind that business objects instantiated from the ContosoSMTPServerSettings

business object type can still be mapped to the input parameters of the any generic SMTP

23

3. Requirements Analysis

mailer plug-in which expects a business object created from the base SMTPServerSet-

tings business object type. Handling inheritance and mapping this way is a requirement

do to the main goal of the BPMS extensions proposed in this thesis: simplicity. An

alternative approach to the example of a simple SMTP mailer plug-in and mapping a

derived type to it would be to have the mailer plug-in expose all its input parameters

individually, instead of as the one large SMTPServerSettings business object type. One

could still logically group the fields in a complex business object type in the process

model, even including additional fields such as the “InhouseServerLocation”, but would

have to map all of them individually to the input parameters of the plug-in. Therefore we

formulate the following requirement.

Requirement REQ-3: (Inheritance Capabilities for Business Object Types)

A BPMS should support inheritance for complex business object types.

3.1.4. Business Object Collections

A BPMS supporting collections of business objects can handle process models in a

more flexible way than other BPMS. To verify this, take, for instance, a business process

that helps check if a shipment of parts is complete. It does this by reading part numbers

that are expected to be in the shipment from a database and writing them to an integer

business object list. Then it allows the worker who is checking the parts in the shipment

to input every part number he comes across into a form, saving these to a second

integer list. After the worker has input all the part numbers that were actually in the

shipment, a small service task plug-in can iterate over the two lists and check if all

the expected parts were present. Without support for collections, in this case a list, of

business objects, this business process would have had to been implemented in some

other, more complicated, way.

However, not only include collections of primitive business objects, such as the simple

integer array necessary for the shipment example, but also business objects with almost

any degree of complexity imaginable should be supported by the engine extensions

proposed in this thesis. An example of such a business object is given in Figure 3.3.

24

3.1. Business Object Requirements

Person Map

Person

-Full Name: Name

-Addresses: Address List

Address

-Town: Town
-Street: Street

Name

-Firstname: Text
-Lastname: Text

Town

-Name: Text
-Postal Code: Integer

House

-Housenumber: Integer
-Inhabitantcount: Integer

Street

-Houses: House list
-Name: Text

-Age: Integer
-Gender: Gender

<<Enumeration>>

Gender

-Male
-Female
-Undefined

1
n

11

1 1

1
n

1 1

1 1

1
n

Figure 3.3.: Nested Complex Business Object Collection Example

In the example the top-level business object is a Map data structure with a string key,

containing business objects of a Person business object type. The Person business

object type itself consists of a large amount of fields backed by other business objects,

such as Name, Age, Gender, and even a further complex business object collection

called “Addresses”. “Addresses” contains objects of a new type Address, again consist-

ing of further fields. The BPMS should allow for virtually endless flexibility, as long as no

circular dependencies are created while building the business object types. A circular

dependency would be for instance an Address containing a field of the Person business

object type, whereby the Person business object type itself would contain the Address

business object type anywhere in its type sub-tree. Effectively this means that all data

structures defined in the BPMS must be completely acyclic, which is necessary for the

correct generation of user forms and persisting of the defined business object types in a

relational database management system (RDBMS). Also [22] states that data analysis

algorithms can not work on cyclic data structures.

The reason why business object collections of any complexity should be allowed is

actually quite simple: the complex business objects in the BPMS are supposed to be

25

3. Requirements Analysis

seen as atomic by process model designers. A Person should not differ from an Integer

in the way it is used while modeling a business process. Disallowing lists and maps of

complex business object types would therefore just add confusion to a system otherwise

trimmed for simplicity, while also hindering the ability for modeling business processes

similar to the shipping example but using more complex business objects. This expected

consistency and the general need for business object collections leads us to the following

requirement.

Requirement REQ-4: (Business Object Collections)

A BPMS should support collections of complex business objects.

3.2. Service Task Requirements

3.2.1. Complex Business Objects in Service Task Plug-Ins

The BPMS proposed in this thesis aims at reducing the complexity for process model

designers by bundling configuration parameters into complex business objects, thereby

hiding most detailed configurations from the user actually modeling the business process,

as required by Requirement REQ-1. These complex business objects must be readable

and writable in service tasks for this to make any sense though. This means that a

programmer developing a plug-in for service tasks must have a way to access the

entire structure of a complex business object type in his code. The problem is that

these complex business objects are not known to the Java environment that a plug-in

developer would be working with.

These business object types would not necessarily even be defined in code, but most

likely using a web interface offered by the BPMS. So developers cannot just import a

JAR file and have the “class” files of the complex business objects they wish to use

available on their class path as the available business object types can grow and change

while the BPMS is up and running.

All in all this means that plug-in developers should be completely independent of any

interfaces or strict API packages that most BPMS enforce, an example of which can be

26

3.2. Service Task Requirements

seen in [9]. This approach makes sense in the current prototype environment, as any

engine specific API is still subject to change at any time, making a “stable” programming

API for plug-in developers impossible. Additionally this enables custom complex business

object instances to be used by plug-ins without having to import their classes from the

BPMS into the developer’s development environment (IDE).

The necessity for having complex business objects in available in plug-in code is directly

derived from Requirement REQ-1. In order for a plug-in to allow mapping a complex

business object atomically to one of its parameters, it must be able to understand the

structure of the business object type internally. Additionally, regarding Requirement

REQ-4, plug-ins must be able to read and update collections of business objects in order

for the BPMS to support business processes like the shipping example from Section

3.1.4. These reasons lead us to the formulation of the following requirement:

Requirement REQ-5: (Complex Business Objects in Service Task Plug-Ins)

A BPMS should support the use of complex business objects and collections in service

tasks.

3.2.2. Variable Length Arguments for Plug-Ins

As an addition to the business object collections proposed in Section 3.1.4, a BPMS

should support variable length arguments for plug-ins. A variable length argument,

or varArgs [18] for short, is syntactic sugar in programming languages such as C# or

Java. It allows a method that handles an array of an object type to also handle multiple

individual variables of that object type.

This is useful in a BPMS as well, as shown in the following example. Consider a service

task plug-in “Sum” that summarizes a business object list of the Integer type. Usually

a process model would need to have a business object of the Integer List type to be

able to map to this input parameter. If a process model does not have a “real” Integer

List, the BPMS should allow mapping multiple individual Integer business objects to

the input parameter expecting the list. The BPMS could then create a virtual list at

run-time, comprised of all mapped business objects. The service task would receive a

list, just as it would expect, so there would be no additional coding or configuration work

27

3. Requirements Analysis

necessary on the plug-in’s side to support varArgs parameters. This would also allow a

single business object to be mapped to a parameter expecting a list of business objects,

which is unproblematic as long as the service task does not expect any minimum length

for the list, i.e., uses only Iterators [11] or for-each [6] constructs to access list items.

Clearly, varArgs can only be implemented for input parameters, as there is no way to

infer which element of a list returned by a service task plug-in would be serialized into

which business object. This behavior mirrors that of popular object-oriented languages

and is dictated by common sense.

This allows use to state the following requirement:

Requirement REQ-6: (Variable Length Arguments for Plug-Ins)

A BPMS should support the use of variable length arguments (varArgs) for service task

plug-ins.

3.3. Mapping and Ad-hoc Process Flow Requirements

3.3.1. Mapping Individual Parts of Complex Business Objects

The inclusion of complex business objects (cf. Section 3.1.2) into a BPMS can increase

complexity for the user [22]. For example, consider a service task plug-in that takes

one parameter of a complex type, for example BankAccount. The type consists of two

fields, “Owner” and “Balance”, that are of the Person and the Integer type, respectively.

The problem is that for this service task to function, a BankAccount business object

instance is necessary. The advantage that the BPMS should offer here is that the engine

should actually be aware of the composition of the business object BankAccount. It

should know how a Person is structured internally and also how any contained types

in Person, e.g., Address are structured. This would allow for the creation of ad-hoc

BankAccount business object instances, constructed at run-time, using other business

object instances that can be combined to form a BankAccount instance.

This means that in our example we could just map a Person and an Integer to the input

parameter of the service task instead of a complete BankAccount, as seen in Figure 3.4.

28

3.3. Mapping and Ad-hoc Process Flow Requirements

<<Input Parameter>>

BankAccount Input: BankAccount

<<Business Object>>

Person XYZ: Person

-Name: Name
-Age: Age

-Owner: Person
-Balance: Integer

-Birth Date: Date
-Gender: Gender

<<Business Object>>

Balance XYZ: Integer

Figure 3.4.: Mapping Partial Business Objects

This flexibility should go both ways, making it possible to map parts of existing complex

business objects to simpler parameters. Consider a service task that expects a parameter

of the Integer type. Regarding our previously used BankAccount business object type, it

should be possible to use only the “Balance” field for mapping to the input of the service

task. The same goes for the output mapping, i.e., if the service task additionally outputs

a business object instance of the Integer type, one should be able to map that output

back into the BankAccount “Balance” field. The “Balance” field should then update that

field of the complex business object instance with the value returned by the service task.

This mapping flexibility eliminates the need for users to create complex business objects

just because a service task requires a parameter to be of a certain complex business

object type. Also it eliminates the need for users to manually break complex business

objects down into simple business objects in order to map them to a service task that

can only handle the simple business object type. It is therefore necessary to formulate

Requirement REQ-7 as follows in order to keep the complex business objects required

by Requirement REQ-1 usable without increasing the complexity for process model

designers:

Requirement REQ-7: (Mapping Individual Parts of Complex Business Objects)

A BPMS should support bidirectional mapping of individual parts of complex business

objects.

29

3. Requirements Analysis

3.3.2. Generation of User Forms Based on Complex Business Objects

The regular expressions defined for types (cf. Section 3.1.2) should be used in many

places across the web interface of the proposed BPMS, for instance in dynamically

created forms and settings windows. Apart from the regular expressions, the actual

structure of the business objects, i.e., their type, should be used for displaying form

based user tasks. Figure 3.5 shows a typical form created dynamically using a complex

business object’s type information.

Figure 3.5.: User Form Composed of Complex Business Objects

Clearly, under the assumption that the business objects used in a process model are

structured properly, the generated forms created using these rules eliminate most of

the workload for process model designers, generally associated with designing basic

forms for business processes [31]. Generated user forms in BPMS is a highly active field

of research, both in commercial and academic fields[27, 26, 30, 36]. These generated

forms should also be reusable as error correction forms, which are required to support

Requirement REQ-10, described in Section 3.3.4. This is formulated in the following

requirement.

30

3.3. Mapping and Ad-hoc Process Flow Requirements

Requirement REQ-8: (Generation of User Forms Based on Complex Business Objects)

A BPMS should support manipulating complex business objects in dynamically generated

forms.

3.3.3. Manual Gateway Execution

The BPMS should offer users a new way of executing their business processes by

viewing and interacting with the process model for a process instance in a graphical

web interface. This would offer a unique and simple way to reduce the amount of user

tasks and therefore forms with simple one-line questions such as “Skip Task B?” or

“Continue to Task C or D?”. This would allow the user to double-click an XOR gateway

and just select the path he would like the process instance to continue on. This “empty”

or “manual” gateway need not have any conditions and could just be inserted into the

process model. Instead of displaying the standard dialog, which just allows selection of

the next task name (cf. Figure 6.2), process model designers should be allowed to set a

custom question with answers corresponding to the outgoing branches of the gateway.

This very specific requirement stems from the way users interact with a process instance

they are working on, i.e., directly on the process model graph. This is a unique feature

following the notion of eliminating work-lists and having users execute process instances

by interacting with the process model [19], justifying Requirement REQ-9 being the

following.

Requirement REQ-9: (Manual Gateway Execution)

A BPMS should support manual gateway execution.

3.3.4. Correctness by Run-time Error Resolution

The implementation of the manual gateway execution feature proposed in Requirement

REQ-9 is actually a lot more complicated than one might assume, as it involves pausing

and resuming individual execution branches of the process instance. Luckily, the features

developed to support Requirement REQ-9 are reusable for another proposed feature.

The feature in question is the correctness by run-time error resolution system which we

introduce.

31

3. Requirements Analysis

Correctness by run-time error resolution should allow for process models to be deployed

and tested in a much earlier state than in other BPMS, which either force the correctness

by construction principle [21], or just fail the process instance execution when there

are errors. Correctness by run-time error resolution focuses on data flow errors and

should therefore be combined with a simplified correctness by construction system for

control flow correctness verification. It should allow for service task input parameters

that are not correctly mapped to be filled with data at run-time. Also service tasks that

are correctly mapped but fail due to errors in the mapped data (e.g., wrong username or

password used for an SMTP service task, resulting in an exception) should be retryable

with different data during process instance execution.

In essence, the BPMS should allow running a process model in any state: the web

interface should ensure correctness by construction for the process model structure, and

the correctness by run-time error resolution system should ensure that service tasks can

be executed with little to no prior configuration or business object mapping. This should

be facilitated by pausing the process instance when a service task cannot execute and

showing the user a generated form, as seen in Figure 6.6. The form should collect all

missing data needed to execute the service task and retry it once the form is completed

by the user.

This adds the ability to test individual service tasks without having to set them up

“properly”, which is helpful when developing a process model iteratively. Also after the

process model is in a “final” stage and deployed in productive use errors can still occur

during process instance execution. The run-time error resolution offers quick instance-

specific fixes for errors such as changed passwords for accounts used by service tasks

etc. For some BPMS, changing the password of for instance an SMTP account would

result in process instances not being able to complete normally as updating the service

task in the process model with the new password would not affect the running instances.

An engine supporting run-time error resolution, however, would allow resolving the

error for the currently running process instances. Therefore, this this formulated as

Requirement REQ-9:

32

3.3. Mapping and Ad-hoc Process Flow Requirements

Requirement REQ-10: (Correctness by Run-time Error Resolution)

A BPMS should support the operations necessary for run-time error resolution.

3.3.5. Rapid Process Model Prototyping

Supporting the idea of having a process model which can be executed and thereby

tested at a very early stage in process design, as was mentioned in the introduction and

in Requirement REQ-10, we propose a simple way of setting up empty tasks. These can

be used as placeholders for service tasks or user tasks and should be executable by

simply double-clicking them. They should also be useable similar to the BPMN manual

task, i.e., a task that is executed “offline” which must simply be marked as completed for

a process instance to progress.

By default all new tasks in a process model should be empty tasks, which then get

replaced with service tasks or user tasks on the fly during modeling. This means that a

first draft of a process model could be created and executed by adding empty tasks and

manual gateways (cf. Section 3.3.3) to the process model and executing the process

model immediately. This way the “flow” of the business process could be tested early on,

and, additionally, allow for seamless extension of the early draft with functioning service

tasks, user forms and even gateway logic.

In the interest of simplicity, the build-time web interface should allow making an empty

task into a dynamic user form by simply connecting business objects to the input/output

parameters of the placeholder. Dragging and dropping a service task plug-in on to a

placeholder should automatically convert the placeholder into a service task, reducing the

amount of clicks necessary for such actions. Lastly the web interface and engine should

also support interchanging of AND and OR gateways on the fly by simply double-clicking

them. More detailed descriptions of these features can be found in [19].

These simplifications to structural modeling speed up the development of simple process

models and therefore the engine should support them, as formulated in the following

requirement:

33

3. Requirements Analysis

Requirement REQ-11: (Rapid Process Model Prototyping)

A BPMS should support the operations necessary for rapid process model prototyping.

3.4. Summary

The requirements shown in this section and summarized in Table 3.3 are are supported

by the Clavii engine, the main contribution of this thesis, the concept and implementation

of which is detailed in the following sections. These requirements are needed to support

advanced data flow concepts in BPMS.

REQ # Requirement Name Thesis Section

REQ-1 Complex Business Objects 4.1

REQ-2 Strongly Typed Business Objects 5.3

REQ-3 Inheritance Capabilities for Business Object Types 5.3

REQ-4 Business Object Collections 4.1

REQ-5 Complex Business Objects in Service Task Plug-Ins 5.3

REQ-6 Variable Length Arguments for Plug-Ins 5.4

REQ-7 Mapping Individual Parts of Complex Business Objects 6.4

REQ-8 Generation of User Forms 6.5

REQ-9 Manual Gateway Execution 6.1

REQ-10 Correctness by Run-time Error Resolution 6.6

REQ-11 Rapid Process Model Prototyping 6.6

Table 3.3.: Overview of Requirements

34

4
Dynamically Structured Complex

Business Objects

A central requirement in the context of advanced data flow concepts is Requirement

REQ-1, the ability to handle complex business objects that are defined by the user. As

stated in Section 3.1.2, this aims at reducing the complexity of data flow in business

process models and increases the readability of business object mappings. Furthermore,

these complex business objects should be accessible in the user interface for mapping

to service task parameters and displaying in user forms (cf. Requirements REQ-5 and

REQ-8).

In addition, the serialization of new business object types and their instances requires

a proper concept (cf. Section 4.1). Particularly, serialization is necessary to transfer

business object types and business objects to the remote user interfaces. Furthermore,

35

4. Dynamically Structured Complex Business Objects

a serialization concept is also required to store business object types persistently in, for

example, a relational database.

A more technical view on the relation of business object types to business objects to

business object instances (cf. Section), including their representation towards plug-ins

is given in the following:

1. Business object type representation for BPMS engine and user interface:

A business object type is the dynamically structured type defining what attributes

a business object consists of. A type can be defined using the user interface.

Basically, a business object type consists of a name and a list of attribute fields. A

field is a named child business object type of the respective business object type,

for example, a Person business object type may contain a field with the name Age

and the business object type Integer. Particularly, the representation has to be

persistable in a database or XML document to ensure persistence and portability

for business object types created by users.

2. Process model-specific object representation:

When process model designers use a type in a process model, they effectively

create a process model-specific instance of that business object type, a business

object. A process model-specific business object can be named, given default

values for the business objects contained within it (if it is complex), and mapped to

input/output parameters of plug-in operations. Creating an instance of a business

object type is thus necessary for actually using it in a process model. For process

model designers this equates to selecting a business object type they wish to use,

and giving it a name. The resulting business object then shows up in the business

object list for the current process model, making it available for mapping uses. This

representation has to be persistable as well to allow saving mappings and default

values persistently on a per-process model basis.

3. Instance-specific object representation:

Once a business object has been set up as part of the data flow of a process

model it is available to a process instance in the form of a business object instance.

This means that it can hold values specific to a process instance, and not just

36

4.1. Persisting User-Definable Business Objects

default values used by all process instances, as it is the case with the business

object. This representation has to be persistable in the Activiti BPM engine itself,

as all instances of business objects and their values are managed by the Activiti

BPM engine. As the Activiti BPM engine is not able to deal with the business

object types and their respective business objects, the resulting business object

instances have to be packaged into Maps and Lists, similar to what is necessary

for representing the business object types for plug-ins (Section 3.2.1).

4. Plug-in business object type representation:

As described in Section 3.2.1, plug-in implementations need an extra represen-

tation of complex business object types, to be independent of a BPMS API. This

can be achieved by packaging business object types into data structures like Maps

and Lists. This enables plug-in developers to use the complex business object

instances in their code without Java needing information on the corresponding

business object types and structure. Particularly, a plug-in developer may access

elements of a business object utilizing a dot-based notation (cf. Section 3.2.1).

The next Section 4.1 describes our concept to serialize definable complex business

objects. Section 4.2 details the instantiation of these business objects. Section 4.4

describes the serialization of default values that business objects may have. Further-

more, Section 4.5 introduces the actual implementation of our serialization concept,

i.e., persisting of the business objects and business object types to a database. Finally,

Section 4.6 describes the definition of business object types using an XML descriptor

language.

4.1. Persisting User-Definable Business Objects

The concept that the Clavii engine uses to represent business object types and business

objects in Java is determined by the requirements that both the business object type

and a business object of said type have to be persistable, for example, in a database,

and that business object type information must still be applicable after deserializing it

again. Java theoretically supports creating new classes and instances of those classes

37

4. Dynamically Structured Complex Business Objects

while executing Java code, using byte-code manipulation libraries such as CGLIB [4]

or Javassist [13]. As Java is a statically typed language it is, generally, not desired to

introduce new classes at run-time, thus it is not supported without the use of these

additional libraries. Further, a Java class not present at compilation would necessitate

an extensive use of reflection [17] to analyze it after deserialization from a database at

run-time. Additionally, the flexibility offered by using byte-code manipulation to create

“real” Java classes at run-time is not required in a BPMS.

4.1.1. Business Object Types

The Clavii engine uses a different concept to create business object types and business

object instances at run-time: the use of a few Java classes mimicking the behavior of the

core Java class creation and object instantiation features. For business object types, this

is illustrated in Figure 4.1.

<<Abstract>>

BusinessObjectType

-ID: Long
-Name: String

-HexColor: String
-DisplayName: String

SimpleBusinessObjectType

-JavaType: JavaType
-RegEx: String

<<Enumeration>>

JavaType

-String

-Long

-Double
-Boolean

-ByteArray
-Date

EnumBusinessObjectType

-EnumValues: String[]

ListBusinessObjectType

-ContainedType: BusinessObjectType

MapBusinessObjectType

-ContainedType: BusinessObjectType

ComplexBusinessObjectType

-ContainedTypes:
Map<String,BusinessObjectType>
-Parent: ComplexBusinessObjectType

Figure 4.1.: BusinessObjectType Serialization Concept

38

4.1. Persisting User-Definable Business Objects

The following summarizes the roles of all participating classes in the serialization concept

for business object types:

BusinessObjectType class: The BusinessObjectType class is the abstract base class

for all manifestations of business object types and forces sub-classes to be serializable.

It comprises the Name and database ID which represent the business object type. The

class also acts as the root element for JAXB serialization, needed for importing new

business object types from XML files (cf. Section 4.6). To support advanced user

interface concepts, this class also holds the fields HexColor and DisplayName which

are detailed in [19].

SimpleBusinessObjectType class: The SimpleBusinessObjectType class represents

a primitive business object type consisting of the fields JavaType and RegEx. The

JavaType field holds an enumeration value determining the underlying Java data type.

The Java data type is used for serializing values in the simple business objects created

from this simple business object type. Also, the Java data type is necessary for type

checking and for determining the type of input elements that user forms will display to

users at run-time. The Clavii engine uses a subset of common Java data types as base

types: String, Long, Double, Boolean, Date and ByteArray. The latter offers support for

serializing any form of document or file. Next, the RegEx field supports the user form

component of the Clavii BPM Cloud further by allowing a per-type definition of regular

expression rules which can be used for field validation. Simple business object types

are found on the lowest tier of any complex business object type construct as they can

not contain further business object types.

EnumBusinessObjectType class: Similar to the SimpleBusinessObjectType class, this

class represents a business object type consisting of a limited amount of strings. The

enum business object that can be created from the enum business object may have

exactly one of these strings as its value. Field EnumValues holds the aforementioned

list of strings.

ListBusinessObjectType class: To represent a collection of business objects, this class

contains a field ContainedType, holding a reference to the business object type of which

business object instances will be allowed to exist in the collection at run-time.

39

4. Dynamically Structured Complex Business Objects

MapBusinessObjectType class: Analogous to the ListBusinessObjectType the MapBusi-

nessObjectType class also has exactly one field ContainedType which holds a reference

a business object type.

ComplexBusinessObjectType class: The ComplexBusinessObjectType class represents

what is referred to as a “class” in an object-oriented language such as C++, C# or Java,

i.e., it holds named fields consisting of references to other business object types, thereby

defining the structure of a complex business object type. A simple Map<String, Busines-

sObjectType> structure ContainedTypes, the only field in the ComplexBusinessObject-

Type class holds these references. The Person business object type (cf. Section 3) is

an example of such a complex business object type. The ComplexBusinessObjectType

class can hold references to any class inheriting from the BusinessObjectType class. By

allowing the referencing of other instances of the ComplexBusinessObjectType class,

the concept allows process model designers to create almost any complex business

object type. The one limitation (cf. Section 3.1.4), is that there must never be cyclic

dependencies, i.e., a complex business object type may never contain itself at any

depth of nesting. If this were allowed, user form generation would be impossible based

on the infinite loop structure of the complex business object’s structural graph. The

ComplexBusinessObjectType class also holds a reference to a parent complex business

object type, if there is one, to allow for inheritance. Inheritance is only possible for

complex business object types as other business object types are not extensible with

new fields by definition, as they have none.

As these six classes are serializable, using them to describe a business object type

allows for serialization of said business object type, described in Section 4.6. This can

be used to send types to client machines for displaying in the user interface of a BPMS.

Additionally, having serializable classes describing the structure of a business object

type allows it to be persisted in a database (c.f. Section 4.5).

Deserializing a persisted business object type for usage is as easy as deserializing

instances of the composing classes (e.g., BusinessObjectType etc.) from the database

and then traversing the structure via the references and collections offered by them. The

40

4.1. Persisting User-Definable Business Objects

structure of a variant of the complex business object type Person, shown in Figure 4.2,

can be analyzed using the method getContainedTypes().

Person

-Age: Age

-Name: Name
-Birth Date: Date

-Gender: Gender
-Appointments: Appointment List
-Home Address: Address

Figure 4.2.: Person Business Object Type

The getContainedTypes() method returns field names and business object types for

all fields contained in the Person business object type. For example, for the Person

business object type, it would return:

• “Age”:(SimpleBusinessObjectType Age)

• “Name”:(ComplexBusinessObjectType Name)

• “Birth Date”:(SimpleBusinessObjectType Date)

• “Gender”:(EnumBusinessObjectType Gender)

• “Appointments”:(ListBusinessObjectType Appointment List)

• “Home Address”:(ComplexBusinessObjectType Address)

To access nested business object types, such as the simple business object types

Firstname and Lastname, belonging to the complex business object type Name, recur-

sive calls are necessary. Traversing the type structure this way is preferable from a

performance standpoint to using reflection, mentioned as an alternate approach in the

introduction to this section, as Java reflection is generally slow do to missing virtual

machine optimizations [17]. Also the API and structure of the ComplexBusinessObject-

Type is much cleaner and simpler than with a completely generic class that has to be

analyzed using reflection.

41

4. Dynamically Structured Complex Business Objects

4.1.2. Business Objects

Business objects, as explained in the introduction to Section 4, are named process

model-specific business object types. They are created when a process model designers

wishes to use a certain business object type in a process model. To be more precise,

they can be mapped to service and user tasks in a process model and may hold default

values in fields. The class hierarchy for the BusinessObject class is similar to that of

the BusinessObjectType class (cf. Section 4.1.1), as the requirements are similar, for

instance business objects must also be serializable. Also the structural graph of a

business object has to be traversable in order for the user interface to parse it and display

the dynamic user interface elements for mapping and entering default values correctly.

The following summarizes the roles of all participating classes in the serialization concept

for business objects.

BusinessObject class: Abstract base class for all other BusinessObject classes. Holds

a reference to the business object type that defines the structure of the business object,

it also holds a Name field containing the name the business object has in the process

model. The name is only used for top-level (i.e., root) business objects that are displayed

directly in the user interface. Nested business objects must not necessarily be named,

i.e., a Person business object Person A that is used directly in the user interface has to

be named; the business objects contained therein, on the other hand, holding the values

for the Age or Gender attributes of Person A, do not.

AttachableBusinessObject class: Direct sub-class of the BusinessObject class. This

abstract class is the base class for all business objects that can be mapped to a pa-

rameter directly, i.e. are viewed as atomic in the context of mapping. This includes all

further BusinessObject sub-classes, except for the the ComplexBusinessObject class,

i.e., SimpleBusinessObject, EnumBusinessObject, ListBusinessObject, and MapBusi-

nessObject. The corresponding four types of business objects cannot be broken down

further for mapping. They are always mapped in entirety to one single parameter of a

service task. A complex business object, on the other hand, is actually never mapped to

a parameter directly, as only the contained instances are mapped in order to support

partial complex business object mapping (cf. Section 3.3.1). Class AttachableBusines-

42

4.1. Persisting User-Definable Business Objects

sObject holds two Map<String, PathDescription> collections, one for mapping input and

one for mapping output. The keys of this map’s entries each hold a reference to one

individual service or user task situated in the process model that the business object

belongs to. The value associated with one of these keys, a so-called PathDescription,

holds a reference to one of the input parameters of the service task plug-in that the

BusinessObject is mapped to. If the AttachableBusinessObject is mapped to a user

task instead of a service task, the PathDescription is null.

SimpleBusinessObject class: Represents a simple business object, holding a value of a

the Java type specified the JavaType attribute of the simple business object type that the

simple business object was created from. This “default” value dictates what the process

instance specific business object instance will be initialized with when an actual process

instance is started. The value is editable in the user interface at build-time.

EnumBusinessObject class: Represents an enum business object, holding one of the

values defined in the respective enum business object type’s EnumValues field. The

enum business object can only have String values.

ListBusinessObject class: Represents a list business object, has a List<BusinessObject>

field holding references to all business objects that should be initially contained in a

business object instance instantiated from this list business object.

MapBusinessObject class: Represents a map business object, contains a Map<String,

BusinessObject> field holding references to all business objects and their map keys

that should be initially contained in a business object instance instantiated from this

map business object. A use case for this might be a map business object that holds

default mapping values for filling out a PDF form. The map business object in question

could use its map keys as field names and SimpleBusinessObjects, using String as their

JavaType, as the values to be written to the PDF form fields.

ComplexBusinessObject class: Represents a complex business object, contains a sin-

gle Map<String, BusinessObject> field, but in contrast to the MapBusinessObject class,

the Map keys are field names of the contained business objects. The field names are

the exact field names defined in the corresponding complex business object type and

are written into the Map during creation of the complex business object.

43

4. Dynamically Structured Complex Business Objects

4.2. Creating Business Objects from Business Object Types

Creating a business object is performed by calling the abstract getInstance(String name,

Long parentModelId) method located in the BusinessObjectType class. The method

takes parameters name and parentModelId, i.e., a reference to one specific process

model that the instance should belong to, and returns a respective business object.

As the method is abstract, each sub-class of class BusinessObjectType must offer a

respective implementation. An example implementation, found in the ComplexBusines-

sObjectType class, is given in Listing 4.1.

1 public class ComplexBusinessObjectType extends BusinessObjectType {

2 / / g e t t e r s omi t ted

3 private ComplexBusinessObjectType superType ;

4 private Map<St r ing , BusinessObjectType > containedTypes = new HashMap< >() ;

5

6 @Override

7 public ComplexBusinessObject ge t Ins tance (S t r i n g name, Long parentModel Id) {

8 / / c a l l cons t r uc to r and pass " t h i s "

9 ComplexBusinessObject toReturn = new ComplexBusinessObject (name, this , parentModel Id) ;

10 / / i t e r a t e over conta ined types , c a l l i n s t a n t i a t i o n method r e c u r s i v e l y

11 / / add any i n s t a n t i a t e d ob jec ts to conta inedInstances Map

12 Map<St r ing , BusinessObject > conta inedInstances = new HashMap< >() ;

13 for (Map. Entry <St r ing , BusinessObjectType > en t ry : containedTypes . en t rySet ()) {

14 conta inedInstances . put (en t ry . getKey () , en t ry . getValue () . ge t Ins tance (en t ry . getKey () , nul l)) ;

15 }

16 toReturn . setConta inedInstances (conta inedInstances) ;

17 return toReturn ;

18 }

19 }

20

21 public class ComplexBusinessObject extends BusinessObject {

22 / / g e t t e r omi t ted

23 private Map<St r ing , BusinessObject > conta inedInstances = new HashMap< >() ;

24

25 public ComplexBusinessObject (S t r i n g name, SimpleBusinessObjectType instanceOf , Long parentModel Id) {

26 super (name, instanceOf , parentModel Id) ;

27 }

28 }

Listing 4.1: Instantiation Code for a Complex Business Object

Line 14 in Listing 4.1 shows how the “ContainedObjects” Map held by the ComplexBusi-

nessObject class is filled with further new instances recursively during instantiation (cf.

line 7). A business object created using the getInstance() method is immediately ready

to receive default values for its fields, which is discussed in Section 4.4. Since the

entire class structure below BusinessObject is serializable, new business objects can

44

4.3. Instantiation of Business Objects

be persisted in the database (cf. Section 4.5), or sent to the user interface via GWT-RPC

(Remote Procedure Call) [37].

4.3. Instantiation of Business Objects

As introduced in Section 4, business objects created based on business object types are

process model-specific and may only hold default values for individual process instance-

specific business object instances. Business object instances are instantiated for use in

the context of a specific process instance in the Activiti BPM engine. Particularly, the

latter has no knowledge of the concept of business object types and business objects,

and, therefore, business object instances must be composed using standard Java

constructs, specifically the Map and List classes. This “flattening” of BusinessObjects

into a dot-based Map compatible form, thereby instantiating them to business object

instances, is done by the BusinessObjectFlattenVisitor class (cf. Appendix B.1). The

visitor pattern applied by the BusinessObjectFlattenVisitor class is described in Section

4.3.1.

Basically the Activiti BPM engine has one Map per process instance that contains the

values of all all data objects for the process instance. The Map is comparable to a

standard Java Map implementation in that it uses Strings as keys for all contained

entries. The challenge is to keep the structure of the business objects intact inside

the Map. This is achieved by using the aforementioned dot-based notation, thereby

flattening the structure of the business objects into the Map. An example of what the

flattened version of a complex business object PersonYXZ of a complex business object

type Person looks like is shown in Figure 4.3.

45

4. Dynamically Structured Complex Business Objects

PersonXYZ: Person

-Name: Name
-Birth Date: Date: 23.11.87
-Age: Integer: 25
-Gender: Gender: "Male"

<<Enumeration>>

Gender

-Male
-Female
-Undefined

Name

-Firstname: Text: "Lorem"
-Lastname: Text: "Ipsum"

Activiti
Business Object Instance Map

PersonXYZ.Name.Firstname: "Lorem"
PersonXYZ.Name.Lastname: "Ipsum"
PersonXYZ.Birth Date: 23.11.87
PersonXYZ.Age: 25
PersonXYZ.Gender: "Male"

Figure 4.3.: Flattening of a Complex Business Object

More complex data structures, for instance a complex business object containing a List

further complex business objects, can be flattened by placing, e.g., a List<Map<String,

Object>> at one of the keys in the Activiti BPM engine’s data object map. This enables

the business objects the Clavii engine supports to be of greater complexity by allowing

nesting of complex business objects into each other. The main workload that this

relatively complex flattening system has to manage is done using recursion and the

visitor pattern to correctly handle business object nesting. As the instantiation of the

business objects, and therefore also the flattening, only takes place once during the

instantiation of the process there is no overhead associated with complex business object

instances during the actual process instance execution.To minimize the overhead during

creation of process instances caused by instantiating and flattening the business objects

associated with the process model can also be minimized through the use of caching.

This is possible as the flattening process is deterministic as long as the business objects

and their respective business object types remain unchanged.

Arranging business object instances at run-time according to the structure that the

respective business object types dictate does allow for some of the special features

of the Clavii engine to function, namely the detection of missing parameters and their

ad-hoc creation. To be more precise, the arrangement of the business object instances

in this structured, dot-based form, mirroring the structure of the business object types

they were created from, allows the Clavii engine to inspect and insert values at run-time

46

4.3. Instantiation of Business Objects

in exactly the place where a user form or service task would expect them (cf. Section

6.2).

To make this clearer, consider a process instance in which the PersonXYZ business

object (cf. Figure 4.3) has a missing attribute Birth Date, i.e. the value for the key

“PersonXYZ.Birth Date” is null or the key entirely non-existent. As the Person business

object type dictates that a Person business object has a value for Birth Date, a missing

value for this attribute can be detected as an error before the invocation of a service

task plug-in, which could potentially throw an exception as a consequence of a missing

value (cf. Section 6.2). In this case the correctness by error resolution system proposed

in Requirement REQ-10 would show the user an error resolution form allowing him to

input the missing value. Through the aforementioned special, flattened, arrangement of

the business object instances in the Activiti BPM engine’s data object Map, the key at

which the “new” value has to be inserted is clear, namely “PersonXYZ.Birth Date”. This

not only allows the service task that would have failed to execute properly, but also the

remaining tasks in the process instance to use the newly entered Birth Date associated

with PersonXYZ.

4.3.1. Applying of the Visitor Pattern

The BusinessObjectFlattenVisitor (cf. Appendix B.1) uses the visitor pattern [23]. This

pattern provides an object-oriented way of recursively calling methods in the right

subclasses necessary for instantiating different types of business objects without using

the instanceof operator, often viewed as code-smell in object-oriented languages [38].

The language limitation that makes the visitor pattern necessary is shown in Listing 4.2.

47

4. Dynamically Structured Complex Business Objects

1 class A { }

2 class B extends A { }

3 class C extends A { }

4 class Test {

5 public s t a t i c void main (S t r i n g args) {

6 A b = new B () ;

7 doWork (b) ; / / throws e r r o r as there i s no over load doWork (A)

8 }

9 s t a t i c void doWork (B b) {

10 }

11 s t a t i c void doWork (C c) {

12 }

13 }

Listing 4.2: Java Language Limitation Example

As Listing 4.2 shows, Java does not attempt to infer the concrete sub-class of “A” and call

the correct overload. As the BusinessObjectFlattenVisitor class provides the same “visit”

method that does the actual flattening to all BusinessObject sub-classes, in a traditional

setup the class would run into exactly this problem. The visitor pattern circumvents this

by using double-dispatch via a “visitor”, a specially prepared interface (cf. Listing 4.3).

1 public inter face Bus inessOb jec tV is i t o r {

2 void v i s i t (SimpleBusinessObject s impleBusinessObject) ;

3 void v i s i t (EnumBusinessObject enumBusinessObject) ;

4 void v i s i t (ComplexBusinessObject complexBusinessObject) ;

5 void v i s i t (MapBusinessObject mapBusinessObject) ;

6 void v i s i t (L is tBus inessObjec t l i s tBus inessOb jec t) ;

7 }

Listing 4.3: BusinessObjectVisitor Interface

To complete the visitor pattern, all sub-classes that use implementations of this visitor

interface must have a method accept, analogous to the following Listing 4.4:

1 @Override

2 public void accept (Bus inessOb jec tV is i t o r bus inessOb jec tV i s i t o r) {

3 bus inessOb jec tV i s i t o r . v i s i t (th is) ;

4 }

Listing 4.4: Accept Implementation

The method accept is forced on these sub-classes by BusinessObject super-classes,

enabling calls such as the one in Listing 4.5:

48

4.4. Serializing Default Values for Simple Business Objects

1 / / i n s t a n t i a t i o n o f businessObjectXYZ and Bus inessOb jec tF l a t t enV i s i t o r omi t ted

2 / / businessObjectXYZ i s an ins tance of SimpleBusinessObject

3 businessObjectXYZ . accept (Bus i nessOb jec tF l a t t enV i s i t o r) ;

Listing 4.5: Usage of the Accept Method

By utilizing the visitor pattern and its double dispatching capabilities, Java is able to take

an instance of a sub-class of the BusinessObject class, e.g., SimpleBusinessObject,

and without knowing which concrete sub-class the object in question is actually of, can

indirectly call the correct visit(...) overload(cf. Listing 6.4).

4.4. Serializing Default Values for Simple Business Objects

Once a simple business object is created from a simple business object type (cf. Section

4.2), it can be assigned default values in the user interface. The data type of such a

default value is dictated by the respective simple business object type. The data type

can be one of the following supported Java data types: String, Long, Double, Boolean,

Date, ByteArray.

Therefore, the SimpleBusinessObject class must have a field that can hold a value of

any of these types. Please note, that an instance of the SimpleBusinessObject class

must be serializable not only for insertion into a database, but also for delivery to the

user interface. As the web interface of Clavii was written using GWT, which uses

JavaScript internally, it cannot handle Java serialization/deserialization, meaning that

it is not possible to simply serialize all possible values using common Java techniques,

such as the Serializable interface and the ObjectOutputStream class.

The to circumvent this limitation we use the String data type as the basis for transporting

and serializing all possible default values for simple business objects. Most Java types

have a toString() method, which returns String values for respective data types. Further-

more, most standard Java data types provide a static parse(String string) method, that

delivers an instance of said type based on a String value. Methods toString and parse

are supported in GWT, making String-based transport to the user interface viable. The

49

4. Dynamically Structured Complex Business Objects

following listing gives a short example of how a typical conversion works, on both server-

and client-side.

1 Boolean bool = true ;

2 / / conver t boolean to s t r i n g

3 S t r i n g boo lAsSt r ing = bool . t o S t r i n g () ; / / boo lAsSt r ing == " t r ue "

4 / / conver t s t r i n g back to boolean

5 Boolean s t r ingAsBoo l = Boolean . ParseBoolean (boo lAsSt r ing) ; / / s t r ingAsBoo l == t rue ;

Listing 4.6: Conversion of a Boolean to and from a String value

This principle is used for all supported classes except ByteArray and Date. The methods

for these data types are explained in the following sections.

4.4.1. Handling of Byte Arrays

Byte arrays are used in Java to hold the content bytes of various files, such as documents.

As the base data type for all data types in the Clavii engine is String, byte arrays have

to be convertible to String values as well. Byte arrays are converted to String values

using a Base64 encoder on the server-side. Base64 is an encoding scheme that allows

encoding of any binary information to ASCII [24]. As a byte array is effectively binary

information, a Base64 encoder can be used to encode it to a string. The encoded

representation can then be persisted in a database using the same VARCHAR field

necessary for serializing the other possible value types (Long, Date, ...). GWT does

not support Base64 encoding/decoding on the client side, which is actually a non-issue,

as downloading and uploading files (i.e., byte arrays) does not work using GWT-RPC

anyway. Files are uploaded using servlets, as in most other web frameworks.

To be more precise, a String value representing a byte array does not have to be delivered

to and decoded by the user interface, as a byte array that can be decoded from the

String is only used to hold the contents of files. Files can be, for instance, documentation

belonging to a business process, which users can upload to the respective process

model. This means that they are effectively black boxes and have no other function than

being downloadable. As previously stated, downloading files in most web-frameworks is

done by offering the file in a file servlet and placing a link to the file in the actual user

interface, not actually displaying the contents of the file in the user interface.

50

4.4. Serializing Default Values for Simple Business Objects

To facilitate this, the encoded String representing the byte array, i.e. the file, is replaced

by a random Long representing a virtual address. This is done before each delivery of

the simple business object that contains a byte array to the user interface. The String

containing the ByteArray is served up by a servlet on the Clavii engine server using

exactly this “address” as the key. The user interface recognizes the address and provides

a link to the servlet serving the file for the user to click on.

The advantage, apart from there not being any other way to realize file downloads in

GWT, is that such an encoded string containing the byte array, which can be very large,

does not have to be transferred to the user interface along with the simple business

object. Instead, only an address, which is typically smaller, is delivered, and only in case

the user wants to open the respective file is the file transferred via servlet request to

the client. This concept, the replacing of the byte array with an address, is visualized in

Figure 4.4.

FileXYZ (Server Side): File

-FileContent: ByteArray: "11101010101"
-FileName: Text: "filename"

Client Transfer

FileDownloadServlet: HttpServlet

-ServedFiles: Map<Long, byte[]>:
{43579, 11101010101}

FileXYZ (Client Side): File

-FileContent: Long: 43579
-FileName: Text: "filename"

Serves File
Contents under
"Address"

Figure 4.4.: Replacement of Byte Arrays with Addresses for Client Transfer

4.4.2. Handling of Date Values

The Java Date class provides methods toString and parseDate(String), which would

suffice in most environments for converting a Date to and from a String value. The GWT

user interface actually processes all business logic in the browser. Particularly, GWT

uses the locale of the client for methods Date.toString and Date.parseDate(String). For

51

4. Dynamically Structured Complex Business Objects

example, the server may encode the date 10th of December 2013 to the String value

“10.12.2013”. Subsequently, the client might parse 10/12/2013, the 12th of October 2013.

Additionally, these methods are mar deprecated as of Java 1.1 for reasons including the

one just described. The replacement methods for converting Date to and from String are

methods DateFormat.parse(String) and DateFormat.format(Date). However, the latter

are not supported by GWT. The GWT framework contains a similar replacement class [7]

called DateTimeFormat, but strings produced by class DateFormat on the server-side

are not parseable by the DateTimeFormat class on the client-side.

To circumvent this, a different approach is chosen for handling the conversion of Date

values to String for serialization: the conversion of the Date values to the common

milliseconds since epoch representation . The milliseconds since epoch representation

is a 64 bit count of milliseconds that have passed since Thursday, January 1, 1970

12:00:00 AM GMT (i.e., the UNIX epoch) until the date represented by the Date object.

The Date class has a constructor that takes a Long to create an instance based on the

millisecond since epoch representation. The Date class also supplies a method getTime

that delivers the milliseconds since epoch representation as a Long.

Therefore, the issue is reduced to converting data type Long to String and back, which

is done in the same way as for the other data types, using methods toString and

parseLong(String).

4.5. Persisting of Defined Business Object Types and

Business Objects

This section describes how business object types and business objects can be serialized

and persisted. For business object types, there is almost no additional work necessary.

Particularly, the BusinessObjectType class as well as all its sub-classes (cf. Section

4.1.1) that are necessary to describe the structure of a business object type may only hold

references to instances of the class BusinessObjectType. In a database this means that,

applying a table-per-class strategy, each sub-class of BusinessObjectType is assigned

to its individual database table. When doing this the ID column has to be forced to

52

4.5. Persisting of Defined Business Object Types and Business Objects

contain unique values across all tables for the sub-classes of the BusinessObjectType

class. This may be automated by Hibernate, using a sequencing table. The advantage

of this approach is simple table structure and easy referencing between the sub-class

tables. As an example the Data Definition Language (DDL) for creating a database table

for the ListBusinessObjectType class is listed in Listing 4.7.

1 CREATE TABLE LISTBUSINESSOBJECTTYPE

2 (

3 ID BIGINT PRIMARY KEY NOT NULL,

4 #Required f o r o p t i m i s t i c l ock ing

5 VERSION BIGINT ,

6 #UI−Metainfo

7 DISPLAYNAME VARCHAR(255) ,

8 HEXCOLOR VARCHAR(255) ,

9 ICONSTRING CLOB,

10 #Unique Name

11 NAME VARCHAR(255) NOT NULL UNIQUE ,

12 #Owner can be an Organ iza t ion / Orgun i t / Agent

13 OWNER BIGINT ,

14 #Can r e f e r to the ID column of any of the f o l l o w i n g tab les :

15 #LISTBUSINESSOBJECTTYPE,MAPBUSINESSOBJECTTYPE,

16 #COMPLEXBUSINESSOBJECTTYPE,ENUMBUSINESSOBJECTTYPE,SIMPLEBUSINESSOBJECTTYPE

17 CONTAINEDTYPE_ID BIGINT NOT NULL

18) ;

Listing 4.7: DDL for ListBusinessObjectType Table

Database tables for the other sub-classes of BusinessObjectType, except for Com-

plexBusinessObjectType, are analogous. Class ComplexBusinessObjectType refer-

ences class BusinessObjectType in a Map<String, BusinessObjectType> structure, mak-

ing an extra table called COMPLEXBUSINESSOBJECTTYPE_BUSINESSOBJECTTYPE

containing the String keys paired with the references necessary.

The BusinessObject sub-classes (cf. Section 4.1.2), are treated in almost the same

way. They all (except for classes EnumBusinessObject and SimpleBusinessObject) hold

references to the BusinessObject class, which can be mapped to tables in exactly the

same way as the BusinessObjectType sub-classes. However, the SimpleBusinessObject

class has one String field, which can hold any form of data supported by the Clavii engine

using the approach explained in Section 4.4. The DDL code necessary for creating the

SimpleBusinessObject table is shown in in Listing 4.8.

53

4. Dynamically Structured Complex Business Objects

1 CREATE TABLE SIMPLEBUSINESSOBJECT

2 (

3 ID BIGINT PRIMARY KEY NOT NULL,

4 #Required f o r o p t i m i s t i c l ock ing

5 VERSION BIGINT ,

6 #Unique to each process model

7 NAME VARCHAR(255) ,

8 #ID of the process model the ins tance i s at tached to

9 PARENTMODELID BIGINT ,

10 #ID of the BUSINESSOBJECTTYPE t h a t was used to i n s t a n t i a t e t h i s ob jec t

11 BUSINESSOBJECTTYPE_ID BIGINT NOT NULL,

12 # S e r i a l i z e d mapping in fo rma t i on

13 CONNECTEDINPUTTASKS BLOB NOT NULL,

14 CONNECTEDOUTPUTTASKS BLOB NOT NULL,

15 #Column f o r a s t r i n g w i th 2 g igabyte maximum

16 INTERNALVALUE CLOB

17) ;

Listing 4.8: DDL for SimpleBusinessObject Table

The introduced relational database model makes debugging values and understanding

and extending the business object serialization framework easier than the alternative

of serializing the entire objects to Binary Large Object (BLOB) values. Also serializing

business objects to BLOBs eliminates the possibility of creating database queries such

as “select all business objects attached to process model X”. The information, which

process model the business object is attached to would be serialized in the BLOB,

requiring a full deserialization of the BLOB to determine the required value.

4.6. Definition of Business Objects Types Using XML

Descriptors

The user interface supports defining of business object types using a special form which

is shown in Figure 4.5. Note that Name, Address List and Password Map are complex

business object types and collections, demonstrating the complexity that can be achieved

with this user interface.

54

4.6. Definition of Business Objects Types Using XML Descriptors

Figure 4.5.: Business Object Type Definition View

Such a web interface is meant for end-users who profit from type safety and support

when defining required business object types. Additionally, business object types may

be defined using an XML document adhering to an XML schema. Specifying a strict

XML schema allows users that with to design business object types via XML descriptors

to profit from code completion and syntax checking. It also allows the Clavii engine to

validate the XML code contained in Listing 4.9, and use it to inject a working business

object type into the running BPMS.

55

4. Dynamically Structured Complex Business Objects

1 <complexType>

2 <name>Person< / name>

3 <hexColor>#42368C< / hexColor>

4 < p r o p e r t i e s >

5 <proper ty>

6 <type>Name< / type>

7 < / p roper ty>

8 <proper ty>

9 < !−−t h i s i s the name of the type t h a t t h i s f i e l d should have−−>

10 <type>Date< / type>

11 < !−−t h i s i s the name of the f i e l d ,

12 the tag i s o p t i o n a l and used only when the f i e l d name

13 d i f f e r s from the name of the type t h a t the f i e l d has−−>

14 <name> B i r t h Date< / name>

15 < / p roper ty>

16 <proper ty>

17 <type>Age< / type>

18 < / p roper ty>

19 <proper ty>

20 <type>Gender< / type>

21 < / p roper ty>

22 < / p r o p e r t i e s >

23 < / complexType>

Listing 4.9: XML Definition of Person Complex Type

Thereby, any complex object structure definable using the business object framework

described in this thesis can also be defined using XML files. Note that in Listing 4.9 the

property of type “Name” may be a complex business object type as well, defined in a

different XML file. This demonstrates how nesting of complex types is achievable.

Such an XML descriptor can be uploaded using, for example, the user interface, which

results in the actual creation of the business object types described in the files. After

parsing and type creation are finished, business object types can be used alongside

existing ones (cf. Section 4.2). Internally, the parsing is done using JAXB [15], a

framework that allows for the serialization of entire classes and their instances to and

from XML, with the help of annotations on the classes and their members

4.6.1. Using Java Annotations to Prepare a Class for XML Serialization /

Deserialization

The combination of Hibernate and JAXB annotations allows parsing an XML definition

like the one shown in Listing 4.9. Afterwards, an instance of the ComplexBusinessOb-

56

4.7. Summary

jectType class may be created and serialized to a database, thereby creating a new

complex business object for use in the user interface. An example of the annotations

required for a typical class is given in Listing 4.10.

1 / / I n s t r u c t JAXB on the order ing the XSD should i n f o r c e

2 / / Also marks t h i s c lass as a c lass t h a t should be s e r i a l i z a b l e to XML

3 @XmlType(propOrder = { "name" , " displayName " , " hexColor " })

4 / / I n s t r u c t JAXB which other c lasses are r e l a t e d to t h i s c lass

5 @XmlSeeAlso ({ SimpleBusinessObjectType . class , ComplexBusinessObjectType . class , EnumBusinessObjectType . class ,

L is tBusinessObjectType . class , MapBusinessObjectType . class })

6 / / I n s t r u c t Hibernate t h a t t h i s c lass i s a database e n t i t y

7 @Entity

8 public abstract class BusinessObjectType implements S e r i a l i z a b l e {

9 / / I n s t r u c t s JAXB t h a t t h i s f i e l d i s requ i red f o r v a l i d pars ing

10 @XmlElement (requ i red = true)

11 / / I n s t r u c t s Hibernate t h a t t h i s f i e l d i s requ i red f o r s e r i a l i z a t i o n

12 @NotNull

13 protected S t r i n g name ;

14 / / I n s t r u c t s JAXB t h a t t h i s f i e l d i s not requ i red f o r v a l i d pars ing

15 @XmlElement (requ i red = fa lse)

16 protected S t r i n g displayName ;

17 / / I n s t r u c t s JAXB t h a t t h i s f i e l d i s not al lowed i n the XML rep resen ta t i on

18 @XmlTransient

19 protected Long owner ;

20 / / I n s t r u c t s JAXB t h a t t h i s f i e l d i s not requ i red f o r v a l i d pars ing

21 @XmlElement (requ i red = fa lse)

22 protected S t r i n g hexColor ;

23 . . .

Listing 4.10: Annotations Required for JAXB and Hibernate

This is a minimal set of annotations required to make a class Hibernate and JAXB

compatible, relations and other specifics require additional configuration, which are not

in the scope of this thesis.

4.7. Summary

This section has shown the concept and implementation of the core requirements of

the Clavii BPM Cloud, i.e., Requirements REQ-1, REQ-2, REQ-3, and REQ-4. These

requirements address the support of complex business object types, business objects,

and business object instances, as well as collections of business objects and their

inheritance model. Examples given in this section are mostly specific to BPMS and

business objects, but in theory one could apply the concept demonstrated here to other

use cases as well.

57

4. Dynamically Structured Complex Business Objects

The inheritance concept, allowing only the addition of fields to a complex business object

type and the replacement of the business object type assigned to a field with a direct

sub-type is sufficient for the requirements of the Clavii engine, specifically Requirement

REQ-3, but might need work when generalizing the concept for other uses.

58

5
Service Task Plug-Ins and Process

Triggers

In order to support the execution of Java code and programs for process models running

in the Clavii engine, the Clavii BPM Cloud allows developers to write plug-ins. Plug-ins

can be applied to the tasks of a process model, thereby converting the task in question

into a service task. Input and output parameters of the plug-in may then be mapped to

complex business objects in the process model. One can even map to parts of complex

business objects, as mentioned in Section 3.3.1. Generally, a plug-in may be composed

of multiple “operations”, which contain variations of the plug-in’s functionality (cf. 2.2.1).

Plug-ins can be integrated into the Clavii engine in different ways. These integration

options are called plug-in “types”, each serving a different purpose. The different

variants of plug-ins are explained in Section 5.1. As the different types should be

usable transparently by the process model designer, an object-oriented solution for

59

5. Service Task Plug-Ins and Process Triggers

calling methods in classes that are unknown at compile-time is necessary. Section 5.2

describes how this can be done using the Reflection API and dynamic dispatching.

One of the main requirements that the Clavii engine should fulfill is providing the ability to

use complex business object instances in plug-ins (cf. Requirement REQ-5). Therefore,

5.3 describes the integration of business object instances in plug-ins. Section 5.4

introduces the algorithm necessary to fulfill Requirement REQ-6, i.e., allowing the Clavii

engine to handle variable length arguments for service task input parameters.

Finally, Section 5.5 and section 5.6 contain information on triggers, effectively plug-ins

which can start a process instance, and the XML descriptors for plug-ins and triggers.

5.1. Plug-In Types

In general, three types of plug-ins are supported by the Clavii BPM Cloud, which are

explained in detail in the following sections. The idea is to allow plug-in developers

flexibility, giving them multiple options on how to integrate their components. Furthermore,

the different plug-in types’ usage is completely transparent to the process model designer.

The process model designer does not even notice what kind of a plug-in he is using in

his process model.

5.1.1. Integrated Plug-Ins

An integrated plug-in is written in Java and is bundled with the Clavii BPM Cloud. To

be more precise, the source files for integrated plug-ins are actually located inside the

Clavii project files and are compiled at the same time the Clavii engine is. Integrated

plug-ins do, however, do not use any API unavailable to external plug-ins. Having the

exactly same programming model for external plug-ins and integrated plug-ins allows

for plug-ins that were previously not included directly in the Clavii project files to be

repackaged and integrated into it without having to change any code.

Integrated plug-ins aim at offering fundamental functionality like sending e-mail messages

at certain points in the business process, executing SQL queries, managing file uploads

60

5.1. Plug-In Types

to services like DropBox or OneDrive, and even managing CalDAV compatible Calenders.

All integrated plug-ins have very general uses and, potentially, offer functionality to a

multitude of users.

5.1.2. OSGi Plug-Ins

Users or enterprises wishing to extend the Clavii BPM Cloud’s functionality with custom,

external plug-ins can write plug-in classes and bundle them as OSGi bundles. OSGi

allows Java classes to be loaded, including dependencies, into the class path of a

running Java application. This means that an enterprise can upload an OSGi bundle

in the user interface containing the implementation of a plug-in accompanied by an

XML descriptor (cf. Section 5.6), which enables the Clavii engine to provide a new

plug-in for use in process models. OSGi plug-ins have exactly the same feature-set and

programming model as integrated plug-ins do. After initial loading, which occurs when

the plug-in is uploaded and once on every Clavii server restart the plug-in code is also

executed at the same speed as the integrated plug-in code. This holds true because

OSGi does not use proxies but normal java class loading features, i.e., the overhead is

only during the initial loading of the bundle, not during component code execution.

5.1.3. Web Service Plug-Ins

Web service plug-ins allow for calling existing web services that are not aware of Clavii

through a generic web service calling interface. This is made possible by leveraging the

JAX-WS [14] framework. Additionally, web services created for the Clavii BPM Cloud,

using the complex type framework consisting of Map and List nesting (cf. Section 5.3),

can be called. These web services must be written in Java, as they rely on the web

service host language understanding and delivering Java HashMaps as input/return

values. Web service plug-ins not requiring the use of complex business object types,

but only simple data types known to standard XML can be written in any language and

consumed by the Clavii engine. To use a web service, a user or enterprise must upload

a plug-in descriptor detailing input and output parameters of the web service.

61

5. Service Task Plug-Ins and Process Triggers

Web services have the advantage of not putting additional workload on the BPMS,

but instead distributing it to other servers. The drawback is that the SOAP-based

communication between the BPMS and the server hosting the web service. To be

more precise, the communication may introduce slight delays in the process instance

execution speed [33]. Furthermore, the availability of the web services, and therefore

the stability of the business processes hosted on the BPMS, are not guaranteed to the

level that they are when hosting all plug-ins locally.

5.2. Calling Plug-Ins Using the Java Reflection API

Integrated and OSGi plug-ins reside on the Clavii engine class path while the BPMS

is running. Particularly, instances of them can be created using the Java Reflection

API [17]. The Reflection API allows dynamically calling methods in classes at run-time,

using the class and method name. As a consequence, class and method names are not

required when compiling the BPMS. This allows for inclusion of integrated plug-ins by

just saving the plug-in classes and XML descriptors into a folder accessible to the Clavii

engine at start-up. In the context of OSGi plug-ins, reflection is necessary, as class and

method names of a plug-in are not known when compiling the BPMS.

Parameters and return values of plug-ins are fully supported, and even exceptions

thrown by the plug-ins can be caught in the Clavii engine which is useful in the context

of correctness by error resolution (cf. Section 6.5). As there are three types of plug-ins

(cf. Section 5.1), three different classes are necessary to pass parameters to plug-ins

and initiate their execution. Listing 5.1 shows an example of calling a method of a class

that is not known at compile-time.

1 / / i n s t r u c t s the d e f a u l t c lass loader to load the " someclass " c lass

2 Class <?> someclass = Class . forName (" someclass ") ;

3 / / Get a re ference to the " somemethod " i n the " someclass " c lass

4 Method method = c . getDeclaredMethod (" somemethod ") ;

5 / / c lazz . ge tCons t ruc to r () . ge t Ins tance () d e l i v e r s a new ins tance of the c lass

6 / / params i s an ar ray o f parameters to pass to the method

7 method . invoke (c lazz . ge tCons t ruc to r () . newInstance () , params) ;

Listing 5.1: Calling Methods Using Reflection

62

5.2. Calling Plug-Ins Using the Java Reflection API

Next we examine how the reflection API is used in the Clavii engine to facilitate transpar-

ently calling the different plug-in types

5.2.1. Use of Dynamic Dispatching for Calling Plug-Ins

Calling operations of plug-ins must be transparent towards the process model, to allow

exchanging a plug-in implementation from, for instance, an integrated plug-in to a web

service plug-in. For this reason the Clavii engine uses dynamic dispatching to ensure

that each plug-in calls the correct code necessary for creating an instance of its class

using reflection. Therefore, for every type of a plug-in one sub-class of the Plugin class

exists, i.e., IntegratedPlugin, OSGIPlugin, and WebServicePlugin.

The Plugin class has an abstract method with the signature shown in Listing 5.2.

1 public abstract Object c a l l D i s p a t c h e r (P lug inCa l lD ispa tcher d ispatcher , S t r i n g methodName , Map<St r ing , Object >

parameters)

Listing 5.2: Abstract Method callDispatcher

The abstract nature of the method forces the three sub-classes of Plugin to implement

the callDispatcher method, allowing each sub-class to call the code necessary for

executing the respective plug-in type. The PluginCallDispatcher is an interface defining

the methods necessary to execute any one of the plug-in types (cf. Listing 5.3).

1 public inter face Plug inCa l lD ispa tcher {

2 Object c a l l (I n teg ra tedP lug in in teg ra tedP lug in , S t r i n g methodName , Map<St r ing , Object > parameters) ;

3 Object c a l l (OSGIPlugin osg iP lug in , S t r i n g methodName , Map<St r ing , Object > parameters) ;

4 Object c a l l (WebServicePlugin webservicePlugin , S t r i n g operationName , Map<St r ing , Object > parameters) ;

5 }

Listing 5.3: Interface PluginCallDispatcher

Through the use of polymorphism, the abstract method call with separate implementa-

tions for each plug-in type allows for dynamic dispatching, i.e., all sub-classes of class

Plugin have an implementation of the method callDispatcher identical to the one in

Listing 5.4.

63

5. Service Task Plug-Ins and Process Triggers

1 @Override

2 public Object c a l l D i s p a t c h e r (P lug inCa l lD ispa tcher d ispatcher , S t r i n g methodName , Map<St r ing , Object > parameters) {

3 return d ispa tcher . c a l l (this , methodName , parameters) ;

4 }

Listing 5.4: Implementation of Method callDispatcher

Even though all sub-classes implement the abstract method with exactly the same code,

there is a difference for the compiler. If one would not use dynamic dispatching as

shown in Listing 5.3, but instead have one callDispatcher method located directly in the

super-class Plugin, Java could not infer which of the overloads of method call should be

called. Therefore, such code would not even compile, as there is no overload call(Plugin

plug-in, String methodName, Map<String, Object> parameters). This is in essence the

same limitation that was shown in Listing 4.2.

Class PluginCallDispatcherImpl, contains the implementation of the interface shown in

Listing 5.3 (cf. Appendix B.2). Doing so is recommended, as the actual calls to the

plug-in operations are an essential part of the Clavii engine.

5.3. Using Complex Business Object Instances in Plug-Ins

The plug-in API that the Clavii BPM Cloud offers has one fundamental requirement

(cf. Requirement REQ-5): The plug-in code must not require any Clavii engine specific

classes. As a consequence, the business object types that are definable using the

Clavii engine and user interface must also be usable in plug-in implementations without

requiring specific classes. This requirement results in a Java Map representation of

defined business object types (cf. Section 4). Java Maps and Lists can be used to nest

any complex business object type supported. Developers can look up the structure of

any business object type their plug-in should be compatible with and use it accordingly.

An example for a plug-in using an instance of business object type Person nested into a

HashMap is given in Listing 5.5.

64

5.3. Using Complex Business Object Instances in Plug-Ins

1 public Map<St r ing , Object > mixPeople (Map<St r ing , Object > parameters) {

2 Number person1Age = (Number) parameters . get (" Person 1.Age") ;

3 Number person2Age = (Number) parameters . get (" Person 2.Age") ;

4 S t r i n g person1Firstname = (S t r i n g) parameters . get (" Person 1.Name. Firstname ") ;

5 S t r i n g person2Firstname = (S t r i n g) parameters . get (" Person 2.Name. Firstname ") ;

6 S t r i n g person1Lastname = (S t r i n g) parameters . get (" Person 1.Name. Lastname ") ;

7 S t r i n g person2Lastname = (S t r i n g) parameters . get (" Person 2.Name. Lastname ") ;

8

9 Map<St r ing , Object > toReturn = new HashMap< >() ;

10

11 toReturn . put (" Combined Person . Age" , (personAAge . in tVa lue () + personBAge . in tVa lue ()) / 2) ;

12 toReturn . put (" Combined Person .Name. Firstname " , personAFirstname + ’− ’ + personBFirstname) ;

13 toReturn . put (" Combined Person .Name. Lastname " , personALastname + ’− ’ + personBLastname) ;

14 toReturn . put (" Combined Person . B i r t h Date " , new Date ()) ;

15 toReturn . put (" Combined Person . Gender " , " Female ") ;

16

17 return toReturn ;

18 }

Listing 5.5: Plug-In Example Using Complex Business Object Types

The plug-in implementation shown in Listing 5.5 concatenates the Firstname of one

Person business object instance with the Lastname of another. A plug-in always expects

a Map<String, Object> object as the sole input parameter for each of its operations. The

return value can either be void, i.e. no return value, a single parameter, or a HashMap

object containing multiple business object instances. Output parameters consisting of

complex business objects are created by putting all individual business object instances

required to compose the complex business object instance into a HashMap object,

adhering to the structure of the respective complex business object type.

In case the input or output parameters are collections of business object types, or a

complex business object type contains a collection of other business object types, the

Clavii engine passes the business object instances nested into a List<HashMap<String,

Object>>. This allows for greater flexibility concerning the structure of business object

types.

This approach also supports the inheritance of complex business object types and

usage of instances of derived business object types in plug-ins. Consider a complex

business object type Customer that extends business object type Person. Business

object type Customer has an additional field Regular Customer of data type Boolean.

Our framework detects that business object type Customer extends business object

type Person. Hence it allows the mapping of a business object of business object type

65

5. Service Task Plug-Ins and Process Triggers

Customer to an input parameter Person 1 of the mixPeople plug-in, (cf. Listing 5.5).

Particularly, mixPeople has no knowledge of the Customer business object type, but can

still execute normally. Extended complex types can only add fields to existing complex

types, i.e., they can never rename or remove them.

One challenge when designing the inheritance model was ensuring that plug-ins would

not delete the sub-type information upon outputting the business object instance from

the plug-in. For instance, if input parameter Person 1 and output parameter Combined

Person are connected to the same Customer business object, the fields that are not

output by the plug-in, i.e., Regular Customer, could be lost. We prevent this by using a

single Map for saving all business object instances, thereby “automatically” preventing

fields missing from plug-in output parameters from erasing existing information. This has

the additional advantage that plug-in developers do not have to output an entire complex

business object instance but only the fields they actually modify. Listing 5.6 shows the

code that the Clavii engine runs after receiving a HashMap return value from a plug-in.

1 / / i s the r e t u r n value a map?

2 i f (re tu rnVa lue instanceof Map) {

3 / / i t e r a t e over the mapping ,

4 / / i . e . , the names of the business ob jec ts i n the process mapped to

5 / / the names of the business ob jec ts i n the plug−i n

6 for (ProcessToPluginVariableKeyMapping concreteOutputMapping : outputMappingForThisTask) {

7 / / saves one i n d i v i d u a l s impletype to one key i n the a c t i v i t i i n t e r n a l business ob jec t map

8 execut ion . se tVa r i ab le (concreteOutputMapping . getProcessVariableKey () , ((Map<St r ing , Object >) re turnVa lue) . get (

concreteOutputMapping . getP lug inVar iab leKey ())) ;

9 }

10 }

Listing 5.6: Handling of Plug-In Return Values

Listing 5.6 shows how the Clavii engine does not overwrite the entire complex business

object instance, but instead only those parts returned by the plug-in.

5.4. Variable Length Arguments

To fulfill Requirement REQ-6, variable length arguments for service tasks, a mechanism

supporting this was introduced into the Caller class. The Caller class is the class that

contains the code for calculating the required parameters of a plug-in operation (cf.

66

5.4. Variable Length Arguments

Section 6.4.2), and making sure that they are all accounted for before starting the service

task. Omitted from the code that was shown in Listing 6.3 in Section 6.4.2 was the

algorithm for detecting variable length arguments.

The following is an example of a scenario where this method would be helpful: A service

task in a process model uses a plug-in operation Summarize which requires a parameter

of the business object type Integer List, i.e., a list of integers. The operation calculates

the sum of the integers in the list and returns it. This Integer List parameter is called

SummarizeInputList. The process model does not have a business object of the Integer

List business object type though, but it does have two business objects of business

object type Integer, IntX and IntY.

The Clavii engine allows the latter to be mapped to the same input parameter Sum-

marizeInputList. As a result a virtual List of business object instances containing the

parameters is created. The respective algorithm is presented in Listing 5.7. Particularly,

it is executed once for every parameter present in the input mapping for the service task.

The algorithm, after the required and optional parameters were calculated (cf. Listing

6.2), removes all correctly mapped parameters from the list of input parameters. If the

business object instance in question is neither required, nor optional, the algorithm

classifies it as a varArgs parameter. Afterwards, it calculates which List input parameter

the business object is mapped to by analyzing the mapping information of the business

object.

Returning to the previous example, this means that when the algorithm examines the

business object instance belonging to the business object IntA, it recognizes that IntA

is mapped to the input parameter SummarizeInputList. By checking the name of the

business object the algorithm determines that IntA is not a complex business object

instance. Finally, it checks if there is already a List inserted into the parameters map by

a previous iteration of the algorithm. As there is no List yet, the algorithm creates a new

List<Object> and inserts the business object instance into it. Afterwards, the new List is

written to the input parameters for that service task.

Further iterations, for instance for the second business object IntB, also present in the

process model, are identical, except for the fact that they recognize and utilize the List

67

5. Service Task Plug-Ins and Process Triggers

created by the iterations before, instead of creating a new one. This way the ad-hoc

List is filled with all parameters that are mapped to a specific list input parameter of the

service task.

1 S t r i n g lastProcessVariableName=" " ; / / de f ined outs ide o f the fo r−loop i t e r a t i n g a l l i npu t parameters

2 Map<St r ing , Object > las tV i r tua lComplexType = nul l ; / / these v a r i a b l e s are p e r s i s t e n t across a l l i t e r a t i o n s

3 . . .

4

5 / / remove parameter from requ i red / o p t i o n a l l i s t s

6 i f (requiredParameters . remove (p lug inVar iab leKey) == nul l && opt ionalParameters . remove (p lug inVar iab leKey) == nul l) {

7 / / parameter was not i n o p t i o n a l or requ i red parameters , t h i s i s a s i n g l e value mapped to a l i s t (varargs)

8 / / f i n d the name of the top l e v e l business ob jec t ins tance t h i s parameter belongs to (PersonA . Age => PersonA)

9 S t r i n g correctProcessVariableName = processVariableKey . subs t r i ng (0 , processVariableKey . indexOf (’ . ’)) ;

10 / / f i n d the name of the l i s t parameter t h a t t h i s varargs parameter i s t r y i n g to map to

11 S t r i n g correctPluginVar iab leName = plug inVar iab leKey . subs t r i ng (0 , p lug inVar iab leKey . indexOf (’ . ’)) ;

12

13 i f (processVariableKey . conta ins (" . ")) {

14 / / parameter i s o f a complex business ob jec t type

15 / / perform check i f there i s a l ready a v i r t u a l l i s t from a prev ious i t e r a t i o n , c reate a new one i f not

16 L i s t <Map<St r ing , Object >> adHocList = parameters . containsKey (correctPluginVar iab leName) ?

17 (L i s t <Map<St r ing , Object >>) parameters . get (correctPluginVar iab leName) : new L inkedL is t <Map<St r ing , Object > >() ;

18

19 / / v a r i a b l es a r r i v e a l p h a b e t i c a l l y , t h i s a l lows us to r e b u i l d complex business ob jec t ins tances and

20 / / i n s e r t them i n t o maps , j u s t as the plug−i n opera t ion expects

21 i f (! correctProcessVariableName . equals (lastProcessVariableName)) {

22 lastProcessVariableName = correctProcessVariableName ;

23 las tV i r tua lComplexBus inessObjec t = new HashMap< >() ;

24 adHocList . add (las tV i r tua lComplexBus inessObjec t) ;

25 }

26 las tV i r tua lComplexBus inessObjec t . put (processVariableKey . subs t r i ng (processVariableKey . indexOf (’ . ’) + 1 ,

processVariableKey . leng th ()) , i n p u t V a r i a b l e) ;

27

28 / / the v i r t u a l l i s t f i l l s the requ i red parameter , remove i t i f i t wasnt a l ready

29 requiredParameters . remove (correctPluginVar iab leName) ;

30 / / put the new or changed v i r t u a l l i s t i n t o the i npu t parameter map of the plug−i n opera t ion

31 parameters . put (correctPluginVar iableName , adHocList) ;

32 } else {

33 / / parameter i s o f a simple business ob jec t type

34 / / perform check i f there i s a l ready a v i r t u a l l i s t from a prev ious i t e r a t i o n , c reate a new one i f not

35 L i s t <Object > adHocList = parameters . containsKey (correctPluginVar iab leName) ?

36 (L i s t <Object >) parameters . get (correctPluginVar iab leName) : new L inkedL is t < >() ;

37

38 adHocList . add (i n p u t V a r i a b l e) ;

39

40 / / the v i r t u a l l i s t f i l l s the requ i red parameter , remove i t i f i t wasnt a l ready

41 requiredParameters . remove (correctPluginVar iab leName) ;

42 / / put the new or changed v i r t u a l l i s t i n t o the i npu t parameter map of the plug−i n opera t ion

43 parameters . put (correctPluginVar iableName , adHocList) ;

44 }

45 } else {

46 parameters . put (p lug inVar iab leKey , i n p u t V a r i a b l e) ;

47 }

Listing 5.7: Detection of VarArgs and Creation of Virtual Lists

68

5.5. Triggering Process Instances

5.5. Triggering Process Instances

In contrast to plug-ins, triggers are not executed as part of the process flow, i.e., during

the execution of a service task, but can actually “trigger” a process instance. Triggering

a process instance not only means instructing the Clavii engine to instantiate a certain

process model, thereby creating the process instance, but also handing business object

instances directly to the new process instance. These could be, for instance, headers or

attachments of a received e-mail. Basically, a trigger can be run at fixed intervals and

told to perform a certain task, like checking an IMAP account for new e-mail. When the

specified trigger condition is met, it can start a new process instance.

The aforementioned IMAP account trigger might be used to monitor an e-mail account

and automatically start a process instance of a business process that archives email

messages for every new mail received. Multiple triggers may be assigned to a process

model. As a trigger for a certain process model is defined on the start event, the start

event has its set of output parameters fixed after the first trigger is defined. A use case

for multiple triggers could be to define an IMAP trigger to archive every e-mail as it

arrives and, additionally, having a Timer trigger with an interval of 24 hours set to run

the archiving business process every day at 03:00.

In summary, triggers are assigned to a process model and configured to start process

instances when a set of conditions is met. This configuration is done by mapping

business objects that have the configuration parameters set as their default values

mapped to the trigger’s input parameters. The output parameters of a trigger can be

used to start a process instance with default values for the mapped business objects

based on the event that triggered the process instance, for instance the content of a

received e-mail.

Next we examine the implementation of triggers and the code supporting their execution

in the Clavii engine.

69

5. Service Task Plug-Ins and Process Triggers

5.5.1. Leveraging the Reflection and Executor Frameworks for Triggering

Process Instances

The triggers rely on the same principle as plug-ins, of not requiring developers of triggers

to import any Clavii engine specific classes into their projects. Developers of triggers

do, however, have to adhere to a few strict rules, listed in the following excerpt from the

Clavii knowledge base:

1. A trigger class must implement Serializable and Runnable, this ensures that the

state of a trigger can be persisted in a database and reloaded after server restarts.

State information must be saved in fields in order for serialization to work.

2. A trigger has to keep a Map<Long, Object> field, mapping IDs of the process

models it should trigger to whatever information it needs for triggering (it can

also use multiple maps). For instance, the following code maps timer intervals in

seconds as integers to process model IDs:
1 private f i n a l Map<Long , In teger > idMapping = new HashMap< >() ;

3. The method run, which the class is forced to have implementing interface Runnable,

gets called only once after installing a new trigger via OSGi and once on every

server restart. The actual monitoring that the trigger does should be set up in

the run method, leveraging the SingleThreadScheduledExecutor class, part of the

Java Executor Framework [5]. The run method must restart all monitoring activity,

using the information saved in the persistent fields of the class.

4. Two methods to register and deregister process models to the trigger must be

added.

5. The register method must have a Long as its first parameter, this is the ID of the

process model that will be triggered. The second parameter must be a Map<String,

Object> containing all business objects required for the trigger to set up its moni-

toring. The Map object is formatted in the same dot-based notation for complex

business object instances as the input map of a regular plug-in (cf. Section 5.3).

6. One field must be defined with the following signature:

"transient java.lang.reflect.Method"

70

5.5. Triggering Process Instances

The name of the field does not matter (e.g., private transient Method receiver;).

This field is injected using reflection once the trigger gets loaded. It represents a

reference from the trigger implementation to the Clavii engine.

7. When the trigger detects something that it should trigger for, call the code in Listing

5.8 from the SingleThreadScheduledExecutor.

1 Map<St r ing , Object > output= new HashMap< >() ;

2 output . put (" variablename " , va r i ab leva lue) ;

3 rece i ve r . invoke (null , [PROCESSMODELIDTOTRIGGER] , output) ;

Listing 5.8: Triggering Code

[PROCESSMODELIDTOTRIGGER] represents the ID of the process model that is

cached in the “idMapping” Map. The Map<String, Object> in Line 1 contains all

the information that should be used as parameters for the new process instance.

Line 3 statically calls the method behind the Method field that was defined in the

previous step.

The entire implementation of a Timer trigger, which starts process instances after a

given interval of seconds and passes the starting time to the process instance, is shown

in Appendix B.3.

The Java Executor Framework allows for the use of thread pools and interval-based

scheduling of tasks. By utilizing thread pools instead of threads for each monitoring

activity started by a trigger, the efficiency of the Clavii engine can be increased, as

Thread objects are expensive in their creation [12].

The use of reflection to inject the Method field into the trigger at run-time is essential.

Otherwise the trigger, which for the most part runs completely autonomously, would

have no way of communicating with the Clavii engine and instructing it to start a process

instance. The code for injecting the Method field at run-time, and running the trigger’s

run method afterwards, is given in Listing 5.9.

71

5. Service Task Plug-Ins and Process Triggers

1 / / get the l a s t s t a t e the t r i g g e r was i n

2 S e r i a l i z a b l e s e r i a l i z e d S t a t e = t r i g g e r . g e t S e r i a l i z e d S t a t e () ;

3 / / i t e r a t e a l l f i e l d s and f i n d the " Method " f i e l d

4 for (F i e l d f i e l d : s e r i a l i z e d S t a t e . getClass () . ge tDec laredF ie lds ()) {

5 i f (f i e l d . getType () . equals (Method . class)) {

6 / / enable i n j e c t i n g p r i v a t e v a r i a b l e s

7 f i e l d . se tAccess ib le (true) ;

8 t ry {

9 / / i n j e c t the f i r s t method (the only one) from Tr iggerRece iver . c lass

10 / / t h i s method i s set up to rece ive the output o f a t r i g g e r

11 f i e l d . se t (s e r i a l i z e d S t a t e , Tr iggerRece iver . getClass () . getMethods () [0]) ;

12 } catch (I l l ega lAccessExcep t ion e) {

13 e . p r in tS tackTrace () ;

14 }

15 }

16 }

17 / / s t a r t the t r i g g e r (execute run method i n new thread)

18 new Thread ((Runnable) s e r i a l i z e d S t a t e) . s t a r t () ;

Listing 5.9: Injecting a Method into a Trigger

The non-transient fields are used in combination with the rule that the class has to

implement Serializable to enable the Clavii engine to freeze and serialize the trigger for

persisting to a database table on shutdown. This way the trigger can be “restarted” after

starting the BPMS. Listing 5.9, shows the injection of the Method field and running of

the trigger in a new thread, which is actually part of this restarting procedure.

5.6. XML Descriptors for Plug-Ins and Triggers

Plug-ins and triggers can be configured via XML descriptors, similar to how types can

be defined using XML, (cf. Section 4.6). The XSD schema for the XML descriptors for a

plug-in is very straightforward, as can be seen in Listing 5.10.

1 <xs : complexType name=" plug−i n " abstract=" t rue ">

2 <xs : complexContent >

3 <xs : sequence>

4 <xs : element name=" l o c a t i o n " type=" xs : s t r i n g " / >

5 <xs : element name="name" type=" xs : s t r i n g " / >

6

7 <xs : element name=" d e s c r i p t i o n " type=" xs : s t r i n g " minOccurs=" 0 " / >

8 <xs : element name=" author " type=" xs : s t r i n g " / >

9 <xs : element name=" ope ra t i onDesc r i p t i ons ">

10 <xs : complexType>

11 <xs : sequence>

12 <xs : element name=" ope ra t i onDesc r i p t i on " type=" ope ra t i onDesc r i p t i on " maxOccurs="

unbounded " / >

13 </ xs : sequence>

72

5.6. XML Descriptors for Plug-Ins and Triggers

14 </ xs : complexType>

15 </ xs : element >

16 </ xs : sequence>

17 </ xs : complexContent >

18 </ xs : complexType>

19

20 <xs : complexType name=" ope ra t i onDesc r i p t i on ">

21 <xs : complexContent >

22 <xs : sequence>

23 <xs : element name="methodName" type=" xs : s t r i n g " / >

24 <xs : element name="name" type=" xs : s t r i n g " / >

25 <xs : element name=" d e s c r i p t i o n " type=" xs : s t r i n g " minOccurs=" 0 " / >

26 <xs : element name=" inputParameters " minOccurs=" 0 ">

27 <xs : complexType>

28 <xs : sequence>

29 <xs : element name=" inputParameter " type=" operat ionParameter " minOccurs=" 0 " maxOccurs=

" unbounded " / >

30 </ xs : sequence>

31 </ xs : complexType>

32 </ xs : element >

33 <xs : element name=" outputParameters " minOccurs=" 0 ">

34 <xs : complexType>

35 <xs : sequence>

36 <xs : element name=" outputParameter " type=" operat ionParameter " minOccurs=" 0 " maxOccurs

=" unbounded " / >

37 </ xs : sequence>

38 </ xs : complexType>

39 </ xs : element >

40 </ xs : sequence>

41 </ xs : complexContent >

42 </ xs : complexType>

43

44 <xs : complexType name=" operat ionParameter ">

45 <xs : complexContent >

46 <xs : sequence>

47 <xs : element name=" type " type=" xs : s t r i n g " / >

48 <xs : element name="name" type=" xs : s t r i n g " / >

49 <xs : element name=" d e s c r i p t i o n " type=" xs : s t r i n g " minOccurs=" 0 " / >

50 <xs : element name=" o p t i o n a l " type=" xs : boolean " / >

51 </ xs : sequence>

52 </ xs : complexContent >

53 </ xs : complexType>

Listing 5.10: XSD Plugin Schema

In essence, the XSD dictates that a plugin must have a location element, i.e., the

class name for integrated or OSGi plug-ins or URI of the Web Services Description

Language (WSDL) file for web services. Furthermore, descriptive properties such as

author and name as well as a list of operationDescriptions are required. Moreover, an

operationDescription element consists of a methodName element, i.e., the method or

operation name in the class or WSDL, some descriptive properties such as name and

73

5. Service Task Plug-Ins and Process Triggers

description and lists of input and output parameters. Each parameter is assigned one

business object type that exists in the Clavii engine.

Omitted from Listing 5.10 are sub-classes of the abstract class Plugin (i.e., Integrat-

edPlugin, OSGIPlugin, and WebServicePlugin), as they are only markers. This means

that instead of having <plugin> as the opening tag of a valid plug-in XML file, one has to

write, e.g., <osgiplugin> to force the file to be interpreted as the definition of an OSGi

plug-in. The tags are identical to those of <plugin>, as dictated by the XSD.

Triggers can also be defined using an XML document. The XSD is virtually identical

and therefore omitted. The only difference is that the names of the trigger’s register and

deregister methods have to be added as tags. XML definitions of a sample plug-in and

sample trigger can be reviewed in Appendix B.4 and Appendix B.5 respectively.

5.7. Summary

In summary, this section has explained how the Clavii engine supports Requirements

REQ-5 and REQ-6, i.e., the use of complex business objects in plug-in implementation

and allowing service tasks expecting lists of business objects to be mapped as variable

length arguments. It has also given examples of the different types of plug-ins the

Clavii BPM Cloud supports, and what techniques, such as dynamic dispatching and the

Reflection API, were used to achieve this support. Also, the topic of triggers, their role,

as well as their implementation, was discussed. Finally, the use of XML descriptor files

to configure plug-ins for integration into the running BPMS was explained.

74

6
Ad-hoc Process Model Execution Control

In the following we explain the concept and implementation of one of ad-hoc control

of process flow. To support Requirements REQ-9 and REQ-10, a BPMS must allow

for ad-hoc workflow. This also allows for process models to execute which have, for

instance, service tasks that have unmapped - but required - input parameters. The

advantage, compared to a correctness by construction principle [21], is the ability to

start testing the process model at an early stage of development. For instance, while

process model designers are still modeling the data flow or setting up individual service

tasks, the quality assurance team may start testing the process model and the individual

service tasks by actually executing the process model.

Ad-hoc process execution control is used to support this use case by rerouting the

execution to dynamically created user tasks. These user tasks show a form allowing

users to input values for the missing parameters. This prevents the service task from

75

6. Ad-hoc Process Model Execution Control

executing without having all the necessary parameters present. This means that that the

user can input the missing parameters and run the service task normally afterwards.

Also, if any service task has all required parameters present, but fails later on, internally,

due to an exception, this allows the engine to transparently generate a user form asking

the user if he wants to retry the task. The generated user form even offers the user

the ability to re-enter all input parameter data that the service task used in the current

process instance. The BPMN engine then reroutes the process execution to display a

respective user form to the user. If the user then chooses to retry a service task, with

different parameters, the service task gets executed with the new parameters, and, if

successful, the process flow continues normally at the expected point in the process

model. This can not, however, ensure atomic execution of the actual service task logic,

i.e., if the service task fails after having completed partially a retry will lead to multiple

executions of the same code. One could eliminate this problem partially if the plug-in

code could serialize state information for every process instance calling it, but the current

prototype does not support this yet.

The following sections describe the concepts required to provide ad-hoc process model

execution control. First, Section 6.1 describes the concept for rerouting the process

instance execution in case of an missing parameters or run-time errors. The actual

implementation of the first part of the concept, pausing the process instance, is described

in Section 6.3. Then Section 6.4 continues with the description of the different situations

where pausing the process instance is necessary. After the process instance is paused,

an error correction form is displayed to the user, the construction of which is described

in Section 3.5. After the form is completed the process instance can be resumed with

the corrected parameters, this final step is described in Section 6.6.

76

6.1. Concept for Handling Missing Parameters and Run-time Errors

6.1. Concept for Handling Missing Parameters and Run-time

Errors

The implementation concept for the two very similar use cases, requesting input pa-

rameter values for incorrectly mapped input parameters and the possibility of retrying a

service task which threw an exception with different parameters, is shown in Figure 6.1.

Service Task S1

Service Task S1

Error Resolution

Form

Data Object D1: Bad Data

Read

Data Object D1: Correct Data

Write

S1 throws an error

resulting in

ad-hoc process

model changes

Service Task S1

Data Object D1: Correct Data

Re-read

After the corrected

data is written to D1

the ad-hoc changes

are reverted and

S1 gets re-invoked

Figure 6.1.: Ad-hoc Process Execution Control Concept

77

6. Ad-hoc Process Model Execution Control

Basically, when missing parameters are detected before the execution of a service task,

or a service task throws an exception at run-time, a user form is generated which helps

him correct the error in question. It does this by allowing the user to add values for the

missing parameters or change business objects that are in use by the service task. The

user task containing the user form is then inserted into the process flow directly after the

service task in question, replacing the sequence flow that the process instance would

normally take with one leading to the user task. Additionally, a sequence flow connecting

the user task back to the service task is inserted into the process flow as well, effectively

creating a loop control flow structure between the faulty service task and the user form.

Once the user form is completed and execution arrives back at the service task, the

ad-hoc changes applied to the process instance are reverted.

6.2. Implementation of the Concept in the Clavii Engine

The concept shown in Section 6.1 had to be adapted for use in the Clavii BPM Cloud

prototype, mostly because the forms that the user interface uses are not prefab user

forms, but generated on the fly using GWT. Also, as Clavii allows users to execute user

tasks in their process models by clicking on them at run-time, the basic concept would

have shown them the ad-hoc changes and had them click on the error correction forms

in the run-time view. As to not confuse users by showing them the ad-hoc process model

changes in the user interface the implementation concept hides the actual changes to

the process model.

This allows us to use a so-called receive task1 instead of a user task in the implemen-

tation of the concept. A BPMN receive task forces the process instance to wait until

receiving a signal from an external source, in this case the user interface. The rest

of the concept stays the same, the only real difference is that the process instance

pauses because of a receive task and not because of a user task and that the missing

parameters are not collected by a user task but by a form dynamically generated in

the user interface. The error message or list of missing parameters to facilitate this is

1http://www.activiti.org/userguide/#bpmnReceiveTask

78

6.2. Implementation of the Concept in the Clavii Engine

generated and sent to the user interface after the execution of the process instance is

halted in the receive task. The user can then double-click the failed service task, at which

point the user interface generates a dynamic form that, after requesting all necessary

data from the user, sends the input back to the Clavii engine. The Clavii engine can

then write the new or changed business object instances to the process instance. Once

the data is persisted in the process instance, the signal event for the receive task is

triggered, which causes the execution token to jump from the receive task back in front

of the original service task. The two temporary sequence flows and the receive task are

then erased from the model, effectively reverting the ad-hoc changes, as described in

the original concept, thereby allowing execution to continue normally.

6.2.1. Use in Manual Gateway Execution

The implementation of this concept can be used in a simplified form to facilitate manual

gateway execution, as discussed in Section 3.3.3. Manual gateway execution pauses the

process instance using the same receive task method as soon as the process instance

reaches a gateway marked as manual. The user interface reacts to a paused gateway

by offering the user a pop-up where he can choose the execution path he would like the

process instance to continue on (cf. Figure 6.2).

Send Rejection

Job Interview

Which branch should be persued?

[Job Interview]

[Send Rejection]

Figure 6.2.: Manual Execution Path Selection at Run-time

79

6. Ad-hoc Process Model Execution Control

As the run-time user interface for process instances shows the respective process model

itself, as opposed to the work lists that many BPMS offer[1, 2, 3, 8, 10], this is an

extremely fast way for users to navigate an XOR gateway with any amount of outgoing

branches and simple decision logic, which would otherwise necessitate an extra user

task.

6.3. Implementation of Ad-hoc Pauses

The concepts discussed in Section 6.1 rely on pausing the execution of a process

instance. Generally, a BPMS does not support pausing of process instances at arbitrary

points in time, e.g., while executing a service task or traversing a sequence flow. The

aforementioned pausing concept uses the BPMN2 receive task coupled with ad-hoc

sequence flows and signal events to circumvent this limitation. The advantage of this

approach is that, if there is parallel execution due to control structures such as an AND

gateway, the engine only pauses the branch of the execution which should be paused.

Listing 6.1 shows the ease with which the implementation of this concept is possible

using the Activiti BPM engine API. Note that in the context of the Activiti BPM engine API

a task is referred to as an activity. Also, a sequence flow is referred to as a transition.

1 ScopeImpl process = th isTask . getParent () ;

2 A c t i v i t y I m p l pause = process . c r e a t e A c t i v i t y (" PauseFor " + a c t i v i t y I d) ;

3 pause . s e t A c t i v i t y B e h a v i o r (new Rece iveTaskAct iv i tyBehav ior ()) ;

4 T r a n s i t i o n I m p l toPause = t h i s A c t i v i t y . c rea teOutgo ingTrans i t i on () ;

5 toPause . se tDes t i na t i on (pause) ;

6 T r a n s i t i o n I m p l loopback = pause . c rea teOutgo ingTrans i t i on () ;

7 loopback . se tDes t i na t i on (t h i s A c t i v i t y) ;

8 a c t i v i t y E x e c u t i o n . take (toPause) ;

Listing 6.1: Pausing a Process Instance Using the Concept from Section 6.1

The code in Listing 6.1 is executed at process instance execution, after a service task

fails, a manual gateway or a missing parameter is detected. The code is very close to

the concept:

In Line 1 the parent of the current task, i.e., the process instance, creates a new task.

During creation, in Line 2, the task is assigned a unique ID, composed of a keyword
2http://www.omg.org/spec/BPMN/2.0/

80

6.4. Detection of Errors Leading to Dynamic Ad-hoc Pauses

identifying it as a pause state and the globally unique ID of the task. The ID is needed for

clean-up purposes later on, as the activity is deleted after the process instance execution

is resumed. In Line 3 the task is then assigned the behavior of a receive task. A behavior

assigns functionality to the task in question, which it lacks directly after initialization.

Afterwards, in Lines 4 to 7, two transitions are created, connecting to the new task and

the current task, forming a loop. Finally, in Line 8, the activityExecution, a reference

to the logical execution thread of the current parallel branch, is instructed to “take” the

transition leading to the new pause state.

As soon as the execution is paused, the user interface shows the user a user form or

gateway decision input, based on the reason for the pause. The gateway input and error

correction form is shown in Figure 6.2 and Figure 6.6 respectively. After completion, the

input is sent to the Clavii engine along with a special signal event targeted at the receive

task. The signal event allows the process instance to continue execution on the branch

that had been paused.

As the second ad-hoc transition connects the receive task back to the service task

or gateway that was paused, continued execution leads to invoking that task again.

Subsequently, the temporary receive task is deleted, along with the two transitions.

This ensures that the process instance continues to flow normally, if no new errors are

detected. If, however, errors are detected again, the entire procedure begins anew,

re-executing the code from Listing 6.1.

6.4. Detection of Errors Leading to Dynamic Ad-hoc Pauses

The methods for detecting errors that lead to pausing of a process instance and request-

ing user input varies between the following three use cases:

A manual gateway triggering a pause is flagged as such and only has to send a push

notification to the user interface telling it to display the XOR choice pop-up for the current

gateway to the user (cf. Figure 3.3.3).

Detecting an error in an internally failed service task is also trivial as the service tasks

are called using the Java Reflection API, which allows catching of an InvocationTarge-

81

6. Ad-hoc Process Model Execution Control

tException, an umbrella exception for any exception that occurred in the service task

code. In this case a list of all input parameters of the failed task has to be assembled

and sent to the user interface for use in an error correction form (cf. Figure 6.6).

The most critical use case that causes execution pauses, is the failing of a service task

due to a missing but required input parameter. In this case the execution of such a

service task should be prevented to ensure that it does not get partially executed and

then fails do to an internal exception. Detecting if a parameter is correctly mapped to

a business object is challenging because the Clavii engine supports complex mapping

structures, an example of which can be seen in Figure 6.4. Partial complex mapping

introduces cases in which one can not simply check if an input parameter is null to

determine if it is present.

Two cases of partial complex mapping can occur in a process model. Therefore, it is

required to analyze for errors. The first case of complex parameter mapping is given in a

process model that might have a Person business object and uses a service task only

requesting a parameter of the business object type Age (cf. Figure 6.3).

<<Input Parameter>>

Age Input: Age

<<Business Object>>

Person XYZ: Person

-Name: Name
-Age: Age
-Birth Date: Date
-Gender: Gender

Figure 6.3.: Partial Complex Parameter Mapping Case 1

Consequently, the second case of complex parameter mapping is shown in Figure

6.4. In Figure 6.4 there is a complex parameter Owner of business object type Person,

belonging to a service task input parameter of the BankAccount complex business object

type. A Person consists of business object types Name, Birth Date, Gender and Age.

However, the process model using this service task does not have to supply the entire

business object “Owner”, but can rather map parts individually.

82

6.4. Detection of Errors Leading to Dynamic Ad-hoc Pauses

<<Input Parameter>>

BankAccount Input: BankAccount

<<Business Object>>

Name XYZ: Name

-Firstname: Text
-Lastname: Text

-Owner.Name: Name

-Balance: Integer

<<Business Object>>

Balance XYZ: Integer

-Owner.Age: Age

-Owner.Gender: Gender
-Owner.Birth Date: Date

<<Business Object>>

Age XYZ: Age

<<Business Object>>

Birth Date XYZ: Date

<<Business Object>>

Birth Date XYZ: Gender

Figure 6.4.: Partial Complex Parameter Mapping Case 2

The implementation of the Clavii engine handles both these cases by using complex

business object type structural information, which the underlying Activiti BPM engine has

no knowledge of, to create a list of the primitive business objects that are required for

execution of the service task. The Activiti BPM engine uses a data structure conceptually

similar to a Map3 internally for holding business object instances. Therefore, complex

business objects that the Activiti BPM engine is unaware of must be unwrapped to unique

positions in the Activiti BPM engine’s internal business object map. Section 4.3 details

the way an instance of the aforementioned Person business object type is unwrapped

into a simple dot-based notation.

3http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

83

6. Ad-hoc Process Model Execution Control

6.4.1. Determining Required Input Parameters

The Clavii engine must create a list of keys for the business object instances for a

process instance to check if each key exists and is not null. A keys is a representation

of primitive business object instances in the Activiti BPM engine. This is done by the

two methods shown in Listing 6.2. Determining input parameters that a service task

requires is done based on the list of required parameters belonging the plug-in operation

assigned to the service task.
1 public Map<St r ing , BusinessObjectType > getRequiredParameters () {

2 Map<St r ing , BusinessObjectType > re tu rnVa l = new HashMap< >() ;

3 for (Operat ionInputParameter operat ionInputParameter : inputParameters) {

4 i f (! operat ionInputParameter . i s O p t i o n a l ()) {

5 i f (operat ionInputParameter . getType () instanceof ListBusinessObjectType | | operat ionInputParameter .

getType () instanceof MapBusinessObjectType) {

6 / / i f the type of the parameter i s a l i s t or map, there i s no need to do recu rs ion

7 re tu rnVa l . put (operat ionInputParameter . getName () ,

8 operat ionInputParameter . getType ()) ;

9 } else {

10 / / c a l l r ecu rs i ve method to f i n d f u t h e r requ i red parameters o f complex types

11 re tu rnVa l . p u t A l l (recursiveAddParameters (operat ionInputParameter . getType () , operat ionInputParameter .

getName ())) ;

12 }

13 }

14 }

15 return r e tu rnVa l ;

16 }

17

18 private Map<St r ing , BusinessObjectType > recursiveAddParameters (BusinessObjectType businessObjectType , S t r i n g p r e f i x)

{

19 Map<St r ing , BusinessObjectType > re tu rnVa l = new HashMap< >() ;

20 i f (businessObjectType instanceof ComplexBusinessObjectType) {

21 ComplexBusinessObjectType complexBusinessObjectType = (ComplexBusinessObjectType) businessObjectType ;

22 for (Map. Entry <St r ing , BusinessObjectType > en t ry : complexBusinessObjectType . getContainedTypes () . en t rySet ())

{

23 / / t h i s i s a complex parameter t h a t might con ta in f u r t h e r parameters , recu rs i ve c a l l

24 re tu rnVa l . p u t A l l (recursiveAddParameters (en t ry . getValue () , p r e f i x + ’ . ’ + en t ry . getKey ())) ;

25 }

26 } else {

27 re tu rnVa l . put (p r e f i x , businessObjectType) ;

28 }

29 return r e tu rnVa l ;

30 }

Listing 6.2: Generating a List of Required Parameters for a Service Task

Method getRequiredParameters() in Listing 6.2 returns a map containing all keys of

parameters required for service task execution, mapped to their business object types.

This ensures that the list of missing parameters also contains structural information

needed to create and display the user form for correcting the error. Once all required

84

6.4. Detection of Errors Leading to Dynamic Ad-hoc Pauses

parameters are determined for a service task, the Clavii engine continues by comparing

the actually existing parameters with those on the list, which is described in Section

6.4.2.

6.4.2. Comparing Required Service Parameters to Existing Ones

After determining required parameters that compose the input parameters of the cur-

rent service task, they must be compared with the existing business object instances

belonging to the current process instance. This straightforward comparison is shown

in Listing 6.3. This full example additionally differentiates between missing values and

missing parameters. To be more precise, a parameter existing but not having a value or

a parameter missing altogether, as they are treated differently later on.

1 boolean missingSomething = fa lse ;

2 Map<St r ing , BusinessObjectType > requiredParameters = ope ra t i onDesc r i p t i on . getRequiredParameters () ; / / see prev ious

l i s t i n g

3 for (ProcessToPluginVariableKeyMapping mapping : inputMappingForThisTask) {

4 / / i t e r a t e over a l l mapped parameters using the mapping

5 S t r i n g processVariableKey = mapping . getProcessVariableKey () ;

6 S t r i n g p lug inVar iab leKey = mapping . getP lug inVar iab leKey () ;

7 Object i n p u t V a r i a b l e = execut ion . ge tVar iab le (processVariableKey) ;

8 / / check i f v a r i a b l e has value

9 i f (! mapping . i s O p t i o n a l () && i n p u t V a r i a b l e == nul l) {

10 missingValues . put (task Id , processVariableKey) ;

11 missingSomething = true ;

12 }

13 / / remove parameter from requ i red l i s t

14 requiredParameters . remove (p lug inVar iab leKey) == nul l ;

15 }

16 for (Map. Entry <St r ing , BusinessObjectType > en t ry : requiredParameters . en t rySet ()) {

17 / / add a l l s t i l l requ i red parameters to missingParameters l i s t

18 missingParameters . put (task Id , new MissingBusinessObjectTypePathPair (en t r y . getKey () , en t r y . getValue ())) ;

19 missingSomething = true ;

20 }

21 i f (missingSomething) {

22 / / missing e i t h e r mapped inpu t or a mapped v a r i a b l e i s n u l l , pause execut ion

23 fa i l edTasks . put (task Id , " Missing Parameters ") ;

24 execut ion . se tVa r i ab le (St r ingConstants . FAILED_TASKS , fa i l edTasks) ;

25 execut ion . se tVa r i ab le (St r ingConstants . MISSING_VALUES, missingValues) ;

26 execut ion . se tVa r i ab le (St r ingConstants .MISSING_PARAMETERS, missingParameters) ;

27 return pauseExecution (task Id , th isServ iceTask) ; / / see prev ious l i s t i n g

28 } else {

29 / / normal execut ion o f se rv i ce task

30

31 / / ommitted ac tua l se rv i ce task invoca t i on

Listing 6.3: Detecting Missing Parameters and Values

85

6. Ad-hoc Process Model Execution Control

This code uses the methods for pausing run-time execution (cf. Listing 6.1) and creation

of the required parameter list (cf. 6.2) and is called before every service task execution.

Thereby it ensures that all required input parameters exist and respective values are

assigned. Otherwise, certain flags are set as instance variables, instructing the user

interface on how to handle the resolution of the error.

Note the usage of the ProcessToPluginVariableKeyMapping class, which is essentially

an implementation of a simple key-value pair. It handles the mapping of the name

that a business object instance has in the Activiti BPM engine’s internal business

object instance Map (e.g., “VariableNameXYZ”), to the parameter name that the plug-in

operation uses (e.g., “InputVariableXYZ”). This is necessary to allow plug-in developers

to choose business object instance names for internal use that are detached from names

in a process model It is also used in partial complex type mapping, as depicted in Figure

6.4.

If, based on the list of required parameters, a missing or invalid parameter is found, the

user interface showing the process instance is notified of the error, allowing the user to

display of an error correction user form.

6.5. Displaying an Error Correction User Form

Requirement REQ-8 states that a BPMS must be able to handle complex business

objects. To support this, structural information of any missing parameter, i.e., the

corresponding business object type, is sent to the user interface in case an error

correction user form has to be displayed. With the help of the structural information

contained in the business object types of the business object instances that are to

displayed, the form can be generated. The user interface notifies users currently

executing a process instance by marking the failed task in red and appending an

error message, as shown in Figure 6.5.

86

6.5. Displaying an Error Correction User Form

Service Task

Missing Parameters

12:38 11.07.2014

Figure 6.5.: Notification of Users in Case of an Error

A missing parameter notification sent to the user interface for a missing parameter

of the Person type could contain the information <TaskId: ”123”, ParameterName:

”InputPersonX”, ParameterType: ”Person”>. After a user double-clicks the marked task,

shown in Figure 6.5, the user interface requests the structural information of the missing

parameters. The user interface can then use the structural information on the complex

business object type Person to create the form fields for the Name, Birth Date, Gender,

and Age (cf. Figure 6.6). Note that the Name business object type itself is complex,

resulting in a nested form containing the input fields for the business object types

Firstname and Lastname.

Figure 6.6.: Missing Parameters Form

87

6. Ad-hoc Process Model Execution Control

The similarity to a normal Person user form (cf. Figure 3.5) stems from the complete

reuse of the form component for both the normal user forms and the error correction

forms. The current prototypes of the user form and error correction form components use

a combination of the HTML DisclosurePanel, CaptionPanel, and Label elements along

a few of standard input fields for different primitive data types, e.g., TextBox, CheckBox.

Additionally, a table is automatically shown for objects of the ResultSet type, allowing for

the use of service task plug-ins that return result sets from SQL queries. The main rules

for determining the form structure are very simple:

• If a business object has more than three direct children, enclose them in a Disclo-

surePanel (cf. Figure 6.6, Marking (a)).

• If a business object has three or less direct children, enclose them in a Caption-

Panel (cf. Figure 6.6, Marking (b)).

• Any primitive business object is paired with a Label holding its name and given an

input field corresponding to its base Java type (e.g., CheckBox for boolean).

• Business object collections (cf. Section 3.1.4) are enclosed in DisclosurePanels

and, in case they are editable, given an “Add” button so new elements can be

added to the collection.

6.6. Re-invoking Service Tasks with Corrected Parameters

Once required business objects are supplied with correct data values, the Clavii engine

must map the input from the form back into the process instance’s business objects. The

method that the user interface calls using the new business object instances produced

by the form component is shown in Listing 6.4.

1 public void wr i teMiss ingValues (S t r i n g processInstanceId , Co l l ec t i on <BusinessObject > businessObjects) {

2 / / c rea te con ta ine r f o r f l a t t e n e d v a r i a b l e s

3 Map<St r ing , Object > v a r i a b l e s = new HashMap< >() ;

4 / / r e t r i e v e parameter mapping from the process

5 Multimap <St r ing , ProcessToPluginVariableKeyMapping > inputMapping = runt imeServ ice . ge tVar iab le (processInstanceId ,

St r ingConstants . INPUTMAPPING) ;

6 / / use v i s i t o r pa t t e rn to f l a t t e n the d i f f e r e n t business ob jec ts to business ob jec t ins tances

7 for (BusinessObject businessObject : businessObjects) {

8 businessObject . accept (new Bus inessOb jec tF l a t t enV i s i t o r (va r iab les , businessObject . getName () , inputMapping ,

nul l)) ;

88

6.6. Re-invoking Service Tasks with Corrected Parameters

9 }

10 / / update the inputmapping to r e f l e c t new va r i a b l e s

11 runt imeServ ice . se tVa r i ab le (processInstanceId , St r ingConstants . INPUTMAPPING, inputMapping) ;

12 / / w r i t e f l a t t e n e d v a r i a b l e s to process

13 runt imeServ ice . se tVar iab les (processInstanceId , v a r i a b l e s) ;

14 }

Listing 6.4: Persisting new Values for Missing Parameters

A listing for BusinessObjectFlattenVisitor is provided in Appendix B.1. The Multimap [16]

object, which is used in Line 5 of Listing 6.4 represents the entire input mapping between

business objects and the parameters of service tasks. The Multimap data structure

supports multiple mappings for each key entry. A key entry is the ID of a service task. In

Line 8, the BusinessObjectFlattenVisitor class unwraps complex business objects into

primitive ones that are understood by the Activiti BPM engine, effectively instantiating

them (cf. Section 4.3). Furthermore, it must also be ensured that the input mapping is

updated with mappings for the newly created business object instances. Figure A.1 in

Appendix A details the execution of the BusinessObjectFlattenVisitor class for a service

task with an unmapped, but required input parameter of the Name business object type.

This is performed directly after a user completes the error correction form (cf. Figure

6.6).

Afterwards, the BusinessObjectFlattenVisitor class returns the new primitive business

objects paired with their respective key entries, along with the mapping to support the

usage of the new business object instances by the service task for which they were

created. Finally, the mapping and business object instances are persisted in the Activiti

BPM engine (cf. Listing 6.4 Lines 11-13). Subsequently a process instance is in a state,

in which it can re-run the previously failed service task. This is completely transparent to

the Clavii engine, as the difference in comparison to normal service task execution is

that the previously created transitions and the receive task are deleted from the process

instance’s model (cf. Section 6.3).

89

6. Ad-hoc Process Model Execution Control

6.7. Summary

In summary, this section has shown the methods used by the Clavii engine to fulfill

Requirements REQ-7, REQ-8, REQ-9, REQ-10 and REQ-11, as contributed by this

thesis. These are the requirements addressing the advanced error resolution and rapid

process model prototyping features for an advanced BPMS. Most of the work that has

to be done to support these features, concerning the implementation and also required

processing power at run-time, does not directly stem from the requirements for the

features themselves, but actually directly from Requirement REQ-1.

Requirement REQ-1 states that a BPMS should support complex business objects,

which increases the complexity and workload for trivial tasks like checking for unmapped

or missing required input parameters at run-time. These complex business objects, and

their dynamic definition, are discussed in detail in Section 4.

90

7
State-of-the-Art & Related Work

This section discusses selected BPMS, regarding their data flow concepts. Furthermore,

scientific approaches relating to business object persistence, definition or manipulation

are discussed.

7.1. State-of-the-Art BPMS

7.1.1. IBM Process Designer

The IBM Process Designer, previously known as IBM WebSphere Lombardi Edition,

is a BPMS for the Microsoft Windows operating system. It uses a modified Eclipse

environment for modeling business processes. The IBM Process Designer allows

defining two types of complex business objects: Structures and Complex Structure

91

7. State-of-the-Art & Related Work

Types [8]. Structures are groups of primitive types, whereas Complex Structure Types

support nesting of previously defined Complex Structure Types into new ones. The

Complex Structure Types are defined in the user interface and are usable in Java

Integration Services, the IBM Process Designer equivalent of Clavii service task plug-

ins.

The approach to dynamic business objects chosen by IBM is different though, as they

offer the com.ibm.websphere.bo package containing multiple classes extending the Java

Service Data Objects (SDO) framework. Business objects designed in IBM Process

Designer are compatible with the SDO specification, allowing developers to utilize SDO

to access the data contained in the business objects [9]. IBM Process Designer also

allows usage of lists and maps of business objects.

The IBM Process Designer does not enforce the correctness by construction principle

and allows deploying of clearly dysfunctional process models, which may crash in case

of data flow errors. It does, however, assist users in finding errors in process models by

showing an error list in a special pane at build-time.

7.1.2. Intalio|bpms

Intalio|bpms is the world’s most widely deployed BPMS, offering a free community

edition as well as premium enterprise versions. The community edition is split into two

components: the Intalio|bpms designer and Intalio|bpms server. Intalio|bpms designer

is a plug-in view for the Eclipse IDE, offering a BPMN modeling tool and AJAX web form

designer.

Intalio|bpms uses the built in Eclipse XSD design view to allow defining of complex

types, as long as these adhere to XML specifications. Furthermore, it uses the Apache

ODE BPEL (Business Process Execution Language) engine internally. As BPEL, or

more specifically, BPEL4WS (BPEL for Web Services) is a web service orchestration

language [33], Intalio|bpms can only support the use of web services for executing Java

service tasks. The Intalio|bpms designer can analyze WSDL files and automatically

92

7.1. State-of-the-Art BPMS

create service task templates to consume the web services they describe. If the WSDL

defines any complex types, these can be used in the process models as well.

Intalio|bpms designer does not enforce correctness by construction and, at least in the

community version, does not support process model designers in any way regarding data

flow or model correctness. Incorrectly modeled business processes can be deployed to

the Intalio|bpms server component. During the deployment the model is checked for the

most basic structural problems, such as a missing start event or unreachable tasks.

7.1.3. Bonita BPM

BonitaSoft’s Bonita BPM is an open source BPMS which is based on Eclipse RCP (Rich

Client Platform). Bonita BPM has added support for complex business object types

in its most recent version 6.3 [3]. The support comes in form of the Bonita Business

Data Model (BDM), which allows defining business objects in POJO code and importing

them into Bonita Studio, the modeling component of Bonita BPM. The POJO classes

containing the business objects are analyzed using the Java Reflection API, allowing

their use in process models. Bonita Studio also allows defining complex business object

types utilizing a graphical design tool, and exporting them as XSD or JAR files for use in

web services and Java service tasks [3]. This means that by importing such a JAR file

into a plug-in implementation project, the complex business object is usable natively.

Bonita BPM has a different approach to persistence than Clavii does, as it serializes

each business object type to its own database table, created specifically for the business

object type in question. Therefore, instances of types are simply rows in said database

table.

7.1.4. AristaFlow BPM Suite

The AristaFlow BPM Suite, a BPMS in development at the AristaFlow GmbH, is based on

the principles developed as part of the ADEPT2 project[21]. These include correctness

by construction and plug & play plug-in activities as well as ad-hoc flexibility.

93

7. State-of-the-Art & Related Work

AristaFlow offers support for complex types by defining User Defined Types (UDTs).

UDTs are, however, fundamentally different from our approach to complex business

object types, as their structure is effectively transparent to the Process Template Editor,

the AristaFlow process modeling tool [22]. Therefore, mapping or access to parts of the

UDTs is not possible without User Defined Functions (UDFs), which can convert a UDT

or parts of a UDT to a format understandable by an activity implementation [22].

7.2. Related Work

In [22] the viability of advanced data flow and structure concepts in the context of the

AristaFlow BPM Suite is investigated (cf. Section 7.1.4). Particularly, it states that the

introduction of inheritance to a business object type framework is not necessary, because

the same effect can be achieved by copying the fields of an existing data type to a new

one [22]. Even though this might be true while only viewing the resulting data types,

inheritance is important in the context of executing service tasks expecting certain data

types as parameters (cf. Section 5.3). The thesis also proposes a data flow analysis

algorithm for complex data types and collections thereof, which could be introduced into

the Clavii engine as an extension to the correctness by run-time error resolution.

In [39] a set of best practices for persisting business objects are introduced, without

using technologies like JPA. It demonstrates patterns for object transactions, change

managers, and other lower-level problems, most of which the Clavii engine solves using

a combination of Spring transaction management servlet filters and the Hibernate ORM.

The patent in [20], claims an object definition framework that works “based on the

assumption that the definition of anything and everything will evolve over time” [20].

The basic idea behind the invention is to offer inter-enterprise business objects along

with a definition language to define and evolve them. Among the 237 claims the patent

contains are a few interesting concepts such as storing predefined form parts and rules

for business objects in the business objects themselves, allowing for better-looking and

more dynamic generic forms. Also among the claims is a system to categorize attributes

of business objects into groups concerning a certain area of knowledge.

94

7.2. Related Work

[30] introduces the concept of object-aware business processes, i.e., business processes

where the state of the involved business objects and constraints placed on those objects

dictate the actions that business process participants can execute at any given time.

For this the PHILharmonicFlows framework, the proposed prototype for an object-aware

BPMS, needs to persist the structures of highly complex business objects with relations,

attributes and constraints, such as cardinalities and permissions. Additionally, the

instances of these business objects must contain state information and markings at

run-time as the state of the individual business object instances determines the possible

user interactions with the process instance.

In [34] rules for structuring data flow are proposed to ensure that there are no inconsisten-

cies such as lost updates at run-time. These rules, which are meant to support process

model designers when designing the data flow of a process model, also ensure that

there are no errors such as unmapped input parameters, which could cause exceptions

in service tasks. The Ph.D. thesis also offers algorithms for efficiently analyzing the

correctness of data flows. An important concept described in the thesis is that of sync

edges. Sync edges ensure that data access from tasks on parallel execution branches

in a process model can be synchronized, thereby ensuring correct reading and writing

order and minimizing lost updates.

95

8
Conclusion

Currently available BPMS support complex business object types to a certain degree

(cf. Section 7.1), though none achieve the simplicity to non-technical end-users that

our approach offers. Also, none of the examined BPMS allow programming of plug-ins

without the use of API packages except for in the context of web services. Additionally,

the concepts of inheritance and variable length arguments with simple mapping set the

Clavii engine apart from most others.

The correctness by process run-time error resolution features (cf. Section 6.1) of the

Clavii BPM Cloud are a unique approach to iterative business process development

not available in state-of-the-art BPMS, the value of which has still to be proven through

testing of the implementation prototype.

The approach chosen to allow serialization and deserialization of complex business

objects (cf. Section 4.1) is limiting compared to more general serialization techniques

97

8. Conclusion

based on the Java Reflection API, but is flexible enough to support any typical business

object relevant to a process model. A huge advantage of “limiting” flexibility, compared

to other approaches (e.g., UDT in the AristaFlow BPM Suite) is the usability of definable

types in the user interface. This allows for mapping and manipulation of individual parts

of complex business objects.

The Clavii engine is accompanied by the corresponding Google Web Toolkit (GWT)

user interface and custom updateable process view[28] manipulation library, detailed in

[19] and [25] respectively. These three components form the cloud-based Clavii BPM

Cloud. All in all the Clavii BPM Cloud is an easy to use BPMS, compared to other, more

technically-oriented BPMS. This ease of use is enabled by the extensions to the Activiti

BPM engine, proposed in this thesis and bundled into the Clavii engine, as well as a

cloud-based web interface concept, developed with non-technical users in mind.

98

A
Figures

99

A. Figures

Unpack ComplexBusinessObject
"Name"

Unpack SimpleBusinessObject
"Firstname"

Unpack SimpleBusinessObject
"Lastname"

Determine input-mappings Determine input-mappings

Yes Yes

No No

Determine output-mappings Determine output-mappings

Yes Yes

No No

Write created mappings

Iterate
contained
objects

Write created mappings

Fork (AND)

Decision (XOR)

Action

Is the object
mapped to service
task input?

Is the object
mapped to service
task output?

The mappings and
objects that were

created are
written to the
process engine

The input
mappings are
deposited in a Map

Unpacking a
SimpleBusinessObject =>
writing its internal value

to the process engine

Unpacking a
ComplexBusinessObject

=> iterating and
recursively unpacking

contained business
objects

Figure A.1.: Instantiation and Mapping of Newly Created Business Objects

100

B
Sources

1 public class Bus inessOb jec tF l a t t enV i s i t o r implements Bus inessOb jec tV is i t o r {

2 private f i n a l Map<St r ing , Object > v a r i a b l e s ;

3 private f i n a l S t r i n g key ;

4

5 private f i n a l Multimap <St r ing , ProcessToPluginVariableKeyMapping > inputMapping ;

6 private f i n a l Multimap <St r ing , ProcessToPluginVariableKeyMapping > outputMapping ;

7

8 public Bus inessOb jec tF l a t t enV i s i t o r (Map<St r ing , Object > var iab les , S t r i n g key , Multimap <St r ing ,

ProcessToPluginVariableKeyMapping > inputMapping , Multimap <St r ing , ProcessToPluginVariableKeyMapping >

outputMapping) {

9 th is . v a r i ab l e s = v a r i a b l e s ;

10 th is . inputMapping = inputMapping ;

11 th is . outputMapping = outputMapping ;

12 th is . key = key ;

13 }

14

15 public Bus inessOb jec tF l a t t enV i s i t o r (S t r i n g key , Map<St r ing , Object > v a r i a b l e s) {

16 th is (va r iab les , key , null , nul l) ;

17 }

18

19 @Override

20 public void v i s i t (SimpleBusinessObject s impleBusinessObject) {

21 wri teMappings (s impleBusinessObject) ;

22

23 va r i a b l e s . put (key , s impleBusinessObject . get ()) ;

101

B. Sources

24 }

25

26 @Override

27 public void v i s i t (EnumBusinessObject enumBusinessObject) {

28 wri teMappings (enumBusinessObject) ;

29

30 va r i a b l e s . put (key , enumBusinessObject . get ()) ;

31 }

32

33 @Override

34 public void v i s i t (ComplexBusinessObject complexBusinessObject) {

35 for (Map. Entry <St r ing , BusinessObject > en t ry : complexBusinessObject . getConta inedInstances () . en t rySet ()) {

36 S t r i n g nextVarKey = key . isEmpty () ? en t ry . getKey () : key + ’ . ’ + en t ry . getKey () ;

37 en t ry . getValue () . accept (new Bus inessOb jec tF l a t t enV i s i t o r (va r iab les , nextVarKey , inputMapping ,

outputMapping)) ;

38 }

39 }

40

41 @Override

42 public void v i s i t (MapBusinessObject mapBusinessObject) {

43 wri teMappings (mapBusinessObject) ;

44

45 Map<St r ing , Object > conta inedInstances = new HashMap< >() ;

46

47 for (Map. Entry <St r ing , BusinessObject > en t ry : mapBusinessObject . getConta inedInstances () . en t rySet ()) {

48 i f (en t ry . getValue () instanceof ComplexBusinessObject) {

49 HashMap<St r ing , Object > complexContainer = new HashMap< >() ;

50 en t ry . getValue () . accept (new Bus inessOb jec tF l a t t enV i s i t o r (" " , complexContainer)) ;

51 conta inedInstances . put (en t ry . getKey () , complexContainer) ;

52 } else {

53 en t ry . getValue () . accept (new Bus inessOb jec tF l a t t enV i s i t o r (en t ry . getKey () , conta inedInstances)) ;

54 }

55

56 }

57

58 va r i a b l e s . put (mapBusinessObject . getName () , conta inedInstances) ;

59 }

60

61 @Override

62 public void v i s i t (L is tBus inessObjec t l i s tBus inessOb jec t) {

63 wri teMappings (l i s tBus inessOb jec t) ;

64

65 Map<St r ing , Object > tempContainedInstancesMap = new HashMap< >() ;

66

67 L i s t <BusinessObject > conta inedInstances = l i s tBus inessOb jec t . getConta inedInstances () ;

68 for (i n t i = 0 ; i < conta inedInstances . s ize () ; i ++) {

69 BusinessObject cu r ren t = conta inedInstances . get (i) ;

70 i f (cu r ren t instanceof ComplexBusinessObject) {

71 HashMap<St r ing , Object > complexContainer = new HashMap< >() ;

72 cu r ren t . accept (new Bus inessOb jec tF l a t t enV i s i t o r (" " , complexContainer)) ;

73 tempContainedInstancesMap . put (S t r i n g . valueOf (i) , complexContainer) ;

74 } else {

75 cu r ren t . accept (new Bus inessOb jec tF l a t t enV i s i t o r (S t r i n g . valueOf (i) , tempContainedInstancesMap)) ;

76 }

77

78 }

79

80 va r i a b l e s . put (l i s tBus inessOb jec t . getName () , new L inkedL is t <>(tempContainedInstancesMap . values ())) ;

81 }

82

102

83 / / co r r ec t s the mappings t h a t were used to cons t ruc t t h i s v i s i t o r ins tance

84 / / t h i s ensures , t h a t the C a l l e r c lass knows which process v a r i a b l e keys

85 / / f i t w i th which p lug in v a r i a b l e keys

86 private void writeMappings (At tachableBusinessObject a t tachableBus inessObject) {

87 i f (inputMapping != nul l) {

88 for (Map. Entry <St r ing , PathDescr ip t ion > inpu tEn t r y : a t tachableBus inessObject . getConnectedInputNodes () .

en t rySet ()) {

89 inputMapping . put (i npu tEn t r y . getKey () , new ProcessToPluginVariableKeyMapping (key , i npu tEn t r y . getValue

() . getPath () , i npu tEn t r y . getValue () . i s O p t i o n a l ())) ;

90 }

91 }

92 i f (outputMapping != nul l) {

93 for (Map. Entry <St r ing , PathDescr ip t ion > outpu tEn t ry : a t tachableBus inessObject . getConnectedOutputNodes ()

. en t rySet ()) {

94 outputMapping . put (ou tpu tEnt ry . getKey () , new ProcessToPluginVariableKeyMapping (key , ou tpu tEn t ry .

getValue () . getPath () , ou tpu tEn t ry . getValue () . i s O p t i o n a l ())) ;

95 }

96 }

97 }

98 }

Listing B.1: BusinessObjectFlattenVisitor.java

1 public class Plug inCa l lD ispa tche r Imp l implements Plug inCa l lD ispa tche r {

2 / / BEGIN INTEGRATED CALLER

3 @Override

4 public Object c a l l (I n teg ra tedP lug in in teg ra tedP lug in , S t r i n g methodName , Map<St r ing , Object > parameters)

5 throws ClassNotFoundException , NoSuchMethodException , I l l ega lAccessExcep t ion , Invocat ionTargetExcept ion ,

I n s t a n t i a t i o n E x c e p t i o n {

6 S t r i n g className = in te g ra t ed P lu g i n . ge tLocat ion () ;

7 Class <?> c lazz = Class . forName (className) ;

8 i f (c lazz == nul l) {

9 return nul l ;

10 }

11

12 return MethodUt i ls . invokeMethod (c lazz . ge tCons t ruc to r () . newInstance () , methodName , parameters) ;

13 }

14

15 @Override

16 public Object c a l l (OSGIPlugin osg iP lug in , S t r i n g methodName , Map<St r ing , Object > parameters)

17 throws NoSuchMethodException , I l l ega lAccessExcep t ion , Invocat ionTargetExcept ion , I n s t a n t i a t i o n E x c e p t i o n ,

BundleException {

18 Class <?> c lazz = loadClass (osg iP lug in) ;

19 i f (c lazz == nul l) {

20 return nul l ;

21 }

22

23 return MethodUt i ls . invokeMethod (c lazz . ge tCons t ruc to r () . newInstance () , methodName , parameters) ;

24 }

25 / / BEGIN OSGI CALLER

26 private F e l i x framework ;

27

28 private Bundle getFramework () throws BundleException {

29 i f (framework == nul l) {

30 / / i n i t OSGI framework i f i t i s non e x i s t e n t

31 Map<St r ing , S t r ing > configMap = new HashMap< >() ;

32 configMap . put (Constants .FRAMEWORK_STORAGE_CLEAN, " o n F i r s t I n i t ") ;

33 framework = new F e l i x (configMap) ;

34 framework . s t a r t () ;

103

B. Sources

35 }

36 return framework ;

37 }

38

39 private Class <?> loadClass (OSGIPlugin p lug in) throws BundleException {

40 / / get the j a r f i l e con ta in ing the code f o r the p lug in

41 byte [] bundleJar = p lug in . getBundleJar () ;

42 / / the classname i n the bundle t h a t conta ins the code

43 S t r i n g bundleExecut ionClass = p lug in . ge tLocat ion () ;

44 BundleContext con tex t = getFramework () . getBundleContext () ;

45 / / check i f bundle i s a l ready i n s t a l l e d

46 Bundle p rov ide r = contex t . getBundle (S t r i n g . valueOf (p lug in . ge t Id ())) ;

47 / / i f not , load the bundle from the byte []

48 i f (p rov ide r == nul l) {

49 p rov ide r = contex t . i n s t a l l B u n d l e (S t r i n g . valueOf (p lug in . ge t Id ()) ,

50 new ByteArrayInputStream (bundleJar)) ;

51 }

52 / / s t a r t bundle

53 prov ide r . s t a r t () ;

54 / / get re ference to execut ion c lass

55 ServiceReference re ference = contex t . getServiceReference (bundleExecut ionClass) ;

56 / / get ins tance of c lass

57 Object se rv i ce = contex t . getServ ice (re ference) ;

58 return serv i ce . getClass () ;

59 }

60 / / BEGIN WEBSERVICE CALLER

61 private JaxWsDynamicClientFactory jaxWsDynamicCl ientFactory ;

62 private f i n a l Map<St r ing , C l i en t > c l ientCache = new ConcurrentHashMap < >() ;

63

64 @Override

65 public Object c a l l (WebServicePlugin p lug in , S t r i n g operationName , Map<St r ing , Object > parameters) {

66 / / get u r l to wsdl from p lug in

67 S t r i n g wsdlLocat ion = p lug in . ge tLocat ion () ;

68 i f (jaxWsDynamicCl ientFactory == nul l) {

69 jaxWsDynamicCl ientFactory = JaxWsDynamicClientFactory . newInstance () ;

70 }

71 / / check i f c l i e n t was a l ready created

72 / / (c l i e n t s are cached as wsdl i n t r o s p e c t i o n i s c o s t l y)

73 C l i e n t c l i e n t = c l ientCache . get (wsdlLocat ion) ;

74 i f (c l i e n t == nul l) {

75 / / c reates a dynamic " c l i e n t " f o r a webservice using r e f l e c t i o n on the wsdl

76 c l i e n t = jaxWsDynamicCl ientFactory . c r e a t e C l i e n t (wsdlLocat ion) ;

77 / / cache the c l i e n t

78 c l ientCache . put (wsdlLocat ion , c l i e n t) ;

79 }

80 t ry {

81 / / c a l l the webservice wi th the Map as sole parameter and r e t u r n the f i r s t r e t u r n value

82 return c l i e n t . invoke (operationName , parameters) [0] ;

83 } catch (Except ion e) {

84 throw new RuntimeException (e . getMessage ()) ;

85 }

86 }

87 }

Listing B.2: PluginCallDispatcherImpl.java

1 public class TimerTr igger implements S e r i a l i z a b l e , Runnable {

2 private f i n a l Map<Long , Long> idMapping = new HashMap< >() ;

3 private transient Map<Long , ScheduledFuture > runningTimers ;

104

4 private transient Method rece i ve r ;

5

6 @Override

7 public void run () {

8 for (Map. Entry <Long , Long> en t ry : idMapping . ent rySet ()) {

9 Map<St r ing , Object > parameters = new HashMap< >() ;

10 parameters . put (" I n t e r v a l " , en t ry . getValue ()) ;

11 r e g i s t e r I n t e r v a l T i m e r (en t ry . getKey () , parameters) ;

12 }

13 }

14

15 public void r e g i s t e r I n t e r v a l T i m e r (f i n a l long id , Map<St r ing , Object > parameters) {

16 Long i n t e r v a l = (Long) parameters . get (" I n t e r v a l ") ;

17 idMapping . put (id , i n t e r v a l) ;

18 i f (runningTimers == nul l) {

19 runningTimers = new HashMap< >() ;

20 }

21 runningTimers . put (id , Executors . newSingleThreadScheduledExecutor () . scheduleAtFixedRate (new Runnable () {

22 @Override

23 public void run () {

24 t ry {

25 Map<St r ing , Object > output = new HashMap< >() ;

26 output . put (" T r igge r Time " , new Date ()) ;

27 rece i ve r . invoke (null , id , ou tput) ;

28 } catch (I l l ega lAccessExcep t ion | Invoca t ionTarge tExcept ion e) {

29 e . p r in tS tackTrace () ;

30 }

31 }

32 } , i n t e r v a l , i n t e r v a l , TimeUnit .SECONDS)) ;

33 }

34

35 public void d e r e g i s t e r I n t e r v a l T i m e r (long i d) {

36 i f (idMapping . remove (i d) != nul l) {

37 runningTimers . get (i d) . cancel (true) ;

38 }

39 }

Listing B.3: TimerTrigger.java

1 < i n te g ra t ed P lu g i n >

2 < l o c a t i o n >de . c l a v i i . p lug ins . PersonManipulator< / l o c a t i o n >

3 <name>Person Manipu la tor< / name>

4 < d e s c r i p t i o n >Manipulates Person Objects< / d e s c r i p t i o n >

5 <author>Kevin Andrews< / author>

6 < a c t i v i t y D e s c r i p t i o n s >

7 < a c t i v i t y D e s c r i p t i o n >

8 <methodName>mixPeople< / methodName>

9 <name>Mix People< / name>

10 < d e s c r i p t i o n >Mixes two people< / d e s c r i p t i o n >

11 <inputParameters>

12 <inputParameter>

13 <type>Person< / type>

14 <name>Person 1< / name>

15 < o p t i o n a l > f a l s e < / o p t i o n a l >

16 < / inputParameter>

17 <inputParameter>

18 <type>Person< / type>

19 <name>Person 2< / name>

20 < o p t i o n a l > f a l s e < / o p t i o n a l >

105

B. Sources

21 < / inputParameter>

22 < / inputParameters>

23 <outputParameters>

24 <outputParameter>

25 <type>Person< / type>

26 <name>Combined Person< / name>

27 < o p t i o n a l > f a l s e < / o p t i o n a l >

28 < / outputParameter>

29 < / outputParameters>

30 < / a c t i v i t y D e s c r i p t i o n >

31 < a c t i v i t y D e s c r i p t i o n >

32 <methodName>makeOlder< / methodName>

33 <name>Make o lde r < / name>

34 < d e s c r i p t i o n >Makes a Person o lde r < / d e s c r i p t i o n >

35 <inputParameters>

36 <inputParameter>

37 <type>Person< / type>

38 <name>Person X< / name>

39 < o p t i o n a l > f a l s e < / o p t i o n a l >

40 < / inputParameter>

41 < / inputParameters>

42 <outputParameters>

43 <outputParameter>

44 <type>Person< / type>

45 <name>Aged Person< / name>

46 < o p t i o n a l > f a l s e < / o p t i o n a l >

47 < / outputParameter>

48 < / outputParameters>

49 < / a c t i v i t y D e s c r i p t i o n >

50 < a c t i v i t y D e s c r i p t i o n >

51 <methodName>sumAges< / methodName>

52 <name>Sum Ages< / name>

53 < d e s c r i p t i o n >Sum up ages of People< / d e s c r i p t i o n >

54 <inputParameters>

55 <inputParameter>

56 <type>Person L i s t < / type>

57 <name>People< / name>

58 < o p t i o n a l > f a l s e < / o p t i o n a l >

59 < / inputParameter>

60 < / inputParameters>

61 <outputParameters>

62 <outputParameter>

63 <type>Age< / type>

64 <name>Age Sum< / name>

65 < o p t i o n a l > f a l s e < / o p t i o n a l >

66 < / outputParameter>

67 < / outputParameters>

68 < / a c t i v i t y D e s c r i p t i o n >

69 < / a c t i v i t y D e s c r i p t i o n s >

70 < / i n t e g r a te d P l u g i n >

Listing B.4: PersonManipulator.xml

1 < t r i g g e r >

2 < l o c a t i o n >de . c l a v i i . t r i g g e r s . Timer< / l o c a t i o n >

3 <name>Timer< / name>

4 < d e s c r i p t i o n >Timer Tr igger< / d e s c r i p t i o n >

5 <author>Kevin Andrews< / author>

6 <registerMethodName> r e g i s t e r I n t e r v a l T i m e r < / registerMethodName>

106

7 <deregisterMethodName> d e r e g i s t e r I n t e r v a l T i m e r < / deregisterMethodName>

8 <inputParameters>

9 <inputParameter>

10 <type>Timespan< / type>

11 <name> I n t e r v a l < / name>

12 < o p t i o n a l > f a l s e < / o p t i o n a l >

13 < / inputParameter>

14 < / inputParameters>

15 <outputParameters>

16 <outputParameter>

17 <type>Date< / type>

18 <name>Tr igger Time< / name>

19 < o p t i o n a l > f a l s e < / o p t i o n a l >

20 < / outputParameter>

21 < / outputParameters>

22 < / t r i g g e r >

Listing B.5: TimerTrigger.xml

107

Bibliography

[1] Activiti Overview, http://activiti.org/components.html, last visited on

2014/07/14

[2] AristaFlow Overview, http://www.aristaflow.com/AristaFlow_

BPM-Suite.html, last visited on 2014/07/14

[3] Bonita BPM 6.3 Manual, Chapter: Data Handling, http://documentation.

bonitasoft.com/product-bos-sp/data-handling, last visited on

2014/07/13

[4] CGLIB Knowledge Base, https://github.com/cglib/cglib/wiki, last vis-

ited on 2014/07/14

[5] Executor Framework Tutorial, http://docs.oracle.com/javase/

tutorial/essential/concurrency/executors.html, last visited on

2014/07/14

[6] ForEach Guide, http://docs.oracle.com/javase/1.5.0/docs/guide/

language/foreach.html, last visited on 2014/07/14

[7] GWT JRE Emulation Reference, http://www.gwtproject.org/doc/

latest/RefJreEmulation.html, last visited on 2014/07/14

[8] IBM Business Process Manager V8.5 Information Center, http://pic.dhe.ibm.

com/infocenter/dmndhelp/v8r5m0/topic/com.ibm.wbpm.main.doc/

ic-homepage-bpm.html, last visited on 2014/07/13

[9] IBM Business Process Manager V8.5 Information Center: Business Ob-

jects Programming, http://pic.dhe.ibm.com/infocenter/dmndhelp/

109

http://activiti.org/components.html
http://www.aristaflow.com/AristaFlow_BPM-Suite.html
http://www.aristaflow.com/AristaFlow_BPM-Suite.html
http://documentation.bonitasoft.com/product-bos-sp/data-handling
http://documentation.bonitasoft.com/product-bos-sp/data-handling
https://github.com/cglib/cglib/wiki
http://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html
http://docs.oracle.com/javase/1.5.0/docs/guide/language/foreach.html
http://docs.oracle.com/javase/1.5.0/docs/guide/language/foreach.html
http://www.gwtproject.org/doc/latest/RefJreEmulation.html
http://www.gwtproject.org/doc/latest/RefJreEmulation.html
http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r5m0/topic/com.ibm.wbpm.main.doc/ic-homepage-bpm.html
http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r5m0/topic/com.ibm.wbpm.main.doc/ic-homepage-bpm.html
http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r5m0/topic/com.ibm.wbpm.main.doc/ic-homepage-bpm.html
http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r5m0/topic/com.ibm.wbpm.main.doc/topics/cbo_intro.html
http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r5m0/topic/com.ibm.wbpm.main.doc/topics/cbo_intro.html

Bibliography

v8r5m0/topic/com.ibm.wbpm.main.doc/topics/cbo_intro.html, last

visited on 2014/07/13

[10] Intalio Overview, http://www.intalio.com/products/bpms/overview/,

last visited on 2014/07/14

[11] Iterator JavaDoc, http://docs.oracle.com/javase/7/docs/api/java/

util/Iterator.html, last visited on 2014/07/14

[12] Java Manual: Thread Pools, http://docs.oracle.com/javase/tutorial/

essential/concurrency/pools.html, last visited on 2014/07/14

[13] Javassist Web Site, http://www.javassist.org, last visited on 2014/07/14

[14] JAX-WS Web Site, https://jax-ws.java.net/, last visited on 2014/07/14

[15] JAXB Web Site, https://jaxb.java.net/, last visited on 2014/07/14

[16] MultiMap in Google Collections JavaDoc, http://google-collections.

googlecode.com/svn/trunk/javadoc/com/google/common/collect/

Multimap.html, last visited on 2014/07/14

[17] The Reflection API, http://docs.oracle.com/javase/tutorial/

reflect/index.html, last visited on 2014/07/14

[18] VarArgs Guide, http://docs.oracle.com/javase/1.5.0/docs/guide/

language/varArgs.html, last visited on 2014/07/14

[19] Bueringer, S.: Development of a Cloud Platform for Business Process Administra-

tion, Modeling and Execution. Master’s Thesis, Ulm University (2014)

[20] Burke, M., Solar, R.: Building Business Objects and Business Software Applications

Using Dynamic Object Definitions of Ingrediential Objects (2004), http://www.

google.com/patents/US6789252

[21] Dadam, P., Reichert, M., Rinderle-Ma, S., Goeser, K., Kreher, U., Jurisch, M.:

Von ADEPT zur AristaFlow BPM Suite - Eine Vision wird Realität: "Correctness

by Construction" und Flexible, Robuste Ausführung von Unternehmensprozessen.

EMISA Forum 29 (2009)

110

http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r5m0/topic/com.ibm.wbpm.main.doc/topics/cbo_intro.html
http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r5m0/topic/com.ibm.wbpm.main.doc/topics/cbo_intro.html
http://www.intalio.com/products/bpms/overview/
http://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html
http://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/pools.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/pools.html
http://www.javassist.org
https://jax-ws.java.net/
https://jaxb.java.net/
http://google-collections.googlecode.com/svn/trunk/javadoc/com/google/common/collect/Multimap.html
http://google-collections.googlecode.com/svn/trunk/javadoc/com/google/common/collect/Multimap.html
http://google-collections.googlecode.com/svn/trunk/javadoc/com/google/common/collect/Multimap.html
http://docs.oracle.com/javase/tutorial/reflect/index.html
http://docs.oracle.com/javase/tutorial/reflect/index.html
http://docs.oracle.com/javase/1.5.0/docs/guide/language/varArgs.html
http://docs.oracle.com/javase/1.5.0/docs/guide/language/varArgs.html
http://www.google.com/patents/US6789252
http://www.google.com/patents/US6789252

Bibliography

[22] Forschner, A.: Fortschrittliche Datenflusskonzepte für Flexible Prozessmodelle.

Master’s Thesis, Ulm University (2009)

[23] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Pearson Education (1994)

[24] Josefsson, S.: The Base16, Base32, and Base64 Data Encodings (2006)

[25] Kammerer, K.: Enabling Personalized Business Process Modeling: The Clavii BPM

Platform. Master’s Thesis, Ulm University (2014)

[26] Kolb, J., Hübner, P., Reichert, M.: Automatically Generating and Updating User

Interface Components in Process-Aware Information Systems. In: Proc 10th Int’l

Conf. on Cooperative Information Systems (CoopIS’12). pp. 444–454 (2012)

[27] Kolb, J., Hübner, P., Reichert, M.: Model-Driven User Interface Generation and

Adaptation in Process-Aware Information Systems. UIB 2012-04, Technical Report,

Ulm University (2012)

[28] Kolb, J., Kammerer, K., Reichert, M.: Updatable Process Views for User-centered

Adaption of Large Process Models. In: Proc 10th Int’l Conference on Service Ori-

ented Computing (ICSOC’12). pp. 484–498. No. 7636 in LNCS, Springer, Shanghai,

China (2012)

[29] Kolb, J., Reichert, M.: Data Flow Abstractions and Adaptations through Updatable

Process Views. In: Proc 28th Symposium on Applied Computing (SAC’13), 10th En-

terprise Engineering Track (EE’13). pp. 1447–1453. ACM Press, Coimbra, Portugal

(2013)

[30] Künzle, V.: Object-Aware Process Management. Ph.D. Thesis, Ulm University

(2013)

[31] Micheler, F.: Konzeption, Implementierung und Integration einer Komponente für

die Erstellung Intelligenter Formulare. Master’s thesis, Ulm University (June 2009)

[32] Object Management Group (OMG): Unified Modeling Language Specification (OMG

UML) Version 2.4.1. Tech. rep.

[33] Peltz, C.: Web Services Orchestration and Choreography. Computer 36(10) (2003)

111

Bibliography

[34] Reichert, M.: Dynamische Ablaufänderungen in Workflow-Management-Systemen.

Ph.D. thesis, University Ulm (2000)

[35] Rummler, G.A., Brache, A.P.: Improving Performance: How to Manage the White

Space on the Organization Chart. John Wiley & Sons (2012)

[36] Sousa, K., Mendonça, H., Vanderdonckt, J., Rogier, E., Vandermeulen, J.: User

Interface Derivation from Business Processes: A Model-Driven Approach for Orga-

nizational Engineering. In: Proc. ACM Symposium on Applied Computing (SAC’08).

pp. 553–560 (2008)

[37] Tacy, A., Hanson, R., Essington, J., Tökke, A.: GWT in Action. Manning Publications

(2013)

[38] Van Emden, E., Moonen, L.: Java Quality Assurance by Detecting Code Smells

(2002)

[39] Yoder, J.W., Johnson, R.E., Wilson, Q.D.: Connecting Business Objects to Rela-

tional Databases. Urbana 51, 61801 (2005)

112

Name: Kevin Andrews Matrikelnummer: 671626

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Kevin Andrews

	Introduction
	Motivation
	Contribution
	Structure of the Thesis

	Fundamentals
	Fundamentals of Business Process Management
	Business Process Model and Notation
	Task Types
	Data Objects

	Fundamental Terminology
	Plug-Ins
	Business Objects
	Additional Terminology

	Requirements Analysis
	Business Object Requirements
	Complex Business Objects
	Typed Business Objects
	Inheritance Capabilities for Business Object Types
	Business Object Collections

	Service Task Requirements
	Complex Business Objects in Service Task Plug-Ins
	Variable Length Arguments for Plug-Ins

	Mapping and Ad-hoc Process Flow Requirements
	Mapping Individual Parts of Complex Business Objects
	Generation of User Forms Based on Complex Business Objects
	Manual Gateway Execution
	Correctness by Run-time Error Resolution
	Rapid Process Model Prototyping

	Summary

	Dynamically Structured Complex Business Objects
	Persisting User-Definable Business Objects
	Business Object Types
	Business Objects

	Creating Business Objects from Business Object Types
	Instantiation of Business Objects
	Applying of the Visitor Pattern

	Serializing Default Values for Simple Business Objects
	Handling of Byte Arrays
	Handling of Date Values

	Persisting of Defined Business Object Types and Business Objects
	Definition of Business Objects Types Using XML Descriptors
	Using Java Annotations to Prepare a Class for XML Serialization / Deserialization

	Summary

	Service Task Plug-Ins and Process Triggers
	Plug-In Types
	Integrated Plug-Ins
	OSGi Plug-Ins
	Web Service Plug-Ins

	Calling Plug-Ins Using the Java Reflection API
	Use of Dynamic Dispatching for Calling Plug-Ins

	Using Complex Business Object Instances in Plug-Ins
	Variable Length Arguments
	Triggering Process Instances
	Leveraging the Reflection and Executor Frameworks for Triggering Process Instances

	XML Descriptors for Plug-Ins and Triggers
	Summary

	Ad-hoc Process Model Execution Control
	Concept for Handling Missing Parameters and Run-time Errors
	Implementation of the Concept in the Clavii Engine
	Use in Manual Gateway Execution

	Implementation of Ad-hoc Pauses
	Detection of Errors Leading to Dynamic Ad-hoc Pauses
	Determining Required Input Parameters
	Comparing Required Service Parameters to Existing Ones

	Displaying an Error Correction User Form
	Re-invoking Service Tasks with Corrected Parameters
	Summary

	State-of-the-Art & Related Work
	State-of-the-Art BPMS
	IBM Process Designer
	Intalio|bpms
	Bonita BPM
	AristaFlow BPM Suite

	Related Work

	Conclusion
	Figures
	Sources

