
Ulm University | 89069 Ulm | Germany Faculty of
Engineering and
Computer Science
Institute of Databases and
Information Systems

Concept and Implementation of a Rule
Component Enabling Automatic Analy-
sis of Process-Aware Questionnaires
Master Thesis at Ulm University

Submitted by:
Bernd Mertesz
bernd.mertesz@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert
Dr. Vera Künzle

Supervisor:
Johannes Schobel

2014

Version October 22, 2014

c© 2014 Bernd Mertesz

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Satz: PDF-LATEX 2ε

Abstract

Psychological studies are usually done using paper-based questionnaires, which are a

common and inexpensive way to collect data. However, this leads to problems, especially

with very big studies. Usually, the evaluation of thousands of completed questionnaires

needs the help of a computer application. Therefore, the answers of the subjects need

to be transfered manually to electronic worksheets (e.g., Microsoft Excel spreadsheets).

The manual transfer opens the possibility for errors when transcribing handwritten text

and causes a lot of work.

One possible solution for this problem could be, to support the complete lifecycle of a

questionnaire digitally. QuestionSys is one system aiming to provide a full digital support

for domain experts and is developed at the University of Ulm.

This thesis presents the theoretical concept and the development of the rule editor

Questionrule. This component enables domain experts to create and manage rules,

which are then used to evaluate a completed questionnaire. This has to be achieved in

an abstract and intuitive way, as domain experts usually have little or no experience in

boolean algebra.

The different concepts and technologies that are used for the development of Question-

rule, are presented in this thesis. In addition, an outline of other rule editors as well as a

comparison is provided.

iii

Acknowledgment

First of all, i would like to thank Johannes Schobel for his support and important guidance

through all of this thesis.

My deepest appreciation goes to Michael, Raphael, Steini, Thinh and Wolfgang, my

fellow students, for their moral support and advice. A special thanks goes to Markus

Brenner, who recommended ANTLR and was always there to answer questions regarding

ANTLR.

Last but not least, my thanks goes to my family who believed in me the whole time, not

only while writing this thesis, but all of my life. Without you, this thesis would be not

possible.

v

Contents

1 Introduction 1

1.1 Purpose of the Thesis . 3

1.2 Structure of the Thesis . 3

2 Fundamentals 5

2.1 QuestionSys . 5

2.1.1 Questioneer (Configurator) . 6

2.1.2 Questionizer (Server-Component) 6

2.1.3 Questionnaire (Client Application) 7

2.2 Eclipse RCP Framework . 7

2.2.1 Basic Architecture of Eclipse RCP 7

2.2.2 Features of the Eclipse RCP . 9

2.3 Formal Grammars . 10

3 Requirements 13

3.1 Functional Requirements . 13

3.2 Nonfunctional Requirements . 15

4 Concept and Architecture 17

4.1 Concept . 17

4.1.1 Rules . 18

4.1.2 Workspace of Questionrule . 20

4.1.3 Formal Grammar . 20

vii

Contents

4.2 Architecture . 21

4.2.1 Model-View-Presenter . 21

4.2.2 Architecture of Questionrule . 22

4.2.3 Project Manager . 23

4.2.4 Questionnaire Model Manager . 24

4.2.5 Variable Manager . 25

4.2.6 Rule Manager . 25

4.2.7 Validation Manager . 26

4.2.8 Web Services . 26

4.3 Conclusion . 26

5 Implementation Aspects 27

5.1 ANTLR . 27

5.2 Adding User-Defined Functions to Rules 34

5.3 Graphical Rule Editor . 40

5.4 Conclusion . 43

6 Related Work 45

6.1 Yahoo! Pipes . 45

6.2 Axure RP Pro . 47

6.3 Itunes . 48

6.4 Comparison . 48

7 Conclusion 51

7.1 Discussion . 51

7.2 Conclusion . 53

7.3 Outlook . 53

viii

1
Introduction

Nowadays, most studies are built on paper questionnaires. This means, a domain expert

creates a questionnaire within a word processing application and prints it on paper. Later,

the subject fills in this paper-based questionnaire. This approach is also used in case of

a very big study with thousands of subjects, which results in a big amount of completed

questionnaires that need to be evaluated at a later point in time.

This is, however, the main issue with this approach. For the evaluation of these completed

questionnaires and to draw conclusions from the given answers, the help of a computer

application is needed. However, to do so, the answers of the subjects need to be

transfered manually to electronic worksheets (e.g., Microsoft Excel spreadsheets). This

is, on the one hand, a lot of work and on the other hand opens the possibility for errors

while transcribing handwritten text.

One possible solution for this problem could be, to support the complete lifecycle of a

questionnaire digitally. That means, that the creation of a questionnaire takes place

1

1 Introduction

with a computer application and that the subjects fill in the questionnaire on a computer.

Thereby, it is no longer necessary to print the questionnaires and to transcribe the data

collected. In addition, the analysis of a single questionnaire can occur directly after

completion. One system aiming to provide a full digital support for domain experts is

called QuestionSys and is being developed at the University of Ulm [Ulm].

When designing the system, an adequate representation for electronic questionnaires

has to be developed. In other research papers [SSP+14] mapping for questionnaires

to business processes has already been proposed. That means, single pages of a

questionnaire are activities and the order of them are defined through the structure

and control flow between activities. Additionally, questions can be displayed depending

on already given answers using specific gateways. Figure 1.1 shows an example

questionnaire modeled as a business process. This business process is modeled in

BPMN 2.0 [OMG11]. Note, that specific elements used in this context are annotated.

Page

Intro

Page

General
...

Page

Cigarettes

Page

Drugs

Page

Alcohol

Cigarettes Drugs Alcohol
Cigarettes

Quantity

Drugs

Quantity

Alcohol

Quantity

StartFlow

Activity

ANDsplit ANDjoin

XORsplit XORjoin

DataElement

WriteAccess

ReadAccess

EndFlow

ET_ControlFlow

ET_DataFlow

Page

Outro

yes

no

yes

yes

no

no

Figure 1.1: Example Business Process

At first an introduction page is shown. Then the subject answers the questions if he

smokes cigarettes, takes drugs or drinks alcohol. His answers are stored in the data

elements Cigarettes, Drugs and Alcohol. These data elements are then used to decide,

whether he must answer questions regarding his daily consumption of the corresponding

substance. In the end an conclusion page is shown.

In addition, QuestionSys contains a light-weight process engine to enact questionnaire

models (i.e., business processes) on a smart mobile device.

2

1.1 Purpose of the Thesis

1.1 Purpose of the Thesis

The next step in the lifecycle of such an electronic questionnaire is the analysis of the

data stored in the data elements of the respective business process. Therefore, an

application is needed, which enables domain experts to define rules, which can be used

to evaluate a completed questionnaire.

This thesis covers the creation of rules to analyze the data collected using these elec-

tronic questionnaires. These rules should be created by domain experts, although they

have little to no experience in boolean algebra.

A rule thereby is a boolean expression which can be evaluated by the application. In

addition to this rule, texts in different languages can be defined, for when the rule is

either fulfilled or is not (e.g., not all requirements for this rule are met). Depending

on the language of the questionnaire chosen by the user, the text in the appropriate

language is presented when evaluating the data collected. This thesis also looks for

powerful concepts to extend this approach and evaluates these concepts. Rules should

be built using a defined structure and the definition of such rules should be easy for

an inexperienced user. Additionally, the domain experts should have the possibility to

add new behavior in terms of the subsequent evaluation to rules. This is achieved by

user defined functions, which are introduced in section 4.1.1 and presented in detail in

section 5.2. Thereby, Questionrule can adapt to new circumstances. Two possible use

cases for evaluating the data collected are presented in chapter 7.1.

1.2 Structure of the Thesis

The thesis is structured as follows: Section 2 covers necessary fundamentals, which

are needed for the further course of this thesis. Subsequently, section 3 presents the

functional and nonfunctional requirements for the Questionrule application. Section 4

discusses the concepts and the architecture used to implement Questionrule. Rules

are defined, the use of grammars is explained and an overview of the architecture of

Questionrule is given. Section 5 presents various implementation aspects of Question-

rule. For example, ANTLR, which is a parser generator or the creation and integration of

3

1 Introduction

user-defined functions and the graphical rule editor. Section 6 looks at other rule editors

and provides related work. Finally, section 7 discusses the features of Questionrule,

concludes this thesis and provides an outlook on how to further extend the QuestionSys

project.

4

2
Fundamentals

This section covers fundamental knowledge that serve as a basis for the further course of

this thesis. Section 2.1 thereby introduces the QuestionSys system. Section 2.2 presents

the Eclipse RCP Framework, which is used to realize the QuestionRule component

developed in this thesis. Finally, section 2.3 covers formal grammars, which are used for

rule validation.

2.1 QuestionSys

The QuestionSys system [Ulm] aims at covering the whole lifecycle of an electric ques-

tionnaire. This involves creating, distributing, enacting electronic questionnaires on smart

mobile devices and even evaluating them.

5

2 Fundamentals

The system itself is based on a process-driven approach [SSP+14]. This means a

questionnaire is realized as a business process.

Figure 2.1: Architecture of QuestionSys

As of now QuestionSys consists of three main components (see figure 2.1): the configura-

tion program Questioneer, the server-component Questionizer and the client application

Questionnaire. The following sections present the components of QuestionSys in detail:

2.1.1 Questioneer (Configurator)

With the configurator Questionneer domain experts are able to create and manage

questionnaires in multiple languages. Therefore they can create the different parts of

a questionnaire (i.e., pages, questions, etc.) and define their order and dependencies.

The questionnaire model is then stored on to the server-component Questionizer for

further processing.

2.1.2 Questionizer (Server-Component)

The central server-component Questionizer stores the questionnaires created by domain

experts and offers the possibility to distribute them to different clients for enactment.

Furthermore, the server archives the result of the completed questionnaires. These

results can then be evaluated on the server using rules defined by domain experts. The

definition of these rules will be part of this thesis.

6

2.2 Eclipse RCP Framework

2.1.3 Questionnaire (Client Application)

Questionnaire is a client application running on smart mobile devices or web browsers,

which is used to fill in the questionnaires. Since questionnaires are mapped to business

processes, the client application contains a process engine [SSP+14] to enact the

process. In case the questionnaire is enacted using a normal web browser, a remote

process engine is used. If a questionnaire is completed a client can evaluate the result

or send the filled in questionnaire to the server for later evaluation.

The rule component Questionrule, which is presented in this thesis, will be added to the

architecture of QuestionSys (see section 7.1 for more details).

2.2 Eclipse RCP Framework

Eclipse RCP is a framework for developing Rich Client Applications with Java [Vog13]. A

Rich Client (also called fat, heavy or thick client) is a computer client, that provides its

functionality independent of a central server. It often works with local data and contains

business logic.

Historically, Eclipse RCP emerged from the Eclipse IDE [Ecl]. Many aspects and

components of Eclipse IDE are general in nature and may be reused in other applications

like, for example, the Workbench-Design of the user-interface or the extensible Plug-In

system. All general parts of Eclipse IDE were extracted in 2004 and are released since

Eclipse 3.0 as Eclipse RCP, allowing developers to use the benefits of Eclipse IDE when

developing Rich Client Applications with Java.

In Section 2.2.1 the basic architecture of an application using the Eclipse RCP framework

is presented. In Section 2.2.2 a brief overview of the Eclipse RCP features is given.

2.2.1 Basic Architecture of Eclipse RCP

The architecture of Eclipse RCP is composed of multiple layers (see Figure 2.2). The

lowest layer consists of OSGi, Equinox and EMF. OSGi [OSG] is a specification which

describes a modular approach for Java applications. The programming model of OSGi

7

2 Fundamentals

Figure 2.2: Eclipse RCP components

allows one to define dynamic software components. These components (also known as

bundles in OSGi) can be remotely installed, started, stopped, updated and uninstalled

without requiring a reboot of the application. Equinox is one implementation of the OSGi

specification and is used by the Eclipse platform. The Equinox runtime provides the

necessary framework to run a modular Eclipse application. EMF (Eclipse Modeling

Framework) is a modeling framework code generation facility for building applications

based on a structured data model.

The layer above consists of Application Model, Rendering Engine, CSS Styling, De-

pendency Injection and various Services, which can be used when programming an

application. The Application Model is a logical model, which describes the structure of an

application. It contains the visual elements (e.g., windows) as well as some non-visual

elements (e.g., handlers) of the Eclipse RCP application. The Rendering Engine is

responsible for generating the user-interface. CSS Styling enables Eclipse widgets

to be configured via external (CSS like) files. With Dependency Injection the Eclipse

RCP is able to implicitly create objects. This means, a developer can let the framework

handle the object creation and doesn’t need to create them himself. The next layer is

the so called Workbench. It is an empty graphical application, which supports the basic

concepts and interaction patterns of Eclipse RCP, like perspectives or menus. Eclipse

RCP applications can expand this workbench to fit their specific needs. On top of these

8

2.2 Eclipse RCP Framework

components a developer can add his specific components, which are important for his

Eclipse RCP application.

2.2.2 Features of the Eclipse RCP

Eclipse RCP has a lot of advantages when developing a desktop-application. It offers

fully developed basic components for graphical applications, that have proven them-

selves in many use cases. The workbench of Eclipse RCP is a graphical user-interface

and provides a consistent, sophisticated concept for operating with the user-interface

and can be used by all Eclipse RCP applications. Therefore, end-users only have to

familiarize the basic control of a Eclipse RCP applications one time. The basic structure

for the design of the graphical user-interface is prespecified by Eclipse RCP and doesn’t

need to be developed first. Eclipse RCP is consistently designed for modularization and

extensibility. This is an advantage especially for bigger applications, as they must be split

up in small modules to remain manageable. Extensions (e.g., Plug-Ins) on the basis of

Eclipse RCP can harmonize without knowing each other. Moreover, a big application can

be broken down in several Plug-Ins, which are developed separately. Later the Plug-Ins

can be coupled to create the big application. Nowadays, there are a lot of providers for

extensions, tools, support and training for Eclipse RCP.

Of course, the Eclipse RCP has some drawbacks. A developer is forced into a straitjacket,

because the basic structure of an Eclipse RCP application is prespecified. The basic

structure is dictated by the application model. For example, the application model only

allows nesting of certain user-interface elements. Another point is, that the developer

needs to learn the ropes at first.

Eclipse RCP was selected for the development of Questionrule, because the advan-

tages outweigh the drawbacks. On the one hand the adaptation to the structure of an

Eclipse RCP application was necessary, but on the other hand made Eclipse RCP the

development a lot easier and saved a lot of time during work. In addition, Eclipse RCP

allows for a great amount of extensibility in the future of Questionrule.

9

2 Fundamentals

2.3 Formal Grammars

Formal grammars are mathematical models, which define and describe formal languages.

A formal grammar consists of a set of rules for rewriting strings and a start symbol from

which rewriting starts. Therefore, a grammar is usually regarded as a language generator,

but it can also be used as a language recognizer. This is a function that determines

whether a given string belongs to the language (i.e., the string is grammatically correct)

or not.

To create a new string with a formal grammar one starts with the start symbol S and

continues to apply production rules of a specific rule set P until strings only contain

terminal symbols. A production rule is applied by replacing one occurrence of production

rule’s left-hand side in the string by that production rule’s right-hand side. This process

is called derivation.

The vocabulary of a formal grammar consists of terminal symbols Σ and nonterminal

symbols V and specifies which symbols can be used for derivation. The set of terminal

symbols defines which characters of a word can not be derivated. Words, which only

consist of terminal symbols, define the language, which is described by the formal

grammar. A production rule is a tuple (α, β), which can also be written as α→ β. The

production rule is applied to a word ω ∈ (V ∪ Σ)∗ by simply replacing every occurrence

of α with β. There can be multiple production rules for the same α with α→ γ and γ 6= β.

In the following, a definition of a formal grammar is given [Sch08]:

A formal grammar is a tuple G = (V,Σ, P, S) whereas:

• V , is the finite set of nonterminal symbols

• Σ, is called alphabet and the elements are

called terminal symbols

• P ⊂ ((V ∪ Σ)+ × (V ∪ Σ)∗) is a finite set of

production rules

• S ∈ V start symbol

10

2.3 Formal Grammars

An example grammar is shown in Table 2.1. This grammar consists of four productions

rules, whereas one contains the start symbol S. A, B S are so called nonterminal symbols,

whereas c and d are terminal symbols. An example word of this formal language would

be ccddcc.

S→ B

A→ c

B→ ASA

B→ dd

Table 2.1: Example Grammar

To derivate ccddcc, one starts with the production rule which contains start symbol S and

obtains B. Subsequently, one applies production rule B→ ASA to B and receives ASA.

Now one applies production rule S → B and obtains ABA. After applying production

rule B→ ASA one receives AASAA. The next step is to apply production rule S→ B to

receive AABAA. After applying B → dd and A → c one receives ccddcc. Note, that all

occurrences of A and B has to be replaced at once!

As mentioned before, a formal grammar can also be used to determine if a given word

belongs to a language, which is described by a formal grammar. The word ccddc is not

part of the language described by the grammar in table 2.1. The reason for this is that

the production rule B → ASA adds the same amount of A with each appliance of the

production rule. Therefore the number of As on the left hand side has to be the same as

the number of As on the right hand side.

Formal grammars can be assigned to classes, which are defined by similarities. The

best known classification is the Chomsky hierarchy [Cho56]. The Chomsky hierarchy

groups formal grammars depending on the kind of productions rules in classes Type-0 to

Type-3. The following list shows the different requirements for the classes:

• Type-0: no restrictions

• Type-1 (context-sensitive grammars): ∀ (ω1 → ω2) ∈ P : | ω1 |≤| ω2 |

• Type-2 (context-free grammars): ∀ (ω1 → ω2) ∈ P : ω1 ∈ V

• Type-3 (regular grammars): ∀ (ω1 → ω2) ∈ P : ω2 ∈ Σ ∪ ΣV

11

2 Fundamentals

Type-1 means, that the number of symbols on the right hand side of a production rule

has to be at least as big as the number of symbols on the left hand side. In addition to

the restriction of Type-1, consists the left hand side of a production rule in Type-2 only of

one nonterminal symbol. In addition to the restriction of Type-2, consists the right hand

side of a production rule in Type-3 only of either a single terminal symbol or a terminal

symbol followed by a nonterminal symbol.

The explanation of the types hints the relation between the different types. The Chomsky

hierarchy is a containment hierarchy as can be seen in figure 2.3. That means each

more restricted type is a proper subset of the less restricted type.

Figure 2.3: Chomsky Hierarchy

A subset of the languages described by context-free grammars (Type-2) is the theoretical

basis for the syntax of most programming languages. Regular grammars describe so

called regular languages, which are often used for search patterns and for describing

the lexical structure of programming languages.

Formal grammars are an important part of Questionrule. They enabled an easy rule

validation and are the theoretical basis for the graphical rule editor, which is presented in

section 5.3 of this thesis.

12

3
Requirements

This section presents the requirements for Questionrule. Section 3.1 introduces the

functional requirements and section 3.2 discusses nonfunctional requirements.

3.1 Functional Requirements

Functional requirements define what a system is supposed to accomplish. The functional

requirements of Questionrule are presented in the following:

FR1 Create Projects It should be possible to create different projects within the appli-

cation. It consists of rules and variables from the questionnaire model.

FR2 Load Questionnaire Model When creating a rule, it should be possible to choose

the questionnaire template and load it in the project.

13

3 Requirements

FR3 Delete Project It should be able to delete a project. If a project is deleted all

corresponding variables and rules should be deleted as well.

FR4 Replace Questionnaire Model It should be possible to change the questionnaire

model of a project, after the project has been created.

FR5 Create Rule Domain experts should be able to define new rules. The definition

should be on the one hand easy and intuitive and on the other hand shouldn’t

complicate the creation of more complex rules. Using the rule editor should result

in a correct rule (i.e., following a defined structure and grammar)

FR6 Edit Rule Rules should be editable.

FR7 Copy and Paste Rule A rule should be copyable to another project.

FR8 Delete Rule A rule should be deletable.

FR9 Export Rule The domain expert should be able to transfer rules to the server

Questionizer.

FR10 Exchange Rule Domain experts should be able to exchange created rules.

FR11 Validation of Rules Rules should be checked for their validity (e.g., follow the

defined grammar, use known variables).

FR12 Edit Variable Loaded variable should be editable and their "Meta" informations

should be editable.

FR13 Display of Errors and Warnings If something unexpected happens, Question-

rule should display warnings and errors in a proper way.

The rule creation (FR5) is very important, because domain experts usually have little or

no experience in boolean algebra. Therefore a graphical rule editor should be created, to

help the domain experts to get started. One possible solution for this issue is presented

in section 5.3.

14

3.2 Nonfunctional Requirements

3.2 Nonfunctional Requirements

Nonfunctional requirements defines the characteristics of a system. The nonfunctional

requirements of Questionrule are as follows:

NR1 Programmatic Extensibility It should be easy for a software developer to add

new functionality to Questionrule.

NR2 Rules Extensibility A domain export should be able to add more functionality to

the rules and the evaluation of rules.

NR3 Reliability The system functions in Questionrule should be mature and Question-

rule should have a high tolerance for errors.

NR4 Usability Questionrule should be comprehensible and easy to learn. The operation

should be intuitive and clear. Wizards should guide the domain experts in using

the functions of Questionrule.

NR5 Portability The installation process of Questionrule should be clear. The port to

another system should be no problem.

NR6 Provide Detailed Errors and Warnings If an error occurs (i.e., not connected

to the server) the user should get informed by displaying meaningful error- or

warning-messages.

NR7 Platform Independent Questionrule should provide its functionality independent

of the platform used on.

Especially, nonfunctional requirement NR2 is important, as domain experts must add

functionality to the rule evaluation depending on their respective use cases. Therefore

it is crucial to provide the possibility to easily create new functions. To cope with this

challenge a solution should be designed to add new functions in an easy way and use

them within Questionrule. One solution to achieve this goal is presented in section 5.2.

15

4
Concept and Architecture

This chapter presents the concepts as well as the architecture, which were used for

implementing Questionrule. The concepts introduced in section 4.1 are more general

and serve as a theoretical foundation for Questionrule. Section 4.2 presents the general

structure and the individual components of the implementation in more detail.

4.1 Concept

This section presents the different concepts, which where used for the design of the

rule component. In section 4.1.1 rules are defined and functions are introduced. Subse-

quently, section 4.1.2 presents the workspace and projects. Furthermore, section 4.1.3

explains the use of formal grammars in Questionrule for validity checks of rules.

17

4 Concept and Architecture

4.1.1 Rules

A rule consists of a number of comparisons, which are connected using boolean opera-

tors AND (&&) and OR (||). Comparisons consists of two operands and a single operator

in between. An operand thereby either is a constant or a variable. Constants are simple

data types like strings, floats, integers or booleans. The actual value for a variable is

gathered when enacting a questionnaire (i.e., they are data elements within the business

process). If the questionnaire is mapped to a business process the data elements of this

business process are used to store the given answers of the user. That means a rule

can trigger on a certain combination of answers. Figure 4.1 shows an example of a rule

with further annotations.

Figure 4.1: Example for a Rule

The given example consists of 3 comparisons which are connected with two boolean

operators. Smoking, drinking and beer are variables and "yes", 5 and False are

constants.

To allow domain experts to create more complex rules, an operand can also be a function.

A function is created by the domain expert and adds a specific behavior in terms of

the subsequent evaluation to rules. Figure 4.2 shows an example for a rule using a

user-defined function.

18

4.1 Concept

Figure 4.2: Example of a Rule containing a Function

The function is called count and the input parameters are an array of comparisons and

an integer. The function, for example, checks if a certain number (in this example, 2) of

comparisons are fulfilled, it doesn’t matter which. If so, the function will return true. If

the specified number of comparisons is not fulfilled, the function will return false.

To create a new user-defined function a lightweight framework is provided, which allows

the domain expert to implement his own logic. This framework enables Questionrule to

load all the user-created functions in a consistent way. During the evaluation of a rule,

the user-created functions are ran and then replaced with their return value. By doing so,

a comparisons of two constants is created, which can be easily evaluated as described

before.

The concept of these user-defined functions adds another level of extensibility to Ques-

tionrule. This was already described as nonfunctional requirement NR2 in section 3.2.

The data model of a rule is defined in a XSD-file and the rules are stored in XML-files

following this schema. By using XML to store the rules, the output is human-readable.

Furthermore, the XSD-file is used to automatically created the needed classes for the

implementation. More about XSD and XML can be found in [W3Cb] and respectively

in [W3Ca]. Additionally, DAOs (Data Access Object) are used, which encapsulate a

data source (here XML-file) and the available methods for the data. The data is only

accessed through the DAO itself and not manipulated directly. This approach ensures

the changeability of the application, as only the XSD needs to be adapted to the new

requirements without changing the underlying implementation.

19

4 Concept and Architecture

4.1.2 Workspace of Questionrule

The projects which a domain expert creates are stored in the workspace of Questionrule.

Upon creation, each project is assigned a unique name and a questionnaire model. A

project consists of the created rules and the data elements of a questionnaire. The latter

are extracted from the given model and added to the variable store. After the project

is successfully created, the domain experts may create rules to allow for an electronic

evaluation. Rules can be published and exported. Publishing rules means, to export all

selected rules into a single file and send it to the server using Web Services. Exporting

rules, however, means, to export each selected rule into a different file for an easy

exchange of rules between users. The Publishing Rules functionality covers functional

requirement FR9, while the Export Rules functionality covers function requirement FR10.

4.1.3 Formal Grammar

We defined a formal grammar, which describes the structure of the rules in section

4.1.1. This formal grammar provides an easy way to check the rules for validity in many

different ways. Aside from general syntax errors (e.g., a comparison consists of only one

operand) it is checked if a variable used in a rule is also defined in the questionnaire

model for this project. This means in other words, there exists a data element within the

business process with the respective variable name. Furthermore, if the variable exists,

it is checked if the data type of the other operand in the comparison suits the type of

the variable. This check can be done easily, as the data types are defined in the formal

grammar. If a function is used within the rule it is checked if the respective function is

successfully loaded in Questionrule. Therefore, the application checks, whether there

exists a function with the name defined. As with the variable, it is checked if the data

type of the other operand suits the function’s return type.

The next step is to adopt the presented concepts in the architecture of the rule compo-

nent. Therefore, the architecture of Questionrule is presented at first and the concrete

implementation of these concepts will be shown in a later section.

20

4.2 Architecture

4.2 Architecture

This section introduces the overall architecture of Questionrule. Section 4.2.1 covers

the Model-View-Presenter software design pattern, which is mainly set through the

use of the Eclipse RCP framework used for the development. Section 4.2.2 shows an

overview of the architecture of Questionrule. The individual components of the structure

of Questionrule are presented in sections 4.2.3 to 4.2.8.

4.2.1 Model-View-Presenter

Model-View-Presenter (MVP) [Pot96] is a software design pattern, which emerged

from the widely used Model-View-Controller (MVC) [KP+88] pattern. It describes a

new approach to completely isolate the model and the view and connect them with

a presenter. The advantage over MVC is a stricter separation of the individual parts

resulting in a better testability of the application. Figure 4.3 shows the structure and

dependencies of MVP.

Figure 4.3: MVP Structure

MVP consists of 3 parts: model, view and presenter. They are discussed in the following:

Model The model represents the business logic of the application. That means it

provides all functionality to run the view. The presenter alone, however, controls

the model. The model is completely isolated and doesn’t know either view or

presenter.

View The view doesn’t contain any controlling logic and is only responsible for displaying

the data and providing data input and possibilities for manipulating the data. Neither

21

4 Concept and Architecture

does it access the functionality of the presenter nor the model itself. The view is

controlled only by the presenter.

Presenter The presenter is the connector between model and view. It controls the

logical activities between both other parts and ensures that the view can display

the correct data.

To fully benefit from the advantages from MVP over MVC, interfaces for both view and

model are used. The interfaces define the access and methods to both parts, while

the presenter connects to these interfaces. This ensures a complete replaceability and

reusability of both model and view. The view or the model can be replaced without the

need to change the other two parts. The new part only needs to implement the specified

interface.

Another concept, often used in conjunction with MVP, is the event bus. The event bus

solves the problem, how presenters interact among themselves. Presenters can fire

events onto the event bus and register on the event bus, to get informed if a certain event

occurs. That means a presenter can interact with other presenter by publishing events to

the event bus. The latter notifies presenters, which have subscribed for this event. This

approach allows a very flexible interaction between presenters and the replaceability of

single presenters. A new presenter needs to listen for specific events it is interested in

and implement the interaction between the corresponding view and model.

4.2.2 Architecture of Questionrule

Questionrule uses the Eclipse RCP framework as solid foundation and is composed

of different managers. The managers are structured in layers and build upon each

other as shown in figure 4.4. The layer, which consists of the Project Manager and the

Questionnaire Model Manager takes care of the import and export of the questionnaires

and rules. They pass the data to the Validation Manager, Rule Manager and Variable

Manager. In the next layer the data is further processed and may be edited by the

domain expert working with the application. The User Interface and the Web Services,

which are used to communicate with the domain expert and the server component

Questionizer, are build on top of these managers.

22

4.2 Architecture

Figure 4.4: Architecture of Questionrule

The different managers will be presented in detail in the following sections. Thereby,

they will be presented in a bottom to top order. The different task of the managers will

be explained and the connection to other managers will be pointed out.

4.2.3 Project Manager

The Project Manager handles the workspace of Questionrule and everything related

to the projects within the workspace. This includes loading existing projects, creating

new ones or deleting old projects. Furthermore, it allows for changing the questionnaire

model of an existing project, defining new rules and exporting rules.

When starting Questionrule the Project Manager loads all existing projects which are

stored in the workspace of Questionrule and presents them to the domain expert. When

creating a new project, a domain expert must choose a name for the project and select

a questionnaire model using a wizard. Thereupon, the Project Manager creates all

relevant folders, forwards the questionnaire to the Questionnaire Model Manager and

inserts the received variables into the created project. Upon deleting a project, the

Project Manager simply removes the project folder with all content. Flexibility is an

important aspect for business processes. Reichert, Dadam and Weber have shown in

[RD09, RW12], that business processes must be adaptable to changing requirements.

23

4 Concept and Architecture

Therefore a questionnaire model in a project may be replaced. When changing the

questionnaire model (e.g., because a new version is available), all variables must be

reloaded. Of course, existing rules must be reevaluated, as variables could be deleted.

This would result in invalid rules (i.e., the rule is not satisfiable any more). When creating

a new rule, the Project Manager creates a new empty rule (XML-file) in the rule folder of

the project. To copy or paste a rule, the Project Manager reads in the rule and uses the

export to create the rule in another project.

The export component within the Project Manager is divided into two functionalities:

exporting and publishing. For the export of rules a domain expert selects the desired

rules in a wizard and sets a location folder to save the exported rules. The Project

Manager then creates for every rules a new file containing the rule. When publishing the

rules all selected rules are merged into one single file, which can then be used to send it

to the server component Questionizer.

The Project Manager covers function requirements FR1 - FR5, FR7, FR9 and FR10 as

described in section 3.1.

4.2.4 Questionnaire Model Manager

The Questionnaire Model Manager provides the functionality to read questionnaire

models. This is required for the Project Manager, Variable Manager and Validation

Manager. When a new project is created, the Project Manager sends the questionnaire

model to the respective manager. The Questionnaire Model Manager extracts the

required information (e.g., data elements used in the model) from the underlying business

process, which represents answers for questions. This business process is modeled

in Aristaflow, which is an implementation of the ADEPT2 concept [DR09]. These data

elements are then converted to an internal format and are now called variables. Variables

consists of the properties of the data elements derived from the questionnaire model

and additional user-defined properties (e.g., a custom description providing additional

information for the domain expert). Internally, Questionrule works with these variables.

The conversion into this internal format is important, because a later change of the

questionnaire model format shouldn’t result in massive changes of Questionrule. The

variables, which are extracted from the questionnaire model are sent back to the Project

24

4.2 Architecture

Manager. The Project Manager stores them the current projects folder.

When checking for validity of a rule, the Validation Manager asks the Project Manager for

the variables within the rule. Then the Validation Manager performs validation checks for

these variables. The Variable Manager receives the variables from the Project Manager

to present them to the domain expert and let the domain expert edit the variables.

The Questionnaire Model Manager covers the functional requirement FR1, FR2 and

FR4.

4.2.5 Variable Manager

The Variable Manager enables the domain expert to edit variables and provide additional

information. For this purpose, the Variable Manager receives the variables from the

Questionnaire Model Manager. The domain expert can only add new properties to

variables but can not change the original properties extracted from the questionnaire

model (e.g., the data type of the variable). The reason for this is that, the domain expert

could create inconsistencies otherwise (e.g., change name of a variable to a non existing

data element).

The Variable Manager covers functional requirement FR12.

4.2.6 Rule Manager

The Rule Manager receives rules from the Project Manager to display them to the

domain expert. In addition, it also enables the domain expert to edit and delete a specific

rule. In case the domain expert deletes a rule, the XML-file is removed from the project.

When saving changes after editing, the Rule Manager overwrites the existing rule in the

rule folder of the project with the new one. The Rule Manager also sends the rule to

the Validation Manager, where it is checked for validity. To do so, a grammar is used

for a graphical representation of a rule, which can be defined using a rule editor. This

grammar also defines the structure of the rules created with the graphical rule editor

and implements the correctness by construction principle. This concept means, that

a domain expert is not able to create syntactic wrong rules. Domain experts need to

be supported and should only be allowed to use certain functions. Thereby, domain

25

4 Concept and Architecture

experts can make less mistakes. The Rule Manager also receives the name of all

functions available from the Validation Manager as well as the name of all variables from

the Project Manager for the graphical rule editor. Thereby, only existing variables and

functions can be used when defining a new rule.

The Rule Manager covers functional requirement FR6 and FR8.

4.2.7 Validation Manager

The Validation Manager checks if a given rule is valid. Therefore it receives the rule from

the Rule Manager and the variables of the project from the respective manager. The

Validation Manager checks for the syntax of the rules, which is defined in the grammar.

In addition it checks if a variable used in the rule is existent in the project and if the data

type of the variable suits respective the comparisons. Furthermore, it is also checked if

the used functions exist. All known functions are stored in the Function Repository of the

application. When starting Questionrule, the Validation Manager reads all functions from

the Function Repository. To check the existence of a function, the Validation Manager

uses the imported functions. It is also checked, if the data type of the function’s result

suits the comparison.

The Validation Manager covers functional requirement FR11 and FR13.

4.2.8 Web Services

The Web Services are responsible for the communication with the external server

component Questionizer. These Web Services cover functional requirement FR9. An

introduction to Web Services can be found in [CDK+02].

4.3 Conclusion

These concepts form a basis for the functionality of Questionrule. The architecture

enables programmatic extension and splits Quesitonrule in multiple components. Each

component has its own distinct task and communicates with other components.

26

5
Implementation Aspects

This section presents selected highlights of the Questionrule application. Section 5.1

introduces ANTLR, which is a parser generator. It is used for defining a grammar, which

describes the structure of rules. From this grammar, ANTLR creates a parser. Section

5.2 present the approach for dynamically loading user-defined functions to extend the

overall functionality of the rules. The graphical rule editor is shown in section 5.3.

5.1 ANTLR

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for

reading, processing, executing, or translating structured text or binary files [Par13]. It’s

widely used to build languages, tools and frameworks. From a so called grammar,

ANTLR generates two classes: lexer and parser. The lexer runs first and splits the

27

5 Implementation Aspects

input into different pieces, the so called tokens. Each token represents a piece of input

(e.g., a variable or a constant). The stream of tokens is passed to the parser, which

builds and walks parse trees, interprets the code or translates it into some other form. A

grammar file contains all required information ANTLR needs to generate the lexer and

corresponding parser. Most importantly, this grammar file describes how to split the

input into the different tokens and how to build the tree from the derived tokens. In other

words, the grammar file contains lexer rules and parser rules. The defined grammars

are context-free (see section 2.3).

In this thesis ANTLR was used to define a grammar which describes the structure of

rules which can be generated using Questionrule. This grammar is shown in listing 5.1.

Listing 5.1: Grammar to define the Structure of Rules

1 grammar BooleanRules;

2

3 //Lexer rules

4 //Operators

5 OPERATOR: ’+’ | ’-’ | ’*’ | ’/’ | ’%’;

6 EQOP: ’==’ | ’!=’ | ’<’ | ’>’ | ’>=’ | ’<=’;

7 BOOLOP: ’&&’ | ’||’;

8

9 //Data Types

10 BOOL: ’True’ | ’False’;

11 IDENTIFIER: LETTER (DIGIT | LETTER)*;

12 fragment DIGIT: [0-9];

13 fragment LETTER: [a-zA-Z];

14 INT: DIGIT+;

15 FLOAT: DIGIT+’.’DIGIT+(’d’|’D’);

16 STRING: ’"’IDENTIFIER’"’;

17

18 //Braces

19 BRACKOPEN: ’(’; BRACKCLOSE: ’)’;

20 ARROPEN: ’[’; ARRCLOSE: ’]’;

28

5.1 ANTLR

21 SEPARATOR: ’,’;

22

23 WHITESPACE : (’\t’ | ’ ’ | ’\r’ | ’\n’| ’\u000C’)+ -> skip ;

24

25 //Parser Rules

26 //entry-point

27 start: boolexpression;

28

29 //rule serves as a chaining or nesting of comparison

30 boolexpression: BOOL | BRACKOPEN boolexpression BRACKCLOSE |

31 boolexpression BOOLOP boolexpression |

32 BRACKOPEN test BRACKCLOSE | test;

33

34 //a comparsion consists of relational operator and a expression

35 test: functioncall | expression EQOP expression ;

36

37 expression: IDENTIFIER | functioncall | INT | BOOL |FLOAT |

38 STRING | BRACKOPEN expression BRACKCLOSE |

39 expression OPERATOR expression;

40

41 functioncall : IDENTIFIER BRACKOPEN paramlist BRACKCLOSE;

42

43 paramlist: param | param SEPARATOR paramlist;

44

45 param: array | test | expression;

46 //Arrays

47 array: ARROPEN arrlist ARRCLOSE;

48

49 arrlist: arrelement | arrelement SEPARATOR arrlist;

50

51 arrelement: test | expression;

29

5 Implementation Aspects

The grammar starts with the lexer rules. Each lexer rule (e.g., INT: DIGIT+;) de-

scribes one token. Lines 5-7 defines the operators for comparisons. Next, the data types

(e.g., BOOL: ’True’ | ’False’;) are defined in lines 10-16. The IDENTIFIER in

line 11 acts as name for a variable or function, whereas STRING is an actual constant,

which may be used for comparison. Digits and letters (line 12 and 13) are defined as a

fragment. Thereby they can be used in lexer rules, which simplifies the grammar and

makes it more readable. The lines 19-21 define the braces and separators. Line 23 tells

the lexer to skip whitespaces and line breaks.

Next, the parser rules are listed, which describe the structure of the rules for the evalu-

ation of data collected. The appliance of these parser rules is the same as presented

in section 2.3. The start rule is the entry point for the parser. A boolexpression

either consists of a boolean constant (BOOL), an embraced boolexpression (BRACKOPEN

boolexpression BRACKCLOSE), a comparison of two boolexpressions (boolex-

pression BOOLOP boolexpression), an embraced test (BRACKOPEN test

BRACKCLOSE) or a normal test. A test thereby is a simple comparison, which consists

of either a function (functioncall) or a comparison of two expressions (expression

EQOP expression). An expression is a variable name (IDENTIFIER), a function

(functioncall), a simple data type (INT | BOOL | FLOAT | STRING), an em-

braced expression (BRACKOPEN expression BRACKCLOSE) or a comparison of two

expressions (expression OPERATOR expression). A functioncall consists of

the name of the function (IDENTIFIER) and the list of parameters (paramlist). The

paramlist is composed of one or multiple parameters (param). A param may be an

array, a test or an expression. The array has a list of arrays (arrlist), which

consists of at least one element (arrelement). An array element is either a test or

an expression.

Figure 5.1 shows the example rules of section 4.1.1 annotated with various parts of the

grammar.

30

5.1 ANTLR

Figure 5.1: Grammar Examples

With this grammar, ANTLR creates the following classes, which are described in the

further course of this chapter.

• BooleanRulesBaseListener.java

• BooleanRulesLexer.java

• BooleanRulesListener.java

• BooleanRulesParser.java

• BooleanRules.tokens

• BooleanRulesLexer.tokens

The most important class is BooleanRulesBaseListener. It implements the interface

BooleanRulesListener, which consists of methods presented in listing 5.2. The

31

5 Implementation Aspects

methods are called when the parse tree of a rule is traversed and a specific element of

the grammar is found.

Listing 5.2: Excerpt of BooleanRulesListener

1 /**

2 * Enter a parse tree produced

3 * by {@link BooleanRulesParser#expression}.

4 * @param ctx the parse tree

5 */

6 void enterExpression(@NotNull BooleanRulesParser.

ExpressionContext ctx);

7 /**

8 * Exit a parse tree produced

9 * by {@link BooleanRulesParser#expression}.

10 * @param ctx the parse tree

11 */

12 void exitExpression(@NotNull BooleanRulesParser.

ExpressionContext ctx);

13 /**

14 * Enter a parse tree produced

15 * by {@link BooleanRulesParser#test}.

16 * @param ctx the parse tree

17 */

18 void enterTest(@NotNull BooleanRulesParser.TestContext ctx);

19 /**

20 * Exit a parse tree produced

21 * by {@link BooleanRulesParser#test}.

22 * @param ctx the parse tree

23 */

24 void exitTest(@NotNull BooleanRulesParser.TestContext ctx);

32

5.1 ANTLR

Furthermore, a class BooleanRulesListenerImpl was automatically created, which

extends BooleanRulesBaseListener and implements selected methods like

enterExpression(@NotNull BooleanRulesParser.ExpressionContext

ctx). These methods are used to check the validity of a rule. Listing 5.3 shows

an excerpt of BooleanRulesListenerImpl, which uses the enterExpression

method to check if a variable used within the given rule exists in the project (i.e., exist in

the corresponding questionnaire model).

Listing 5.3: Excerpt of BooleanRulesListenerImpl

1 public void enterExpression(@NotNull BooleanRulesParser.

ExpressionContext ctx){

2 boolean matchingVariableFound = false;

3 if(ctx.IDENTIFIER() != null){

4 //checks if the variable is part

5 //of the list of all variables

6 for(int i=0;i<listOfInternalDataElements.size();i++){

7 if(ctx.IDENTIFIER().toString().equals(

listOfInternalDataElements.get(i).getName())

)

8 matchingVariableFound = true;

9 }

10 if(!matchingVariableFound)

11 warningList.add(new RuleWarning("The variable

named" + ctx.IDENTIFIER() + " doesn’t exist!

", ErrorCodes.

QuestionRule_Variable_DoesntExit));

12 }

13 }

Therefore, BooleanRulesListenerImpl receives all variables in a list

listOfInternalDataElements and checks if the name of variable used in the rule

exists in the list of all variables (line 6-9). If so, it creates a warning which can be

33

5 Implementation Aspects

displayed within the user-interface of the application (line 10-12).

The implementation of the validation of a rule works as follows: The BooleanRulesLex-

er imports the rule and creates the tokens. Then the BooleanRulesParser cre-

ates a parse tree for the rule with the help of the tokens. This parse tree is given

to a ParseTreeWalker, which traverses the tree and runs methods implemented in

BooleanRulesListenerImpl. After the ParseTreeWalker is finished, the list of

occurred errors can be received and may be displayed in the user-interface, to present

them to the user.

An important fact of our grammar is, that common data types are defined. For example,

when checking the data type of a variable for a comparison, no Java mechanism are

needed, as only the data type of the variable has to be compared to the one of the

constant.

5.2 Adding User-Defined Functions to Rules

Adding user-defined functions to rules offer domain experts the possibility of evaluating

these rules in a new way. To do so, a framework, which allows to create their own

function is provided to domain experts. In practice, this framework is a JAR-File, which

must be added to a new Java-Project. This JAR-File contains mostly Interfaces, which

must be implemented by a software developer. Figure 5.2 shows the content of the

Function Template JAR-File.

Figure 5.2: JAR-File (Framework) for creating User-Defined Functions

34

5.2 Adding User-Defined Functions to Rules

This JAR-File is divided in 2 packages: The functions package contains everything

which is directly related to the function, whereas the parser contains all classes

generated by ANTLR (see section 5.1).

The interface Function is the most important part of the functions package as it

contains all methods, which must be implemented later. The interface is shown in Listing

5.4.

Listing 5.4: Interface Function

1 package com.questionsys.questionrule.functions;

2 /**

3 * defines all methods for user-defined functions

4 */

5 public interface Function {

6 /**

7 * Returns the name of the function

8 * @return name of the function

9 */

10 public String getIdentifier();

11

12 /**

13 * evaluates the function

14 * @param ctx function to evaluate

15 * @return String name of function

16 */

17 public FunctionReturnObject eval(FunctioncallContext ctx);

18

19 /**

20 * checks input function for errors. If function isn’t valid

21 * the method returns a list of errors. If it is valid

22 * the list is empty

23 * @param ctx

24 */

35

5 Implementation Aspects

25 public ArrayList<RuleError> checkForErrors(BooleanRulesParser.

FunctioncallContext ctx);

26

27 /**

28 * checks input function for warnings. If function isn’t valid

29 * the method returns a list of warnings. If it is valid

30 * the list is empty

31 * @param ctx

32 */

33 public ArrayList<RuleWarning> checkForWarnings(

BooleanRulesParser.FunctioncallContext ctx);

34

35 /**

36 * returns the FunctionReturnObject, where the value

37 * and type is stored

38 * @return

39 */

40 public FunctionReturnObject getFunctionReturnObject();

41 }

In case, the domain experts wants to create a new function, this interface has to be imple-

mented. The method getIdentifier() returns the name of the function. This method

is called, when the Validation Manager checks if a function used within a rule exists in

the function repository. The method eval(FunctioncallContext ctx) evaluates

the function. The function is passed as a data type of ANTLR (FunctioncallContext

ctx) to the method and not as a simple String. Thereby the structure of the grammar can

be used (e.g., iterate array elements of an array) for evaluation and no complex string ma-

nipulation operation are needed. The domain expert needs to engage in ANTLR, but the

actually evaluation is a lot easier with the ANTLR data type in contrast to a simple String.

The methods checkForErrors(BooleanRulesParser.FunctioncallContext

ctx) and checkForWarnings(BooleanRulesParser.FunctioncallContext

36

5.2 Adding User-Defined Functions to Rules

ctx) return errors or warnings, which happened during the check for validity of the rule.

Note, that a domain expert can define own errors and warnings and check for them. The

last method getFunctionReturnObject() returns the function’s ReturnObject. This

method is called, when the Validation Manager checks if the data type which is used in

a comparison with a function, suits the functions return type.

The interface FunctionReturnObject in Listing 5.5 has to be implemented by the

ReturnObject of the custom function.

Listing 5.5: Interface FunctionReturnObject

1 package com.questionsys.questionrule.functions;

2

3 public interface FunctionReturnObject {

4 public Object getValue();

5 public FunctionReturnDataType getType();

6 public void setValue(Object value);

7 public void setType(FunctionReturnDataType type);

8 }

These methods are only getters and setters for the actual value as well as the data type

of the value. The available types are defined in the enum FunctionReturnDataType.

Next, the approach of implementing a custom function is presented. As an example,

the count function (see Section 4.1.1) is discussed, which is invoked with 2 arguments:

an array of comparisons and an integer. The latter checks if a certain number of

comparisons is fulfilled, however, it doesn’t matter which. If so, the function will return

true. If the specified number of comparisons is not fulfilled, the function will return false.

Listing 5.6 shows the class of the function count.

Listing 5.6: User-Defined Function count. Implemented using the provided Framework

1 package com.questionsys.questionrule.functions;

2

3 public class CountingFunction implements Function {

4 String identifier = "count";

5 int paramCount = 2;

37

5 Implementation Aspects

6 private FunctionReturnObject

7 countingFunctionReturnObject;

8

9 public CountingFunction(){

10 countingFunctionReturnObject = new

CountingFunctionReturnObject();

11 countingFunctionReturnObject.setType(

FunctionReturnDataType.Boolean);

12 }

13

14 public String getIdentifier() {

15 return identifier;

16 }

17

18 public ArrayList<RuleError> checkForErrors(

FunctioncallContext ctx) {

19 ArrayList<RuleError> listOfFunctionErrors = new

ArrayList<RuleError>();

20 return listOfFunctionErrors;

21 }

22

23 public ArrayList<RuleWarning> checkForWarnings(

FunctioncallContext ctx) {

24 ArrayList<RuleWarning> listOfFunctionWarnings =

new ArrayList<RuleWarning>();

25 //iterate parameter list

26 ParamlistContext paramlistContext = ctx.

paramlist();

27 int count = 0;

28 while(paramlistContext != null){

29 count++;

38

5.2 Adding User-Defined Functions to Rules

30 paramlistContext = paramlistContext.

paramlist();

31 }

32 //compare parameter count

33 if(count != paramCount){

34 listOfFunctionWarnings.add(new

RuleWarning("Anzahl der Parameter

bei der Funktion mit dem Namen: "+

ctx.IDENTIFIER()+ " stimmt nicht!",

2301));

35 }

36 return listOfFunctionWarnings;

37 }

38

39 public FunctionReturnObject eval(FunctioncallContext

ctx) {

40 //TODO implement evaluation

41 countingFunctionReturnObject.setValue(true);

42 return countingFunctionReturnObject;

43 }

44

45 public FunctionReturnObject getFunctionReturnObject() {

46 return countingFunctionReturnObject;

47 }

48 }

Note, that the user-defined CountingFunction implements the interface Function in line

3, which was discussed already. The Identifier (line 4) defines the name of the function.

Then the amount of parameters is defined, which is used in a function specific check for

warnings. The constructor defines the return data type. The method checkForErrors

(FunctioncallContext ctx) doesn’t do anything, as the implementation for the

count function doesn’t define any errors. However, the method checkForWarnings(

39

5 Implementation Aspects

FunctioncallContext ctx) verifies, if the correct amount of parameters are pro-

vided. If not, a warning is added to the warning list. The eval method needs to be

implemented with actual business logic.

When starting the application, Questionrule loads all user-defined functions from the

Function Repository using Reflection [Orc]. This can be done, because all functions

have to implement the Function interface, which was described earlier, enabling Ques-

tionrule to work consistently with these user-defined functions. When Questionrule

detects a function within a rule, it verifies if this function has been loaded already. If so, it

calls the function’s checkForWarnings() and checkForErrors() methods for the

custom validation checks defined by the domain expert.

5.3 Graphical Rule Editor

The rules in Questionrule are text-based, which is not very user friendly especially for

user new to the application. To allow for an easier work, a Graphical Rule Editor was

integrated in Questionrule. It enables the user to create such rules using a tree-based

drag & drop approach. It uses the grammar to determine the structure of created rules.

Figure 5.3 shows an empty editor, when creating a new rule.

Figure 5.3: Overview of the Graphical Rule Editor when Creating a new Rule

40

5.3 Graphical Rule Editor

On top of the view are several fields for the name of the rule as well as a description. Be-

low these two fields is the graphical rule editor pane and on the bottom is the description

field for the actual rule. The editor pane consists of a tool area on the right hand side

and a drawing area on the left hand side.

The rule (True == count(INSERT YOUR DATA HERE)) && (Age <= 18) eval-

uates if the subject agrees to a certain number of statements about his drinking behavior.

To create this rule, the domain expert simply drags various parts of the rule (Bool,

Comparison, Constant, Function and Variable) and drops them on the editor

pane (figure 5.4).

Figure 5.4: Adding Various Parts to the Rule

In the next step, the domain expert can specify the different parts of the rule. Therefore

he can use the dropdown fields for Bool (|| or &&), Comparison (==, !=, <=, <, >= or

>), Function and Variable. The dropdown fields for Function and Variable are

generated dynamically. To fill the Function and Variable dropdown fields, the Rule

Manager receives the functions names from the Validation Manager and the variable

names from the Project Manager (figure 5.5).

41

5 Implementation Aspects

Figure 5.5: Dynamically Selecting Parts of the Rule

Next, the domain expert selects two parts of the rule, which should be linked and uses

the connect button to do so. To be more precisely, he needs to select which part of the

rule is the father (red) and which part is the child (green) in order to set them in a

hierarchical structure shown in figure 5.6.

Figure 5.6: Hierarchically Connecting Parts of the Rule

42

5.4 Conclusion

The connection mechanism enforces a correct rule and implements the correctness by

construction principle. For example, it is not possible to connect two Constants or

more than two parts for a Comparison.

When the expert has finished building the rule, he uses the Convert to Rule button and

the rule is displayed in the condition description field as seen in figure 5.7. Note, that the

parameters for a function still has to be assigned after the rule has been converted. This

has to happen manually, because Questionrule doesn’t know the desired input of the

functions.

Figure 5.7: Complete Rule Graph with Condition

Of course the rule editor provides additional functionalities like deleting and repositioning

different parts of the rule. When a rule part is deleted all lines connected to it are deleted

as well.

5.4 Conclusion

ANTLR offers the possibility to easily validate rules and thereby helps to enforce a valid

rule. User-defined functions enables domain experts to add new ways to evaluate the

43

5 Implementation Aspects

data collected and therefore increase the flexibility and expressiveness of Questionrule.

The Graphical Rule Editor allows for an easy introduction to Questionrule.

44

6
Related Work

There exists a variety of rule editors available on the market. Three examples for

applications using editors to compose boolean logic are: Yahoo! Pipes, Axure RP Pro

and Apple Itunes. These applications are discussed in the following sections 6.1 to 6.3.

Finally, section 6.4 compares these applications against the concept of Questionrule,

which was developed in this thesis.

6.1 Yahoo! Pipes

Yahoo! Pipes (YP) [Yah] is a web application from Yahoo! that provides a graphical

user-interface to build data mashups. These data mashups may aggregate web feeds,

web pages, and other services, to create Web-based apps from various sources, and

to publish those apps. Users are able to pipe information from different sources (e.g.,

45

6 Related Work

Flickr, RSS) and can then create rules for how that content should be modified (e.g.,

filtering, merging). An example is New York Times through Flickr, thereby a pipe takes

the New York Times RSS feed and adds an appropriate photo from Flickr based on the

keywords of each item.

Yahoo! Pipes provides many predefined modules which can be used either to grab data

from sources or to edit and manipulate the data grabbed. To create a new pipe, the user

drags the modules onto a working pane and connects them afterwards. These modules

are grouped into categories. These categories are for example sources, user inputs and

operators. In the sources category are modules, which grab data from one or multiple

sources on the internet. The modules of the user input category enable the user to add

an input in the pipe. The modules in the operator category are used to filter or transform

the data. Figure 6.1 shows the Filter module in a pipe, which is part of the operator

category.

Figure 6.1: Yahoo! Pipes Filter

This filter module can receives input from a module of the sources category (in this

example, Fetch Feed), filters the content depending on user-created rules and forwards

the filtered input to another module. The user working with YP can create boolean rules

46

6.2 Axure RP Pro

with these filters by simply using the dropdown choices and the textfields. These rules

either consist of comparisons connected with boolean AND or with boolean OR. It is not

possible to nest AND and OR.

6.2 Axure RP Pro

Axure RP Pro [Axu] is a wireframing, rapid prototyping, and specification software

tool aiming at web and desktop applications. It offers possibilities like drag and drop

placement, resizing, and formatting of user-interface widgets. Additionally, it enable the

developer to annotate widgets and define interactions such as linking, conditional linking,

simulating tab controls and show or hide elements.

The Condition Builder of Axure RP Pro allows to add functionality to the prototype, which

can help the user when testing the application. The example in figure 6.2 creates a login

functionality.

Figure 6.2: Axure Condition Builder

The first and second field in each row are the specific widget and the type of value which

are the first operand. Next the type of comparison follows. The last two fields are the

type of value and the specific value of the other operand. Like the filter module within

Yahoo! Pipes, it is not possible to nest boolean rules.

47

6 Related Work

6.3 Itunes

Apple Itunes is a media player, media library, and mobile device management application

developed by Apple Inc. [App]. It is used to play, download, and organize digital content

like audio and video on personal computers running on OS X and Microsoft Windows

operating systems.

In addition, it offers the possibility to create smart playlists using boolean logic (figure

6.3).

Figure 6.3: Itunes

To create a new smart playlist, users use the dropdown choices (e.g., Artist, Album) and

the textfields. The comparisons are connected with boolean AND (all) or with boolean

OR (any). In contrast to Yahoo! Pipes and Axure the user can create nested boolean

rules here very easy. The brace is presented through the indenting of the corresponding

comparisons.

6.4 Comparison

In comparison to the presented rule editors, Questionrule offers both an easy and intuitive

way to create boolean rules with the graphical rule editor. In addition, Questionrule

48

6.4 Comparison

doesn’t complicate the creation of more complex rules, because complex rules can be

created using the text input. In contrast to all presented rule editors, which use forms

to create and represent the rule, Questionrule uses a tree-based approach. This is a

more intuitive approach, because when creating a new rule, the parenthesis doesn’t

have to be put explicitly by the user, but results implicit from the structure of the tree.

Additionally, the use of a formal grammar in Questionrule helps to define the structure of

the tree and allows for a validation of the rules. None of the presented rule editors offers

a comparable validation of rules as discussed in this thesis. Moreover, these rule editors

have a fixed set of operators, which can’t be extended through the user. Quesitionrule’s

concept of user-defined functions enables the later addition of operators. Thereby,

Questionrule isn’t restricted to a certain use case like for example Itunes managing a

music collection, but can adapt to the current application scenario. Supplementary, the

functions of Questionrule enable the domain expert to define errors and warnings for the

function himself. Thereby, a function can be checked for its specific errors and warnings.

Questionrule validates rules for these errors and warnings.

49

7
Conclusion

Section 7.1 provides a critical discussion of the features of Questionrule. Section 7.2

summarizes the result and lessons learned form thesis, whereas section 7.3 provides

an outlook for further improvements and extensions.

7.1 Discussion

Questionrule adds additional functionality to the QuestionSys project. The presented

application allows to create rules which are used to evaluate the data collected using

electronic questionnaires. Figure 7.1 shows, how the developed concept for Questionrule

can be integrated into QuestionSys.

51

7 Conclusion

Figure 7.1: QuestionSys Architecture enriched with the Questionrule Component

The workflow to enable the analysis of the data collected using these rules could be

as follows: At first the questionnaire is modeled [Sch14a, Sch14b]. Afterwards the

questionnaire model is exported to the server component Questionizer and Questionrule

can import this questionnaire model using Web Services. Now the domain expert can

create rules and define corresponding texts. These texts can be defined in multiple

languages and are shown if a rule applies. Questionrule transfers the finished rules to

the server, where they are stored along with the corresponding questionnaire model. The

client Questionnaire, which runs on a smart mobile device, can download questionnaires

with their corresponding rules. This model is then enacted using a lightweight process

engine. All data collected is stored directly on the device. The completed questionnaire

can then be evaluated on the smart mobile device using the rules. Furthermore, results

can be uploaded to the server and the server evaluates the results. This approach allows

to evaluate the rules both on the server and the client, as the rules are stored on both

components. This leads to two use cases for the evaluation of the data collected.

The first use case is the evaluation on the client. In some cases it is important to have

the result immediately after completing a questionnaire (e.g., german TÜV inspection for

52

7.2 Conclusion

a car or a medical questionnaire about previous injuries). The presented approach will

offer the possibility to evaluate the completed questionnaire directly on the smart mobile

device and present the result right away. Therefore, the smart mobile device must enact

the business process with a process engine.

The second use case is the evaluation on the server. In a large case study a big

amount of data maybe gathered, which needs a powerful application to evaluate the data

collected. As the clients export all data collected to the server component, this server

is able to evaluate numerous questionnaire with their corresponding rules. The data

stored on the server may be used for further evaluation in terms of Business Intelligence

[AAS03] and process mining [ARW+07].

To summaries in short, QuestionSys allows both for a later evaluation of big amounts of

data on the server and an immediate evaluation on the client.

7.2 Conclusion

Questionrule enables domain experts to create rules, which are used for evaluating

electric questionnaires. The graphical editor allows for an intuitive and fast creation of

such rules. By using the Eclipse RCP framework for the implementation, Questionrule is

easy to extent and add further features. Moreover, the concept of user-defined functions

was introduced. These functions enable domain experts to enhance their rules with

own functionality to cover additional requirements in respect to the evaluation of the

data collected. In addition, a grammar for rules was defined allowing for a syntax for the

creation of rules. The grammar provides the basis for the graphical rule editor and the

Validation Manager, which checks the rules for errors.

7.3 Outlook

The next step for Questionrule is the upload of completed rules to the server Questionizer

using a REST interface. For this purpose, a REST client needs to be implemented in

Questionrule. REST was introduced by Roy Fielding in his doctoral dissertation [FT02].

53

7 Conclusion

In addition often used, standard user-defined function should be implemented, so the

domain experts can use them. One example is the evaluation of the count function,

which must be implemented. A new function is the sum function, which adds passed

integers and returns the sum. This function may be used when the subjects must

answers questions with for example never, somestimes, often or always. These possible

answers are assigned to integers and then are added with the help of the sum function.

Depending on the sum, the subject can receives different advices.

Furthermore Questionrule needs to be tested in practice by domain expert, so the

experience of real world tests can be incorporated in Questionrule. Especially a study

on the usability of the graphical rule editor is important to determine how comfortable the

editor actual is. Another step is the translation of Questionrule into multiple languages.

54

List of Figures

1.1 Example Business Process . 2

2.1 Architecture of QuestionSys . 6

2.2 Eclipse RCP components . 8

2.3 Chomsky Hierarchy . 12

4.1 Example for a Rule . 18

4.2 Example of a Rule containing a Function 19

4.3 MVP Structure . 21

4.4 Architecture of Questionrule . 23

5.1 Grammar Examples . 31

5.2 JAR-File (Framework) for creating User-Defined Functions 34

5.3 Overview of the Graphical Rule Editor when Creating a new Rule 40

5.4 Adding Various Parts to the Rule . 41

5.5 Dynamically Selecting Parts of the Rule 42

5.6 Hierarchically Connecting Parts of the Rule 42

5.7 Complete Rule Graph with Condition . 43

6.1 Yahoo! Pipes Filter . 46

6.2 Axure Condition Builder . 47

6.3 Itunes . 48

7.1 QuestionSys Architecture enriched with the Questionrule Component . . 52

55

Listings

5.1 Grammar to define the Structure of Rules 28

5.2 Excerpt of BooleanRulesListener . 32

5.3 Excerpt of BooleanRulesListenerImpl . 33

5.4 Interface Function . 35

5.5 Interface FunctionReturnObject . 37

5.6 User-Defined Function count. Implemented using the provided Framework 37

57

Bibliography

[AAS03] ANANDARAJAN, Murugan ; ANANDARAJAN, Asokan ; SRINIVASAN, Cadambi A.:

Business intelligence techniques: a perspective from accounting and finance.

Springer, 2003

[App] APPLE INC.: Apple Itunes. https://www.apple.com/de/itunes/. –

last visited: October 21., 2014

[ARW+07] AALST, W. M. P. d. ; REIJERS, H. A. ; WEIJTERS, A. J. M. M. ; DONGEN,

B. F. ; MEDEIROS, A. K. d. ; SONG, M. ; VERBEEK, H. M. W.: Business

Process Mining: An Industrial Application. In: Inf. Syst. 32 (2007), Juli, Nr. 5,

S. 713–732. – ISSN 0306–4379

[Axu] AXURE SOFTWARE SOLUTIONS: Axure RP Pro. http://www.axure.com/.

– last visited: October 21., 2014

[CDK+02] CURBERA, Francisco ; DUFTLER, Matthew ; KHALAF, Rania ; NAGY, William ;

MUKHI, Nirmal ; WEERAWARANA, Sanjiva: Unraveling the Web Services Web:

An Introduction to SOAP, WSDL, and UDDI. In: IEEE Internet Computing 6

(2002), März, Nr. 2, S. 86–93. – ISSN 1089–7801

[Cho56] CHOMSKY, Noam: Three models for the description of language. In:

IRE Transactions on Information Theory 2 (1956), S. 113–124. – http:

//www.chomsky.info/articles/195609--.pdf – last visited: October

21., 2014

[DR09] DADAM, Peter ; REICHERT, Manfred: The ADEPT Project: A Decade of

Research and Development for Robust and Flexible Process Support - Chal-

59

https://www.apple.com/de/itunes/
http://www.axure.com/
http://www.chomsky.info/articles/195609--.pdf
http://www.chomsky.info/articles/195609--.pdf

Bibliography

lenges and Achievements. In: Computer Science - Research and Develop-

ment 23 (2009), Nr. 2, S. 81–97

[Ecl] ECLIPSE FOUNDATION: Eclipse IDE. https://www.eclipse.org/

downloads/. – last visited: October 21., 2014

[FT02] FIELDING, Roy T. ; TAYLOR, Richard N.: Principled Design of the Modern

Web Architecture. In: ACM Trans. Internet Technol. 2 (2002), Mai, Nr. 2, S.

115–150. – ISSN 1533–5399

[KP+88] KRASNER, Glenn E. ; POPE, Stephen T. u. a.: A description of the model-view-

controller user interface paradigm in the smalltalk-80 system. In: Journal of

object oriented programming 1 (1988), Nr. 3, S. 26–49

[OMG11] OMG SPECIFICATION, OBJECT MANAGEMENT GROUP: Business Process

Model and Notation (BPMN) Version 2.0. 2011

[Orc] ORCALE CORPORATION: Trail: The Reflection API. http://docs.oracle.

com/javase/tutorial/reflect/. – last visited: October 21., 2014

[OSG] OSGI ALLIANCE: OSGi Core Release 5. http://www.osgi.org/

download/r5/osgi.core-5.0.0.pdf. – last visited: October 21., 2014

[Par13] PARR, Terence: The Definitive ANTLR 4 Reference. O’Reilly, 2013. – ISBN

1934356999

[Pot96] POTEL, Mike: MVP: Model-view-presenter the taligent programming model

for c++ and java. In: Taligent Inc (1996)

[RD09] REICHERT, Manfred ; DADAM, Peter: Enabling Adaptive Process-aware

Information Systems with ADEPT2. In: CARDOSO, Jorge (Hrsg.) ; AALST,

Wil van d. (Hrsg.): Handbook of Research on Business Process Modeling.

Hershey, New York : Information Science Reference, March 2009, S. 173–203

[RW12] REICHERT, Manfred ; WEBER, Barbara: Enabling Flexibility in Process-Aware

Information Systems: Challenges, Methods, Technologies. Berlin-Heidelberg :

Springer, 2012

60

https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
http://docs.oracle.com/javase/tutorial/reflect/
http://docs.oracle.com/javase/tutorial/reflect/
http://www.osgi.org/download/r5/osgi.core-5.0.0.pdf
http://www.osgi.org/download/r5/osgi.core-5.0.0.pdf

Bibliography

[Sch08] SCHÖNING, Uwe: Theoretische Informatik- kurz gefasst. Spektrum Akademis-

cher Verlag, Heidelberg, 2008. – ISBN 3827418240

[Sch14a] SCHERLE, Steffen: Konzeption und Evaluierung einer domänenspezifischen

Modellierungsumgebung für prozessorientierte Fragebögen. January 2014. –

Diploma thesis, University Ulm

[Sch14b] SCHULTE, Juri: Technical Conception and Implementation of a Configurator

Environment for Process-aware Questionnaires Based on the Eclipse Rich

Client Platform. March 2014. – Master thesis, University Ulm

[SSP+14] SCHOBEL, Johannes ; SCHICKLER, Marc ; PRYSS, Rüdiger ; MAIER, Fabian ;

REICHERT, Manfred: Towards Process-Driven Mobile Data Collection Applica-

tions: Requirements, Challenges, Lessons Learned. In: 10th Int’l Conference

on Web Information Systems and Technologies (WEBIST 2014), Special

Session on Business Apps, 2014, S. 371–382

[Ulm] ULM UNIVERSITY: QuestionSys. http://www.uni-ulm.de/in/

iui-dbis/forschung/projekte/questionsys.html. – last visited:

October 21., 2014

[Vog13] VOGEL, Lars: Eclipse 4 RCP: The complete guide to Eclipse application

development. (Vogella series), 2013. – ISBN 3943747077

[W3Ca] W3C: Extensible Markup Language (XML) 1.1 (Second Edition). http://

www.w3.org/TR/2006/REC-xml11-20060816/. – last visited: October

21., 2014

[W3Cb] W3C: XML Schema Definition Language (XSD) 1.1. http://www.w3.org/

TR/xmlschema11-1/. – last visited: October 21., 2014

[Yah] YAHOO! INC.: Yahoo! Pipes. https://pipes.yahoo.com/. – last visited:

October 21., 2014

61

http://www.uni-ulm.de/in/iui-dbis/forschung/projekte/questionsys.html
http://www.uni-ulm.de/in/iui-dbis/forschung/projekte/questionsys.html
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/xmlschema11-1/
https://pipes.yahoo.com/

Name: Bernd Mertesz Matrikelnummer: 699008

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Bernd Mertesz

	Introduction
	Purpose of the Thesis
	Structure of the Thesis

	Fundamentals
	QuestionSys
	Questioneer (Configurator)
	Questionizer (Server-Component)
	Questionnaire (Client Application)

	Eclipse RCP Framework
	Basic Architecture of Eclipse RCP
	Features of the Eclipse RCP

	Formal Grammars

	Requirements
	Functional Requirements
	Nonfunctional Requirements

	Concept and Architecture
	Concept
	Rules
	Workspace of Questionrule
	Formal Grammar

	Architecture
	Model-View-Presenter
	Architecture of Questionrule
	Project Manager
	Questionnaire Model Manager
	Variable Manager
	Rule Manager
	Validation Manager
	Web Services

	Conclusion

	Implementation Aspects
	ANTLR
	Adding User-Defined Functions to Rules
	Graphical Rule Editor
	Conclusion

	Related Work
	Yahoo! Pipes
	Axure RP Pro
	Itunes
	Comparison

	Conclusion
	Discussion
	Conclusion
	Outlook

