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Abstract: The Simple Temporal Network with Uncertainty (STNU) model focuses on the representation and evaluation of
temporal constraints on time-point variables (timepoints), of which some (i.e., contingent timepoints) cannot be
assigned (i.e., executed by the system), but only be observed. Moreover, a temporal constraint is expressed as an
admissible range of delays between two timepoints. Regarding the STNU model, it is interesting to determine
whether it is possible to execute all the timepoints under the control of the system, while still satisfying all given
constraints, no matter when the contingent timepoints happen within the given time ranges (controllability
check). Existing approaches assume that the original contingent time range cannot be modified during execution.
In real world, however, the allowed time range may change within certain boundaries, but cannot be completely
shrunk. To represent such possibility more properly, we propose Simple Temporal Network with Partially
Shrinkable Uncertainty (STNPSU) as an extension of STNU. In particular, STNPSUs allow representing a
contingent range in a way that can be shrunk during run time as long as shrinking does not go beyond a given
threshold. We further show that STNPSUs allow representing STNUs as a special case, while maintaining the
same efficiency for both controllability checks and execution.

1 INTRODUCTION

For more than a decade, the temporal constraint com-
munity has focused on the concept of controllabil-
ity (Morris et al., 2001). Given a set of temporal
constraints, of which each is expressed as an admissi-
ble range of delays between two time-point variables
(timepoints for short), we distinguish two types of
constraints: contingent and requirement constraints.
The latter represent the standard temporal constraints,
where both timepoints are under control of the system
that “executes” the timepoints according to the as-
signed constraints (i.e., the system fixes the timepoints
on the time line). This means that, during execution,
the range admissible for some timepoints could be re-
stricted by the system as it depends on the execution
of already executed timepoints. In turn, contingent
constraints are related to pairs of timepoints of which
one (i.e., the contingent timepoint) is not under control
of the system. Contingent timepoints are either given
by the environment (Morris et al., 2001), i.e., they are
related to uncontrollable, but expected, events, or by
an external agent (i.e., human or software) who may
decide autonomously when to execute the contingent
timepoint. Considering this scenario, the attention of
the temporal constraint community has moved from

the problem of consistency, which consists of deter-
mining whether there exists an execution of all time-
points satisfying all given constraints (Dechter et al.,
1991), to the problem of controllability; i.e., to deter-
mine whether it is possible to execute all timepoints
under the control of the system, while satisfying all
given constraints, no matter when the contingent time-
points happen within their given time ranges (Morris
et al., 2001).

Most contributions from literature assume that the
original time range of a contingent constraint cannot
be modified during execution. Thus there is no dif-
ference between contingent timepoints given by the
environment and the ones executed by external agents.
In the real world, however, it is quite common that
during execution the allowed time range may change,
although it cannot be completely shrunk. To repre-
sent the behavior of external agents more properly, we
may assume that an agent accepts certain reductions
(i.e., modifications) of the initial execution range, as
long as these do not go beyond a given threshold. In
other words, there is an unshrinkable range of execu-
tion time the agent can always use. Further, this range
is included into a larger one, the system may shrink
during execution. The basic idea of our approach is to
represent the fact that both the agent and the system
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Figure 1: A simple physiotherapy. Range [x,y] represents
the minimum and maximum allowed duration (in minutes)
for the corresponding activity.

are aware that some timepoints of the larger time range
may be removed before starting the agent’s activity.
For example, consider a physiotherapy (cf. Fig. 1)
consisting of two subsequent activities, namely Biking
and Stretching, with one overall temporal constraint.
The first activity has an allowed duration range, while
its actual duration is decided by the physiotherapist
according to the patient’s state. The second activity,
i.e., the stretching exercise, is performed by the pa-
tient over a time period, which is decided by another
therapist who considers both the state of the patient
and the goal of the therapy. Let us assume that the
given ranges are as depicted in Fig. 1 (a): activities are
visualized as rounded boxes and subsequent activities
are linked to their predecessor through a directed arc.
Temporal constraints are represented through arcs to-
gether with their related ranges. Activities Biking and
Stretching have possible durations within ranges [5,20]
and [10,40], respectively, which are autonomously de-
cided by therapists. However, the overall therapy must
be within range [25,50], assuming that it may take
between 1 and 5 time units to start Stretching after end-
ing Biking. Note that for this scenario it can be easily
verified that the corresponding temporal network is
not controllable, as there is no way to ask the second
activity to have a duration depending on the actual
duration of the first activity.

As more realistic representation of this scenario,
the second therapist may accept that the allowed dura-
tion range may be shrunk during execution, while guar-
anteeing that the “core” range [15,20] can be always
applied when executing Stretching. This scenario is
depicted in Fig. 1 (b) where the range is represented as
[10, [15,20],40], highlighting the non-shrinkable part.
One can easily observe that in this case the network can
be executed in a way satisfying all constraints, while
still allowing the therapists to autonomously choose
the durations of the involved activities.

This paper discusses how to represent and deal with
the described extension of contingent constraints in

simple temporal constraint networks with uncertainty
(STNUs), i.e., temporal networks that allow represent-
ing both requirement and contingent constraints (Mor-
ris et al., 2001). In addition to dynamic controllability,
we discuss that there are no alternative representations
of such shrinkable contingent constraints based on
compositions of standard requirement and contingent
constraints. Moreover, we generalize shrinkable con-
straints to represent time ranges having certain “guards”
on their possible lower and upper bounds.

The paper is organized as follows. Sect. 2 con-
siders existing proposals relevant for our work and
provides background information on STNUs. Sect. 3
introduces guarded constraints and the corresponding
Simple Temporal Network with Partially Shrinkable
Uncertainty (STNPSU). Sect. 4 discusses the expres-
siveness of STNPSUs. Finally, Sect. 5 concludes with
a summary and outlook.

2 BACKGROUND AND RELATED
WORK

A Simple Temporal Network (STN) (Dechter et al.,
1991) is a directed weighted graph where a node repre-
sents a time-point variable (timepoint), usually corre-
sponding to the start or end of activities, and an edge
represents a lower and an upper bound constraint on
the distance between the two timepoints it connects.
Each STN is associated with a distance graph, derived
from the upper and lower bound constraints, where
a constraint between a pair of timepoints X and Y is
represented as two edges: X v→ Y , representing the
constraint Y ≤ X + v, and X −u← Y , which stands for
Y ≥ X +u, u,v ∈ R. An STN is denoted as consistent
if it is possible to execute each node, i.e., to assign
a real value to each timepoint such that all temporal
constraints are satisfied. The consistency property can
be verified by searching for negative loops in the graph.
It is well known that consistency checking as well as
determining the earliest/latest value of each timepoint
can be done in polynomial time (Dechter et al., 1991).

To properly represent events that cannot be exe-
cuted, but only observed, (Morris et al., 2001) intro-
duced Simple Temporal Networks with Uncertainty
(STNUs). STNUs augment STNs with contingent time-
points representing timepoints whose value is decided
by the environment. Each contingent timepoint has
one incoming edge, called contingent link, which is
labeled by a time range. Therefore, any contingent
timepoint may assume a value from a bounded range,
but the exact value is decided by the environment at run
time. (Morris et al., 2001) provided a formal seman-



tics for the dynamic controllability, which is discussed
in detail in Sect. 2.1. Moreover, (Morris et al., 2001)
presented a pseudo-polynomial-time algorithm, called
DC-checking algorithm, that determines whether a
given STNU is dynamically controllable (DC). Fur-
ther, (Morris and Muscettola, 2005) proposed the first
polynomial DC-checking algorithm, which operates in
O(n5) time, where n is the number of timepoints. In
this paper, we denote this algorithm as MM5. In turn,
(Morris, 2006) presented an O(n4)-time and (Mor-
ris, 2014) an O(n3)-time DC-checking algorithm for
STNUs, i.e., there are two interesting optimizations of
the MM5 algorithm not further discussed in this paper.

(Tsamardinos et al., 2003) introduced the Condi-
tional Temporal Problem (CTP) that augments an STN
with observation timepoints. Thereby, each observa-
tion timepoint is associated with a boolean proposition.
When executing the observation timepoint, the truth
value of its proposition becomes known. Moreover,
each timepoint of a CTP has a propositional label,
which corresponds to a conjunction of (positive or neg-
ative) literals. A timepoint may only be executed in
scenarios for which its propositional label evaluates
to true. (Tsamardinos et al., 2003) proposed a formal
semantics for the dynamic consistency property. The
latter holds if there exists a strategy for executing the
timepoints of the network in a way such that all con-
straints will be satisfied no matter how the observations
turn out.

(Moffitt and Pollack, 2007) proposed three exten-
sions of STNUs. One of them is the partial shrinkage
in which observation events may trigger the reduction
of contingent time ranges. In more detail, at design
time it is possible to assign different time ranges and a
special timepoint, called observation, to each contin-
gent link; then, at run time, the respective observation
timepoint chooses the time range to be considered
for the contingent link before enabling the contingent
timepoint. This way it becomes possible to customize
the temporal range in which a contingent timepoint
may occur. Further, it is shown how the concept of
dynamic controllability can be expanded to capture
such extensions. An analysis regarding the costs of
respective DC-checking algorithm was not provided.
The STNPSU model presented in this paper is similar
in the sense that it allows one to choose the time range
to be considered for a contingent link during run time.
However, its execution semantics is quite different.

(Hunsberger et al., 2012) combined the features
of STNUs and CTPs in order to create a Conditional
Simple Temporal Network with Uncertainty (CSTNU).
For CSTNUs, dynamic controllability was defined in
a way generalizing the respective notions for STNUs
and CTPs. Since existing DC-checking algorithms for

STNUs and CTPs work differently, they cannot simply
be combined to yield a DC-checking algorithm for
CSTNUs. Instead, (Combi et al., 2013) proposed a
novel algorithm (even if not complete) that incorpo-
rates new rules taking into account the propositional
truth values generated by the observation timepoints.

(Lanz et al., 2013) showed how CSTNUs can be ap-
plied in the context of time-aware business processes
in order to verify their controllability at both design
and run time. Concerning temporal aspects of a busi-
ness process, it is emphasized that activity durations
usually represent worst case estimates, which are ei-
ther based on the experience of a domain expert or
extracted from process logs; further, the execution
times of most activities can be shortened if required.
Accordingly, one may assume that an activity has a
flexible maximum duration MaxDF that may be re-
stricted up to a contingent minimum and maximum
duration range [MinDC,MaxDC]. In other words, they
proposed and analyzed a mapping of time-aware busi-
ness processes to CSTNU in which activity durations
are expressed in terms of shrinkable time intervals
[[MinDC,MaxDC]MaxDF ].

2.1 Dynamic Controllability of STNUs

As proposed by (Morris et al., 2001), an STNU is a set
of time-point variables (timepoints) and temporal con-
straints together with a set of contingent links. Each
contingent link has the form (A,x,y,C), where A and C
are timepoints and 0 < x < y < ∞ holds. A is called the
activation timepoint and C the contingent timepoint.
Once A is executed, C is guaranteed to be executed
such that C−A ∈ [x,y] holds. However, the particular
time at which C is executed is uncontrollable since
it is decided by the environment; i.e., it can be only
observed when it happens.

Let S = (T ,C ,L) be an STNU, with T being a
set of timepoints, C a set of constraints, and L a set of
contingent links. The corresponding graph for S has
the form (T ,E ,E`,Eu). Thereby, each timepoint in
T serves as a node in the graph; E is a set of ordinary
edges; E` is a set of lower-case and Eu a set of upper-
case edges (Morris and Muscettola, 2005):
• Each ordinary edge has the form X v Y , represent-

ing the constraint Y −X ≤ v.
• Each lower-case edge has the form A c : x C, repre-

senting the possibility that the contingent duration,
C−A, might take on its minimum value x.

• Each upper-case edge C C :−y A, represents the
possibility that the contingent duration, C − A,
might take on its maximum value y.
An STNU is dynamically controllable if there ex-

ists a strategy for executing its timepoints, in a way



guaranteeing that all constraints in the network can be
satisfied, no matter how the durations of the contin-
gent links actually turn out. The strategy is dynamic
since its execution decisions can react to observations
of contingent links that have already been completed,
while excluding those not completed yet.

This section presents preliminary notions and in-
troduces the dynamic controllability of an STNU as
defined in (Morris et al., 2001) and subsequently fixed
in (Hunsberger, 2009).

For an STNU, a situation specifies fixed durations
for all contingent links.

Definition 1 (Situations). Let S be an STNU
comprising k contingent links, (A1,x1,y1,C1), . . . ,
(Ak,xk,yk,Ck), with corresponding duration ranges
[x1,y1], . . . , [xk,yk]. Then: ΩS = [x1,y1]× . . .× [xk,yk]
is called the space of situations for S . Any ω =
(d1, . . . ,dk) ∈ΩS is called a situation. Where possible,
we may write Ω instead of ΩS .

The concept of schedule formalizes the execution
of timepoints.

Definition 2 (Schedule). A schedule for an STNU is
a mapping ψ : T → R that assigns a real number to
each timepoint in T .

Given a situation ω for an STNU, the replacement
of its contingent links by the durations specified in ω

determines a projection of the STNU onto situation ω.

Definition 3 (Situation Projection for an STNU). Sup-
pose S = (T ,C ,L) is an STNU and ω = (d1, . . . ,dk)
a situation. The projection of S onto ω—denoted as
sitPrj(S ,ω)—is the STN (T ,C ′) with:

C ′ = C ∪{(di ≤Ci−Ai ≤ di) | 1≤ i≤ k}

Given an STNU, multiple schedules may exist. We
are interested in finding a strategy that determines
schedules that satisfy all constraints in any situation.

Definition 4 (Execution Strategy for an STNU). Let
S = (T ,C ,L) be an STNU. An execution strategy for
S is a mapping σ : Ω→ ψ such that for each situa-
tion ω ∈ Ω, σ(ω) is a (complete) schedule for the
timepoints in T . Furthermore, if for each situation ω

schedule σ(ω) is a solution for the situation projec-
tion sitPrj(S ,ω), then σ is called viable. In any case,
the execution time of timepoint X in schedule σ(ω) is
denoted as [σ(ω)]X .

A situation history for an STNU specifies the du-
rations of all contingent links that have finished their
execution prior to a time t in schedule σ(ω).

Definition 5 (Situation History for an STNU). Let
S = (T ,C ,L) be any STNU, σ any execution strategy
for S , ω any situation, and t any real number. The

Table 1: Edge-generation rules of the MM5 algorithm.
Dashed edges are the generated ones.

No Case:
Q T

S
u v

u+ v

Upper Case:
Q T

S
u R : v

R : u+ v

Lower Case: Q T

S
s : u v

u+ v

Applicable if: v < 0 ∨ (v = 0 ∧ S 6≡ T )

Cross Case: Q T

S
s : u R : v

R : u+ v

Applicable if: R 6≡ S∧ (v < 0∨ (v = 0∧ S 6≡ T ))

Label Removal:
S T

R : v

v

Applicable if: v ≥ −x, x is the lower

bound for the contingent link from T to R

history of t in situation ω for strategy σ—denoted as
sitHst(t,ω,σ)—is defined as follows:

sitHst(t,ω,σ) = {(A,C, [σ(ω)]C− [σ(ω)]A) |
∃x,y such that (A,x,y,C) ∈ L ∧ [σ(ω)]C < t}

Definition 6 (Dynamic Execution Strategy for an
STNU). An execution strategy σ for an STNU is called
dynamic if for any situations, ω1 and ω2, and any non-
contingent timepoint X, it holds:

sitHst([σ(ω1)]X ,ω1,σ) = sitHst([σ(ω1)]X ,ω2,σ)

⇒ [σ(ω1)]X = [σ(ω2)]X .

Definition 7 (Dynamic Controllability of an STNU).
An STNU S is called dynamically controllable (DC)
if there exists an execution strategy for S that is both
viable and dynamic.

In order to determine whether an STNU is dynami-
cally controllable, (Morris and Muscettola, 2005) pro-
posed a polynomial-time checking algorithm, MM5,
which works by recursively generating new edges in
the STNU graph according to the rules from Table 1
and checking whether newly added edges determine
negative loops in the graph. For each rule, existing
edges are represented as solid arrows and newly ones
as dashed arrows. Each of the first four rules takes two
existing edges as input and generates a single edge as
output. Finally, notation R 6≡ S expresses that R and
S must be distinct time-point variables, and does not
represent a constraint on the values of those variables.

We observe that the edge-generation rules from Ta-
ble 1 only generate ordinary or upper-case edges. The



Procedure MM5-DC-Check(G)
Input: G = (T ,C ,L): STNU graph instance to analyze.
Output: the controllability of G.
for 1 to |T |2 + |T ||L |+ |L | do

if (AllMax matrix inconsistent) then return false;
Generate new edges using rules from Table 1;
if (no edges generated) then return true;

return false;

upper-case edges generated by respective rules repre-
sent conditional constraints, called waits (Morris et al.,
2001). In particular, an upper-case edge B C :−v A
represents the following constraint: as long as con-
tingent timepoint C remains unexecuted, timepoint B
must wait at least v units after the execution of A, the
activation timepoint for C.

Procedure MM5-DC-Check shows the pseudocode
of the MM5 DC-checking algorithm. Its time com-
plexity is O(n5) (Morris and Muscettola, 2005).

2.2 Alternative Characterization of an
Execution Strategy

As observed in (Hunsberger, 2009), the original defini-
tion of dynamic execution strategy (DES) obscures the
real-time features of typical execution scenarios and
the kinds of execution decisions an execution system
may make. Therefore, (Hunsberger, 2009) proposed
an alternative characterization of a DES to not only rep-
resent the conditions under which a system must make
real-time execution decisions, but also the outcomes of
those decisions. Two kinds of real-time execution de-
cisions (RTEDs) are defined: WAIT and (τ,χ), which
can be described as: “Wait until some contingent dura-
tion completes” or “If nothing happens before τ, then
execute the (executable) timepoints in χ.” The out-
come of a RTED depends on the situation and is repre-
sented by a partial schedule that specifies the execution
of one or more additional timepoints. The outcome
of a WAIT decision solely involves the execution of
contingent timepoints, whereas the outcome of a (τ,χ)
decision may involve the execution of contingent as
well as non-contingent timepoints. An RTED-based
strategy is defined as a mapping from partial sched-
ules to real-time execution decisions. (Hunsberger,
2009) proved that RTED-based strategies correspond
one-to-one to DESs.

In more detail, given an STNU and a partial sched-
ule ψ : T →R (i.e., the domain of ψ may be a subset of
T ), we denote by µ(ψ) =max{ψ(t) | t ∈Dom(ψ)} the
maximum execution time of timepoints appearing in
ψ, by U(ψ) = {x | x 6∈Dom(ψ)} the set of unexecuted
timepoints in ψ, by Ux(ψ) ⊆ U(ψ) the set of non-
contingent unexecuted timepoints, by Uc(ψ)⊆U(ψ)

the set of contingent unexecuted timepoints, and by
Ua(ψ)⊆Uc(ψ) the set of contingent activated unexe-
cuted timepoints, respectively.

Let ψ be a partial schedule for an STNU S and
ω = (ω1, . . . ,ωq) a situation for S . ψ respects ω if for
each contingent link (Ai,x,y,Ci) one of the following
conditions holds: (1) neither Ai nor Ci appear in
ψ; (2) only Ai appears in ψ, and ψ(Ai)+ωi > µ(ψ);
or (3) both Ai and Ci appear in ψ, and ψ(Ai)+ωi =
ψ(Ci). ψ is called respectful if it respects at least one
situation. If ψ is both respectful and partial, it is called
a respectful, partial schedule (RPS). A strategy σ is
respectful if for each ω, σ(ω) respects ω.

Let us recall the definition of WAIT and (τ,χ) de-
cisions.
WAIT Decision. Let ψ be some RPS for S such that
Ua(ψ) is non-empty. Then WAIT is an admissible
RTED.
Outcome of a WAIT Decision. If Ua(ψ) 6= /0 and ω

is a situation respected by ψ, then the time at which
the next contingent timepoint will execute is defined
as tnc(ψ,ω) = min{ψ(Ai)+ωi | Ci ∈Ua(ψ)}. With
χa(ψ,ω) = {Ci ∈ Ua(ψ) | ψ(Ai) + ωi = tnc(ψ,ω)},
we denote the non-empty set of contingent timepoints
that will be executed at time tnc(ψ,ω). Then, the out-
come of the WAIT decision for ψ in situation ω is
defined to be the execution of contingent timepoints at
time tnc(ψ,ω): ψ∪{(Ci, tnc(ψ,ω)) |Ci ∈ χa(ψ,ω)}.
(τ,χ) Decision. Let ψ be some RPS for S such that
Ux(ψ) 6= /0. If τ > µ(ψ) and χ is a non-empty subset
of Ux(ψ), then (τ,χ) is an admissible RTED for ψ.
Outcome of a (τ,χ) Decision. Let ω be a situation
respected by ψ. The outcome of a (τ,χ) decision de-
pends on the relationship between tnc(ψ,ω) and in-
stant τ. For the sake of simplicity, let τc = tnc(ψ,ω)
and χa = χa(ψ,ω) if Ua(ψ) 6= /0; otherwise, let τc = ∞.
If τc < τ, the outcome solely involves the execution
of the contingent timepoints in χa. In turn, if τ < τc,
the outcome solely involves the execution of the non-
contingent timepoints in χ. Finally, for τc = τ, the
outcome involves the execution of the timepoints in
both χa and χ.

(Hunsberger, 2009) proved that the original dy-
namic execution strategy can be described in terms of
RTEDs as shown in procedure RTEDExecutionStrat-
egy. Thereby, function RTExecutionDecision is used
to determine the next RTED. For the sake of brevity,
the RTED WAIT is represented as (τ,χ) decision with
τ := ∞ and χ := /0 in the given context.

Starting with a partial schedule ψ = {(Z,0)},
which only fixes the initial timepoint Z, proce-
dure RTEDExecutionStrategy iteratively determines
an RTED δ(ψ), considering two possibilities (cf. func-
tion RTExecutionDecision). If all executable time-



Function RTExecutionDecision(S ,ψ)
Input: S : STNU. ψ; partial schedule
Output: δ(ψ): real-time execution decision
if (Ux(ψ) = /0) then // WAIT RTED!

δ(ψ) := (τx,χ), where τx := ∞ and χ := /0;
else // (τ,χ) RTED!

foreach (x ∈Ux(ψ)) do
[m(x),M(x)] = current time-window for x;
W (x) :=−∞;

foreach ((Ai,Ci) |Ci ∈Ua(ψ)∧ x
Ci:−wi−→ Ai) do

W (x) := max{W (x),ψ(Ai)+wi};
f loor(x) := max{m(x),W (x)};
go(x) := min{ f loor(x),M(x)};

δ(ψ) := (τx,χ), where τx := min{go(x) | x ∈Ux(ψ)}
and χ := {x ∈Ux(ψ) | τx = go(x)};

return δ(ψ);

Procedure RTEDExecutionStrategy(S )
Input: S : STNU.
ψ = {(Z,0)}; // initial partial schedule
while (U(ψ) 6= /0) do

(τx,χ) = RT ExecutionDecision(S ,ψ);
if (nothing happens before time τx) then

Execute the timepoints in χ;
else

Observe the contingent timepoints executed at
some τc < τx;

Update ψ to include the executed events;
Update S to include the corresponding constraints;

points have already been executed, δ(ψ) = (∞, /0)
holds (i.e., RTED WAIT); otherwise, δ(ψ) = (τx,χ)
with the values of τx and χ being computed by con-
sidering all unexecuted timepoints and using an all-
pairs, shortest-path algorithm. f loor(x) corresponds
to the earliest time, timepoint x may be executed with-
out violating its lower bound m(x) or any of its rele-
vant waits. go(x) is the same, except that it enforces
the constraint that x does not violate its upper bound
M(x). It is noteworthy that Morris and Muscettola
showed that a conflict between f loor(x) and M(x) is
not possible for an STNU accepted by their algorithm.
After determining the RTED δ(ψ) = (τx,χ), proce-
dure RTEDExecutionStrategy waits for the outcome
of δ(ψ) and then updates ψ and S accordingly. If there
are still unexecuted timepoints, the procedure iterates,
otherwise it terminates.

3 GUARDED TEMPORAL
CONSTRAINTS

Regarding an STNU, the execution of a contingent
timepoint can be thought of as being completely out
of the control of the system that executes the network.

Typically, a system activates a contingent link (A,x,
y,C) by executing its activation timepoint A. After-
wards, the execution of C is out of the system’s control.
However, the contingent timepoint C is guaranteed to
execute such that C−A ∈ [x,y] holds.

As motivated in Sect. 1, for real-world problems
this is often too strict. In many cases, the system may
exercise some control over the execution of the con-
tingent timepoint. As example consider a case where,
at an activation timepoint, the system transfers control
to an external agent. The agent is then responsible for
executing the corresponding contingent timepoint. In
turn, the system waits for the agent to complete its
task (i.e., to execute the contingent timepoint). When
transferring the control to the agent, the system may
inform the agent about the temporal constraints to be
met. The agent then adapts its plan in order to com-
ply with the additional constraints. At the same time,
the system must guarantee that it is able to meet the
commitment made, i.e., it needs to ensure that it can
deal with any decision the agent makes for executing
timepoint C based on the given constraints.

In many cases, the agent responsible for executing
timepoint C cannot completely control the execution of
C either (e.g., in case the agent is executing a network
itself). Particularly, he might only be able to provide a
preferred duration range [x,y] as well as bounds xmax

and ymin to which x may be increased or y may be
decreased (i.e., x ≤ xmax and y ≥ ymin). In turn, the
system executing the network must ensure that, when
executing timepoint A (i.e., when activating the con-
straint between A and C), the agent responsible for
executing timepoint C has at least ymin time units and
is not required to take more than xmax time units to
execute C. We denote xmax (ymin) as the guard of x (y).

Note that this example addresses a common sce-
nario, i.e., to transfer execution control at run time to
another agent, which is responsible for executing a
complex task (e.g., another network).

The need to model constraints of this type requires
an extension of the STNU formalism, we denote as
Simple Temporal Network with Partially Shrinkable
Uncertainty (STNPSU). In particular, STNPSU ex-
tends contingent links of STNU to guarded links.

Definition 8 (STNPSU). A Simple Temporal Network
with Partially Shrinkable Uncertainty (STNPSU) is a
triple (T ,C ,G), where:
• T is a set of timepoints;
• C is a set of requirement constraints X

[u,v]−→ Y (i.e.,
STN constraints); and
• G is a set of guarded links each having the form
(A, [x,xmax], [ymin,y],C) where A and C are time-
points, and 0≤ x≤ y < ∞, x≤ xmax, 0≤ ymin ≤ y.

• If (A1, [x1,x1
max], [y1

min,y1],C1) as well as (A2,



[x2,x2
max], [y2

min,y2],C2) are distinct guarded
links in G , then C1 and C2 are distinct timepoints.

Informally, we denote an STNPSU as dynamically
controllable if it is possible to execute it such that, no
matter how the execution of any guarded link turns
out, for any other guarded link (A, [x,xmax], [ymin,y],
C) the lower bound x never must be increased beyond
its guard xmax and the upper bound y never must be
decreased below its guard ymin in order to ensure con-
trollability of the network.

The execution semantics of STNPSU can be sum-
marized as follows: The basic execution semantics is
the same as for an STNU. However, when executing an
STNPSU, the outer bounds [x,y] of a guarded link (A,
[x,xmax], [ymin,y],C) may be restricted to [x′,y′] with
x≤ x′ ≤ xmax, ymin ≤ y′ ≤ y, and x′ ≤ y′ in order to en-
sure controllability of the remaining network. In turn,
when executing the activation timepoint A of a guarded
link (A, [x,xmax], [ymin,y],C), the latter is activated and
its current bounds [x′,y′] are fixed. Particularly, the
guarded link (A, [x,xmax], [ymin,y],C) is replaced by the
strict guarded link (A, [x′,x′], [y′,y′],C). The latter is
equivalent to a contingent link of STNU. As we will
show in Sect. 3.3, this change does not affect control-
lability of the network.

It is noteworthy that guarded links of STNPSU may
be used to represent two different types of constraints:

Type 1: If xmax < ymin holds, a guarded link repre-
sents a partially contingent constraint. Particularly,
the guarded link represents a temporal constraint
x≤C−A≤ y with a contingent (i.e., unshrinkable)
core [xmax,ymin]⊆ [x,y]. This represents an exten-
sion of the classical contingent links of STNU.
Moreover, if x = xmax∧ y = ymin hold, the guarded
link is equivalent to a contingent link of STNU.
We call this a strict guarded link.

Type 2: If xmax ≥ ymin holds, a guarded link represents
a partially shrinkable constraint with a guarded
core [ymin,xmax]. In detail, this represents a tempo-
ral constraint x≤C−A≤ y whose bounds cannot
be shrunk beyond a certain point (i.e., xmax and
ymin, respectively). As opposed to a contingent
link, x may be restricted to be greater than ymin

and y to be lower than xmax. This represents an
extension of the classical requirement constraints.

As example of a Type 1 guarded link consider
guarded link (A, [10,15], [20,40],C), which represents
the duration of activity Stretching (cf. Fig. 1 (b)). Dur-
ing execution, the outer bounds [10,40] of this guarded
link may be shrunk in order to ensure controllability
of the remaining network. In the given case, for ex-
ample, they may be shrunk to (A, [7,15], [20,23],C)
or (A, [5,15], [20,20],C). However, the outer bounds

may at most be shrunk to the contingent core of the
guarded link, i.e., the above guarded link may at most
be shrunk to (A, [15,15], [20,20],C).

In turn, an example of a Type 2 guarded link is
given by (A, [5,20], [10,25],C). In this case, the lower
bound of the guarded link may at most be increased to
20 and the upper bound may at most be decreased to
10. Thus, (A, [15,20], [10,20],C), (A, [20,20], [10,23],
C), and (A, [5,20], [10,10],C) are possible values this
guarded link may be shrunk to. Note that a Type 2
guarded link may also be shrunk to a single value, e.g.,
(A, [15,20], [10,15],C). However, a Type 2 guarded
link must always allow for at least one value within its
guarded core [ymin,xmax] (i.e., [10,20]).

During execution, when activating a guarded link
of Type 1 or 2 (i.e., when executing its activation time-
point), the current outer bounds of the guarded link
are fixed. This is to ensure that the outer bounds of
the guarded link cannot be modified while it is active.
Therefore, the current outer bounds of the guarded link
are set to be strict. For example, when executing time-
point A, the Type 2 guarded link (A, [15,20], [10,20],
C) is replaced by a strict guarded link (A, [15,15],
[20,20],C). The latter is equivalent to a contingent
link (A,15,20,C) of STNU and ensures that the agent
responsible for executing timepoint C may now choose
any time in range [15,20] to execute timepoint C.

3.1 Dynamic Controllability of STNPSU

This section presents preliminary definitions of basic
concepts required for the definition of dynamic con-
trollability of a STNPSU.

The set of core situations specifies the contingent
core of all guarded links of Type 1 (partially contingent
guarded links), while the set of core settings specifies
the guarded core of all guarded links of Type 2 (par-
tially shrinkable guarded links).

Definition 9 (Core Situations and Core Settings). Sup-
pose S = (T ,C ,G) is an STNPSU. Let G c = {g ∈
G |g = (A, [x,xmax], [ymin,y],C)∧ xmax < ymin} be the
set of guarded links for which the guard xmax of the
lower bound is lower than the guard ymin of the upper
bound (i.e., Type 1). Further, let G r = G \G c be the
set of guarded links for which ymin ≤ xmax holds (i.e.,
Type 2).

If G c contains k guarded links, (A1, [x1,x1
max],

[y1
min,y1],C1), . . . ,(Ak, [xk,xk

max], [yk
min,yk],Ck), then

Ωc
S = [x1

max,y1
min]× . . .× [xk

max,yk
min] is called the

space of core situations for S . Any ωc = (d1, . . .dk) ∈
Ωc

S is called a core situation.
Further, if G r contains m guarded links, (A1,

[x1,x1
max], [y1

min,y1],C1), . . . ,(Am, [xm,xm
max],

[ym
min,ym],Cm), then Ωr

S = [y1
min,x1

max] × . . . ×



[ym
min,xm

max] is called the space of core settings
for S .

Given the space of core situations Ωc and the space
of core settings Ωr of an STNPSU, a projection of
the STNPSU onto an STNU can be obtained as fol-
lows: First, each guarded link in G c is replaced by a
contingent link for the range specified in Ωc. Second,
each guarded link in G r is replaced by a requirement
constraint for the range in Ωr.

Definition 10 (Core STNU of an STNPSU). Let S =
(T ,C ,G) be an STNPSU.

Then: The projection of S onto its space of
core situations Ωc and its space of core settings
Ωr—denoted as stnuPrj(S ,Ωc,Ωr)—corresponds to
an STNU (T ,C ′′,L ′′) with:

C ′′ = C ∪{(yi
min ≤Ci−Ai ≤ xi

max) | 1≤ i≤ m,

Ω
r =[y1

min,x1
max]× . . .× [ym

min,xm
max]}

L ′′ = {(Ai,xi
max,yi

min,Ci) | 1≤ i≤ k,

Ω
c =[x1

max,y1
min]× . . .× [xk

max,yk
min]}

We denote the respective STNU as the core STNU of
STNPSU S .

Finally, this leads us to the dynamic controllabil-
ity of an STNPSU. We provide a formalization of the
dynamic controllability of an STNPSU based on the
dynamic controllability of an STNU. We choose this
approach since the formalization of dynamic control-
lability of STNU is robust and verified in literature.

Theorem 1 (Dynamic Controllability of STNPSU).
An STNPSU S = (T ,C ,G) is dynamically control-
lable (DC), if the core STNU that results from the
STNU Projection stnuPrj(S ,Ωc,Ωr) of the STNPSU is
dynamically controllable.

Proof. ⇒ It is a matter of definitions to show that, if
the core STNU is DC (cf. Sect. 2.1), the corre-
sponding STNPSU is DC as well: each schedule
being a solution of the core STNU is also a solution
of the STNPSU. Indeed, it is always possible to re-
strict the STNPSU to its core situations. Thus, for
each core situation of the STNPSU, a dynamic ex-
ecution strategy (DES), which is a viable DES for
the STNU, is also a viable DES for the STNPSU
regarding its core situations. Hence, if the core
STNU is DC, the STNPSU will be DC as well.

⇐ If the core STNU is not DC (i.e., no viable DES ex-
ists), at least one core situation ωc of the STNPSU
exists for which no DES exists within the core set-
tings. Hence, for core situation ωc, one of the par-
tially shrinkable guarded links must be restricted
beyond its guards to find a DES which returns a
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BS = Start of Biking; BE = End of Biking;

SS = Start of Stretching; SE = End of Stretching

Figure 2: STNPSU corresponding to the activity sequences
from Fig. 1 (b)

solution. As this is not possible, the STNPSU is
not DC either.

3.2 DC-Checking for Guarded
Constraints

This section shows how the dynamic controllability of
an STNPSU may be checked without need to restrict
the respective STNPSU to its core STNU. First, we
emphasize the close relationship between dynamic
controllability of STNU and the one of STNPSU (cf.
Theorem 1). In turn, this fosters the following graph-
based representation of an STNPSU, which is similar
to the one of an STNU.

Definition 11 (Graph of a STNPSU). The graph for
an STNPSU S has the form (T ,E ,E`,Eu), where each
timepoint in T corresponds to a node in the graph; E
is a set of ordinary edges, E` is a set of lower-case
edges, and Eu is a set of upper-case edges:

• Each requirement constraint X
[u,v]−→ Y is repre-

sented by two ordinary edges X v−→ Y and Y −u−→
X.

• Each guarded link (A, [x,xmax], [ymin,y],C) is rep-
resented by
– two ordinary edges A

y−→C and C −x−→ A,

– one lower-case edge A c:xmax
−→ C, and

– one upper-case edge C
C:−ymin

−→ A.

As example of this graph-based representation of
an STNPSU, consider the graph depicted in Fig. 2.
It shows the STNPSU corresponding to the activity
sequence depicted in Fig. 1 (b). If multiple edges exist
between two nodes (e.g., an ordinary and an upper-
case edge), for the sake of readability, we draw only
one arrow between the nodes and annotate it with the
values of the respective edges. Further, we use bold
arrows to highlight edges representing a guarded link.

At this point, we want to emphasize important dif-
ferences between the graph of an STNU and the one
of an STNPSU:
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Figure 3: Guarded Link

Table 2: Updated Label Removal Rule

Label Removal*:
S T

R : v

v

Applicable if: R 6≡ S and v ≥ −x, where x is the

lower bound for the guarded link from T to R.

• In an STNU, the value of any lower-case edge

A c:xmax
−→ C always corresponds to the negative value

of the ordinary edge C −x−→ A pointing in the op-
posite direction (i.e., x = xmax). Similarly, the

value of any upper-case edge C
C:−ymin

−→ A always
corresponds to the negative value of ordinary edge
A

y−→C (i.e., y = ymin). For an STNPSU, this does
not apply. Particularly, we only require x ≤ xmax

and y≥ ymin.
• In an STNU, the value of a lower-case edge A c:xmax

−→
C always is lower than the negative value of the

upper-case edge C
C:−ymin

−→ A pointing in the oppo-
site direction (i.e., xmax < ymin). Note that for an
STNPSU this is not required.

We show that, except one minor change regarding
one of the edge generation rules (cf. Table 1), pro-
cedure MM5-DC-Check may be reused in order to
check dynamic controllability of a STNPSU. Particu-
larly, we analyze all possible combinations of edges
between three nodes of an STNPSU graph (i.e., all
possible triangles). Based on this, it can be shown that
the resulting distance graph of the STNPSU has no
negative loops if and only if the distance graph of the
core STNU has no negative loops as well. For the sake
of brevity we do not provide a full analysis here, but
focus on some of the more interesting cases instead.

First, consider the single guarded link depicted in
Fig. 3. It comprises two triangles S-Q-S and Q-S-Q.
Note that it is a matter of applying the edge-generation
rules to these two triangles (i.e., the No Case rule
to S-Q-S and the No Case, Upper Case, Lower Case,
and Label Removal rules to Q-S-Q) to ascertain that
a valid guarded link does not contain a negative loop.
In case of a partially shrinkable guarded link (Type 2),
in addition, the Label Removal (cf. Table 1) rule may
be applied to the upper-case edge between S and Q,
replacing it with a requirement edge. This poses no
problem for checking dynamic controllability, but it is
undesired as it obscures some of the properties of the
guarded link. Thus, we restrict the Label Removal rule
to R 6≡ S to prevent this (cf. Table 2). Note that this

Q T
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−u

(a) Original values of a Guarded Link and a Requirement
Constraint.
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(e) if ymin ≤ u≤ v≤ xmax

Figure 4: Combining a Guarded Link with a derived Re-
quirement Constraint

change does not influence the applicability of the rule
to an STNU. Regarding an STNU, for R≡ S it holds
that v <−x (i.e., xmax < ymin; cf. Table 1), i.e., for an
STNU, the rule will never be applied if R≡ S holds.

Consider the guarded link depicted in Fig. 4 (a).
Due to some edge-generation rule, a pair of require-
ment constraints Q v−→ T and T −u−→Q is added next to
the guarded link. In this case only the most restrictive
constraints need to be kept. The other ones are redun-
dant and may be removed. If controllable, this scenario
results in one of the four cases depicted in Fig. 4 (b)–
(e). Note that if either v < u, u > xmax, or v < ymin

holds, the scenario will be not controllable (i.e., there
exists a negative loop). If u < ymin and v > xmax holds,
the outer bounds x and y of the guarded link may have
to be restricted to u and v, respectively, as shown in
Fig. 4 (b). Note that for partially contingent guarded
links (i.e., Type 1), this is the only controllable case.
In turn, if u≥ ymin holds (cf. Fig. 4 (c) and (e)), guard
ymin of the upper bound y is no longer required as
it can be already ensured by the new lower bound u
of the guarded link, i.e., the upper-case edge is re-
dundant and may be removed. Likewise, if v ≤ xmax

holds the lower-case edge (i.e., the guard xmax for the
lower bound x) is redundant and may be removed. To
preserve the difference between a guarded link and
a requirement/wait constraint in the STNPSU graph,
instead of removing the guards, we adapt their value
according to the restriction given by the requirement
edges (cf. Fig. 4 (c)–(e)). Particularly, instead of re-
moving the lower-case or upper-case edge, we allow
their values to be decreased (i.e., the negative value
of the upper-case edge to be increased). Depending
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Figure 6: Combining a Guarded Link with a derived Wait
Constraint

on the type of guarded link (i.e., Type 1 or Type 2), it
is a matter of replacing x by xmax and y by ymin (or x
by ymin and y by xmax, respectively) to see that this is
similar to the edges generated when checking dynamic
controllability of the core STNU.

Fig. 5 (a) shows how a guarded link from Q to S
may be combined with a wait constraint from T to
S. The dashed arrow denotes the edge generated by
applying the No Case and Upper Case rules. Again it
can be easily shown that the generated edge is similar
to the one that would be generated for the core STNU.
Note that we assume xmax ≤ y, which is always true
when applying the previously described restriction of
the guards (cf. Fig. 4 (a)–(e)).

Fig. 5 (b) depicts a similar case where a guarded
link is placed in parallel with a wait constraint (and
a requirement constraint). In this case two different
wait constraints must be added between the activation
timepoint Q of the guarded link and timepoint T . Note
that the latter corresponds to the activation timepoint
of the guarded link between T and R.

One of the most interesting cases is depicted in
Fig. 6 (a): Due to an edge generation rule, a wait
constraint T

−u; R:−vw−→ Q is added next to the guarded
link. For the case x < vw ≤ xmin∧u < ymin the result
is depicted in Fig. 6 (b). Consider the wait constraint
added next to the upper-case edge. Note that this is
not possible for an STNU. Regarding an STNU, either
vw > xmax = x (i.e., the STNU is not controllable) or
vw ≤ x (i.e., the wait constraint is redundant) holds.
For an STNPSU, Fig. 6 (b) can be interpreted as fol-

lows: For Type 1 constraints (i.e., vw < xmax < ymin)
R:−vw is not relevant as T :−ymin is more restrictive,
i.e., we are only interested in dynamic controllability
of the core STNU. Otherwise, R:−vw possibly repre-
sents a standard wait constraint for the core settings
in [ymin,xmax]. In turn, when executing the STNPSU
the wait constraint must be observed. Particularly, if
the guarded link is activated prior to the execution of
timepoint R, vw must be used as lower bound when
executing the guarded link. Otherwise, min{−x,−u}
is used as lower bound.

3.3 Executing STNPSUs

This section shows how an STNPSU may be executed
by means of an appropriate extension of procedure RT-
EDExecutionStrategy (cf. Sect. 2.2).

Consider procedure ExRTEDExecutionStrategy.
The first part of the procedure executes the same
actions as procedure RTEDExecutionStrategy (cf.
Sect. 2.2). The second part activates all guarded links
(Ai, [x,xmax], [ymin,y],Ci) whose activation timepoint
Ai has just been executed. The guarded link semantics
requires to allow each of them, once it is activated, to
use any possible value in the range defined by the cur-
rent outer bounds, i.e., [x,y]. By construction and due
to the fact that the network is DC, for a Type 1 guarded
link the possibility of using any possible value in the
range is guaranteed only for the core range [xmax,ymin],
while for a Type 2 guarded link only the possibility
of using at least one value in the range [ymin,xmax] is
guaranteed. Particularly, the execution of some other
timepoints before the occurrence of Ci may modify the
bounds of these guarded links making the network not
controllable. Therefore, the procedure has to suitably
update the bounds of the guarded links (lines 14–20)
before transforming them into strict ones (lines 21–27).
Finally, the execution goes back to the first part until
there are no more unexecuted timepoints.

The key point of the procedure consists in the exe-
cution of timepoints subjected to guarded links as con-
tingent timepoints with suitable ranges; this allows for
the exploitation of the correctness proof of RTEDExe-
cutionStrategy (Hunsberger, 2009). In order to show
that this transformation preserves the controllability
of the network, it is sufficient to show that the trans-
formation of any guarded link—during runtime—into
a strict one with a suitable range is always possible
and preserves the dynamic controllability of the rest
of network (i.e., the unexecuted subnetwork).

Theorem 2. Suppose S is a dynamically controllable
STNPSU, ψ is a respectful, partial schedule, and (A,
[x,xmax], [ymin,y],C) is a guarded link of S . Let us
assume that A has just been executed and that the



Procedure ExRTEDExecutionStrategy(S )
Input: S : STNPSU.

1 ψ = {(Z,0)}; // initial partial schedule
2 while (U(ψ) 6= /0) do
3 (τx,χ) = RT ExecutionDecision(S ,ψ);
4 if (nothing happens before time τx) then
5 execute the time-points in χ;
6 else
7 observe the contingent timepoints executed at some

τc < τx;
8 χ = set of executed contingent timepoints;

9 Update ψ to include the execution events in χ;
10 Update S to include the corresponding constraints;
11 foreach (Ai ∈ χ) do // Activate guarded links

12 foreach ((Ai, [x,xmax], [ymin,y],Ci) ∈ G) do
13 [x′,y′] = current outer bounds of guarded AiCi;
14 repeat // Prepare the guarded link for execution

// Determine its maximum controllable range
15 range(Ai,Ci) = min{v−u | a ∈U(ψ)!∧

a v−→Ci∧v≥ 0∧ (Ci
−u−→ a∨Ci

C j :−u
−→ a)};

// Update its bounds to observe max. controll. range

16 y′=min{y′,max{ymin,x′+range(Ai,Ci)}};
// x′ is update only if the update y′ is not sufficient

17 x′ = max{x′,y′− range(Ai,Ci)};
18 if x′ or y′ is modified then
19 Update S to include the modified

outer bounds of the guarded link;

20 until neither x′ nor y′ is modified;
// Consider the max possible wait constraint for Ci

21 W (Ai,Ci) :=−∞;

22 foreach((Ai,C j) |C j ∈Ua(ψ)∧Ci
C j :−w j−→ Ai)do

23 W (Ai,Ci) := max{W (Ai,Ci),w j};
24 f loor(Ai,Ci) := max{x′,W (Ai,Ci)};
25 x′ := min{ f loor(Ai,Ci),y′};
26 Transform the guarded link to the strict

guarded link (Ai, [x′,x′], [y′,y′],Ci);
27 Update S to include the new constraint;

outer bounds x and y of the guarded link AC have
been updated as described in lines 13–25 of proce-
dure RTEDExecutionStrategy to the values x′ and y′.
Then: The new values x′ and y′ satisfy x′ ≤ xmax and
ymin ≤ y′ and the STNPSU S ′ resulting after the trans-
formation of the guarded link (A, [x′,xmax], [ymin,y′],C)
into the strict one (A, [x′,x′], [y′,y′],C) is dynamically
controllable as well.

Sketch of the proof. Let us assume that, before the ex-
ecution of lines 13–25, the guarded link AC is given
as (A, [x,xmax], [ymin,y],C). Instructions of lines 13–25
update the outer bounds [x,y] to [x′,y′]. Let us assume
that the guarded link is of Type 1.1 Since the network
is DC before line 13 and the core range [xmax,ymin] is

1The case of a guarded link of Type 2 can be discussed
in a similar way.

a contingent range, the update made in lines 13–25
cannot reduce [x,y] to [x′,y′] such that x′ > xmax or
y′ < ymin holds. Hence, the updated range [x′,y′] con-
tains (possibly in a weak way) the core range of (A,
[x,xmax], [ymin,y],C). Thus, there are 4 possible cases:
(1) x′ = xmax∧ y′ = ymin, (2) x′ = xmax∧ y′ > ymin, (3)
x′ < xmax∧ y′ = ymin, and (4) x′ < xmax∧ y′ > ymin. In
case (1) the guarded link is already strict and, hence,
it is not changed by the procedure. Case (4) is a com-
bination of cases (2) and (3).

Hence, let us consider case (2) and (3). In case
(2), by contradiction, suppose that the changing of
the guarded link (A, [xmax,xmax], [ymin,y′],C) into the
strict one (A, [xmax,xmax], [y′,y′],C) makes the remain-
ing network not dynamically controllable. This means
that there exists at least one negative loop involving
timepoints A, C, and some B, where B has not yet
executed (i.e., it has to occur after A), but has to be
executed before C. All other timepoints, i.e., unexe-
cuted ones that have to be executed after C, cannot
contribute to form a negative loop since each of them—
by definition of controllability—must have at least one
possible execution time for each possible execution
time of C in the range [ψ(A)+ xmax,ψ(A)+ y′].
Now, instead of considering the distance graph and
negative loops in it, let us reason in term of ranges
and their spans2. Given the dynamic controllabil-
ity of the network before the transformation, it is a
fact that B has at least one possible execution time
for each possible execution time of C in the range
[ψ(A)+ xmax,ψ(A)+ ymin], i.e., with such range there
is no negative loop involving A, B, and C. Equivalently,
the span of the constraint between B and C is greater
or equal to the span ymin− xmax +1 of the contingent
core of the guarded link between A and C. There-
fore, a negative loop can only emerge when the new
bound y′ is considered, or, equivalent, when the span
of the constraint between B and C is less than the span
y′− xmax +1 of the outer bounds of the guarded link
between A and C.

However, when preparing the guarded link for ex-
ecution, y′ is determined such that the span of range
[xmax,y′] of the link between A and C is lower than or
equal to the span of the constraint between B and C.
Thus, there cannot exist any negative loop involving A,
B, and C.

Case (3) can be shown in a similar way taking
also into account any possible wait constraint that may
increase the value of x′.

2The span of a range [a,b] is b−a+1.
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4 ON THE EXPRESSIVENESS OF
GUARDED CONSTRAINTS

This section informally discusses the expressiveness of
STNPSUs. Further, we show that most guarded links
cannot be represented in STNUs by other solutions.

Consider again the physiotherapy session scenario
from Fig. 1 (b): Activity Stretching has a duration
range of [10,40], which may be shrunk to a core dura-
tion range of [15,20] during run time according to the
actual duration of activity Biking. Fig. 2 depicts the
temporal aspects of the session in terms of an STNPSU:
each of the two activities is represented through a pair
of timepoints, of which one represents the starting
instant of the activity and the other one the ending
instant. The allowed duration of activity Stretching is
represented as guarded link (SS, [10,15], [20,40],SE)
while the contingent duration of activity Biking is rep-
resented as strict guarded link (BS, [5,5], [20,20],BE).
Based on the results from Sect. 3 one can easily verify
that the STNPSU is dynamically controllable, i.e., for
each possible execution time of activity Biking, the sys-
tem is able to determine a suitable duration range for
activity Stretching containing the core range [15,20]
such that each possible execution time in this range
satisfies the overall duration constraint [25,50].

Let us discuss some of the limitations that arise
when representing the temporal aspects of the physio-
therapy session in terms of an STNU. The main prob-
lem is how to represent the temporal constraints of
activity Stretching. One option to be considered is the
pattern depicted in Fig. 7. It constitutes a generaliza-
tion of the pattern proposed by (Lanz et al., 2013) (cf.
Sect. 2). This pattern is composed of three timepoints
AS, AC, and AE connected by a contingent link and two
requirement constraints. More precisely, timepoints
AS and AE represent the starting and ending timepoint
of the respective activity. In turn, AC is an internal
timepoint that is only used for checking dynamic con-
trollability of the STNU, but is not considered when
executing the activity. The values of the three con-
straints guarantee that the overall duration range of the
pattern lies in range [xF ,yF ] and the upper bound yF
can be shrunk to yC at run time. Moreover, the lower
bound xF may be shrunk to xC + f as well. Hence,
the overall constraint represented by this pattern is

similar to guarded link (AS, [xF ,xC + f ], [yC,yF ],AE)
(0≤ xC ≤ xF ≤ xC + f ∧xC ≤ yC ≤ yF ≤ yC + f ). This
pattern can be used to represent some settings of both
types of guarded links. However, for example, it can
not be used to represent the duration of activity Stretch-
ing (cf. Fig. 1 (b)).

Particularly note that, the pattern contains a strict
dependency between the value of the guard for the
lower bound, xC + f , and the distance between the
guard for the upper bound yC and the upper bound yF
itself. In detail, for the contingent constraint between
AS and AC (cf. Fig. 7) it holds 0 ≤ xC. Thus, for the
guard of the lower bound xC + f ≥ f holds as well.
Moreover, yF ≤ yC + f holds and thus yF − yC ≤ f .
As a result, yF − yC ≤ f ≤ xC + f must hold, i.e., the
distance between the upper bound yF and the guard for
the upper bound yC must be lower or equal to the value
of the guard for the lower bound xC + f . Note that, it
is not possible to extend the pattern to cover arbitrary
guarded constraints as it is not possible to resolve
this dependency between the constraints comprising
the pattern. Thus, STNPSU is more expressive than
STNU.

5 CONCLUSION

The main contribution of this paper is to present an
extension of STNU that allows for the definition and
efficient management of a novel kind of constraints,
i.e., guarded links. A guarded link represents an admis-
sible range of delays between two timepoints, where
each bound of the range can be shrunk during run
time, but not beyond a given threshold. A guarded
link constitutes a generalization of the two kinds of
STNU constraints, i.e., requirement and contingent
constraints, in the sense that a contingent link may be
represented as a simple form of a guarded one and that
a guarded link may represent a requirement constraint.
An STNU where it is possible to define guarded links
is denoted as Simple Temporal Network with Partially
Shrinkable Uncertainty (STNPSU). In particular, the
dynamic-controllability check and the execution of a
STNPSU can be done in polynomial time.

Networks such as STNU can be used as temporal
foundation for a broad class of Process-Aware Infor-
mation Systems currently being developed (Reichert
and Weber, 2012). In this context, the extension pro-
posed in this paper may be used to better represent
the temporal properties of sub processes (i.e., complex
tasks). It is quite common to have sub processes whose
allowed durations can be restricted in a limited way
prior to their execution. In turn, once a sub process
starts to execute, it is necessary to guarantee that the



allowed duration range can be used without any further
interference.

There are different avenues for future work. First,
we want to study the applicability of our approach to
CSTNU, for which the presence of labeled constraints
and links requires to consider further and different
propagation rules that have to be extended to take ac-
count of guarded constraints. Second, the application
of STNPSU as temporal foundation of Process-Aware
Information Systems could be interesting. Particularly,
STNPSU might serve as a tool for an appropriate and
scalable analysis of the temporal properties of the busi-
ness processes.

REFERENCES

Combi, C., Hunsberger, L., and Posenato, R. (2013). An
algorithm for checking the dynamic controllability of a
conditional simple temporal network with uncertainty.
In Proc Intl Conf Agents & Art. Int. (ICAART’13),
volume 2, pages 144–156. SciTePress.

Dechter, R., Meiri, I., and Pearl, J. (1991). Temporal con-
straint networks. Artificial Intelligence, 49(1-3):61–95.

Hunsberger, L. (2009). Fixing the semantics for dynamic
controllability and providing a more practical charac-
terization of dynamic execution strategies. In Intl Symp.
on Temporal Repres. and Reasoning (TIME’09), pages
155–162. IEEE CPS.

Hunsberger, L., Posenato, R., and Combi, C. (2012). The
Dynamic Controllability of Conditional STNs with Un-
certainty. In Workshop on Planning and Plan Execu-
tion for Real-World Systems: Principles and Practices
(PlanEx) @ ICAPS-2012, pages 1–8, Atibaia.

Lanz, A., Posenato, R., Combi, C., and Reichert, M. (2013).
Controllability of time-aware processes at run time. In
On the Move to Meaningful Internet Systems: Proc.
CoopsIS’13, pages 39–56. Springer.

Moffitt, M. D. and Pollack, M. E. (2007). Generalizing
temporal controllability. In Intl Joint Conf on Artificial
Intelligence (IJCAI’07), pages 1985–1990. Morgan
Kaufmann.

Morris, P. (2006). A structural characterization of tempo-
ral dynamic controllability. In Benhamou, F., editor,
Intl Conf on Principles and Practices of Constraint
Programming (CP’06), pages 375–389. Springer.

Morris, P. (2014). Dynamic controllability and dispatcha-
bility relationships. In Simonis, H., editor, Intl Conf
on Integration of AI and OR Techniques in Constraint
Programming (CPAIOR’14), volume 8451 of LNCS,
pages 464–479. Springer.

Morris, P. H. and Muscettola, N. (2005). Temporal dynamic
controllability revisited. In Veloso, M. M. and Kamb-
hampati, S., editors, National Conf on Artificial Intelli-
gence (AAAI’05), pages 1193–1198. AAAI Press.

Morris, P. H., Muscettola, N., and Vidal, T. (2001). Dynamic
control of plans with temporal uncertainty. In Intl
Joint Conf on Artificial Intelligence (IJCAI’01), pages
494–502. Morgan Kaufmann.

Reichert, M. and Weber, B. (2012). Enabling Flexibility
in Process-aware Information Systems: Challenges,
Methods, Technologies. Springer.

Tsamardinos, I., Vidal, T., and Pollack, M. E. (2003). CTP:
A new constraint-based formalism for conditional, tem-
poral planning. Constraints, 8:365–388.


