PQL - A Descriptive Language for Querying,
Abstracting and Changing Process Models

Klaus Kammerer, Jens Kolb, and Manfred Reichert

Institute of Databases and Information Systems
Ulm University, Germany
{klaus.kammerer, jens.kolb,manfred.reichert}Quni-ulm.de
http://www.uni-ulm.de/dbis

Abstract. The increasing adoption of process-aware information sys-
tems (PAISs) has resulted in large process repositories comprising large
and complex process models. To enable context-specific perspectives on
these process models and related data, a PAIS should provide techniques
for the flexible creation and change of process model abstractions. How-
ever, existing approaches focus on the formal model transformations re-
quired in this context rather than on techniques for querying, abstract-
ing and changing the process models in process repositories. This paper
presents a domain-specific language for querying process models, describ-
ing abstractions on them, and defining process model changes in a generic
way. Due to the generic approach taken, the definition of process model
abstractions and changes on any graph-based process notation becomes
possible. Overall, the presented language provides a key component for
process model repositories.

1 Introduction

Process-aware information systems (PAISs) provide support for business pro-
cesses at the operational level. In particular, a PAIS separates process logic
from application code relying on explicit process models. This enables a sepa-
ration of concerns, which is a well-established principle in computer science to
increase maintainability and to reduce costs of change [1]. The increasing adop-
tion of PAISs has resulted in large process model collections. Thereby, a process
model may comprise dozens or hundreds of activities [2]. Furthermore, process
models may refer to business objects, organizational units, user roles and other
resources. Due to this high complexity, the various user groups need customized
views on the processes [3]. For example, managers rather prefer an abstract pro-
cess overview, whereas process participants need a detailed view of the process
parts they are involved in.

Several approaches for creating process model abstractions have been pro-
posed in literature [4, 5, 6]. However, current proposals focus on fundamental ab-
straction concepts for aggregating or reducing process model elements to derive
a context-specific process view. Existing approaches neither provide concepts to
specify process model abstractions independent from a particular process model

2 Klaus Kammerer, Jens Kolb, and Manfred Reichert

(e.g., a particular user may be involved in several processes) nor to define them
in a more descriptive way. Accordingly, for each relevant process model, users
must create respective abstractions manually. In particular, the operations for
abstracting a process model need to be specifically defined referring to the el-
ements of this model; i.e., abstractions must be specified separately for each
individual process model, which causes high efforts when being confronted with
large process model collections (cf. Figure 1a). A possibility to lower efforts is
to reduce the number of operations required to abstract process models, i.e.,
elementary operations may be composed to high-level ones [5]. However, the ap-
plication of respective operations is still specific to a particular process model.

]
I
I
]
=
—nPQL 5
2
o
Updated Set =
of Process °
fioalil =
o
O rocess | = or Process Model n
] -— 7
OO0 | «Zomr, i e | O~ (-0
orocess M | Process Modeln
]
|

a) Abstracting or Changing Process Models without PQL b) Abstracting or Changing Process Models with PQL

Fig. 1. Using the Process Query Language to Abstract or Change Process Models

In existing approaches, process changes refer to specific elements (e.g., nodes)
of a process model rather than on generic process properties (e.g., process at-
tributes). For example, it is usually not possible to replace a specific user role
by another one in all process models stored in the repository [2], i.e., the change
must be manually applied to each process model.

In other domains (e.g., database management), the use of domain-specific
languages is common when facing large data sets. For example, SQL has been
used to create, access and update data in relational databases [7]. However,
to the best of our knowledge, no comparable approach exists for large process
model repositories. To remedy this drawback, this paper introduces the Process
Query Language (PQL). PQL is a domain-specific language that allows defining
process model abstractions in a declarative way as well as specifying changes on
collections of (abstracted) process models from a process repository (cf. Figure
1b). In particular, such a declarative definition of a process can be automatically
applied to multiple process models if required. Furthermore, users may use PQL
to define personalized process views on their process, e.g., by abstracting pro-
cess information not relevant for them. Additionally, process model collections
can be easily changed based on such declarative descriptions. For example, same
or similar process elements used in multiple models may be changed concur-
rently based on one PQL change description, e.g., if activities related to quality
assurance shall be changed in all variants of a business process.

Section 2 introduces fundamentals on abstracting process models. Section 3
presents PQL and its syntax. Section 4 presents a proof-of-concept implementa-
tion. Section 5 discusses related work and Section 6 summarizes the paper.

PQL 3
2 Fundamentals on Process Model Abstractions

Section 2.1 defines basic notions. Section 2.2 then discusses how process model
abstractions can be created and formally represented. It further describes how
elementary operations can be composed to define high-level operations for ab-
stracting process models.

2.1 Process Model

Basically, a process model comprises process elements, i.e., process nodes as well
as the control flow between them (cf. Figure 2). The modeling of the latter is
based on gateways and control flow edges (cf. Definition 1). Note that the data
perspective is excluded in this paper to set a focus.

__— SESE block
(Single Entry Single Exit)

. — EndFlow

ANDjoin

Fig. 2. Example of a Process Model

Definition 1 (Process Model). A process model is defined as a tuple
P=(N,NT,CE,EC, ET,attr,val) where:

— N s a set of process nodes (i.e., activities, gateways, and start/end nodes).

- NT : N — NodeType with NodeType = {StartFlow, EndFlow, Activity, AN D-
split, AN Djoin, X ORsplit, XORjoin, LOOPsplit, LOOPjoin} is a function with
NT(n) returning the type of node n € N.

— CE C N x N is a set of precedence relations (i.e., control edges):
€ = (nsrmndest) € CFE with Nsre, Ndest € N A Ngre 75 Ndest -

- EC : CE — Conds U {TRUE} assigns to each control edge either a branching con-
dition or TRUE (i.e., the branching condition of the respective control edge always
evaluates to true).

- ET : CE — EdgeType with EdgeType = {ET_Control, ET_Sync, ET _Loop}.
ET(e) assigns a type to each control edge e € CE.

—attr: N UCE — AS assigns to each process element a corresponding attribute set
AS C AS.

- wal : (N U CE) x AS — valueDomain(AS) assigns to any attribute x € AS of a
process element pe € N U CF its value:

value(zx)', x € attr(pe)
null?, x & attr(pe)

val(pe,z) = {

! value(z) denotes the value of process attribute
2 attribute is undefined for the respective process element

4 Klaus Kammerer, Jens Kolb, and Manfred Reichert

Definition 1 can be used for representing the schemes of both process models
and related process model abstractions. In particular, Definition 1 is not re-
stricted to a specific activity-oriented modeling languages, but may be applied
in the context of arbitrary graph-based process modeling languages. This paper
uses a subset of BPMN elements as modeling notation. We further assume that
a process model is well-structured, i.e., sequences, branchings (of different se-
mantics) and loops are specified as blocks with well-defined start and end nodes
having the same gateway type. These blocks—also known as SESE blocks (cf.
Definition 2)—may be arbitrarily nested, but must not overlap (like blocks in
BPEL). To increase expressiveness, synchronization edges allow for a cross-block
synchronization of parallel activities (like BPEL links). In Figure 2, for example,
activity £ must not be enabled before G is completed. Additionally, process
elements have associated attributes. For example, an activity has attributes like
ID, name or assignedUser (cf. Figure 3).

ID=5

name=D
assignedUser=Peter

ID=1 ID=2
name=A
assig/nedUser:Pe(er

name=g
assignedUser=Maria assignedUser=Peter

Fig. 3. Example of a Process Model with Attributes

Definition 2 (SESE). Let P = (N,NT,CE,EC, ET, attr,val) be a process
model and X C N be a subset of activities (i.e., NT(n) = Activity ¥Yn € X).
Then: Subgraph P’ induced by X is called SESE (Single Entry Single Exit) block
iff P’ is connected and has exactly one incoming and one outgoing edge connect-
ing it with P. Further, let (ng,ne) = MinimalSESE(P, X) denote the start and
end node of the minimum SESE comprising all activities from X C N.

How to determine SESE blocks is described in [8]. Since we presume a well-
structured process model, a minimum SESE can be always determined.

2.2 Process Model Abstractions

In order to abstract a given process model, the schema of the latter needs to
be simplified. For this purpose, elementary operations are provided (cf. Table 1)
that may be further combined to realize high-level abstraction operations (e.g.,
show all activities a particular actor is involved in and their precedence rela-
tions) [9, 5]. At the elementary level, two categories of operations are provided:
reduction and aggregation. An elementary reduction operation hides an activ-
ity of a process model. For example, RedActivity(P,n) removes activity n and
its incoming and outgoing edges and re-inserts a new edge linking the prede-
cessor of n with its successor in process model P (cf. Figure 4a). An aggrega-
tion operation, in turn, takes a set of activities as input and combines them to
an abstracted node. For example, AggrSESE(P,N’) removes all nodes of the

a) RedActivity (P, B) b) AggrSESE (P, {B,C})) AggrComplBranches (P, {A,B,C})

(2 P <) -B-B
& 3

Fig. 4. Examples of Elementary Abstraction Operations

SESE block induced by node set N’ and re-inserts an abstract activity instead
(cf. Figure 4b). Furthermore, operation AggrComplBranches(P, N') aggregates
multiple branches of an XOR/AND branching to a single branch with one ab-
stracted node (cf. Figure 4c). An abstraction of a process model can be created
through the consecutive application of elementary operations on a given process
model (cf. Definition 3) [5, 10]. Note that there exist other elementary opera-
tions, which address process perspectives other than control flow as well (e.g.,
data flow); we omit details here.

Definition 3 (Process Model Abstraction). Let P be a process model. A
process model abstraction V(P) is described through a creation set CSy(py =
(P, Op) with

- P=(N,NT,CE, EC, ET,attr,val) being the original process model,
- Op = (Op1,...,0py,) being a sequence of elementary operations applied to P:
Op; C O = {RedActivity, AggrSESE, AggrComplBranches}

A node n of the abstracted process model V(P) either directly corresponds
to a node n € N of the original process model P or it abstracts a set of nodes
from P. PM Node(V (P),n) reflects this correspondence by returning either n or
node set N,, aggregated in V(P), depending on creation set C'Sy (py.

n neN

PMNode(V(P),n) = .
V(P),m) {Nn EIOpiéOp:Nn%n

Operation Description

RedActivity(P,n) Activity n and its incoming and outgoing edges are removed in
P, and a new edge linking the predecessor of n with its successor
is inserted (cf. Figure 4a).

AggrSESE(P,N’) All nodes of the SESE block defined by N’ are removed in P
and an abstract activity is re-inserted instead (cf. Figure 4b).
AggrComplBranches(P, N')|Complete branches of an XOR/AND branching are aggregated
to a branch with one abstracted node in P. N’ must contain
the activities of the branches (i.e., activities between split and
corresponding join gateway) that shall be replaced by a single
branch consisting of one aggregated node (cf. Figure 4c).

Table 1. Examples of Elementary Abstraction Operations

When abstracting a process model, unnecessarily complex control flow struc-
tures could result due to the generic nature of the operations applied. For exam-
ple, single branches of a parallel branching might become ”empty” or a parallel
branching might only have one branch left after applying reductions. In such

6 Klaus Kammerer, Jens Kolb, and Manfred Reichert

cases, unnecessary gateways should be removed to obtain a more comprehensible
schema of the abstracted model. Therefore, refactoring operations are provided.
In particular, this does not affect the control flow dependencies of activities and,
hence, does not change behavioral semantics of the refactored model [2].

To abstract multiple aspects of a process model several elementary opera-
tions may be applied in combination [5]. For example, AggrSESE and Aggr-
ComplBranch may be combined to high-level operation AggregateControlFlow
(cf. Figure 5). Obviously, abstracting large process models becomes easier, when
providing high-level operations in addition to elementary ones. In particular, the
selection of the nodes to be abstracted should be more convenient. Current ab-
straction approaches, however, require the explicit specification of these nodes
in relation to a particular process model. A declarative definition of these nodes
(i.e., select all activities, a user is involved in), therefore, would enable users to
abstract nodes in a more convenient and flexible way.

O-{2{e2em-0O

Resulting Process Model after Application of
Refactoring Operations

Fig. 5. Composition of Elementary Operations

3 The PQL Language

The presented operations for abstracting process models (i.e., process views)
always refer to a process model they shall be applied to. Thus, their effects cannot
be described independently from a particular process model, which causes high
efforts in case an abstraction shall be introduced to multiple process models. To
remedy this drawback, we introduce Process Query Language (PQL) that allows
specifying process abstractions independent from a specific process model. PQL
allows defining changes on a selected collection of process models as well.

3.1 Overview

PQL allows describing process model abstractions as well as process model
changes in a declarative way. More precisely, respective descriptions may not
only be applied to a single process model, but to a collection of selected pro-
cess models as well. In the following, we denote such a declarative description
of abstractions or changes on a collection of process models as PQL request.
In general, a PQL request consists of two parts: First, selection section defines
the process models concerned by the PQL request; Second, modification section
defines the abstractions and changes respectively to be applied to the selected
process models.

PQL 7

Figure 6 illustrates how a PQL request is processed: First, a user sends a PQL
request to the PQL interpreter (Step (D). Then, those process models are se-
lected from the process repository that match the predicates specified in selection
section of the PQL request (Step @). If applicable, changes of the modification
section of the PQL request are applied to the selected process models (Step (3)).
Following this, the abstractions defined in the modification section are applied
to the selected process models (Step @). Finally, the selected, changed and ab-
stracted process models are presented to the user (Step (®). Note that Steps
3+4 are optional depending on the modification section of the PQL request.

PQL Request
MATCH n1-->n2
@ Application of Matching Patterns WHERE n1l.name=C, n2.name=F
Changes on Process Models | SET DELETE(n(name=A)), AGGREGATE(@
MATCH n:ACTIVITY (assignedUser=Peter))

Process Model 1 —{(0+)

@ Process Model 2

Process Model n

Process Model n

O-a3-(2} E3-0 O (o} O
Process Model n
O (0} O
Process Repository PQL Interpreter * assignedUser=Peter

Fig. 6. Processing a PQL Request

The specification of PQL requests relies on the Cypher Query Language,
which we adopt to meet the specific requirements of process modeling [11].
Cypher is a declarative graph query language known from the Neo4J graph
database. In particular, it allows querying and changing the graphs from a graph
database [12]. Furthermore, Cypher has been designed with the goal to be effi-
cient, expressive and human-readable. Thus, it is well suited as basis for PQL.
An example of a PQL request expressed with Cypher is shown in Listing 1.

1 MATCH al:ACTIVITY-[:ET_Control]->a2:ACTIVITY-[:ET_Control]l->a3:ACTIVITY
2 WHERE not (al-[:ET_Control]l->a3)
3 RETURN a3

Listing 1. Example of a PQL Request

In the PQL request from Listing 1, Line 1 refers to process model that contain
a path (i.e., a sequence of edges with type ET_Control) linking activities al, a2
and a3. Note that al,a2 and a3 constitute variables. To be more precise, the
PQL request searches for process models comprising any sequence consisting of
three activities. As a constraint (cf. Line 2), only directly adjacent nodes of a2
are returned. Additionally, the nodes must not be directly adjacent to al. An
application on the process models depicted in Figure 2 returns process activities
C, F and G as the only possible match (cf. Figure 7).

Listing 2 presents the general syntax of a PQL request in BNF grammar nota-
tion [13]. Other relevant PQL syntax elements will be introduced step-by-step.

8 Klaus Kammerer, Jens Kolb, and Manfred Reichert

Example of a
Matching Process Model

/ N T~
MATCH al:ACTIVITY-[:ET_Control]->a2:ACTIVITY-[:ET_Control]->a3:ACTIVITY
WHERE not (al-[:ET_Control]->a3)

Fig. 7. PQL Request Determining a Sequence of Three Activities

PQLrequest ::= match where? set?

Listing 2. BNF for a PQL Request

3.2 Selecting Process Models and Process Elements

PQL allows for a predicate-based selection of process models and process ele-
ments respectively. First, a search predicate may describe structural properties
of the process models to be queried, e.g., to select all process models comprising
two sequential nodes nl and n2 (cf. Step @ in Figure 6). Second, process mod-
els and process elements can be selected by a predicate-based search on specific
process element attributes. The latter are usually defined for each process model
in a process repository, e.g., a user role designated to execute certain activities
[5]. A predicate serves to assign properties (i.e., attributes) to process elements.
For example, for predicate PR = {z|z < 4,z € N}, we obtain = € {1,2,3}. In
general, a predicate PR may be described as boolean-valued function:

Definition 4 (Predicate). Let P = (N,NT,CE, EC, ET, attr,val) be a pro-
cess model, z € N U CE be a process element, and PR be a predicate. Then:
PR(z) : x — {true, false}

A predicate is used to compare attributes of process models and process
elements respectively. In this context, ordering functions for numerical values
(i.e., #,<,<,=,>,>) may be used. For example, string values may be compared
on either equality against fixed values or based on edit distance to determine
their similarity [14]. Two or more predicates may be concatenated using Boolean
operations (i.e., AND,OR, NOT).

As aforementioned, PQL offers structural as well as attributional matching
patterns to determine whether a specific process fragment is present in a par-
ticular process model. More precisely, structural matching patterns consider the
control flow of a process model; i.e., they define the process fragments that need
to be present in selected process models. In turn, attributional matching patterns
allow selecting process models and process elements, respectively, based on pro-
cess element attributes.

Structural matching patterns define constraints on process fragments to
be matched against existing process models in a process repository. In PQL,

PQL 9

structural matching patterns are initiated by a MATCH keyword (cf. Line 1, List-
ing 3) followed by a respective matching pattern, which describes the respective
process fragment (cf. Line 2).

1 match := "MATCH" match_pat (("," match_pat)+)?

2 match_pat = (PQL_PATHID "=")? (MATCH_FUNCTION "(" path ")" | path)
3

4 path = node ((edge) node)+)?

5

6 node = PQL_NODEID (":" NODETYPE)? (" (" NODEID ")")?

7

8 edge = cond_edge | uncond_edge

9 uncond_edge = ("-=" | "-->m)

10 cond_edge = (("-" edge_attrib "-") | ("-" edge_attrib "->"))
11 edge_attrib = "[" PQL_EDGEID? (":"

12 ((EDGETYPE ("|" EDGETYPE)*)? | edge_quant)?
13 ll]"

14 edge_quant ::= "x" (EXACT_QUANTIFIER |

15 (MIN_QUANTIFIER ".." MAX_QUANTIFIER)?)?

Listing 3. BNF for Structural Matching in a PQL Request

Structural matching patterns are further categorized into dedicated and ab-
stract patterns. While dedicated patterns (cf. Lines 8-11 in Listing 3) are able to
describe SESE blocks of a process model, an abstract pattern (cf. Lines 12-15)
offers an additional edge attribute. The latter defines control flow adjacencies
between nodes, i.e., the proximity of a pair of nodes. For example, to specify the
selection of all succeeding nodes of activity A in Figure 3 requires abstract struc-
tural patterns. Table 2 summarizes basic PQL structural matching patterns.

Pattern Description Type
MATCH a-->b Pattern describing the existence of an edge of any type|dedicated
between nodes a and b.
MATCH a(2)-[:EDGE_TYPE]->b |Pattern describing a process fragment whose nodes a|dedicated
and b are connected by an edge with type EDGE_TYPE;
furthermore, a has attribute ID with value 2

MATCH a-[*1..5]->b Pattern describing a process fragment with nodes a and|abstract
b that do not directly succeed, but are separated by at
least one and at most five nodes.

MATCH a-[*]->b Pattern describing an arbitrary number of nodes be-|abstract
tween nodes a and b.

MATCH p = shortestPath(Pattern describing a minimum SESE block with a max-|abstract

a-[:ET_Controlx*3]->c) imum of three control edges between nodes a and c.

Table 2. Examples of Structural Matching Patterns

Attributional matching patterns allow for an additional filtering of pro-
cess fragments selected through a structural matching. For this purpose, pred-
icates referring to process element attributes may be defined (cf. Listing 4).
Attributional matching is initiated by a WHERE keyword, which may follow a
MATCH keyword (cf. Table 3). Note that attributional matching patterns refer to
process elements pre-selected through a structural matching pattern. For exam-
ple, nodes a and b selected by pattern MATCH a-->b can be further filtered with
attributional matching patterns. If the attributional matching a.ID = 5 shall
be applied to all activities of a process model, the MATCH keyword needs to be
defined as follows: MATCH a:ACTIVITY(*) WHERE a.ID=5.

10 Klaus Kammerer, Jens Kolb, and Manfred Reichert

1 where = "WHERE" predicate ((BOOL_OPERATOR predicate)+)7?
2 predicate = comparison_pred | regex_pred

3

4 comparison_pred ::= PROPERTY_ID COMPARISON_OPERATOR any_val

5 regex_pred ::= PROPERTY_ID "="" REGEX_EXPRESSION

Listing 4. BNF for Attributional Matching in a PQL Request

Attributional matching patterns may be combined with structural ones. For
example, PQL request MATCH a:ACTIVITY-->b matches with node attribute
NodeType = ACTIVITY for node a and any sequence of nodes a and b.

Pattern |Description

MATCH (a) WHERE (a.NAME="Sell Item") Select all nodes with name ”Sell Item”.

MATCH (a) WHERE HAS (a.attrib) Select all nodes for which an attribute with name
attrib is present.

MATCH (a) WHERE a:ACTIVITY Select all nodes with node type ACTIVITY .

MATCH (a-[*]->b) WHERE a:ACTIVITY(1), b(2)|Select (1) activity a with ID=1 and node type
ACTIVITY and (2) node b with ID=2.

Table 3. Examples of Attributional Matching Patterns

Figure 8 illustrates the application of a matching pattern to the process
model from Figure 3. Figure 8a matches a sequence of nodes a,b and ¢, with
node a having attribute ID = 2, node b being an arbitrary node, and node ¢
being of type ACTIVITY . Figure 8b matches for a node a with a.ID = 8 and
arbitrary nodes succeeding a, having a maximum distance of 2 to a (i.e., nodes
G and AN Djoin match in the process model). In turn, Figure 8¢ matches all
nodes having assigned attribute assignedUser. Finally, Figure 8d matches nodes
whose ID either is 2 or 5 (i.e., nodes A and D match in the process model).

—~
(o)

MATCH(n)
WHERE HAS (n.assignedUser)

Fig. 8. Overview on PQL Matching Patterns

3.3 Abstracting Process Models

This section shows how to define abstractions on the process models referenced
by the selection section of a PQL request.

Based on the matching patterns, PQL allows defining abstractions inde-
pendent of a particular process model. As opposed to the elementary abstrac-
tion operations introduced in Section 2, two high-level abstraction operations

PQL 11

AGGREGATE and REDUCE are introduced. The latter allow abstracting a set of
arbitrary process elements (including data elements [15]). Thereby, the process
elements to be abstracted are categorized into process element sets based on
their type, e.g., node type. If an aggregation shall be applied to a set of pro-
cess nodes, a minimum SESE block is determined to aggregate adjacent process
nodes to an abstracted node. Hence, both well-structuredness and behavioral
semantics of the respective process model are preserved.

In PQL, abstractions of process models are initiated by keyword SET. In
turn, keywords AGGREGATE and REDUCE indicate the elements to be aggregated
or reduced (cf. Listing 5 and Figure 8).

1 set = "SET" operation (("," operation)+)?
2 operation = abstraction | change_operation
3 abstraction ::= ("AGGREGATE" | "REDUCE")+ "(" PQLrequest ")"

Listing 5. BNF for Structural Matching in a PQL Request

The PQL request depicted in Listing 6 selects all process models that contain
any process fragment consisting of a sequence of two activities, i.e., variables a
and b. Process elements selected by the first MATCH are then aggregated if their
type is ACTIVITY and val(pe, assignedUser) = Peter holds (cf. Figure 8).

1 MATCH a:ACTIVITY (NAME=C)-->b:ACTIVITY (NAME=F)

2 SET AGGREGATE (

3 MATCH n:ACTIVITY (x)
4 WHERE n.assignedUser=Peter)

Listing 6. PQL Request to Aggregate Nodes

Listing 7 shows a PQL request reducing neighboring nodes C' and F as de-
scribed by PQL variables a and b. Note that a second PQL request is nested (cf.
Line 3) utilizing the same variables as the parent PQL request does.

1 MATCH a:ACTIVITY (NAME=C)-->b:ACTIVITY (NAME=F)
2 SET REDUCE (
3 MATCH a-->b)

Listing 7. PQL Request to Reduce Nodes

3.4 Changing Process Models

In contemporary process repositories, changes related to multiple process models
usually need to be performed on each process model separately. This not only
causes high efforts for process designers, but also constitutes an error-prone task.
To remedy this drawback, PQL allows changing all process models defined by
the selection section of a PQL request at once, i.e., by one and the same change
transaction. For example, structural matching patterns can be applied to select
the process models to be changed.

Table 4 shows elementary change operations supported by PQL. These may be
encapsulated as high-level change operations, e.g., inserting a complete process

12 Klaus Kammerer, Jens Kolb, and Manfred Reichert

Operation ‘Description

InsertNode(P, Npred, Nsuce, 1) Node n is inserted between preceding node np,.q and succeed-
ing node ngyce in process model P. Control edges between
Npreqa and n as well as between n and ngsyce are inserted to
ensure compoundness of the nodes.

DeleteNode(P,N") A set of nodes N’ is removed from process model P.

MoveNode(P,n, Npred, Nsuce) Node n is moved from its current position to the one between
Npred and Ngyce, control edges are adjusted accordingly.

Table 4. Examples of Change Operations Supported by PQL

fragment through the application of a set of InsertNote operations.

Change operation InsertNode(P, npred; Nsuce; 1), for example, inserts node
n between nodes npreq and Ngyee in process model P. Thereby, the control edge
between npreq and nNgyee is adjusted and another control edge is inserted to
prevent unconnected nodes. Due to lack of space, we omit a discussion of other
change operations here and refer interested readers to [16] instead.

Listing 8 shows how to insert a node with type ACTIVITY and name 'New
Node’ between nodes C' and F (cf. Figure 3). Note that the insertion will be
applied to any process model in which nodes C' and F' (cf. Line 2) are present;
i.e., the insertion may be applied to a set of process models. Finally, abstractions
and changes on process models may be defined in a single PQL request; in this
case, changes on process models are applied first.

1 MATCH a-->b
2 WHERE a.NAME=C, b.NAME=F
3 SET INSERTNODE (a, b, ACTIVITY, ’New Node’)

Listing 8. PQL Request to Insert a Node

4 Proof-of-Concept Prototype

In order to demonstrate the applicability of PQL we developed a web-based PAIS
called Clavii BPM Platform'. This platform implements a software architecture
supporting the predicate-based definition and creation of process abstractions
as well as predicate-based process model changes utilizing PQL [17]. Figure 9
illustrates the creation of a process model abstraction. Drop-down menu (1) shows
a selection of pre-specified PQL requests directly applicable to a process model.
In turn, Figure 9b depicts a screenshot of Clavii’s configuration window, where a
stored PQL request may be altered. In this case, PQL request "Technical Tasks’
is outlined in @). The latter aggregates all nodes neither being service tasks
nor script tasks (cf. @)). Future research will address the applicability of the
prototype and PQL, respectively, in practical settings.

! http://www.clavii.com/

PQL 13

& (© Home> TestFoider Plugin Test [] @ O | & © () @ v@ o

@ ® 5 ® ProcessViews ®

@ G
Zip PDF Form ‘Send PDF by Email

My Tasks

Upload PDF to OrgUnit Tasks

@ Technical Tasks

v
Upload PDF to DropBox

Common View A @ User Tasks
<om o [O
@ Add new Filter
a) Process Model Abstraction b) Stored PQL Request

Preserving Technical Tasks

Fig. 9. Process Model Abstractions in the Clavii BPM Platform

5 Related Work

BPMN-@ allows querying process models in [18]. Queries are defined visually
using a BPMN-like notation extended with additional attributes. As opposed
to PQL requests, BPMN-Q queries are first defined visually and then converted
into semantically expanded queries. Model selection is based on the comparison
of process element attributes with predicate values specified in the BPMN-Q
query, i.e., by measuring the edit-distance. However, BPMN-Q does not support
abstractions and changes of the process models selected.

BP-QL is another language for querying process models, which is based on
statecharts [19]. In particular, a query can be defined in terms of state chart
patterns. BP-QL uses pattern matching in respect to node attributes as well as
control flow structures when selecting process models. Like BPMN-Q, BP-QL
does not allow for changes or abstractions of the selected process models.

A technique for searching and retrieving process variants based on similarity
metrics is presented in [20]. More precisely, process variants may be compared
by queries comprising structural, behavioral and contextual constraints.

None of the discussed approaches deals with abstractions or changes of the
process models selected by a query. Furthermore, the various approaches are
based on rather rigid constraints not taking practical issues into account, e.g.,
regarding the evolution of process models over time.

Several approaches for defining and managing process model abstractions
exist. The approach presented in [21] measures semantic similarity between pro-
cess activities by analyzing the structure of the respective process model. The
discovered similarity is then used to abstract the process model. However, this
approach neither distinguishes between different user perspectives nor does it
provide concepts for flexibly describing process model abstractions. In turn, [22]
applies graph reduction techniques to verify structural properties of process mod-
els similar to high-level abstraction operations AGGREGATE and REDUCE. However,
no support for querying process models exists.

For defining and changing process models, various approaches exist. In [16],
an overview of evidenced change patterns is presented. Furthermore, [23] sum-
marizes approaches enabling flexibility in PAISs. In particular, [24] presents

14 Klaus Kammerer, Jens Kolb, and Manfred Reichert

adaptions of well-structured process models, while preserving their correctness.
In turn, [25] presents concepts for evolving process models over time. Finally,
changes based on abstracted process models are described in [26, 27, 28].

The Cypher query language allows querying and modifying graphs stored in a
graph database [11]. By contrast, the Gremlin graph query language is a Tur-
ing complete programming language realizing queries as chain of operations or
functions. Hence, it is suited to construct complex queries for programming lan-
guages [29]. The Structured Query Language (SQL) offers techniques to manage
sets of data in relational databases [7].

6 Summary

We introduced the Process Query Language (PQL), which enables users to au-
tomatically select, abstract and change process models in large process model
collections. Due to its generic approach, the definition of process model ab-
stractions and changes on any graph-based process notation becomes possible.
For this purpose, structural and attributional matching patterns are used, which
declaratively select process elements either based on the control flow structure
of a process model or on element attributes. PQL has been implemented in
a proof-of-concept prototype demonstrating its applicability. Altogether, pro-
cess querying languages will be a key part of process repositories to allow for
convenient management of process abstractions and changes on large sets of
process models.

References

1. Weber, B., Sadiq, S., Reichert, M.: Beyond Rigidity - Dynamic Process Lifecycle
Support: A Survey on Dynamic Changes in Process-Aware Information Systems.
Computer Science - Research and Development 23(2) (2009) 47-65

2. Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring Large Process
Model Repositories. Computers in Industry 62(5) (2011) 467-486

3. Streit, A., Pham, B., Brown, R.: Visualization Support for Managing Large Busi-
ness Process Specifications. In: Proc BPM’05. (2005) 205-219

4. Tran, H.: View-Based and Model-Driven Approach for Process-Driven, Service-
Oriented Architectures. TU Wien, PhD thesis (2009)

5. Reichert, M., Kolb, J., Bobrik, R., Bauer, T.: Enabling Personalized Visualization
of Large Business Processes through Parameterizable Views. In: Proc 27th ACM
Symposium On Applied Computing (SAC’12), Riva del Garda, Italy (2012)

6. Chiu, D.K., Cheung, S., Till, S., Karlapalem, K., Li, Q., Kafeza, E.: Workflow
View Driven Cross-Organizational Interoperability in a Web Service Environment.
Information Technology and Management 5(3/4) (2004) 221-250

7. Information Technology — Database Languages — SQL — Part 11: Information and
Definition Schemas (SQL/Schemata). Norm ISO 9075:2011 (2011)

8. Johnson, R., Pearson, D., Pingali, K.: Finding Regions Fast: Single Entry Single
Exit and Control Regions in Linear Time. In: Proc ACM SIGPLAN’93. (1993)

10.

11.
12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

PQL 15

Kolb, J., Reichert, M.: A Flexible Approach for Abstracting and Personalizing
Large Business Process Models. ACM Applied Comp. Review 13(1) (2013) 6-17
Bobrik, R., Reichert, M., Bauer, T.: View-Based Process Visualization. In: Proc
5th Int’l Conf. on Business Process Management (BPM’07), Brisbane, Australia
(2007) 88-95

Panzarino, O.: Learning Cypher. Packt Publishing (2014)

Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly (2013)

Backus, J.: Can Programming Be Liberated from the Von Neumann Style?: A
Functional Style and Its Algebra of Programs. Comm ACM 21(8) (1978) 613—641
Wagner, R.A., Fischer, M.J.: The String-to-String Correction Problem. Journal of
the ACM 21(1) (1974) 168-173

Kolb, J., Reichert, M.: Data Flow Abstractions and Adaptations through Updat-
able Process Views. In: Proc 27th Symposium on Applied Computing (SAC’13),
Coimbra, Portugal, ACM (2013) 1447-1453

Weber, B., Reichert, M., Rinderle, S.: Change Patterns and Change Support
Features - Enhancing Flexibility in Process-Aware Information Systems. Data
& Knowledge Engineering 66(3) (2008) 438-466

Kammerer, K.: Enabling Personalized Business Process Modeling: The Clavii BPM
Platform. Master’s thesis, Ulm University (2014)

Sakr, S., Awad, A.: A Framework for Querying Graph-Based Business Process
Models. In: Proc ACM WWW’10. (2010) 1297-1300

Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying Business Processes. In:
Proc VLDB’06. (2006) 343—-354

Lu, R., Sadiq, S., Governatori, G.: On managing business processes variants. Data
& Knowledge Engineering 68(7) (2009) 642-664

Smirnov, S., Reijers, H.A., Weske, M.: A Semantic Approach for Business Process
Model Abstraction. In: Proc CAiSE’11, Springer (2011) 497-511

Sadiq, W., Orlowska, M.E.: Analyzing Process Models Using Graph Reduction
Techniques. Information Systems 25(2) (2000) 117-134

Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information Sys-
tems - Challenges, Methods, Technologies. Springer (2012)

Reichert, M., Dadam, P.: ADEPTflex - Supporting Dynamic Changes of Workflows
Without Losing Control. Journal of Intelligent Inf. Sys. 10(2) (1998) 93-129
Rinderle, S., Reichert, M., Dadam, P.: Flexible Support of Team Processes by
Adaptive Workflow Systems. Distributed and Par. Databases 16(1) (2004) 91-116
Kolb, J., Kammerer, K., Reichert, M.: Updatable Process Views for User-centered
Adaption of Large Process Models. In: Proc 10th Int’l Conf. on Service Oriented
Computing (ICSOC’12). (2012) 484-498

Kolb, J., Kammerer, K., Reichert, M.: Updatable Process Views for Adapting
Large Process Models: The proView Demonstrator. In: Demo Track of the 10th
Int’l Conf on Business Process Management (BPM’12). (2012) 6-11

Kolb, J., Reichert, M.: Supporting Business and IT through Updatable Process
Views: The proView Demonstrator. In: Proc 10th Int’l Conf. on Service Oriented
Computing (ICSOC’12), Demonstration Track, Shanghai (2013) 460-464
TinkerPop: Gremlin, http://gremlin.tinkerpop.com, last visited: 11-14-2014

