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Abstract

In a globalized world, knowledge work and especially Knowledge-intensive Business

Processes (KiBPs) become increasingly important in highly developed countries. As a

consequence, knowledge workers increasingly require an appropriate system support.

Due to the more complex nature and the different characteristics of KiBPs, the Business

Process Management (BPM) approach established to support traditional business pro-

cesses, cannot be applied to KiBPs in the same way. As knowledge workers often rely

on paper-based task lists (e.g. checklists, to-do lists) to collaboratively manage their

work, a system supporting KiBPs should provide digital task lists based on a lifecycle to

achieve a sustainable support.

This thesis discusses new concepts to enable an improved KiBP lifecycle support for

task management through the application of process mining techniques. The KiBP

lifecycle features the definition of so called collaboration templates, the instantiation of

these templates to collaboration instances at run time and the evaluation of collabora-

tion records. In particular, collaboration records are leveraged to automatically derive

appropriate templates and to optimize existing templates.

In this context, an optimization approach for task list templates is proposed that incor-

porates the most frequently applied changes into the corresponding template using

a change mining technique. Furthermore, an approach to automatically generate a

task list template based on the records of comparable, completed task list instances

through the application of a cluster mining algorithm is proposed as well. Additionally,

the issue of providing knowledge workers with valuable task recommendations at run

time is discussed and an approach addressing this problem is presented. Finally, se-

lected excerpts of the implementation are presented to demonstrate the feasibility of the

proposed approaches as a proof-of-concept prototype.
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1
Introduction

Nowadays, companies are facing various challenges to keep and sustain their competi-

tive advantages. In a globalized world, there is more pressure than ever for businesses

to act timely, to make the most of resources and to cut costs [3]. While the steady

progress in technology is creating a wide range of opportunities for both established

companies and new competitors, it is also a driving force for continuously increasing

business efficiency in turn. Processes, which had been accomplished manually and

paper-based in the past, became supported by information systems managing data

digitally and, thereby, significantly improving the availability of information as well.

Through the introduction of BPM, companies are able to further boost effectiveness

by systematically managing and standardizing their business processes [20]. This is

illustrated by the BPM lifecycle [4] shown in Figure 1.1. Initially, existing processes are

analyzed and optimized by domain experts. In particular, the activities, which are part of

the business process, have to be identified as well as their order, and the decisions to be
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1 Introduction

made during the course of the business process. These insights are then leveraged to

specify a process template as blueprint for a certain kind of business process. Whenever

a business process needs to be started and performed, the corresponding process

template is instantiated to automatically generate an individual process instance based

on this template. This way, business processes in a company become transparent as

they are explicitly specified and managed based on a lifecycle. In this context, process in-

stances are monitored to keep track of performance factors like the duration of instances

and their resource usage.

Process 
identification

Process 
discovery

Process 
implementation

Process 
analysis

Process 
monitoring and 

controlling

Process 
redesign

Process architecture

As-is process
model

Insights on
weaknesses and

their impact

To-be process
model

Executable
process
model

Conformance and
performance insights

Figure 1.1: BPM Lifecycle

While the approach of BPM works well for supporting and automating predictable,

routine processes by standardization, there is no comparable support for KiBPs that

have become the prevalent type of work in highly developed countries [1]. Due to their
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1.1 Problem Statement

challenging characteristics it is substantially difficult to provide a comparable, adequate

support for this special kind of processes. However, to increase the productivity of

knowledge workers it is necessary to provide them with a dedicated support, taking the

characteristics of KiBPs into account.

1.1 Problem Statement

In particular, KiBPs are emergent, non-predictable, knowledge-creating, and goal-

oriented [14]. Especially the former three attributes contrast with routine business

processes and underline the challenges for an information system that is able to support

KiBPs. The traditional approach of BPM proposing the creation of process templates

at design time and instantiating the templates at run time, is not feasible for KiBPs

[15]. Instead, the alternating planning and work phases involved in KiBPs have to be

adequately taken into account to support knowledge workers effectively.

In general, knowledge workers use their skills and expertise to accomplish their work and

collaborate to achieve their common goals. However, they often still rely on paper-based

task lists to manage the coordination as well as to plan their own work. In particular,

these task lists are either used for prospective planning of work (i.e. to-do lists) or for

retrospective evaluations of accomplished work (i.e. checklists). Naturally, the availability

of paper-based artifacts is limited and it thus hinders the coordination among knowledge

workers involved in KiBPs. Once knowledge workers completed their work, task lists are

usually disposed of and, hence, there is no analysis of task lists taking place. However,

if completed task lists were analyzed, they could be optimized for future uses and,

thereby, the productivity of knowledge workers could be increased by relieving them

from redundant work. Furthermore, it is difficult for multiple knowledge workers to rely

on the same task list as only one person can have the task list at a time, unless they

use multiple copies of the same task list. The former hampers the progress made by

knowledge workers, due to the limited access to the task list, while the latter imposes

synchronization problems between knowledge workers. Additionally, paper-based task

lists do not allow for the enforcement of access restrictions to task lists or parts thereof

in contrast to digital task lists. Therefore, it is desirable to have a dedicated information
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1 Introduction

system in place taking care of a systematic task management and providing knowledge

workers with the most recent state of the task lists they are involved in.

1.2 Contribution

As a result, a powerful lifecycle approach is necessary to provide support to knowledge

workers in a sustainable and systematic manner. In the context of the proCollab1

research project [18], aiming at the provision of a holistic support for KiBPs based on

task list management, this thesis deals with the design and implementation of lifecycle

concepts. Especially, the lifecycle approach has to integrate the concept of alternating

planning and work phases by allowing for flexible changes on task lists at run time.

proCollab already features support to design templates for both KiBPs and integrated

task lists and to instantiate them at run time. However, the records of completed KiBPs

must be made available to let them be evaluated by both knowledge workers as well as

proCollab itself. The main goal is to reduce knowledge workers time spent for planning

and, thereby, increasing their productivity.

Due to the emergent nature of KiBPs resulting from constant uncertainty, it is particularly

difficult to provide knowledge workers with appropriate process templates and the

corresponding task list templates. Therefore, this thesis proposes concepts for the

analysis of task list records as knowledge workers typically use task lists (e.g. checklist,

to-do lists) to organize their work. To reliably provide knowledge workers with the most

suitable task list templates, proCollab is to be enhanced to automatically optimize and

even create task list templates based on task list records. In particular, the lifecycle

approach to achieve this goal is twofold: On one side, proCollab should derive a task list

template based on a set of comparable task list records. This way, knowledge workers

may use the generated task list template in future and don’t have to start planning work

from scratch over and over again. On the other side, KiBPs and their associated task lists

are also subject to change over time. Thus, knowledge workers may still rely on a certain

task list template, but they apply changes to the derived task list instances for various

reasons. This consequently raises the question whether there are frequently applied
1Process-Aware Support for Collaborative Knowledge Workers
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changes to the task list instances indicating that the template itself should be adjusted

accordingly. Therefore, proCollab should continuously analyze task list records and

allow for a controlled evolution of task list templates by incorporating the most frequently

made changes into the templates. Again, this reduces knowledge workers time spent for

planning, since they do not need to adapt task list instances in the same way every time.

In addition, knowledge workers also should be provided with system support at run time.

The alternating planning and work phases are a characteristic of KiBPs implying that

users should be provided with recommendations regarding relevant future tasks. This is

another aspect where records of successfully completed task list instances constitute

a valuable basis to improve future instances based on the same task list template. By

offering valuable task recommendations at run time, when knowledge workers plan

upcoming tasks, the planning phase can be further reduced enabling knowledge workers

to focus on their actual work.

1.3 Outline

The remainder of this thesis is structured as follows: Chapter 2 introduces the funda-

mental concepts this thesis is based on. Subsequently, Chapter 3 presents an approach

to optimize task list templates through the application of a change mining algorithm.

Chapter 4 describes an approach to derive a task list template from a set of task list

records using a cluster mining technique. Chapter 5 elaborates on the problem of

providing appropriate task recommendations to knowledge workers at run time and

proposes a basic concept to solve particular aspects of this issue. Chapter 6 presents

selected excerpts of the implementation of the approaches described in Chapters 3

and 4. Finally, Chapter 7 concludes this thesis with a summary of the provided task

management lifecycle concepts and an outlook on future work.
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2
Fundamentals

This chapter presents the essential fundamentals this thesis is based on and explains

the frequently used terminology. Section 2.1 introduces business processes whereas

Section 2.2 discusses KiBPs to highlight the differences between these process types.

Subsequently, the proCollab research project is described in Section 2.3, followed by

the discussion of change operations in Section 2.4. Finally, Section 2.5 concludes this

chapter with the introduction of process mining.

2.1 Business Processes

While there are many definitions for the term business process, this thesis relies on the

one provided in [33] defining a business process as follows:
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2 Fundamentals

Definition 2.1. A business process consists of a set of activities that are performed

in coordination in an organizational and technical environment. These activities jointly

realize a business goal. Each business process is enacted by a single organization, but

it may interact with business processes performed by other organizations.

Furthermore, the term business process management system (BPMS) is defined in [33]

as follows:

Definition 2.2. A business process management system is a generic software sys-

tem that is driven by explicit process representations to coordinate the enactment of

business processes.

In order to improve the management and the support of the various business processes

in a company, a Business Process Management System (BPMS) can help by making

typical business processes available as process templates stored in a process repository.

Initially, a process must be analyzed to define an appropriate process template, which is

a composition of activities, events, and decisions. Once a process template is specified,

future occurences of this business process can be assisted by the BPMS generating

corresponding process instances based on the template. Since the BPMS is now aware

of the activities to be executed, their order and the assigned users, it is able to support

the business processes accordingly. Thereby, a BPMS may reduce time delays, costs,

and error rates.

Figure 2.1 shows an example for a business process using the Business Process Model

and Notation (BPMN) notation [6]. The process model depicts how a typical order

process in a company may be defined and executed. Triggered by the receipt of an order,

it is checked whether all ordered goods are in stock. If the listed goods are not available

in total, the missing goods have to be reordered before the process can proceed. For

the other case that all goods are in stock, no further action is required. Both cases are

then joined and followed by the activities for sending the invoice and shipping the goods,

which may be executed in parallel. Finally, the process is concluded after the receipt of

the payment.

8



2.2 Knowledge-intensive Business Processes

Order Missing 
Goods from 

Supplier
Send Invoice

Ship Goods

Check availability
of ordered goods

All goods in stock

Some goods 
are missing

Receive Order

Receive Payment

Figure 2.1: An Order Process in BPMN

2.2 Knowledge-intensive Business Processes

This thesis uses the following definition of the term knowledge-intensive business pro-

cess (KiBP) provided in [24].

Definition 2.3. Knowledge-intensive processes (KiBPs) are processes whose conduct

and execution are heavily dependent on knowledge workers performing various inter-

connected knowledge intensive decision making tasks. KiBPs are genuinely knowl-

edge, information and data centric and require substantial flexibility at design and run

time.

While extensive research has been done to provide support for business processes

through BPMSs, there is still a lack of comparable assistance for KiBPs. This is due

to the different characteristics of standard business processes and KiBPs [14]. In

particular, KiBPs are characterized as non-predictable, emergent, goal-oriented, and

knowledge-creating. Traditional business processes comprise mainly routine work (e.g.

production processes) that can be standardized in a process template by a domain

expert. Therefore, it is usually well predictable which activities have to be done as

well as their order. By contrast, KiBPs are conducted by knowledge workers jointly

utilizing their skills and expertise. In general, a high degree of uncertainty is involved in

these processes. This fact generates a need for continuous adjustment of the process,

due to the alternating planning and work phases. Standard business processes also

require flexibility at run time. However, this is rather the case for exceptional situations

requiring deviations from the prescribed process model. Furthermore, KiBPs can not be
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2 Fundamentals

characterized through a fixed outcome, but rather through a common goal. This common

goal is typically further divided into smaller, more manageable sub-goals (also called

milestones) by the involved knowledge workers, ultimately leading to the fulfillment of the

main goal. To achieve their next goals, knowledge workers have to define the next tasks

to be performed. This means that KiBPs are emergent, because knowledge workers

have to continuously evaluate the current state of the process to choose those activities

bringing them closer to their common (sub-)goal. Another important aspect of KiBPs

is collaboration between knowledge workers. Usually there are multiple knowledge

workers, potentially from different fields, participating in a KiBP. They work together and

communicate with each other to reach their common goal effectively. Another contrast

to standard business processes is that KiBPs are knowledge creating, as the involved

knowledge workers gain more experience during the course of the process. Examples

for KiBPs are conducting research, patient treatment processes in hospitals, and criminal

investigations.

2.3 proCollab

In the following, the proCollab project and its prototype are introduced briefly in Sec-

tion 2.3.1. Subsequently, the KiBP lifecycle model employed in the proCollab project

is explained in Section 2.3.2 and Section 2.3.3 concludes with the main entities of

proCollab.

2.3.1 proCollab Project

The proCollab research project at Ulm University aims at developing a holistical support

for collaborative knowledge workers and their KiBPs. Therefore, the proCollab approach

proposes the systematic task management support in the scope of KiBPs. Task lists are

artifacts frequently used by knowledge workers to keep track of their progress. Common

examples of task lists are to-do lists, which are used to plan work that needs to be done

in future, and checklists, which are used in a retrospective manner to evaluate work

results. Obviously, paper based task lists lead to media breaks and their availability is

10



2.3 proCollab

limited. In particular, only one person may access a task list at one time. Further, if

there are multiple versions for different people working on the same task list, there are

consistency and coordination problems. To address this problem, proCollab supports

digital task lists as an integral part of a KiBP and asserts that all involved knowledge

workers may access the current state of their task lists at any time. Adapting to the

goal-oriented nature of KiBPs, proCollab enables users to specify the context of the

KiBP and the associated task lists to achieve this goal.

The proCollab approach has been implemented in a prototype – the proCollab prototype.

At the core of the prototype is the server component managing and storing the system’s

data (e.g. processes, task lists, and users). Additionally, the proCollab prototype features

mobile clients for smartphones and tablets providing a maximum of flexibility and a web

application, which administrators can manage user accounts and task list templates with.

2.3.2 proCollab Lifecycle

The proCollab approach employs a lifecycle model for systematically supporting KiBPs

that consists of four different phases as shown in Figure 2.2 [14]. The single phases of

this lifecycle are described in the following.

Figure 2.2: The KiBP Lifecycle Model employed by proCollab [14]

11
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Orientation Phase

Starting with the Orientation Phase, the context of the collaboration is defined, including

the identification of required resources, both human and informational as well as the

type of collaboration. The result of this phase is based on interviews with the involved

knowledge workers, literature on the subject and past collaborations of the same kind.

Template Design Phase

In the Template Design Phase, the findings of the previous phase are used to define

collaboration templates. Each of these templates may contain a group of tasks and

feature a common goal for the participating knowledge workers. Since the main purpose

for creating templates is to enable their reuse, their design should be generic to ensure

their suitability for similar collaborations.

Collaboration Run Time Phase

In the Collaboration Run Time Phase a template is instantiated and, if necessary, ad-

justed for the specific project or case. While working on their tasks to achieve their

common goal, knowledge workers may also access the information of past collaborations

based on the same template – so called collaboration records. This way, they can benefit

from the experience stored in the records of finalized instances.

Records Evaluation Phase

The lifecycle model’s final phase – the Records Evaluation Phase – comprises the anal-

ysis of collaboration records. To provide knowledge workers with better templates in

future, existing collaboration templates should be optimized in respect to the records.

For example, an improved template should not contain any tasks that remained unused

or that were deleted. Instead, an improved template should incorporate tasks that were

not included in the template, but have been added frequently at collaboration run time.

Hence, the Records Evaluation Phase provides a feedback loop to the Collaboration Run

Time Phase through controlled evolution of existing templates for future collaborations.

2.3.3 proCollab Entities

To directly support the KiBP lifecycle, the proCollab meta model consists of processes,

task trees, and tasks (from top to bottom). For every entity in the meta model, there are

12



2.3 proCollab

templates enabling the reuse of existing components, instances allowing for the usage

at run time, and records archiving completed instances.

The entities are shown in Figure 2.3 and defined in the following.

Process 
Template

Task Tree 
Template Task Template

Process 
Instance

Task Tree 
Instance Task Instance

Process 
Record

Task Tree 
Record Task Record

Figure 2.3: Overview of the proCollab Entities

In the following, the templates of processes, task trees and tasks are defined.

Definition 2.4. A Process Template (PT) contains the context information for a cer-

tain type of collaboration. It includes the goal of the collaboration, the roles of involved

knowledge workers, and corresponding task tree templates. Once a PT has been de-

veloped, knowledge workers, who are planning to start a project or a case, can search

for this template and instantiate it to get started quickly.

Definition 2.5. A Task Tree Template (TTT) contains a set of task templates and sub-

ordinated TTTs. It can be used for prospective planning as to-do list (i.e. tasks that

have to be done) or retrospective evaluations as checklist (i.e. to evaluate work re-

sults). TTTs contained in a PT are automatically instantiated as soon as the PT is

instantiated. Alternatively, a TTT can be instantiated in the context of an existing Pro-

cess Instance (PI).

Definition 2.6. A Task Template (TT) contains information about the task’s name, a

detailed description, the role of the knowledge worker performing it, and the expected

13
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duration. A TT also may be part of multiple TTTs leading to the fact that an update on

a TT will automatically affect all linked TTTs.

Subsequently, the instances of processes, task trees and tasks are defined.

Definition 2.7. A Process Instance (PI) usually refers to a certain project or case

and is either based on a PT or created as an individual instance. It contains a list

of all involved knowledge workers and their roles as well as the associated Task Tree

Instances (TTIs).

Definition 2.8. A Task Tree Instance (TTI) can be created individually or instantiated

from an existing TTT. Every TTI consists of a set of entries that are either subordinated

TTIs or Task Instances (TIs). The TTI also contains additional information about its

creator, the involved knowledge workers and the PI it belongs to. For every TTI, an

execution log and a change log are maintained. While the execution log covers all state

transitions that occur until the work on this instance is finished, the change log contains

all change operations applied to this instance.

Definition 2.9. A Task Instance (TI) belongs to a (parent) TTI and may either be in-

stantiated from a TT or be individually defined from scratch. It also has an execution

log documenting all state transitions and a change log covering all applied change op-

erations.

Finally, the records of processes, task trees and tasks are defined.

Definition 2.10. A Process Record (PR) contains a completed PI. It contains its own

execution and change log and the logs of all task tree records belonging to this process.

Definition 2.11. A Task Tree Record (TTR) contains a completed TTI along with the

respective execution and change logs.

Definition 2.12. A Task Record (TR) refers to a completed TI and includes the exe-

cution and change log of this instance. The change log in particular lists all updates

(e.g. change of the description or asssignment to another person) performed on the

respective completed TI.

14



2.4 Change Operations

Since a task tree is a data structure to represent task lists like checklists and to-do lists,

Figure 2.4 shows two equivalent notations of the same task list. While the task tree

representation highlights the structure of the underlying list, the more intuitive task list

representation, which is common for knowledge workers in practice, will be used to

illustrate the examples in the following.

Task Tree

Root

A B C

B1 B2 B3

Task List

Task A
Task B

Task B1

Task B2

Task B3

Task C

Figure 2.4: Equivalent Task Tree and Task List Examples

2.4 Change Operations

Process models prescribe the order of activities, as they are expected to be executed,

without taking exceptional situations into account. Therefore, a BPMS must allow for

flexible changes to process instances at run time. Naturally, KiBPs need even more

flexibility at run time than standard business processes, due to the alternating planning

and work phases in KiBPs. All of the applied changes should be recorded in the

instance’s change log, as a valuable basis for a future analysis and optimization. There

are different types of change operations, ranging from simple changes requiring just one

action to more complex high-level changes [32]. The latter can be composed of multiple

simple change operations, however. The fundamental change operations for TTIs, which

will be taken into account closely, are listed in the following:
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• Insert a TI or TTI at a given position

• Delete a certain TI or TTI

• Update a certain TI (e.g. modify its description)

In contrast to the former two change operations, it is important to emphasize that the

update operation does not change the structure of the TTI.

To increase the usability and the effectiveness of the approach, knowledge workers

should be enabled to apply more complex high-level change operations to TTIs. However,

it is notable that high-level changes can be expressed as a sequence of basic change

operations leading to the same result. The following list contains relevant high-level

change operations for TTIs:

• Move a TI or TTI to a different position

• Replace a TI or TTI with another TI or TTI

• Swap the positions of two TIs or TTIs

The example shown in Figure 2.5 illustrates an explicit (a) and an implicit move (b)

operation leading to the same result. On the left side, the move operation is directly

applied to place "Task D" right below "Task A". On the right side, we first delete "Task

D" from the TTI and then insert it below "Task A" with another change operation. As

depicted at the bottom of Figure 2.5, the resulting TTI looks exactly the same for both

variants.
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Task List

Task A
Task B

Task B1

Task B2

Task B3

Task C

Task D

Task E

Task List

Task A
Task B

Task B1

Task B2

Task B3

Task C

Task D

Task E

Task D

Task List

Task A

Task B

Task B1

Task B2

Task B3

Task C

Task E

Task D

Change Op 1: (DELETE, Task D)

Change Op 2: (INSERT, Task D, AFTER Task A)

Change Op 1: (MOVE, Task D, AFTER Task A)

a) b)

Figure 2.5: Task List Example with Change Log
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2.5 Process Mining

Process mining comprises various techniques to gain insights from event logs [26]. Most

information systems, including BPMSs, create such log files at run time that may serve

as a foundation to apply process mining algorithms. The minimum information, which

an event log entry must provide, is a reference to the respective process instance, the

name of the executed activity, and a timestamp. Additionally, it is useful to store the

originator (i.e. the person who triggered this event) of the event and the state of the

activity. Based on this information in an event log, it is possible to reconstruct the order

of executed activities. Therefore, events are grouped together for every process instance

and sorted by their timestamps. Furthermore, the duration of each referenced activity

can be computed by calculating the difference between an activity’s begin and end

timestamp.

Different process mining approaches can be categorized by the goal they pursue. One

of the different goals of process mining is called process discovery. Its focus is to mine

a process model from a given event log. In cases where a process model can not be

defined easily, this technique can be leveraged to automatically derive one. Another

goal is conformance checking, which detects deviations between an existing process

model and the recorded behavior in the event log. Basically, this is a comparison

between the process as-is (event log) and the process how it is supposed to be running

(process model). Apart from this, there are several other aspects that can be investigated

by applying process mining techniques, e.g., identifying bottlenecks in a process. By

fixing such bottlenecks the average duration of a process instance can be significantly

decreased.

2.5.1 Change Mining

While process mining extracts information from execution logs, change mining utilizes

process mining algorithms to optimize process models based on change logs [8]. Just like

execution logs, change logs record events that are related to certain process instances.

Change log information includes the type of change operation (e.g. insert or delete), the
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subject of the change operation (i.e. a process activity) and, optionally, the location of

the change operation in the process instance. The latter is optional as some operations,

like "delete”, do not require this necessarily. Additionally, the originator of the change

operation and the timestamp are included in the change log. The latter is used to

reconstruct the order in which the different change operations were applied to the

process instance.

In the same way as with process discovery, a change process can be mined using

similar process mining algorithms. The change process illustrates the applied change

operations, their order, and their frequency. Based on this change process, different

change process variants are discovered. By taking into account the frequency of change

operations, it is possible to determine sequences of frequently applied change operations

in the mined change process. To optimize a process model, the most frequent changes

are applied to the analyzed process model in the same order as they have been observed

in the change process. Furthermore, a process model can be adjusted with identified

changes to generate an additional process model (i.e. a variant of the analyzed process

model) that is more suitable for a certain set of process instances.

2.5.2 Causal Nets

There is a huge variety of process model notations that can be used to represent the

process mining results like classic Petri nets [17], Workflow nets [25], Event-driven

Process Chains (EPCs) [22] or BPMN [16]. A particularly interesting notation to capture

observed behavior in an analyzed event log are Causal nets (C-nets) [27]. They were

specifically designed to be well suited for the needs of process mining techniques. Like

many other process model notations, a C-net is a graph structure where each node

stands for an activity and edges are used to connect them with each other. Instead of

token-based semantics, the control flow is determined by the input and output bindings

of each node. Each binding contains an arbitrary amount of node sets and every such

set is an alternative path (i.e. the XOR semantics). A node is activated as soon as one of

its input bindings is fulfilled. This means that all of the bound nodes have been executed

successfully before this node. Following the execution of a node, an output binding is
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chosen and all of its bound nodes have to be visited in the later process. More precisely,

every node listed in a selected output binding must be visited before executing the end

node.

The example C-net in Figure 2.6 illustrates the semantics. For every node, the input

bindings are marked with dots at the incoming edges and bindings spanning multiple

nodes are connected through an additional arc. Likewise, the output bindings are

shown at the outgoing edges of each node. Initially, only the start node is activated

and succeeded by either A and B, B and C or A, B and C – this is represented by the

three corresponding output bindings. Activity B (highlighted in red) has only one input

binding (blue dot) referring to the start node. That means, B can be executed right after

the start node and is then followed according to its three output bindings by either just

D (yellow dot), just E (red dot), or D and E (green connected dots). Note that this is

an example of a C-net employing the OR semantics. The output bindings represent

the logical expression of D OR E, in contrast to D XOR E which would exclude the

alternative of choosing both elements together. The fact that the C-net is able to use the

OR semantics is a very useful aspect for process mining applications as it significantly

increases the expressiveness of this notation.

Start

A

B

C

D

E

End

XOR 
Split

XOR Join

AND 
Split

AND Join

OR Split

OR Join

Figure 2.6: A C-net example
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3
Optimizing Task Tree Templates

with Change Mining

3.1 Problem Statement

Following the KiBP lifecyle (cf. Section 2.3.2), a certain TTT is usually created as the

result of the orientation and template design phases. Then, this TTT is instantiated

multiple times in the shape of TTIs for appropriate KiBPs during the collaboration run

time phase. At run time, change operations (cf. Section 2.4) may be applied to a TTI

for various reasons. Among these reasons are that a TTT is too generic (i.e. it does

not contain tasks, needed for the TTI at run time), the tasks are not ordered in the way

knowledge workers require them, or the TTT contains tasks that are not necessary and,

therefore, need to be removed. This problem is difficult to avoid since the characteristics

of KiBPs (i.e. uncertainty, emergence) make it hard to model an appropriate TTT in
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advance. But if knowledge workers have to perform redundant tasks by always adjusting

a TTI shortly after the instantiation in similar ways, they could be significantly relieved

if the most frequent changes were incorporated into the existing TTT. Ideally, such an

optimization of TTTs should be performed automatically and continuously to assure

that knowledge workers are always provided with the most adequate templates. This

also takes the knowledge-creating trait of KiBPs into account, in the sense that the

knowledge gained through TTRs is reused to improve the corresponding TTT (i.e. the

adjustments made to the template don’t have to be done over and over again).

In order to provide such automatic optimizations, proCollab provides entities supporting

the KiBP lifecycle. For both task trees and tasks, proCollab must be able to instantiate

templates as well as to archive completed instances as records. Furthermore, execution

and change logs need to be maintained as they can be leveraged for the analysis and

optimization of TTTs.

3.2 Illustrative Example

To illustrate the optimization approach proposed in the remainder of this chapter, an

example is used and shown in Figure 3.1. The TTT to be optimized is depicted on the

left side of the figure and contains a total of ten tasks enumerated from A to J. Based

on this TTT are a total of 100 TTIs and the change logs belonging to TTRs that have

been applied to these TTIs are shown on the right side of the figure. While 40 TTIs

remained unchanged, the other 60 TTIs have been adjusted according to the given

change logs. In this example each of the four change logs is contained in 15 TTIs. Note

that in practical scenarios change logs usually will be more diverse. However, changes

with low frequency values won’t be part of the optimized TTT and, hence, their exclusion

in this example does not limit the applicability of the proposed optimization approach in

general.
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Task Tree Instance 1

Task A
Task B
Task C
Task D
Task E
Task F
Task G
Task H
Task I
Task J

Change Log 1 (15 times):

Change Op 1: (DELETE, Task J)

Change Op 3: (INSERT, Task X, AFTER Task G)
Change Op 4: (INSERT, Task Y, AFTER Task E)

Change Op 5: (INSERT, Task Z, AFTER Task H)
Change Op 6: (DELETE, Task E)

Change Op 2: (DELETE, Task A)

Change Op 1: (DELETE, Task J)

Change Op 3: (INSERT, Task X, AFTER Task G)
Change Op 4: (INSERT, Task Y, AFTER Task E)

Change Op 5: (INSERT, Task Z, AFTER Task H)
Change Op 6: (DELETE, Task F)

Change Op 2: (DELETE, Task B)

Change Log 2 (15 times):

Change Op 1: (DELETE, Task J)

Change Op 3: (INSERT, Task X, AFTER Task G)
Change Op 4: (INSERT, Task Y, AFTER Task E)

Change Op 5: (INSERT, Task Z, AFTER Task H)
Change Op 6: (DELETE, Task G)

Change Op 2: (DELETE, Task C)

Change Log 3 (15 times):

Change Op 1: (DELETE, Task J)

Change Op 3: (INSERT, Task X, AFTER Task G)
Change Op 4: (INSERT, Task Y, AFTER Task E)

Change Op 5: (INSERT, Task Z, AFTER Task H)
Change Op 6: (DELETE, Task H)

Change Op 2: (DELETE, Task D)

Change Log 4 (15 times):

Task Tree Template X

Task A
Task B
Task C
Task D
Task E
Task F
Task G
Task H
Task I
Task J

Instantiation

100 Task Tree Instances derived 
from Task Tree Template X

Figure 3.1: Illustrative Example
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3.3 Optimization Approach

The presented optimization approach consists of three different phases and, thereby,

automatically optimizes the given TTT. First, the preparation phase begins with prepro-

cessing change logs so that a mining algorithm can be applied to them later on. The

analysis phase utilizes a process mining algorithm to mine the change process from the

given logs. Based on the change process, the different variants are identified and then

leveraged to determine sequences of the most frequent change operations. Finally, the

optimization phase adjusts the TTT by incorporating these changes into it.

An alternative to the proposed change mining approach could be the optimization of

TTTs based on the direct comparison of completed TTIs. However, this approach would

not allow for a controlled evolution by optimizing TTTs as the evaluation of the change

logs does. By utilizing change mining, the change operations applied by knowledge

workers and the order of these change operations are explicitly taken into account, while

the comparison of TTIs is solely based on the final structure of these TTIs. Hence,

intermediate results cannot be considered by an approach based on the comparison of

TTIs.

3.3.1 Preparations

The first step before the actual analysis can be started is to select the TTRs based on the

TTT that should be optimized. For a general optimization of the template, all available

TTRs that are related to this TTT can be used. However, the input for the analysis can

be limited to a subset of these TTRs to specifically improve the TTT for a certain kind of

KiBPs.

Another decision regarding the selection of input data must be made regarding the

amount of change log entries to consider. While it is possible to simply perform the

analysis on the entire change logs, it may be more reasonable to use only the beginning

of the change logs up to a specified time span instead. This would limit the optimization

to changes applied shortly after the instantiation of the TTIs, which most likely affect

parts of the respective TTT that should be adjusted accordingly.

24



3.3 Optimization Approach

Obviously, change logs may contain changes that have been done by mistake and were

then undone again. To avoid the inclusion of such changes in the analysis, change logs

should be cleaned up by removing these changes from the logs.

In this context, note that only insert, delete, and update operations are considered in the

following. This does not limit the applicability of the proposed approach as outlined in

Section 2.4. Any high-level change operation can be expressed as a sequence of these

basic operations. Note that update operations correspond to the respective TT of a TI

and not to the TTT containing the TT. Consequently, the optimization of TTs is achieved

through the evaluation of change logs of TRs. To increase the comparability of update

operations, changes adjusting multiple attributes of a TI at once, should be decomposed

into updates of single attributes of a TI.

As a prerequisite for the analysis it is further required to establish a matching between

the recorded change operations in the change logs of different TTRs. While removal and

update operations can be well compared, the comparison of inserted tasks is particularly

challenging. Since insert operations add new TIs to a TTI, a similarity function is

necessary to determine which of them ultimately represent the same task. A basic

approach towards this problem could use techniques to compare the text descriptions of

tasks and match the ones with the highest similarity score. In this context, activity label

matching approaches [11] used for business process model matching can be leveraged.

For instance, the string edit distance is a simple measure to determine the likeness of

two strings. However, the string edit distance solely compares the whole text descriptions

syntactically and, thereby, limits the quality of the matching. The comparison can be

significantly improved by decomposing the text description into a bag-of-words [11] first.

Instead of comparing the whole strings, the matching score should be calculated as the

number of successfully matched words divided by the total number of words contained

in the larger bag-of-words. This way, descriptions using the same terms in a different

order get more appropriate similarity scores.

To further enhance the quality of the matching more advanced text analysis techniques

can be utilized. For example synonyms in text descriptions could be taken into account

by querying a lexical database like WordNet [13]. Additionally, other information than the

text description could be included in the comparison. Particularly the TTs that TIs were
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derived from can be compared, if this information is given. Other comparable information

includes the position of the inserted task in the TTIs, the knowledge worker performing

the change operation and other changes that have been applied before and after this

change.

Regarding the logged change operations, it is notable that change operations are not

commutative in general. Therefore, the order in which changes have been applied must

be considered when analyzing change logs and, subsequently, optimizing the TTT.

3.3.2 Analysis

During the analysis phase, the change logs are utilized to determine the most frequent

changes. This is accomplished based on the following steps, which are explained more

detailed in the remainder of this section.

1. Use change mining to determine the change process of the given logs

2. Determine the different variants in the change process

3. Identify the most frequent changes in these variants

To illustrate the analysis phase, Figure 3.2 shows the single steps, which are part of the

analysis.

Change Mining

Different Variants

Most frequent Changes

Figure 3.2: Steps of the Analysis Phase
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Change Mining

Based on the change mining approach proposed in [8], this thesis uses the multi-phase

mining algorithm ([30], [31]) to mine change processes from log files containing the

history of change operations for the selected TTRs. The multi-phase mining algorithm

takes the log file as input and creates a C-net representing the mined change process.

This C-net is built in a two step approach by first creating C-nets for every single trace in

the change log (i.e. for every TTR) and then aggregating all of them into one C-net.

Every node in the final C-net represents a change operation found in the log and is

annotated with its frequency. In addition to creating the C-net, the miner also fills a map

structure that contains the sequences of preceding changes for every change operation.

This is needed later to filter out invalid variants as the change process generalizes the

behavior observed in the log [28] (i.e. it can allow for traces that were not included in the

log).

The resulting C-net for the illustrative example introduced in Section 4.2 is shown in

Figure 3.3. The four different change logs are each valid paths through the mined C-net

and every change operation is annotated with its respective frequency value. In this

context note that there also were 40 TTIs with no applied changes (cf. Section 3.2)

that are not depicted in Figure 3.3. However, they are considered when the absolute

frequencies are converted to relative frequency values.

Furthermore, the final C-net is an example for underfitting as it allows for a total of 16

valid traces, while the change logs only contain four different traces. Therefore, the map

of the preceding partial traces created during the mining process allows to identify the

valid change process variants later. Since the C-net provides no means to remember

the decisions made on previous XOR splits, every choice after "Insert Task Z" could be

made although only one of them is valid depending on the choice made after "Delete

Task J".
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Start Delete 
Task J

Delete 
Task A

Delete 
Task B

Delete 
Task C

Delete 
Task D

Insert 
Task X

Insert 
Task Y

Insert 
Task Z

Delete 
Task E

Delete 
Task F

Delete 
Task G

Delete 
Task H

End

60/100

15/100

15/100

15/100

15/100

60/100 60/100 60/100

15/100

15/100

15/100

15/100

Figure 3.3: Change Process of the Illustrative Example

Determining Variants

The set of change process variants can be determined by traversing the mined C-net

in forward direction (i.e. from the start node to the end node). All output bindings of

a C-net node represent alternative paths (i.e. exclusive choices) and, therefore, must

be considered as branches to additional variants. Beginning with the start node, a new

variant is created and stored in a queue for every output binding. The nodes bound

by these output bindings have to be inspected in the following. During the iteration

over all variants in the queue, a node with fulfilled input bindings is determined for

every variant (i.e. the variant’s active node). Then, the output bindings of this active

node are considered, leading to the consideration of additional variants for every output

binding. To avoid the consideration of invalid variants, a check is performed for all active

nodes based on the map to verify that there is a corresponding preceding partial trace

contained in the change logs. If no such trace exists, the variant is discarded. This

process continues until all variants in the queue successfully reached the end node of

the C-net.

Figure 3.4 shows the four variants determined by traversing the C-net depicted in Figure

3.3. As mentioned before, this C-net allows for a total of 16 different paths from the

start to the end node, but the invalid ones were filtered out using the preceding partial

traces map. Since the variants are sequences of change operations, the input and output

bindings are not shown in Figure 3.4.
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Delete 
Task J

Delete 
Task A

Insert 
Task X

Insert 
Task Y

Insert 
Task Z

Delete 
Task E

Variant 1 (Frequency: 15/100)

Delete 
Task J

Delete 
Task B

Insert 
Task X

Insert 
Task Y

Insert 
Task Z

Delete 
Task F

Variant 2 (Frequency: 15/100)

Delete 
Task J

Delete 
Task C

Insert 
Task X

Insert 
Task Y

Insert 
Task Z

Delete 
Task G

Variant 3 (Frequency: 15/100)

Delete 
Task J

Delete 
Task D

Insert 
Task X

Insert 
Task Y

Insert 
Task Z

Delete 
Task H

Variant 4 (Frequency: 15/100)

Figure 3.4: Valid Change Process Variants of the Illustrative Example

Identifying Change Blocks

Once the change process variants have been determined, the analysis continues with

the search for change blocks, i.e. sequences of frequent changes. As a prerequisite,

a map of the most frequent change operations is created, containing all changes with

a frequency value higher than a given threshold (e.g. 50%). To generate this map, the

frequency values of all change process variants containing a particular change operation

are summed up, accordingly.

In a similar way, the change blocks are identified by traversing all variants. For every

encountered change operation, a check is performed to verify whether the change

operation is one of the most frequent changes or not. Every time such a change

operation is found, the algorithm builds a change block of maximum length, beginning

at the position of the currently examined change operation. This is accomplished by

including the following change operations if their frequency values are high enough.

Once the end of a change block has been reached, the change block is stored or its

frequency is updated in case the same change block was already found in other variants

before.
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Figure 3.5 shows the identified change blocks for the variants of Figure 3.4. Assuming a

minimum occurence of 50% as a threshold for change blocks, "Delete Task J" is the first

change block as all of the four variants start with this change operation. Since all variants

have a different change operation following on "Delete Task J", this change block cannot

be extended. The second change block consists of the three insert operations contained

in all four change process variants in the same order.

Delete 
Task J

Change Block 1 (Frequency: 60/100)

Change Block 2 (Frequency: 60/100)

Insert 
Task X

Insert 
Task Y

Insert 
Task Z

Figure 3.5: Identified Change Blocks of the Illustrative Example

3.3.3 Task Tree Template Optimization

In the TTT optimization phase, the results of the analysis phase are used to improve a

given TTT. Depending on the goal of the analysis and the provided TTRs, the TTT is

either optimized to replace its current version or to introduce one or several specialized

TTTs for certain KiBPs. Another aspect influencing the application of change blocks

is the type of task list a TTT represents. Since checklists are very detailed and highly

structured, fewer changes might be applied to them. By contrast TTTs for to-do lists are

rather coarse-grained as it is a normal process that more detailed tasks are added during

the course of the action. Therefore, more change operations may be recommended and

applied to a TTT for to-do lists. Instead of automatically modifying and introducing TTTs,

proCollab also may provide recommendations based on the identified change blocks

and let a knowledge worker decide finally.

Note that the application of insert operations to a TTT requires the introduction of new

TTs for the inserted TIs. While the necessary information to create an appropriate TT
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may be partly inferred from the TIs, this likely needs to be checked by a knowledge

worker as well.

Figure 3.6 shows the optimization of the example TTT depicted on the left side. The

previously identified change blocks have a frequency value of 60%. Hence, the original

TTT is adjusted by applying the change blocks in the same order as they have been

applied to the variants. On the right side of the figure, the adjusted TTT is depicted.

Accordingly, "Task J" was removed from the TTT and the three inserted tasks are

highlighted in red.

Task Tree Template

Task A
Task B
Task C
Task D
Task E
Task F
Task G
Task H
Task I
Task J

Original Task Tree Template

Delete 
Task J

Change Block 1 (Frequency: 60/100)

Change Block 2 (Frequency: 60/100)

Insert 
Task X

Insert 
Task Y

Insert 
Task Z

Application of Change Blocks
Task Tree Template

Task A
Task B
Task C
Task D
Task E

Task F
Task G
Task X
Task H
Task Z

Optimized Task Tree Template

Task I

Task Y

Figure 3.6: Task Tree Template Optimization

3.3.4 Limitations

The presented change mining approach solely relies on change logs of TTRs to optimize

TTTs. Naturally, there are other aspects that should also be taken into account when

optimizing TTTs.

For instance, tasks should be ordered in the way they are actually being worked on.

If this is not the case for a TTT, then tasks should be reordered accordingly. For this

purpose, the execution logs of TTRs can be leveraged as they record the beginning

of work for all contained tasks. With this information at hand, the average position of

every TI can be calculated and used to reorder the respective TTT. Since a complete

reordering of all tasks in a TTT might confuse knowledge workers more than it actually

31



3 Optimizing Task Tree Templates with Change Mining

helps, threshold values can be used to restrict the number of repositioned tasks to

an absolute number. Alternatively, an approach that determines whether tasks were

executed earlier or later than their current position in the TTT suggests can be employed.

Tasks occuring earlier than their current position in the TTT could be moved one position

up in the TTT and vice versa for later occuring tasks.

3.4 Summary

This chapter presents an approach based on change mining to optimize TTTs in three

phases. The preparation phase comprises the selection of appropriate TTRs for the

analysis and preparing the change logs for the analysis. During the analysis phase, the

change logs are leveraged to determine the change process through the application of

a multi-phase mining algorithm. Based on this change process, the different change

process variants are identified and, in turn, used to determine sequences of the most fre-

quent change operations. Finally, the optimization phase incorporates these sequences

of change operations into the TTT in the same order as they have been applied to the

change process variants. When knowledge workers instantiate the optimized TTT in

future, they don’t have to apply these most frequent changes again as the TTT has been

automatically adjusted accordingly.
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4
Deriving Task Tree Templates

through Applying Cluster Mining

4.1 Problem Statement

While Chapter 3 is showing how existing TTTs can be optimized, this chapter presents

an approach to automatically derive a common TTT for a group of comparable completed

TTIs. A TTT may be manually created by a knowledge worker to enable the reuse of

existing knowledge, but the characteristics of KiBPs make it rather difficult to specify

an appropriate TTT beforehand. Alternatively, a TTT can be derived automatically from

comparable TTRs by exploiting the knowledge-creating nature of KiBPs. Since TTRs

represent successfully completed TTIs, the inferred template is a promising candidate to

be used in KiBPs of the same kind in future. Additionally, deriving TTTs automatically
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has the advantage that TTTs are created based on facts (i.e. the successfully completed

TTIs comprised in TTRs) instead of knowledge workers’ expectations.

4.2 Preparations

Since the given input is a set of TTRs the first necessary step is to mine the TTI variants

represented by these TTRs.

Some of the techniques introduced in Chapter 3 can be reused to achieve this. Before

the application of a mining algorithm to determine the TTI variants is possible, a matching

between the TIs in the TTIs must be established. This is necessary as the TTIs have

their own TIs and, hence, it is unknown which of these TIs correspond to each other.

Otherwise, it would be impossible to determine the frequencies of the same tasks across

all TTIs. The matching of TIs is simple if TIs in different TTIs have been based on the

same TTs. However, this information cannot be taken for granted and, therefore, a

technique to establish a matching between the TIs of different TTIs is required. For

example, a mapping can be accomplished using activity label matching approaches

as stated in Section 3.3.1. Furthermore, other known information (e.g., the role of the

assigned person of a task, the position of the task, etc.) of TIs can be leveraged to

create an appropriate matching.

Once the TIs have been compared and matched successfully, the multi-phase mining

algorithm can be applied to the execution logs of the TTRs. Then, the TTI variants can

be determined by traversing the resulting C-net as shown in Section 3.3.2.

4.3 Illustrative Example

The example TTI variants depicted in Figure 4.1 are used to illustrate the cluster mining

approach in the following. There are a total of four different TTI variants annotated

with their frequency values. The red box below the TTI variants lists the constraints

common to all variants and can be used to verify the result later on. For example,

"Task A" precedes "Task D" in all four TTI variants and, therefore, a common TTT for
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these variants should also place "Task A" as a predecessor of "Task D". The illustrative

example also contains hierarchical constraints that are not explicitly listed as they are

rather obvious (e.g. "Task D3" is a subtask of "Task D" in all variants).

TTI Variant 1

Task A
Task D

Task D3
Task D3.2
Task D3.4

Task D2
Task D5

Task B
Task E

Task E3
Task C
Task H

TTI Variant 3

Task A

Task D

Task D3.3

Task B
Task E

Task G

Task D1
Task D4
Task D3

Task D3.1
Task D3.2
Task D3.4

Task D5

Task E1
Task E3

Task H

TTI Variant 2

Task A
Task D

Task B
Task E

Task D2
Task D1
Task D3

Task D3.1
Task D3.2
Task D3.4

Task D5

Task E2
Task E3

Task H

Task D4

Task C

TTI Variant 4

Task A
Task D

Task B
Task E

Task D2
Task D4
Task D3

Task D3.2
Task D3.1
Task D3.4

Task D5

Task E1
Task E2

Task H

Task D1

Task G

Frequency: 20% Frequency: 40% Frequency: 15% Frequency: 25%

Constraints (common to all TTI variants):
Task A       -> Task D
Task D       -> Task B
Task B       -> Task E
Task E       -> Task H
Task D3     -> Task D5
Task D3.2  -> Task D3.4

Figure 4.1: Example Variants of Task Tree Instances

4.4 Cluster Mining

The cluster mining algorithm described in the following is based on the MinADEPT

algorithm [2] for business process variants and has been adapted to support the dif-

ferent characteristics of TTI variants. Basically the cluster mining approach relies on

determining the order relations between all TIs in all TTI variants and iteratively building

blocks of tasks with similar relations to the other tasks. This process continues until all

TIs have been clustered into one block, which is the resulting TTT.

35



4 Deriving Task Tree Templates through Applying Cluster Mining

4.4.1 Analyzing Task Frequencies

The first step towards the creation of a common TTT is the selection of a set of relevant

tasks that are considered in the ensuing clustering process. For this purpose, a threshold

value is defined and only TIs with a frequency value above this threshold will be part of

the TTT.

In the illustrative example this threshold is set to 50%. Figure 4.2 shows that "Task D3.3",

"Task G", and "Task E1" have frequency values below 50%. Therefore, these TIs are

excluded from the cluster mining and the TTT will be limited to the remaining 16 TIs

fulfilling the threshold value.

TTI Variant 1

Task A
Task D

Task D3
Task D3.2
Task D3.4

Task D2
Task D5

Task B
Task E

Task E3
Task C
Task H

TTI Variant 3

Task A

Task D

Task D3.3

Task B
Task E

Task G

Task D1
Task D4
Task D3

Task D3.1
Task D3.2
Task D3.4

Task D5

Task E1
Task E3

Task H

TTI Variant 2

Task A
Task D

Task B
Task E

Task D2
Task D1
Task D3

Task D3.1
Task D3.2
Task D3.4

Task D5

Task E2
Task E3

Task H

Task D4

Task C

TTI Variant 4

Task A
Task D

Task B
Task E

Task D2
Task D4
Task D3

Task D3.2
Task D3.1
Task D3.4

Task D5

Task E1
Task E2

Task H

Task D1

Task G

Frequency: 20% Frequency: 40% Frequency: 15% Frequency: 25%

Filtered Task Instances (with frequency < 50%):
Task D3.3 (Frequency: 15%)
Task G      (Frequency: 40%)
Task E1     (Frequency: 40%)

Figure 4.2: Filtering of infrequent Tasks

4.4.2 Converting Variants to Aggregated Order Matrix

The cluster mining algorithm works on an aggregated order matrix and, hence, the

variants have to be converted to this representation first. Initially, every TTI variant is
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represented by its own order matrix. This order matrix contains the transitive relations

between every possible pair of TIs in a TTI variant. For two TIs A and B, the relation

might be a predecessor/successor relation, i.e. either A is followed by B or vice versa.

Further, two TIs can also be part of a hierarchical relation, i.e. either A is a subtask of B

or vice versa. If none of these relations holds for two TIs, this is explicitly noted as "no

relation". Note that this does not indicate that there is no relation at all between such TIs,

but it definitely is none of the previously stated ones. Table 4.1 summarizes the relevant

relation types and their encodings in the order matrix.

Relation Code Relation Type

0 No relation between A and B

1 A precedes B

2 A succeeds B

3 A is a parent task of B

4 A is a subtask of B

Table 4.1: Relations used in Order Matrix

To encode a TTI variant in an order matrix, the relations for every TI to all other TIs

have to be analyzed. For the hierarchical relations, this can be done by marking all

(transitive) subordinated TIs of a given TI in the order matrix, accordingly. Similarly, the

superordinated TIs are identified by moving up in the hierarchy of a TI’s parent tasks until

the top-level is reached. The predecessor/successor relations only have to be analyzed

for TIs with the same superordinated TI. The relations to all remaining TIs can be set to

"0" then.

An example of an order matrix is shown in Table 4.2 for TTI variant 1 in Figure 4.1.

This order matrix captures the relations of all TIs in this TTI variant to each other. For

example, "Task E3" is the only subtask of "Task E" and, therefore, it has no relations to

other TIs. Likewise, all top-level tasks (e.g. "Task H") except "Task D" have no relations

to the subtasks of "Task D".
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A B C D D2 D3 D3.2 D3.4 D5 E E3 H

A - 1 1 1 0 0 0 0 0 1 0 1

B 2 - 1 2 0 0 0 0 0 1 0 1

C 2 2 - 2 0 0 0 0 0 2 0 1

D 2 1 1 - 3 3 3 3 3 1 0 1

D2 0 0 0 4 - 2 0 0 1 0 0 0

D3 0 0 0 4 1 - 3 3 1 0 0 0

D3.2 0 0 0 4 0 4 - 1 0 0 0 0

D3.4 0 0 0 4 0 4 2 - 0 0 0 0

D5 0 0 0 4 2 2 0 0 - 0 0 0

E 2 2 1 2 0 0 0 0 0 - 3 1

E3 0 0 0 0 0 0 0 0 0 4 - 0

H 2 2 2 2 0 0 0 0 0 2 0 -

Table 4.2: Order Matrix for Task Tree Instance Variant 1

After all TTI variants have been converted to order matrices, the latter are aggregated

in one combined order matrix representing all variants. This aggregated order matrix

contains in every matrix cell a 5-dimensional vector denoting the relative frequency of

each relation for every pair of TIs in all TTI variants.

To create the aggregated order matrix based on the order matrices of the different TTI

variants, the relations between all pairs of TIs have to be evaluated in terms of their

relative frequencies. For this purpose, the relation for a certain pair of TIs in each order

matrix is weighted with the relative frequency of the respective TTI variant. The weights

of all order relations are then summed up across all TTI variants and the resulting

distribution of the different relations for this pair of TIs is then stored in the aggregated

order matrix.

Table 4.3 shows the order relations between "Task B" and "Task C" for all TTI variants

as they are contained in their corresponding order matrices.
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TTI Variant 1 2 3 4

Variant Frequency 0.2 0.4 0.15 0.25

Order Relation 1 2 0 0

Table 4.3: Order Relations between Tasks B and C in all TTI Variants

The matrix cell for "Task B" and "Task C" in Table 4.4 illustrates the aggregated order

matrix. Since TTI variants 3 and 4 with a combined frequency of 40% do not contain

"Task C", the value for no relation between the two TIs is set to 0.4. In TTI variant 1

(frequency of 20%) "Task B" precedes "Task C" leading to a value of 0.2 for relation type

1. Finally, TTI variant 2 contains "Task B" as successor of "Task C" setting the value of

the successor relation to 0.4 according to the frequency of TTI variant 2.

If these two TIs were clustered together, their order relation would be set to "Task C"

followed by "Task B" as this relation has the highest value with 40%. The relation type 0

has the same value. However, this relation type must be ignored as it is not possible to

cluster TIs together without an order relation between them.

Relation Type 0 1 2 3 4

Frequency 0.4 0.2 0.4 0 0

Table 4.4: Single Matrix Cell of an Aggregated Order Matrix

4.4.3 Determining the Cluster Block

In the next step, the TIs (or blocks of TIs respectively) that should be clustered have

to be selected. The clustering approach for task trees builds cluster blocks from the

bottom to the top, due to the structure of task trees. This way, leaves of the task tree are

clustered first and the top-level tasks are clustered late. The reason for this approach lies

in the fact that if tasks from the top-level were clustered first, it would be impossible to

determine the correct position for a child task of this cluster block. For example, two TIs A
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4 Deriving Task Tree Templates through Applying Cluster Mining

and B are clustered together first as a cluster block containing "Task A" followed by "Task

B". Then, in the next step, "Task C" should be added as a subtask of this cluster block.

Since it is unknown whether "Task C" should be a subtask of "Task A" or a subtask of

"Task B", the correct position for "Task C" in the task tree cannot be determined. In

contrast, it is no problem to add the cluster block consisting of "Task A" and "Task B"

as a subtask of "Task C", since multiple TIs can have the same parent task in a task

tree, but not vice versa. Therefore, TIs are clustered on the lowest level of the task tree

first, making the average block level the main selection criteria for blocks to be clustered.

Initially, the average block level of every TI is determined during the computation of the

aggregated order matrix. The average block level of a TI is the weighted average of the

hierarchical position of this TI in all TTI variants.

In the example shown in Figure 4.1, "Task D" is on the top-level of all TTI variants and,

hence, the average block level of "Task D" is equal to 0. Similarly, the average block

levels of "Task D3" and "Task D3.2" are equal to 1 and 2, respectively. If two TIs are

clustered together, the average block level of the new cluster block will be set to the

average of the current average block levels of the cluster block’s constituting parts.

In case there are multiple candidates for clustering a separation value is used as a

secondary criteria to determine the best candidate. The idea behind the separation value

is to select blocks for clustering which have similar relations to the remaining blocks.

To determine the two blocks to be clustered, the average block level of all block pairs

is computed first. If only one such pair has the highest average block level, this pair is

chosen as cluster block. For multiple such pairs the separation values are computed

and the pair with the highest separation value is selected for clustering.

In the example shown in Figure 4.1 a total of 16 tasks have to be considered, but only the

three children of "Task D3" each have a block level of 2, leading to the highest average

block level. Because "Task D3.2" (transitively) precedes "Task D3.4" is the only task pair

contained in all variants, it should form the first cluster block.
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4.4.4 Determining the Order Relations of the Cluster Block

Once a cluster block has been determined, a decision about the order relation between

the two parts of this new block must be made. Therefore, the relation with the highest

value in the order matrix is selected to connect the two existing blocks. If the relation

type 0 has the maximum frequency value of all order relations, the next best relation

would be chosen alternatively as two blocks cannot be clustered without an order relation

between them.

As for the example in Section 4.4.3, the order relation "Task D3.2" precedes "Task D3.4"

holds true for all TTI variants (i.e. the relative frequency of this relation type is 1.0).

Consequently, the first cluster block contains "Task D3.2" followed by "Task D3.4".

4.4.5 Recomputing Aggregated Order Matrix

Following on the clustering of two cluster blocks, the aggregated order matrix needs

to be recomputed. Since the two selected cluster blocks are now represented as one

cluster block, the matrix shrinks by one dimension. The order relations of the cluster

block to all other cluster blocks have to be updated accordingly. For a change block

consisting of two cluster blocks A and B, the order relations to all other cluster blocks X

are calculated as the average of the order relations between cluster blocks A and X and

between cluster blocks B and X.

4.4.6 Mining Result

The previously described steps from Section 4.4.3 to 4.4.5 are repeated until all tasks

have been clustered together into one cluster block. This final cluster block represents

the common TTT for the given set of TTRs.

Figure 4.3 illustrates the application of the cluster mining algorithm to the TTI variants

shown in Figure 4.2. The intermediate results are highlighted to emphasize the order

in which TIs are grouped together. In the first three iterations, the subordinated TIs of

"Task D3" have been clustered as these TIs had the highest average block level. In the
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4 Deriving Task Tree Templates through Applying Cluster Mining

next four iterations, the TIs D1 to D5 are grouped together and the 8th iteration clustered

the TIs E2 and E3. As supposed for a bottom-up algorithm the subordinated TIs of D

and E were clustered during the 9th and 10th iteration before the TIs on the top-level.

The latter were grouped during the final iterations and the resulting TTT is depicted on

the right side of Figure 4.3.

In this case, the resulting TTT is heavily influenced by TTI variant 2, since this TTI

variant has the highest frequency value with 40%. However, the mined TTT fulfills all

constraints common to all TTI variants and shown at the bottom of Figure 4.1. Therefore,

the automatically derived TTT should be more suitable for future TTIs of the same kind

as the provided TTRs.

Task D3
Task D3.1
Task D3.2
Task D3.4

Cluster Block (3rd iteration)

1
2

3

Task E

Task E2
Task E3

8
10

Cluster Block (10th iteration)

Task A
Task D

11

Task B
Task E

12

Task C

13

Task H 14
15

Cluster Block (15th iteration)

Task Tree Template

Task A
Task D

Task B
Task E

Task D2
Task D1
Task D3

Task D3.1
Task D3.2
Task D3.4

Task D5

Task E2
Task E3

Task H

Task D4

Task C

Task D2
Task D1

Task D3

Task D4

Task D5
4

5 6

7

Cluster Block (9th iteration)

Task D

9

Figure 4.3: Example for Cluster Mining Approach
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4.5 Summary

This chapter proposes a cluster mining approach to derive a common TTT for a set

of related TTRs. First, a matching between the TIs of the different TTRs must be

established. Once the TIs have been matched successfully, the set of TTI variants

represented by the given TTRs must be determined. In the next step, the frequencies of

TIs have to be analyzed to decide which of them are to be included in the TTT. The TTI

variants have to be converted to order matrices first to generate an aggregated order

matrix representing all TTI variants together. In an iterative process, the cluster mining

algorithm builds cluster blocks of TIs with similar order relations to the remaining TIs.

The algorithm terminates as soon as all TIs have been clustered into one cluster block,

ultimately representing the common TTT for the given TTRs.
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5
Providing Task Recommendations

at Run Time

5.1 Problem Statement

Driven by KiBPs’ uncertainty and their emergent nature contrasting to traditional busi-

ness processes, knowledge workers often need to switch between the planning of

upcoming tasks and the actual accomplishment of these tasks at run time. To adequately

support knowledge workers, proCollab should be able to recommend tasks to them

that are likely to be selected next. For this purpose, the current state of a TTI may be

evaluated and compared with TTRs similar to the TTI. Then, recommendations can be

derived by identifying open tasks (i.e. tasks that have not been accomplished yet) in the

TTI that are directly following on the most recently completed task in TTRs. Such task
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recommendations, thereby may provide guidance to knowledge workers at run time and

can help to decrease the necessary time for planning of upcoming tasks.

5.2 Approach

Basically, there are three major challenges induced by the problem statement: initially

identifying a set of TTRs comparable to the given TTI, establishing a matching between

the TIs in these TTRs and the TTI, and, finally, determining appropriate task recommen-

dations. The following Sections 5.2.1–5.2.3 briefly elaborate on the former two issues

and, subsequently, put the focus on an idea for a solution addressing the latter problem.

5.2.1 Selecting relevant Task Tree Records

Before task recommendations can be provided to support knowledge workers at run

time, an appropriate set of TTRs must be selected first. If the TTI in use is based on a

TTT, the analysis will utilize TTRs based on the same TTT. In this case, most tasks in

the TTT and TTRs can be easily matched by taking into account the common TTs the

TIs have been based on.

Otherwise, it is difficult to choose suitable TTRs as input for the analysis. A comparison

with all available TTRs is hardly an option. Hence, other means are required to determine

appropriate TTRs. For example, the information listed in the following can be leveraged

to select such TTRs.

• TTRs associated with the same PT as the examined TTI

• TTRs involving the current user of the examined TTI

Since a PT usually contains multiple TTTs, the set of PTs in the process repository

should be significantly smaller than the amount of TTTs in a task tree repository. Hence,

the first step towards the identification of suitable TTRs should be the determination

of a corresponding PT for the PI of the currently analyzed TTI. This can be done by

leveraging meta information about PTs and the PI. Additionally, it would be useful to

categorize PTs and PIs. Thereby, the effort required to determine an appropriate PT
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for a certain PI could be further reduced. Once a PT has been determined, the TTTs

contained in this PT can be compared with the examined TTI.

In particular, a matching between tasks in the TTTs and the TTI must be established. For

this purpose, techniques from activity label matching for business process models can

be utilized as stated in Section 3.3.1. Then, the TTRs of the TTT with the best similarity

score should be selected to be compared with the TTI.

5.2.2 Scoring the Similarity of TTRs to a TTI

For each TTR found, a matching between the TIs of the TTI and then in the TTR has

to be determined. Obviously, a promising TTR should have an execution log, in which

TIs have been perfomed in a similar order as in the analyzed TTI. Therefore, the score

to calculate the matching quality between a TTR and a TTI should be based on the

comparison of their execution logs. In particular, the following should be considered for

every TI in the examined TTI:

• Is there a corresponding TI in the TTR for each TI in the examined TTI?

• Do the direct predecessor and succesor of a TI in the TTI correspond to a transi-

tive predecessor and successor, respectively, in the TTR?

• Do the direct predecessor and succesor of a TI in the TTI correspond to a direct

predecessor and successor, respectively, in the TTR?

Taking all this information into account, a weighted overall score should be determined

for every TTR that is compared to the TTI. Therefore, an appropriate weight should

be assigned to each of these three components. First, the similarity score for each

component is computed separately. Subsequently, the overall score for the similarity

between the TTI and the TTR is determined by summing up every component’s weighted

similarity score. Once, the similarity score of every TTR has been calculated, the TTRs

can be sorted according to their similarity score. The best fitting TTRs can be used to

derive task recommendations.

Figure 5.1 illustrates an example how these criteria can be leveraged to determine

a similarity score for the execution logs of a TTR and the TTI. In this example, it is
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assumed that TIs have been matched before and that identical tasks have the same task

name. As indicated by the red arrows, four of the five tasks in the execution log of the

TTI correspond to tasks in the TTR. This leads to a similarity score of 0.8 for this criteria,

calculated as the number of successfully matched tasks in the execution log of the TTI

divided by the total number of tasks in the execution log of the TTI.

Execution Log of running TTI:

1: Task A

4: Task E
5: Task I

2: Task Z

Execution Log of TTR:
1: Task A

3: Task D

4: Task E
5: Task H
6: Task I

2: Task C

7: Task B
8: Task F
9: Task G

10: Task J

3: Task D

Matching

Figure 5.1: Execution Log Matching

Table 5.1 shows the predecessor/successor relationships between the matched TIs in

Figure 5.1. For every TI in the TTI, the actual predecessor and successor in the TTR are

listed in Table 5.1. The fact whether this corresponds to the predecessor and successor

in the TTI is stated in brackets. Note, that Task Z, which could not be matched, is omitted

here as it would significantly lower the value of the score for the relationships. This does

not pose a problem, since TTRs, which all tasks are matched successfully, will get a

higher similarity score for the respective component of the overall score. Therefore, the

execution log of the TTI is now considered as the sequence of tasks A, D, E, and I.

The pair of Task E and Task I is an example for two tasks for which the transitive

successor relation is fulfilled in the TTR. However, the direct successor relation is not

fulfilled, i.e. Task E is succeeded by Task H, which is, in turn, followed by Task I.

To calculate the similarity score of the direct and transitive predecessor/successor

relationships, the number of fulfilled order relations is divided by the number of all

considered order relations. For the direct predecessor/successor relationships, this
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leads to a similarity score of 0.33 (i.e. two matches divided by six relationships in total),

while the transitive relations have a similarity score of 1.0 (i.e. six matches divided by six

relationships in total).

Assuming weights of 50% for the score of corresponding tasks, 30% for correct transitive

order relations, and 20% for correct direct order relations, the overall score can be

computed accordingly. For this example, the weighted overall score is 0.766, calculated

from the single components with their respective weights: 0.5 * 0.8 + 0.3 * 1.0 + 0.2 *

0.33.

Task Name
Direct

Predecessor

Direct

Successor

Transitive

Predecessor

Transitive

Successor

A - C (false) - D (true)

D C (false) E (true) A (true) E (true)

E D (true) H (false) D (true) I (true)

I H (false) - E (true) -

Table 5.1: Relationships between Tasks in Execution Logs

5.2.3 Deriving Task Recommendations

The identification of TTRs with similar execution logs to the given TTI enables the

determination of tasks within these TTRs that are likely to be chosen next. The set of

tasks to recommend is limited to the open tasks in the TTI. Obviously, already completed

tasks can not be recommended as well as tasks exclusively contained in the TTR or the

TTI (i.e. tasks that could not be matched). The open tasks, which have been successfully

matched, can be classified in two disjunct sets. In the TTR, these TIs either have been

executed before the most recently completed TI of the TTI or afterwards. Naturally, those

TIs that have been performed earlier in the TTR and that are still open in the TTI are

candidates to be selected next. Similarly, TIs directly following on the most recently

completed TI are candidates that are likely to be chosen next.

To illustrate the determination of task recommendations, Figure 5.2 shows a TTI and a

TTR sharing the same set of tasks. The execution log of the TTI contains four tasks that
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have been completed so far and matched to their counterparts in the TTR’s execution

log as highlighted by red arrows. Furthermore, the blue boxes in the execution log of the

TTR highlight tasks to be recommended to the user of the TTI. For example, Task C and

Task H were both executed before Task I, which is, in turn, the most recently completed

task in the TTI. Therefore, it seems likely that one of these tasks should be performed

next. Similarly, Task B could be following on Task I as this is the behavior observed in

the execution log of the TTR shown in Figure 5.2.

Task Tree Instance

Task A
Task B
Task C
Task D
Task E
Task F
Task G
Task H
Task I
Task J

Execution Log of running TTI:

1: Task A

3: Task E
4: Task I

2: Task D

Task Tree Record

Task A
Task B
Task C
Task D
Task E
Task F
Task G
Task H
Task I
Task J

Execution Log of TTR:
1: Task A

3: Task D
4: Task E

5: Task H
6: Task I

2: Task C

7: Task B
8: Task F
9: Task G

10: Task J

Figure 5.2: Providing Task Recommendations

50



6
Implementation

This chapter presents several aspects of the proof-of-concept implementation of the

previously introduced optimization approaches. In Section 6.1, the architecture of the

proCollab prototype is explained. Subsequently, Section 6.2 describes technologies

employed by the proCollab protoype. Finally, Section 6.3 highlights selected excerpts of

the implementation of the concepts proposed in Chapters 3 and 4.

6.1 Architecture of the proCollab prototype

The proCollab prototype is based on a multi-layer architecture as shown in Figure 6.1. To

provide knowledge workers with high flexibility, proCollab can be used with web clients

as well as mobile clients (i.e. tablets and smartphones) ([12], [19], [34], [23], [7]).

For the communication between client and server, a Representational State Transfer
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(REST) interface is utilized. Clients use this REST interface to search for task trees

and to retrieve them. Furthermore, they may call change operations to TTIs and TIs

respectively.

The application layer contains the core components of the proCollab server. In particular,

the server manages all instances (i.e. PIs, TTIs, and TIs) and the repositories for

processes and tasks. The latter contains both templates and records of processes, task

trees, and tasks. Additionally, the proCollab server also logs all change operations and

state transitions of TTIs and TIs in the execution and change logs of the respective

instance.

Finally, the persistence layer uses the Java Persistence API (JPA) to store templates,

instances and records in the database.
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REST API

Web Application Mobile Applications
(Tablet, Smartphone)

Change Operations Retrieval and Search 
Operations

User and Role 
Management

Process 
Management 
(Instances)

Task 
Management 
(Instances)

Data 
Management

Process Repository 
(Templates & 

Records)

Task Repository 
(Templates & 

Records)

Execution and Change Logging

Java Persistence API

Data Storage

Presentation
Layer

Communication
Layer

Application
Layer

Persistence
Layer

Figure 6.1: Architecture of the proCollab Prototype
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6.2 Technologies

This section briefly introduces the technologies employed by the proCollab prototype.

6.2.1 Java Platform, Enterprise Edition

The Java Platform, Enterprise Edition (Java EE) [10] defines a software architecture

for the component-based development of distributed web applications. Furthermore,

Java EE supports multi-tier applications and provides transaction management. For the

deployment of Java EE applications, an application server implementing the Java EE

specification is required.

6.2.2 Representational State Transfer

REST is a programming paradigm used for the communication between client and server

in distributed systems [5]. For this purpose, REST utilizes methods provided by the

Hypertext Transfer Protocol (HTTP) (e.g. HTTP GET and PUT) to manipulate the state

of resources used by the application. In particular, REST supports the CRUD operations

to create, update, delete, and search for resources. A significant advantage of REST is

that it is a lightweight solution compared with the competing standards Simple Object

Access Protocol (SOAP) and Web Services Description Language (WSDL).

6.2.3 Java Persistence API

JPA specifies an object-relational mapping providing an interface between Java objects

and relational database systems. This mapping is established between the attributes of

a Java object and the columns of a table in the relational database system. Furthermore,

the relations between these Java objects have to be defined either in separate config-

uration files based on Extensible Markup Language (XML) or with Java annotations.

This is required to derive foreign keys and additional tables to especially represent

the relations between tables in the relational database system properly. To query the
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relational database system, JPA allows usage of the Structured Query Language (SQL)

as well as its own Java Persistence Query Language (JPQL).

6.3 Implementation Excerpts

This section presents some highlights of the implementation of the approaches described

in Chapters 3 and 4.

6.3.1 Optimization of Task Tree Templates

Listing 6.1 shows the high-level algorithm used to optimize TTTs as it has been intro-

duced in Chapter 3. The input of this algorithm consists of the TTT, which is to optimize,

and the set of TTRs (i.e. completed TTIs) for the analysis. First, the change logs of the

given TTRs have to be converted to the eXtensible Event Stream (XES) format [9] as

stated in lines 3-4. Then, the multi-phase mining algorithm generates a MiningResult

containing the C-net, which represents the change process, and the map of preceding

partial traces for each node. For this purpose, the standard multi-phase mining algorithm

provided by the ProM framework [29] has been extended accordingly. The next step is

to determine the change blocks (i.e. sequences of the most frequent changes) based

on the MiningResult as it can be seen in lines 7-8. Finally, the original TTT is optimized

through the application of the identified change blocks and returned to the caller of this

method (lines 9-11).

1 public CListType optimizeListType(CListType template,

2 List<CListInstance> instances) {

3 XLog changeLog =

4 XESConverter.convertChangeLogToXES(instances);

5 MiningResult miningResult =

6 MultiPhaseMiner.doMining(changelog);

7 List<ChangeBlock> changeBlocks =

8 analyzeCNet(miningResult, instances.size());
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9 CListType optimizedTemplate =

10 applyChangeBlocks(template, changeBlocks);

11 return optimizedTemplate;

12 }

Listing 6.1: Implementation of TTT Optimization

6.3.2 Analysis of Change Operations

The analysis of the most frequent change operations in the C-net is shown in Listing 6.2.

Based on the MiningResult, which contains the C-net and the map of preceding partial

traces, the set of valid change process variants is determined by traversing all paths in

the C-net (lines 3-4). Subsequently, the relative frequencies of all change operations in

the variants are calculated. This is necessary in order to create a list comprising only the

most frequent change operations (i.e. those changes with a frequency value above a

threshold, e.g. 60%). Since the multi-phase mining plugin does not support empty traces

in change logs, the total number of analyzed TTRs (here named "traceCount") is needed

to ensure that the relative frequencies are computed properly (i.e. the unchanged TTRs

are also taken into account). Finally, the change blocks are determined by traversing

all change process variants and searching for sequences of the most frequent changes

therein.

1 private List<ChangeBlock> analyzeCNet(

2 MiningResult miningResult, int traceCount) {

3 List<Variant> variants =

4 VariantSearcher.traverseCNet(miningResult);

5 List<ChangeOpFrequency> changeFrequencies =

6 identifyChangeFrequencies(variants, traceCount);

7 List<ChangeBlock> changeBlocks =

8 identifyChangeBlocks(variants, changeFrequencies);

56



6.3 Implementation Excerpts

9 return changeBlocks;

10 }

Listing 6.2: Implementation of the Analysis of Change Operations

6.3.3 Determination of Change Process Variants

The algorithm used to extract the valid change process variants from the C-net is shown

in Listing 6.3. Initially, the C-net and the map of preceding partial traces have to be

retrieved from the given MiningResult and two lists of variants have to be prepared to

store both the temporary and final results (lines 2-7). Subsequently, a new variant is

created for each output binding of the C-net’s start node and added to the queue (lines

9-16).

Then, every variant in the queue is inspected iteratively until the queue is empty (lines

19-21). Variants are removed from the queue as soon as they turn out to be invalid

or the end node is reached. In the latter case, the variants are added to the result list

containing all valid variants.

For every variant in the queue, an active node has to be determined first. To be selected

as an active node of a variant, a C-net node may not have been visited before and it

must have a fulfilled input binding. Thereby, it is ensured that the nodes bound by one

input binding of the potential active node have been visited before this node, which is a

precondition to enable a C-net node. If all C-net nodes have been visited, the respective

variant has reached the end node and is moved to the result list (lines 22-26). On the

other hand, if there are still C-net nodes left that have not been visited, but none of them

has a fulfilled input binding, the respective variant is invalid and, therefore, has to be

discarded (lines 29-33).

Further, the selected active node is checked against the map of preceding partial traces

to ensure that the variant will remain valid, if it was extended with the currently examined

node (lines 35-40). This step is necessary due to the underfitting of the C-net allowing

for traces not observed in the change logs (cf. Section 3.3.2). In particular, the C-net

provides no means to remember the choices made on previous XOR splits. Hence,

all combinations of XOR alternatives constitute valid paths through the C-net leading
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to the introduction of many additional variants. To bypass this issue, only variants

corresponding to traces found in the change log will be added to the result list.

Subsequently, the active node is marked as visited (line 41) and its output bindings have

to be considered next. Therefore, the currently active variant is extended with the first

output binding of the active node (i.e. the nodes bound by this binding are added to

its active nodes). Since every additional output binding represents an alternative path

through the C-net, a new variant has to be introduced and added to the queue to explore

these paths separately (lines 51-58).

1 private List<Variant> traverseCNet(MiningResult miningResult) {

2 CustomCNet cNet = miningResult.getCNet();

3 Map<CustomCNetNode, List<List<CustomCNetNode>>

4 precedingPartialTraces =

5 miningResult.getPrecedingPartialTraces();

6 List<Variant> resultList = new ArrayList<Variant>();

7 List<Variant> queue = new ArrayList<Variant>();

8 // Fill queue with initial set of variants

9 for (CustomCNetBinding startOutputBinding :

10 cNet.getOutputBindings(cNet.getStartNode())) {

11 Variant variant = new Variant();

12 variant.addOutputBinding(startOutputBinding,

13 cNet.getStartNode());

14 variant.getVisitedNodes().add(cNet.getStartNode());

15 queue.add(variant);

16 }

17 // Explore C-net paths until all variants in the queue

18 // reached the end node or were discarded

19 while (!queue.isEmpty()) {

20 for (int i = 0; i < queue.size(); i++) {

21 Variant variant = queue.get(i);

22 if (variant.getActiveNodes().isEmpty()) {

23 // Move this variant from queue to result list
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24 ...

25 continue;

26 }

27 CustomCNetNode activeNode =

28 variant.getFulfilledActiveNode(cNet);

29 if (activeNode == null) {

30 // Discard this invalid variant

31 ...

32 continue;

33 }

34 // Verify variant to avoid the underfitting of the C-net

35 if (!variantPathIsValid(variant, activeNode,

36 precedingPartialTraces)) {

37 // Discard this invalid variant

38 ...

39 continue;

40 }

41 variant.setActiveNodeVisited(activeNode);

42 Set<CustomCNetBinding> outputBindings =

43 cNet.getOutputBindings(activeNode);

44 if (!outputBindings.isEmpty()) {

45 Iterator<CustomCNetBinding> iterator =

46 outputBindings.iterator();

47 CustomCNetBinding expansionBinding =

48 iterator.next();

49 // Create an additional variant

50 // for each output binding

51 while (iterator.hasNext()) {

52 CustomCNetBinding outputBinding =

53 iterator.next();

54 Variant newVariant = new Variant(variant);
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55 queue.add(newVariant);

56 newVariant.addOutputBinding(outputBinding,

57 activeNode);

58 }

59 // The current variant is expanded with the path

60 // represented by the first output binding

61 variant.addOutputBinding(expansionBinding,

62 activeNode);

63 }

64 }

65 return resultList;

66 }

Listing 6.3: Implementation of the Identification of Change Process Variants

6.3.4 Application of Cluster Mining

The implementation of the cluster mining algorithm as introduced in Section 4.4 is shown

in Listing 6.4. The input of the algorithm consists of a set of variants, their relative

frequencies, and a threshold value denoting the minimum occurence required by a task

to be included in the common TTT (cf. Section 4.4). Initially, every variant has to be

converted to an order matrix reflecting the order relations between all task pairs in the

respective variant (lines 3-11). Based on these order matrices, an aggregated order

matrix is computed containing the distribution of the order relations for all task pairs

across all variants (lines 14-15). During the cluster mining iterations, a pair of blocks, i.e.

either a single task or a set of clustered tasks, with the highest average block level is

determined first (lines 23-24). Then the matrix cell representing the order relations of this

custer block is retrieved from the aggregated order matrix and the relation type with the

highest relative frequency is chosen to cluster this block. However, an exception applies

for the relation type "0", which has to be ignored. The last step of the iteration is the

recalculation of the aggregated order matrix (lines 35-37). The two rows and columns

representing the clustered blocks have to be replaced by a single row and column for the
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new cluster block. The iteration has finished as soon as one matrix cell solely remains in

the aggregated order matrix. Finally, the last cluster block, which contains all tasks, is

returned to the caller as the common TTT for the given set of variants.

1 public CListType clusterMining(Map<CListType, Double> variants,

2 double threshold) {

3 Map<OrderMatrix, Double> orderMatrices = new

4 HashMap<OrderMatrix, Double>();

5 // Convert variants to order matrices

6 for (Map.Entry<CListType, Double> entry :

7 variants.entrySet()) {

8 OrderMatrix orderMatrix =

9 new OrderMatrix(entry.getKey());

10 orderMatrices.put(orderMatrix, entry.getValue());

11 }

12 // Compute the aggregated order matrix representing all

13 // variants together in one order matrix

14 AggregatedOrderMatrix orderMatrix = new

15 AggregatedOrderMatrix(orderMatrices, threshold);

16 int numberOfTasks = orderMatrix.getNumberOfBlocks();

17 // Cluster tasks from bottom to top until all tasks

18 // are contained in the same cluster block

19 for (int i = 1; i <= (numberOfTasks - 1); i++) {

20 ClusterIndex cluster = new ClusterIndex(0, 1);

21 if (orderMatrix.getValidDimension() != 1) {

22 // Determine the next tasks to cluster

23 cluster =

24 getClusterWithMaxBlockLevel(orderMatrix);

25 }

26 MatrixCell clusteredBlock =

27 orderMatrix.getMatrixCellAt(cluster.getIdxA(),

28 cluster.getIdxB());
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29 // Determine the order relation of the cluster block

30 Cohesion bestRelation =

31 computeCohesion(clusteredBlock);

32 // Recompute the aggregated order matrix (i.e.

33 // remove the parts constituting the cluster block

34 // from the order matrix and add the cluster block)

35 orderMatrix.recomputeOrderMatrix(

36 cluster.getIdxA(), cluster.getIdxB(),

37 bestRelation.getRelationType());

38 }

39 TreeElement result = orderMatrix.getResultType();

40 return (CListType) result;

41 }

Listing 6.4: Implementation of the Cluster Mining Algorithm

62



7
Conclusion

7.1 Conclusion

Currently, knowledge workers suffer from a lack of appropriate system support for KiBPs.

In many cases, knowledge workers still rely on paper-based task lists (e.g. checklists,

to-do lists) to manage their work. The proCollab reserach project aims at providing a

systematic support for knowledge workers and enables them to manage their task lists

through an integrated system.

The contribution of this thesis is the provision of concepts to extend proCollab with a

more powerful lifecycle support. Since KiBPs are knowledge-creating, TTRs (i.e. suc-

cessfully completed TTIs) can be leveraged to improve future TTIs of the same kind. In

particular, knowledge workers should be provided with suitable TTTs that help to reduce

the time required for the planning of upcoming tasks. For this purpose, a cluster mining
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approach has been proposed, which is able to automatically derive a common TTT for

a set of TTRs. Furthermore, TTIs and, thereby, the TTTs they have been based on,

are subjects to change. Therefore, TTRs should be analyzed continuously to optimize

existing TTTs and to keep them up to date. To address this goal, an approach has been

developed optimizing TTTs by incorporating the most frequently applied changes. This

is achieved through the application of a change mining algorithm examining change logs

contained in TTRs based on the same TTT.

Another problem, that knowledge workers are regularly facing, is the definition or se-

lection of the next task in their TTIs. To adequately support knowledge workers in this

context, proCollab should be able to provide them with appropriate task recommenda-

tions at run time. For this goal, a basic concept has been presented showing how TTRs

could be utilized to derive task recommendations for comparable TTIs at run time.

Finally, the presented concepts to derive and optimize TTTs have been successfully

realized in a proof-of-concept implementation for the proCollab prototype.

7.2 Future Work

In future work, the concepts presented in this thesis should be evaluated based on

case studies or experiments. This way, knowledge workers can assess the quality of

the automatically derived and adjusted TTTs. Additionally, it should be analyzed how

threshold values can be optimally set to provide adequate results.

Furthermore, an efficient approach to establish a matching between TIs in different TTIs

should be developed. This is particularly challenging as a potentially very large amount

of comparisons between TIs is required to determine, which of them correspond to each

other.

Another problem arising in the context of optimizing a TTT is called schema evolution

[21]. When a TTT is changed, it shall be checked whether the currently active TTIs

based on this TTT can be migrated to the new version of this TTT. If it was possible, all

of the derived TTIs could be adjusted in the same way as the TTT.

Since it could happen that TTIs cannot be migrated to a new version of the respective
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TTT, a sophisticated versioning concept is required to manage the different versions of

the same TTT used in parallel by the knowledge workers.
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