
Faculty of Engineering, Computer Science and Psychology
Institute of Databases and Information Systems Ulm University

Design and Implementation of an Android
Sleep Monitoring Framework

Submitted by
David Paul James Mohr

Verifier
Prof. Dr. Manfred Reichert

Supervisor
Dipl.-Inf. Marc Schickler

Bachelor thesis
2015

Abstract

Smartphones were originally mainly used for making phone calls and play-
ing games, but as they become more powerful and are equipped with a wide
variety of sensors new use cases become interesting. One of these use cases
is sleep monitoring, which is interesting for many different research areas.
The goal of this bachelor thesis is to develop a sleep monitoring frame-
work for the Android platform which can be used easily by third party
applications. The framework takes care of detecting sleep related events
like snoring and movement as well as monitoring the ambient light during
the night. Additionally, a demo application is developed to demonstrate
the functionality of the framework and to highlight some best practices re-
garding Android background services as they are essential for monitoring
sleep.

2

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Structure . 2

2 Fundamentals of Light and Audio Interpretation 3
2.1 Light Interpretation . 3
2.2 Audio Interpretation . 3

3 Requirements Analysis 7
3.1 Functional Requirements 7

3.1.1 Framework . 7
3.1.2 Demo Application 9

3.2 Non-Functional Requirements 9
3.2.1 Framework . 9
3.2.2 Demo Application 11

4 Implementation 12
4.1 Sleep Monitoring Framework 12

4.1.1 Light Component 14
4.1.2 Audio Component 16
4.1.3 Output Handling 19
4.1.4 Data Structure . 20

4.2 Sample Application . 23
4.2.1 Using an Android framework 23
4.2.2 Demo Application Layout 24
4.2.3 Android Background Service 25
4.2.4 Data storage . 28
4.2.5 Data visualization & interpretation 28
4.2.6 Power consumption 31

5 Requirements Comparison 32
5.1 Functional Requirements 32

5.1.1 Framework . 32
5.1.2 Demo Application 33

5.2 Non-Functional Requirements 34
5.2.1 Framework . 34
5.2.2 Demo Application 36

3

6 Recapitulation 38
6.1 Improvements . 38

6.1.1 Event extraction 38
6.1.2 Efficiency . 38
6.1.3 Co sleeping . 39

6.2 Closing Statement . 39

7 Acknowledgement 41

4

1 Introduction

As the amount of people owning a powerful mobile device grows, the urge
to develop software which helps to handle the daily routine as well as im-
proving it, increases as well. Almost every modern smartphone is equipped
with a variety of sensors, ranging from cameras, light sensors and micro-
phones to motion sensors and compasses. Thanks to the hardware and op-
erating system developers it becomes increasingly easy to use those sensors
in custom applications, thus helping users to better understand their body
and helping them to live a more efficient and happy life.
Sleep is an essential part of our lives; when not being able to sleep well or
long enough, we feel tired, are less productive and are likely to gain weight
and as a result even develop major diseases like diabetes [16]. Moreover,
we need the time at night to come to rest and to give our brains the
possibility to process the things we experienced throughout the day. Ad-
ditionally, problems or irregularities regarding sleep often originate from
other diseases. Therefore, being able to monitor sleep without the need of
a conventional sleep study could help in a wide variety of use cases.
Conventional sleep studies cost up to $1000-$5000 [20][15][19] whereas us-
ing a smartphone application only requires the user to download it once
and remember to start and stop it in the evening and morning. As 80%
of adults which are regularly online also own a smartphone, most parti-
cipants already have their monitoring device at their fingertips [13]. Of
course a smartphone application can’t provide the detailed insights of an
extensive sleep study but having sleep data of a wide variety of patients
with very low cost is a huge benefit for sleep researchers.

1.1 Motivation

Creating a sleep monitoring application for AndroidTM might seem easy
at first sight but presents some difficulties at closer look. Simply reading
audio data from the internal microphone or fetching light intensity is easy
but interpreting it in the context of sleep monitoring is non-trivial. This
thesis explores the possibilities of using Android device sensors for sleep
monitoring and describes the development and usage of a sleep monitoring
framework. The aim of the framework is to provide a high level API for
accessing sleep related data and taking care of recording and saving the
necessary data. Providing such a framework enables the development of a

1

wide variety of applications without them having to worry about audio and
light interpretation, long running background services or CPU usage and
power consumption. Therefore, the development of specific applications
for specific use cases becomes only a matter of embedding the library and
creating a user interface which might provide some additional use case
specific functions. A simple implementation of the developed framework
is also discussed, so the aforementioned mobile applications may use it as
a starting point.
The framework is designed for very easy usage. Especially the storage
and retrieval of the collected and interpreted data is very easy to adapt
to third party applications, so they can use the framework while keeping
their existing data storage components and being able to upload or export
the data as needed.

1.2 Structure

Introduction Fundamentals Requirements Implementation Comparison Recapitulation
1. 2. 3. 4. 5. 6.

Figure 1: The structure of this thesis

Chapter 2 covers the fundamentals of light and audio interpretation from
smartphone sensors. This chapter is still independent from the actual
implementation and is intended as an overview of the selected methods
and as preparation for chapter 4. In chapter 3 the target features of the
framework and the demo application are described. In chapter 4 the actual
implementation is discussed. Section 4.1 describes the functionality of the
framework and explains the decisions made during development. Section
4.2 continues with the demo application and covers some best practices
for using the monitoring framework. Chapter 5 discusses the achieved
results in comparison with chapter 2. Finally, in chapter 6 the results are
evaluated and some final thoughts are made on how to further improve
the framework and where it could be used.

2

2 Fundamentals of Light and Audio
Interpretation

In order to give insights into the reasons for choosing light and audio as
markers for sleep state and quality, as well as how it is possible to extract
sleep cycles out of an audio recording, both features are discussed in the
following chapter.
Audio was chosen over direct device movement tracking because using the
device’s gyroscope for detecting movement would require the user to place
the device into the bed. The better solution is to only use audio; then the
device simply needs to be placed near the bed. Not having to place the
device into the bed leads to a more natural sleep for many users. Addi-
tionally, most users won’t have to change their habits as the smartphone
is often used as an alarm clock, thus it is already placed near the bed.

2.1 Light Interpretation

The framework should not only record the sleep state but also other fea-
tures which might affect the sleep quality. Therefore, the light intensity,
measured in lux, is also recorded and interpreted. Light intensity is an
important factor for sleep quality. Starting at about 100 lux, light affects
the plasma melatonin concentration which is a widely used marker for the
human circadian pacemaker [29, p. 695]. 100 lux already shifted the in-
ternal clock phase about 1 hour back, whereas a light intensity of about
1000 lux shifted the phase for -2 hours [29, p. 699]. Therefore, recording
these light intensities is an important factor for determining sleep quality
and comparing it to other nights.

2.2 Audio Interpretation

Audio interpretation is the core functionality of the monitoring framework.
Compared to the light interpretation, much more work is involved here,
because the only output Android provides is an array of numbers which
indicate the audio amplitude. After receiving these values it is the task of
the framework to interpret them as audio events.
On the one hand, the application should be able to detect snoring, which

3

is an indicator for deep sleep, and movement on the other hand. To un-
derstand why movement can be used to detect sleep cycles, human sleep
stages and cycles are discussed first.
Human sleep consists of about 5 repeating cycles, each having 6 stages [3].
The stages are:

• Awake

• non-REM stages 1-4

• REM

REM stands for ”rapid eye movement” and describes the phase in which
dreams happen and the brain is relatively awake compared to the non-
REM stages. While usually an EEG is used to determine sleep stages,
smartphones obviously do not offer such technology. Luckily, it was dis-
covered that a very close relationship between movement events and the
REM stage exists [6]. The movement events seem to happen at the begin-
ning and the end of each REM stage. Therefore, movement is perfect to
detect the sleepcycles. Furthermore, it is important to distinguish snoring
from movement as snoring is a very common, loud audio event which hap-
pens during sleep. Additionally, conventional snoring is unlikely to happen
during the REM stage, so it is important to not confuse it with movement
[4].
It was further found that three features, which can be computed out of
the smartphone’s recording, are sufficient to detect whether snoring, a
movement or a miscellaneous noise occurred [9]. These features are the
following:

• RLH The ratio of low frequency to high frequency

• RMS The root mean square - The average loudness of the frame

• VAR The volume variance of the frame

The recording is divided into 0.1 second intervals. Each interval will then
be used to calculate all three features. These features can then be used to
identify the event which occurred. Sample recordings are shown in figures
2 and 3. It was found that the RLH feature is very suitable to distinguish
snoring from moving as movement consists of almost equal parts of high

4

and low frequencies, whereas snoring consists mainly out of low band fre-
quencies. Therefore, the rise of RLH can be used effectively to identify
snoring [9]. Combined with the other features it is possible to extract
movement events as well; this is further discussed in section 4.1.2.

Figure 2: Feature extraction for move-
ment events (RLH: red, RMS: blue,
VAR: yellow)

Figure 3: Feature extraction for snor-
ing events (RLH: red, RMS: blue, VAR:
yellow)

Figure 2 shows a 30 second interval of movement (audio recording from
[5]), figure 3 shows a 30 second interval of snoring (audio recording from
[7]). The framed parts are identified as movement and snoring events re-
spectively. RLH (shown in red) is the perfect feature to distinguish snoring
from movement as the RLH feature stays at zero for the complete move-
ment interval whereas it kicks very high during snore events.
One further optimization is very essential for the framework. Audio char-
acterization needs to be possible on a wide variety of devices and moreover,
a wide variety of microphones. Additionally, Android sensors can be quite
unreliable [23]. Therefore, the VAR feature must be normalized to ensure
that the specific loudness of the microphone doesn’t change the thresholds
which will be used to interpret the audio frame:

5

normalized(x) =
V ARx −mean(V AR)

std(V AR)
(1)

This also has the effect that background noise will be filtered automatically.
Noises like cars, trains, and microphone related static noise won’t effect
the normalized variance, so it can effectively be used to detect interesting
frames. The normalization utilizes the last 100 frames. 100 frames turned
out to be a good value as a longer period would have the problem of not
being able to react to occurring external events like an air conditioning
turning on. A shorter period would be problematic because the snore or
movement event itself would have a too large influence, thus rendering the
normalization useless.

6

3 Requirements Analysis

In this chapter the requirements for the framework and the demo applic-
ation are discussed. Firstly, the functional requirements are listed and
afterwards some important non-functional requirements.

3.1 Functional Requirements

The functional requirements describe the features of the framework and
the demo application.

3.1.1 Framework

The following table lists all functional requirements for the framework.

Table 1: Functional requirements for the framework

Requirement Explanation

FR # 1 The framework should detect
and record movement during
sleep

Movement is the main indic-
ator for light sleep phases.

FR # 2 The framework should record
light intensity changes

Light intensity is an import-
ant factor for sleep quality.

FR # 3 The framework should de-
tect and record snoring dur-
ing sleep.

Snoring must be distin-
guished from movement as
snoring is an indicator for
deep sleep phases.

FR # 4 The framework should record
the mean audio volume per
frame.

The overall audio volume is
a secondary factor for sleep
quality.

Continued on next page

7

Table 1 – Continued from previous page

Requirement Explanation

FR # 5 The framework should offer a
functionality to rate the sleep
quality based on a recording.

This is a convenient feature
for third party applications so
they have a basic method of
visualizing the recorded data.

FR # 6 The framework should offer
a customizable data storage
system.

To embed the framework into
third party applications it is
important to be adaptable to
other storage systems.

FR # 7 The Framework should write
the accumulated data to the
output handler in regular in-
tervals.

As it is not guaranteed that
the background service is
never terminated it is import-
ant to not only write the
data at the end of the record-
ing but in regular intervals so
only little data is in danger to
be lost at any time.

8

3.1.2 Demo Application

The following table lists all functional requirements for the demo applica-
tion.

Table 2: Functional requirements for the demo application

Requirement Explanation

FR #8 The demo application should
offer the user a detail view for
each recording.

It is important that the user
can see what data has been
recorded and might be trans-
ferred to a third party organ-
ization. Also it is interesting
for the user to evaluate the re-
corded nights.

FR #9 The demo application should
offer a share functionality for
the recordings.

Sending the recordings to
study leaders is important. A
share button should be used
as this is a known concept for
the user.

3.2 Non-Functional Requirements

The non-functional requirements mainly describe the relevant qualities of
the framework and the demo application regarding efficiency and usability.

3.2.1 Framework

The following table lists the non-functional requirements for the frame-
work.

9

Table 3: Non-functional requirements for the framework

Requirement Explanation

NFR
#1

The framework should use the
CPU as little as possible.

The goal should be to record 8
hours of sleep without having
to connect the phone to the
power supply.

NFR
#2

The framework should handle
all non-critical errors silently.

Simply skipping frames when
an error ocurrs is the best
solution, because some miss-
ing frames won’t affect the
overall sleep analysis. Stop-
ping the application because
of an error and notifying the
user — like usual applications
would — is not helpful in this
case.

NFR
#3

The framework should restart
the recording after critical er-
rors.

Recording as much as pos-
sible is the primary goal. As
android background services
are not guaranteed to be kept
alive, restarting the recording
service after a shutdown is es-
sential.

NFR
#4

The framework should be
memory efficient.

In place algorithms should be
used where possible as the
available amount of memory
is very limited on some
devices and a lot of data needs
to be processed.

10

3.2.2 Demo Application

The following table lists the non-functional requirements for the demo
application.

Table 4: Non-functional requirements for the demo application

Requirement Explanation

NFR
#5

The demo application should
always inform the user about
the current recording state

Showing the user when the
application is recording and
when not is crucial for a
healthy relationship with the
user.

NFR
#6

The demo application should
be easily usable in dark envir-
onments

Usually, the user interacts
with the application dur-
ing little environmental light.
Therefore, the application
should only use dark colors
while still emphasizing the
main start / stop button.

NFR
#7

The demo application should
respond fast to user input

As sleep monitoring applica-
tions are usually used by users
to participate in studies, fast
response times are very im-
portant so the time spent us-
ing the application is as short
as possible.

NFR
#8

The demo application should
be usable on as many devices
as possible

As preferably as much users
as possible should be able to
participate in a study, the ap-
plication should not make un-
necessary requirements to the
Android version installed on
the system or the availability
of specific hardware features.

11

4 Implementation

Both, the framework and the demo application have been programmed in
Java. It would be possible to use non-native technology, namely web tech-
nology, but using Java ensures best performance and sensor compatibility
[25]. All code has been written with Android Studio. Android Studio is a
very good choice because it has all the tools available to develop a library
separated from an Android application while still using them in a single
project. It also provides very convenient methods to create many differ-
ent virtual devices and test the application on them. The application was
mainly developed and tested on a real Nexus 6 device but a lot of different
virtual Android devices have been used to test the application on the most
important Android versions between API level 10 and 21.
Figure 4 shows how the framework, the demo application and the sensors
work together when the application is recording. All hardware interaction
as well as the interpretation of the audio signals is done by the framework
and is then saved by the demo application to the device’s storage. Due
to the later discussed OutputHandler interface, the data could as well be
saved directly to an external web service.

4.1 Sleep Monitoring Framework

Figure 5 presents the main module — the recording cycle. The figure
shows the progress when the recording is started, how the accumulated
data is queried and finally written to the OutputHandler.
At this point the overall concept of the recording cycle is described. The
light and audio recorders are discussed in further detail in sections 4.1.1
and 4.1.2.
The cycle is started by creating a Recorder object and calling start() on
it. The Recorder then initialises the light and audio recorders.
The AudioRecorder works by creating an AudioRecord object which then
continuously writes the recorded data back to the AudioRecorder in 0.1
second intervals. The Audio recorder takes care of updating the Feature-

12

Webservice

Framework

Demo Application

Main activity

Background Service

AudioRecorder LightRecorder

Figure 4: The architecture of the framework and the demo application

Extractor which in turn updates theNoiseModel. The FeatureExtractor
and NoiseModel objects take care of extracting the audio events and are
further discussed in section 4.1.2.
The LightRecorder simply hooks into the LightSensor from the device
and stores the current light intensity in lux.
The actual cycle begins with the Recorder starting a 5 second interval,
querying the data from the light and audio recorders every time. About
every 15 minutes the data is handed over to the OutputHandler which
takes care of persisting it. The entire cycle is started in a separate thread,
otherwise the user interface would be frozen when the cycle is running.
This is caused by the AudioRecord′s methods which are blocking the CPU
during recording.

13

Recorder

AudioRecorder

FeatureExtractor

NoiseModel

OutputHandler

LightRecorder

AudioRecord

start registerChangeListenerwriteBu�er

start start

query

query &
reset

update

addValues

dumpData

every 5 seconds

every 5 seconds

LightSensor

Figure 5: The structure of the frameworks recording cycle. White class names are
implemented by the framework, coloured ones are system classes

4.1.1 Light Component

Fetching the light intensity is very easy with Android. The LightRecorder
object only has to setup a SensorEventListener which is then called by
the Android system every time the light intensity changes. The Sensor-
Event already holds the light intensity in lux, which is very convenient for
further interpretation. To be able to continuously receive SensorEvents it
is necessary to create a wake lock. Wake locks are used in Android to keep
specific parts of the device running until the wake lock is released. There
are different wake locks available; they are discussed in detail because it
is not trivial to decide which one to use. Table 5 presents the relevant
wakelock types and shows the different features.

All wake locks seem to guarantee that sensor events will be delivered as

14

Wake Lock CPU State Screen

PARTIAL WAKE LOCK On* Off

SCREEN DIM WAKELOCK On Dim

SCREEN BRIGHT WAKELOCK On Full

Table 5: Some of the wake locks which are available in Android. Table taken from
[21]

long as the wake lock is held. The * at PARTIAL WAKE LOCK indicates
that the CPU is truly always on and the user has no possibility to change
that. The other two wake lock types can be interrupted by the user by
pressing the power button. Thereby, the screen turns off and the CPU
is not further guaranteed to be on. As the screen is not needed for the
framework and might even interfere with the light intensity measurement,
the obvious choice is to use a PARTIAL WAKE LOCK. This is also the
best choice regarding power consumption as the screen is one of the main
power consumers.
However, some devices have one major drawback regarding PARTIAL-
WAKE LOCK. They stop some sensors while the device’s screen is off,

even when the lock is held [17]. This seems to be a problem with some
device’s drivers which link the screen with these sensors. As soon as the
screen is turned off, the sensor is stopped as well. A workaround for
some devices is to reregister the SensorEventListener after the screen
was turned off [28]. This behavior is implemented in the framework but
does not resolve the issue for every device. Currently the only possible
workaround for every device would be to implement a feature which tries
to discover if the light sensor doesn’t report new values and then acquires a
SCREEN DIM WAKELOCK. This would guarantee that the light sensor
keeps working (as long as the user doesn’t manually turn the screen off)
but would also drain a lot more battery.
Another general issue with most smartphone light sensors is the way the
light intensity measurement works. Basically the light sensor only detects
light which falls orthogonally onto the device. That means the light sensor
can’t give an exact representation of the room light, but only of the light
which is falling directly onto the light sensor. A simple test has been made
to demonstrate the issue:

The device was placed into a completely dark bedroom. A light source

15

Smartphone

Measured Lux: 279
Brightness Value: 40%

Figure 6: Light
source orthogonally to
the device

Smartphone

Measured Lux: 114
Brightness Value: 30%

Figure 7: Angle of 45
degrees

Smartphone

Measured Lux: 5
Brightness Value: 27%

Figure 8: Angle of 5
degrees

was then placed at different angles and the lux value from the device was
noted. Furthermore, an image has been taken from which the perceived
brightness value was extracted. When the light source is orthogonally to
the device as seen in figure 6, a lux value of 279 was measured. This
is the base case. The smaller the angle gets, the larger the discrepancy
between measured brightness and perceived brightness gets. The differ-
ence in perceived brightness is only 10% between figure 7 and figure 8,
but the measured brightness of figure 8 compared with figure 7 is 95%
lower. This can be explained by the fact that the light sensor is effectively
measuring the brightness of the ceiling and not the environmental light.
As the ceiling is always illuminated as well when there is a light source in
the room, the lux value can still be used. It is, however, important to be
aware of this issue.

4.1.2 Audio Component

1 new AudioRecord(

2 MediaRecorder.AudioSource.MIC,

3 16000,

4 AudioFormat.CHANNEL_IN_MONO,

5 AudioFormat.ENCODING_PCM_16BIT,

6 1600

7);

Listing 1: Initialisation of an AudioRecord object

16

This initialisation code is discussed in detail because the parameters are
very important for the further processing of the data and for minimal
power consumption and best device compatibility.

• Line 2 specifies which microphone to use. MIC is used because it is
available on all platforms [2].

• Line 3 is the sampling rate in Hz. This corresponds to line 6, as
all audio data is processed in 0.1 second frames. 16000Hz is used
as no voice audio needs to be recorded and the highest relevant fre-
quency won’t be above 8000Hz. Therefore, the sampling rate of
16000 holds true to the Nyquist rate. Although, 44100Hz is avail-
able on all devices and 16000Hz is not guaranteed to be available,
16000Hz is used because of the reduced CPU usage.

• Line 4 specifies the configuration of the audio channels. CHAN-
NEL IN MONO is guaranteed to work on all devices and as stereo
recording isn’t needed anyways, this setting is perfect [2].

• Line 5 specifies the audio data format. ENCODING PCM 16BIT is
supported by all devices and therefore used [2].

After the initialisation it is now possible to call the read() method on the
AudioRecord object which fills a buffer of short values with the recorded
audio. This buffer is then passed to the FeatureExtractor as seen in figure
5. The FeatureExtractor calculates each of the features RLH, RMS and
VAR as follows:

RMS
As the values from the buffer can be negative and positive the root mean
square is used to get a marker for the audio volume:

RMS =

√√√√b.length∑
i=1

b2i (2)

VAR
The variance is used as an indicator whether an event occurred or not. In

17

the following formula mean is the average value of all buffer elements.

V AR =

∑b.length
i=1 (bi −mean)2

b.length
(3)

RLH
The ratio of low to high frequency bands is the most difficult feature to
calculate, because low and high frequency bands have to be calculated first.
Many different algorithms exist for calculating these bands, the following
ones are used in the framework:

Low frequency

bli = bli−1 + α · (bi − bli−1) (4)

With bl0 = 0, α = 0.25

High frequency

bhi = α · (bhi−1 + bi − bi−1) (5)

With bh0 = 0, α = 0.25

Figure 9: Formulas for calculating low and high frequency bands. Both formulas
are taken from [9].

The RLH feature is then calculated by dividing the RMS value of the low
frequency band by the RMS value of the high frequency band:

RLH =
RMS(bl)

RMS(bh)
(6)

These features are then fed into the NoiseModel which stores the last
100 VAR values and the current RMS and RLH values as discussed in
section 2.2. The NoiseModel decides if an event occurred based on the
values of VAR, RLH and RMS. Figure 10 shows the decision values. For
RLH > 10 and V AR > 2 snoring is detected. For V AR > 0.5, RMS > 15
and RLH < 10 movement is detected. Every other value combination is
considered to be noise. These values have been selected by tests with a
Nexus 6 and a Nexus 7. Other microphones might report different values
for the three features, but the thresholds seem to be chosen good enough
that the detection works for most phones. The largest differences between
devices occurred at the RMS feature but as it is only used for the movement
event and all values above 15 are accepted the differences seem not to
matter too much.

18

Figure 10: Visualisation of the decision values for the NoiseModel

4.1.3 Output Handling

In order to integrate the framework nicely into third party applications,
it follows the SOLID principles. The SOLID principles are a set of best
practices regarding object oriented software design which were introduced
by Robert C. Martin in the early 2000s [14]. The five principles are:

• Single responsibility principle: A class should only have a single
reason to change

• Open / closed principle: A class should be open for extension but
closed for modification. That means extending the class should be
easy without actually changing it’s code.

• Liskov substitution principle: Objects in a program should be re-

19

placeable by subclasses of these objects without the program behav-
ing different. In practice this means that code should never check
for a specific implementation but always assume the interface.

• Interface segregation principle: Many interfaces are better then one
large general one.

• Dependency inversion principle: High level classes should not de-
pend on lower level classes; Both should depend on interfaces. Also
abstractions shouldn’t depend upon specific implementations.

The most important one of these principles for the framework is the de-
pendency inversion principle as it allows external code to hook into the
storage mechanism. The Recorder class expects an implementation of the
OutputHandler interface:

1 public interface OutputHandler {

2 void saveData(String data, String identifier);

3 }

Listing 2: The OutputHandler interface

The implementation provided by the final application simply implements
the saveData method which accepts the recorded data and an identifier for
the recording. The identifier is basically the unix timestamp from the start
of the recording. By using the interface and not a concrete implementation
it is possible to implement custom OutputHandlers which might transfer
the recording directly onto a server or store it in a database on the device.

4.1.4 Data Structure

A custom data structure for storing the recorded events has been developed
as existing formats have a lot of overhead. A lot of data is accumulated
over the night so an efficient storage format is important. Figure 11 shows
the final data structure.

20

Timestamp Light intensity Event id Event intensity;

Figure 11: The data structure which is used for the recorded data

Firstly, the unix timestamp of the start of the recording is stored. The
unix timestamp represents the amount of seconds which passed since the
first January of 1970. Leap seconds are not counted.
The initial timestamp is followed by n integer triples. Each integer is
divided by a space and each triple by a semicolon. The three integers
define the light intensity in lux, the event id and the event intensity. The
possible event ids are:

• 0 No event occurred

• 1 Snoring

• 2 Movement

The event intensity specifies the amount of frames in which the event
occurred. One frame is 0.1 seconds long and each triple represents a 5
second interval. This results in a maximum intensity of 50.
This storage format is very space efficient. For an example night of 8 hours,
5760 triples are recorded. The lux intensity ranges from about 5−15 (dark
room) to < 1000 (morning light). Most of the time the room should be
quite dark. Therefore, an average character length of two can be assumed.
The event id is obviously one character long and the event intensity should
average at one character as most triples have no event and therefore no
intensity. Two spaces and one semicolon are needed to separate the values
and the triples, so we have an average length of

2B + 1B + 1B + 3B = 7B

per triple. The size of the recording for the sample night of 8 hours should
therefore be around

10B + 7B · 5760 = 40330B ≈ 40kB

21

Storing the same data in a minimal JSON format would require at least
2.3 times more space.

1 12 2 5 // One triple in the custom-build format

2 {l:12,e:2,i:5} // One entity in JSON format

Listing 3: Comparison between the custom-build storage format and a minimal
JSON

22

4.2 Sample Application

Besides the framework, a sample application was developed which util-
ises the features offered by the framework and also demonstrates some
best practices for building a sleep monitoring application. Moreover, the
sample application was used to validate the assumptions made during the
development of the framework and could also serve as a starting point for
third party applications using the framework. Therefore, the framework
and the sample application have been open sourced and are available via
GitHub: https://github.com/Sopamo/sleepminder.
The demo application is an easy to use sleep tracker. The user can start
recording by tapping on the main button. The device then starts to record
and interpret the audio and light information. The user is informed by an
ongoing notification that the recording is active. This is very important,
as the user should always be aware of the current recording status. Other-
wise a bad feeling of being unknowingly monitored might arise. The user
can stop the recording at any time by pressing the main button again.
Furthermore, the application shows a list of all past recording which may
be viewed by the user. The application then shows details of the light
intensity during the night, the sleep states and an approximation of the
sleep quality. Those details will be discussed in section 4.2.5.

4.2.1 Using an Android framework

While one would assume that using an Android framework is the same
as using any .jar file while developing Java applications there are indeed
some differences. Android frameworks are not distributed as .jar files but
as Android specific .aar files. An .aar file is actually a simple zip file which
contains the files seen in figure 12 [1].

Figure 12: The contents of an .aar file

23

The differences to a simple .jar file are obvious. The .aar file contains An-
droid specific files and folders like the AndroidManifest.xml file which can
be used to define necessary permissions which are needed by the library.
These permissions will then be merged into the application’s Android-
Manifest.xml file.
The .aar file can simply be imported into the IDE. For the widely used
IDE Android Studio this is fairly easy. The .aar file is included into the
project and then added to the build.gradle file as seen in figure 4.

1 ...

2

3 dependencies {

4

5 ...

6

7 compile project(’:sleepminder.lib’)

8

9 }

Listing 4: Adding the sleepminder library

4.2.2 Demo Application Layout

The layout of the demo application is centered around two goals. The
application should be very fast to use and it should be usable in dark
environments. As it is used mainly in the evening and morning this is
a convenient feature for the user. The main screen of the application is
presented in figure 16. The primary action is the start / stop button. By
tapping on it the user can start the recording. Below the button is a list of
past recordings which can be viewed by tapping on them. The used colours
can be seen in figure 13. For large areas like the list background and the
header the dark shades are used. Therefore the user is not blinded when
using the app. When the user starts / stops the recording a popup informs
the user about the success of the action. Both, the floating action button
and the popup are features of the Android Design Support Library [11].
This library is used to bring the latest layout features to older Android
devices as well. Otherwise, the minimum Android version would have to
be 5.0 (API level 21) or a separate layout would have to be made for pre
Lollipop devices.

24

Figure 13: The colour scheme of the demo application

4.2.3 Android Background Service

Even though, it would be possible to start the recording in the main ap-
plication, there is a much better method which ensures that the recording
is not interrupted. The Android Service class is made for exactly this
reason. ”A Service is an application component that can perform long-
running operations in the background and does not provide a user inter-
face” [27]. The Service is started and controlled by an activity and may
provide a notification to the user about the current state of the service.
The notification which is shown in the sample application can be seen in
figure 14.

Figure 14: The notification of the demo application in the notification bar

In order to create a Service some configuration steps are necessary, so the
service behaves as required.

25

Declare the Service
Like an activity, the service must be declared in the AndroidManifest.xml
file. No further configuration is needed at this place.

Start the Service
The startService method must be called on an Android context to start a
service. This results in the Android system calling the onStartCommand
method of the implemented Service class. The return value of this method
is very important as it tells the Android system how to handle the service.
Three main return values are available, they are listed in table 6.

Flag Description

START NOT STICKY Suitable for services which need to
do some less important work in
the background. The Android sys-
tem might kill the service due to
memory pressure and will not start
it again automatically.

START STICKY If the service should get stopped,
it will be restarted by the system
until the stopSelf method is called.

START REDELIVER INTENT Behaves like START STICKY but
the initial intend will be rede-
livered.

Table 6: Some of the return values for the onStartCommand method [26].

In the demo application the START STICKY flag is returned, because
keeping the service alive is the number one priority. Redelivering the in-
tent is not necessary in this case as the intend doesn’t hold any relevant
information, apart from the service itself.

Enable foreground mode
To start the service in foreground mode, the startForeground method
needs to be called in the onStartCommand method of the service. This
also creates a notification which is automatically shown and hidden on

26

service creation / destruction. Normally, services are started in the back-
ground which means that they may be killed by the Android system to
free up memory. When startForeground is used, the system knows that
the service is essential for the user. A notification needs to be provided so
the user knows about the current state of the service. As seen in figure
14, the notification can provide custom actions which are useful for the
user. The notification is even shown on the lock screen which is perfect
for a sleep monitoring application as the user is remembered of the active
recording when they first pick up the phone in the morning. They can
then directly stop the recording. The notification on the lock screen can
be seen in figure 15.

Figure 15: The notification of the
demo application on the lock screen so
the user sees it after waking up.

Figure 16: The main view of the demo
application. The primary button trans-
forms from a start to a stop button.

27

4.2.4 Data storage

As discussed in section 4.1.3 a custom StorageHandler must be implemen-
ted. The demo application stores the recordings in the external storage
of the Android device. An alternate solution would be the internal stor-
age which is guaranteed to be available at all times. However, using the
internal storage also has some drawbacks. Many users prefer to store as
much data as possible on the external storage because the internal stor-
age is usually quite limited. In contrast, the external storage is usually a
lot larger and as the recordings do use a good amount of space when the
application is monitoring sleep every day, the probability of running out
of space is a lot smaller when using the external storage. Furthermore,
sharing files from the internal storage is relatively difficult compared with
sharing files from the external storage. Another difference between ex-
ternal and internal storage is privacy. It is a lot more difficult to access
data stored on the internal storage — even with physical access to the
device. Therefore, the internal storage is usually used to store very sens-
itive information. As the recordings do not save any specific data like
sound samples they are not considered very sensitive. Hence, the demo
application uses the external storage to persist the recordings.

4.2.5 Data visualization & interpretation

In figure 17 and 18 the detail view of a recording can be seen. The course
of the night is displayed at the top. The time span is shown above the
graph, the bars indicate movement. The night is separated into 30 minute
intervals. For each interval all movement events of the 5 second intervals
are accumulated. If more than one movement event occurred, the interval
is considered a light sleep phase. The height of the bars indicate the
intensity of the movement. This is quite a large abstraction but worked
in practice. Further optimisations could be made to detect the REM /
non-REM phases more accurately.
Figure 17 shows a pretty normal night. 5-6 sleep phases occurred; usually
a single cycle lasts about 100 minutes [22]. Therefore, about 5 phases are
normal for a sleep duration of 8 hours.
Both screenshots are made on a Nexus 6 device which suffers from the light
sensor problems described in section 4.1.1. The light sensor did report a
change in the light intensity at about 7:30 because another application
requested a SCREEN DIM WAKE LOCK. On a device which keeps the

28

light sensor active, even when the screen is turned off, the ascent of the
light intensity would be more slowly.
Below the main graph, four additional indicators are shown:

Sleep stages
This pie chart shows the amount of time spent in light sleep versus the
amount of time spent in deep sleep. It was found that for a sleep duration
of about 8 hours about 90 minutes in the deep sleep phase (also called
slow-wave sleep) are normal [12]. The graph shows a deep sleep percent-
age of 33% which indicates good sleep.

Light quality
The light intensities are divided into three groups: Night, dawn and day.
Lux values up to 20 are considered as night, values up to 100 as dawn
and everything above as daylight. Starting at about 100 lux, light is con-
sidered to interfere with the sleep cycle and therefore to affect the sleep
in a negative way [29]. Due to the Nexus 6 suffering from the light sensor
bug, the light quality pie chart shows 0% dawn light intensity. A perfect
night should consist mainly of light below 20 lux and only gets brighter
while waking up.

Sleep quality
The sleep quality diagram shows the distribution of audio events. Re-
peated snoring would be visible here.

Overall quality indicator
Based on the feedback of some test users a simple sleep rating system has
been developed. A smiley face indicates the estimated overall sleep quality.
There are three different faces: ”Good”, ”Not too bad” and ”Bad”. Three
different indicators are calculated to estimate the quality. Each indicator
gets a 1, 0 or -1 depending on how good the sleep is. 1 represents good
sleep quality, whereas -1 indicates bad quality. The average is then calcu-
lated and the rounded value determines the estimated overall quality.
The first indicator is light quality. If at least one hour of sleep was during
daytime light the quality is rated ”bad”. If daytime light combined with
dawnlight is at least 1.5 hours long, the quality is rated as ”not too bad”.
Everything else is rated ”good”.
The second indicator is the amount of sleep cycles. As discussed earlier
about 5 cycles are normal. More than 10 cycles or less than 4 are con-
sidered ”not too bad”, everything else is rated ”good”.
The third indicator is sleep duration. Sleep duration is difficult to rate

29

based on a single night. Short sleepers may be perfectly fine with only 5.5
hours of sleep while long sleepers may need 8.5 hours [8]. As the reasons
for the amount of sleep an individual needs, are not clear yet, the optimal
duration would have to be determined by a questionnaire where the user
would have to state the needed duration to be well-rested as well as the
family background — families have shown to have a similar need for sleep
duration [10]. Such a questionnaire could be implemented in the applica-
tion as well, but would exceed the scope of this thesis [24]. Therefore, the
application simply rates more than 7 hours of sleep as ”good”, more than
5.5 hours as ”not too bad” and everything below as ”bad”.

Figure 17: The detail view of a record-
ing shows the movement events and light
intensities over the course of the night

Figure 18: The bottom part of a re-
cording shows some statistics and the
sleep quality

30

Figure 19: The power consumption in % for 8 hours of recording for various devices

4.2.6 Power consumption

The user should be able to monitor their sleep without having to connect
the smartphone to the power supply. Therefore, one of the secondary
goals of the framework and the demo application is to consume as little
power as possible. Personal experience showed, that other sleep monitoring
applications for Android use about 50-80% of the device’s battery. A small
study with six devices has been made to test the power consumption of
the demo application. Each device monitored about 8 hours of sleep and
was charged very close to 100% before starting the recording. Figure 19
presents the results of the study. Power consumption is between 9% and
16% for all devices. This allows the user to record their sleep without
having to worry about power supply.

31

5 Requirements Comparison

The requirements from section 3 are compared with the results of the
thesis. A simple rating scheme from ++ if the requirement is met perfectly,
to −− if the requirement could not be implemented, is used.

5.1 Functional Requirements

The essential functional requirements for both the framework and the ap-
plication could be implemented. Some issues with the devices’ light sensors
and differences in the microphone volumes occurred, but none of them had
a significant impact on the main functionality.

5.1.1 Framework

Regarding the functional requirements for the framework, not being able
to record light intensities on some phones was the main issue. This issue
could be resolved partially but still exist on some devices. Apart from
that, no major problems remained.

Table 7: Functional requirements comparison for the framework

Requirement Rating Comparison

FR #1 The framework
should detect and
record movement
during sleep.

++ Movement is detected and
recorded.

FR #2 The framework should
record light intensity
changes.

o Light intensity is recorded
on most devices. As some
devices are unable to record
the light intensity while the
screen is off, this feature does
not work on all devices.

Continued on next page

32

Table 7 – Continued from previous page

Requirement Rating Comparison

FR #3 The framework
should detect and
record snoring during
sleep.

++ Snoring is detected and dif-
ferentiated from movement.
As snoring might also trig-
ger movement events, a
threshold is introduced to
separate movement frames
from snoring frames.

FR #4 The framework should
record the mean audio
volume per frame.

−− Due to lack of time and prob-
lems with the accuracy of the
different smartphone micro-
phones this feature has not
been implemented.

FR #5 The framework should
offer a functionality to
rate the sleep quality
based on a recording.

+ The framework and the
demo application extract
sleep quality and cycles as
far as the scope of the thesis
allows.

FR #6 The framework should
offer a customizable
data storage system.

++ A very flexible storage sys-
tem was implemented.

FR #7 The Framework
should write the
accumulated data to
the output handler in
regular intervals.

++ A sensitive value of about 15
minutes is used to guarantee
very litte data loss at worst.

5.1.2 Demo Application

All functional requirements for the demo application could be implemen-
ted.

33

Table 8: Functional requirements comparison for the demo application

Requirement Rating Comparison

FR #8 The demo application
should offer the user a
detail view for each re-
cording.

++ A detail view which shows
all collected data was im-
plemented. The detail view
even offers some interpreta-
tion of the recorded events.

FR #9 The demo application
should offer a share
functionality for the
recordings.

++ A share button is present on
the detail view which lets the
user choose how to share the
text file with the recording
information.

5.2 Non-Functional Requirements

Most of the non-functional requirements could be met perfectly. The
framework and demo application are already very fast and have a small
power consumption. The optimisations which could be made mainly focus
on low-end devices.

5.2.1 Framework

Apart from some minor performance optimisations the non-functional re-
quirements for the framework could be fulfilled. Especially the power
consumption is even better than initially assumed. Therefore, some of the
calculations which are currently made in the demo application when the
user views the recording could already be made during the night after the
device calculated the three audio features. The framework could offer a
functionality to call application specific code every time a 0.1 second frame
was calculated. With this additional feature the application could receive
a completely analysed recording at the end of the night.

34

Table 9: Non-Functional requirements comparison for the framework

Requirement Rating Comparison

NFR
#1

The framework should
use the CPU as little
as possible.

+ The framework needs only
about 10% - 15% of the bat-
tery for 8 hours of record-
ing. Therefore, the goal of
being able to record a night
without having to connect
the phone to power supply
was reached. Some optimisa-
tions could be implemented
to further reduce the CPU
usage.

NFR
#2

The framework should
handle all non-critical
errors silently.

++ All critical methods are
wrapped in try ... catch
blocks to be able to handle
runtime problems like
OutOfMemory or Buffer-
Overflow exceptions.

NFR
#3

The framework should
restart the recording
after critical errors.

++ Not the framework, but the
demo application starts the
service in foreground mode
with the START STICKY
flag which ensures the restart
of the recording if it should
crash.

NFR
#4

The framework should
be memory efficient.

+ Some memory problems oc-
curred during development
and the framework was op-
timized accordingly. Some
of the algorithms could be
rewritten to in place vari-
ants which would improve
the memory efficiency even
further.

35

5.2.2 Demo Application

The non-functional requirements for the demo application could be fulfilled
as well. The demo application runs on most devices running Android API
level 10 or higher. With the possibility to test on older or more exotic
devices like smart watches, the application could be made available on even
more devices. According to the Google Play developer console 8078 out
of the 9746 registered devices are supported. In consideration of the large
Android device and operating system fragmentation, 82% device support
is a good value. Furthermore, most of the unsupported devices are TVs
or digital cameras which run Android as operating system. These are
irrelevant for this use case anyways.

Table 10: Non functional requirements comparison for the demo application

Requirement Rating Comparison

NFR
#5

The demo application
should always inform
the user about the
current recording
state.

++ A temporary popup is shown to
the user to inform about the suc-
cessful start / finish of the record-
ing. Additionally, a permanent
notification is shown in the noti-
fication bar.

NFR
#6

The demo application
should be easy to use
in dark environments.

++ All background colours are quite
dark. The main action is high-
lighted with the primary colour
of the colour scheme. The de-
tail view also uses adjusted col-
ours for all graphs to be not too
bright.

Continued on next page

36

Table 10 – Continued from previous page

Requirement Rating Comparison

NFR
#7

The demo application
should respond fast to
user input.

+ Starting and stopping the record-
ing happens instantly. These
two actions are the most used
ones and are therefore most im-
portant. The detail view has
to process a lot of information
which makes it a bit slow on less
powerful devices (∼ 500ms load-
ing time). Some precalculations
could be made to interpret the re-
cordings while the user is not us-
ing the phone.

NFR
#8

The demo application
should be usable on as
many devices as pos-
sible.

+ The demo application uses some
features of the API level 21 (An-
droid version 5.0). The layout
has been adjusted for older API
levels but is not looking identical.
Also a recording parameter is
used which is not guaranteed to
be available for all devices but en-
sures less CPU usage. The ap-
plication could be improved by
checking for the available record-
ing parameters first. Neverthe-
less, a good compatibility could
be achieved.

37

6 Recapitulation

In order to complete this thesis an overview of the achieved features is
given as well as an outlook on what could be improved regarding the
framework. The goal to develop a framework for the Android platform
which can be easily used in other applications has been achieved. The
framework provides a very clean interface to start a recording and extract
relevant information out of it. The framework’s goal to be user friendly by
not having to place the smartphone into the bed during the night was a
tough one to achieve but could finally be implemented. Simply using the
motion sensor would be a lot easier — the main difficulty of this thesis
turned out to be the interpretation of the audio data. Extracting audio
events like movement or snoring out of an array of values ranging from
-10 to 10 proved to be quite a challenge. Nevertheless a solid working
algorithm could be implemented.

6.1 Improvements

Whereas the framework is already working as expected it could still be
improved in both energy efficiency and accuracy.

6.1.1 Event extraction

Even though a normalisation algorithm has been applied, the feature ex-
traction is still dependent on the device’s microphone in some parts. Espe-
cially the interpretation part of the framework which maps the extracted
features VAR, RLH and RMS to specific audio events could be improved
by executing a larger study with a wide variety of devices to evaluate which
thresholds do not work equally on all devices and have to be adjusted.

6.1.2 Efficiency

Currently, the framework calculates all features for every 0.1 second frame
individually. Even though the power consumption turned out to be good
enough to be able to record a full night without having to charge the phone,

38

a more optimised algorithm would use even less energy. By detecting
events only via a change in the VAR feature and deciding based on the
value of VAR whether or not the other features need to be calculated
some computing time could be saved. An even more advanced approach
would be to reduce the sampling interval by not interpreting every 0.1
second frame when a sleep phase is detected. As sleep stages usually
last at least half an hour only every 10th (or even 100th) frame could be
calculated. The skipped frames could still be recorded and be calculated
afterwards when an audio event occurred. This would possibly result in
a fairly large reduction in power consumption but would also be quite
complex to implement.

6.1.3 Co sleeping

Due to the framework detecting movement events via audio, it might not
correctly detect movements when the user is sleeping in one bed with their
partner. Even tough it was found that about 1/3 of the movement events
are shared by both partners, there are still a lot of movements which the
microphone might pick up from the partner sleeping next to the user [18].
A possible solution would be that both partners record their sleep with
their smartphones placed on their side of the bed. In the morning both
smartphones could exchange the recorded data and try to assign each
movement event to the correct user. A good indicator for deciding which
user to assign the event to would be the intensity or the volume of the
event.

6.2 Closing Statement

The demo application and the framework are a starting point for Android
applications which want to collect audio events during human sleep. Al-
though, there are existing Android applications which monitor sleep, none
of them are open source or even offer an encapsulated framework. The
initial use case for the framework was to develop an application to help
diagnosing the correct tinnitus variant. In the final tinnitus app this frame-
work should be used next to other modules. Therefore, the focus to develop
an easy to integrate framework was important. Of course the framework
can also be used in other projects. The framework and the demo applica-

39

tion are available on Github: https://github.com/Sopamo/sleepminder.

Next to the application and the framework, a complete documentation has
been created to enable other developers to use and modify the framework
as needed. The documentation is created as Javadoc in the codebase. Ad-
ditionally, the most important parts are described and explained in detail
in this thesis.

40

7 Acknowledgement

Firstly, I would like to thank my advisor Marc Schickler for his support
and for giving me the possibility to challenge myself. I would also like to
thank Kiara Freitag and Fabian Henkel for listening to my struggles with
audio interpretation and motivating me to keep going. Likewise, a lot of
thanks to my family for supporting me during the course of my bachelor.

Additional thanks go to the Android team for developing such a great
mobile platform and especially to the Android Studio team which built a
fantastic IDE for Android development.

Android is a trademark of Google Inc.
The Android robot is reproduced or modified from work created and shared by Google

and used according to terms described in the Creative Commons 3.0 Attribution
License.

41

References

[1] AAR Format. url: http://tools.android.com/tech-docs/new-
build-system/aar-format (Last accessed: 2nd July 2015).

[2] AudioFormat | Android Developers. 2015. url: http://develope
r.android.com/reference/android/media/AudioFormat.html

(Last accessed: 2nd July 2015).

[3] Alexander A Borbély et al. “Sleep deprivation: effect on sleep stages
and EEG power density in man”. In: Electroencephalography and
clinical neurophysiology 51.5 (1981), pp. 483–493.

[4] Sharon J Borrow. The Stages Of Snoring. url: http://www.britis
hsnoring.co.uk/stages_of_snoring.php (Last accessed: 2nd July
2015).

[5] Bsmacbride. Bed Foley.wav. 2010. url: https://www.freesound.
org/people/bsmacbride/sounds/108515/ (Last accessed: 2nd July
2015).

[6] William Dement and Nathaniel Kleitman. “Cyclic variations in EEG
during sleep and their relation to eye movements, body motility, and
dreaming”. In: Electroencephalography and clinical neurophysiology
9.4 (1957), pp. 673–690.

[7] Ermine. snore okm2.flac. 2006. url: https://www.freesound.org/
people/ermine/sounds/27403/ (Last accessed: 2nd July 2015).

[8] Michele Ferrara and Luigi De Gennaro. “How much sleep do we
need?” In: Sleep medicine reviews 5.2 (2001), pp. 155–179.

[9] Tian Hao, Guoliang Xing and Gang Zhou. “iSleep: Unobtrusive Sleep
Quality Monitoring using Smartphones”. In: Proceedings of the 11th
ACM Conference on Embedded Networked Sensor Systems. ACM.
2013, p. 4.

[10] Hyun Hor and Mehdi Tafti. “How much sleep do we need?” In: Sci-
ence 325.5942 (2009), pp. 825–826.

[11] Ian Lake. Android Design Support Library. May 2015. url: http:
//android-developers.blogspot.de/2015/05/android-design-

support-library.html (Last accessed: 2nd July 2015).

[12] Hans-Peter Landolt et al. “Caffeine attenuates waking and sleep elec-
troencephalographic markers of sleep homeostasis in humans”. In:
Neuropsychopharmacology 29.10 (2004), pp. 1933–1939.

42

http://tools.android.com/tech-docs/new-build-system/aar-format
http://tools.android.com/tech-docs/new-build-system/aar-format
http://developer.android.com/reference/android/media/AudioFormat.html
http://developer.android.com/reference/android/media/AudioFormat.html
http://www.britishsnoring.co.uk/stages_of_snoring.php
http://www.britishsnoring.co.uk/stages_of_snoring.php
https://www.freesound.org/people/bsmacbride/sounds/108515/
https://www.freesound.org/people/bsmacbride/sounds/108515/
https://www.freesound.org/people/ermine/sounds/27403/
https://www.freesound.org/people/ermine/sounds/27403/
http://android-developers.blogspot.de/2015/05/android-design-support-library.html
http://android-developers.blogspot.de/2015/05/android-design-support-library.html
http://android-developers.blogspot.de/2015/05/android-design-support-library.html

[13] Ingrid Lunden. 80% Of All Online Adults Now Own A Smartphone,
Less Than 10% Use Wearables. 2015. url: http://techcrunch.
com/2015/01/12/80-of-all-online-adults-now-own-a-smar

tphone-less-than-10-use-wearables/ (Last accessed: 2nd July
2015).

[14] Robert Cecil Martin. The Principles of OOD. url: http://butunc
lebob.com/ArticleS.UncleBob.PrinciplesOfOod (Last accessed:
2nd July 2015).

[15] Sherry Mazzocchi. How Much Does a Sleep Study Cost? Well, $600
or $5,070. 2013. url: http://clearhealthcosts.com/blog/2013/
04/how-much-does-a-sleep-study-cost-well-600-or-5070/

(Last accessed: 2nd July 2015).

[16] Bruce S McEwen. “Sleep deprivation as a neurobiologic and physiolo-
gic stressor: allostasis and allostatic load”. In: Metabolism 55 (2006),
S20–S23.

[17] OnSensorChanged() is no longer called in standby mode since last
Firmware upgrade. 2009. url: https : / / code . google . com / p /

android/issues/detail?id=3708 (Last accessed: 2nd July 2015).

[18] FRANCESCA P Pankhurst and JA Horne. “The influence of bed
partners on movement during sleep.” In: Sleep 17.4 (1994), pp. 308–
315.

[19] Brandon Peters. How Much Do Sleep Studies Cost? 2014. url: ht
tp://sleepdisorders.about.com/od/sleepdisorderevaluati

on/fl/How-Much-Do-Sleep-Studies-Cost.htm (Last accessed:
2nd July 2015).

[20] Kevin Phillips. How Much Does a Sleep Study Cost? (Rates, Fees,
& Discounts). 2014. url: http://www.alaskasleep.com/blog/
costs- sleep- studies- rates- fees- discounts (Last accessed:
2nd July 2015).

[21] Power Manager | Android Developers. 2015. url: http://develo
per.android.com/reference/android/os/PowerManager.html

(Last accessed: 2nd July 2015).

[22] Howard P Roffwarg, Joseph N Muzio and William C Dement. “On-
togenetic development of the human sleep-dream cycle.” In: Science
(1966).

43

http://techcrunch.com/2015/01/12/80-of-all-online-adults-now-own-a-smartphone-less-than-10-use-wearables/
http://techcrunch.com/2015/01/12/80-of-all-online-adults-now-own-a-smartphone-less-than-10-use-wearables/
http://techcrunch.com/2015/01/12/80-of-all-online-adults-now-own-a-smartphone-less-than-10-use-wearables/
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://clearhealthcosts.com/blog/2013/04/how-much-does-a-sleep-study-cost-well-600-or-5070/
http://clearhealthcosts.com/blog/2013/04/how-much-does-a-sleep-study-cost-well-600-or-5070/
https://code.google.com/p/android/issues/detail?id=3708
https://code.google.com/p/android/issues/detail?id=3708
http://sleepdisorders.about.com/od/sleepdisorderevaluation/fl/How-Much-Do-Sleep-Studies-Cost.htm
http://sleepdisorders.about.com/od/sleepdisorderevaluation/fl/How-Much-Do-Sleep-Studies-Cost.htm
http://sleepdisorders.about.com/od/sleepdisorderevaluation/fl/How-Much-Do-Sleep-Studies-Cost.htm
http://www.alaskasleep.com/blog/costs-sleep-studies-rates-fees-discounts
http://www.alaskasleep.com/blog/costs-sleep-studies-rates-fees-discounts
http://developer.android.com/reference/android/os/PowerManager.html
http://developer.android.com/reference/android/os/PowerManager.html

[23] Marc Schickler et al. “An Engine Enabling Location-based Mobile
Augmented Reality Applications”. In: Web Information Systems and
Technologies - 10th International Conference, WEBIST 2014, Bar-
celona, Spain, April 3-5, 2014, Revised Selected Papers. LNBIP.
Springer, 2015. url: http://dbis.eprints.uni-ulm.de/1137/.

[24] Johannes Schobel et al. “Process-Driven Data Collection with Smart
Mobile Devices”. In: Web Information Systems and Technologies -
10th International Conference, WEBIST 2014, Barcelona, Spain,
Revised Selected Papers. LNBIP. Springer, 2015. url: http://dbis.
eprints.uni-ulm.de/1136/.

[25] Johannes Schobel et al. “Using Vital Sensors in Mobile Healthcare
Business Applications: Challenges, Examples, Lessons Learned”. In:
9th Int’l Conference on Web Information Systems and Technolo-
gies (WEBIST 2013), Special Session on Business Apps. May 2013,
pp. 509–518. url: http://dbis.eprints.uni-ulm.de/918/.

[26] Service | Android Developers. url: http://developer.android.co
m/reference/android/app/Service.html (Last accessed: 2nd July
2015).

[27] Services | Android Developers. url: http://developer.android.
com/guide/components/services.html (Last accessed: 2nd July
2015).

[28] Jameson Williams. Getting Android Sensor Events While The Screen
is Off. 2012. url: http://nosemaj.org/android-persistent-
sensors (Last accessed: 2nd July 2015).

[29] Jamie M Zeitzer et al. “Sensitivity of the human circadian pacemaker
to nocturnal light: melatonin phase resetting and suppression”. In:
The Journal of physiology 526.3 (2000), pp. 695–702.

44

http://dbis.eprints.uni-ulm.de/1137/
http://dbis.eprints.uni-ulm.de/1136/
http://dbis.eprints.uni-ulm.de/1136/
http://dbis.eprints.uni-ulm.de/918/
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html
http://nosemaj.org/android-persistent-sensors
http://nosemaj.org/android-persistent-sensors

List of Figures

1 The structure of this thesis 2
2 Feature extraction for movement events (RLH: red, RMS:

blue, VAR: yellow) . 5
3 Feature extraction for snoring events (RLH: red, RMS: blue,

VAR: yellow) . 5
4 The architecture of the framework and the demo application 13
5 The structure of the frameworks recording cycle. White

class names are implemented by the framework, coloured
ones are system classes . 14

6 Light source orthogonally to the device 16
7 Angle of 45 degrees . 16
8 Angle of 5 degrees . 16
9 Formulas for calculating low and high frequency bands. Both

formulas are taken from [9]. 18
10 Visualisation of the decision values for the NoiseModel . . 19
11 The data structure which is used for the recorded data . . 21
12 The contents of an .aar file 23
13 The colour scheme of the demo application 25
14 The notification of the demo application in the notification

bar . 25
15 The notification of the demo application on the lock screen

so the user sees it after waking up. 27
16 The main view of the demo application. The primary but-

ton transforms from a start to a stop button. 27
17 The detail view of a recording shows the movement events

and light intensities over the course of the night 30
18 The bottom part of a recording shows some statistics and

the sleep quality . 30
19 The power consumption in % for 8 hours of recording for

various devices . 31

45

List of Tables

1 Functional requirements for the framework 7
2 Functional requirements for the demo application 9
3 Non-functional requirements for the framework 10
4 Non-functional requirements for the demo application . . . 11
5 Some of the wake locks which are available in Android.

Table taken from [21] . 15
6 Some of the return values for the onStartCommand method

[26]. 26
7 Functional requirements comparison for the framework . . 32
8 Functional requirements comparison for the demo application 34
9 Non-Functional requirements comparison for the framework 35
10 Non functional requirements comparison for the demo ap-

plication . 36

46

Statutory Declaration

Hereby I declare that I have authored this thesis with the topic:

“Design and Implementation of an Android Sleep Monitoring
Framework”

independently. I have not used other than the declared resources. I have
marked all material which has been quoted either literally or by content
from the used sources.

Further I declare that I performed all my scientifical work following the
principles of good scientific practice after the directive of the current
“Satzung der Universität Ulm zur Sicherung guter wissenschaftlicher Praxis”.

Ulm,

David Paul James Mohr

47

	Table of contents
	Introduction
	Motivation
	Structure

	Fundamentals of Light and Audio Interpretation
	Light Interpretation
	Audio Interpretation

	Requirements Analysis
	Functional Requirements
	Framework
	Demo Application

	Non-Functional Requirements
	Framework
	Demo Application

	Implementation
	Sleep Monitoring Framework
	Light Component
	Audio Component
	Output Handling
	Data Structure

	Sample Application
	Using an Android framework
	Demo Application Layout
	Android Background Service
	Data storage
	Data visualization & interpretation
	Power consumption

	Requirements Comparison
	Functional Requirements
	Framework
	Demo Application

	Non-Functional Requirements
	Framework
	Demo Application

	Recapitulation
	Improvements
	Event extraction
	Efficiency
	Co sleeping

	Closing Statement

	Acknowledgement

