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Abstract—The operational support of knowledge-intensive
business processes constitutes a big challenge. In particular, these
processes are driven by knowledge workers utilizing their skills,
experiences, and expertise. Regarding coordination and synchro-
nization, in turn, knowledge workers still rely on simple task lists
(e.g., to-do lists or checklists) and established communication
software (e.g., email). While these means are prevalent and
intuitive, they are ineffective and error-prone as well. Neither
tasks are made explicit, synchronized, personalized, nor are they
independent from media breaks. Most important, a task man-
agement lifecycle is not provided, i.e., the efforts and knowledge
invested by the knowledge workers in task management are not
preserved for comparable future endeavors. This work introduces
the proCollab approach proposing a systematic and lifecycle-
based task management support for knowledge workers. To es-
tablish a sound task management lifecycle, in particular, we apply
process mining to analyze knowledge workers’ changes applied to
task lists in order to derive optimizations task list templates. To
demonstrate feasibility and benefits, a proof-of-concept prototype
was developed and applied. Overall, the integrated, systematic
and lifecycle-based task management support is prerequisite for
the effective IT support of KiBPs.

Keywords—task management, knowledge–intensive business
process, adaptive case management, knowledge workers, process
mining, to-do lists, checklists

I. INTRODUCTION

A structural shift from an industrial towards a knowledge-
based society has been taking place in highly developed
countries [1]: knowledge-intensive business processes (KiBPs)
residing in sensitive key business areas (e.g., research, devel-
opment, or service) have become predominant in many com-
panies. Driving KiBPs, knowledge workers (e.g., engineers, or
physicians) leverage their distinguished skills, experiences and
expertise to cope with novel and sophisticated tasks. Thus, the
systematic support of knowledge-intensive business processes
and therein involved knowledge workers have become a crucial
prerequisite for overall business success these days.

As a result, Adaptive Case Management (ACM) has been
established as a new trend in BPM research focusing on the
IT support of KiBPs [2]. However, this support is evidently
challenging due to the characteristics of KiBPs (cf. Figure
1) which are non-predictable, emergent, goal-oriented, and
knowledge-creating [3]. Hence, KiBPs have not been supported
by any kind of process-aware information systems at the
operative level so far. In turn, knowledge workers, who aim
at achieving common goals, still rely on communication tools
(e.g., email) and simple task lists (e.g., to-do lists, checklists)
to coordinate each other [4]. These means are intuitive and, in

consequence, prevalent on one side, but unfortunately highly
error-prone and ineffective on the other [5]. In particular, tasks
are often managed paper-based, not explicitly represented as
coordination artifacts, and spread over different places. Thus,
knowledge workers suffer from media breaks as well as a
lack of synchronized and lifecycle-based task management.
Especially the latter prevents knowledge workers to leverage
coordination artifacts (e.g., task lists) in comparable contexts
(i.e. KiBPs) to increase their productivity.
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Fig. 1. Characteristics of KiBPs

In this work, we present the proCollab1 approach aiming at
the systematic support of KiBPs and therein involved knowl-
edge workers. As tasks constitute the key objects for knowl-
edge workers when it comes to coordination in KiBPs, proCol-
lab particularly provides the foundation of process-aware and
lifecycle-based task management empowering collaborating
knowledge workers to coordinate each other more effectively.
To leverage best practices and knowledge gained in comparable
KiBPs, proCollab enables the process-aware provision of task
list templates to let knowledge workers instantiate these tem-
plates on demand. To successfully establish a lifecycle-based
support for KiBPs, we further introduce an approach based on
process mining to continuously analyze knowledge workers’
actual usage of instantiated task list templates. Thereby, we
are able to derive optimizations for the task list templates over
time and to evolve them accordingly. Finally, the feasibility
of establishing an integrated task management lifecycle is
demonstrated by a proof-of-concept prototype.

1Process-aware Support for Collaborative Knowledge Workers



The remainder of this paper is organized as follows: Section
II presents the applied methodology and required basics. Sec-
tion III introduces the proCollab approach presenting its core
components and their interplay. In turn, Section IV presents
the approach of analyzing the usage of instantiated task list
templates in order to improve and evolve the templates. Section
V describes the proCollab proof-of-concept prototype. Section
VI discusses related work and Section VII concludes the paper
with a summary and outlook.

II. BACKGROUNDS

A. Methodology

This work is part of a long-term project targeting at
establishing a systematic support of KiBPs. Therefore, the
design science research methodology [6] is applied by us to
assure high research quality. Regarding the design science
research process [7] in particular, we previously addressed the
problem identification and motivation phase [3] as well as the
phase of identifying the objectives of a solution in the shape of
challenges and requirements [8], [5]. Drawing upon, this paper
may be categorized as a design- and development-centered
approach and presents the following key contributions:

1) The proCollab meta-model, which has been designed to
establish an integrated, enables process-aware task man-
agement support for KiBPs. proCollab comprises tem-
plates and instances for its interconnected components to
provide the necessary foundation for a task management
lifecycle.

2) An integrated task management lifecycle approach based
on process mining is introduced to continuously ana-
lyze knowledge workers’ usage of instantiated task list
templates in order to evolve these templates realizing a
sustainable support of KiBPs.

B. Knowledge-intensive Business Processes

While [9] provides a detailed discussion of different
KiBP notions and definitions, this paper uses the notion of
knowledge-intensive business processes (KiBPs) based on [10]:

“Knowledge-intensive processes (KiBPs) are processes
whose conduct and execution are heavily dependent on knowl-
edge workers performing various interconnected knowledge in-
tensive decision making tasks. KiBPs are genuinely knowledge,
information and data centric and require substantial flexibility
at design- and run-time.”

In [3], we proposed the KiBP Lifecycle (cf. Figure 2) as
an essential foundation for every approach supporting knowl-
edge workers involved in KiBPs. As the proCollab approach
presented in Section III directly relies on this lifecycle, the
phases are discussed in the following:

Orientation: In this first lifecycle phase, information about
the KiBP is systematically collected and analyzed. Based on
interviews, analysis, and existing literature a description for
the KiBP is compiled.

Template Design: Subsequently, a collaboration template
(CT) is defined for the respective KiBP. A CT comprises the
coordination artifacts likely used by the knowledge workers at

run time. Specified CTs are then offered to knowledge workers
at the collaboration run time.

Collaboration Run Time: To actively start a guidance,
knowledge workers instantiate a CT to create a collaboration
instance (CI). A CI determines the supportive guidance offered
by an approach to the knowledge workers involved in a
concrete instance of the KiBP. In the context, the CI may be
continuously adjusted by the knowledge workers.

Records Evaluation: On one side, knowledge workers
involved in a CI can make use of insights from comparable
collaboration records (i.e., archived CIs). On the other, ab
analysis of collaboration records is performed to learn from
them and to improve, i.e. evolve existing CTs.
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Fig. 2. KiBP Lifecycle

C. Application Scenario

To systematically examine how knowledge workers col-
laborate and work in KiBPs, we have studied various repre-
sentative application scenarios to compile the key challenges
and requirements for the support of KiBPs in detail [8]. We
now recap one representative application scenario to draw
attention to the challenging requirements of an integrated,
lifecycle-based task management support for KiBPs as well
as to facilitate the understanding of the ongoing sections.

In development projects for electrical and electronic (E/E)
car components (cf. Fig. 3), the common goal for the involved
knowledge workers is to develop an E/E car component until
a fixed release date [11]. Hundreds of professionals (e.g.,
engineers) from different disciplines and partners (i.e., OEM
and suppliers) are involved in long-running E/E development
projects up to several months or years. While there are initially
predefined project roles, many professionals or even entire
organizations (e.g., suppliers) are invited to the project on
demand. Hence, the knowledge workers must follow a devel-
opment methodology with sub-goals (called quality gates and
milestones) to ensure effective E/E development. Obviously,
the projects’ development phases comprise various sub-phases
as well as parallel development processes that have to be
managed properly. Therefore, involved knowledge workers
need to frequently communicate and especially synchronize
with each other (e.g., in meetings).

To foster the quality of development processes, to ensure
compliance with regulations, and to track the development
progress, a large, central project checklist with hundreds of
check items is initially created and continuously managed



by a dedicated quality assurance officer. Usually, the officer
regularly discusses the currently relevant check items with the
project members in the scope of an interview. Additionally, to-
do lists and task sheets are dynamically used by the knowledge
workers to manage personal tasks as well as to coordinate each
other in smaller, specialized teams. In summary, checklists
and their items are used for quality assurance (retrospective
work) whereas to-do lists are used to dynamically plan and
coordinate work in future (prospective work). In prior work [5],
we additionally observed that checklists (e.g., spreadsheets)
are not supposed to be changed much (for the sake of quality
assurance), whereas to-do lists or task sheets strongly require
frequent updates and, in particular, the insertion of new tasks.
Nonetheless, we observed in all inspected application scenar-
ios that neither checklists nor to-do lists are systematically
managed in an integrated, synchronized and lifecycle-based
manner.
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Fig. 3. Overview of an E/E Development Project

III. THE PROCOLLAB APPROACH

Drawing upon our prior work [3], [5], [8], we have de-
veloped the lifecycle-based proCollab approach enabling an
integrated and systematic task management support of KiBPs.
Thereby, we especially considered the fact that knowledge
workers frequently switch between planning and performing
work due to the challenging characteristics of KiBPs [12].
Consequently, knowledge workers strongly rely on managing
and communicating tasks in relation to common goals. Further,
we have focused on the proper, but lightweight representation
of the KiBP Lifecycle (cf. Section II-B) as well as established
artifacts, i.e. checklists and to-do lists (cf. Section II-C).
Thereby, we aim at developing and providing an integrated
approach for knowledge workers involved in KiBPs.

Figure 4 provides an overview of the proCollab key com-
ponents, i.e. processes, task trees, and tasks (cf. Sections
III-A-III-C). As the KiBP Lifecycle is directly incorporated,
each proCollab key component can be further distinguished in

corresponding templates, instances, and records (cf. Sections
III-D-III-F).
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Fig. 4. Overview of the proCollab Components

To establish a generic support for knowledge workers, pro-
Collab relies on these generic data structures and still allows
for the type-, domain-, and purpose-specific specialization of
the generic proCollab components. For instance, a proCollab
process may be specialized to various medical cases regarding
patient treatment (cf. Figure 5) whereas a proCollab task tree
may be detailed into a quality assurance checklist (cf. Section
II-C).
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Fig. 5. Examples for the Specialization of proCollab Components

A. Processes

In practice, knowledge workers collaborate in the scope
of projects, cases, or just temporary endeavors [3]. As these
are all organizational and temporal frames representing KiBPs,
the notion of process is used in proCollab to generalize
from these. Naturally, every process may be arbitrarily nested
(e.g., sub-projects). Further, a process always exposes a goal
the knowledge workers want to achieve at the end, rele-
vant conditions (e.g., due dates, available resources), linked
resources (e.g., documents) and organizational assignments
(e.g., project roles and corresponding rights). Depending on
the specialization of a process (e.g., a project), knowledge
workers may further add specific conditions, constraints, and
organizational assignments. Finally, every process links to task
trees enabling knowledge workers to coordinate each other in
order to successfully achieve the process goal(s).



B. Task Trees

proCollab provides the generic data structure of a task tree
enabling the definition and usage of established task lists, i.e.
to-do lists and checklists (cf. Figure 6). The latter are heavily
used by the knowledge workers to coordinate tasks among each
other as well as to establish the important work awareness of
who is doing what in the current context, i.e. KiBP, [13]. As
opposed to ordinary tree structures, an recommended order is
specified in which tasks may be processed by the knowledge
workers. However, knowledge workers may always deviate
from the recommended order to address the current situation
in a KiBP. Through task lists knowledge workers iteratively
specialize (coarse-grained) tasks by defining more detailed
sub-tasks. Thus, a certain task may be connected to an arbitrary
set of subordinated tasks that are supposed to be performed
first in order to complete the actual task itself.
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Fig. 6. Example of Nested Task Tree and To-do List Specialization

In proCollab, every task tree exposes one root node with a
number of ordered child nodes (cf. Figure 6). The latter may
have, in turn, further child nodes that are ordered as well. Apart
from the root node, every node in a task tree is either a task or
an embedded task tree. The root node is not shown as a task,
but may be leveraged to store the purpose of the task list. As
task trees can be nested, loops are not permitted to be designed.
The ordering of the tasks constitutes a recommendation for
knowledge workers. As it is not prescribing, the proCollab
task trees offer a highly flexible, executable data structure to
manage tasks in the shape of to-do lists or checklists in the
context of KiBPs.

C. Tasks

In proCollab, a task always comprises a work description
(label and an optional, detailed explanation), a current state
(e.g., “in progress”) and an assignment (e.g., users or roles)
(cf. Section III-G) as well as optional conditions for attention
(e.g., required inputs, due dates, or priorities). As tasks may
either induce prospective or retrospective work (cf. Section
II-C), their properties are set accordingly, e.g.: the label of a
task is either to be formulated as a question (in checklists)
or as a prompt (in to-do lists). To support both to-do lists
and checklists, tasks may be specialized as to-dos or items in
checklists. Finally, any task of course may reference necessary
resources (e.g., documents) or even foreknowledge required to
accomplish the task.

D. Templates

According to the KiBPs lifecycle (cf. Section II-B), tem-
plates shall enable knowledge workers to accelerate their
planning and coordination through utilizing and working with
best practices and standards. Based on the goals the knowledge
workers want to achieve, they may choose a template and
instantiate it on demand. Through instantiation, a template is
transformed into a corresponding instance (cf. Section III-E)
the knowledge workers can work with. In particular, there are
process, task, and task tree templates (cf. Figure 7).
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Fig. 7. Process Template Example with Task Tree and Task Templates

1) Process Templates: At the beginning of a KiBPs (e.g.,
a case), knowledge workers may look for a process template
fitting to their goals best. A process template comprises
predefined roles with corresponding rights, several specified
conditions (e.g., a relative due date), linked resources, and,
most important, linked task tree templates. Thus, the initial
setup regarding planning is eased as knowledge workers can
directly start to use (instantiated) task tree templates.

2) Task Tree Templates: A task tree template consists of
task templates (cf. Section III-D3) and subordinated task tree
templates. A task tree template constitutes best practices for
planning (to-do list) or quality assurance (checklist) in one or
several KiBPs. Thereby, a task tree template targets one or
several goals in the scope of process template. As soon as a
process template is instantiated, its linked task tree templates
are instantiated as well. Alternatively, knowledge workers may
utilize a task tree template by dynamically selecting and
instantiating it in the context of an existing process instance.

3) Task Templates: A task template denotes a task that
occurs in one or several task tree templates (cf. Section III-D2).
A task template, in turn, may comprise several predefined
conditions (e.g., duration), assignments (based on roles), and
connected resources (e.g., documents). If a task template is
linked in several task tree templates, an update of the task
template may be performed centrally to update linked task tree
templates, too.

E. Instances

At collaboration run time (cf. Section II-B), knowledge
workers collaborate based on the instances of proCollab com-
ponents. In particular, proCollab provides process instances,
task tree instances, and task instances (cf. Figure 8).



1) Process Instances: A process instance represents a
running project, a case, or a loose collaboration. Therefore,
a process instance may contain several subordinated process
instances (cf. Figure 8) enabling knowledge workers to fo-
cus on specialized sub-goals. In general, knowledge workers
may create a process instance based on a process template
(instantiation) or without (blank process instance). If a process
template gets instantiated, the linked task tree templates are
automatically instantiated and linked to the process instance.
In any case, a process instance also comprises a start date,
a desired duration or end date, assigned goals, and linked
resources (e.g., documents).
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Fig. 8. Process Instance Example with Task Tree and Task Instances

2) Task Tree Instances: A task tree instance represents a
task tree, e.g., a to-do list or checklist, in use. In general,
knowledge workers may create a task tree instance either based
on pre-specified task tree templates (instantiation) or without
any predefined tasks. Task tree instances may be arbitrarily
nested and comprise subordinated task tree instances as well as
task instances. This means that knowledge workers may add a
new task tree instance to the process instance or, as a sub-tree,
to an existing task tree instance. Naturally, knowledge workers
may add, update, and remove task instances and embedded task
tree instances on demand to coordinate each other effectively
as well as to increase work awareness in a process instance.
Finally, every task tree instance is either directly linked to
process instances or embedded in another one.

3) Task Instances: Task instances may be added to task tree
instances (cf. Section III-E2) either based on a task template
(instantiation) or without. Further, knowledge workers may
update and remove task instances in a task tree instance as
required. Additionally, they may perform advanced operations
based on these operations, e.g., moving, splitting, and merging
task instances. Additionally, knowledge workers may assign
tasks to to themselves or other knowledge workers participat-
ing in the process instance to coordinate each other. Finally,
task instances typically expose a state (cf. Section III-G) that
can be changed by the knowledge workers.

F. Records

Based on the idea of collaboration records (cf. Section
II-B), process, task, and task tree records generally consist
of completed instances (i.e. instances exposing the state com-
pleted) as well as corresponding change and execution logs. In

particular, change logs contain the history of applied changes
(i.e., insertion, updates, and removals) whereas execution logs
comprise the history of state changes (cf. Section III-G).

1) Process Records: A process record contains a com-
pleted process instance as well as corresponding change and
execution logs. In particular, the change log of a process
record contains the change history regarding the assignments
of knowledge workers to the process instance, the history of
instantiations or removals of task tree instances as well as the
history of changes considering the conditions of the process
instance (e.g., update of a due date). Finally, a process record
links to all task tree records linked to the completed process
instance as captured by the process record.

2) Task Tree Records: A task tree record contains a com-
pleted task tree instance as well as corresponding change and
execution logs. The change log of a task tree record is of
special interest as the optimization of task templates is directly
based on the knowledge workers’ usage of task instances (cf.
Section IV). The change log first contains a history of updates
applied to the task tree instance itself, e.g., updates regarding
the description, assignments, and conditions. Most importantly,
the change log also reflects the insertions as well as removals
of task instances in the task tree. Finally, a task tree record
naturally links to all task records linked to the completed task
tree instance as captured by the task tree record.

3) Task Records: A task record comprises a completed task
instance as well as corresponding change and execution logs.
The change log starts with the time of instantiation of the task
instance. Further, it comprises the history of updates of the
task instance regarding its description, its assignments as well
as its conditions (e.g., priority).

G. State and Organizational Models

Due to lack of space, we do not go into details regarding all
proCollab component state models (indicating the operational
semantics) and the entire proCollab organizational model.
However, we exemplarily present a simplified state model of
a task instance and an excerpt of the organisational model
(cf. Figure 9) in order to foster the understanding and the
presentation of the integrated proCollab task management
lifecycle support (cf. Section IV).
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Fig. 9. State Model of Task Instances (a) and Excerpt of the proCollab
Organizational Model (b)



Every proCollab component and the task instance, in
particular, references a state model. The task instance exposes
its current state based on the state model (cf. Figure 9 (a)). For
this work, we posit a simplified model based on the states open,
in progress, discarded, canceled, and completed. Additionally,
proCollab enables the assignment of knowledge workers to
tasks, task trees and process based on a powerful organizational
model (cf. Figure 9 (b)). In particular, the organizational model
allows for the flexible definition of proCollab Roles based on
a set of corresponding pre-specified permissions. The latter
allows, for example, accessing functions to add a new task
instance or to change the state of a proCollab component.

IV. TASK MANAGEMENT LIFECYCLE

Based on the presented proCollab components, an inte-
grated task management lifecycle can be established. The latter
is a prerequisite for the durable, systematic support of KiBPs
and therein involved knowledge workers (cf. Section II-B). In
particular, an integrated task management lifecycle necessitates
the continuous optimization of provided task tree templates
on the basis of the knowledge workers’ usage of task tree
instances created from these templates. Thereby, knowledge
and efforts applied by the knowledge workers for planning
and coordination are systematically preserved for comparable
KiBPs. Thus, if knowledge workers are involved in such
comparable KiBPs (e.g., sharing the same goal), they will
directly benefit from the provision of these optimized task tree
templates.

Figure 10 gives an overview of the systematic optimization
of task tree templates and its different phases preparation,
analysis, and optimization.
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Fig. 10. Optimization of Task Tree Templates

In the preparation phase, the input of the optimization
approach is selected and prepared. In particular, we first select
the task tree template that shall be optimized (i.e., evolved) as
well as the set of corresponding task tree records providing
the necessary logs. Thereby, the change log of every task
tree record constitutes a change process: a sequence of single
changes applied to one particular task tree instance and its

task instances by involved knowledge workers. In the ensuing
analysis phase, we employ a process mining algorithm to
identify the existing variants of the change processes in order
to finally determine the most frequent changes performed on
the task tree instances. Regarding the latter, we especially
identify sequences of frequent changes in correlation with
identified change process variants. Finally, we are able to
improve the given task tree template in the optimization phase:
a task tree template may be improved in general as well as
we may also derive specialized task tree templates for certain
KiBPs (i.e. process templates).

Instead of evaluating the change logs of completed task
tree instances, a task tree template might be improved by
the analysis and comparison of derived, completed task tree
instances as well. However, through the evaluation of the
change logs and the application of change mining, we are
especially able to consider exactly the changes applied by
the knowledge workers on the task tree instances at run
time. Finally, the comparison of completed task tree instances
becomes even more challenging if the latter are arbitrarily
nested and highly diverse (e.g., to-do lists; cf. Section II-C).

A. Phase 1: Preparation

To optimally improve a certain task tree template tttx,
several preparations have to be accomplished. Initially, the
set of task tree records, which comprise the completed task
tree instances originally derived from tttx as well as their
corresponding logs, needs to be selected. The selection of task
tree records directly depends on the optimization goal. To opti-
mize tttx in general, all available task tree records comprising
task tree instances derived from tttx will be leveraged for an
analysis. Note that various process templates may comprise
the task tree template tttx and, hence, an optimization of tttx
then affects them, as well. By contrast, a task tree template may
be also specialized for a better usage in one particular process
template pty . Consequently, the task tree records linked by the
process records pr

pty
1 , . . . , pr

pty
n will then be solely selected

for the analysis to improve tttx.

After the selection of a set of task tree records, the time
span to be considered for the analysis is specified as well.
Especially, the focus of the analysis may be set on changes
applied at the very beginning of the knowledge workers’ usage
of the instances. Depending on the usage of the task tree
instances (checklist vs. to-do list), the time span may be also
modified according to the expected number of changes on
these task tree instances. For example, the analysis of the task
tree records may be limited to the time span starting at the
instantiation time of a task tree instance until two weeks later.

For optimizing a task tree template, we consider the follow-
ing changes applied to task tree instances and task instances
in particular (cf. Figure 11).

1) insertion of a task instance into a task tree instance
2) update of an existing task instance in a task tree instance
3) removal of an existing task instance from a task tree

instance

We therefore propose to map higher level operations (e.g.,
copying task instances) on these three basic operations. A
move operation, for example, can be mapped by the sequence



of insertion and removal operations. In this context note that
the order of the applied changes has to be considered for an
analysis since the changes are not commutative in general.

Change 3:  insert (Task C3, below Task C, after Task C2)

Change 1:  delete (Task B) Change 2:  update (Task A, Name = Task A*)

Root

Task A Task B Task C

Task A1 Task A2 Task B1 Task B2 Task C1 Task C2

Root

Task A* Task C

Task A1 Task A2 Task C1 Task C2 Task C3

Fig. 11. Example of Changes Applied to a Task Tree

Overall, the mentioned changes on the task tree instances
have to be pre-processed to make them comparable. Therefore,
both the task tree records (insertions, removals) and the linked
task records (updates) are combined into analyzable change
processes first. As every change operation references an ex-
isting task instance of the analyzed task tree instance, update
and removal operations can be well compared across change
processes. However, to increase the comparability, we propose
to split update operations addressing the change of several
parameters of a task instance into several update operations that
only change one of the parameters each. Further, we propose to
remove all changes that have been undone in a change process.
For instance, a knowledge worker may accidentally insert a
task instance and remove it shortly after.

The comparison of inserted task instances is especially
challenging: the descriptions and the meanings of the inserted
task instances have to be compared somehow. If the insertion
operations were not properly compared regarding their sim-
ilarity, an ensuing analysis would not provide any valuable
recommendations for optimizing of a task tree template. As
task instances are ordered in a task tree instance, the position,
where a task instance is inserted in a task tree instance, is
generally determined by the parental task instance which the
inserted task instance belongs to (hierarchy determination) as
well as the preceding and succeeding task instances (ordering
determination). Since the ordering of task instances is not
prescriptive and hampers the comparison of task instance
insertions in an analysis, we only regard the parental task
instance as the position of an insertion for the comparison.
Note that this is not a limitation (cf. Section IV-C).

In addition, other information may be leveraged to increase
comparability of the insertion operations of two task instances:

• The task templates the task instances are potentially

derived from,

• the descriptions (e.g., name), assignments (e.g., roles),
and conditions (e.g., due dates),

• the positions the task instances are inserted at in the
task tree instances,

• the process instances and the process templates the
task instances indirectly belong to,

• the knowledge worker(s) (name, role, etc.) who per-
formed the changes, and

• other changes performed before or after the inspected
changes.

Based on these considerations, we posit the availability of
a similarity function that particularly calculates the similarity
of two comparable insertions using the above-mentioned pa-
rameters. As a result, mappings are generated for insertions
showing high similarity, e.g., based on a threshold of 80%.
Utilizing these mappings and the threshold, we harmonize
the insertions of task instances. However, the information is
preserved externally during the transformation of the change
logs into the XES standard [14]. The latter is required for the
process mining algorithm processing the change logs in the
analysis phase.

B. Phase 2: Analysis

The objective of the analysis phase is to retrieve the change
process variants applied to task tree instances. Especially, we
want to detect the most frequently applied changes within the
identified change process variants. Therefore, recorded change
operations of the given change logs are leveraged as the input
for the multi-phase mining algorithm [15]. As an output, the
latter provides a causal net (CNET) [16] model comprises
the applied changes as nodes. Further, it creates the most
important causal relationships between the nodes. The latter
are expressed by edges between the nodes as well as input
and output bindings deposited at each node (cf. Figure 12).
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Remove 
Task C

Legend
XOR Split XOR Join

Fig. 12. CNET Example with Change Operations as Nodes

The multi-phase mining algorithm generalizes the change
processes through underfitting the CNET model (see [17]). In
particular, the CNET model does not explicitly capture inter-
dependencies between choices at exclusive branches. Hence,
the CNET contains traces not observable in the change logs.
To deal with this issue, we adapted the multi-phase mining
algorithm: for every node in the CNET model, a list of existing,
partial traces (i.e. sequences of preceding nodes) are stored in a
map. These traces have been observed by the mining algorithm
before reaching this node in the change log. Thus, they can be



leveraged to identify the valid change process variants in the
CNET model.

To identify valid change process variants as well as filter
out those ones generated by underfitting, the nodes of the
CNET model and, especially, their input and output bindings
are inspected stepwise. For each output binding of a node
in the CNET model, a new variant is created and the nodes
referenced by the output bindings are subsequently analyzed
for each of the created variants separately. In turn, the input
bindings of these referenced nodes are then checked first to
verify the causal relationship in the variant. Further, we check
the existence of a partial trace to this node. If there is no
partial trace, the variant will be discarded immediately. In the
positive case, the output bindings of the current node are again
evaluated to further add nodes to be considered for a variant.
Through following this approach to the end of the CNET, the
valid change process variants are identified successfully.

Additionally, we modified the multi-phase mining algo-
rithm to capture the number of change processes (i.e. change
logs) represented by every change process variant. This variant
frequency is determined to identify the most frequent changes
applied within and across change process variants. Naturally,
a node (i.e. a change) of the CNET model may be part of
several change process variants (cf. Figure 13). Hence, we
first calculate the number of variants every node in the CNET
is part of. The relative node frequency (e.g., 10%) is then
calculated for every node through multiplying this number with
the variants frequency, and then dividing it with the number of
change processes. The node frequency denotes how frequent a
certain change was applied to the examined task tree instances
derived from tttx.
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Fig. 13. CNET Example showing a Variant (grey) and Node Frequencies

Finally, sequences of frequently applied changes within and
across change process variants may be identified utilizing the
generated intermediate results. Therefore, different predefined
thresholds denoting relative frequencies (e.g., 30 %) for in-
sertion, update, and removal operations are used to select the
most frequent changes (i.e. nodes) of the CNET model. The
thresholds may be stepwise lowered until a certain number of
nodes (e.g., 20 nodes) is selected in case the thresholds were
set to ambitious.

Subsequently, we look for variants comprising most of
identified frequent changes. For every variant found, we deter-
mine the order (sequence) of the frequently applied changes
based on the causal relationships expressed in the CNET
model for the variant. Thereby, we ensure that the sequences
of frequently applied changes are applicable to tttx. We
then calculate the average frequencies for every sequence of
frequently applied changes—the sequence frequencies. Finally,
the list of sequences of frequently applied changes can be
ordered based on the sequence frequencies.

C. Phase 3: Optimization

Based on the results of the analysis phase, a given task tree
template may be improved in general as well as specialized
task tree templates may be derived for certain KiBPs (i.e.
process templates). If the identified frequent changes are
applied to a task tree template, we may additionally optimize
the order of the existing task templates through leveraging the
execution logs of the task tree records.

1) Application of Changes: Based on the identified se-
quences of frequently applied changes and the sequence
frequencies in particular, a task tree template tttx can be
optimized accordingly. As checklists often comprise many
predefined items and changes are not supposed to be applied
too often (for the sake of quality assurance), there is strong
correlation or even accordance between the set of frequently
identified changes and the sequence with the highest sequence
frequency. In this special case, the sequence with the highest
sequence frequency may be applied to tttx automatically.

By contrast, to-do lists are supposed to be highly modified
by knowledge workers at run time. Hence, the underlying
task tree templates are supposed to be rather coarse-grained
allowing for the required flexibility. As a result, there is a
considerably high number of changes applied to the derived
task instances, and these changes are likely diverse as well.
Thereby, various variants are detected by the analysis phase
and, in turn, several sequences of frequently applied changes
may be identified as comparable possibilities (similar sequence
frequencies) to optimize tttx. In this case, a knowledge worker
may review the recommended sequences of frequently applied
changes and decides to specialize the task tree template tttx
for certain purposes, i.e. KiBPs. In particular, the task tree
templates is therefore forked and the sequences of frequently
applied changes are applied separately.

Finally, the application of insertion operations on the task
tree template requires the creation of new task templates.
Therefore, the information deposited in the inserted task
instances can be leveraged to a certain degree. However,
for instance, assignments are not easily derived and, hence,
a knowledge worker should likely review the inserted task
templates to the end.

2) Order Optimization: After the selection of applicable
changes operations on the task tree template, the ordering of
the task templates in the task tree template has to be optimized
as well. This is particularly required since we simplified the
insertion operations: for the analysis, we only regarded the
parental task instance to increase the comparability of insertion
operations (cf. Section IV-A).

To successfully establish the orderings of the task templates
in a task tree template, both the completed task tree instances
and the executions logs as a part of the task tree records may be
leveraged (cf. Figure 14). In particular, the completed task tree
instances can be analyzed to determine the average position of
task instances derived from the task templates to be reordered.
This approach can be combined or even replaced by another,
advanced approach: Based on the execution logs of the task
instances and, especially, the state changes of task instances,
an optimized order can be derived by the comparison of the
start and the completion of task instances (cf. Section III-G)
to rearrange the task templates in a task tree template.



V. VALIDATION

The proCollab approach with its integrated task manage-
ment lifecycle explicitly addresses generations of a consid-
erable number of KiBP instances, which even often take
place in sensitive businesses. Hence, the thorough elaboration
of concepts and, especially, a highly mature implementation
addressing further issues (e.g., a powerful, but intuitive user
and role management) will be required to finally conduct
valuable empirical studies to successfully validate the concepts
presented in this work.
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Fig. 14. Order Optimization Example for a Task Tree Template

To prepare such studies, we developed a sophisticated
proof-of-concept prototype that is realized with Java Enterprise
Edition 7 and further relies on a multi-layer architecture (cf.
Figure 15) based on the Model-View-Controller design pattern.
In particular, the application logic layer represents the core of
the prototype realizing the key management services of the
proCollab approach, i.e. creation, update, linkage, and removal
of the proCollab key components. A REST-based interface
in the communication layer enables existing web and mobile
applications to communicate with the services to manage the
proCollab components. Hence, knowledge workers may then
use both channels to particularly manage their projects or cases
(i.e. proCollab processes) including task trees in the shape
of to-do lists and checklists. To validate the integrated task
management lifecycle, we additionally implemented a basic
similarity function (cf. Section IV-A), the modified multi-phase
process mining algorithm (cf. Section IV-B), and the necessary
functionality to determine the sequence of frequently identified
changes.

To address the technical feasibility and scalability of our
approach, we first created a reference task tree template in-
cluding 20 different task templates to generate different sets of
corresponding task tree instances comprising between 250 and
50,000 instances (in steps of 250) as well. Then, we simulated
the usage of the task tree instances to receive usable change
and execution logs in considerable time. For every set of task
tree instances, a set of five change operations, i.e. insertions,
updates, and removals of task instances, were particularly en-
forced with high probability whereas other change operations
were randomly accomplished. Based on these preparations,
we performed the analysis and optimization phases for every
set of task tree instances and thoroughly recorded the elapsed

execution time. The tests were accomplished on a laptop with
an Intel dual-core CPU Intel Core i7 2640M with 2.8 GHz, 8
GB RAM, 1 TB hard disk (SATA3), and a Windows 8.1 64-bit
operating system. By this procedure, we were able to show that
the modified multi-phase process mining algorithm scales well
with the number of provided task tree instances (cf. Figure 16).
Further, we perceived the expected recommendations regarding
the optimization of the task tree template as well as addi-
tional valuable insights. For instance, we could observe that
the insertions of task instances subordinated to existing task
instances are recognized well, whereas further insertions of
more detailed task instances are less frequently identified (due
to the similarity function). Hence, valuable recommendations
are likely connected to a powerful similarity function and the
proper selection of thresholds regarding frequently identified
change operations.
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Fig. 15. Architecture of the proCollab Prototype
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Fig. 16. Scalability of the proCollab Task Management Lifecycle Approach

VI. RELATED WORK

In general, the roots of IT support of collaborative workers
can be found in the interdisciplinary research field of Computer
Supported Cooperative Work (CSCW) [13] and groupware
in particular [18]. However, the work closely related to the
proCollab approach and the optimization of task tree templates
can be found in the two more recent research fields of Adaptive
Case Management (ACM) and Process Mining. Originated
from the Business Process Management (BPM) research, ACM



can be regarded as a recently established research field [19]
targeting at the systematic support of KiBPs based on the prin-
ciples of case management and cases [20]. Consequently, the
modeling notation CMMN2 was developed to create, deploy,
and interchange case-based specifications for the support of
KiBPs [21]. As CMMN does not provide a dedicated repre-
sentation for task trees and relies on various specialized case
elements, proCollab does not implement CMMN. However,
the proCollab components process and task can be generally
compared with the CMMN elements case and task.

Another comparable approach to proCollab is presented in
[22] and is called Cognoscenti. The latter allows for modeling
and using projects including goal lists and corresponding goals.
Thereby, goals are comparable to tasks whereas the approach
does not provide an integrated analysis of the usage of project
templates and therein comprise goal lists. In comparison, the
work presented in [23] proposes a system based on CMMN
and the improvement of case templates based on the analysis
of case instances. In particular, the execution logs of the
case instances (comparable to process instances) are analyzed
based on process mining to find insights regarding the usage
of CMMN-based tasks and their interdependencies. As we
employed process mining to detect the most frequent changes
applied to task tree instances derived from a task template,
our work should be put into context of process mining in
general [24] and change mining in particular [25]. Considering
the latter, there is profound literature about mining frequently
applied changes on standardized business process.

VII. CONCLUSION

Altogether, this paper presents the lifecycle-based proCol-
lab approach enabling knowledge workers to systematically ac-
complish the needed task management in the scope of KiBPs.
Therefore, we introduced the central proCollab components
as well as the fundamental lifecycle entities. Based on the
proCollab approach, we discussed the integrated task manage-
ment lifecycle enabled by the systematic analysis of task tree
records through process mining. Not limited to proCollab, the
optimization of task tree templates based on change mining
may even be leveraged in comparable approaches dealing with
any kind of task trees, i.e. checklists or to-do lists.

In future research, we aim at conducting studies to further
investigate the possibilities of optimizing task tree templates.
In particular, we want to investigate the number of task tree
records required to adequately optimize task tree templates. At
the moment, we expect that the amount of task tree records
depends on whether checklists or to-do lists are regarded.
Based on user studies, we further want to examine whether
proposed task tree optimization have been tried and trusted.
Finally, another aspect we want to investigate is how often
the optimization of task tree templates shall be performed to
achieve the most adequate results.
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