
Faculty of Engineering, Computer Science and Psychology

Institute of Databases and Information Systems

Bachelor thesis
in Media Informatics Course

Conception and Implementation of a
Location-based Augmented Reality Kernel

Targeting the Windows Phone 8.1 Operating System

presented by

Emre Inanc

June 2015

Referee Prof. Dr. Manfred Reichert

Supervisor Rüdiger Pryss

Matriculation number 750771

Presented June 22, 2015

ii

Abstract

The availability of sophisticated mobile applications on many platforms constitutes a challeng-
ing task. In order to cover the most relevant mobile operating systems and make the best use
of their underlying features, the native development on the target platform still o�ers the most
diverse possibilities. Aside from the most widely spread mobile operating systems - namely
Android and iOS - the Windows Phone platform o�ers a unique design language and many
developer tools and technologies for building Windows Store apps. Making use of the capabili-
ties of modern smartphones enables the development and use of desktop-like applications. The
built-in sensors, cameras and powerful processing units of such a device o�er a versatile plat-
form to build against. As a result, many mobile applications and technologies have emerged.
However, information on profound insight into the development of such an application is hard to
�nd. In this work, the development of AREA on the Windows Phone 8.1 platform is presented.
AREA is a location-based mobile Augmented Reality engine and already available on Android
and iOS. By porting the engine to yet another mobile platform, more third-party mobile busi-
ness applications can integrate AREA and make use of its e�cient and modular design. This
work also points out the di�erences in implementation between the Windows Phone version
and its counterparts on Android and iOS. Insights into the architecture and some references to
the mathematical basis are also provided.

iii

iv

Statutory Declaration

I declare on oath that I completed this work on my own and that I used no other than the
declared accessories. Information which has been taken from other sources (including electronic
media sources) has been noted as such.

Ulm, June 22, 2015 Emre Inanc

v

vi

Contents

1. Introduction 1

1.1. Statement of the problem . 2
1.2. Content structure . 2

2. AREA 1

2.1. Data input . 1
2.2. Feature set . 2
2.3. Sensors . 2
2.4. Formal foundation . 3
2.5. AREA in the �eld . 3

3. Related work 1

3.1. Related papers . 1
3.2. Frameworks and Libraries . 2
3.3. AREA-related work . 2

4. Requirements 1

5. Architecture 1

5.1. The core of AREA . 1
5.2. Windows SDK and Assemblies . 1
5.3. Platform-speci�c extensions . 3
5.4. Platform-speci�c exchanges . 3
5.5. Class structure . 3

6. Aspects of implementation 1

6.1. Platform mappings . 1
6.2. AREA related task mappings . 3

6.2.1. Model . 3
6.2.2. View . 5
6.2.3. Controller . 7

7. Introduction to the application 1

8. Reconciliation of requirements 1

9. Summary 1

Appendices 3

A. Formulas 5

B. Class Diagrams 7

vii

Contents

viii

List of Figures

1.1. The Windows Developer Platform in 8.1 [WS14] 3
1.2. Native App Development on Windows Phone 8.1 [WS14] 4

2.1. Schematic illustration of surrounding and visible POIs [GPSR13] 1

5.1. Multi-tier architecture of AREA [GPSR13] . 2
5.2. Class structure of AREA and an application on top [GPSR13] 5

7.1. AREA's camera view with a single POI . 2
7.2. AREA's camera view with two POIs . 3
7.3. Information about a POI shown in a customizable �yout 4
7.4. Setting the radius in AREA . 5
7.5. AREA's map view . 6

B.1. Class diagram with class relations, collapsed view. Classes below Model are
auto-generated . 8

B.2. Class diagram, view expanded . 9
B.3. Class diagram, controller expanded . 10
B.4. Class diagram, model expanded . 11

ix

List of Figures

x

Zu einem guten Ende gehört auch ein guter Beginn.

Konfuzius, (551 - 479 v. Chr.)

1
Introduction

The use of sophisticated mobile applications has become an essential part of today's world.
Since the breakthrough of smartphones, the need for accessing information systems from mo-
bile devices has not only reached private individuals, but also corporate environments1 and
even institutions that are regulated by public law2. However, even if the number of mobile
applications is growing [USA15], it remains a challenging task to design and develop them3.
This is attributed both to hardware-speci�c limitations of the devices that run the applications
and to the characteristics of the underlying operating system. While the former might limit
the developer with the availability of physical resources (e.g. screen size or battery capacity),
the latter requires him to have profound knowledge of the platform basics (e.g. app model
architecture and programming concepts). In view of these circumstances, making an appli-
cation available to a larger audience across di�erent devices has never been as easy as today.
The open source mobile operating system Android has been pushed by Google to a market
share of 78%, giving both manufacturers and developers the opportunity to address hundreds
of millions of devices with a single application. Its open source nature might have contributed
to this outcome, since the remaining two major operating systems iOS (18.3%) and Windows
Phone (2.7%) are proprietary [USA15]. All handsets that ship with one of these major operat-
ing systems, have more or less the same devices and sensors that are available to the developer.
A GPS sensor can locate the device up to a precision of a few meters, motion sensors can track
the attitude of the device in space and high-resolution cameras enable to augment the reality
with additional information. Business applications can bene�t from these built-in sensors, but
it is up to the developer to address them correctly and make use of their provided data. In
order to deliver the same user experience across all mobile operating systems, several functional
and non-functional requirements have to be met by using the operating system speci�c con-
cepts and application programming interfaces (APIs). This paper deals with the design and
development of a location-based Augmented Reality (AR) kernel on the Windows Phone 8.1
operating system. It is based on the AREA kernel that is already available on iOS and An-

1Delta Air Lines �ight attendants are using Windows Phone handsets to interact with customers [Blo13].
2The German Bundestag provides an app that runs on several platforms [Bun13].
3Take, for example, the TrackYourTinnitus project on Mobile Crowd Sensing [PRH+15] [PRLS15] or large
scale data collection with mobile devices [SPR15] [SSP+13]

1

Chapter 1. Introduction

droid [GPSR13]. AREA is a generic application that can be integrated into real-world mobile
business applications.

1.1. Statement of the problem

In this work, the AREA kernel shall be ported to Windows Phone 8.1, using the Windows
Runtime XAML Framework as the presentation technology and C# as the programming lan-
guage.4 The integrated development environment (IDE) that has been used for developing the
application is Microsoft Visual Studio Community 2013. AREA augments the real image that
is previewed from the camera of a smartphone with points of interest (POIs) that surround the
user. It does so by taking the position, the attitude and the current angle of view of the device
into account. As the core engine has already been developed for iOS and Android, the main
purpose of this work is to give an insight into the engineering process of the Windows Phone
version. Even if the basic concepts have been discussed [GPSR13], there are notable di�erences
in implementing these. In order to meet basic requirements of the AREA engine, such as coping
with limited resources and the integration into other applications, task and platform mappings
have to be investigated and the engine needs to be adapted to the platform characteristics.
Making use of the native APIs of the Windows Runtime is essential in order to address the
sensors and the camera correctly.

1.2. Content structure

In the following, the structure of this paper is explained. In section 2, the main features and
basic concepts of AREA are described. Section 3 gives an insight into related work, i.e. the
engineering of AREA on iOS and Android. The requirements of the AREA engine are de�ned
in section 4, followed by the architectural approach on Windows Phone 8.1 that is discussed in
section 5. This section also includes a class structure diagram and an architecture diagram with
the utilized libraries. In section 6, the implementation is outlined, including a discussion of a
few aspects of implementation. The app is presented in section 7. After discussing whether the
requirements are met in section 8, this work is summarized in section 9. This includes a short
outlook on future work. The appendix section includes some formulas on the mathematical
basis of AREA and detailed class diagrams.

4The Windows Phone Silverlight 8.1 app model has a limited feature set, as it is mainly preserved for backwards
compatibility with Windows Phone 8 apps. DirectX is tailored for game development and WinJS enables
app development with HTML5 and JavaScript. Since C# is similar to the Java programming language,
it seems to be the most appropriate to choose the Windows XAML/C# app model (cf. Figure 1.1 and
Figure 1.2)

2

1.2. Content structure

Figure 1.1.: The Windows Developer Platform in 8.1 [WS14]

3

Chapter 1. Introduction

Figure 1.2.: Native App Development on Windows Phone 8.1 [WS14]

4

2
AREA

AREA is an abbreviation for Augmented Reality Engine Application1. The AREA engine is
making use of the built-in sensors and devices of a smartphone. By determining the location and
the attitude of the device, AREA can �nd surrounding points of interest (POIs) and show them
on top of the camera preview, thus augmenting the real footage with additional information.
Only POIs that are located in the same direction where the back of the smartphone is pointing
at are shown to the user. This is because the camera that is utilized by AREA is the rear camera.
Note that this visible �eld of view is limited by the camera's speci�cations (i.e. image sensor size
and focal length). Its size must be calculated in order for AREA to work correctly [GPSR13].

Figure 2.1.: Schematic illustration of surrounding and visible POIs [GPSR13]

2.1. Data input

There are two parties that are involved in providing the data input whereby the position of the
points of interest are calculated and eventually shown on the smartphone's display: the user
and the provider of the application that has built in the AREA engine. As the user moves the
smartphone, he changes its GPS position and its attitude in space. Unless the user is moving
inside some means of transportation, it is very unlikely that the GPS data changes rapidly. In
contrast, the sensor data is highly variable, because even slight movement of the device will

1More information can be found at http://www.area-project.info

1

http://www.area-project.info

Chapter 2. AREA

a�ect it. This already implies that the querying of the sensors and the calculations need to be
e�cient and maintain the app's stability in order to guarantee a smooth user experience and
reduce battery life consumption. On the other hand, the provider is responsible for supplying
the engine with an XML �le that contains the points of interest. This data is rather constant,
as the provider usually updates the set of POIs periodically. With this in mind, there are three
data categories to be collected and processed. Only under the premise that the surrounding
POIs are within a given radius, the following data must be taken into account in order to place
the correct POIs in the �eld of view [GPSR13]:

1. The altitudes of the device and POIs,

2. The bearing between them relative to the north pole, and

3. The attitude of the device based on three axes of the accelerometer.

Note that the radius can be determined by the user in order to limit the amount of POIs to be
displayed on the screen. Any POIs that are not located within the given radius are neglected
and therefore not included in the calculations above. The user will not see these POIs, even if
they would be inside the �eld of view.

2.2. Feature set

Apart from the basic functionality of showing POIs on the display, AREA enhances the user
experience with some additional features. The user can switch to a map view where he can see
his current position and the surrounding POIs. If the full map experience is not needed, the
radar feature will su�ce. It includes all POIs relative to the position and viewing direction of
the device. By tapping on a POI, the user can see additional information that is associated
with it. Just as the iOS and Android counterparts, the Windows Phone version of AREA shall
provide the possibility to integrate the engine into other applications. In order to facilitate
such a procedure, third party apps have access to public interfaces and bene�t from a high
modularity. In particular, POIs can be extended by further properties without a�ecting the
overall functionality of the engine [GPSR13]. The POIs are parsed from an XML-�le that the
third party app provides, but can also be added or removed at runtime.

2.3. Sensors

The Android version of AREA handles two sensors only, namely the magnetic and gravity
sensor. It is possible to calculate the horizontal heading, the vertical heading and the pitch of
the device on the basis of magnetic and gravity sensor data. While this approach is implemented
in the Android version, the Windows Phone counterpart bene�ts from the combined sensors
of the Windows Runtime API. Making use of the native API set of the underlying operating
system is part of the sophisticated approach of AREA. Therefore, the horizontal heading and
pitch are not calculated manually, but queried from the Compass and Inclinometer sensors of
the Windows Runtime. Note that these are not standalone sensors that are based on physical
units inside of the smartphone. Instead, they are virtual sensors that combine the data of other
physical sensors. This combined sensor data is also known as Sensor Fusion [MSD15g]. Only
the vertical heading needs to be calculated. Because there is no gravity sensor that provides

2

2.4. Formal foundation

the data for calculating the vertical heading on the Windows Runtime platform, this is done by
isolating the gravity force values from the accelerometer sensor data (just like in iOS [GPSR13]).
In order to avoid inaccurate sensor data, the magnetometer's directional accuracy enumeration
is queried and the user is prompted with instructions on how to calibrate the sensors. Before
using any sensor data for calculations, normalizing and smoothing functions are applied.

2.4. Formal foundation

The formal foundation and mathematical basis of AREA have been discussed in [GPSR13] and
[GSP+14] in great detail. Nevertheless, giving a short insight into the mechanics of the AREA
engine can help to understand the functional principles of Augmented Reality applications2.
In order for AREA to determine the surrounding POIs, the distance between them and the
smartphone needs to be calculated. This is achieved by using the Haversine-formula, which
eliminates the ill-conditioning of the Great-circle distance that is based on the spherical law of
cosines [Gey13]. The Android version is making use of the native Location.distanceTo()
method3, whereas on Windows Phone the Haversine formula needs to be implemented manually.
After obtaining the distance of the POI, there remain two other pieces of information that need
to be considered when determining whether it should be placed on the screen or not. The
horizontal heading holds a value from 0° to 360° and indicates the bearing between the user
and the POI relative to the north pole. It is calculated based on the Great-circle distance.
This leaves the vertical heading, which can be calculated by determining the adjacent elevation
angle of the hypotenuse between the user and POI [GPSR13]. Should the horizontal heading
of the POI contain a value between the left and right and the vertical heading a value between
the top and bottom azimuth (i.e. the boundary of the �eld of view), the POI can be placed
on top of the camera view. As mentioned in chapter 1, the size of the �eld of view needs to
be calculated. As it depends on the image sensor size and focal length of the built-in camera,
the respective values need to be researched and used for the calculation of the �eld of view
angles. For this work, the angles are calculated and hard-coded based on the Nokia Lumia
735's camera speci�cations, getting a horizontal �eld of view of 75° and a vertical �eld of view
47°. The sizes for other devices can be calculated and saved inside of an enumeration for future
work.

2.5. AREA in the �eld

The AREA engine is already being used in third party applications, such as the LiveGuide

apps for Ditzingen [Dit15], Bühlerzell [Bü15] and Muswiese. All of these apps make use of the
AREA engine in order to let users �nd points of interest. Demos of these and other apps with
AREA can be viewed at http://area-project.info/.

2All formulas are included in the appendix A.
3Note that the Android method is using the Inverse Formula of Vincenty [Gre15] [Vin75]. It is less accurate,
but a little faster than the Haversine formula.

3

http://area-project.info/

Chapter 2. AREA

4

3
Related work

In this chapter, a brief look at related work is taken. There are some papers that deal with
location-based mobile Augmented Reality, but none of them seem to give a profound insight
into developing a generic engine that runs on several mobile operating systems. Furthermore,
there are a few open-source and proprietary SDKs, frameworks and libraries, as well as some
commercial apps that implement di�erent solutions for Augmented Reality applications.

3.1. Related papers

Some works focus on the design of location-based Augmented Reality applications. For instance,
[FSBA06] covers the conceptual design of Spatial Information Appliances, which denotes a way
of interacting with the physical environment. A pointer-based interaction model enables the
user to point on real world objects and show related information on a mobile device. However,
this work gives neither some insight into the engineering process, nor does it address the integra-
tion into existing mobile applications. [CFA+10] gives a great overview on Augmented Reality
technologies, including some insight into research �ndings and existing applications. The work
of [PT10] comes close to the issues and topics of this work, as it focuses on location-based Aug-
mented Reality on mobile phones. The presented approach augments the camera view with
3D virtual objects, which are retrieved from a database. This requires the correct application
of mathematical formulas and the e�cient use of built-in sensors, such as the accelerometer
and magnetometer. The result is a sophisticated application written in C++ for a Nokia N97
mobile handset. Even though the problem of limited resources on mobile phones is mentioned,
this work does not provide an in-depth look at the engineering process. A rather interesting im-
plementation of location-based Augmented Reality applications for mobile devices is presented
by [RS03]. The authors discuss an indoor tracking system that is able to track the user within
an environment, which is equipped with �ducial markers. The fairly large set of hardware that
is attached to the body of the user (including a notebook and a helmet with sensors and a
display), hosts the engine that is based on the ARToolkit libary [Lam15]. Furthermore, two
applications that are built upon the engine are introduced. Finally, [LKKS09] introduces a
web-based Augmented Reality application that can browse web media and overlay it on top
of POIs. The mentioned works focus rather on the conceptual and architectural design than
on the actual implementation. However, if any of the approaches are implemented, they target
already outdated technologies and operating systems (Symbian or the CE kernel-based Win-
dows Mobile) and don't provide any information on how the engineering task has been carried
out.

1

Chapter 3. Related work

3.2. Frameworks and Libraries

There is a rather large choice of Augmented Reality frameworks and libraries to build applica-
tions on. Among the open-source libraries, ARToolKit seems to be the most prominent one.
It allows the tracking of optical markers to determine the users or real-world objects' position.
This library was also used in the work of [RS03]. It is worth mentioning that there are many
spin-o�s and similar libraries, which is a common phenomenon in open-source projects. By
taking a look at proprietary solutions, one comes across many popular frameworks. With the
Wikitude SDK, developers can build Augmented Reality apps based on the advanced Wiki-
tude library [Wik15]. The software supports many platforms and third-party frameworks, as
it is even available to cross-platform development with Cordova [Cor15] or Xamarin [Xam15].
Junaio provides yet another powerful API for creating mobile Augmented Reality applica-
tions [Jun15]. However, there are only very few framworks for the Windows Phone platform.
One that is quickly found is the Geo AR Toolkit (GART) for Windows Phone and Windows 8,
designed by the Microsoft employee Jared Bienz [Bie15]. It was originally designed for Windows
Phone 7.5 and needs to be manually ported to Windows Phone 8.1 in order to work properly.
GART shows some similarity to AREA by including a heading indicator, a map and camera
view. Well known AR apps on Windows Pone are Here City Lens [B.V15] or Yelp [Yel15], both
showing public POIs, such as restaurants, drugstores or bars.

3.3. AREA-related work

This work is mainly based on the existing work on AREA, elaborated by [GPSR13], [GSP+14]
and [SPSR15]. Since the AREA engine has already been developed for iOS and Android, this
work focuses on the porting of the engine to the Windows Phone platform. In the process
of doing so, the engineering process is outlined and special emphasis is placed on the various
di�erences between the Windows Phone version and the iOS and Android counterparts. See
chap 6 for more information on this.
[GPSR13] gives profound insight into the engineering process of AREA. At �rst, the require-
ments of the AREA engine are thoroughly elaborated and the engineering process is described
in general. The formal foundation is also part of this work, the respective formulas that are
used throughout all implementations of AREA can be viewed in the appendix A. This also
applies to the common architectural design of the engine. The unique characteristic of giving
insight into the actual engineering and implementation on the respective platform is part of
all AREA-related work. Thus, the Model View Controller pattern provides the common basis.
[GPSR13] also includes a survey in order to evaluate AREA. It covers general questions about
the use of the participants' smartphones and their knowledge about Augmented Reality. Fur-
thermore, the usability and quality aspects of the individual features of AREA are surveyed.
The outcome shows that AREA is perceived as positive and intuitive. The architecture of
an application on top of AREA is brie�y discussed, followed by some details on the engineer-
ing process and its evaluation in regard to some self-penned topics. Finally, the integration of
AREA into LiveGuide Ditzingen app is described. [GSP+14] contains a more general discussion
on AREA and points out challenges, examples and lessons learned. The di�erences between the
iOS and Android implementations are also discussed. Finally, [SPSR15] does that in a similar
fashion.

2

4
Requirements

The requirements of AREA on Windows Phone are identical to the ones that were originally
elaborated in previous works [GPSR13]. Several functional and non-functional requirements
have to be met in order to deliver the full experience of AREA. The validation of these re-
quirements is discussed in chapter 8. The functional requirement of the utmost signi�cance
is the provision of POIs on top of the camera view. It is closely linked to the requirement of
determining the visibility of the POIs, which is dependent on the smartphone's current visible
�eld of view. If the engine has decided to place a POI on the camera view, further real-time
updates of the POIs are necessary. This functionality delivers the very basic user experience of
AREA, while requiring a major part of the engineering e�ort. In order for this to work, another
fundamental requirement is the sophisticated use of the built-in sensors and the application of
mathematical formulas (see appendix A). A map view o�ers another useful UI perspective,
which is detached from the augmented camera view. Providing an adjustable radius, within
which the relevant POIs are to be included in the basic calculations, is an additional means of
making the AREA engine more useful to the user. In this regard, a radar on top of the camera
view and �youts for showing related information of POIs when touching them add some extra
usability. The AREA engine shall support a portrait and a landscape mode for showing POIs
on the display when the smartphone is in oblique position. As for non-functional requirements,
the AREA engine aims for e�cient and accurate calculations as well as for overall stability. In
addition to that, the e�ciency of screen drawing shall not be neglected. Maintenance support
shall complete the non-functional requirements. Implementation aspects, such as the consistent
and extendable speci�cation of POIs plus the easy integration into other applications, are also
to be ensured. Tab. 4.1 summarizes all requirements.

1

Chapter 4. Requirements

Table 4.1.: The requirements of AREA (adjusted to Windows Phone) [GPSR13]

Requirement Type

Provide POIs on camera view functional

Provide POIs on map view functional

Enable POIs on camera view only if they are inside the visible
�eld of the user's view

functional

Provide that POIs on camera view and on map view react to
touch events

functional

Read sensors to determine position of the smartphone (i.e. ac-
celerometer, magnetometer, inclinometer, compass and GPS sen-
sor)

functional

Update data and POI in real-time while all possible movements functional

Provide adjustable radius for the distance of viewable POIs functional

Provide a radar in camera view showing POIs in the environment
and inside the radius

functional

Provide additional information according to touch events functional

Support portrait mode and landscape mode functional

Provide e�ciency of calculations non-functional

Provide accuracy of calculations non-functional

Provide e�ciency of screen drawing non-functional

Provide stability non-functional

Support maintainability non-functional

Provide consistent speci�cation of POIs implementation

Provide that POIS can be easily extended implementation

Provide easy integration into other applications (modularity) implementation

2

5
Architecture

In this section, the architecture of AREA is presented and described. The engine is composed
of four main modules, based on the Model View Controller (MVC) architectural pattern. This
modular design is essential to the core of AREA, as it enables both exchangeability and ex-
tensibility [GSP+14] of the main components. The key advantage of this architectural design
is not only the possibility of exchanging and extending the modules within the AREA engine
itself, but also across several developer platforms and programming languages. This is a fun-
damental trait of the AREA engine, that has proven its absolute advantage in this work, when
porting the app to the Windows Phone platform. The following sections will explain this in
more detail.

5.1. The core of AREA

The core of AREA comprises the main modules that are part of the AREA engine. It is part
of all implementations of AREA so far, no matter what platform they're engineered for. This
includes the Windows Phone version that has been developed within the context of this work.
In order to comply with the MVC pattern, upper tiers can only access the functionality of lower
tiers by using the respective interfaces. Processing any information and viewing it to the user
is only possible when there is access to the relevant data. This is ensured by the Model, which
handles the management of data by providing a base class for POIs, a store where they can
be saved, an XML-schema and the respective XML-parser for loading POIs. The Controller

manipulates the model's state. With the help of the queried sensor data and the formulas, which
were both mentioned in chapter 2, the visibility and position of the POIs can be calculated and
saved. In turn, the Controller is noti�ed about any changes of the Model, the smartphone's
position or its attitude. In accordance with the passed data, the View can then be updated.
This includes the POIs visibility state and position on the screen or other UI elements, such as
the radar view and the radar view port. The modular structure of AREA allows a third party
developer to add intra-core extensions or customize the main modules at his leisure. Fig. 5.1
gives an overview of the AREA architecture on Windows Phone.

5.2. Windows SDK and Assemblies

The Windows Software Development Kit (SDK) for Windows 8.1 comes with the .NET for

Windows Store apps Framework, which is a subset of managed types that can be used to create
Windows Store apps [MSD15d]. The Windows Runtime API complements this subset with

1

Chapter 5. Architecture

Figure 5.1.: Multi-tier architecture of AREA [GPSR13]

additional types and is part of the Windows Phone 8.1 framework. Both frameworks provide
the set of assemblies that are needed for app development on the Windows 8.1 platform. This
module is also included in Fig. 5.1. The AREA engine is accessing the types that reside in the
respective namespaces to make use of the native members, such as classes and interfaces.

2

5.3. Platform-speci�c extensions

5.3. Platform-speci�c extensions

The MVC pattern allows some platform-speci�c extensions, since the main modules are not
a�ected by additional assemblies. In this work, a maintenance assembly has been added. It
contains a simple background uploader task that is able to upload log �les to an ASP.NET
web application. This is a useful solution for accessing any log �les that are created with the
Diagnostics API of Windows [MSD15b]. When the app crashes because of an unhandled error,
the entire log data of a logging session is stored in the application's local folder. Upon the next
execution of the app, the LogUploaderTask is triggered every 15 minutes and uploads all log
�les that have been previously saved just before crashing. This functionality has been tested
with a simple ASP.NET web application running on Internet Information Services Express
(IIS Express) that comes with Visual Studio 2013 for testing purposes. Note that a real
production web server would require some adaptions to the uploader task, such as the usage of
user credentials and a custom URI that points to the ASP.NET application.

5.4. Platform-speci�c exchanges

The characteristics of a given platform require replacements or changes to code that had orig-
inally been developed for another platform. When porting the AREA engine to Windows
Phone, there certainly had to be made some signi�cant adaptions. This is due to the mere fact
that iOS or Android libraries are not available on Windows Phone. These exchanges require
di�erent approaches of implementation, in order to reproduce the same functionality and the
almost identical look and feel of AREA. Chapter 6 gets in to more detail in that regard.

5.5. Class structure

The class structure of the Windows Phone version of AREA is very similar to its siblings on
iOS and Android. The app page model allows easy integration into existing applications, as
a simple page navigation call is su�cient for AREA to initialize the required resources and
components. As a consequence of this page navigation, the MainPage is set as the content
of the Frame object, which is created in the code-behind �le of the App class. Note that
the App class also handles the saving process of log �les upon crashing and the registering of
the LogUploaderTask (refer to section 5.3). Since it is the entry point of a Windows Store
app, it should be customized for the existing application that integrates the AREA engine.
The SensorController class is responsible for reading the various sensors of the smart-
phone. After being instructed to start collecting sensor data by the LocationController,
it noti�es the same whenever the GPS-position or the readings of the inclinometer, compass,
accelerometer or magnetometer change. In order to receive any of the mentioned events, the
LocationController implements the SensorListener interface. Using the sensor data
along with the POIs in the POIStore, it can then perform the necessary calculations for
determining the visibility and position of the POIs to be displayed. As the MainPage im-
plements the LocationListener interface, it gets noti�ed about any changes to the POIs
and the smartphone's attitude and position. With the passed data the MainPage can up-
date the UI by placing the respective POIViews on the locationView and by updating

3

Chapter 5. Architecture

the RadarView and the RadarViewPortView. The CaptureElement control is provided
with a MediaCapture element by a helper class and provides functionality for previewing
the camera's video stream. In contrast to the iOS counterpart, the CaptureElement does
not have an overlay property, which can hold custom sub-views [GPSR13]. Instead, a simple
locationView Grid control contains the respective POIs. All XAML controls are added
to the ContentPanel, the XAML root element of the MainPage. The model includes the
POIStore, which contains the POIs that were parsed from an XML �le with the help of the
XMLParser. The MapPage contains a MapControl and MapIcons to represent the sur-
rounding POIs. Similar to the Android intent practice, the page navigation to the MainPage
can be performed from here. The AREA engine sets up everything else autonomously from
there on. Fig. 5.2 shows the associated class structure. Detailed class diagrams are included in
the appendix B.

4

5.5. Class structure

Figure 5.2.: Class structure of AREA and an application on top [GPSR13]

5

Chapter 5. Architecture

6

6
Aspects of implementation

The major part of this work is discussed in this chapter. It's been a considerable amount of work
to make the preparations of porting the AREA engine to the Windows Phone 8.1 operating
system. It began with exploring the platform basics of the Windows Universal app model,
which is currently undergoing a change with the emerging Windows 10 platform. Microsoft
has been striving for a truly converged developer platform, wherein targeting a single operating
system with a single app constitutes the ultimate goal of universality. By providing about
90% API convergence, Windows 8.1 has been a major step forward into the right direction.
Eventually, this goal is achieved with the new Universal Windows Platform (UWP) for Windows
10. However, this work started with Windows 8.1 as the prevailing platform for Windows apps.
Therefore, the implementation focuses on a universal Windows app for Windows Phone 8.1.
The notion of porting the app to Windows 10 could provide the basis of future work, which is
discussed in chapter 9.

6.1. Platform mappings

The AREA engine is available on two other platforms. When porting the app to Windows
Phone, one has to analyze the already available code and understand the characteristics of the
underlying platform. This section will give a brief overview on key similarities and di�erences
between Windows Phone, Android and iOS.
By taking a look at the runtime technologies of the mobile operating systems, the a�nity
between Android and Windows Phone can be easily detected. Android applications are exe-
cuted in the Dalvik Virtual Machine (VM), a managed runtime environment that is set up for
each application. The Dalvik core class library ensures a developer experience that is similar
to Java Standard Edition (SE). However, the latter is using a stack-based Java Virtual Ma-

chine (JVM), whereas the Dalvik VM is register-based and optimized for running on mobile
devices [Inc15c]. More Java platform technologies, such as a subset of Java libraries and the
programming language Java, complement the Android Runtime. The successor to the Dalvik
VM is the Android Runtime (ART, not to be confused with the common terminology when
referring to the Android Runtime in general), which introduced some major improvements, in-
cluding Ahead-of-Time (AOT) compilation and an advanced garbage collection (GC) [Inc15b].
Windows Phone 8.1 is making use of the Common Language Runtime (CLR) of the .NET Fram-
work. Just like the Dalvik VM, it uses Just-in-Time (JIT) compilation and runs a Windows
Phone application in a Sandbox environment [MSD15a]. Android and Windows Runtime APIs
provide access to packages and namespaces that include graphics, media, storage, networking
and sensor libraries. Apple's iOS is using the Objective-C runtime to execute applications,

1

Chapter 6. Aspects of implementation

without the need of any intermediate technology such as Java or .NET. Just like on Android
and Windows Phone, iOS apps run in a restricted and secured Sandbox, which is not speci�ed
in greater detail. The iOS operating system is presented as a layered architecture, with Cocoa
Touch being at the very top. Most objects in Cocoa Touch are subclasses of the NSObject
class [Inc15a] and o�er access to functionality that is similar to Android and Windows Runtime
APIs. Frameworks organize the iOS API just like packages in Android or namespaces in Win-
dows. Some runtime functions can be accessed in order to use C and replicate compiler-based
functionality [Inc15a]. Tab. 6.1 gives a more detailed overview on the di�erent platforms.

Table 6.1.: Platform overview and developer tools of iOS, Android andWindows Phone (8.1) [MSD15c]

iOS Android Windows Phone

Runtime Objective-C Runtime Android Runtime Windows Runtime

Cocoa Touch Android Libraries WinRT Libraries
Media Language Projections
Core Services
Core OS
iOS Frameworks and
System Libraries

Java Libraries .NET Libraries

Dalvik VM or Android
runtime (ART)

.NET CLR

Kernel XNU (Darwin) Linux Kernel Windows NT Kernel

Development OS Mac Windows Windows
Windows Mac Mac

Linux

IDE Xcode Android Studio Visual Studio
Visual Studio (2015) Eclipse

IntelliJ
NetBeans
Visual Studio (2015)

SDK iOS SDK Android SDK Windows SDK for 8.1

Language Objective-C Java C#
Swift Visual Basic (VB)

C++
HTML+JavaScript

The user interface mappings in Tab. 6.2 might suggest that iOS closely resembles Windows
Phone. That applies to the identi�ers of the UI components (e.g. Page and Control), but when
it comes to implementation, Android shares many similarities with Windows Store apps. For
the sake of brevity, the main focus is laid on the comparison between Android and Windows
Phone from here on. To provide some level of completeness, iOS is included in some tables and
might sometimes be mentioned. Before dwelling on some code to point out implementation
di�erences, some UI basics should be discussed.

2

6.2. AREA related task mappings

The unit of display is called Activity on Android and Page on Windows Phone. In regard
of the paradigm, Activities and Pages are almost identical [MSD15c]: An app is a collection
of Activity/Page objects, each designed to perform a function (sending a message or taking
a photo). Only one Activity/Page is visible at a time, with the exception that Activities can
be invisible or used for non-interactional purposes. An Activity/Page is a collection of layout
controls and widgets (e.g. buttons, images or text boxes). Both Activities and Pages are added
to some sort of stack. Activity objects are added to a back stack, which consists of cohesive
task units. A task is a collection of activities that are related to each other by the job they
are meant to perform [Inc15d]. Pages are added to a navigation stack that is not available
across the entire system, but within each app. The layout of an Activity is de�ned in .xml
�les, the runtime code is in a .java �le. Pages have their layouts de�ned in .xaml �les, with
the code being in .cpp/.cs/.vb �les (.cs in the case of AREA). Event handling can be used by
developers in similar fashion, though Windows Store apps make use of .NET delegates. Note
that in Windows Store apps, control references are generated automatically and can be accessed
directly in runtime code �les, whereas in Android a widget needs to be explicitly located by
using the findViewById method of the Activity class. The use of composite UI is essential to
both platforms. Android UI consists of compound components and fragments, while Windows
Store apps use child objects of control-based classes.

Table 6.2.: User interface mappings of iOS, Android and Windows Phone (8.1) (cf. [MSD15c])

iOS Android Windows Phone

Unit of Display Page Activity Page

Widget Base Control View Control

Layout Base Collections ViewGroup Panel
Containers

Event Handling Delegates Observer interface Delegates

UI Components Child objects of
UIControl

Compound Compo-
nents and Fragments

Child objects of Con-
trol

6.2. AREA related task mappings

In order to address the correct APIs and namespaces, taking a look at the task mappings
is of great advantage. In this section, the use of the APIs on Android and Windows Phone
are pointed out by means of the actual implementation. The implementation di�erences are
organized by the MVC components, starting with small di�erences and going over to signi�cant
variations.

6.2.1. Model

The Syntax of the Java and C# programming languages are very similar. Many Model classes
in AREA on Windows Phone are not substantially di�erent from their Android counterparts.

3

Chapter 6. Aspects of implementation

However, one distinct feature of C# is implemented throughout the entire app: Properties. In
Java, accessor and mutator methods need to be implemented explicitly. In the following Java
example, the private �eld variable kDeviceWidth shall be publicly accessible, but only the
class that holds it shall be able to change its value:

Listing 6.1: Java Accessor and mutator methods

1 private static double kDeviceWidth;
2

3 //getter
4 public static double getkDeviceWidth() {
5 return kDeviceWidth;
6 }
7

8 //setter
9 private static void setkDeviceWidth(double kDeviceWidth) {
10 AREAConstants.kDeviceWidth = kDeviceWidth;
11 }

In C#, this can be implemented in a much more elegant way, using Auto Properties. The
private �eld doesn't have to be declared explicitly, because the compiler handles that. By using
properties, classes with many �elds look much less cluttered and get along with few lines of
code:

Listing 6.2: C# Field Property

1 public static double KDeviceWidth { get; private set; }

Properties are also very useful when using Singleton classes. Singleton classes make sure that
only one object of that class is instantiated and globally accessible. Note that this time the
private �eld is declared explicitly in order to handle the lazy instantiation. The setter is
omitted:

Listing 6.3: C# Properties in Singleton classes

1 private static AREAStore instance;
2

3 //The Instance property that handles the lazy instantiation.
4 public static AREAStore Instance
5 {
6 get
7 {
8 if (instance == null)
9 instance = new AREAStore();
10 return instance;
11 }
12 }

Other classes just need to reference the AREAStore.Instance in order to call the get
method of the property.

4

6.2. AREA related task mappings

6.2.2. View

In Android, custom UI components are implemented by extending the View class. It is the
base class for widgets and can be used to de�ne new interactive UI components. If a widget
shall contain children views, the custom class needs to derive from the ViewGroup class.
The correct mapped class in Windows Phone would be UIEelement. Although it serves as
a base class for most Windows Runtime UI objects, custom controls are not derived from
it [MSD15f]. Instead, the UserControl o�ers functionality for de�ning new controls that
encapsulate existing controls and provide its own logic.
An important compound UI component in AREA is the AREAPointOfInterestView. An
object of this class represents a single POI on the screen. Comparing the constructors between
the Android and Windows Phone version of the class already reveals some of the few, but
de�ning di�erences:

Listing 6.4: Java The constructor in AREAPointOfInterestView

1 public class AREAPointOfInterestView extends View {
2 ...
3 public AREAPointOfInterestView(Context context,

AREAPointOfInterest poi) {
4 super(context);
5 this.context = context;
6 this.poi = poi;
7 init();
8 }
9 ...

10 }

In Android, every View-based class needs to claim a Context in its constructor in order to
have access to the applications current resources and classes. This is often needed when manip-
ulating other views, for example when updating a TextView in consequence of an onClick
event in a Button. In such cases, the respective event handler of the Button needs to use the
findViewById() method, which only works if the Button was instantiated with the right
context (i.e. the Activity that holds the TextView). As mentioned above, the references to other
XAML controls are created automatically in Windows Phone. The constructor in Windows
Phone is therefore implemented like this:

Listing 6.5: C# The constructor in AREAPointOfInterestView

1 public class AREAPointOfInterestView : StackPanel
2 {
3 ...
4 public AREAPointOfInterestView(AREAPointOfInterest poi) : base()
5 {
6 Poi = poi;
7 init();
8 }
9 ...

10 }

5

Chapter 6. Aspects of implementation

Note that in the implementation for Windows Phone, the class extends StackPanel. It can
also be used as a base class for derived custom classes, just like a custom UserControl.
The StackPanel comes in very handy, because it can arrange its child elements into a single
horizontal or vertical line. This is needed for the appearance of a POI, which consists of a circle
and a text block right underneath it.
It becomes apparent that the absence of a context-like object passed around in UI elements is
of low importance for Windows Phone, when examining how it handles scaling to pixel density
compared to Android. With the automatic scaling of Windows Runtime apps, the developer
doesn't have to deal with manual pixel density calculations. In Android, the display metrics
need to be queried from the context in order to get the density dots per inch (DPI). This
value can then be used to perform density-pixel-to-pixel or pixel-to-density-pixel calculations
to ensure that the UI proportions look about the same on every Android device. Windows
Phone 8.1 apps use a scaling system based on the screen properties of the device (e.g. screen
size, resolution and dpi) and apply a three-stage scaling factor whenever the UI elements would
be too small for user interaction. By building the UI with XAML and paying attention to some
dos and don'ts, the automatic scaling takes place and the developer is exempted from further
actions [MSD15e].
When creating custom view classes in Android, the use of a Canvas object is needed. For
example, in the onDraw method of the earlier mentioned AREAPointOfInterestView class,
the Canvas is responsible for drawing the elements that are contained in a POI view. The
drawing calls are performed by using previously de�ned Paint objects, such as circles and
rectangles. The following code is showing the required implementation steps for including a
circle in the POI view:

Listing 6.6: Java Sub-components of the AREAPointOfInterestView class

1 public class AREAPointOfInterestView extends View {
2 ...
3 private void init() {
4 ...
5 circleFill = new Paint();
6 circleFill.setFlags(Paint.ANTI_ALIAS_FLAG);
7 circleFill.setColor(Color.argb(179, 249, 196, 49));
8

9 circleStroke = new Paint();
10 circleStroke.setStyle(Paint.Style.STROKE);
11 circleStroke.setStrokeWidth(strokeWidth);
12 circleStroke.setFlags(Paint.ANTI_ALIAS_FLAG);
13 circleStroke.setColor(Color.argb(255, 25, 25, 25));
14 ...
15 }
16 ...
17

18 @Override
19 protected void onDraw(Canvas canvas) {
20 super.onDraw(canvas);
21 canvas.drawCircle(width / 2.0f, circleSize / 2.0f +

dpToPixel(2),
22 circleSize / 2.0f, circleFill);

6

6.2. AREA related task mappings

23 canvas.drawCircle(width / 2.0f, circleSize / 2.0f +
dpToPixel(2),

24 circleSize / 2.0f, circleStroke);
25 ...
26 }
27 }

The custom StackPanel-based implementation of the AREAPointOfInterestView class
in Windows Phone doesn't have an onDraw method or anything alike. Instead, XAML handles
the drawing process automatically when a Control or Shape is added to the StackPanel.
In this case, a simple Ellipse is su�cient:

Listing 6.7: C# Sub-components of the AREAPointOfInterestView class

1 public class AREAPointOfInterestView : StackPanel
2 {
3 ...
4 private void init()
5 {
6 circle = new Ellipse();
7 circle.Height = circleSize;
8 circle.Width = circleSize;
9 circle.StrokeThickness = strokeWidth;

10 circle.Fill = new SolidColorBrush(Color.FromArgb(179, 249, 196,
49));

11 circle.Stroke = new SolidColorBrush(Color.FromArgb(255, 25, 25,
25));

12

13 this.Children.Add(circle);
14 }
15 ...
16 }

6.2.3. Controller

Initializing the sensors in Windows Phone is a rather quick task. In the AREASensorControll
er, the sensor classes that reside in the Sensors namespace and were discussed in chapter 2,
can be referenced in order to call the GetDefault() method. There is no need for a
SensorManager to access the sensors, which is yet again obtained through a context
object in Android. The Geolocator is an exception, as it needs to be created and gets its
DesiredAccuracyInMeters and ReportInterval properties assigned in the process of
doing so. As to the other sensors, the requested report interval of 16 milliseconds is compared
to the minimal supported interval. The code sets the requested interval if the minimum
supported one is not greater than it. When debugging the code on the Lumia 735, it became
apparent that apart from the accelerometer, all other sensors support a minimum report
interval of exactly 16. This approach is also suggested by the documentation of the Windows
Runtime API.

7

Chapter 6. Aspects of implementation

Listing 6.8: C# Initializing the sensors

1 ...
2 private readonly Nullable<uint> desiredAccuracyInMetersValue = 5;
3 private const uint reportIntervalValue = 500;
4

5 ...
6 public AREASensorController()
7 {
8 ...
9 // Create sensors.
10 accelerometer = Accelerometer.GetDefault();
11 compass = Compass.GetDefault();
12 inclinometer = Inclinometer.GetDefault();
13 magnetometer = Magnetometer.GetDefault();
14

15 geoLocator = new Geolocator
16 {
17 // Create Geolocator with tracking accuracy and interval.
18 DesiredAccuracyInMeters = desiredAccuracyInMetersValue,
19 ReportInterval = reportIntervalValue
20 };
21

22 // Establish the report interval for each sensor.
23 if (accelerometer != null)
24 {
25 uint minReportInterval = accelerometer.MinimumReportInterval;
26 uint reportInterval = minReportInterval > 16 ? minReportInterval :

16;
27 accelerometer.ReportInterval = reportInterval;
28 }
29

30 if (compass != null)
31 {
32 uint minReportInterval = compass.MinimumReportInterval;
33 uint reportInterval = minReportInterval > 16 ? minReportInterval :

16;
34 compass.ReportInterval = reportInterval;
35 }
36

37 if (inclinometer != null)
38 {
39 uint minReportInterval = inclinometer.MinimumReportInterval;
40 uint reportInterval = minReportInterval > 16 ? minReportInterval :

16;
41 inclinometer.ReportInterval = reportInterval;
42 }
43

44 if (magnetometer != null)
45 {
46 uint minReportInterval = magnetometer.MinimumReportInterval;

8

6.2. AREA related task mappings

47 uint reportInterval = minReportInterval > 16 ? minReportInterval :
16;

48 magnetometer.ReportInterval = reportInterval;
49 }
50 }

When starting the sensors, the delegates - in this case TypedEventHandlers - are attached to
the ReadingChanged and PositionChanged events, in order to get any updates from the
sensors. When obtaining the position for the �rst time, the asynchronous programming in Win-
dows Store apps is used. By calling await geoLocator.GetGeopositionAsync() in or-
der to get the current position, the responsiveness of the App is maintained. The asynchronous
method startSensoring() returns a Task<bool>, which handles the asynchronous oper-
ation of obtaining the position in the background, without blocking the UI thread.

Listing 6.9: C# Start sensoring

1 public async Task<bool> startSensoring()
2 {
3 channel.LogMemberName();
4

5 // Assign event handlers for the reading, position and status changed
events.

6 accelerometer.ReadingChanged += new TypedEventHandler<Accelerometer,
AccelerometerReadingChangedEventArgs>(accelerometer_ReadingChanged)
;

7 compass.ReadingChanged += new TypedEventHandler<Compass,
CompassReadingChangedEventArgs>(compass_ReadingChanged);

8 inclinometer.ReadingChanged += new TypedEventHandler<Inclinometer,
InclinometerReadingChangedEventArgs>(inclinometer_ReadingChanged);

9 magnetometer.ReadingChanged += new TypedEventHandler<Magnetometer,
MagnetometerReadingChangedEventArgs>(magnetometer_ReadingChanged);

10 geoLocator.PositionChanged += new TypedEventHandler<Geolocator,
PositionChangedEventArgs>(geoLocator_PositionChanged);

11 geoLocator.StatusChanged += new TypedEventHandler<Geolocator,
StatusChangedEventArgs>(geoLocator_StatusChanged);

12

13 // Get current position.
14 currentPosition = await geoLocator.GetGeopositionAsync();
15

16 notifyPositionChanged();
17

18 channel.LogMessage("Sensoring started ...");
19

20 return true;
21 }

Data Binding is very frequently used in XAML programming. It enables a simple way of dis-
playing the underlying data of a XAML control, while the properties get altered by the logic of
the application. When the bound data changes, the update of the XAML control is handled au-
tomatically. This functionality can further be customized by setting the mode of binding, which
determines whether the respective target property is updated once (upon creation), whenever

9

Chapter 6. Aspects of implementation

the source changes (one way) or when either target and source should be updated when either
changes. In this case, using the slider will change the Radius property of the location con-
troller (lc) and any update to the Radius property will propagate to the slider.
When setting up the MainPage, instances of the CameraCapture helper class and the
CaptureElement XAML control are created. The latter renders the camera stream , while
the former helps initializing camera resources and start showing the preview stream.

Listing 6.10: C# Bindings and camera preparations

1 public MainPage()
2 {
3

4 ...
5 // Set up radius slider. Bind Radius to it.
6 radiusSlider.Maximum = (int)AREAConstants.KMaxDistance - AREAConstants

.KMinDistance;
7 Binding binding = new Binding
8 {
9 Source = lc,
10 Path = new PropertyPath("Radius"),
11 Mode = BindingMode.TwoWay
12 };
13 radiusSlider.SetBinding(Slider.ValueProperty, binding);
14

15 ...
16 // Get an instance of CameraCapture helper class and set up the

capturePreview.
17 cameraCapture = new CameraCapture();
18 capturePreview = new CaptureElement();
19

20 ...
21 }

The following code shows how the camera is initialized when navigating to the camera view
(i.e. the MainPage). The release of the camera resources when navigating from the page
is important, otherwise other applications won't be able to access the camera. Note how
the camera view registers itself for future updates from the location controller by calling
lc.registerListener(this). The interface methods are implemented in order to get
noti�ed about the calculations of the controller. The UI, in particular the POIs, can then be
updated. Starting and stopping the reading of the sensors is also handled here.

Listing 6.11: C# Camera initialization and release

1 protected override async void OnNavigatedTo(NavigationEventArgs e)
2 {
3 // Hide navigation and status bar
4 //ApplicationView.GetForCurrentView().SuppressSystemOverlays = true;
5 await StatusBar.GetForCurrentView().HideAsync();
6

7 // Initialize camera resources and show preview.
8 cameraCapture = new CameraCapture();
9 capturePreview.Source = await cameraCapture.InitCaptureResources();

10

6.2. AREA related task mappings

10 await cameraCapture.StartPreview();
11

12 lc.registerListener(this);
13 lc.startUpdating();
14 }
15

16 protected override async void OnNavigatedFrom(NavigationEventArgs e)
17 {
18 // Release camera resources.
19 if (cameraCapture != null)
20 {
21 await cameraCapture.StopPreview();
22 capturePreview.Source = null;
23 cameraCapture.Dispose();
24 cameraCapture = null;
25 }
26

27 lc.stopUpdating();
28 lc.unregisterListener(this);
29 }

Implementation in regard of the appliance of mathematical calculations (e.g. Haversine-formula
or other trigonometrical calculations) can be viewed in [GPSR13] in more detail. There is a
neglectable di�erence between the code that performs the calculations on iOS, Android and
Windows Phone. Therefore, it has been omitted in this chapter. For the sake of completeness,
the utilized formulas can be viewed in the appendix A.

In summary it can be said that the implementation approach is very similar to Android, as the
paradigms are about the same. However, when getting into the details, many di�erences can be
detected. The Windows Phone platform handles various things automatically and liberates the
developer from legacy-like tasks that can be found in Android. On top of that, the API seems
more streamlined and easier to use, resulting in easy-to-understand and shorter code. On the
other hand, it feels like Android gives more freedom over some implementation details. After
all, Windows is a proprietary platform and provides no insight into the actual implementation
of classes and their functions. Altogether, the potential of the Windows platform is vast and is
about to reach its climax with Windows 10 right around the corner.

11

Chapter 6. Aspects of implementation

12

7
Introduction to the application

This chapter gives a short introduction to the actual UI of the AREA engine, running on a
Nokia Lumia 735 with Windows Phone 8.1 Update.

1

Chapter 7. Introduction to the application

When starting AREA, the camera view is opened in order to show surrounding POIs. In
Figure 7.1, AREA shows a single POI with a circle and a text label underneath it. The radar
view in the top left corner indicates that there are more POIs within the current radius of 8344
meters. A little triangle-shaped indicator moves around the radar view and points northwards.
Navigating to the map view is done by tapping the map icon on the top right corner.

Figure 7.1.: AREA's camera view with a single POI

2

When turning the device to left side, three other POIs show up on the screen. The radar
indicates that one is rather far away (�Voith Arena�), while the other two must be very close
(�Vergölst Partnerbetrieb� and �Autohaus Penka�). To be exact, �Vergölst Partnerbetrieb� is
even closer, because it overlays the other POI.

Figure 7.2.: AREA's camera view with two POIs

3

Chapter 7. Introduction to the application

Tapping on a POI shows a full-screen �yout with related information. This �yout can be
customized with other XAML controls, for example with images, map controls or other text
blocks.

Figure 7.3.: Information about a POI shown in a customizable �yout

4

By tapping on the distance view right below the radar, the user can change the radius setting.
Any change to the radius immediately a�ects the visible POIs on the screen. When going down
with the radius, the �Voith Arena� disappears right away. Setting the radius higher makes it
pop up again. The update of the radius is immediately applied, the button �Radius einstellen�
only closes the �yout.

Figure 7.4.: Setting the radius in AREA

5

Chapter 7. Introduction to the application

The map view can be reached by tapping the map icon (Figure 7.1). A green circle indicates
the user's position, while standard map icons mark the surrounding POIs. The set of POIs is
passed as an argument of the navigation call to the map view. Tapping the back button on the
bottom or the camera icon in the top right corner will get the user back to the camera view.

Figure 7.5.: AREA's map view

6

8
Reconciliation of requirements

An important task of software engineering is the reconciliation of requirements. In chapter 4,
the requirements of AREA have been introduced. This chapter is meant to check whether the
requirements are met in general. Pointing out what really works as intended is as important as
focusing on remaining issues and challenges. Before going into detail about the latter, the basic
functionality of AREA is addressed. The current version of AREA on Windows Phone can
show POIs on a camera and map view. POIs are only visible to the user, when they are located
in the same direction and within the boundaries of the location view. Tapping on a POI will
trigger an event, which currently shows a �yout with additional information. However, code
can be added in order to adapt the functionality of the event handlers to the current needs.
The engine can read the sensors of the device and update both data and UI in accordance with
the provided values. Providing some UI elements to help the user making the most out of the
AREA engine, such as a radar view and an adjustable radius rounds up the basic experience.
However, there is one feature that is not working as desired in the current iteration of AREA
on Windows Phone. While the portrait mode is working correctly, several issues arised when
implementing the landscape mode of the engine. A solution to this bug is being investigated,
but it is unlikely that an update can be delivered before the end of this work. The next few
lines describe the issues in regard of that matter.
The CaptureElement that renders the camera's video stream is a XAML control. When
rotating the device towards landscape orientation, the CurrentOrientation jumps to land-
scape at some point. This causes all XAML controls to rotate and rearrange, including the
camera view. The latter is not rotated correctly and renders the camera stream with an in-
correct orientation. There are many solutions to this, such as locking the display orientation
to landscape. However, these solutions require the code for drawing the POIs to be adapted.
This is because the reference axes of some controls change upon rotating and the sensor data
needs to be remapped. The next iteration of the engine shall include this functionality.
Other non-functional requirements, such as e�ciency and accuracy, can be further improved
for devices with lower processing power. Running the AREA engine on a high-end device, such
as the Nokia Lumia 930, makes a signi�cant di�erence when compared to the main device used
for this work (Lumia 735). The code can easily be maintained with future updates and the
modular design allows additional extensions to the POIs and other components.

1

Chapter 8. Reconciliation of requirements

2

9
Summary

The development of AREA on Windows Phone has been a challenging task. Despite the avail-
ability of some major groundwork [GPSR13] [GSP+14], acquiring the knowledge about the
Windows Phone 8.1 platform was essential to the successful porting of the app. As the work
progressed in its early stage, this turned out to be no easy task. Microsoft is migrating the
API documentation for Windows apps to the new Windows 10 platform. As a consequence,
some MSDN articles on Windows 8.1 get removed or updated in favor of Windows 10. How-
ever, after conceiving the platform bit by bit, the vast potential of Windows Phone emerges.
Microsoft's platform is open to every developer and with Windows 10 it's possible to target
multiple devices with a single app. The availability of several technologies to write a Windows
app enables the use of already familiar programming languages. The C# + XAML app model
proved to be very appropriate for AREA. In combination with the Windows Runtime API,
developing for Windows Phone turned out to be a very great experience. Many features of the
platform, such as automatic scaling to pixel density, auto-references to XAML controls and an
overall well-structured and intuitive API facilitate the work of the developer.
In future work, some improvements to the engine can be applied. By porting the app to
Windows 10 and adjusting the code, the XAML performance can be further increased. The
platform capabilities of Windows 10 also allow the app to target devices with multiple screen
sizes. Additionally, the app could be localized in order to make it available in several languages.
Improvements and new features for AREA, such as handling clusters of POIs in the UI [Mü14],
are already discussed. Due to the modular design of AREA, these new capabilities can certainly
be integrated into the Windows Phone version.
With this work, the engineering process of AREA has been elaborated on all major mobile
operating systems. The location view approach ensures e�ciency and accuracy when adding
POIs to the screen and manipulating their position. Integrating AREA in many mobile busi-
ness applications is a desirable goal in the longer term. Many cases of application can make
use of the AREA engine. In particular, mobile process management and support applications
in the medical �eld (e.g. supporting medical ward rounds with MEDo [PLRH12] [PMLR15])
can bene�t from Augmented Reality, just as much as data collection scenarios with high work-
load [SSP+14] [SSPR15].

1

Chapter 9. Summary

2

Appendices

3

A
Formulas

Haversine-formula

This formula is used to calculate the distance between the user and a given POI. The result D
is given in kilometers.

θ = 2 arcsin

(√
sin2

(
∆φ

2

)
+ cosφA cosφB sin2

(
∆λ

2

))
D = θ ∗ 6371km (A.1)

D: Distance between user and POI
A: position of the user
B: position of POI
φ: latitude
λ: longitude
∆λ = λB − λA
∆φ = φB − φA

Bearing

The bearing between the user and a given POI relative to the north pole is calculated with the
following formula. The result needs to be transformed with (θ + 360°) mod 360° in order to
map it to the interval 0° . . . 360°.

θ = arctan 2(sin(∆λ) cosφB, cosφA sinφB − sinφA cosφB cos(∆λ)) (A.2)

Elevation Angle

The altitude di�erence between user and POI is calculated using this formula. Note that σ = 1
if the POI is located higher than the user, otherwise σ = −1. The result is an angle between
−90° and +90°.

θ = σ ∗ 180

π
arctan

(
∆h

d

)
, σ ∈ {−1, 1} (A.3)

d: Distance between user and POI ∆h: altitude di�erence between user and POI

5

Appendix A. Formulas

Field of View

The vertical and horizontal dimensions of the Field of View are calculated with the following
formula.

α = 2 arctan

(
B

2f

)
(A.4)

α: Vertical or horizontal Field of View angle
B: image sensor size of the smartphone's camera
f : focal length of the smartphone's camera

6

B
Class Diagrams

7

Appendix B. Class Diagrams

Figure B.1.: Class diagram with class relations, collapsed view. Classes below Model are auto-
generated

8

Figure B.2.: Class diagram, view expanded

9

Appendix B. Class Diagrams

Figure B.3.: Class diagram, controller expanded

10

Figure B.4.: Class diagram, model expanded

11

Appendix B. Class Diagrams

12

Bibliography

[Bü15] Gemeinde Bühlerzell. Liveguide bühlerzell. http://www.buehlerzell.de/
index.php?id=182, 2015. Accessed: 19.06.2015.

[Bie15] Jared Bienz. Gart. http://gart.codeplex.com/, 2015. Accessed: 12.06.2015.

[Blo13] The O�cial Microsoft Blog. Delta air lines soars with more than 19,000 new windows
phone 8 and microsoft dynamics for retail devices. http://bit.ly/X2xd0t,
2013. URL shortened. Accessed: 18.06.2015.

[Bun13] Deutscher Bundestag. Bundestag-app für smartphones und tablets. https://
www.bundestag.de/apps, 2013. Accessed: 18.06.2015.

[B.V15] HERE Europe B.V. Here city lens. Search in the Store on https://www.
windowsphone.com/, 2015. Accessed: 12.06.2015.

[CFA+10] Julie Carmigniani, Borko Furht, Marco Anisetti, Paolo Ceravolo, Ernesto Dami-
ani, and Misa Ivkovic. Augmented reality technologies, systems and applications.
In Multimedia Tools and Applications, pages 341�377. Springer Science+Business
Media LLC, December 2010.

[Cor15] Apache Cordova. Apache cordova. https://cordova.apache.org/, 2015.
Accessed: 19.06.2015.

[Dit15] Stadt Ditzingen. App & liveguide. http://www.ditzingen.de/index.php?
id=651, 2015. Accessed: 19.06.2015.

[FSBA06] Peter Fröhlich, Rainer Simon, Lynne Baillie, and Hermann Anegg. Comparing
conceptual designs for mobile access to geo-spatial information. In Proceedings of

the 8th conference on Human-computer interaction with mobile devices and services,
pages 109�112, 2006.

[Gey13] Michael Geyer. Geometric analysis of an observer on a spherical earth and an aircraft
or satellite. Technical report, U.S. Department of Transportation - Research and
Innovative Technology Administration - John A. Volpe National Transportation
Systems Center, 2013. DOT-VNTSC-FAA-13-08.

[GPSR13] Philip Geiger, Rüdiger Pryss, Marc Schickler, and Manfred Reichert. Engineer-
ing an advanced location-based augmented reality engine for smart mobile devices.
Technical Report UIB-2013-09, University of Ulm, Ulm, October 2013.

[Gre15] GrepCode. android.location.location. http://grepcode.com/file/
repository.grepcode.com/java/ext/com.google.android/
android/5.1.0_r1/android/location/Location.java#Location.
computeDistanceAndBearing%28double%2Cdouble%2Cdouble%
2Cdouble%2Cfloat[]%29, 2015. Accessed: 19.06.2015.

[GSP+14] Philip Geiger, Marc Schickler, Rüdiger Pryss, Johannes Schobel, and Manfred Re-
ichert. Location-based mobile augmented reality applications: Challenges, exam-
ples, lessons learned. In 10th Int'l Conference on Web Information Systems and

Technologies (WEBIST 2014), Special Session on Business Apps, pages 383�394,

13

http://www.buehlerzell.de/index.php?id=182
http://www.buehlerzell.de/index.php?id=182
http://gart.codeplex.com/
http://bit.ly/X2xd0t
https://www.bundestag.de/apps
https://www.bundestag.de/apps
https://www.windowsphone.com/
https://www.windowsphone.com/
https://cordova.apache.org/
http://www.ditzingen.de/index.php?id=651
http://www.ditzingen.de/index.php?id=651
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/5.1.0_r1/android/location/Location.java#Location.computeDistanceAndBearing%28double%2Cdouble%2Cdouble%2Cdouble%2Cfloat[]%29
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/5.1.0_r1/android/location/Location.java#Location.computeDistanceAndBearing%28double%2Cdouble%2Cdouble%2Cdouble%2Cfloat[]%29
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/5.1.0_r1/android/location/Location.java#Location.computeDistanceAndBearing%28double%2Cdouble%2Cdouble%2Cdouble%2Cfloat[]%29
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/5.1.0_r1/android/location/Location.java#Location.computeDistanceAndBearing%28double%2Cdouble%2Cdouble%2Cdouble%2Cfloat[]%29
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/5.1.0_r1/android/location/Location.java#Location.computeDistanceAndBearing%28double%2Cdouble%2Cdouble%2Cdouble%2Cfloat[]%29

Bibliography

April 2014.

[Inc15a] Apple Inc. Objective-c runtime programming guide. https://developer.
apple.com/library/ios/documentation/Cocoa/Conceptual/
ObjCRuntimeGuide/Articles/ocrtInteracting.html#//apple_ref/
doc/uid/TP40008048-CH103-SW5, 2015. Accessed: 15.06.2015.

[Inc15b] Google Inc. Art and dalvik. https://source.android.com/devices/tech/
dalvik/, 2015. Accessed: 15.06.2015.

[Inc15c] Google Inc. Glossary. https://developer.android.com/guide/
appendix/glossary.html, 2015. Accessed: 15.06.2015.

[Inc15d] Google Inc. Tasks and back stack. http://developer.android.com/guide/
components/tasks-and-back-stack.html, 2015. Accessed: 15.06.2015.

[Jun15] Junaio. Junaio. http://www.junaio.com/, 2015. Accessed: 12.06.2015.

[Lam15] Philip Lamb. Artoolkit. http://www.hitl.washington.edu/artoolkit/,
2015. Accessed: 19.06.2015.

[LKKS09] Ryong Lee, Daisuke Kitayama, Yong-Jin Kwon, and Kazutoshi Sumiya. Interopera-
ble augmented web browsing for exploring virtual media in real space. In Proceedings
of the 2nd International Workshop on Location and the Web. ACM New York, 2009.

[Mü14] Julia Müller. Konzeption und prototypische implementierung eines verfahrens zur
poi clusterbehandlung innerhalb einer augmented reality anwendung. Bachelor the-
sis, Universität Ulm, 2014.

[MSD15a] MSDN. Common language runtime (clr). https://msdn.microsoft.
com/de-de/library/8bs2ecf4%28v=vs.110%29.aspx, 2015. Accessed:
15.06.2015.

[MSD15b] MSDN. Diagnostics. https://msdn.microsoft.com/en-us/library/
windows/desktop/ee663269%28v=vs.85%29.aspx, 2015. Accessed:
19.06.2015.

[MSD15c] MSDN. Move from android to winrt. https://msdn.microsoft.com/en-us/
library/windows/apps/jj945421.aspx, 2015. Accessed: 15.06.2015.

[MSD15d] MSDN. .net for windows store apps overview. https://msdn.microsoft.
com/library/windows/apps/xaml/br230302.aspx/, 2015. Accessed:
19.06.2015.

[MSD15e] MSDN. Richtlinien zum skalieren auf die pixeldichte. https://msdn.
microsoft.com/de-de/library/windows/apps/hh465362.aspx, 2015.
English version not available anymore. Accessed: 17.06.2015.

[MSD15f] MSDN. Uielement class. https://msdn.microsoft.com/en-us/library/
windows/apps/windows.ui.xaml.uielement.aspx, 2015. Accessed:
17.06.2015.

[MSD15g] MSDN. Windows.devices.sensors namespace. https://msdn.microsoft.com/
en-us/library/windows/apps/windows.devices.sensors.aspx, 2015.
Accessed: 19.06.2015.

14

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtInteracting.html#//apple_ref/doc/uid/TP40008048-CH103-SW5
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtInteracting.html#//apple_ref/doc/uid/TP40008048-CH103-SW5
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtInteracting.html#//apple_ref/doc/uid/TP40008048-CH103-SW5
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtInteracting.html#//apple_ref/doc/uid/TP40008048-CH103-SW5
https://source.android.com/devices/tech/dalvik/
https://source.android.com/devices/tech/dalvik/
https://developer.android.com/guide/appendix/glossary.html
https://developer.android.com/guide/appendix/glossary.html
http://developer.android.com/guide/components/tasks-and-back-stack.html
http://developer.android.com/guide/components/tasks-and-back-stack.html
http://www.junaio.com/
http://www.hitl.washington.edu/artoolkit/
https://msdn.microsoft.com/de-de/library/8bs2ecf4%28v=vs.110%29.aspx
https://msdn.microsoft.com/de-de/library/8bs2ecf4%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ee663269%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ee663269%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/jj945421.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/jj945421.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/br230302.aspx/
https://msdn.microsoft.com/library/windows/apps/xaml/br230302.aspx/
https://msdn.microsoft.com/de-de/library/windows/apps/hh465362.aspx
https://msdn.microsoft.com/de-de/library/windows/apps/hh465362.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.uielement.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.uielement.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.aspx

Bibliography

[PLRH12] Rüdiger Pryss, David Langer, Manfred Reichert, and Alena Hallerbach. Mobile task
management for medical ward rounds - the medo approach. In 1st Int'l Workshop on

Adaptive Case Management (ACM'12), BPM'12 Workshops, number 132 in LNBIP,
pages 43�54. Springer, September 2012.

[PMLR15] Rüdiger Pryss, Nicolas Mundbrod, David Langer, and Manfred Reichert. Support-
ing medical ward rounds through mobile task and process management. Information

Systems and e-Business Management, 13(1):107�146, February 2015.

[PRH+15] Rüdiger Pryss, Manfred Reichert, Jochen Herrmann, Berthold Langguth, and Win-
fried Schlee. Mobile crowd sensing in clinical and psychological trials ? a case
study. In 28th IEEE Int'l Symposium on Computer-Based Medical Systems. IEEE
Computer Society Press, June 2015.

[PRLS15] Rüdiger Pryss, Manfred Reichert, Berthold Langguth, and Winfried Schlee. Mobile
crowd sensing services for tinnitus assessment, therapy and research. In IEEE 4th

International Conference on Mobile Services (MS 2015). IEEE Computer Society
Press, June 2015.

[PT10] Rémi Paucher and Matthew Turk. Location-based augmented reality on mobile
phones. In Computer Vision and Pattern Recognition Workshops (CVPRW), pages
9�16. IEEE Computer Society Conference on, June 2010.

[RS03] Gerhard Reitmayr and Dieter Schmalstieg. Location based applications for mobile
augmented reality. In Proceedings of the Fourth Australasian user interface confer-

ence on User interfaces, pages 65�73. Australian Computer Society, Inc., 2003.

[SPR15] Johannes Schobel, Rüdiger Pryss, and Manfred Reichert. Using smart mobile de-
vices for collecting structured data in clinical trials: Results from a large-scale case
study. In 28th IEEE International Symposium on Computer-Based Medical Systems

(CBMS 2015). IEEE Computer Society Press, June 2015.

[SPSR15] Marc Schickler, Rüdiger Pryss, Johannes Schobel, and Manfred Reichert. An en-
gine enabling location-based mobile augmented reality applications. In Web Infor-

mation Systems and Technologies - 10th International Conference, WEBIST 2014,

Barcelona, Spain, April 3-5, 2014, Revised Selected Papers, LNBIP. Springer, 2015.

[SSP+13] Johannes Schobel, Marc Schickler, Rüdiger Pryss, Hans Nienhaus, and Manfred
Reichert. Using vital sensors in mobile healthcare business applications: Challenges,
examples, lessons learned. In 9th Int'l Conference on Web Information Systems and

Technologies (WEBIST 2013), Special Session on Business Apps, pages 509�518,
May 2013.

[SSP+14] Johannes Schobel, Marc Schickler, Rüdiger Pryss, Fabian Maier, and Manfred Re-
ichert. Towards process-driven mobile data collection applications: Requirements,
challenges, lessons learned. In 10th Int'l Conference on Web Information Systems

and Technologies (WEBIST 2014), Special Session on Business Apps, pages 371�
382, April 2014.

[SSPR15] Johannes Schobel, Marc Schickler, Rüdiger Pryss, and Manfred Reichert. Process-
driven data collection with smart mobile devices. In Web Information Systems and

Technologies - 10th International Conference, WEBIST 2014, Barcelona, Spain,

Revised Selected Papers, LNBIP. Springer, 2015.

15

Bibliography

[USA15] IDC Corporate USA. Smartphone os market share, q1 2015. http://www.
idc.com/prodserv/smartphone-os-market-share.jsp, 2015. Accessed:
18.06.2015.

[Vin75] Thaddeus Vincenty. Survey review. Technical Report 176, Directorate of Overseas
Surveys of the Ministry of Overseas Development, 1975. Vol. XXIII.

[Wik15] Wikitude. Wikitude. http://www.wikitude.com, 2015. Accessed: 12.06.2015.

[WS14] Andy Wigley and Matthias Shapiro. Building apps for windows phone 8.1
jump start. http://mslcc-admin.mscareerconference.com/Uploads/
Downloadables/WP81JSDay1_6c299b3a951544a0a78dc081911f1a1d_
99802e7554794e1c84ee52bb62ec0735.zip, 2014. Microsoft Virtual
Academy.

[Xam15] Xamarin. Xamarin. http://xamarin.com/, 2015. Accessed: 19.06.2015.

[Yel15] Yelp. Yelp. http://www.yelp.com/, 2015. Accessed: 12.06.2015.

16

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.wikitude.com
http://mslcc-admin.mscareerconference.com/Uploads/Downloadables/WP81JSDay1_6c299b3a951544a0a78dc081911f1a1d_99802e7554794e1c84ee52bb62ec0735.zip
http://mslcc-admin.mscareerconference.com/Uploads/Downloadables/WP81JSDay1_6c299b3a951544a0a78dc081911f1a1d_99802e7554794e1c84ee52bb62ec0735.zip
http://mslcc-admin.mscareerconference.com/Uploads/Downloadables/WP81JSDay1_6c299b3a951544a0a78dc081911f1a1d_99802e7554794e1c84ee52bb62ec0735.zip
http://xamarin.com/
http://www.yelp.com/

	Introduction
	Statement of the problem
	Content structure

	AREA
	Data input
	Feature set
	Sensors
	Formal foundation
	AREA in the field

	Related work
	Related papers
	Frameworks and Libraries
	AREA-related work

	Requirements
	Architecture
	The core of AREA
	Windows SDK and Assemblies
	Platform-specific extensions
	Platform-specific exchanges
	Class structure

	Aspects of implementation
	Platform mappings
	AREA related task mappings
	Model
	View
	Controller

	Introduction to the application
	Reconciliation of requirements
	Summary
	Appendices
	Formulas
	Class Diagrams

