
A Runtime Environment
for Object-Aware Processes

Kevin Andrews, Sebastian Steinau, and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Germany
{kevin.andrews,sebastian.steinau,manfred.reichert}@uni-ulm.de

Abstract. In contrast to contemporary activity-centric process-aware
information systems (PAIS), for which a multitude of concepts and imple-
mentations exist, there is only a very limited number of PAIS implemen-
tations using data-centric, artifact-centric or object-aware approaches.
This demo paper presents the implementation of a client-server runtime
environment for the object-aware approach to process management. Our
implementation is based on the PHILharmonicFlows conceptual frame-
work, where individual processes define the behavior of an object and
its interactions with other objects. The current implementation of the
runtime environment allows for the instantiation and execution of micro
processes, which define object behavior. Interaction with a data-driven
micro process instance is enabled through automatically generated user-
forms as part of a graphical user interface. Additionally, the user interface
can display the progression of a micro process instance using an interac-
tive graph.

1 Introduction

Hard-coding the multitude of forms necessary for modern business applications,
as well as their respective internal logic, makes developing or changing business
applications resource- and time-consuming. Furthermore, increasing competitive
pressure and reduced time-to-market require companies to develop business ap-
plications at higher speeds without letting quality deteriorate.

PHILharmonicFlows is a framework for object-aware process management
that aims at reducing the development and maintenance time of forms in regard
to changes in the data model or individual business processes [1,3,4]. In object-
aware processes, data is organized as objects which exhibit a defined behavior.
The behavior specifies what data is required at which point in time, as well as
the data semantics and interdependencies, e.g., taking cardinalities of semantic
relationships into account. A micro process is used to define an object’s behavior
[2]. As in many business applications or case handling systems, the primary
means for PHILharmonicFlows processes to acquire data are forms. The internal
logic of each form, as well as the decisions, which forms and form fields need to

Copyright c©2015 for this paper by its authors. Copying permitted for private and
academic purposes.



be displayed at which point in time, is governed by an object’s micro process.
Since the aim is to avoid the hard-coding of forms, the micro process concept
was designed in a way that permits the automatic generation of forms from the
micro process model.

The tool presented in this demonstration allows for the execution of micro
processes and demonstrates the corresponding automatic form generation.

2 PHILharmonicFlows - The Micro Process Perspective

As mentioned in Section 1, PHILharmonicFlows allows for the generation of
generic user forms. To this end, the framework introduces the concept of an
object as a collection of atomic data types, called attributes. The attributes
belonging to an object define all possibly displayable form fields concerning the
real world entity the object represents, such as a job application. Clearly, for one
real world entity, multiple forms become necessary. The forms must be shown to
the various process participants at different points in time. A job application, for
instance, must be created by an applicant, using a form. At a later point in the
execution of the process, an application reviewer must be shown a different form,
which allows him to see and rate the information that the applicant entered.

In order to support multiple forms per object, the object’s attributes can
be grouped into states. Simply put, a state represents one form which can be
viewed by an authorized process participant, for example the aforementioned
application reviewer. The attributes present in the state determine the form
fields that are available for editing. Each object has an associated micro process,
a flow graph which allows for the definition of an order in which the object can
reach its various states, based on data-driven decisions. The object can only be
in one state at any given point in time.

For example, a “Job Application” object, which is in the “Under Review”
state, shows a generated form to the application reviewer. The generated form
contains a field for the “Review Assessment” attribute. The state of the “Job
Application” object changes to either “Accepted” or “Rejected”, based on the
value the reviewer assigns to the “Review Assessment” attribute. These state
transitions, as well as the logic of one such form can be modeled in the object’s
micro process. In the flow graph of the micro process, each of the object’s at-
tributes is represented by a micro step. The arrangement of these micro steps
within the individual states defines the form’s logic. This is achieved by inter-
connecting the micro steps with transitions, thereby introducing an ordering.
The transitions can also be used to model conditional branching.

Returning to the previous example of the “Application” object, the “Under
Review” state of the object’s micro process could be modeled as follows: The first
micro step represents a string attribute “Internal Comment”. The second micro
step, representing another string attribute “Public Comment”, is attached via a
transition. Finally, the previously introduced “Review Assessment” attribute, an
enumeration with the values “Good” and “Bad”, is represented by the last micro
step in the state. The “Review Assessment” micro step is attached to the “Public



Comment” micro step with another transition, creating the micro process model
visible in Figure 1. The form which is generated for the “Under Review” state
shows one form field for each of the attributes contained in the state. The fields
are marked as required in the order induced by the micro process (cf. Figure 1).

Under Review

Internal Comment Public Comment Review Assessment

Fig. 1. Example of a State

As the execution is data-driven, the progress of the micro process advances to
the next step as soon as a value for the current step is entered. As the PHILhar-
monicFlows Framework allows for flexible execution, similar to the case handling
tool BPM—one [5], the process participant editing the form can input the values
in any order he chooses. For instance, if the micro process reaches the “Review
Assessment” micro step and a value is already present, the form does not need to
mark the corresponding field as required. Instead, the execution continues with
the evaluation of the current “Review Assessment” attribute value. An outgoing
transition is chosen based on the result of this evaluation.

3 The PHILharmonicFlows Runtime Demonstration Tool

The PHILharmonicFlows runtime environment we present in this demonstration
consists of a web service, hosting the PHILharmonicFlows runtime, as well as
a client user interface, the Runtime Demonstration Tool (RDT)1. The RDT is
implemented as a Windows Universal Application, allowing us to run the RDT
on any device running Windows 8 or Windows 10. This means we can evaluate
the feasibility of object-aware process management in various scenarios involving
desktops, tablets, mobile phones, and even large tabletop computers, using a
single unified codebase. Implementing the server as a web service will allow us
to write web-based clients and native clients for other operating systems in the
future. Client applications need only understand a simple WSDL containing the
view model and small number of operations.

The current version of the client and server allow for the execution of micro
processes (cf. Section 2). Micro processes describe the behavior of an object,
i.e., which data attributes have to be provided when and which state changes
to the object this entails. Figure 2 depicts the RDT in a split view showing the
graph of one such micro process 1©, as well as the generated form 2© for the
micro process’ current state 3©. The RDT always keeps the two displays, the

1 A screencast is available at https://vimeo.com/130551330

https://vimeo.com/130551330


Fig. 2. Micro Process Execution View

form and the graph, in sync with the runtime server, where the actual micro
process instance resides. When users of the RDT supply attribute values via the
generated form or by editing micro steps directly in the graph, a web service
is called, informing the runtime server of updated attribute values. The data-
driven execution model of PHILharmonicFlows then evaluates the effects that
the newly supplied or changed attribute value caused and sends change set deltas
to the client, allowing it to update the displayed form.

In the example in Figure 2, supplying a value for the “Urgency” attribute
causes the server to inform the client, that the “Return Date” attribute has to be
marked as required next. Once both “Urgency” and “Return Date” are supplied,
the “Review” object changes its state from “Initialized” to “Pending”, causing
it to show up in the worklist of any process participant who is authorized to
view the “Pending” state. The process participant can then edit the form for the
“Pending” state.

Fig. 3. Object Types and Instances Overview

The visualization of the micro process instance as a graph gives a quick
overview on the progress of a micro process instance. The graph supports live



updates and changes immediately when other users concurrently edit the object’s
attribute values, thereby advancing execution of the micro process. The color
coding of the micro process’ states and steps according to their runtime markings,
e.g. Waiting or Activated, helps us to explain and demonstrate the more complex
points of the PHILharmonicFlows concept.

Figure 3 shows one of the menu pages of the RDT, specifically the “Objects”
page. The “Objects” page gives authorized users an overview over all object
types present in the current PHILharmonicFlows project. An object type is
a build-time model of an object. The object type contains the definitions of
the object’s attributes, micro process and authorization settings. Each object
type is represented by a tile 4© in Figure 3. Every tile contains a scrollable
list of all the object instances 5© that exist of the object type. The list also
shows some metadata determined by the current state of the object instance’s
micro process. Selecting an object type shows various meta information and
allows users to create more instances of the object type. Selecting an already
existing instance on the other hand allows users to edit the form generated for
the instance’s current state and view the live graph depicting the execution of
the micro process instance (cf. Figure 2).

4 Conclusion

The demonstration presents parts of the PHILharmonicFlows runtime environ-
ment, consisting of a web service hosting the process server and a graphical user
interface. Together, they allow for the execution of PHILharmonicFlows micro
processes. The user interface enables interaction with running process instances
via generated user forms, worklists, and graph models. While the current ver-
sion only supports micro processes, we are working on adding support for macro
processes, which enable interaction between multiple objects’ micro processes,
allowing for far more complex processes to be executed.

References

1. Künzle, V.: Object-Aware Process Management. Ph.D. thesis, University of Ulm
(2013)

2. Künzle, V., Reichert, M.: A Modeling Paradigm for Integrating Processes and Data
at the Micro Level. In: Enterprise, Business-Process and Information Systems Mod-
eling, Lecture Notes in Business Information Processing, vol. 81, pp. 201–215 (2011)

3. Künzle, V., Reichert, M.: PHILharmonicFlows - Towards a Framework for Object-
Aware Process Management. Journal of Software Maintenance and Evolution: Re-
search and Practice 23(4), 205–244 (2011)

4. Künzle, V., Weber, B., Reichert, M.: Object-Aware Business Processes: Fundamen-
tal Requirements and their Support in Existing Approaches. Int’l Journal of Infor-
mation System Modeling and Design (IJISMD) 2(2), 19–46 (2011)

5. Lexmark Enterprise Sofware: Lexmark Case Management Tool (2015),
http://www.perceptivesoftware.com/products/perceptive-process/

case-management.html, last accessed on 2015/06/12

http://www.perceptivesoftware.com/products/perceptive-process/case-management.html
http://www.perceptivesoftware.com/products/perceptive-process/case-management.html

	A Runtime Environment for Object-Aware Processes

