
A New Paradigm for the
Enactment and Dynamic Adaptation of

Data-driven Process Structures?

Dominic Müller1,2, Manfred Reichert1,3, and Joachim Herbst2

1 Institute of Databases and Information Systems, Ulm University, Germany
{dominic.mueller, manfred.reichert}@uni-ulm.de

2 Dept. GR/EPD, Daimler AG Group Research & Advanced Engineering, Germany
joachim.j.herbst@daimler.com

3 Information Systems Group, University of Twente, The Netherlands

Abstract. Industry is increasingly demanding IT support for large en-
gineering processes, i.e., process structures consisting of hundreds up to
thousands of processes. Developing a car, for example, requires the co-
ordination of development processes for hundreds of components. Each
of these development processes itself comprises a number of interdepen-
dent processes for designing, testing, and releasing the respective compo-
nent. Typically, the resulting process structure becomes very large and
is characterized by a strong relation with the assembly of the product.
Such process structures are denoted as data-driven. On the one hand,
the strong linkage between data and processes can be utilized for auto-
matically creating process structures. On the other hand, it is useful for
(dynamically) adapting process structures at a high level of abstraction.
This paper presents new techniques for (dynamically) adapting data-
driven process structures. We discuss fundamental correctness criteria
needed for (automatically) detecting and disallowing dynamic changes
which would lead to an inconsistent runtime situation. Altogether, our
COREPRO approach provides a new paradigm for changing data-driven
process structures at runtime reducing costs of change significantly.

Keywords: Process Coordination, Data-driven Process, Process Adaptation

1 Introduction

In the engineering domain, the development of complex products (e.g., cars or
airplanes) necessitates the coordination of thousands of processes (e.g., to de-
sign, test and release each product component). These processes and the many
dependencies between them form complex and large process structures. While
the single processes are usually implemented within different IT systems, the

? This work has been funded by Daimler AG Group Research and has been conducted
in the COREPRO project (http://www.uni-ulm.de/dbis)

In: 20th Int'l Conf. on Advanced Information Systems Engineering (CAiSE'08), Montpellier, France. Springer, LNCS 5074, pp. 48-63.

design, coordination, and maintenance of process structures are only rudimen-
tarily supported by current process management technology [1]. In most cases,
the different processes have to be manually composed and coordinated.

Another challenge constitutes the dynamic adaptation of process structures
during runtime. When adding or removing a car component (e.g., a navigation
system), for example, the process structure has to be adapted accordingly; i.e.,
processes for designing, testing and releasing affected product components have
to be manually added or removed. Note that this also might require the insertion
or removal of their synchronization dependencies with respect to other processes
from the total process structure. Manually modeling and adapting large process
structures requires profound process knowledge and is error-prone as well. In-
correctly specified dependencies within a process structure, however, can cause
delays or deadlocks blocking the execution of the whole process structure.

Example 1 To identify practical requirements, we investigated a variety of pro-
cess structures in the automotive industry. As example consider release man-
agement (RLM) processes for electrical systems in a car. The (product) data
structure (or configuration structure) for the total electrical system consists of
up to 300 interconnected components which are organized by using a product data
management system. The goal of RLM is to systematically test and release the
different product components at a specific point in time, for example, when a
certain milestone is reached. To verify the functionality of the electrical system,
several processes (e.g., testing and release) have to be executed for each electrical
(sub-)component and need to be synchronized with the processes of other compo-
nents. This is needed, for example, to specify that an electrical system can only be
tested if all its components are individually tested before. Altogether, more than
1300 processes need to be coordinated for releasing the total electrical system [2].

Interestingly, large process structures often show a strong linkage with the
assembly of the product; i.e., the processes to be coordinated can be explicitly
assigned to the different product components (cf. Example 1). Further, process
synchronizations are correlated with the relations existing between the prod-
uct components. In the following, we denote such process structures as data-
driven. COREPRO utilizes the information about a product, its components
and the component relations. In particular, COREPRO provides techniques for
the modeling, enactment, and (dynamic) adaptation of process structures based
on given (product) data structures. For example, the assembly of the (product)
data structure can be used to automatically create the related process structure
[2]. We have shown that COREPRO reduces modeling efforts for RLM process
structures (cf. Example 1) by more than 90% [2].

When changing a (product) data structure at buildtime, the related process
structure can be automatically re-created. However, long running process struc-
tures also need to be adapted during runtime. Then, it does not make sense to
re-create the process structure from scratch and to restart its execution from the
beginning. Instead, in-progress process structures must be adaptable on-the-fly,
but without leading to faulty synchronizations like deadlocks. A particular chal-
lenge is to enable users to adapt complex process structures. When the product

structure is changed, we can take benefit from the strong linkage between pro-
cess structure and (product) data structure again. In COREPRO, data structure
changes are automatically translated into adaptations of the corresponding pro-
cess structure. Thus, changes of data-driven process structures can be introduced
by users at a high level of abstraction, which reduces complexity as well as cost of
change significantly. Note that this is far from being trivial considering the large
number of processes to be coordinated and their complex interdependencies.

In this paper we introduce the COREPRO runtime framework, which ad-
dresses the aforementioned requirements. COREPRO enables enactment of data-
driven process structures based on a precise and well-defined operational seman-
tics. We show how to translate (dynamic) changes of a currently processed data
structure into corresponding adaptations of the related process structure. Fi-
nally, we introduce consistency criteria in order to ensure that dynamic adapta-
tions of a process structure lead to a correct process structure again. Altogether,
COREPRO addresses the full life cycle of data-driven process structures includ-
ing modeling, enactment, and (dynamic) adaptation phases.

Sect. 2 describes the COREPRO modeling approach for data-driven process
structures and Sect. 3 specifies operational semantics for process structures. Sect.
4 shows how to adapt data-driven process structures and presents methods for
detecting invalid changes that would lead to incorrect runtime situations. We
discuss related work in Sect. 5 and conclude with a summary in Sect. 6.

2 COREPRO Modeling Framework

The COREPRO modeling framework allows to create data-driven process struc-
tures (cf. Fig. 1d and f) [2]. For this, we consider the sequence of states a (data)
object goes through during its lifetime. A product component from Example 1
passes states like designed, tested and released. Generally, state transitions are
triggered by executing processes modifying the respective object (e.g., design,
test or release). An object life cycle (OLC) constitutes an integrated and user-
friendly view on the states of a particular object and its manipulating processes
(cf. Fig. 1d and f). Regarding data-driven process structures, OLC state transi-
tions do not only depend on the processes associated with the respective object,
but also on the states and state transitions of other objects. As example consider
a total car, which can be only tested, if all sub-systems (e.g., engine, chassis and
navigation system) are tested before. By connecting the states of different OLCs,
a logical view on a data-driven process structure results (cf. Fig. 1d and f).

Example 2 The total electrical system of a car (cf. Example 1) differs from car
series to car series (e.g., series with and without navigation system). The strong
relationship between data structures and process structures implies that differ-
ent (product) data structures (related to the different series) lead to different
RLM process structures (e.g., process structures with and without development
processes for the navigation system). Each of these process structures then rep-
resents one instance of the total development process for a particular car series.

2
n
d

E
x
a
m
p
le

1
s
t

 E
x
a
m
p
le

M
o
d
e
l

L
e
v
e
l

I
n
s
t
a
n
c
e

L
e
v
e
l

System

hasSubsys

Subsystem

D
a
t
a

M
o
d
e
l

L
ife
 C
y
cl
e

C
o
o
rd
in
a
tio
n
 M
o
d
e
l

has

Subsys
P

S3

S E… S5 …

OLC for Type Subsystem

Step 1) Definition of the Data Model Step 2) Definition of the Life Cycle Coordination Model

D
a
t
a

S
t
r
u
c
t
u
r
e

hasSubsystem

D
a
ta
-D
ri
ve
n
 P
ro
ce
s
s
S
tr
u
c
tu
re

Step 4) Automated Creation of Data-driven Process Structures

S E… S5 …

Subsystem: Main Unit

P

S

State = Object State

Object OLC Instance
for Object = Process Internal State

Transition

= Process External State
Transition

= Relation Type Obj. Type = Object Type

= Relation

0..*

1
S1

System:

Navigation A

Subsystem:
Main Unit

S EP1 S1 S4 P5

OLC for Type System

S3

P3

P4

[1]

[0]

S E… S5 …

Subsystem: Main Unit

S E… S5 …

Subsystem: Sound System

P
hasSubsystem

System:

Navigation B

Subsystem:
Sound
System

Subsystem:
Main Unit

Subsystem:
TV Tuner

D
a
t
a

S
t
r
u
c
t
u
r
e

D
a
ta
-D
ri
ve
n
 P
ro
c
e
ss
 S
tr
u
ct
u
re

S2P2

System: Navigation A

S EP1 S1 S4 P5

System: Navigation B

S3

P3

P4

[1]

[0]
S2P2

a b

c d

e f

S EP1 S1 S4 P5

S3

P3

P4

[1]

[0]
S2P2

S5

S E… S5 …

Subsystem: TV Tuner

P

P

1
s
t
E
x
a
m
p
le

2
n
d
 E
x
a
m
p
le

Obj. Type OLC for
Object Type

=

=

Step 3) Definition of Data Structures

Fig. 1. Creation of Data-Driven Process Structures

Modeling OLCs for hundreds of objects (cf. Example 1) and linking them
manually would be too expensive. Therefore, COREPRO follows a model-driven
(respectively data-driven) approach by differing between model and instance
level. First, for objects with same behavior, we model only one OLC. This OLC
can be instantiated multiple times. Second, we utilize the close relationship be-
tween data and process structure when connecting different OLCs. Our case
studies have shown that semantic relations between data objects can be mapped
to dependencies between particular states of OLCs. Based on object (types) and
relations between them, process structures can be specified at model level and
then be automatically instantiated for every given data structure [2].

2.1 Defining Object Types and Object Life Cycles

Fig. 1 shows the steps necessary to model and instantiate both data and process
structures. Steps 1 + 2 deal with the creation of the model level, Step 3 + 4 with
the definition of the instance level. Step 1 is related to the specification of the

data model, which defines object and relation types, and therefore constitutes the
schema for instantiating concrete (product) data structures. In our context, an
object type represents a class of objects within the data model (cf. Fig. 1a), which
then can be instantiated multiples times. Fig. 1e shows a data structure which
comprises one instance of type System and three instances of type Subsystem.

Step 2 is related to the modeling of object life cycles (OLC) and their depen-
dencies. An OLC defines the states through which objects of the respective type
go during their life time. To capture the dynamic aspects of subsystems like
TV tuner and Sound System, the process designer models only one OLC for
the object type Subsystem. COREPRO maps OLCs to state transition systems
whose states correspond to object states and whose (internal) state transitions
are associated with object-related processes. A state transition does not fire im-
mediately when its source state becomes activated, but waits until its associated
process has completed. In Fig. 1b, for example, the OLC for object type System
starts with initial state S, then passes state S1 followed by S2 or S3, and finally
completes in state E. The internal state transition from S to S1 takes place when
finishing process P1. Note that the procedures for modifying the different objects
might slightly differ (e.g., different testing procedures for Sound System and TV
Tuner). If the OLCs are identical for such objects, this behavior can be realized
as variants within the processes to be executed. Non-deterministic state tran-
sitions are realized by associating different internal state transitions with same
source state and process, and by adding a process result as condition (e.g., P2 in
Fig. 1b). This is required, for example, when associating a testing process with
a component, which completes either with result correct or faulty. Depending
on the process result, exactly one internal state transition is chosen and its tar-
get state becomes activated (cf. S2 and S3 in Fig. 1b). The other internal state
transitions are disabled (cf. Sect. 3).

2.2 Modeling Object Relations and OLC dependencies

Defining the dynamic behavior for each object type by modeling its OLC is
only half of the story. We also have to deal with the state dependencies existing
between the OLCs of different objects types (cf. Example 1). In COREPRO, an
OLC dependency is expressed by external state transitions between concurrently
enacted OLCs. Like an internal state transition within an OLC, an external
state transition can be associated with the enactment of a process; i.e., we do
not only support event-based synchronizations, but also allow for the enactment
of a transition process (e.g., send email or install). Regarding the two OLCs
modeled in Step 2 from Fig. 1b, for example, we associate the external state
transition between state S3 (of the OLC for type System) and state S5 (of the
OLC for type Subsystem) with process P. To benefit from the strong linkage
between object relations and OLC dependencies, external state transitions are
mapped to object relation types. Regarding our example, the aforementioned
external state transition is linked to the hasSubSys relation connecting the two
object types System and Subsystem. This information can later be utilized for
automatically creating process structures out of given data structures.

The OLCs of all object types and the external state transitions of all relation
types form the Life Cycle Coordination Model (LCM) (cf. Fig. 1b). The LCM
describes the dynamic aspects of the data model and constitutes the scheme
for creating data-driven process structures. This is a unique characteristic of
COREPRO allowing for the data-driven configuration of process structures. In
particular, different process structures (cf. Fig. 1d and Fig. 1f) can be automat-
ically created by instantiating respective data structures (cf. Example 2).

2.3 Generating Data-driven Process Structures

Picking up the scenario from Example 2, COREPRO allows to instantiate dif-
ferent data structures (cf. Fig. 1c and 1e) and to automatically create related
process structures (cf. Fig. 1d and 1f). A data-driven process structure includes
an OLC instance for every object from the data structure. This can be seen in
Fig. 1e (data structure) and Fig. 1f (related process structure) where the numbers
of objects and OLC instances correspond to each other. Likewise, as specified in
the LCM, for each relation in the data structure external state transitions are
inserted into the process structure; e.g., for every hasSubsystem relation in the
data structure from Fig. 1e, associated external state transitions (with process
P) are inserted. As result we obtain an instantiated executable process structure
describing the dynamic aspects of the given data structure (cf. Fig. 1d and 1f).

To ensure a correct dynamic behavior, created process structures must be
sound. A process structure is considered as being sound iff it always terminates
properly [3]. Termination of the process structure will be guaranteed if every
OLC is sound and there are no cycles caused by external state transitions. An
OLC, in turn, is sound (1) if every state can be activated by firing a sequence
of state transitions beginning with the start state of the OLC and (2) if the
end state of the OLC can be activated by firing a sequence of state transitions
beginning from every state within the OLC; further, no state transition must be
processing when reaching the OLC end state (i.e., no process is running). It is
important to mention that COREPRO allows for checking soundness on model
level, i.e., we can ensure that each process structure derived from a sound LCM
is sound as well [2]. Thereby, efforts for soundness checks do not rise with the size
of the instantiated process structure but only depend on the size of the LCM.

3 Dynamic Behavior of Data-driven Process Structures

To correctly enact data-driven process structures, a precise and formal opera-
tional semantics is needed. This is also fundamental with respect to the analysis
of the correctness and consistency of process structures when dynamically chang-
ing them (cf. Sect. 4). Therefore, COREPRO uses different markings to reflect
the runtime status of an enacted process structure. We annotate both, states and
(internal as well as external) state transitions with respective markings each of
them representing their current runtime status. Fig. 2 shows an example where
markings describe a possible runtime status of the process structure depicted

S EP1 S1 S2 P3

System: Navigation A

S3

P2

P4

[1]

[0]

S4 P5

S E... S5

System: Main Unit

...

P

Disabled

Done

Fired

State

Transition

Skipped

Processing

Activated

Fig. 2. Process Structure from Fig. 1d with Markings During Runtime

in Fig. 1d. By analyzing the state markings from Fig. 2, we can immediately
figure out whether a particular state of a process structure has been already
passed (e.g., state S1), is currently activated (e.g., state S3), has been skipped
(e.g., state S2), or has not been reached yet (e.g., state S4). Transition mark-
ings, in turn, indicate whether the associated process has been started, skipped
or completed. As we will see later, the use of markings eases consistency checks
and status adaptations in the context of dynamic changes of process structures
significantly. Therefore, markings of passed regions are preserved during runtime.

Altogether, the runtime status of a process structure is determined by the
current markings of its constituent OLCs and (external) state transitions. We
first introduce the operational semantics of single OLCs and then the one of the
external state transitions needed to synchronize the different OLCs.

3.1 Operational Semantics of Single OLCs

Each state of an (instantiated) OLC has one of the markings NotActivated,
Activated, Skipped, or Done. Fig. 3a shows the conditions for setting these
markings. Initial marking of a state is NotActivated. An OLC state becomes ac-
tivated after one incoming internal state transition has fired and all external state
transitions are either fired or disabled. To realize this, marking NotActivated
is subdivided into IntActivated and ExtActivated (cf. Fig. 3a). A state will
become Activated if both submarkings, IntActivated and ExtActivated are
reached. At the same time, the preceding state within the OLC is set to Done.
This excludes concurrently activated states within a single OLC.

The dynamic behavior of OLCs is governed by internal state transitions. An
internal state transition enters marking Processing and its associated process
is started, when the marking of its source state switches to Activated (cf. Fig.
3b). When the associated process completes, the marking of the internal state
transition either turns to Fired or Disabled depending on the result of the pro-
cess (cf. Sect. 2.1). At the same time, the target state of the respective transition
enters submarking IntActivated (cf. Fig. 3a).

When a transition is disabled, deadpath elimination takes place. Its target
state is skipped, and succeeding internal state transitions are disabled as well.

[One Following
State

Activated]
Done

Skipped

[Process Structure

Terminated]

[Process Structure
Terminated]

[Matching
process result]

[Source state Activated]

Waiting

Fired

Disabled[Source state Skipped]
[Mismatching
process result]

[Process Structure

Terminated]

Processing

[No Process associated]

[Process
completed]

Activated

NotActivated

[All incoming ext.
transitions

Fired or Disabled]
ExtActivated

[One incoming int.
Transition Fired]

IntActivated
[All incoming int. state
Transitions Disabled]

[Process Structure

Terminated]

[Process Associated]
/ Enable Process

Source
State

[Result 1]Process Target
State 1
Target
State 2

[Result 2]

P State P

...

...

State

Internal State Transition

Outgoing
external state
transitions

P

P

Outgoing
internal state
transition

Incoming
internal state
transition

Internal state transition with
specified process result

Context Markings

Context Markings

Incoming
external state
transitions

a

b

Fig. 3. Behavior of Object States and Internal State Transitions in OLCs

This is continued until the end of the dead path is reached; i.e., until a state
is reached which has at least one incoming internal state transition not marked
as Disabled (cf. Fig. 3b). Deadpath elimination contributes to avoid deadlocks
caused by external state transitions which are waiting for activation (cf. Fig. 2,
external state transition with process P). The described OLC semantics has to
be extended in conjunction with loops. Due to lack of space, however, we cannot
treat loop backs in this paper.

3.2 Synchronization of OLCs

As mentioned, concurrent processing of objects is a fundamental requirement in
engineering processes. At the level of a single OLC, concurrency is encapsulated
within the transition processes (e.g., implemented in a workflow management or a
product data management system). The proper synchronization of concurrently
enacted processes within different OLCs is based on external state transitions.
According to internal state transitions, external state transitions are marked as
Processing (i.e., their processes are started) when their source state becomes
Activated (cf. Fig. 3 and Fig. 4). When the associated process is completed,
in turn, the external state transition is marked as Fired. The target state of
the fired transition can only become Activated if one of its incoming internal
transitions has already been marked as Fired and all external state transitions
are marked either as Fired or Disabled (cf. Fig. 3a and Fig. 4).

[Source state Activated]

Waiting

Fired
[Process Structure

Terminated]

[Process completed]
Processing

[No Process associated]

Disabled
[Source state Skipped or target state Skipped]

[Process Structure

Terminated]
[Target state Skipped]

/ Terminate Process

[Process associated]
/ Enable ProcessSource

State

Target
State

External State Transition

OLC A

OLC B

P
External state
transition

... ...

... ...

Context Markings

Fig. 4. Dynamic Behavior of External State Transitions Between OLCs

External state transitions whose source state is Skipped become Disabled.
Otherwise the external state transition would remain marked as Waiting which
could lead to a deadlock within its target OLC. Note that a disabled external
state transition does not cause any state change within its source or target state.

An external state transitions whose target state becomes Skipped, has to
be Disabled as well. First, the external state transition does not influence the
target state because it has already been Skipped. Second, we have to ensure
proper termination of the process structure. It terminates after all OLCs have
reached their end states (cf. Section 2.3). In particular, soundness necessitates
that no constituent process is running (i.e., no transition is processing) then (cf.
Sect. 2.3). Therefore, we have to avoid external state transitions whose processes
might still be enacted while their target OLC have already reached the end state.

4 Changing Data-driven Process Structures

So far, we have investigated the modeling, instantiation and enactment of data-
driven process structures. To cope with the flexibility requirements of engineering
processes, we further have to look at dynamic process structure changes.

Example 3 The creation, testing and release of the electrical system of a car
takes up to several weeks. Meanwhile, changes of the electrical system, such as
the addition of new objects to the electrical system, occur often (e.g., adding a
new TV Tuner subsystem to the data structure from Fig. 1c). Consequently, the
related process structure needs to be adapted (cf. Fig. 1d); i.e., we have to add
the processes (e.g., testing) for the new component to the process structure and
must synchronize them with the processes of the already existing components.

Directly changing the process structure would not be a good solution due
its size and complexity. Instead, users (e.g., engineers) must be able to perform
the changes at a high level of abstraction. In COREPRO this is accomplished
by adapting the respective data structure (e.g., describing the electrical system)
and by translating these changes into corresponding adaptations of the process
structure. Again we utilize the strong relationship between data and process
structure to realize this. Furthermore, dynamic changes must not violate sound-
ness of the process structure. To ensure this, we have to constrain changes to
certain runtime states (i.e., markings) of the process structure.

First, we provide basic operations for static changes of data as well as pro-
cess structures (i.e., we do not take runtime information into account). That
includes mechanisms for transforming basic change operations applied to a data
structure into corresponding adaptations of the process structure. Second, we
define marking-based constraints for these change operations in order to ensure
soundness of the modified process structure afterwards.

4.1 Static Changes of Data-driven Process Structures

Basic operations enable the change of existing data and process structures. Con-
cerning data structure changes, COREPRO allows to insert objects and object

relations into a given data structure as well as to remove them (for an overview
see the left-hand side of Fig. 5). The offered set of operations is complete; i.e.,
it allows the engineer to transfer a given data structure into an arbitrary other
data structure, which constitutes an instance of the underlying data model (cf.
Section 2.1). Regarding adaptations of a process structure, COREPRO provides
basic operations for inserting and deleting OLC instances as well as OLC instance
dependencies (for an overview see the right-hand side of Fig. 5). In particular,
we focus on the coordination and synchronization of different OLC instances
and do not consider (dynamic) changes of the internal behavior of a single OLC
instance. In this paper, we describe only basic operations for adapting data and
process structures and omit a discussion on high-level change operations.

As motivated, data structure changes should be automatically transformed
into corresponding process structure changes in order to adapt the overall engi-
neering process to the new (product) data structure. COREPRO accomplishes
this based on the information specified at the model level; i.e., we use the life
cycle coordination model (LCM) which defines the OLC for each object type
and the OLC dependency for each object relation (cf. Section 2.2 and Fig. 1b).

First, we consider the addition of a new object x (with type ot) to a given
data structure. To realize this change, the addObject operation (cf. Fig. 5a)
can be used. This operation, in turn, is translated into an addOLC operation (cf.
Fig. 5a) which inserts a corresponding OLC instance to the process structure.
The OLC instance to be added is derived from the OLC linked to object type
ot within the life cycle coordination model (LCM). When adding a new object
x to a data structure, its relations to other objects can be specified using the
addRelation operation (cf. Fig. 5b). The newly added relations are then auto-
matically translated into OLC dependencies of the corresponding process struc-
ture. This is realized based on the addOLCDependency operation, which inserts
corresponding external state transitions between the involved OLC instances.
Again, information from the life cycle coordination model is used to correctly
transform the newly added object relation to a corresponding OLC dependency.

To remove an object relation r from a data structure, we provide operation
removeRelation. It is mapped to operation removeOLCDependency for the pro-
cess structure, which removes all external state transitions associated with the
relation r (cf. Fig. 5c). Removal of an isolated object (i.e., relations to other
objects have been already removed) from a data structure is mapped to the
removal of the associated OLC instance from the process structure (cf. Fig. 5d).

4.2 Dynamic Changes of Data-driven Process Structures

As motivated, data-driven process structures have to be dynamically adapted
when the related (product) data structure is changed. This section considers
dynamic process structure changes and deals with relevant issues.

A key challenge is to preserve soundness of the overall process structure when
dynamically adapting it. As long as we only consider static changes (cf. Section
4.1) soundness of an automatically changed process structure can be ensured if
the underlying LCM (e.g., Fig. 1b), from which the process structure is derived,

Object 1

Object 2

Object 1

Object 2

Object 1

Object 2

Object 1

Object 2

NEW

addRelation(objectFrom,
objectTo, relationType)

Inserts a new relation (with the

specified type) between objectFrom

and objectTo to the data structure.

addObject(name, objectType)

Adds a new object (with the

specified type) to the data structure.

removeRelation(objectFrom,
objectTo, relationType)

Removes the relation between
objectFrom and objectTo (with the
specified type) from the data structure.

removeObject(object)

Removes the object from the data

structure.

Data Structure Change Operation Process Structure Change Operation*

NEW

NEWNEWNEW

addOLCDependency(objectFrom,
objectTo, relationType)

Adds the ext. state transitions associated

with the given relation type between the

OLCs for objectFrom and objectTo.

addOLC(object)

Adds an OLC for the given object to the

process structure.

removeOLCDependency(objectFrom,
objectTo, relationType)

Removes the ext. state transitions asso-
ciated with the given relation type between
the OLCs for objectFrom and objectTo.

removeOLC(object)

Removes the OLC for the given object

from the process structure.

NEW

*Processes associated with the transitons are not displayed for the sake of clarity

Mapped to

a

b

c

d

Fig. 5. Data Structure Changes and Related Process Structure Adaptations

is sound. The COREPRO modeling tool always checks this before an LCM can
be released. When adapting data and process structures during runtime, we
have to define additional constraints with respect to the status of the process
structure in order to guarantee soundness afterwards. In particular, the addition
or removal of external state transitions must not result in deadlocks or livelocks.
Note that this problem is related to correctness issues discussed in the context
of dynamic and adaptive workflows [4, 5]. Here, one has to decide whether a
structural change can be applied to a running workflow instance or not. One
correctness notion used in this context is compliance [5]. Simply speaking, a
workflow instance is compliant with a structurally modified workflow schema if
its current execution history is producible on the new workflow schema as well.

In principle, the compliance criterion could be applied to process structures
as well. COREPRO logs the events related to the start and completion of the
processes coordinated by the process structure in an execution history. However,
the compliance criterion is too restrictive for data-driven process structures.
Consider, for example, the dynamic removal of an object from a data structure;
e.g., an already designed component might have to be removed from the elec-
trical system when a problem is encountered during testing. Respective runtime
changes often become necessary in practice and must be supported, even if the
OLC instance related to the data object has been already started or completed
(i.e., corresponding entries were created in the execution log of the process struc-
ture). For this case, compliance would be violated.

COREPRO uses specific correctness constraints to adequately deal with dy-
namic changes. We utilize the trace-oriented markings of OLC states and the
semantics of the described change operations when defining these constraints.

First, COREPRO allows to delete an already started or finished OLC in-
stance olc, together with its external state transitions, as long as the execution
of other OLC instances has not yet been affected by olc. This constraint will be
satisfied if the target states of all outgoing external state transitions of olc have
not yet been activated. In particular, this ensures that the removal of olc will
not have any effect on other OLC instances, and therefore does also not influence
soundness of the overall process structure. Note that this exactly reflects reality;
i.e., as long as the removal of a data object has no effects on the status of other
data objects (i.e., on the states of their related OLC instance) the object and its
corresponding OLC (with its external transitions) can be removed.

Second, we constrain the addition of new OLC instances and their depen-
dencies to other OLC instances. In particular, it must not be allowed to add
an external state transition with the new OLC as source if the target state
(of another OLC instance) is already marked as ACTIVATED or DONE. Otherwise
soundness of the overall process structure would be violated. Apart from this,
the constraint makes sense from a practical perspective; e.g., it must not be pos-
sible to insert untested components into a (product) data structure and relate
them to electrical systems which have already been released.

Process structures can become very large. Therefore one goal is to efficiently
check whether a dynamic change can be applied to a given process structure. It
is important to mention that the operations presented in Sect. 4.1 only modify
the process structure itself, but do not affect individual OLC instances (i.e.,
OLC states and internal state transitions are not changed by these operations).
Furthermore, when analyzing the change scenarios sketched above, we can see
that the applicability of a basic runtime change mainly depends on the markings
of the target states of the external state transitions to be added or deleted (either
explicitly or implicitly due to the deletion or addition of an OLC instance). Thus,
we can reduce efforts for constraint checking to the manipulated external state
transitions. More precisely, we consider the change regions defined by each of
these transitions. Such a region comprises the transition itself as well as its source
and target state. In principle, two fundamental issues emerge when dynamically
adding or deleting an external state transition:

1. May an external state transition be added or deleted when considering the
current marking of the states of its change region?

2. Which marking adaptations become necessary with respect to a change re-
gion when adding or removing the respective external state transition?

As example consider Fig. 6a which shows two concurrently executed OLC in-
stances OLC A and OLC B. Assume that an external state transition (with asso-
ciated process P) shall be dynamically added with S1 as source and S2 as target
state. First, COREPRO checks whether this change is possible considering the
current markings of the change region. Since the target state S2 of the respec-
tive external state transition has not yet been activated, the change is allowed
(cf. Fig. 6b). When applying it, in addition, the markings of the change region
have to be adapted to correctly proceed with the flow of control. In the given
example the newly added external state transition is automatically evaluated,

Initial situation

OLC B

S2... ...

OLC A

S1... ...

OLC B

S2...

P

...

OLC A

S1... ...

a b

OLC B

S2...

P

...

OLC A

S1... ...

c

Insertion of external state transition
possible since target state is not yet

activated

Adjust status marking of external state
transition after insertion

NEW

Disabled

Done

Fired

State

Transition

Skipped

Processing

Activated

Fig. 6. Dynamic Addition of an External State Transition

which changes its marking from WAITING to PROCESSING; i.e., the process related
with the transition is instantiated and started (cf. Fig. 6c). Note that a dead-
lock would occur in the given scenario if the newly added transition had not
been marked as PROCESSING. As another example consider again Fig. 6a. If we
tried to add an external state transition with source state S2 and target state
S1 the change would be not allowed. Otherwise both OLC A and OLC B might be
completed before the process associated with the new external state transition
completes; i.e., soundness of the resulting process structure would be violated.

Generally, a structure change comprises multiple operations of which either
all or none of them have to be applied to the data and process structure. To
enable change atomicity and isolation, COREPRO allows to group change op-
erations within a change transaction. Removing an object, for example, might
require the removal of several relations associated with this object and finally
the removal of the object itself. Temporary inconsistencies might occur, but will
not become visible to other change transactions and users respectively.

4.3 Practical Impact

In the automotive domain, electrical systems comprise up to 300 components.
Related process structures have more than 1300 processes and 1500 process de-
pendencies [2]. We have already shown the need for dynamically adapting process
structures in this scenario. In practice, often more than 50 dynamic changes of
a process structure become necessary during its enactment (cf. Example 3). A
software error within a component (e.g., the Main Unit of the navigation sys-
tem), for example, requires the exchange of this component; i.e., a new version of
the component has to be constructed (cf. Fig. 7). When exchanging the compo-
nent, the related OLC has to be exchanged as well to ensure that the associated
processes can be correctly re-enacted. Whether the adaptation is possible or not
depends on the status of the process structure; e.g., if the Main Unit subsystem
has been already installed and the Testdrive process has already started, the
Main Unit subsystem must not be exchanged (cf. Fig. 7). COREPRO enables
engineers to adapt respective process structures by changing the (product) data
structure and by transforming these changes to the process structure.

Data Structure Data-driven Process Structure

TestS EConstructed...

Subsystem: Main Unit V1.0

Tested ...

Subsystem:

Main Unit V1.1
Subsystem:

Main Unit V1.0

Test S EConstructed...

Subsystem: Main Unit V1.1

Tested ...

Install
Subsystem

1) Removal of

Subsystem V1.0 from

the Data Structure

Install
Subsystem

2) Insertion of

Subsystem V1.1

into the Data Structure

State
Transition

System:

Navigation

TestdriveS
Prepare
Prototype

System: Navigation

Tested ...Prepared

Changes Allowed as long as

State Prepared marked as

NotActivated

E

NEW

NEW

NEW

NEW

Data Structure Change Operations

startChanges;

removeRelation(Navigation, Main
Unit V1.0, hasConfiguration);

removeObject(Main Unit V1.0);

addObject(Main Unit V1.1,
Subsystem);

addRelation(Navigation, Main
Unit V1.1, hasConfiguration);

endChanges;

Disabled

Done

Fired

State

Transition

Skipped

Processing

Activated

Fig. 7. Release Management Process: Creation of a System Release

5 Related Work

At first glance, conventional approaches support modeling and coordination of
process structures. Choreography definition languages, for example, allow for the
activity-centered specification of the dependencies between (distributed) pro-
cesses [6]. Changes of process choreographies are discussed in [7, 8]. The data-
driven derivation and change of process structures, however, is not considered.

An approach for enacting and adapting data-driven process structures is pre-
sented in [9]. Focus is on simple data structures (e.g., lists, sets). COREPRO, by
contrast, enables the definition and change of arbitrary complex data structures
as well as automated creation of related process structures. Approaches for de-
riving process structures from bills of material are described in [10, 11]. While
[10] focuses on product-driven (re-)design of process structures based on design
criteria like time or cost, [11] discusses how to coordinate activities based on
object relations. The latter approach constitutes the basis of the Case Handling
paradigm [12]. The idea is to model a process (structure) by relating activities
to the data flow. The concrete activity execution order at runtime then depends
on the availability of data. Further approaches providing support for modeling
process structures consisting of OLCs are presented in [13, 14]. For example,
they enable the generation of activity diagrams from OLCs and vice versa. The
generic definition of data-driven process structures as well as their adaptation,
however, is not covered by the aforementioned approaches.

There exist approaches from the database area for describing object-oriented
data structures and their behavior [15, 16]. They provide a rich set of elements
for modeling data structures and for mapping them to OLCs, but neglect en-
actment and dynamic changes. COREPRO does not focus on the data modeling
part for the following reason. In the engineering domain, data modeling (incl.
the expression of constraints and the avoidance of data inconsistencies) is usu-
ally done within a product data management system, which further provides
techniques for versioning and variant handling. Our data model constitutes a
simplified view on the PDM data model capturing the needs for coordinating
and dynamically adapting process structures.

6 Summary and Outlook

IT support for enactment and consistent change of data-driven process structures
is a major step towards the use of process management technology in engineering
domains. COREPRO provides a new approach with respect to the automated
creation and data-driven adaptation of process structures during runtime. In par-
ticular, our approach reduces modeling efforts for large process structures and
ensures correct coordination of processes. Further, COREPRO enables adapta-
tions of process structures at both, build- and runtime at a high level of ab-
straction while it disallows dynamic changes of process structures which would
lead to an inconsistent runtime situation. Our case studies have shown that in
real world scenarios it might be necessary to apply changes even if they lead to
inconsistencies. Dealing with such situations requires extensive exception han-
dling techniques (e.g., backward jumps within OLCs) which are addressed by
COREPRO and will be presented in future publications.

References

1. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release manage-
ment processes in the automotive industry. In: BPM. LNCS 4102 (2006) 368–377

2. Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of
large process structures. In: CoopIS’07. LNCS 4803 (2007) 131–147

3. Aalst, W.: Verification of workflow nets. In: ICATPN. LNCS 1248, Springer (1997)
407–426

4. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed & Parallel Databases 16(1) (2004) 91–116

5. Rinderle, S., Reichert, M., Dadam, P.: Correctness Criteria For Dynamic Changes
in Workflow Systems: A Survey. DKE 50(1) (2004) 9–34

6. W3C: WS-CDL 1.0 (2005)
7. Rinderle, S., Wombacher, A., Reichert, M.: Evolution of process choreographies in

DYCHOR. In: CoopIS’06. LNCS 4275 (2006) 273–290
8. Aalst, W., Basten, T.: Inheritance of workflows: an approach to tackling problems

related to change. Theoretical Computer Science 270(1-2) (2002) 125–203
9. Rinderle, S., Reichert, M.: Data-driven process control and exception handling in

process management systems. In: CAiSE’06. LNCS 4001 (2006) 273–287
10. Reijers, H., Limam, S., Aalst, W.: Product-based workflow design. MIS 20(1)

(2003) 229–262
11. Aalst, W.: On the automatic generation of workflow processes based on product

structures. Comput. Ind. 39(2) (1999) 97–111
12. Aalst, W., Berens, P.J.S.: Beyond workflow management: Product-driven case

handling. In: GROUP. (2001) 42–51
13. Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling business contexture and behavior

using business artifacts. In: CAiSE. LNCS 4495, Springer (2007) 324–339
14. Küster, J.M., Ryndina, K., Gall, H.: Generation of business process models for

object life cycle compliance. In: BPM. LNCS 4714 (2007) 165–181
15. Kappel, G., Schrefl, M.: Object/behavior diagrams. ICDE (1991) 530–539
16. Dori, D.: Object-process methodology as a business-process modelling tool. In:

ECIS. (2000)

