
On Representing Instance Changes in Adaptive Process Management Systems∗

Stefanie Rinderle1, Ulrich Kreher1, Markus Lauer1, Peter Dadam1

1Dept. DBIS, University of Ulm, Germany
{stefanie.rinderle, ulrich.kreher, markus.lauer, peter.dadam}@uni-ulm.de

Manfred Reichert2
2 IS Group, University of Twente, The Netherlands

m.u.reichert@utwente.nl

Abstract

By separating the process logic from the application
code process management systems (PMS) offer promising
perspectives for automation and management of business
processes. However, the added value of PMS strongly de-
pends on their ability to support business process changes
which can affect the process type as well as the process in-
stance level. This does not only impose challenging con-
ceptual issues (e.g., correctness of process schemata af-
ter changes) but also requires sophisticated implementation
concepts with respect to efficient algorithms, flexible archi-
tectures, and reasonable treatment of resources. In this pa-
per we sketch the general implementation concepts for rep-
resenting process type and process instance data as well as
for realizating process schema evolution. All these concepts
have been developed and are currently implemented in the
ADEPT2 prototype within the AristaFlow project.

1 Introduction

More and more companies adopt process management
systems (PMS) for the control, management, and monitor-
ing of their business processes (or parts of them). An im-
portant prerequisite for the practical usage of a PMS is the
adaptivity of the implemented processes [10, 11]. The PMS
must be able to support changes of stored process templates
(we call this process schema evolution) as well as modi-
fications of running process instances. Both are needed,
for example, to enable the company to react to emerging
requirements or occuring exceptions. Changes of process
templates represent process type changes and may become
necessary due to process optimization efforts, evolving or-
ganizational structures (e.g., due to outsourcing of activi-

∗This work was conducted within the AristaFlow project which is
funded by the State of Baden-Württemberg, Germany.

ties), or launching of new laws [13, 2, 8]. Changes of single
process instances may have to be applied in order to deal
with exceptional situations (e.g., patient breakdown or en-
gine failure) but also, for example, to react to with late cus-
tomer requirements [6].

Adaptivity imposes high challenges on process manage-
ment technology. Algorithms are to be developed in or-
der to avoid inconsistent states of process templates and
process instances after process changes. If desired the
PMS must also allow to propagate process template mod-
ifications to running process instances after having checked
compliance of the instance states [10]. At this the migra-
tion of unbiased process instances (i.e., instances which
have not been subject to individual modifications so far)
and the connected state-related correctness checks build the
fundament for a comprehensive schema evolution support.
However, it would be out of touch with reality to only al-
low the migration of unbiased process instances by exclud-
ing biased process instances from a schema evolution. Bi-
ased process instances have been already individually mod-
ified, e.g., due to an exceptional situation. Therefore their
instance-specific schema deviates from the process tem-
plate the instances have been started on. For them, addi-
tional challenges arise when migrating them to the changed
process template. For example, it is crucial to distinguish
between disjoint and overlapping process type and process
instance changes. Disjoint changes have different effects on
the process (instance) schema whereas overlapping changes
(partially) affect the same regions of the underlying process
(instance) schema. When applying proces changes, in any
case, the other functions of the PMS running in parallel
(e.g., worklist management) must not be disturbed, even if
several thousands process instances have to be migrated at
the same time (as often the case for long-running applica-
tions). Therefore, the PMS can only make use of restricted
resources (e.g., memory) for these tasks. All these chal-
lenges require a flexible and resource-saving architecture

and an efficient implementation.
Commercial PMS either totally lack the possibility of

changing processes during runtime or they meet the require-
ments presented above only in a very restricted manner.
By contrast, the ADEPT2 prototype developed within the
AristaFlow project offers full support of process type and
process instance changes as well as of their interplay. The
formal framework for this next generation PMS has been
described in previous publications [10, 8]. In this paper we
present an architecture for the system-internal representa-
tion of process type and process instance changes (e.g., in-
sertion or deletion of activities or data elements) which sup-
ports instance migration in an efficient manner and needs
only little memory. We also discuss how this architecture
has been implemented within the ADEPT2 prototype.

In Sect. 2 we discuss the representation and migration of
unbiased instances. Sect. 3 shows how to represent biased
instances and how to migrate them after disjoint template
changes (cf. Sect. 4). Sect. 5 presents selected features of
our prototype. In Sect. 6 we discuss related work and close
with a summary and outlook in Sect. 7.

2 Migration of Unbiased Instances

We first consider unbiased process instances, i.e., in-
stances which have not been individually modified so far.
Approaches from literature [15] as well as commercial sys-
tems like Staffware [12] represent process templates and
process instances as illustrated in Fig. 1. The process
logic (e.g., control and data flow) is encapsulated within the
object process template which represents the process type.
The instance objects which represent the process instances
solely contain runtime information (like execution states of
activities or at least logically, the content of data elements).
The associated process type is expressed by a reference to
the respective process template object. Following this ap-
proach, all instances of a given process type reference the
same template object. This approach constitutes the basis
for the following considerations. The needed storage space
is significantly reduced – especially for a large number of
running instances – compared to storing a process descrip-
tion for each instance in a redundant way as it was the case
in workflow systems like ProMInanD [3]. Furthermore it
is possible to reduce the computing time since structure-
changing operations occuring in the context of a schema
evolution just have to be applied to the process template
once instead of applying them to each running instance.

However, the template object must not be changed di-
rectly since this would result in a migration of all running
instances. Doing so would not be correct for process in-
stances for which their execution has been progressed ”too
far”. Consider, for example, Fig. 21: Instances I1 and I2

1Note that for illustration reasons we use abstract examples in this pa-

A1 A2 A3

data element1
Template S1

Instance I3

 A1:

 A3:

 A2:

data element1: 2

Instance I2

 A1:

 A3:

 A2:

data element1: 2

Instance I1

 A1:

 A3:

 A2:

data element1: v1

A1 A2 A3

value1

Completed Activated

Figure 1. Representation of Process In-
stances

A12 A2 A3A1

value1

A12 A2 A3A1

value1

A12 A2 A3A1

dataEl1Template S1’

A2 A3A1

dataEl1Template S1

Instance I1

A1:

A3:

A2:

dataEl1: value1

Instance I2

A1:

A3:

A2:

dataEl2: value2

Before Migration:

Instance I1

A1:

A3:

A2:

dataEl1: value1

Instance I2

A1:

A3:

A2:

dataEl2: value2

After Migration:

A12: A12:

Completed Activated

Instance I1 after Migration to S1’ Instance I2 after Migration to S1’

Inconsistent
execution state

Figure 2. Incorrect Migration of Instance I1

run according to the same template S1. Since activity A2
has already been executed for instance I1 this instance is
not compliant with the new version of schema S1 for which
activity A12 has been inserted as a predecessor of activity
A2. If this change would be directly applied to S1 instance
I1 would be migrated in an incorrect manner (contrary to
I2). This, in turn, would lead to an inconsistency since ac-
tivity A2 of instances I1 has been completed before its new
predecessor A12 is executed. Note that this is exactly the
implementation we find in commercial workflow systems
like, for example, Staffware [12].

The coexistence of instances which refer to the old or
new schema version can be achieved by creating a copy of
the template object. Then the schema changes can be ap-
plied to this copy and all compliant process instances are
migrated to it. In this case the instance migration is done by
re-linking the instance references to the new version. This
is followed, for example, in abaXX or MQWorkflow.

per. For practical scenarios on process instance and type changes refer to,
e.g., [10].

3 Representation of Biased Process Instances

We now look at biased instances, i.e., instances for which
their instance-specific schema deviates from the original
template they were created on due to individual instance
modifications. How can instance-specific modifications be
implemented when using the approach discussed before?
One possibility is to create a copy of the associated template
object, apply the changes to it, and re-link the affected in-
stances to the new copy version afterwards. However, doing
so the original process type reference is lost. Reason is that
the biased instances no longer reference the original schema
object although they descend from this template. Without
additional provisions such instances are no longer taken into
account when further template changes and schema evolu-
tions occur. Additionally, if the number of biased process
instances is high, this approach will degenerate to the so-
lution where the complete process description is stored for
each process instance. Generally, for a particular process
instance change only a small part of the original process
template is adapted. Therefore, in most cases, for biased in-
stances it is more efficient to only store the ”delta” between
the instance-specific schema and process template.

This delta can be represented by the change operations
which have been applied to modify the instance. Alter-
natively, the divergence can be represented by a so called
delta layer. This layer stores so called delta objects which
reflect the difference between instance objects and template
objects. In the following, we focus on the second variant
since it offers several advantages for the management and
migration of biased instances.

Figure 3 illustrates the delta layer concept. The delta
layer is represented by an object which has the same inter-
faces as the template object and therefore offers the same
operations. The difference between the delta layer object
and the template object is that the delta layer object does
not reflect the whole process graph but only those parts of
the process schema which have been changed by instance-
specific modifications. Therefore, together with the tem-
plate object the delta layer object represents the instance-
specific schema of the biased instance. The instance object
which represents the biased instance does no longer refer-
ence the associated template object (cf. Fig 3) but the delta
layer object. The delta layer object itself references the
original template object and therefore preserves the assoca-
tion between instance I1 and process type S1. The unbiased
instances (e.g., I2) directly reference the original process
template object further on. For biased instances queries like
”select all direct successors of activity X” are fired against
the delta layer. For unbiased instances, by contrast, they are
directly fired against the original template object.

How the delta layer can be realized depends on the rep-
resentation of nodes and edges of the process graph. In our

A1 A2 A3

data element1
Template S1

Instance I2

 A1:

 A3:

 A2:

data element1: v2

Activated Completed

A2* A23 A3* A1

Delta layer

Instance I1

 A1:

 A3:

 A2:

data element1: v1

 A23:

A1 A2 A 3

value2

A2 A23 A 3 A1

value1

A Reference on A

Figure 3. The Delta Layer Concept

implementation approach, for example, there are no edge
objects. Instead, we explicitely store the predecessor and
successor activities for each activity. Obviously, this ap-
proach is sufficient to represent the control flow.

Before a dynamic change takes place all activity objects
which are affected by the modification are automatically
copied into the delta layer. The change is then executed on
the copies. As an example consider again Fig. 3: In order to
insert activity A23 between activities A2 and A3, first of all,
activity objects A2 and A3 are copied (including their ID)
and inserted into the delta layer as A2* and A3*2. A2 and
A3 are to be copied since their predecessor and successor
sets are changed due to the ad-hoc modifications. After-
wards activity object A23 is created within the delta layer.
Finally, A23 is inserted between A2* and A3* by adapt-
ing the predecessor and successor lists of A2*, A3*, and
A23 accordingly. For an implementation using edge ob-
jects it is not necessary to copy A2 and A3 into the delta
layer. Only A23 and the objects for egdes A2 −→ A23 and
A23 −→ A3 have to be created. Additionally, A2 −→ A3
has to be marked as deleted.

Assume the following scenario where query ”select all
direct successors of activity X” is to be fired. For an
implementation not using edge objects, first of all, it is
checked whether an activity object with respective ID is
stored within the delta layer or not. If so, the successor list
is returned. Otherwise the delta layer forwards the query to
the referenced process template object. For an implemen-
tation using edge objects the delta layer, first of all, fetches
all edge objects from the process template for which ac-
tivity X is registered as source. Then the delta layer re-
moves all edges from this edge set which are marked as
deleted. Then it unifies this set with the set of all newly
inserted edges having source X within the biased instance-
specific schema afterwards. The resulting set then contains

2We use this notion for readability purposes

A12 A2 A3A1

dataElement1Template S1’

A2 A3A1

dataElement1Template S1

Instance I1

A2* A23 A3* A1

Delta layer

A Reference on A

Schema Evolution
S1 � S1’

Figure 4. Migration of Biased Instances for
Implementation Without Edge Objects

all edges with source X (based on which, trivially, the suc-
cessors of X within the new instance-specific schema can
be determined).

4 Migration of Biased Process Instances

The migration of biased process instances is a challeng-
ing issue. First of all, the biased instances have to be clas-
sified along the degree of overlap between their instance-
specific change and the template change [9]. Reason is that
the migration strategy depends on this classification. In this
paper, we focus on the migration of instances for which
their bias is disjoint with the template change. However,
in the ADEPT2 prototype it is possible to manage the mi-
gration of instances with arbitrary bias.

One possibility for migrating instances with disjoint bias
is to re-link the reference to the original template object
within the delta layer to the new template version. However
this may lead to problems for the implementation without
using edge objects. Consider the scenario depicted in Fig.
4. A1, A2, and A3 are three sequentially ordered actitivies.
Inserting an activity A23 between A2 and A3 at instance
level (instance I1) results in the creation of a copy A2* of
A2 within the delta layer and the replacement of the ID of
A3 by the ID of A23 within the successor list. By insert-
ing activity A12 between A1 and A2 at the process schema
level (template S1) the ID of A1 is replaced by the ID of
A12 within the predecessor list of A2. The query ”deter-
mine all direct predecessors of A2” still yields A1 as a pre-
decessor of A2 since the delta layer returns the predecessor
list of A2*. This list, however, has not been adapted by the
schema evolution and therefore still contains the ID of A1.

In order to overcome this problem, an empty delta layer
object can be attached to the template object represent-
ing the new schema version. Then we apply the instance-
specific change to the empty delta layer object and re-
reference it by the biased instance. The old delta layer ob-
ject could be either discarded (and its used storage could be
released) or be recycled to a pool of (empty) delta layers for

reuse. When applying this approach the insertion of A12
(i.e., the type change) is conducted before the insertion of
A23 (i.e., the instance change). Therefore A12 is already
known as a predecessor of A2 before copying it into the
delta layer. Therefore A12 is the predecessor of A2* after
copying to the delta layer. This leads to a correct answer of
query ”determine all direct predecessors of A2”. Swapping
the order of process type and instance changes was valid
since we assumed that the changes were disjoint3.

When using an implementation with edge objects we are
not confronted with the problem of ”forgotten predeces-
sors” as described above. Here, the delta layer contains an
activity object for A23 and the new edges A2 −→ A23 and
A23 −→ A3 after dynamic insertion of A23. Edge A2 −→
A3 is marked as deleted. At type level, edge A1 −→ A2 is
removed and edges A1 −→ A12 and A12 −→ A2 are in-
serted when adding A12. For processing query ”determine
all direct predecessors of A2” the delta layer, first of all,
fetches all edges with target A2 from the process template.
The template object returns only A12 −→ A2 to the delta
layer. Since this edge is not marked as deleted within the
delta layer and no more edges with target A2 are stored, the
delta layer returns A12 as predecessor of A2. However, the
implementation variant using edge objects is not always ad-
vantageous. It, for example, always necessitates an access
to the template object in order to determine the incoming
and outgoing edges of an activity. For the implementation
variant not using edges, by contrast, accessing the template
object is not necessary since the associated activity is al-
ready contained within the delta layer.

5 ProofOfConceptPrototype

Our prototype internally realizes process types and in-
stances according to the concept depicted in Fig. 3. Fig.
5 shows the ouput for the migration of instances for which
their bias is disjoint with the process type change. Addition-
ally, Fig. 5 depicts a report which summarizes information
about compliant and non-compliant process instances, the
reason for exclusion from migration (i.e., migration would
result in structural inconsistencies like deadlock-causing
cycles), and the time which was necessary for compliance
checks as well as for marking adaptations.

Figure 6 shows that part of the used data model which de-
scribes the representation of process templates and process
instances. A Template object represents an orignal
process template and corresponds to the template object
mentioned in this paper. It is directly referenced by in-
stance objects which represent unbiased process instances.
In case of biased instances an ModifiedTemplate ob-
ject is linked between the Instance objects and the

3Since disjoint changes are commutative [9] the order of their applica-
tion can be swapped resulting in execution equivalent process schemes.

Figure 5. Migration of Instance with Disjoint
Bias (Prototype)

Template objects the biased instances are based upon. It
fulfills the function of the delta layer and represents only
process graph parts which have been modified at instance
level. Template object and ModifiedTemplate
object build up the runtime process schema of the as-
sociated instance. As claimed both Template and
ModifiedTemplate offer the same interface - both im-
plement interface TemplateVersion. Thus transparent
access by an Instance object is ensured. As the follow-
ing code fragment shows ModifiedTemplate delegates
requests it cannot answer to the (Modified)Template
object it adapts. The code fragement depicted in
Fig. 7 returns the direct predecessors of an activity
in an given process. For this purpose, first of all,
it is checked whether or not the specified activity was
copied to the delta layer because of being affected by
ad hoc modifications (currActivity=(Activity)
activityID2ActivityMap.get(inID)). In case
(currActivity!=null), method getCtrlPred is
called on the corresponding activity object and returns the
direct predecessors. Otherwise it delegates the request to
the adapted (Modified)Template object. Note that
within our prototype the data flow is handled analogously
(cf. Fig. 7).

6 Related Work

From a conceptual point of view, adaptivity in PMS
has been focused on by many approaches so far (e.g., see
[13, 2, 4, 11, 8, 15]). From these approaches, only the IN-
TELLIGEN project, the WASA2 project [15], and ADEPT
[6, 10] address the issue of process type and process in-
stance changes within one system. All other approaches ei-

Method getDirectPred_byCtrl(Integer inID) of ModifiedTemplate)

public ActivityList getDirectPred_byCtrl(Integer inID){
 //Are there any information about the activity with ID inID
 //in the delta-layer?
 Activity currActivity = (Activity) activityID2ActivityMap.get(inID);
 if (currActivity!=null){
 //There are information about the activity with ID inID
 //in the delta-layer.
 //So answer the question with this information.
 return currActivity.getCtrlPred(); //answer the question
 }
 else{
 //There is no information about activity with ID inID
 //in the delta-layer, so delegate the question
 //to the original template which is modified by this delta-layer.
 return originalTemplateVersion.getDirectPred_byCtrl(inID);
 }
}

Figure 7. Code Fragment

ther deal with single process instance changes or process
schema evolution. However, neither INTELLIGEN nor
WASA2 discuss how the interplay between process type and
process instance changes can be adequately handled. For
example, in WASA2 ad-hoc modified process instances are
excluded from further type changes Therefore ADEPT pro-
vides the only comprehensive framework in the context of
process adaptivity.

There are only few approaches dealing with an efficient
implementation of advanced process management function-
ality (e.g., [14, 4]). The functionality of existing prototypes
are mostly restricted to buildtime and runtime simulations.
Using such simulations it can be shown that the particular
functionality is realized in principle, but not how it can be
implemented in a performant way in practice. Our system
is one of the few available research prototypes for adaptive,
high-performance process management [7]. In order to gain
usability experience we have deployed this system to differ-
ent research groups [5, 1]. They have used it as platform
for realizing advanced process-aware information systems
in domains like e-health and e-business. The experiences
have helped us to develop new system components with ad-
vanced programming interfaces.

Usually, commercial WfMS do not allow change propa-
gation to in-progress instances when a WF schema is mod-
ified at the type level. Instead, simple versioning concepts
are used to ensure that already running instances can be fin-
ished according to the old schema. One exception is offered
by Staffware [12]. However, there are several critical as-
pects arising in this context. For example, running activities
can be deleted without any user information. If the deleted
activity is finished all returned results disappear.

7 Summary and Outlook

We have introduced a compact internal representation for
process templates and instances based on which the migra-
tion of unbiased and biased instances can be easily realized.

Template

<<Interface>>

TemplateVersion

ModifiedTemplate

Instance

{XOR}

1

* 1

1

1

*

-templateVersion

-templateVersion

-originalTemplateVersion

-originalTemplateVersion

1

1

{XOR}

ModifiedDataContext

1

1

1 1

DataContextImplementation

1 1

1

* {XOR}

-originalDataContext

-originalDataContext

-dataContext

-dataContext

<<Interface>>

DataContext

DataContextInstance

1 1

{XOR}

1

*1

1 -dataContext

-dataContext

-dataContextInstance

+getDirectPred_byCtrl(ID)

+getDirectPred_byCtrl(ID)

+getDirectPred_byCtrl(ID)

Figure 6. Class Diagram Prototype

The migration itself is quick and efficient since it is based on
a simple re-linking of references in most cases. Furthermore
the necessary storage space could be reduced compared to
other approaches since, for example, process template ob-
jects can be reused and the delta layer only stores those parts
of the process graph which have been modified. With these
achievements the applicability of adaptive process manage-
ment becomes highly realistic in practice. Further on, the
delta layer and migration approach can be transferred to
other process meta models which store information about
already executed activities [8]. Due to lack of space we
have omitted the results of our simulations which will be
subject of further publications.

The practical applicability of the presented appproach
can be still increased. For example, a coordination of con-
current accesses on process templates and instances by ad-
equate locking mechanism is important. Additionally, we
want to address the question how to conduct an instance
migration if some of the instances are partitioned and con-
trolled by different process engines. Finally, in this paper,
the approach is restriced to disjoint process type and in-
stance changes whereas the handling of overlapping process
changes is to be analyzed as well. All these considera-
tions are taken into account within the implementation of
the new process management system ADEPT2 within the
AristaFlow project (www.aristaflow.de).

References

[1] S. Bassil, R. Keller, and P. Kropf. A workflow–oriented sys-
tem architecture for the management of container transporta-
tion. In BPM’04, pages 116–131, 2004.

[2] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evo-
lution. DKE, 24(3):211–238, 1998.

[3] B. Karbe. Flexible workflow management with proMI-
nandD. In CSCW – Computer Supported Cooperative Work:

Information Systems for decentralized enterprise structures.
Addison-Wesley, 1994. (in German).

[4] K. Kochut, J. Arnold, A. Sheth, J. Miller, E. Kraemer,
B. Arpinar, and J. Cardoso. IntelliGEN: A distributed
workflow system for discovering protein-protein interac-
tions. DPD, 13(1):43–72, 2003.

[5] R. Müller, U. Greiner, and E. Rahm. AGENTWORK: A
workflow system supporting rule–based workflow adapta-
tion. DKE, 51(2):223–256, 2004.

[6] M. Reichert and P. Dadam. ADEPTflex - supporting dy-
namic changes of workflows without losing control. JIIS,
10(2):93–129, 1998.

[7] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adap-
tive process management with ADEPT2. In ICDE’05, pages
1113–1114, 2005.

[8] S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria
for dynamic changes in workflow systems – a survey. DKE,
50(1):9–34, 2004.

[9] S. Rinderle, M. Reichert, and P. Dadam. Disjoint and over-
lapping process changes: Challenges, solutions, applica-
tions. In CoopIS’04, pages 101–120, 2004.

[10] S. Rinderle, M. Reichert, and P. Dadam. Flexible support
of team processes by adaptive workflow systems. DPD,
16(1):91–116, 2004.

[11] S. Sadiq, O. Marjanovic, and M. Orlowska. Managing
change and time in dynamic workflow processes. IJCIS,
9(1&2):93–116, 2000.

[12] Staffware. Staffware Process Suite Version 2 – White Paper.
Staffware PLC, Maidenhead, UK, 2003.

[13] W. v.d. Aalst and T. Basten. Inheritance of workflows: An
approach to tackling problems related to change. Theoret.
Comp. Science, 270(1-2):125–203, 2002.

[14] M. Weske. Object-oriented design of a flexible workflow
management system. In ADBIS98, pages 119–131, 1998.

[15] M. Weske. Formal foundation and conceptual design of dy-
namic adaptations in a workflow management system. In
HICSS-34, 2001.

	Text1: Proc. WETICE 2006: First IEEE Workshop on Flexibility in Process-aware Information Systems (ProFlex 2006), Manchester, June 2006 (to appear)

