
Data–Driven Process Control
and Exception Handling

in Process Management Systems

Stefanie Rinderle1 and Manfred Reichert2

1Dept. DBIS, University of Ulm, Germany, rinderle@informatik.uni-ulm.de
2IS Group, University of Twente, The Netherlands, m.u.reichert@utwente.nl

Abstract. Business processes are often characterized by high variabil-
ity and dynamics, which cannot be always captured in contemporary
process management systems (PMS). Adaptive PMS have emerged in
recent years, but do not completely solve this problem. In particular,
users are not adequately supported in dealing with real–world excep-
tions. Exception handling usually requires manual interactions and nec-
essary process adaptations have to be defined at the control flow level.
Altogether, only experienced users are able to cope with these tasks.
As an alternative, changes on process data (elements) can be more eas-
ily accomplished, and a more data–driven view on (adaptive) PMS can
help to bridge the gap between real–world processes and computerized
ones. In this paper we present an approach for data–driven process con-
trol allowing for the automated expansion and adaptation of task nets
during runtime. By integrating and exploiting context information this
approach further enables automated exception handling at a high level
and in a user–friendly way. Altogether, the presented work provides an
added value to current adaptive PMS.

1 Introduction

For several reasons companies are developing a growing interest in improving
the efficiency and quality of their internal business processes and in optimizing
their interactions with customers and partners. Following this trend, in recent
years there has been an increasing adoption of business process management
(BPM) technologies as well as emerging standards for process orchestration and
process choreography [1]. In particular, BPM technologies enable the definition,
execution and monitoring of the operational processes of an enterprise.

Currently, one can observe a big gap between computerized workflows and
real-world processes [2–4]. This gap is even increasing during runtime, thus lead-
ing to unsatisfactory user acceptance. One reason for this drawback is the in-
ability of existing PMS to adequately deal with the variability and dynamics of
real–world processes. For many applications (e.g., logistics, healthcare) process
execution cannot be fixed in every detail at buildtime [2, 5]. Regarding a delivery
process, for example, the concrete tour for the truck is not known beforehand.

Instead, it should be possible to model the processes only at a coarse–grained
level and to dynamically evolve these process skeletons (which set out the rough
execution during runtime) at the process instance level.

Another drawback arises from the fact that current PMS do not adequately
capture (physical) context data about the ongoing process instances. In partic-
ular, real–world data is needed for providing (automated) exception handling
support. Due to this missing support in exceptional situations, however, users
often have to bypass the PMS. As a consequence, computerized processes do not
longer (completely) reflect the real-world processes. For dynamic applications
like logistics or healthcare, as mentioned, this fact can quickly lead to a non-
negligible (semantic) gap between the processes at the system level and those
taking place in the real world. To overcome the discussed limitations one of the
greatest challenges is to provide automatic support for expanding and adapt-
ing ongoing process instances at runtime by avoiding user interactions as far as
possible.

In this paper we provide a formal framework for the automated and data–
driven evolution of processes during runtime. This includes data–driven expan-
sion of process task nets as well as data–centered exception handling, i.e., process
adaptations necessary to deal with exceptional situations are carried out by mod-
ifying data structures (e.g., a delivery list of goods). This data change is then
propagated to the running process by the concept of data–driven expansion,
and not by directly applying (user–defined) changes on the control flow schema
of the concerned process instance. This requires availability of data about real–
world processes in order to provide automated support. Particularly, we also have
to integrate and exploit process context information (e.g., data about physical
objects) in order to automatically derive exception handling strategies at a se-
mantically high level. This paper completes our previous work on the ADEPT
framework for adaptive process management [6, 7]. On top of this framework we
introduce the concepts mentioned above. However, the described approach could
be applied in connection with other adaptive PMS as well (e.g., WASA [8]).

In Section 2 we present a motivating example stemming from the logistics
domain. A formal framework for data–driven task net expansion is given in
Section 3. In Section 4 we discuss exception handling strategies followed by
architectural considerations in Section 5. Section 6 discusses related work. We
close with a summary and an outlook in Section 7.

2 Motivating Example (and Basic Concepts)

In this section we introduce our running example used throughout the paper in
order to illustrate our approach.

2.1 Example Description

As usual, we distinguish between buildtime and runtime aspects of a business
process. This is reflected by the separation of process specifications at the type
level (buildtime) and the instance level (runtime).

Process Description at Type Level: We use a logistics process, namely the
delivery of a set of furnitures to a number of customers by one truck. Let us
assume that a planning component has already determined the list of customers
who shall be visited by the truck, and that the order of the list sets out the
sequence in which the goods are to be delivered to the customers. Consider this
information as input to the logistics process depicted in Fig. 1 (via external data
element cust list). Based on it a delivery list is built up containing the data
needed for delivering the goods (customer name & address, list of the goods to
be delivered which have been previously scanned via their bar code). In parallel
to this, the truck is prepared. Throughout the processes, the truck position (data
element truck pos) is provided by an external tracking component, whose data
are continuously updated by a GPS system – we denote this process data element
therefore as external. In general, such process context information is stemming
from physical objects related to the associated process. Examples for physical
objects are truck or good with their associated context information location (by
GPS system) or barcode.

The delivery list is handed to the truck driver responsible for the tour who
then loads the truck correspondingly. The associated load truck activity is
a multiple instance activity, i.e., at runtime it has to be expanded into sev-
eral activity instances of which each represents the loading of the items for a
certain customer (cf. Fig. 2). The number of running instances and the tour
itself (described by multiple instance activity deliver goods at type level) are
also figured out during runtime according to the order set out by data element
cust list, i.e., this activity is expanded into several activities each of them
describing a single customer delivery. We call this data–driven approach expan-
sion. Note that, in addition, deliver goods is a complex activity (cf. Fig. 2).
This results in a runtime expansion into subprocesses each of them consisting of
a sequence of the two activities unload goods and sign delivery report (cf.
Fig. 2). Finally, when the truck driver has finished his tour he is supposed to
summarize all single delivery reports collected during the tour in order to create
a tour delivery report. Afterwards the truck is returned to the truck company.

Process Expansion at Instance Level: Regarding the expansion of the de-
scribed multiple instance activities load truck and deliver goods (see Fig. 1),
several issues arise. The first one refers to expansion time, i.e., the time when the
multiple instance activities are expanded during instance execution (at process
instance level). Basically there are two possibilities: either the expansion takes
place when the process instance is started or when the multiple instance activity
becomes activated. In Fig. 2, for example, in both cases, the expansion time is
set to activity activation time. Therefore, for process instance I1, load truck
has been expanded into three activity instances according to the content of the
delivery list. These activity instances describe loading the goods for three cus-
tomers 1, 2, and 3. By contrast, deliver goods has not been expanded yet.
For process instance I2, however, the expansion of activities load truck and
deliver goods (for customer 1 and 2) has already taken place. When expand-

Process Type Level

Process Type Schema S

Start AND-
Split

Prepare
goods

Prepare
truck

Load
truck

Create
delivery
report

Return
truck

End And-
Join

truck_pos

delivery_list

cust_list

Unload
goods

Sign
delivery

cust_list

single
instance
activity

multiple
instance
activity

complex
activity

delivery_list

Deliver
goods

List data
element

Data
 element

control flow

data flow

Fig. 1. Logistics Process at Type Level

ing deliver goods two activity sequences (consisting of basic activities Unload
goods and Sign delivery) have been inserted at the instance level.

In addition to sequential expansion (as for process instances I1 and I2 in
Fig. 2) parallel expansion will be possible as well if the single activity instances
shall be organized in parallel. In addition to this, it is further possible to specifiy
in which order the data elements are fetched from the list element responsible
for the expansion. Two standard strategies (FIFO and LIFO) are considered in
this paper, but others are conceivable as well. More advanced strategies could
depend on planning algorithms (especially within the logistics area).

Process Instance Level:

Process Instance I1

Process Instance I2

Load
cust1

Load
cust2

Load
cust3

Unload / sign
cust 1

Unload / sign
cust 2

Load
cust1

Load
cust2

Process Type
Level:

Process Instance I1

Process Instance I2

Completed

Activatedexpansion of load truck

expansion of deliver goods

Delivery_list:

1) cust1

2) cust2

3) cust3

Delivery_list:

1) cust1

2) cust2

cust1 cust2 cust3

cust1 cust2

Fig. 2. Expansions of Logistics Process at Instance Level

Changes of the process context and the data structures often require process
adaptations. The approach of activity expansion during runtime integrates build-
time flexibility into the process meta model1. In the logistics process, for exam-
ple, an additional delivery can be realised by inserting the associated data into
the delivery list before activation time of load truck and deliver goods. This
results in the desired process structure and is based on the expansion mechanism
and not on the application of an end–user defined control flow change.

2.2 Exceptional Cases

User acceptance can be further increased by strengthening the data–centered
view on processes. In addition to data–driven expansion of activities our ap-
proach includes process context information, about ”physical objects” (e.g., bar
code of the goods to be delivered or the truck position determined by a GPS
system). Context information can be extremely helpful when dealing with excep-
tional situations. Assume that a truck crashes during delivery. Then a solution
for this problem can be figured out using the context information about the
truck position. Other examples for exceptions comprise a wrong truck load or a
rejection of the delivery by the customer (e.g., because of quality problems).

Generally, the provision of automatic exception handling strategies is highly
desirable for application processes which are ”vulnerable” to exceptions. In ad-
dition, it must be possible to define such automatic strategies at a semantically
high level in order to increase user acceptance. So far, it has been either not
possible to deal with exceptional situation at all or users have been obliged to
interfere by adapting the affected process instances. However, such modifications
require a lot of knowlegde about the process. Using the concept of data–driven
expansion instead, exception handling can be (partially) based on the data (e.g.,
by changing the customer order within the delivery list). Consequently, the sys-
tem is enabled to automatically transform these modifications into changes of
the process structure.

For finding such auomated, high–level exception handling strategies the abil-
ity to exploit context data is indispensable. Consider, for example, process in-
stance I2 depicted in Fig. 2. Assume that during the delivery of goods to cus-
tomer 2 the truck has a breakdown. In this situation it would be not desirable
to interrupt the process and roll it back to the starting point since the other
customer(s) have been served properly so far. Exploiting context information,
in particular truck positions, it could be a more favorable solution to send an
alternative truck to the troubled one, pick up the goods, and deliver them to
customer 2. Generally, physical context information is helpful for this (and must
therefore be somehow respresented at process type level and be gathered at
process instance level). Other examples for exceptional situations during exe-
cution of the logistics process comprise an incomplete or incorrect loading /
unloading of goods, quality defects (e.g., wrong colour of furniture) resulting in
such customer refusal, or absence of the customer when the goods are delivered.
1 We also offer the possibility to adapt process instances ad–hoc by applying instance–

specific changes (cf. Section 3)

2.3 Requirements

Altogether, we need a runtime system which allows for a data–driven process
management. In detail, it must be possible to

– dynamically expand task nets in a data–driven way
– increase process flexibility by automatically translating data structure changes

to corresponding process instance adaptations
– integrate context data within the process model
– make use of context information in order to automatically derive exception

handling strategies

3 Framework for Dynamically Evolving Process
Structures

In this section we present a formal framework for automatically evolving process
instances during runtime. The formal foundation is needed in order to present an
algorithm for task net expansion, which automatically ensures the correctness of
the resulting task net as well as properly working exception handling strategies.

3.1 Process Type Schema

We enrich the standard definition of task nets (like, e.g., activity nets) by intro-
ducing the concepts of list–valued data elements and the concept of expansion
of multiple instance activities.

Definition 1 (Process Type Schema). A tuple S = (N, D, CtrlE, DataE,
EC, Exp) is called a process type schema with:

– N is a set of activities
– D is a set of process data elements. Each data element d ∈ D has a type T ⊆
A ∪ L, where A denotes the set of atomic data types (e.g., String, number,
etc.) and L denotes the set of list data types

– CtrlE ⊂ N × N is a precedence relation (note: nsrc → ndest ≡ (nsrc, ndest) ∈
CtrlE)

– DataE ⊆ N × D × NAccessMode is a set of data links between activities and
data elements (with NAccessMode = {read, write})

– EC: CtrE 7→ Conds(D) ∪ {Null} assigns to each control edge an optional
transition conditions where Conds(D) denotes the set of all valid transition
conditions on data elements from D

– Exp ⊆ N × D × {SEQ, PAR} × {LIFO, FIFO} × Time denotes the subset
of multi instance activities from N (expanded during runtime based on the
specified configuration parameters). For e = (n, d, mode, str, time) ∈ Exp:
• n ∈ N, d ∈ D with dataType(d) ⊆ L
• mode ∈ {SEQ, PAR} denotes the multi instantiation mode, i.e., whether
the activity instances created at expansion time are carried out in sequence

or in parallel.
• str ∈ {LIFO, FIFO} denotes the strategy in which list data elements are
picked (which is relevant if mode = SEQ holds), and
• time ∈ Time denotes the point in time at which the multi instantiation
is carried out; possible configurations are, for example, time = actTn or
time = sT . While the former indicates that expansion takes place when
activity n becomes activated, the latter configuration states that expansion is
done already at process start time. (More configurations are conceivable, but
are outside the scope of this paper).

Data elements can be gathered manually or by exploiting context informa-
tion, e.g., the barcode of goods (cf. Fig. 1). It is also possible to have context
data elements which are continuously adapted (but not read) during process
execution (e.g., the truck position obtained by a GPS system in Fig. 1). This
context data may be used in order to figure out an exception handling strategy
(cf. Sect. 4). The process type schema depicted in Fig. 1 comprises multi instance
activites Load truck and Deliver goods, i.e., we obtain Exp = {(Load truck,
delivery list, SEQ, FIFO, actT), (Deliver goods, delivery list, SEQ,
FIFO, actT)}. Note that the specification whether a LIFO or FIFO strategy is
used only makes sense if the expansion strategy is set to sequential mode.

In addition, we need a set of change operations defined on task nets with pre-
cise semantics in order to provide exception handling strategies as, for example,
sending a new truck after a truck crash (what would be carried out by inserting
an activity send truck into the affected task net). Table 1 presents a selection
of such change operations. As shown in [6, 2] these change operations all have
formal pre– and post–conditions based on which the correctness of a task net is
automatically ensured when applying the modifications.

3.2 Process Instances

Based on a process type schema S process instances can be created and started
at runtime. Due to the dynamically evolving process structure the particular
process instance schema may differ from the process type schema the instance
was started on. This is reflected by a set ∆E containing change operations (cf
Tab. 1) which may have been applied at different points in time during instance
execution and reflect the instance–specific dynamic expansion of S. Furthermore
a set of change operations ∆I is stored which reflects the ad–hoc modifications
applied to process instance I (by users) so far. In order to obtain instance–specific
schema SI the merge of the so called change histories ∆E and ∆I is applied to
S by considering the particular time stamp of each single change operation.

Definition 2 (Process Instance Schema). A process instance schema SI is
defined by a tuple (S, ∆E, ∆I) where

– S denotes the process type schema I was derived from
– ∆E denotes an ordered set of change operations which reflect the expansion

of S depending on the specified activation time (cf. Fig. 3)

Table 1. A Selection of High-Level Change Operations on Activity Nets

Change Operation ∆ Effects on Schema S
Applied to Schema S

insertAct(S, X, Mbef , Maft) insertion of activity X between activity sets Mbef , Maft

Subtractive Change Operations

deleteAct(S, X) deletes activity X from schema S

Order-Changing Operations

moveAct(S, X, A, B) moves activity X from current position
to position between activities A and B

Data Flow Change Operations
addDataElements(S, dElements) adds set of data elements dElements to S
deleteDataElement(S, d) deletes data element d from S
addDataEdge(S, (X, d, mode)) adds data edge (X, d, mode) to S (mode ∈ {read, write})
deleteDataEdge(S, dL)) deletes data edge dL from S
relinkDataEdge(S, (d, n, [read|write]), n’) re–links read/write data edge from/to data element d

from activity n to activity n’

List Data Change Operations
addListElement(S, d, dnew, di, di+1) adds element di to list data d between elements di and di+1
deleteListElement(S, d, ddel) deletes element ddel from list data d
moveListElement(S, d, dmove, di) moves dmove within list data d after list element di

– ∆I = (op1, .., opn) comprises instance–specific change operations(e.g., due to
ad-hoc deviations).

The activity set, data set, and edge sets of SI (i.e., SI := (NI , DI , CtrlEI , DataEI))
are determined during runtime.

Process instance information consists of the process instance schema and the
process instance state expressed by respective activity markings. In Def. 3 we add
the runtime information (instance state) to the instance schema and present an
expansion algorithm based on the process instance state. As described in Def.
2 the deviation of a process instance I from its original process type schema
S is reflected by the merge of change histories ∆E and ∆I . In particular, the
application of the change operations contained in ∆E to S results in the expanded
process instance schema. How ∆E is determined is described in the following
definition. In addition, there may be instance–specific changes ∆I , for example,
applied to overcome exceptional situations. We include these instance–specific
changes within Def. 2 since we want to present semantic exception handling
strategies which are mainly based on such ad–hoc changes. As provided in the
ADEPT framework certain state conditions have to hold when applying change
operations at the process instance level in order to ensure a correct instance
execution in the sequel. These conditions mainly preserve the history of the
previous instance execution. It is forbidden, for example, to delete an already
completed activity. For details we refer to [6].

Definition 3 (Process Instance). A process instance I is defined by a tuple
(SI , NSI , ValSI) where:

– SI := (NI , DI , CtrlEI , DataEI) denotes the process instance schema of I
which is determined by (S, ∆E, ∆I) during runtime (see Fig. 3 below).

– NSSI describes activity markings of I:
NSSI : NI 7→ {NotAct, Act, Run, Comp, Skipped}

– V alSI denotes a function on DI , formally: ValSI : DI 7→ DomDI
∪ {Undef}.

It reflects for each data element d ∈ DI either its current value from domain
DomDI (for list data elements we assign a list of data values respectively) or
the value Undef (if d has not been written yet).

ISI denotes the set of all instances running according to S.

Applying the following algorithm (cf. Fig. 3) leads to the expansion of multi
instantiation activities during runtime according to the associated data struc-
tures. First of all, we determine all multi instantiation activities. For those with
expansion at instance start the expansion is executed immediately (lines 7, 8)
whereas for activities with expansion at activation time method expInst(S, ..)
is called when their state changes to Act (lines 23 – 27). Method expInst(S,
..) itself (starting line 16) distinguishes between sequential and parallel expan-
sion. For sequential expansion, moreover, the fetch strategy for data elements
(LIFO, FIFO) is taken into account. The expansion itself is realized by adding
change operations (cf. Tab. 1) to change transaction ∆E .

As an example consider process instance I2 (cf. Fig. 2). At first, it is de-
termined that activities Load truck and Deliver goods are to be expanded
at their activation time (what is specified by {(Load truck, delivery List,
SEQ, FIFO, actT), (deliver Goods, delivery List, SEQ, FIFO, actT)}).
Assume that data element delivery List = [cust1, cust2] contains data for
customers 1 and 2. When the state transition NSSI (Load truck) = NotAct
−→ NSSI (Load truck) = Act is taking place (i.e., the activation time of load
Truck is reached), this activity is expanded by a sequential insertion of activities
Load truck using a FIFO strategy. Using the algorithm the changes necessary to
realize the expansion are automatically calculated based on the available change
operations (cf. Tab. 1):

∆E := ∆E ∪ {insertAct(SI2, load Truck, {AndJoin}, {Deliver goods}),
addDataEdges(SI2, {(cust1, load Truck, read)}),
insertAct(SI2, load Truck, {load Truck}, {deliver Goods},

addDataEdges(SI2, {(cust2, load Truck, read)}),
addDataEdges(SI2, {(delivery List, load Truck, write),

(delivery List, load Truck, write)})}
The expansion of activity Deliver goods is carried out accordingly when

the activity state of Deliver goods changes from not activated to activated.

4 Intelligent Exception Handling

As discussed in Sect. 2.2 backward process recovery (e.g., [9–11]) is not always
desirable when an exceptional situation occurs. Therefore we want to exemplarily

1 input: S, M
SI
 output: ∆E

2 Initialization:

3 ∆E = ∅;

4 ExpsT:= {(n, ..., sT) ∈ Exp};

5 ExpactT:= {(n, ..., act)} ∈ Exp};

6 n= is start activity of S;

7 // expansion at process instance start

8 NS
SI
(n=) = Act ⇒ expInst(S, ∆E, ExpsT);

9 // expansion during at activation time

10 while (∃ e := (n,d,[SEQ|PAR],LIFO|FIFO],actT)∈ExpactT with NS
SI
(n)= NotAct){

11 if (∃ e := (n,d,[SEQ|PAR],[LIFO|FIFO],actT) ∈ NactT with state transition

12 NS
SI
(n) = NotAct ⇒ NS

SI
(n) = Act) {

13 expInst(S, ∆E, {e});

14 }

15 }

16 // ----------- Activity Expansion method expInst(S, �E, N’) ------------
17 ∆ = ∅;

18 for e := (n,d,[SEQ|PAR],[LIFO|FIFO], …) ∈ N’ do {

19 d:= [d1, …, dk]; // d is of list type acc. to definition

20 ∆ = ∆ ∪ addDataElements{S, {d1, …, dk});

21 nsucc, npred: direct successor / predecessor of n in S;

22 DEin:= {(d, n, read) ∈ DataE} \ {d};

23 DEout:= {(d, n, write) ∈ DataE};

24 // sequential expansion

25 if e:= (n,d, SEQ,[LIFO|FIFO], …){

26 for i = 1, …, k do {

27 ni:= n;

28 ∆ = ∆ ∪ {insertAct(S, ni, {ni-1}, {nsucc})};

29 // FIFO strategy

30 if e:= (n,d,seq,FIFO, …){

31 ∆ = ∆ ∪ {addDataEdge(S,(di, ni, read)})};

32 // LIFO strategy

33 if e := (n,d,seq,LIFO,…) {

34 ∆ = ∆ ∪ {addDataEdge(S,di,nk-i+1},read)})};

35 }

36 }

37 // parallel expansion

38 if e:= (n,d,PAR, …) {

39 for i = 1, …, k {

40 ∆ = ∆ ∪ {insertAct(S, ni, {npred}, {nsucc})};

41 }

42 }

43 for dE = (d,n,read) ∈ DEin {

44 for i = 1, …, k {

45 ∆ = ∆ ∪ {addDataEdge(S, (d,ni,read))};

46 }

47 }

48 for dE = (d,n,write) ∈ DEout {

49 for i = 1, …, k {

50 ∆ = ∆ ∪ {addDataEdge(S, (d,ni,write))};

51 }

52 }

53 ∆E = ∆E ∪ ∆;}

Fig. 3. Algorithm: Activity Expansion during Runtime

discuss two alternatives for such backward strategies. The first approach refers
to data–driven exception handling, the second one is based on exploiting process
context information.

4.1 Data–Driven Exception Handling

The expansion of multi instance activities is based on the input data of the
particular activity, i.e., a data list setting out the number and order of the
activities to be inserted and executed during runtime. This concept provides
flexibility since certain process instance changes can be adopted by modifying the
input data of multi instance activities what leads, in turn, to changed expansion
and execution during rutime. One example is depicted in Fig. 4: Currently, for

process instance I the truck is on the way to deliver the goods of customer2 (the
goods for customer1 have been already delivered). Then an exceptional situation
is arising since customer2 is not present at home wherefore the goods cannot be
unloaded. After receiving the truck driver’s call the headquarter figures out to
solve the problem by first delivering the goods for customer3 and then try to
deliver the goods for customer2 again. This solution elaborated at a semantically
high level can now be easily brought to process instance I: Changing the order
of a data list associated with customer2 and customer3 (by applying change
operation moveListElement (SI, ...)) leads to an automatic adaptation of
the delivery order within the process (cf. Fig. 4). Note that this is solely based
on data flow changes; i.e., by re–linking the connected data elements cust2 and
cust3 the delivery order is automatically swapped.

Process Instance I on SI = S + �E
(Before Exception):

Deliver goods1 Deliver goods2 Deliver goods3

EXCEPTION: customer2 not at home

Deliver goods1 Deliver goods2 Deliver goods3

Process Instance I on SI = S + �E + �I

(After Exception Handling):

Swap order of customers in delivery_list

Delivery_list:

1) customer1, address1, itemList1

2) customer2, address2, itemList2

3) customer3, address3, itemList3

�I = (moveListElement(SI, Delivery_list, customer2, customer3),
relinkDataEdge(SI, (cust2, Deliver goods2, read), Deliver goods3),
 relinkDataEdge(SI, (cust3, Deliver good3, read), Deliver goods2))

cust1 cust2 cust3

cust1 cust2 cust3

�

Fig. 4. Data–Driven Change of Delivery Order

For all change operations on data lists like adding, deleting, and moving data
elements (cf. Tab. 1), the associated data flow changes (adding and deleting
data elements in conjunction with adding, deleting, and moving data edges)
can be determined. In this paper, we have exemplarily presented the data flow
change operation associated with swapping data list elements. Note that data
list modifications as any other change operation can only be correctly applied
if certain state conditions hold. For example, for the scenario depicted in Fig. 4
it is not possible to move the list data element for customer1 since associated
activity deliver goods1 has been already (properly) completed. Nevertheless
the mechanism of data list adaptations and expansion during runtime provides
a powerful way for user–friendly exception handling.

4.2 Exception Handling Using Context Information

In addition to data–driven exception handling, context information can be also
useful for dealing with exceptional situations. More precisely, context informa-
tion can be used in order to derive a reasonable forward recovery strategy, i.e.,
the application of certain ad–hoc changes to the concerned process instance. As-
sume, for example, the scenario depicted in Fig. 5 where the truck has a crash
during the delivery of the goods for customer 2. Cancelling the instance exe-
cution (followed by a rollback) is not desired since the goods for customer 1
have been already delivered properly. Therefore a forward strategy is figured out
making use of context data truck position which is constantly updated by a
GPS system. The truck position can be used to send a new truck to the position
of the troubled one what can be expressed by dynamic instance change ∆I (cf.
Fig. 5) comprising the insertion of new activity send truck. The new truck then
continues the delivery for customer 2 and the execution of process instance I can
be finished as intended. Due to lack of space we omit further details.

Process Instance I
(on SI = S + �E + �I)

Unload / sign cust1

truck_pos

delivery_list

Unload / sign cust2

Process Instance I
(on SI = S + �E)

Deliver goods
(customer1)

truck_pos

delivery_list

EXCEPTION:
truck crash!

Deliver goods
(customer2)

Semantic Exception Handling: Send another truck, deliver goods to customer 2

send truck

�I = (insertAct(SI, send_truck, {unload_cust2}, {sign_cust2}),
deleteAct(S, unload_cust2))

Fig. 5. Exception Handling Using Context Information after Truck Crash

5 Architectural Considerations

We sketch the basic components of our overall system architecture (cf. Fig. 6):
Basic to the described features is an adaptive process engine which we have
realized in the ADEPT project. It allows for flexible process adaptation at run-
time (cf. [12]). In particular, it offers powerful programming interfaces on top of
which data-driven expansion of task nets and automated exception handling can
be realized. The former feature requires an extended process execution engine
(e.g., implementing the expansion algorithm), the latter one requires additional
mechanisms for exception detection and handling.

As illustrated determining the position of a physical object is highly relevant
for logistics processes. The incorporation of this kind of context information re-
quires an integrated tracking system. Currently, there are various technologies
available which can help to trace the position of an object, such as GPS, GSM,
RFID, WiFi and more recently UWB [13]. They have different strengths and
weaknesses in terms of resolution, availability, cost etc. Moreover, they differ in
how the location is being represented, and in environment applicability. An inte-
grated tracking component must abstract from such details and enable seamless
and technology-independent tracking outside and inside buildings.

Process Monitor

Process Data

Tracking
Components

Process Management System

Adaptive Engine

Data-Driven
Process Control

Data-Driven
Exception Handling

Process Control Process Changes

Tracking Data

Barcode

GPS

Fig. 6. System Architecture

6 Discussion

Multi instantiation of activities has been addressed by workflow pattern ap-
proaches [14, 15]. The most similar patterns are the multi instantiation patterns
with and without a priori runtime knowledge as defined in [14]. Although, in
[15] the authors suggest a function to compute the number of times an activity
is to be instantiated (sequentially or in parallel) the concrete specification of
such a function is missing. Therefore the approach presented in this paper can
be seen as a first implementation of the multi instantiation pattern without a
priori runtime knowledge in practice, i.e., based on associated data structures.

An increase of process flexibility based on a data–centered perspective is of-
fered by the case–handling paradigm [16]. Case–handling enables early review
and editing of process data, thus providing a higher degree of flexibility when
compared to pure activity-centered approaches. However, it is not possible to dy-
namically expand process instances during runtime and to use this mechanism
for supporting exception handling. A buildtime approach for the automatic gen-
eration of processes based on product structures has been presented in [17].
However, no concepts for process expansion during runtime are provided.

Application–specific approaches for automated process changes have been
presented in AgentWork [3, 18], DYNAMITE [19], and EPOS [20]. Agent-
Work [3, 18] enables automatic adaptations of the yet unexecuted regions of
running process instances as well. Basic to this is a temporal ECA rule model
which allows to specify adaptations independently of concrete process models.
When an ECA rule fires, temporal estimates are used to determine which parts
of the running process instance are affected by the detected exception. Respec-
tive process regions are either adapted immediately (predictive change) or - if
this is not possible - at the time they are entered (reactive change). EPOS [20]
automatically adapts process instances when process goals themselves change.
Both approaches apply planning techniques (e.g., [4, 21]) to automatically ”re-
pair” processes in such cases. However, current planning methods do not provide
complete solutions since important aspects (e.g., treatment of loops or data flow)
are not considered. DYNAMITE uses graph grammars and graph reduction rules
for this [19]. Automatic adaptations are performed depending on the outcomes
of previous activity executions. Both DYNAMITE and EPOS provide build-in
functions to support dynamically evolving process instances.

Context–awareness is also a hot topic in the area of mobile systems, ad–hoc
networks, and ambient intelligence (smart surroundings). These approaches can
be used as valuable inspiration and input for future research.

7 Summary and Outlook

We have presented a framework for data–driven process control and exception
handling on top of adaptive PMS. This approach is based on two pillars: dynamic
expansion of task nets and automated support for exception handling using data–
driven net adaptation and exploiting context information. The framework for
dynamic task net expansion has been formally defined and illustrated by means
of an example from the logistics domain. In particular, our expansion mechanism
provides a sophisticated way to implement process patterns representing multi-
ple instances with or without a priori runtime knowledge (cmp. Patterns 14 and
15 in [14]). We have also shown how the presented concepts can be used for auto-
mated exception handling by adapting data structures. This allows us to handle
certain exceptions in a very elegant and user–friendly manner. Finally, further
strategies for exception handling based on context information have been dis-
cussed. Future research will elaborate the concepts of exception handling based
on context information. In particular we will analzye the question how exception

handling strategies can be automatically derived and suggested to the user. Fur-
thermore we want to extend the research on a more data–driven view on process
control and exception handling in order to bridge the gap between real–world
applications and computerized processes.

References

1. Dumas, M., v.d. Aalst, W., ter Hofstede, A.: Process–Aware Information systems.
Wiley (2005)

2. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

3. Müller, R.: Event-Oriented Dynamic Adaptation of Workflows. PhD thesis, Uni-
versity of Leipzig, Germany (2002)

4. Berry, P., Myers, K.: Adaptive process management: An al perspective. In: Proc.
Workshop Towards Adaptive Workflow Systems (CSCW’98), Seattle (1998)

5. Herrmann, T., Just-Hahn, K.: Organizational learning with flexible workflow man-
agement systems. In: WS on Organizational Learning, CSCW96. (1996) 54–57

6. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases 16 (2004) 91–116

7. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. DKE 50 (2004) 9–34

8. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: HICSS-34. (2001)

9. Elmagarmid, A.: Database Transaction Models for Advanced Applications. Morgan
Kaufman (1992)

10. Schuldt, H., Alonso, G., Beeri, C., Schek, H.: Atomicity and isolation for transac-
tional processes. TODS 27 (2002) 63–116

11. Leymann, F., Roller, D.: Production Workflow. Prentice Hall (2000)
12. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management

with adept2. In: ICDE’05. (2005) 1113–1114
13. Steggles, P., Cadman, J.: White paper: ”a comparison of RF tag location products

for real-world applications” (2004)
14. Aalst, W.v., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns.

DPD 14 (2003) 5–51
15. Guabtni, A., Charoy, F.: Multiple instantiation in a dynamic workflow environ-

ment. In: CAiSE’04. (2004) 175–188
16. v.d. Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for

business process support. DKE 53 (2004) 129–162
17. v.d. Aalst, W.: On the automatic generation of workflow processes based on prod-

uct structures. Computer in Industry 39 (1999) 97–111
18. Müller, R., Greiner, U., Rahm, E.: AgentWork: A workflow-system supporting

rule-based workflow adaptation. DKE 51 (2004) 223–256
19. Heimann, P., Joeris, G., Krapp, C., Westfechtel, B.: DYNAMITE: Dynamic task

nets for software process management. In: ICSE’96, Berlin (1996) 331–341
20. Liu, C., Conradi, R.: Automatic replanning of task networks for process model

evolution. In: ESEC’93. (1993) 434–450
21. Wilkins, D., Myers, K., Lowrance, J., Wesley, L.: Planning and reacting in uncer-

tain and dynamic environments. Experimental and Theoret. AI 7 (1995) 197–227

	Text1: Proc. CAiSE 2006, Luxembourg, June 2006 (to appear)

