
A Model-Driven Approach for the Rapid
Development of E-Negotiation Systems1

Morad Benyoucef and Stefanie Rinderle2
University of Ottawa

Ottawa, Ontario K1N 6N5, Canada

Abstract: Most of today’s e-marketplaces support a single negotiation protocol.
The protocol is usually built into the e-marketplace infrastructure, therefore if a
new one is introduced then a time consuming and complex process of
implementing it takes place. Moreover, participants in the e-marketplace need to
adapt their interfaces to the new protocol, especially if they make use of automated
means such as software agents to interact with the e-marketplace. This paper
reports on a model-driven approach and a framework for rapid and user-friendly
development of configurable e-marketplaces and automated e-negotiation systems.
A designer on the e-marketplace specifies negotiation protocols using Statecharts
and feeds them to a mapping system that transforms them into web service
orchestrations. Participants use automated negotiation systems to interact with the
e-marketplace. An automated negotiation entity capable of interacting with the e-
marketplace is generated based on the negotiation protocol implemented on the e-
marketplace. The automated negotiation entity is provided with negotiation
strategies and tactics specified in a declarative format. We propose a mapping
algorithm to transform Statechart models of negotiation protocols into web service
orchestrations.

1 Introduction

The Object Management Group (OMG) defines negotiation as “mechanisms that allow a
recursive interaction between a principal and a respondent in the resolution of a good
deal” [OMG99]. Usually, the principal and the respondent are a buyer and a seller who
are set to negotiate the price, the delivery date, the conditions of the purchase, the terms
of the guarantee, etc. The principal and the respondent can be individuals or
organizations. Negotiation is vital in establishing business-to-business (B2B)
relationships and, to a lesser extent, in facilitating consumer-to-consumer (C2C)
commercial interactions. Indeed, a report by the Hurwitz Group claims that “80% of
commerce is performed through negotiated trade” [Hur00]. Today, most of this
negotiated trade takes place electronically, facilitated by e-commerce - i.e., the process
of buying and selling goods and services electronically; and by e-business - i.e., the use
of the Internet and information technology (IT) to execute all business processes in the
enterprise, including e-commerce.

1 This work was conducted as part of a SSHRC funded project on E-Negotiations, Media, and Transactions for
Socio-Economic Transactions
2 Stefanie Rinderle is from University of Ulm, Germany. This work was conducted during her post-doctoral
stay at the University of Ottawa, Canada

By integrating their IT infrastructures with those of their partners, traditional businesses
are moving closer towards becoming real e-businesses. We believe that IT supported
negotiation is a cornerstone in that integration. Electronic negotiation (e-negotiation)
takes place when the negotiating function is performed through electronic means. We
talk of fully automated e-negotiation when all parties involved are software agents, semi-
automated e-negotiation when a human negotiates with a software agent, and manual e-
negotiation when all parties are human [BSS96]. The interest in e-negotiation is
motivated by its potential to provide business partners with more efficient processes,
enabling them to arrive at more satisfying agreements in less time.

The most basic form of e-negotiation is the fixed price sale where an online seller offers
goods or services at “take-it-or-leave-it” prices then buyers decide whether or not to
make a purchase at the posted price. Auctions are a bit more complex and they are
currently the most visible form of e-negotiation. Online auctions can reach a large and
physically distributed audience at reduced cost, whereas offline auctions tend to cost
more and require that the participants gather in one physical location. E-negotiations can
take an even more complex form called bargaining. This involves making proposals and
counter-proposals until an agreement is reached [San99]. Bargaining can be bilateral or
multi-lateral, depending on whether there are two or more parties involved [OMG99]. If
the object of the negotiation has more than one negotiable attribute (e.g., price, quality,
and delivery date) then we talk of multi-attribute e-negotiations.

The negotiation process is manually intensive therefore using e-negotiation systems to
automate it can reduce the costs associated with it [Hur00]. This is why the interest in
designing these systems has focused on achieving higher efficiency and lower
transaction costs [Mal87]. We distinguish three categories of e-negotiation systems
[BKS03]: (1) negotiation support systems assist users with communication and decision-
making activities; (2) negotiation software agents replace users in their communication
and decision-making activities; and (3) e-negotiation media provide a platform that
implements a negotiation protocol. There are two categories of e-negotiation media:
servers which implement multiple protocols, and applications which implement a single
protocol. Traditionally, applications have dominated negotiation design, but lately, the
importance of servers has increased, and a need for configurable servers is being felt
[NBBV03]. Attempts were made to design configurable e-negotiation media to support
more than one negotiation protocol. They were partially successful, but they were
designed in an ad-hoc manner. Some of these attempts were: the AuctionBot [WWW98]
which supports the configuration of various auctions; GNP [BKL+00] which separates
auction specifications from the logic of the server, and eAuctionHouse [Eau02] which
allows for the configuration of auctions with the help of an expert system. Recently,
Kersten et al. [KLS04] designed a configurable negotiation server that supports
bargaining, based on a process model which organizes negotiation activities into phases;
and a set of rules that govern the processing, decision-making, and communication. The
main problem in designing e-negotiation media is the lack of a systematic approach.
Indeed, to this day, design has been a trial-and-error process.

This paper presents a model-driven approach for rapid and user-friendly development of
e-negotiation systems. We consider two categories of e-negotiation systems: “e-
negotiation media” and “negotiation software agents”. We propose a new framework for
configurable e-negotiation systems in which “e-negotiation media” is the electronic
marketplace (e-marketplace) where human and software participants meet to negotiate
deals. Automated negotiation systems provide a framework for the existence of
“negotiation software agents” and serve as the interface between the negotiator and the
e-marketplace. The e-marketplace enforces negotiation protocols and therefore should
make these protocols available for consultation and automation purposes. Separating the
protocols from the e-negotiation media is a first step towards a configurable e-
marketplace. Separating negotiation strategies from protocols also brings flexibility to
the design of automated negotiation systems. Clearly, the design of e-marketplaces has a
direct effect on the design of automated negotiation systems.

The first objective of this paper is to propose a service oriented framework for e-
negotiation systems. The two main components of such framework are an e-marketplace
and an automated negotiation system. The framework enables a designer on the e-
marketplace to specify negotiation protocols and feed the resulting specification to a
mapping system that transforms them into executable processes described using a web
service (WS) orchestration language. The novelty here lies in the separation of the
protocols from the e-negotiation media as well as in the mapping algorithm. Since no
protocol exists that can fit the needs of all participants, the e-marketplace must be able to
implement any new negotiation protocol with minimum time and effort. The automated
negotiation system is also based on the separation of the negotiation protocols and
strategies from the system. Based on the negotiation protocol implemented on the e-
marketplace, an agent factory generates the component of the system that automates the
exchange between the participant and the e-marketplace. A designer on the participant’s
side can specify negotiation strategies using a declarative format. The second objective
is to propose a mapping algorithm that transforms Statechart models of negotiation
protocols into processes described using a WS orchestration language.

The paper is organized as follows: In Section 2 we discuss the use of Statecharts to
specify negotiation protocols. In Section 3 we detail our service oriented e-negotiation
framework. Section 4 describes the mapping of Statechart descriptions of negotiation
protocols into processes described using a WS orchestration language. In Section 6 we
discuss some related work, and in Section 7 we conclude and discuss the perspectives
and future work.

2 A Generic Statechart Template for Business Transactions

Based on a requirements analysis for modeling e-negotiations, Statecharts [Hare87]
qualify as an adequate formalism. Statecharts have a good formal basis and can be
serialized, visualized, and executed. They are well established, easy to understand,
complete, and can be converted into other formalisms.

In [RiBe05] a requirements analysis for the suitability of Statecharts as formalism for
modelling e-negotiation protocols as well as the Statechart models of five commonly
used e-negotiation protocols are presented. This approach is extended in the current
paper by introducing a mapping algorithm from the Statechart models to a web service
orchestration language.

As shown in Fig. 1, a negotiated transaction between two or more parties usually goes
through three distinct states. In the initialization state participating parties register on the
e-marketplace which performs the necessary checks on the parties. The initialization can
be as simple as signalling one party’s intent to participate in the transaction, in case the
e-marketplace is set up for a closed circle of registered or invited members. If the e-
marketplace is public, then the initialization can be as complex as one party completing
rigorous registration procedures, and the e-marketplace performing the necessary
verifications such as credit checks. If electronic links exist between the e-marketplace
and the ERP systems of the participating parties, the initialization can be greatly
facilitated by granting protected and restricted access to each other’s internal databases.

The negotiation state is where the parties negotiate by exchanging messages (offers,
counter offers, etc.) according to the precise protocol of the negotiation implemented on
the e-marketplace. A negotiating party can require an electronic link to its own ERP
system to automatically check stock levels, manufacturing schedules, etc. The link
makes it easier and quicker to respond to offers made by the other parties and to
formulate counter offers. A successful negotiation leads to the drafting of a contract that
needs to be executed by the agreeing parties. This is the settlement state. If a certain
level of contract automation is achieved, then electronic links to the parties’ ERP
systems are necessary to carry out certain transactions such as sending purchase orders,
receiving payments, etc.

 Negotiated Transaction

Initialization

Negotiation

Settlement

E
R

P System
 E

R
P

Sy
st

em

Party 2 Party 1
Negotiation

Figure 1: Generic Template for Business Transactions

3 Service-Oriented e-Negotiation Framework

Businesses are rapidly moving towards exposing their services on the web (giving way
to WS), hoping to interact more efficiently with their partners and to achieve higher
levels of automation at lower cost. For that reason our framework is based on a service
oriented architecture (SOA). We believe that WS are appropriate for deploying e-
negotiation systems because: (1) relationships between negotiating partners are dynamic;
(2) negotiation is part of procurement therefore interoperability between internal and
external IT systems is important; and (3) WS provide a standardized and flexible
integration technology that no organization can afford to ignore if it wants to interact
with its partners [KiSe05]. Simply put, WS provide the means for software components
to communicate with each other on the web using XML. A WS describes itself (using
WSDL), can be located (using UDDI), and invoked (using SOAP).

It is important to remember that the e-marketplace is deployed by a negotiation
facilitator (usually a third party) and its main role is to implement a negotiation protocol.
An automated negotiation system, on the other hand, is deployed by participants in the
negotiation (i.e., negotiators). It can be seen as the interface between the negotiator’s
internal IT systems (mainly the ERP system) and the e-marketplace. The framework
presented in Figure 2can be interpreted as follows.

The e-marketplace: a designer on the e-marketplace side uses the Protocol Modeling
Interface to design Negotiation Protocols. These protocols are usually represented using
a formal specification such as Statecharts. The designer can also use Negotiation
Templates available on the e-marketplace, and eventually modify them into negotiation
protocols that answer the needs of the moment.

 Internet

Negotiation
Protocols

Mapping
System

Negotiation
Processes

E-Marketplace

Negotiation
Strategies

Automated Negotiation System

Process
Modeling
Interface

Monitoring
Interface

Protocol
Modeling
Interface

Strategy
Modeling
Interface

P
ro

ce
ss

 E
ng

in
e

W
eb

 S
er

vi
ce

s

Negotiation
Templates

Monitoring
and Control

Interface

Software
Agent

Factory

Figure 2: Service Oriented e-Negotiation Framework

The designer can choose to directly design the processes using a Process Modeling
Interface which is a WS orchestration authoring tool. A Monitoring Interface will be
used to monitor the execution of the negotiation process. The engine runs the process.

The Automated Negotiation System: In manual or automated negotiation, we have to
distinguish between negotiation protocols which are the rules of the game (e.g., how the
exchange of offers and counter offers takes place between the participants) and the
negotiation strategies which are used by the participants to maximize their benefit (and
to minimize their loss). Negotiation tactics are the small steps taken by participants
towards achieving their strategies. Protocols are made public to every participant, but
strategies and tactics are kept secret. However, nothing keeps a participant from trying to
discover its opponent’s strategies and tactics by observing the opponent’s present and
past behavior. In the framework of Figure 2 a designer on the participant’s side uses a
Strategy Modeling Interface to design Negotiation Strategies. Based on the negotiation
protocol implemented on the e-marketplace, a Software Agent Factory generates the
components of the system that automates the exchange mechanism between the
participant and the e-marketplace. A Monitoring and Control Interface is used to monitor
and control the behavior of the automated negotiation system. The WS component
groups all the interactions of the Automated Negotiation System and makes them
available in the form of WS.

4 On Mapping Negotiation Protocols to Web Service Orchestrations

In this section we provide an algorithm for mapping Statechart models of e-negotiation
protocols to processes described within a WS orchestration language.

4.1 Statecharts and Web Service Orchestration Language (BPEL4WS)

One particularity of our service oriented e-negotiation framework is the fact that it is
based on the separation of negotiation protocols from the e-negotiation media (i.e., the
implementation of the e-marketplace). This separation is achieved by using Statecharts
to specify the protocols. Based on [JaSu04] we define a Statechart as a tuple ST= (S, T,
E, C, A, sinitial, sfinal) where

• S is a finite set of states, E is a finite set of events, C is a finite set of conditions, and A is
a finite set of actions

• T ⊆ S × E × C × 2A × S is a finite set of transitions where 2A denotes the power set of A
• sinitial ∈ S is the (unique) initial state (i.e., sinitial has no incoming transitions)
• sfinal ∈S is a final state (sfinal has no outgoing transitions)

From different case studies we derived several assumptions which hold for the Statechart
models of e-negotiation protocols. Firstly, the event and action parts of the transitions
comprise message sending and receiving events, i.e., the e-marketplace either waits for
an incoming message sent by one of the participants or the e-marketplace itself sends a

message to one or more of the participants3. Secondly, we assume that the Statechart
models are hierarchically decomposed (i.e., except for concurrent flow super-states there
are no hierarchical states). For example, super-state Negotiation (cf. Figure 6a) can be
decomposed and removed without losing basic information. As mentioned, one
exception is the use of concurrent execution where sub-states may be ordered in parallel
but must not be hierarchically decomposed themselves. Thirdly, the use of cyclic
structures is restricted to loops with length less than three (i.e., only short loops of length
one and mutual calls between two states of length two are allowed). The above
assumptions can be formalized as follows:
Let EType be the set of all possible event types and let AType be the set of all possible
action types. Let further eType: E � EType be the function which maps events to their
specific event type and aType: A � AType the function which maps actions to their
specific action types. Then:

o ∀ e ∈ E: eType(e) = msg_receiving
o ∀ e ∈ E: e = rec_message(sender, [paramList]) where sender is one of the e-marketplace

participants
o ∀ a ∈ A: aType(a) ∈ {msg_sending, assign_values}
o ∀ a ∈ A with aType(a) = msg_sending:
 a = send_id(sender, [paramList]) where sender is one of the participants of the e-

marketplace
o no loops with lengths > 2: Let ST = (S, T, E, C, A, i, f) and ST’ = (S, T’, E, C, A, i, f) be

Statecharts where ST’ is obtained by reducing transition set T of ST in the following
way:

- if ∃ s ∈ S with ∃ (s, e, c, a, s) ∈ T: T’ := T \ {(s, e, c, a, s)}
- if ∃ s, s’ ∈ S with ∃ (s, e, c, a, s’), (s’, e’, c’, a’, s) ∈ T: T’ := T \ {(s’, e’, c’, a’, s)}
 Then ST’ has to be acyclic.
o ST is hierarchically decomposed except for concurrent execution
o Concurrent execution contains no hierarchically decomposed sub-states∃ e ∈ E:

eType(e) = msg_receiving with ∃ T = (i, e, c, a, s), i.e., there is a transition condition
containing a message receiving event4

As a WS orchestration language we use a subset of BPEL4WS. Within this paper a
BPEL4WS process P is defined as a tuple P = (A, AT, S, ST, V, VL, PT, PL, i) where

• A is the set of simple activities and S is the set of structured activities
• AT is the function which assigns to each simple activity its particular type, i.e.:

AT: A → {<assign>, <empty>, <terminate>, <receive>, <invoke>, <pick>}
• ST is the function which assigns to each structured activity its particular type, i.e.: ST: S

� {<sequence> … </sequence>, <switch> … </switch>,
<flow> … </flow>, <while> … </while>}

• V is the set of variables and VL ⊆ (A × V) ∪ (V × A) is the set of read / write accesses
linking activities to variables and vice versa

• PT is the set of port types and PL is the set of partner links
• i is the initial state of P

3 In addition, the action part of a transition may include the assignment of process variable values.
4 This is important in order to generate the first receive activity within the process that drives the e-
marketplace which initiates a new process instance.

4.2 Pattern-wise Mapping

In general, finding a complete mapping from Statecharts to a WS orchestration language
such as BPEL4WS is a difficult task. Some approaches face this challenge in order to
provide a model-driven development of WS [BBCT04, BDS05]. However, these
approaches are based on some restrictions and assumptions (e.g., restricting transitions
conditions to the conditional part). In our approach we start from a different direction by
exploiting the assumptions which result from the specificity of Statechart models of e-
negotiation protocols (cf. Section 4.1). Furthermore, we exploit the idea of identifying
commonly used patterns within the Statechart models (comparable to workflow patterns
in the process management domain [AHKB03]). For these commonly used Statechart
patterns the corresponding BPEL4WS patterns have been elaborated. In the following
we present and describe a selection of important patterns (for a more detailed description
on the pattern-wise mapping refer to [BeRi05]). We provide an algorithm that constructs
the complete BPEL4WS process based on these patterns in Section 4.3.

Figure 3 depicts the Statechart pattern for a sequence of states S1 and S2 connected by
transition (S1, msg1(s1, pL1), cond1, msg2(s2, pL2), S2). The associated BPEL4WS
pattern is shown as sub-pattern SP1_2: the e-marketplace waits for receiving message
msg1 from sender s1. If msg1 is received and condition cond1 is true then the e-
marketplace invokes the associated operation within the port type connected with sender
s2 by sending message msg2. The parameter lists of messages msg1 and msg2 constitute
the variables of the e-Marketplace. Note that a more precise definition of the variables is
conceivable by splitting the parameter lists into single parameters and specifying the
associated variables of the e-marketplace. The data flow is specified within the
implementation of the receive and invoke operations (e.g., operation invoke_msg2 has
input variable pL1 and output variable pL2). There may also be variations like sub-
pattern SP1_1 (cf. Figure 3) depending on whether the event or the condition part of
transition (S1, msg1(s1, pL1), cond1, msg2(s2, pL2), S2) is specified or not. Sub-pattern
SP1_3 reflects the case where, within the action part of the transition, not only a message
is sent but also a certain value is assigned to a particular process variable.

S1 S2
msg1(s1, pL1)[cond]\msg2(s2, pL2)

Statechart Pattern:

Corresponding BPEL4WS Patterns:

Transition from S1 to S2 contains:

Pattern1: Sequence (one incoming, one outgoing transition)

 Variables:

<variable name=”pL1”/>
<variable name=”pL2”/>

Partner Links:

<plnk: name=”e-Marketplace �� s1”/>
<plnk: name=”e-Marketplace �� s2”/>

Port Types:

e-Marketplace �� s1:
 <operation name=” receive_msg1”/>
e-Marketplace �� s2:
 <operation name=” invoke_msg2”/>

SP1_2: event, condition, action SP1_3: event, condition, assign, action SP1_1: no event, condition, action

switch
invoke_msg2

�

cond

terminate

otherwise

receive_msg1

 � switch
invoke_msg2

�

cond

terminate

otherwise

receive_msg1

 � switch
invoke_msg2

�

cond

terminate

otherwise

assign_param

Figure 3: Sequence with Different Sub-Patterns

When mapping a Choice Statechart pattern (i.e., transitions from one to different other
states are possible) the resulting BPEL4WS process pattern depends on whether the
choice is based on different conditions (then the corresponding BPEL4WS process is a
switch construct) or if it is triggered by different incoming messages (then a pick
construct is used instead, cf. Figure 4).

These simple patterns give an idea of the principle of a pattern-wise mapping between
Statecharts and BPEL4WS. In [BeRi05] mappings for more complex patterns are
introduced: Pattern 3 (Short Loop) for loops of length 1, Pattern 4 (Mutual Call) for
loops of length 2, and Pattern 5 (Concurrent Flow) for states which are ordered in
parallel. Note that we do not claim completeness of our mapping approach. Our aim it to
present a practicable approach for the model-driven development of e-negotiation
processes.

4.3 Mapping Algorithm

Starting from the initial state the algorithm analyzes the Statechart patterns by traversing
the Statechart graph and maps them to the associated BPEL4WS patterns as described in
Section 4.2 and [BeRi05]. A Statechart pattern is determined by the currently analyzed
state, its outgoing transitions, and its direct successor states.

S1 S2
msg11(s11,pL11) [cond1]\msg12(s12, pL12)

Statechart Pattern:

Corresponding BPEL4WS Patterns:

Choice is based on:

Pattern2: Choice (one incoming, at least two outgoing transitions
and none of them a short loop)

S3

msg21(s21, pL21)
[cond2]\msg22(s22, pL22)

 Variables:

<variable name=”pL11”/>
<variable name=”pL12”/>
<variable name=”pL21”/>
<variable name=”pL22”/>

Partner Links:

<plnk: name=”e-Marketplace �� s11”/>
<plnk: name=”e-Marketplace �� s12”/>
<plnk: name=”e-Marketplace �� s21”/>
<plnk: name=”e-Marketplace �� s22”/>

Port Types:

e-Marketplace �� s11:
 <operation name=” receive_msg11”/>
e-Marketplace �� s12:
 <operation name=” invoke_msg12”/>
e-Marketplace �� s21:
 <operation name=” receive_msg21”/>
e-Marketplace �� s22:
 <operation name=” invoke_msg22”/>

SP2_2: 2 events, 2 conditions, 2 actions SP2_1: 2 conditions, 2 actions

invoke_msg1

�
switch

invoke_msg2

�

cond2 cond1

invoke_msg2

�

receive_msg11

 � pick
receive_msg21

 �

cond2 cond1

switch switch
terminate terminate

invoke_msg12

�

SP2_3: one event, 2 condtions, 2 actions

invoke_msg2

�

switch
receive_msg21

 �
invoke_msg12

�

cond1 cond2

Figure 4: Choice with Different Sub-Patterns

We start with the pattern Mutual Call which may be also combined with a Short Loop
pattern [BeRi05]. If the current pattern is neither a Mutual Call nor a Short Loop we
check the number of outgoing edges. One outgoing edge indicates the Sequence pattern,
more than one outgoing edge leads to the Choice pattern. Already “visited” states are
stored within the set VisitedStates. The states to be analyzed next are determined as the
direct successors of the currently treated state (set CurrentStates). The sets of variables,
partner links, and port types can be determined by merging the corresponding sets of the
particular patterns.

As an example we apply the mapping algorithm to the Statechart model of the Dutch
auction protocol [RiBe05] as depicted in Figure 6a resulting in the BPEL4WS process
depicted in Figure 6b.

 Algorithm MapStateChartToBPEL4WS
input: Statechart model ST= (S, T, E, C, A, sinitial, sfinal)
output: BPEL4WS process
initialization
CurrentStates := {sinitial}; VisitedStates := ∅;
begin
// parse Statechart structure
while VisitedStates ≠ S do
 forall s ∈ CurrentStates do
 if s is super-state of concurrent sub-states
 //Pattern5: Concurrent Execution
 add corresponding sub-pattern of Pattern5;
 VisitedStates := VisitedStates ∪ {s};
 determine set of outgoing transitions tOuts = {ts

1, …, ts
n} of

 S with ts
k = (s, es

k, cs
k, as

k, sk), k = 1,…, n;
 Pattern P is determined by s, tOuts,
 SuccS = {s

k | sk ∈ S, k = 1, …, n, sk ≠ s},
 and conTs = {t | t ∈ T, t = (sk1, ek1, ck1, ak1, sk2), sk1, sk2 ∈ Succs};
 switch

 case1: ∃ tsk1 = (s, esk1, csk1, ask1, sk1) ∈ tOuts ∧ ∃ tsk2 ∈ T with tsk2 = (sk2, ek2, ck2, ak2, s)
 if ¬(∃ tsk3 = (s, ek3, ck3, ak3, s))
 //Pattern4: Mutual Call
 concatenate corresponding sub-pattern of Pattern4 at dangling edge;
 if sk1 is super-state of concurrent sub-states
 //Pattern5: Concurrent Execution
 add corresponding sub-pattern of Pattern5;
 else // if ∃ tsk3 = (s, ek3, ck3, ak3, s)
 //combined sub-pattern short loop and mutual call

 concatenate corresponding combined sub-pattern of Pattern4 at dangling edge;
 case2: ∃ tsk ∈ tOut with tsk = (s, e, c, a, s)
 //Pattern3: Short Loop
 concatenate corresponding sub-pattern of Pattern3 to dangling edges;
 case3: if |tOuts| > 1
 //Pattern2: Choice
 concatenate corresponding sub-pattern of Pattern2 at dangling edge;
 case4: |tOuts| = 1
 //Pattern1: Sequence
 concatenate corresponding sub-pattern of Pattern1 at dangling edge;
 CurrentStates := (CurrentStates ∪ {sk | k = 1, …, n}) \ {s};
 VisitedStates := VisitedStates ∪ {s};
end

Figure 5: Mapping Algorithm

Starting with the outgoing transition of the initial state, the first pattern to be inserted is
the Sequence pattern (cf. Figure 6b). The parameter list of the incoming message
Offer_to_sell is described by the variable offer. The partner links comprise links to the
seller and the buyers. The port types turn out as a receive Offer_to_sell operation within
the partner link for the seller and an invoke of an update operation within the partner
links of the seller and the buyers. The next state to analyze is Offer. The associated
pattern comprises the set of outgoing transitions tOuts = {(Offer, …, Offer), (Offer, …,
Deal), and (Offer, …, Auction Closed)}, the set of direct successor states Succs= {Deal,
Auction Closed}, and conTs = {Deal, …, Auction Closed} and corresponds to the
combined (Mutual Call, Short Loop) sub-pattern [BeRi05]. Note that assign activities are
inserted depending on the action parts of the corresponding transitions.

6 Discussion

In [KuFe98] different price negotiation protocols such as the Dutch auction are described
using finite state machines. Although finite state machines are a formally founded
formalism, Statecharts provide additional constructs (e.g., hierarchical states) which
make them better suited for modeling e-negotiation protocols. Rolli and Eberhart
[RoEb05] propose a reference model for describing and running auctions as well as an
associated three-layered architecture which consists of the auction data, the auction
mechanism, and the auction participants. Apparently the auction protocols are modeled
manually using BPEL4WS which might be a complex task for users in general.

Offer Deal

Auction closed

Offer_to_sell(seller_id, product_description,
price, current_amount)
[Registered(seller_id)]
/ update(product_description, price,
current_amount)

 [timeout ∨ price = reserve_price]
/ update(“closing”)

Accept_offer(buyer_id, amount)
[Registered(buyer_id) ∧ amount <= current_amount]
/ update(notification) ∧ current_amount := current_amount - amount

Dutch auction (n items)

New_offer(seller_id, decrement)
[Registered(seller_id) ∧ decrement > 0]
/ price := price - decrement ∧
 update(price, current_amount)

[current_amount > 0]

[current_amount = 0]
/ update(“closing”)

Initialization

Negotiation

 E-Marketplace (Dutch Auction)

�
current_amount > 0 AND

timeout = FALSE AND
 price > reserve_price

Offer

Accept_offer New_offer

assign

decrement > 0otherwise

Seller

Offer_to_sell
New_offer

update

Buyeri (i = 1,..,n)

Accept_offer
update

otherwise
amount <= current_amount AND

Registered = TRUE

amount decrement

offer

receive invoke empty

switch

� while

variable

portpick

Offer_to_sell

otherwiseRegistered = TRUE

update

update

update

update

Sequence pattern

Combined Mutual Call
and Short Loop pattern

Figure 6: Pattern-Wise Mapping applied to the Dutch Auction Protocol

a) b)

Kim and Segev [KiSe05] also follow an approach for establishing a web-service enabled
e-marketplace. The authors provide a Statechart description of one e-negotiation
protocol and the corresponding BPEL4WS process. In this paper we adopt the idea of
providing understandable models of e-negotiation protocols and to automate them within
a service-oriented architecture. However, we extend the approach of Kim and Segev
towards a systematic description of generic e-negotiation protocols and by providing an
automatic mapping of the Statechart models to the corresponding web service
orchestrations. In [SiRe04] e-negotiation protocols are modeled using the Petri Net
formalism. Special focus is put on the modeling of attributes which reflect the different
strategies the participants in the e-negotiation might adopt. Chiu et al. [CCH+05] present
an interesting approach for developing e-negotiation plans within a web services
environment. The authors provide meta-models for e-contract templates and e-
negotiation processes which can be used to set up the concrete e-negotiation processes
within a web service environment. Although this approach is generic, we believe that
providing (generic) e-negotiation templates (i.e., Statechart models) to users which can
be individually modified and immediately mapped onto executable web service
orchestrations is more intuitive and user-friendly.

In [BDS05] the authors present a model-driven approach for developing web services.
They model web services using the Statechart formalism and provide a mapping
procedure from Statecharts to web services. Their paper presents a general and
systematic mapping approach which has been implemented within a prototype called
SelfServ. Due to the generality of the approach there are certain restrictions imposed on
the Statechart models. One example is that transitions can be solely labeled by
conditions (i.e., the authors do not consider the event and action part of the ECA rules).
In our paper we introduce another way of addressing the challenge of mapping
Statecharts to a web service orchestration language by exploiting the specificity of the e-
negotiation domain.

7 Summary and Outlook

This paper presented our current research on providing quick and elegant ways to
develop e-negotiation systems. We proposed a service oriented framework for
developing e-marketplaces and automated e-negotiation systems. The e-marketplace
component implements a negotiation protocol and represents the virtual place where
organizations and/or individuals meet to negotiate deals. The automated e-negotiation
system component is the interface between the participant in the negotiation and the e-
marketplace. Based on the negotiation protocol implemented on the e-marketplace, this
component creates an automated entity capable of negotiating based on strategies and
tactics provided by a human. The framework is based on (1) the separation of
negotiation protocols from the e-marketplace; (2) the formal specification of these
protocols using Statecharts; (3) an algorithm that transforms these Statecharts into web
service orchestrations; and (4) the separation of negotiation strategies from the
automated negotiation entity.

The framework is built on the assumption that e-marketplace participants are invited to
join the negotiation beforehand. The number of participants is therefore known in
advance, enabling us to fix the number of partner links in the BPEL4WS process before
the negotiation starts. This assumption is realistic in B2B scenarios. Businesses usually
choose their partners as well as the virtual markets where they negotiate very carefully,
and most importantly they join the negotiation before it starts. However in C2C
scenarios (e.g., on the eBay marketplace) the number of participants is not known at the
beginning as participants dynamically register and interact. In this situation the number
of partner links and port types is unknown at the beginning of the negotiation. One future
research direction is to rethink the framework to enable new participants to enter the
negotiation after it is started.

References

[ACD+03] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana.: BPELWS -
Business Process Execution Language for Web Services – Version 1.1., 2003.

[AHKB03] W.M. P. v.d. Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros:
Workflow Patterns. DPD 14(1):5-51 (2003)

[BBCT04] K. Baïna, B. Benatallah, F. Casati, and F. Tournani: Model-Driven Web Service
Development. In Proc. CAiSE’04, pages 290-306, Riga, June 2004

[BSS96] C. Beam, A. Segev, and J. G. Shanthikumar. Electronic negotiation through
internet-based auctions. Tech. Rep. 96-WP1019, Haas School of Business, UC
Berkeley, December 1996

[BDS05] B. Benatallah, M. Dumas, and Q.S. Sheng: Facilitating the Rapid Development
and Scalable Orchestration of Composite Web Services. DPD 17(1):5-37 (2005)

[BKL+00] M Benyoucef, R. K. Keller, S. Lamouroux, J. Robert, and V. Trussart. Towards a
Generic E-Negotiation Platform. Int’l Conf. Re-Technologies for Information
Systems, pages 95-109, Zurich, Switzerland, February 2000

[BeRi05] M Benyoucef and S. Rinderle: A Model-Driven Approach for the Rapid
Development of E-Negotiation Systems. Working Paper 05-32, School of
Management, University of Ottawa, Canada (2005).

[BKS03] M. Bichler, G. Kersten, and S. Strecker. Towards a Structured Design of
electronic Negotiations, GDN 12: 311–335, 2003

[CCH+05] D.K.W. Chiu, S.C. Cheung, P.C.K. Hung, S.Y.Y. Chiu, A.K.K Chung:
Developing e-Negotiation Support with a Meta-Modeling Approach in a Web
Services Environment. DSS 40(1): 51-69 (2005)

[DuHo01] M. Dumas and A.H.M. ter Hofstede: UML Activity Diagrams as a Workflow
Specification Language. Int’l Conf. UML’01, pages 76-90, Toronto 2001.

[Eau02] University of Washington. The eAuctionHouse. 2002

[Hare87] David Harel: Statecharts: A Visual Formulation for Complex Systems. Scientific
Computer Programming 8(3): 231-274 (1987)

[Hur00] Hurwitz Report. Negotiated Trade: the Next Frontier for B2B e-commerce.
Technical Report. 2000.

[KLS04] G. Kersten, K. P. Law, and S. Strecker. A Software Platform for Multi-Protocol
E-Negotiations. An InterNeg Research Report 04/04, 2004

[KiSe05] J. B. Kim and A. Segev: A Web Services-Enables Marketplace Architecture for
Negotiation Process Management. DSS 40(1):71-87 (2005)

[KuFe98] M. Kumar and S.I. Feldman: Business negotiations on the Internet. Technical
Report, IBM Research Division, New York, 1998

[KuFe98a] M. Kumar and S.I. Feldman: Internet Auctions. Technical Report, IBM Research
Division, New York, 1998

[Mal87] T. W. Malone, et al., Electronic Markets and Electronic Hierarchies.
Communications of the ACM, 1987, 30(6): p.483-494.

[Muth98] P. Muth, D. Wodtke, J. Weißenfels, A. Kotz Dittrich, and G. Weikum: From
Centralized Workflow Specification to Distributed Workflow Execution. JIIS
10(2): 159-184 (1998)

[NBBV03] D. Neumann, M. Benyoucef, S. Bassil, and J. Vachon. Applying the MTL
Taxonomy to State of the Art E-Negotiation Systems. GDN 12(4):287-310,(2003)

[OMG99] Object Management Group (OMG) Negotiation Facility final revised submission.
Technical report. March 1999.

[RoEb05] D. Rolli and A. Eberhart: An Auction Reference Model for Describing and
Running Auctions. In Proc. of the Wirtschaftsinformatik, Bamberg 2005.

[ReDa98] M. Reichert and P. Dadam: ADEPTflex - Supporting Dynamic Changes of
Workflows Without Losing Control. JIIS 10(2):93-129 (1998)

[RRD04] S. Rinderle, M. Reichert, and P. Dadam: Flexible Support of Team Processes by
Adaptive Workflow Systems. DPD 16(1):91-116 (2004)

[RiBe05] S. Rinderle, M. Benyoucef: Towards the Automation of E-Negotiation Processes
Based on Web Services – A Modeling Approach. Int’l Conf. WISE’05, New
York (to appear).

[SiRe04] C. Simon and M. Rebstock: Integration of Multi-attributed Negotiations within
Business Processes. Int’l Conf. BPM’04, pages 148 – 162, Potsdam, June 2004

[San99] T. Sandholm. An Algorithm for Optimal Winner Determination in Combinatorial
Auctions. Int’l Conf. AI, pages 542-547, Stockholm, Sweden, 1999.

[WWW98] P. Wurman, M. Wellman, and W. Walsh. The Michigan Internet AuctionBot. In
Intl Conf on Autonomous Agents, pages 301-308, Minneapolis, May 1998

	Text1: Proc. Workshop on Enterprise Modelling and Information Systems Architectures (EMISA'05), Klagenfurt, Austria, October 2005

