

Ulm University | 89069 Ulm | Germany Faculty of Engineering

and Computer Science

Institute of Database and

Information Systems

Exceptions and Exception Handling in

Business Process Management Systems-

Analysis and Classification
Bachelor´s Thesis at Ulm University

Submitted by:

Serife Öztemür

serife.oeztemuer@uni-ulm.de

Reviewer and Supervisor:

Prof. Dr. Manfred Reichert

2015

Version September 14, 2015

III

Abstract

During the last decade, business process management technologies have become

increasingly important. The rapid technical growth causes large dynamic changes to

process complexity and increases the amounts of variants. Business process

executions are vulnerable to various exceptions. Mostly, the business analysts

remain busy optimizing process modeling, rather than focusing on the classification

of exceptions in order to optimize the processes. Contemporary exceptions are often

given high priority in process modeling and are addressed in early analysis and

design phases. Due to the fact that exceptions can be modeled either too rough or

too precise, there is often a gap between optimal modeling and modeling all

occurring exceptions.

Exceptions in business process management systems have to be specialized and

merged into classifications. This details the types of exceptions affecting real world

processes. This thesis has the aim to support optimized exception modeling in an

early phase of business process development by analyzing the sources of exceptions

and proposing classifications for exceptions. For this purpose, various process

models, especially medical processes from the Ulm university clinic are critically

evaluated.

IV

Contents

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Problem statement .. 4

1.3 Objectives of the thesis ... 5

1.4 Outline of the thesis ... 6

2 Methodology .. 7

2.1 Procedure of methodology .. 7

2.2 Selection criteria .. 8

2.3 Data sources and data collection... 9

2.4 Case study: example of a medical process scenario 12

2.4.1 Example process of inpatient perform surgery 13

3 Fundamentals .. 16

3.1 Fundamentals of BPMS ... 16

3.2 Fundamentals of exceptions and errors .. 19

4 Exception sources and exception patterns ... 23

4.1 Exception sources ... 23

4.2 Exception handling methods ... 26

4.3 Exception patterns ... 29

4.3.1 Trying alternatives ... 31

4.3.2 Adding behavior .. 34

4.3.3 Canceling behavior ... 37

4.3.4 Resource patterns ... 39

5 Analysis .. 42

5.1 Techniques and methods .. 42

5.2 Classification and results ... 43

5.3 Detailed considerations ... 48

6 Conclusion and Outlook ... 51

List of figures .. 53

List of tables ... 54

Bibliography .. 55

Acknowledgment ... 58

1

1
Introduction

“There is no exception to the rule that every rule has an exception.”

 James Thurber. (*08.12.1895- †02.11.1961)

1.1 Motivation

In recent years, as a result of increase in dynamics and complexity of business

process models, companies require high and rapid adaptability and flexibility. In real-

world processes, the durability and control of fixed workflow procedures, structures or

unmanageable data processing are not sufficiently robust in the long term of

execution for flexible circumstances. Usually unexpected circumstances, so called

exceptions, occur not only in business processes but also in organizational

processes in various institutions like production or design procedures or especially

medical procedures in hospitals.

Regard the following simple real-life example: Depending on the disease stage

during intestinal cancer treatment, there are three possible procedures: the operation,

the chemotherapy or the radiotherapy, in which problem-free operations and

procedures are required. For instance, unexpected complications like blood

poisoning, incisional hernia or recurrence can occur as a result of the surgery. Due to

particular exceptions, dysfunctional process instances can be the result if things go

wrong, which have to be handled optimally. Unfortunately, many of such exceptions

exist and if there is no effectively modeled exception handling, the execution time of

whole process could be affected. Modeling of all occurred exceptions or imprecise

modeling of exceptions causes methodical process errors and it is a difficult

challenge to classify all of them in categories. Often, there exists a deviation between

real process scenarios with widespread exceptional cases and the graphical

2

representation. Surely, process improvement is conceivable by categorizing the

avoidable exceptions into types, which can be further optimized in the future.

Potentially classification enables better process guidance in more predictable and

assessable situations.

Often there is a lack of flexible adaptation and handling exceptions as well as runtime

irregularities in business process management systems (BPMS). Allowing deviations

or irregular activities in process modeling support robust execution.[1] Therefore,

exceptions require flexible adaptation of dynamic business process as a basic

prerequisite. Flexibility is becoming more and more important in BPMS. The more

frequently a process has to be adapted due to changed circumstances, the less

effective the traditional methods used for process improvement are. Figure 1 shows

the Devil´s Quadrangle. It clearly describes the dilemma between the factors Quality,

Time, Cost and Flexibility.[2]

Figure 1. Devil´s quadrangle

These four dimensions describe process performance. As the factors are dependent

on each other, it is necessary to take precautions not to completely disrupt the

balance and coordination between the factors when optimizing one factor. The trade-

off between each dimension should be dealt with in an optimal way.[2]

This inspires researchers to find pattern-based exception classification solutions for

supporting optimized modeling and preventing unplanned occurrences with

categorized exceptions. The famous Pareto Principle, the so called “80 to 20 rule”

implies “that 80% of all costs are caused by 20% of deviations and errors– the

exceptions”.[3] (p. 14) For functional process design, it is necessary to have a

3

comprehension of functional exceptions. For this reason, the business process has to

figure out how each type of functional exception should be handled. In functional

modeling, the focus lies on the comprehension of essential procedures, details are

composited.[3] Minimizing unnecessary events reduce costs, but to achieve this, it is

essential to detect functional backgrounds while completing the process analysis, in

order to eliminate dispensable expected and unexpected events.

Exception handling patterns supports flexible processes in this regard, reducing high

costs. Categorization of exceptions merges similar types and helps to create

automated exceptions handler, which can reduce process running, and helps

avoiding interrupts or error time. High process quality can be achieved when the

processes require performance faultlessly. Correct modeling is fundamentally

important. In this context, exception classification and their handling methods are

basic requirements for exception modeling in BPMS. Thus, time delays, dynamic

process sequences or reset the process steps may not affect the practicability.

Terminations and dynamic changes should be modeled as accurately as possible, in

order to obtain the control over the implementation. For that reason, it is necessary to

classify the type and occurrence probability of semantic exceptions.

4

1.2 Problem statement

As already mentioned, there are incentives for solving existing problems in the field of

exception handling and flexible adaptability in business processes. In this section,

some research questions help the readers to understand the overall intention and

contribution of this thesis.

 RQ 1: What are typical exceptions occurring every day? What are the most

typical causes of exceptions?

These two questions define the direction of this thesis. A lot of exceptions raised for

similar reasons, might therefore be divided into types or might be summarized into

one type to handle them together (i.e. in one go). To answer these two questions, we

analyzed processes from healthcare, specifically from a women´s Hospital.

Additionally we considered administration processes from the Campus Management

System (the Communication and Information Center) of Ulm University.

 RQ 2: How can the discovered exceptions be classified and categorized?

This question deals with the main research problem of this thesis, which aims to

classify exceptions in business processes. It is not possible to classify all types of

exceptions, thus this thesis will analyze only expected exceptions.

 RQ 3: How can the detected exception source be handled? What are most

frequently occurring exception handling patterns?

Expected exceptions in the processes need to be handled. An analysis is conducted

to determine the exception handling patterns from various real-world domains. A view

of the relation between exception sources and exception handling patterns are given

in charts.

5

1.3 Objectives of the thesis

The general aim of this thesis is to analyze the typical exceptions occurring during

business process execution, as well as their handling methods in business process

management systems, and how the exceptions can be classified. The objective here

is to define as many exceptions in the process models in concrete terms to have

respective treatment options. For handling, it is important to know the source of these

exceptions, how they relate to each other, how they can be classified and what the

possible problem-solving approaches are. This includes an evaluation of how they fit

into applications and a classification of the exceptions present in business process

management systems.

For more than a decade, exceptions in process models have been studied in detail to

understand their types and sources. Exceptions that cannot be anticipated are

selected, based on certain criteria and are divided into categories. In addition,

properties of the exceptions are utilized to support the proper classification. In

particular, various exception-handling techniques are considered in order to identify

the patterns and elements in workflows business processes causing errors. Since

these patterns provide an operative support for capturing the exceptions, the most

common exception patterns are analyzed and presented. Furthermore to deal with

unexpected exceptions the importance of ad-hoc changes is emphasized to

determine to which exceptions ad-hoc changes can usefully applied. Finally, based

on often-occurring reasons of exceptions the classes and possible solution

approaches are evaluated.

6

1.4 Outline of the thesis

This thesis is divided into five sections:

Section 1 provides an overview of the thesis consisting of scope, the motivation,

problem statement, objectives and outline of the thesis.

Section 2 describes the research procedure methodology and provides an overview

on data collection. By using a case study, exceptional situations from the medical

process scenario are considered.

In Section 3, a general overview of the fundamentals of BPMS and exceptions is

given, followed by an explanation of exception sources and their handling methods.

Section 4 describes the basic exception sources and the exception handling patterns.

Section 5 provides an analysis of exceptions sources and their exception handling

patterns in BPMS. Several real-world processes and examples were examined in

order to detect the exception sources and to analyze the possible handling methods.

Section 6 summarizes the main results, and gives an outlook regarding flexible

handling.

7

2
Methodology

“Research methods shape the language we use to describe the world, and language

shapes how we think about the world.”

Benbasat and Weber 1996[4](p. 392)

In this section, literature study, work related methods and techniques used in the

context of data acquisition and documentation of information are represented before

the empirical part will be described in Section 4. The aim of this section is to give

better clarity on data sources and data collection. Afterwards, an example from

medical process scenario will provide an overview of a process model with

exceptions.

2.1 Procedure of methodology

Figure 2 shows the process model for methodology of this thesis in sub-processes

illustrated in Signavio using BPMN 2.0. A sub-process provides a detailed description

of a sequence of the parent process and can encapsulate the complexity. Signavio is

a process editor tool from the Signavio GmbH that supports most popular process

modeling languages[5]. Different modeling languages are BPMN1, EPC2, BPEL3 and

YAWL4 and DMN5.

Figure 2. Process model for methodology of this thesis

1
 Business Process Model and Notation

2
 Event-driven Process Chain

3
 Business Process Execution Language is XML-based

4
 Yet Another Workflow Language

5
 Decision Model and Notation

8

Furthermore, the first and second sub-processes are used to define the problem

statements, the aims, as well as the methodology of this thesis.

In order to get an overview at the beginning, the fundamental notions are explained.

Unfortunately, there is no common definition of the term exception, for this reason

various definitions from researchers are compared to clarify the minor differences.

Additionally, the differences between the terms exception and error are explained.

In the third sub-process, a specific example of a case study is selected in the

BPMN2.0 modeling language to introduce processes with existing exceptions.

As a further step in sub-process four “discover and analyze sources of exceptions”,

the general information and data about sources of exceptions are captured and

analyzed. The basic exception patterns are represented with their sources and

effects. Finally, in the last sub-process, the results are evaluated and presented in

detail.

2.2 Selection criteria

In regards to the classification of exceptions in business process models, exception

handling is supported. This thesis is focused on analyzing of exceptions in process

models, which means criteria for the analysis and setting priorities is selected.

Analysts examine processes in the organizational- and operational views with

different tools. These views are based on various models like the information model,

the function model, the organizational models and the process model. The process

model includes tasks and procedures spanning several organizations describing the

operational structure.[6] We exclusively consider process models in the operational

view. This means organization models and other model types are excluded. In

addition, the information models are not taken into consideration. In the following

section, a list of process models is presented from different sources for gathering and

measuring data about exceptions. Moreover, the exceptions are not restricted to

specific modeling languages. Mostly, our process sources are in BPMN2.0 and EPC

notations and some are defined by textual descriptions and spreadsheets of the

scenarios.

9

2.3 Data sources and data collection

In the following, to answer the RQ´s, collections of process reports are selected from

several domains. In Table 1. Data sources for identifying exceptions, the process model

sources for identifying exceptions are listed. On the one hand, internal process

reports and models from the DBIS department of Ulm University are investigated.

The core and sub-processes from the university clinic in Ulm, especially from

women´s clinic inpatient and outpatient chemotherapy procedures are used.

On the other hand, the administration processes of the Campus Management

System created from the Institute of DBIS in Ulm University are analyzed. The results

are assessed using different statistical methods. Though most of the process

notations are vary between BPMN2.0 and EPC, even UML was used in process

reports. Hereafter data of process reports are listed.

Source Publication Title and

Reference

Domain Name of Process Scenarios Number of

Process

Models

1

Prozessentwurf am

Beispiel eines Ablaufs

aus dem OP- Bereich

[7]

Healthcare Processes in the surgical field 26 EPC

2

Prozessentwurf für den

Ablauf einer

statiomären

Chemotherapie[8]

Healthcare chemotherapy processes 15 EPC

3

Prozessentwurf für den

Ablauf einer

ambulanten

Chemotherapie [6]

Healthcare
outpatient chemotherapy

processes

7 textual and

graphical

presentations

4

Prozessentwurf für den

Ablauf einer

radiologischen

Untersuchung

[9]

Healthcare radiological examination
9 UML

5

Prozessentwurf eines

Ablaufs im Labor

[10]

Healthcare Laboratory procedures 7 UML

10

6

Klinische Prozesse von

Caroline Streuer[5]
6

Healthcare

administrative admission,

clinical admission,

planning and performing

diagnostic examination,

preparing and performing

surgery,

postoperative treatment at

ICU, inpatient care including

preparation for fist chemo

cycle, performing first chemo

cycle, create epicrisis

32 BPMN2.0

7 KIZ[5]
7
 Administration

Campus Management

System processes from

Communication and

Information Center Ulm

University

14 BPMN2.0

Table 1. Data sources for identifying exceptions

Source 1 comprises relevant sub-processes of surgical procedures like laboratory,

radiological investigation, ordering medicines or patient documentation. Typically

procedures are cooperated between two organizational units and different roles in

the hospital.[7]

Source 2 consists of the entire process of the chemotherapy to prevent the

development of tumors and ulcers, which cannot be treated surgically. The modeled

EPC´s are textual described and supplemented with tables.[8]

Source 3 is represented in UML and includes preliminary textual descriptions. Here,

the core processes with sub-process tasks are used for the implementation of

outpatient chemotherapy.[6]

Source 4 includes one core and residual sub-process in the field of radiological

examinations. Process procedures are mainly textual descriptions and UML

models.[9]

6
 http://academic.signavio.com

7
 http://academic.signavio.com

11

Source 5 also can be divided into one core and residual sub-process. The processes

give an insight into the procedure of laboratory investigation. Furthermore the sub-

processes are significant part of inpatient and outpatient surgery and

chemotherapy.[10]

Source 6 consists of processes of clinical area, especially from surgical

chemotherapy. These processes are modeled in BPMN2.0 and some expected

exceptions are handled as process flows or illustrated with events.

Source 7 consists of various Campus Management System processes from the

Communication and Information Center of Ulm University. In these processes

expected exception are illustrated in BPMN2.0.

Besides the process modeling tool Signavio, the submitted processes (from Source 1

to Source 6) are additionally designed with the ARIS Toolset8 or with Bonapart, both

are software for presentation and optimization of internal processes and structures.[6]

The other sources are modeled using Signavio with BPMN2.0. Further examples for

process modeling tools are the SAP-NetWeaver BPM9 or the AristaFlow10.

In the context of surgical procedure, the analyzed areas of relevant sub-processes

are: ordering medicines, admission and discharge of patients, carrying out laboratory

tests and radiology, counseling, writing physician´s letters and epicrises creation.

The documentation of process models of activities, tasks, e.g. and their exceptions in

a tabular form of presentation was used. The analyzed sub-processes are

documented separately in Excel sheets within their exception sources and handling

techniques. The analysis results are also documented in tabular spreadsheets.

8
 Architecture of Integrated Information Systems by August Wilhelm Scheer

used for business process modeling and analyzing of organizational structures
9
 http://www.sap.com/germany/index.html

10
 http://www.aristaflow.com/

12

2.4 Case study: example of a medical process scenario

A case study

“(…) examines a phenomenon in its natural setting, employing multiple methods of

data collection to gather information from one or a few entities (people, groups, or

organizations).”

Benbasat et al. 1987[11] (p. 370)

In this section, according to this description by Benbasat et al.[11] (p. 370) we

consider one example of a process model in healthcare.

Before we start with showing a process example, it is crucial to understand the basic

elements of the process modeling notation BPMN2.0. BPMN has over 100

symbols[12] in its current version and is getting more and more complex with every

iteration. With the support of the of the illustrated process model (see Figure 3) the

basic symbols are explained.

Figure 3. Process model example

Business processes include events and activities. Activities answer the important

question “What needs to be done when and by whom?” and are individual work units

represented as tasks. They “describe unit of work that may be performed by humans

or software application, or a combination thereof.”[12] (p. 64) They have an execution

period and can consist of one singular step or represent a set of activities as sub-

processes as in Task 2.[12]. An event represent “things that happen instantaneously

(e.g. an invoice has been received)” and enables activities.[12] (p. 64) Events require

13

input or output, like starting or ending time specifications or arrival of messages from

other instances to end the process.

In this context, the question to roles or organizational units (Org.Units) are expressed

in lanes and pools. Firstly, a process is usually triggered by a start event. The

transactions with full arrow-head shows the sequence flow. Typically the sequence

flow gives the process direction point and procedures are read from left to right but

can also modeled from up to down. After writing resp. creating a data object in the

activity Task 1 an XOR gateway, is represented with crossed rhombus. This is

representing an “either/or” option, which means Task 2 and Task 3 are mutually

exclusive. After selecting the sub-process Task 2 a cancel event is occurring, this

means the process is abruptly terminated. After selecting task 3, in Task 4 the same

written data object is now invoked. Subsequently a parallel gateway, the AND type, is

represented with plus crossed rhombus. The Tasks 5 and 6 are executed concurrent

respectively parallel. Thereby, it must be considered that task 7 can be invoked when

both activities has finished. Finally, an end event terminates the process.

Nevertheless, the activity nodes, event nodes and control nodes are basic ones.

2.4.1 Example process of inpatient perform surgery

For a better imagination of exceptions in processes, an example process scenario is

considered from the domain healthcare. In Figure 4 an overview for perform impatient

surgery is given.

Once the process is triggered when the patient´s gynecologist confirms an ovarian

respectively breast cancer the patient will refer to the hospital. At the hospital,

relevant investigations are carried out and decided the urgency of surgery.

On the day of the operation, at around 6:30 in the morning the nurses for the

intervention in his patient’s room are preparing the patient. Half an hour later, the

patient is transported to the operating theatre and handed over to the surgical nurse

to start the preparation for the surgery. An anesthesiologist provides the patient and

(its duties include) puts a central catheter, administered the anesthetic and intubated

the patient. From 7:30 the preparation of the surgical team is starting.

After completion of all preparatory work, the surgeon is starting the operation.

Depending on the severity and complexity of the intervention, it can take from four up

to ten hours.

14

In the best case of surgery, a removed tissue sample during surgery is sent to

histology to be examined and interpreted by a pathologist. In order to obtain an

insight into the malignancy of the tumor and thereby the disease state of the patient.

After the surgery, the patient is handed over to the post-operative care at the

intensive care unit. [13] In the worst case of surgery, there are expected exceptions

like complication during the surgery, patient die or failures of the surgeon. An error

event catches the complication and throws an error event about the surgery. The

patient die is involved in a sub-process, and after successful execution the process is

terminated by a terminate event and if a surgeon perform a careless surgeon than an

assistant surgeon have to check the situation.

In Figure 5, the sub-process “Perform Surgery-Patient dies” is triggered in the core

process (Figure 4) and is handling an exception. This simple sub-process consists of

three AND-Gateway connected tasks to issue death certificate, inform relatives and

families physician and complete and archive patient record. The terminated sub-

process triggers the termination of the core process.

As we can see, the three semantic exceptions are handled in a different modeling

way. Events impress the question “What happened” within their sources and causes

and impacts in the process branching and execution. Typical causes of events are

messages, time durations, task related conditions, failures or errors.[3] Events are

required for exception handling, which are explained precisely in subsequent section.

Gateway influences the sequence of the process and gives a possibility for decisions

of execution ways. They can be interfaces to sub-processes or organization Units.

There exists AND-Gateway, OR-Gateway and XOR-Gateway and other Complex-

Gateways, which can be event-based. Gateways illustrate branches and

combinations in the control flow of a process model. During the exception handling,

they can influence the process sequence.

15

Figure 4. Perform surgery

Figure 5. Sub-process perform surgery: patient dies

16

3
Fundamentals

Previously, Adam Smith (1723 - 1790) asserted that labor activities in production

processes are more than necessary. Smith was one of the most influential pioneers

for division and processing of labor activities in the 18th century during the beginning

of BPM evolution.[14] In the early 20th century Frederick W. Taylor (1856 - 1915),

who had proposed a set of principles, which known as Scientific Management,

improved the high degree of labor division with an approach for standardization of

business processes and allocation of management roles and employees.[15] The

basic idea was to minimize the working time by the completion of subtasks.

To enable an orientation within the topic, this section introduces principle

terminologies used in business process and business process management systems

and deals with exceptions and their sources. At the outset, various definition

approaches of the notions error and exception are investigated. In particular, the

basic ingredients for the modeling language BPMN2.0 are explained. Hereafter, this

section concludes with a discussion of exception handling methods.

3.1 Fundamentals of BPMS

Before the concept of Business Process Management Systems can be analyzed, it is

important to define the term Business Process (BP). In general, each business and

company is setting objectives to define success. In order to achieve these objectives,

all activities and tasks between organization units have to be coordinated with each

other. Automatic events can be activated as well as trigger activities. The term

business process summarizes all these activities and tasks of production or

manufacturing.

Bernhard Westfechtel uses an easily comprehensible definition:” The business

process comprises all activities carried out in an enterprise, including e.g. staffing,

17

financing, production, marketing, etc.”[16] Also, a process may consists of many

actors, physical objects (e.g. materials, products), immaterial objects (e.g. electronic

records) and of outcomes. Thus, in BP events, activities, actors or decisions are in

coherent relation, which ultimately accomplishing a business goal.[12]

To ensure a faultless workflow in multiple BP, it is essential to manage, coordinate

and optimize processes. Business process management (BPM) is dealing with this

issue. BPM is included in all branches and not only in companies. To ensure zero-

defect production or in education institutions, government institutions also in

hospitals, where managed processes are required, there you can find BPM. The core

task of BPM is continuous quality improvement, thereby minimizing costs and

process runtime.[12] It is the unique discipline for efficiently improving the operational

accomplishments of organization structures, but emphasizes also tools to observe,

analyze, redesign or execute.[12] Techniques and concepts like process models for

representations of activities or process instances, which represent particular

situations, are characterizing BPM.[17] In turn BPs may be very complex, and not

every activity can be automated. Therefore, dynamic process workflows systems are

nowadays improved and supported by IT-Systems, which are known as Business

Process Management Systems (BPMS).

A definition of BPMS is given by M. Weske[17]: “Business process management

system is a generic software system that is driven by explicit process representations

to coordinate the enactment of business processes.” Hence, there are several

BPMSs with diversity methods in notations. The process modeling tools support the

improvement of design and representation of business processes.

18

Figure 6. Business process lifecycle [18]

The BP-Lifecycle (see Figure 6) is a fundamental importance for the improvement of

BPs. The aim of this lifecycle is the continuous optimization and improvement of

services or products. It is consist of connected phases describing categories of BPM.

After identification other repetitive phases are analysis, design, optimization,

implementation and enactment, monitoring and usually evaluation.[17] To achieve

the aim of the lifecycle, it is essential to phrase process oriented questions prior to

identifying and analyzing relevant information. Alternatively, Tom DeMarco, a

developer of structured analysis, mentioned:“You can´t control what you can´t

measure”. This is an important statement, which means before process modeling it is

crucial to define process performance measures.[12] For instance, cycle time, quality

rate and mostly error rate are common measures. Requirements identification or -

validation can be detected in the analysis phase.[12] The objectives within analysis

phase are to get an overview as complete as possible about overall processes, and

to identify the participating systems alongside the interfaces. In the design phase,

models of arduous processes are usually represented graphically, with internal

repetitions of identification or verification. The analysis and design phases are core

conditions for successful implementation, because inadvertent procedures and errors

can be identified. Therefore, they should iteratively be optimized prior to

implementation.[17]

The model level phase is separated in sub-steps e.g. roles and alternative paths. A

successful transition from model level to process design requires a correct syntactic

19

and semantic view. After technical and semantic process design considerations, the

transition between these is supplemented by functional exceptions and error

handlings, alongside unusual alternative paths. Moreover, the design phase is well

suited for system splitting, adding error handling and alternative paths. In addition, it

supports an easier understanding of textual procedures via graphical representation

of processes. In the implementation phase, processes are automated from as-is to

to-be processes.[12]

The lifecycle (cf. Fig. 6) is a iterative process, which repeats after completion.

Repetition is a precondition for accurate process execution, as inaccurate data, both

inputs and outputs are controlled. The BPM life cycle is essential for the continuous

improvement and consistent development of business processes. [12]

However, in particular phases of lifecycle´s and after process implementation´s, error

and exception can occur like unexpected interruptions, data loss or other effects

canceling processes. The gradual operations during the lifecycle enable to find out

rough as well as special exceptions before implementation.[17] In this context, BPMS

takes an important role in selecting and using suitable tools for particular lifecycle

phases. In real world scenarios, unexpected or unlikely situations often preclude

execution of procedures. For a better classification and treatment of exceptions, it is

necessary to detect the sources of these extraordinary events and their possible

handling methods.[19]

3.2 Fundamentals of exceptions and errors

Extraordinary circumstances in BPs can terminate or crash running processes.

Hence, the comprehension of the notions exception and error is important for the

understanding of the entire thesis. Depending on the context, there is a subtle

difference between the notions exception and errors. Hence, it becomes essential to

investigate the notions exception, and compare it with the term error. Some exception

definitions are given in the following:

For M. J. Adams exception “is simply an event that is considered to be a deviation

from the expected control flow or was unaccounted for in the original process flow.”[1]

20

Strong and Miller have early recognized that exceptions are "cases that computer

systems cannot process correctly without manual intervention."[20] An exception can

occur by unexpected contingencies, unsuited data or during sub-processes tasks.[20]

Exceptions are widespread in various ways: in common processes, they are

generated from externalities or internalities, from interruptions or from erroneous

input and output data tasks. Also, they are generated whenever there is a

discrepancy between as-is processes and modeled processes.[21]

Correspondingly, M. Reichert explains, that “exceptions are occurring events whose

additional execution in WF instances is non-predictable, e.g. as in the WF models is

deposited, suitable“.[19] (p. 20 sec. 2.1.2.1) According to this definition exceptions

cover: spontaneous deviations of the process participants from the planned

procedure, external events as a result of which a process cannot be successfully

completed, errors in the execution of process steps, unavailability of resources or,

last but not least, errors in software-/ hardware components. Thus, exceptions are

frequently appearing events, which are not always foreseeably or predictable.[19]

Due to the plurality of definitions given above, it is difficult to establish one general

definition for exceptions. Nevertheless, an exception can be described as a clearly

determinable event that arises during a process execution. Finally, exceptions can be

divided into one of two kinds: “expected” and “unexpected” exceptions (see Figure 7).

Figure 7. Expected and unexpected exceptions

However, in several cases, these two types are overlapping with each other, making

an accurate distinction is very difficult. Commonly expected exceptions are

21

predictable and can be scheduled in a certain way. In contrast, unexpected

exceptions are unpredictable and should be handled in a flexible and alternative way

for example in an ad-hoc technique.[22] In healthcare, data loss or emergency

patients are anticipated exceptions, whilst a building damage is an irregular

appearance, and therefore unexpected. In simple terms, unexpected exceptions are

considered as a Black Box as illustrated in Figure 7. They are not an integral part of

process models due to the fact that until their appearance they are usually “non-

existent”. If throughout the activity execution an unexpected exception occurs, then it

should to be treated for current and future process models. As a result, the

spontaneously appeared unexpected exception can be assumed and planned and no

longer resides in the Black Box. It became an expected exception.

To summarize, an expected exception is a situation differing greatly from the norm,

but still predictable and for that reason you can take measures to reduce the time-

delays and enhance the quality of the process. In contrast, an unexpected exception

appears spontaneously and unforeseen. Hence, it cannot be planned for in advance.

During the execution time BPs can be hampered by other difficulties, e.g. exceptions

like processing defects and system crashes. These particular exceptions are called

errors.[19] Error is a special kind and mostly the worst. Further examples of errors

are coding or implementation failures, data transmission failures, or non-executable

procedures like deadlocks. Errors can strongly affect the quality and performance of

processes and systems, and should not be categorized as possible occurrences,

because they have to be resolved immediately. Unfortunately, errors cannot always

be treated transparently within the processes. For example, if the process was

situated in transition between two events during the occurring of an error, the activity

has to be restored or restarted.[19] Errors are divided into external and internal

errors. Power outages or defective system components cause external errors.

External ones cannot be processed clearly; it is often necessary to process by a

restart and in order to ensure consistency. Contrariwise, internal errors are

components of BPMS in which erroneous information has to be examined in tasks.

[19]

Another differentiation of exception is deviation. Typically, deviations are unexpected

and represent unusual occurring to the normal execution of the process. They can

have different causes like timeouts, insert or delete of activities and the adaptability is

22

therefore much harder. However, deviations require a flexible exception handling like

ad- hoc techniques.[19]

In practice, an analysis is always required to ensure superior control over

management and process execution, and to give correct decisions for unforeseen

appearances. Therefore, the analysis of semantic exceptions before modeling

process is significant. Error and exception handling should be documented correctly,

maybe textual in processes as well as in specifications for immediate solving.

Relating to exception handling and classification, it is important to recognize the

causes and types of expected exceptions.[19] Understandably, the exceptions and

their sources must be detected first, in order to allow for an accurate process

modeling and error-free process execution. Accordingly, the next sections deal with

exception sources and their handling methods.

23

4
Exception sources and exception patterns

The following section describes the typical anticipated exception sources and the

exception handling patterns. First exception sources are presented in detail.

Furthermore, the exception handling patterns are characterized.

4.1 Exception sources

The handling of an exception is determined by its source. To abstract from concrete

situations, it needs to be known which predictable exceptions are frequently occurring

to identify their source. In fact, “it is only possible to specify handlers for expected

types of exception.”[22](p.5) Referring to this, this section gives a review about

potential excepted exceptions sources based on RQ1 and RQ2 (see section 1). The

characterization of all exceptional occurrences is difficult, therefore unexpected

events are “grouped into classes which are related by similarities that they possess in

terms of conditions under which they might arise.”[22] (p. 5)

In particular, exception sources can be classified into five types[23]:

 External events

 Activity failures

- technical

- semantical

 Deadline expiration

 Resource unavailability

 Constraint violation

These typical sources provide a basis for handling mechanisms of exceptions, and

are explained in more detail below:

24

o External events

Internal exceptions are foreseen and directly related to process management issues,

like, e.g. the inability to find a component, or the non-compliance of procedure

sequences or missing deadlines.[24] External exceptions are not predictable and

normally triggered by the user.[23] Moreover, external exceptions are not suited in

normal process sequences. In general, discrepancies between real-world and

computer-modeled processes trigger externalities. They can be detected by

extraordinary signals from outside the process instances or activity interruptions (e.g.

a fire alarm being set off during surgery). The consequences are process break

downs, cancelations of activities, or alternate measures.[22]

o Activity failures:

For many reasons, critical exceptions can appear during an activity execution for

many several reasons. These may be divided generically in semantic and technical

ones. Technical exceptions are errors resulting from the implementation or from

technology, and are mostly caused by system failures, or for instance by activity

breakdowns.[23] Technical exceptions are, e.g., system- related failures, an open

data activity a file server is breakdown or hardware-/ software failures. Semantic

errors occur in terms of unforeseen situations and are commonly caused during the

activity execution. The latter can lead to mistakes and have to be handled

directly.[23]

o Deadline expirations:

Deadline “expirations constitute another source of exceptions whose handling might

require certain action not covered by the normal flow of control.” [23] (p. 129)

Commonly, in some activities prescribed deadlines are required. Nevertheless, if

during activity run-time fixed deadlines are neglected, then an exception will be

raised. For example if the regular deadline for sending blood samples to laboratory

tests is neglected, then the laboratory test could not be done on the same day.

“Usually the deadline indicates when the work item should be completed, although

deadlines for commencement are also possible. In general with a deadline, it is also

25

useful to specify at design time what should be done if the deadline is reached and

the work item has not been completed.” [23] (p. 5)

o Resource unavailability

If an activity cannot access one or more data resources during the execution then it

will be impossible for the activity to proceed. Some of the problems that can possibly

occur are[22]:

1. At distribution time, when a required resource cannot be found, or

2. At time after allocation, when “the resource is no longer able to undertake or

complete”[22] (p. 5) the activity.

“Although the occurrence of these issues can be automatically detected, they often

cannot be resolved within in the context of the executing process and may involve

some form of escalation or manual intervention. For this reason, they are ideally

suited to resolution via exception handling.”[22] (p. 5) Resource unavailability

includes also the unavailability of human resources[23]. For example: If the surgeon

is sick or unavailable then the surgery cannot be performed except a deputy is

assigned.

o Constraint violations

Constraint violations relate to previous sources, and are defined as “violations of

constraints over data, resources, or process model elements (e.g.) activities”[23]

(p.13) Constraints require continuous observance for secure activity executions. They

exclusively occur during the execution of activities, i.e., either before nor thereafter. In

most cases, the implementation for dealing with constraint violations is similar to

those dealing with external triggers.[22]

On the types of determined exceptions depends the various handling ways. Finally,

section 4.2 deals with the exception handling methods in order to handle anticipated

exception sources.

26

4.2 Exception handling methods

Suitable solution finding is a central requirement to handle with exceptional problems.

Therefore, many possibilities for treating an exception exist. Nevertheless, the

general handling strategy can be structured based on:[22]

 source and type of the detected exception

 how the detected exception can be handled

 how the other activities e.g. work items of the case will be dealt with

 what recovery step will be used to solve its effects

It is well known, that major state-of-the-art programming languages provide handling

mechanisms for exceptions. For example, Java deals with exceptions by using

catching and throwing principles called try-catch-throw-functions. According to this,

there are also distinctive events in BP modeling for “catching” and “throwing”

exceptions. The important parameters for exception handlers are causes,

predictability, and context.[19] Therefore plurality of events like timers, messages,

events or cancel events supports to visualize exception sources. Most process

modeling tools allow direct throwing and dealing with exceptions.

In this section, the main catch and throw events are shown and described briefly in

order to obtain an overview of the analyzed constructs afterwards. Furthermore, this

section picks up the questions of RQ3 and describes basic exception handling

patterns. As a last resort exception, patterns deal with various causes of exceptional

circumstances, and the subsequent measures that need to be initiated.

To begin with, Figure 8[25] gives a general overview of some event notations in

BPMN2.0 for exception catching and throwing.

27

Figure 8. Overview of events in BPMN [25]

The basic event types in BPMN are start-, intermediate- and end-events. Foremost,

these events influence the process execution and therefore they have to be modeled

in order to increase the stability of the processes. While catching-events are specified

triggers and can affect the course of the process, the throwing events are active

triggers i.e. cancelations, errors or failures, messages, time delays etc.

For modeling unpredicted occurrences predominantly the error- or multiple events

are used. Elsewise, BPMN2.0 does not specify which type of error is caught. Error

catching is seriously modeled only with intermediate-events. Moreover, intermediate

events are attached to activities for covering cases compared to if-then-else

28

functions. This may be exemplified: assume that task A attaches an intermediate

message-event. Then, several possible cases can be executed:

1. If message-event occurs whilst A is being processed, then A will be

immediately canceled, message exception is caught, and subsequent

activities are executed.

2. If message-event does not occur whilst A is being processed, then the

usual sequence will proceed.

3. If message-event occurs after A is completed, then it will be ignored.

Using the correct catching and throwing event for typical anticipated exceptions is

important for the modeling and handling of exceptions. Furthermore, the knowledge

and understanding of event notations is necessary to use the suitable handling

patterns. The events in Figure 8 are summarized in the following Table 2 [25]:

Table 2. Overview of events in BPMN and their explanations

Event Name Explanation

None: Start points or state changes can be represented by undefined- events.

Message: Message events are used to receive and send messages or information.

Timer: Start points or activities depend on time by using time intervals or time-outs.

Escalation: The responsibility rises to a higher level.

Conditional:
The process proceeds if some conditions are fulfilled, or to reacts changed
conditions like business rules.

Link: Two link events can be used to permit alternative to a sequence flow.

Error: This event shows a catching or throwing error state or exception.

Cancel: Cancel-events react and triggers to transactions and terminate activities.

Compensation: Handles or triggers compensations.

Signal: A signal can be carried out several times between two processes.

Multiple:
Catches and throws several (summarized) events. Multiple is often used in catching
exception and has XOR semantic.

Multiple
Parallel

Catches parallel events and has an AND semantic character.

Terminate Terminate event triggers the immediate termination of a process.

29

On the whole, exception sources pose specific requirements to handling mechanism.

Initially, exceptions must be detected immediately. Then finding out the type of

exception needs to be identified.[22] After that, “for anticipated exceptions, standard

exceptions handlers can be defined. That is usually not possible for the unanticipated

ones.”[26] (p. 416) Hence, exception handlers solve expected situations by analyzing

and documenting pre- and post-conditions from similar circumstances.

Despite the patterns have been developed to treat common exceptions and failures

correctly. These instructions provide guidance for the modeling aspects of

exceptions.

Exception handling is separated into exlets, ad hoc changes and patterns. The Exlets

and Ad hoc changes are for flexible handling in exceptions services. The main

exception patterns for anticipated exception are described in detail in the following

sections.

4.3 Exception patterns

Starting with the simple question: “What are patterns?” it is recalled to have an

abstract level for offering a wide range of applications areas. Patterns describe

schematic solutions for a category of related problems. Generally, patterns are

described by their name, problem statement or application area. Moreover,

descriptions and restrictions are discussed. In some cases some examples of

patterns are given as well.

Together with exceptions, the exception patterns used to handle of expected

circumstances. They designate corrective measures to avoid the consequences of

exceptions and are, therefore, necessary for continuous and robust process

execution.[22] Moreover, patterns assist to remove failures or circulations, which can

reduce complexity in process modeling. Another benefit is the reusability of proven

solutions. It is generally known that a large number of Workflow Patterns are exist.

General BP patterns are further divided in control flow patterns, data-flow patterns,

resources and the exception patterns, which constitute solutions for frequently

performed or recurring work processes and problems.[27]

Exception patterns facilitate dealing with exceptional sources. For this reason

handling possibilities are considered. In this section, main exception patterns are

described using various business modeling tools, in particular BPMN2.0.

30

Figure 9. Exception sources and exception handlers[23]

Figure 9 [23] illustrates the relations between detected sources and their exception

handlers. During the run time special handler’s deal with various predicted

exceptions. These handlers are prescribed procedures for solving the problems

arising from extraordinary events.[22] In BP modeling, three categories for exception

handling patterns exist, which deal with anticipated exceptions. In the following, a

detail explanation is given in tables:[23]

 Trying alternatives patterns

- Ordered alternatives pattern

- Unordered alternatives pattern

 Adding behavior patterns

- Immediate fixing

- Deferred fixing

31

- Retry

- Exception-driven rework

 Canceling behavior patterns

- Reject

- Compensate

4.3.1 Trying alternatives

One possible way of dealing with exceptions during activity run-time is to try

alternatives. If during ordinary processes some exceptional events prevent the

execution of an activity, then alternate activities should be tried, either in sequence or

non-sequence, until no more exceptions exist.[23]

These trying alternatives patterns can be grouped, either in ordered alternatives

pattern or in unordered alternatives pattern.[23] Both alternatives patterns can be

compared with the if-then-else construct in common programming languages: they

have Boolean condition, means if alternative is false, then the next alternative will be

tried, but if it is true first alternative is successfully completed.[28] Tables 3 and 4

summarize the characteristic of both patterns.

Pattern Name: Ordered alternatives pattern

Description:

Multiple ways to proceed a process activity exist a strict expiry

sequence.[28] The exceptions are part of the normal process and

alternatives have to be provided when the normal sequence

fails.[28]

Implementation:

This pattern is used whenever the order of the alternative ways is

predefined. The exception handler calls the first alternative, A,

which by itself uses another catching of exception that calls

alternative B, this including another catching of exception that

calls alternative X and so on. After all alternatives are processed

the handler will terminate by throwing

NoMoreAlternativesException.[28]

32

Pattern Name: Unordered alternatives pattern

Description: Unordered alternatives are used when decisions are made during

the run-time[23] and the testable alternatives are irregularly free

selectable.[28]

Implementation: This pattern is used whenever there are various options and the

order of alternatives is unknown.[28]

Example:

Figure 10. Ordered alternatives[23]

“By default, activity A is executed. If A fails, activitiy B will be

alternatively executed. If B also fails no more alternatives exist

and a NoMoreAlternativesException is thrown and then

propagated to the higher level sphere.”[23] (p. 134)

Problems/

Restrictions:

- Appropriate knowledge about the order of

exceptional cases required

- Problem of never-ending alternatives is possible

- Limited flexibility

Table 3. Ordered alternatives pattern

33

Example:

Figure 11. Unordered alternatives[23]

Figure 12 outlines what happens if the normal state activity A

fails. Then “a set of alternatives will be proposed from which one

alternative has to be chosen.”[23] (p. 135) If the first alternative

fails, then another alternative will be chosen. Finally, if all have

failed NoMoreAlternativeExceptions is thrown.

Problems/

 Restrictions:

- Can lead to an infinite loop

- Can lead to a quite complex illustration of

processes, because each alternative contains

substructures[28]

- Limited flexibility

Table 4. Unordered alternatives pattern

34

4.3.2 Adding behavior

Another possibility to handle exceptions is by processing additional activities, called

the Adding Behavior.[23] This exception pattern contains immediate fixing, deferred

fixing, retrying and rework patterns.

Pattern Name: Immediate fixing pattern

Description:

Here, the normal sequence is interrupted, and the caught

exception is immediately handled by performing an additional

activity.[23]

Implementation:

This pattern is implemented by setting a trigger for exceptions.

If the specified trigger is activated, then the normal sequence is

supplemented by additional paths and activities for direct

handling.

Example:

Figure 12. Immediate fixing[23]

Figure 12 depicts a particular triggered event while the normal

flow is proceeding. Then, the “normal flow will be interrupted and

the process will continue with the exceptional flow.” [23](p.136)

Problems/

Restrictions:

- Applicable only to high probability of exceptions

- Limited flexibility

- Only successful on suitable level of the calling

hierarchy

Table 5. Immediate fixing pattern

Pattern Name: Deferred fixing pattern

Description:
In deferred fixing, the normal sequence is proceeding, while the

exception is noticed, but handled afterwards.[23]

35

Implementation:

If the exception information needs only to be registered or not

dealt immediately, then the handler can save the exception for

later or exceptions are dealt in another sub-processes.[28]

Example:

Figure 13. Deferred fixing[23]

The process model (Figure 13) shows a handler with a trigger

being activated during activity A. Initial fix is executed and a

report is filed afterwards a gateway asks for reported problems. If

there were any, full fixing is performed.[28]

Problems/

Restrictions:

- Handles exceptions temporarily

- Limited flexibility

Table 6. Deferred fixing pattern

Pattern Name: Retry pattern

Description:
This pattern can be used, if a activity should be reattempted in a

moment after an exceptions is occurred.[23]

Implementation:

If activity A is triggering an exception, then Update Context is

tested. During the context-update a further exception can be

caught and handled in other possibilities. If retry is unsuccessful,

then sequence can terminate.

Example:

36

Figure 14. Retry[23]

If the secretary writes minutes incorrectly, the documenting of
minutes should be tried again. If email delivery failure exists, then
sending email should send again.

Problems/

Restrictions:

- Limited flexibility

- Infinite loop when retry is not checked.

Table 7. Retry pattern

Pattern Name: Exception-driven rework pattern

Description:

Some exceptional situations may be solved by repetition of

further activity at all times.[23] Usually this pattern represents the

general retry.[28]

Implementation:

This pattern is used in the same situations like retry, but dealing

with exceptions is time-independent, and the repetition of work is

executed at later process points.

Example:

If a resource is unavailable for activity success but obtaining the

resource will take time, and in the meantime, other activities can

proceed. Then this activity can be retried to in another time.

Problems/

Restrictions:

- Considers externally triggered exceptions

- Aftereffects can occur (like depended decision of

other activities from the issue)

Table 8. Rework pattern

37

4.3.3 Canceling behavior

A further option of dealing with exceptions is the canceling behavior patterns. Either

the reject pattern, which breaks the executions of sub-processes or the process itself,

or the compensate pattern, which reverse finished activities or parts of processes.[23]

Pattern Name: Compensate pattern

Description:

In some cases, part of the process or finished activities must be

repeated. This pattern defines activities, which have to be

repeated and replaces activities for compensations.[28]

Implementation:

This pattern is used, when the result of an activity is unknown or

unforeseeable. It is implemented as a sub-process with double

borderlines and an attached compensation-event that undoes

activities.[28]

Pattern Name: Reject pattern

Description:
This pattern generates an access barrier either to activities, or

process parts.[28]

Implementation:
Normally an end-event is thrown a detected exception is

remarked.[28]

Example:

Figure 15. Reject[23]

If medical examination is performed, but the patient is not

available, then the process is terminated and non-availability of

the patient is indicated.

Problems/

Restrictions:

- Repetitions are not possible

- Limited flexibility

Table 9. Reject pattern

38

Example:

Figure 16. Compensate[23]

In some cases, if fixed deadlines for activity termination exist but

time delays occur, then all reservation or medical appointments

have to be compensated.

Problems/

Restrictions:

- Problematic when all activities need to be undone

at once

- Can lead to complex process models

- Limited flexibility

Table 10. Compensate pattern

In conclusion, all aforementioned exception patterns are practically applicable for

behavioral changes at process models.[23] In addition, further pattern exist:[27]

 Resource patterns

- Delegate

- Escalate

- Reallocate

 Flexible work item handling patterns

 Handling exceptions with exlets

A detailed review of flexible work item handling patterns and exlets are beyond the

scope of this thesis.

39

4.3.4 Resource patterns

Extensions made to work distribution patterns are called the Resource Patterns.

These resource patterns are further divided in creation patterns, push patterns, pull

patterns, auto-start patterns, visibility patterns, multiple resource patterns and detour

patterns.

Altogether, 43 resource pattern exist, but, in the context of exception handling only

selected detour patterns will be considered.[29] Resource Patterns are resource-

related exception handlers that give solution for exception handling during the activity

run-time.[23] In other words, they are more independent from behavioral changes

compared to the above-mentioned patterns. If an exception is detected during the

activities execution´s, then its handling depends “on the current state of execution of

the work item”.[22] (p. 7) In some cases, an immediate action is required to solve the

problems during an activity´s executions. The resource-related patterns comprise the

delegation, escalation, reallocation and deallocation exceptions.[23] (p. 140) Thereby

the understanding of work item lifecycle is required. The work item lifecycle offers

“the basis for determining what options exist for handling a work item in a given state

when an exception is detected.”[22] (p. 6) A work item- , activities or tasks, can pass

through the states: offered, withdrawn, allocated, started, failed, or completed. Figure

17 depicts these states.

Figure 17. Resource-related exception handler[23]

The implementation of these patterns depends on the particular cases and the

current state of the activities. The actual and target state can be understood in the

40

Figure 17 by following of the arrows. The arrows present actions and the squares

present the possible state before or after dealing with exceptions. Moreover, the

details about the Resource Patterns are explained.

Pattern Name: Delegation pattern

Description:
A resource assigns an older work item to another resource.[23]

The opposite would be reallocating a work item.

Implementation:
 Actual state: Allocated

 Target state: Allocated

Example:

If a person (resource) R has been assigned to an activity, but R

is not available, then R is replaced by a deputy (i.e., an

alternative resource).

Problems/

Restrictions:
- Limited flexibility

Table 11. Delegation pattern

Pattern Name: Escalation pattern

Description:

A possibility to handle a dead or delayed activity is to offer or

allocate it to one or more resources.[23] The treatment is more

intensified.

Implementation:
 Actual state: Allocated, Offered, Started

 Target state: Allocated, Offered

Example:
If an activity is out-of-time, then dealing with it will be extended

transfer another resource.

Problems/

Restrictions:
- Limited flexibility

Table 12. Escalation pattern

Pattern Name: Reallocation pattern

Description: The reallocation pattern can be divided in Stateful Reallocation

41

and Stateless Reallocation. If the resource reassigns an activity

to another resource, but the current state is retained, then

reallocation is stateful. Otherwise, in stateless reallocation, the

activity is restarted and the current state changes.[23]

Implementation:
 Actual state: Started

 Target state: Started, Allocated

Example:
If termination deadline of activity has passed, then a higher

responsible person reallocated, to complete the activity.

Problems/

Restrictions:
- Limited flexibility

Table 13. Reallocaation Pattern

Pattern Name: Deallocation Pattern

Description:

Deallocation is used, if a resource “makes a previously allocated

work item available, i.e. the work item can be offered to other

resources.”[23] (p.141)

Implementation:
 Actual state: Allocated

 Target state: Offered

Example:
If the treatment results of patients need to be deallocated to other

hospitals for further treatments.

Problems/

Restrictions:
- Limited flexibility

Table 14. Dellocation pattern

Other possible work item states are the Completed and Failed states, both included

in the Figure 17. An activity is completed, if the standard state is fully terminated. Yet,

if the current state is restricted to finish, maybe because of failures, then the activity

fails.[23] The implementation of resource-related pattern depends on semantic

exceptions and on individual situations. The illustration of exceptions can be done

resorting to previously mentioned patterns, events, or sequence flows.

42

5
Analysis

“The curiosity is always the top priority of a problem to be solved.”

Galileo Galilei (*15.02.1564- †08.01.1642)

This section provides an analysis of exceptions sources and their exception handling

patterns in BPMS. Several real-world processes and examples were examined in

order to detect the exception sources and to analyze the possible handling methods.

The evaluation procedure of the examined processes is presented in order to

address the RQ1, RQ2 and RQ3. Finally, the results of the analysis are illustrated

with the help of charts.

5.1 Techniques and methods

This subsection describes which techniques and methods are used to identify the

exceptions. In real-world processes there are unlimited exception cases, which can

occur during the process run-time. Obviously, the evaluation of all occurring

exceptions sources would go beyond the scope of this thesis. Therefore typical

sources of anticipated exceptions and as well as their handling through patterns are

analyzed.

High amounts of processes in various BP modeling languages are investigated in

order to determine the frequencies of the occurrence of various sources and their

corresponding handling patterns. Therefore exceptions sources from different

domains - modeled with different BPMS tools - are analyzed and categorized. The

data sources from the different domains for identifying exceptions were shown in

Table 1 (see section 2). In total 110 process models obtained from analyzing

healthcare and administration domains were considered. Five core-processes were

excluded from evaluation due to the fact that they give a general overview of sub-

processes. As a result, 105 sub-processes were examined in more detail.

43

The documentation of process models of activities, tasks, e.g. and their exceptions in

a tabular form of presentation was used. The analyzed sub-processes are

documented separately in Excel sheets within their exception sources and handling

techniques. The sheets summarize the results of the analysis and assist in the

evaluation of data sets. Several criteria were defined to identify the exceptions and

handling patterns. The exception sources were divided into internal and external

causes. In addition as basis for further studies, organization units, roles referred to

activities, event and gateways were detected. The resulting tables can be found into

the attached CD-ROM. On the basis of these data sets, frequency analysis were

performed and illustrated. The results are described in the following section 5.2.

5.2 Classification and results

As has already been mentioned, the exceptions sources can be divided into

anticipated and unanticipated exceptions. In this study, only the anticipated

exceptions were handled. Therefore, to get an overview before presenting the

results, Figure 18 visualizes the exception sources and classifies the sources into

types. Reichert and Weber[23] observe in their book that expected exceptions can

categorized in five potential sources: Activity Failure, Deadline Expiration, Resource

Unavailability, External Event and Constraint Validation.

44

Figure 18. Exception sources and classification

The data analysis based on these sources. In general, to determine external events,

a discussion with process designers is required. Therefore, this exception type is

taken out of consideration. The real-world processes were investigated and allotted

to the exception sources shown in Figure 18. It shows that every anticipated

exception source can be triggered internally or externally. In addition to the

separation of Activity failure into semantic and technical exceptions, the Resource

Unavailability was divided into Human – and Other Resources Unavailability. For

example, absent employees belong to Human Resources and missing data or item to

Other Resources.

Figure 19. Percentage of other resource- and human resource unavailability

85%

15%

Other Resource Unavailability

Human Resource Unavailability

45

Figure 19 shows the percentage frequencies of other resources - and human

resources unavailability in both analyzed domains. 85 % of resource unavailability

are caused by other resource unavailability. Although human resource unavailability

plays an important role in healthcare processes, only 15 % of the resource

unavailability consists of human resource unavailability. The main reason for this

result could be that automated processes replace nowadays activity executions.

In order to answer the RQ1 the number of occurrences of the various exceptions

were determined and illustrated in Figure 20 regardless of the modeling language

and the domain. Activity failure occurs most frequently in these real-world processes

with 337 times. For that reason, activity failure can be defined as the core-exception

type. Resource unavailability also plays a significant role within the exception types.

The lowest number of occurrences was shown for deadline expiration. The reason for

this may be the fact that in most of the investigated processes the time deadlines are

not modeled. Hence, it is very difficult to detect all deadline expirations

Figure 20. Number of occurrences of exception sources

87

119

213

337

0

50

100

150

200

250

300

350

Deadline ExpirationConstraint ViolationResource
Unavailability

Activity Failure

N
u

m
b

e
r

o
f

o
c
c
u

rr
e
n

c
e
s

46

A subdivision of activity failure into technical failures and semantic failures is

illustrated in Figure 21. Activity failures consist of 83% semantic failures. This seems

to be reasonable as a high number of semantic failures are frequently caused by

incorrect or faulty executions of tasks in the investigated domains. Whereas only 17

% of activity failures caused by technical failures. In contrast to semantic failures,

technical failures can iteratively be optimized after the first occurrence.

Figure 21. Activity failure- semantical and technical failures

In the next step to answer the RQ3: “What are most frequently occurring exception

handling patterns?”, the classified sources of exceptions were matched into basic

exception handling patterns. Figure 22 shows the general occurrence number of

exception patterns.

83%

17%

Semantical failure Technical failure

47

Figure 22. Number of occurrences of exception handling patterns

In some cases, exceptional sources could be handled by more than one pattern.

Thus, the occurrence number of the possible matched patterns is 944. Overall, it can

be noted that the adding behavior patterns occur most frequently with 564 times. This

indicates that most of the exceptions can be treated by additional activities like

immediate fixing, deferred fixing, retrying and rework patterns. It is more or less

obvious why there is a high occurrence of adding behavior patterns, as this seems to

be a usual reaction to handle exceptions during process execution. Resource pattern

occurred in second place with 178 times. This is due to the fact that in the healthcare

domain the handling of human processes need changes with regard to the resource

aspect. Another interesting observation is that canceling behavior is less common

(122 times) because it can cause the cancelation of the whole process or undoing

the completed process. The trying alternatives show the lowest number of

occurrences. The reason is that trying alternative patterns require knowledge about

all possible alternatives.

17

122

178

564

0

100

200

300

400

500

600

Trying Other
Alternatives

Canceling BehaviorResource PatternAdding Behavior

N
u

m
b

e
r

o
f

o
c

c
u

rr
e
n

c
e
s

48

5.3 Detailed considerations

In this section, the evaluation results are analyzed in detail. To deal with RQ3, the

question is how each exception source can be specified by the exception handling

patterns. Therefore, the relation between each exception source and their possible

handling ways are illustrated Figure 23 and 24. The exception sources activity failure

and were investigated as representative examples.

Figure 23. Activity failure handled with each exception pattern

1

3

5

11

12

13

36

50

141

144

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Ordered Alternatives

Reject

Unordered…

Compensate

Deferred Fixing

Escalation

Other

Rework

Immediate Fixing

Retry

Number of occurrences

Activity Failure

49

It has to be mentioned that more than one exception handling pattern can allocated

to particular exception source. For 337 detected activity failures 416 possible

handling patterns were allocated, that means at least 79 sources could be dealt in

two or more ways. For healthcare and administration domain can be noted that the

patterns retry and immediate fixing occurs most frequently in activity failures. It

makes sense because immediate fixing and retry can appear together. In the real

world, exceptions are directly tried to solve or after fixing retried again. As the third

most commonly occurring pattern is rework. Rework handles exceptions in a similar

way, but it is less limited and independent of time. To summarize, the type activity

failures was usually handled by using adding behavior patterns.

Figure 24. Resource unavailability handled with each exception pattern

Figure 24 shows the exception type resources unavailability and the corresponding

possible handling patterns. In comparison to activity failure, in resource unavailability

reallocation is the most used pattern. The reason for this is that the lack of resources

cannot always be handled immediately. Nevertheless, the first priority in processes is

the direct treatment. Therefore, immediate fixing (42) comes on the second place. In

1

3

7

19

22

26

33

38

39

42

64

0 10 20 30 40 50 60 70

Ordered Alternatives

Deallocation

Deferred Fixing

Reject

Compensate

Retry

Delegation

Escalation

Rework

Immediate Fixing

Reallocation

Number of occurrences

Resource Unavailability

50

summary, the resource-related patterns (Delegation, Escalation, Reallocation and

Deallocation described in section 4.2) make in sum 138. Adding behavior patterns

occur this time in second place with 114.

51

6
Conclusion and Outlook

This thesis investigated the exception sources and exception handling in BPMSs in

real-world processes. In summary, a considerable effort was spent in identifying the

exception sources. In total, 110 processes from two different domains were analyzed

and approximately 1500 possible expected exceptions were detected. The

exceptions were categorized into sources and were specified by basic exception

handling patterns.

It has been showed that activity failures occur most commonly in the investigated

domains. They consist mainly of semantic failures. The reason for this is that in

investigated healthcare- and administration processes, exceptions are frequently

caused by incorrect or faulty execution of tasks.

Subsequently, the classified sources of exceptions were matched into basic

exception handling patterns. The adding behavior patterns appear most frequently. It

seems to be a common reaction to handle exceptions during process execution. This

results also corresponds to the findings of Lerner et al. [28]. They have also analyzed

processes from different domains- medical and digital government domains.

Accordingly, they have also showed that immediate fixing belonging to adding

behavior occurs most frequently in both domains.

Furthermore, the dependence between exception sources and the related handling

patterns was investigated. Activity failures were usually handled by using adding

behavior patterns. Contrary to activity failures, resources unavailability were most

commonly treated by resource-related patterns. The reason for this is that the lack of

resources cannot always be handled immediately.

In conclusion, these basic patterns are still not flexible enough to handle suddenly

appearing occurrences immediately. Many strictly structured processes, that are no

longer current, need a long procedure for modification of the process structure. For

52

handling of unanticipated exceptions, adaptability and flexibility are required in order

for run-capable processes. Emphasizing the importance of flexibility, additional

flexible exception handling ways were developed. The wide range of flexible handling

can be separately considered in further intense evaluations. The evaluated data can

be used as basis for the studies.

53

List of figures

Figure 1. Devil´s quadrangle ... 2

Figure 2. Process model for methodology of this thesis ... 7

Figure 3. Process model example .. 12

Figure 4. Perform surgery ... 15

Figure 5. Sub-process perform surgery: patient dies .. 15

Figure 6. Business process lifecycle [18] ... 18

Figure 7. Expected and unexpected exceptions ... 20

Figure 8. Overview of events in BPMN [25] .. 27

Figure 9. Exception sources and exception handlers[23] ... 30

Figure 10. Ordered alternatives[23] .. 32

Figure 11. Unordered alternatives[23] .. 33

Figure 12. Immediate fixing[23] .. 34

Figure 13. Deferred fixing[23] ... 35

Figure 14. Retry[23] .. 36

Figure 15. Reject[23] .. 37

Figure 16. Compensate[23] .. 38

Figure 17. Resource-related exception handler[23] .. 39

Figure 18. Exception sources and classification ... 44

Figure 19. Percentage of other resource- and human resource unavailability 44

Figure 20. Number of occurrences of exception sources ... 45

Figure 21. Activity failure- semantical and technical failures 46

Figure 22. Number of occurrences of exception handling patterns 47

Figure 23. Activity failure handled with each exception pattern 48

Figure 24. Resource unavailability handled with each exception pattern 49

54

List of tables

Table 1. Data sources for identifying exceptions .. 10

Table 2. Overview of events in BPMN and their explanations 28

Table 3. Ordered alternatives pattern ... 32

Table 4. Unordered alternatives pattern ... 33

Table 5. Immediate fixing pattern .. 34

Table 6. Deferred fixing pattern .. 35

Table 7. Retry pattern ... 36

Table 8. Rework pattern ... 36

Table 9. Reject pattern ... 37

Table 10. Compensate pattern ... 38

Table 11. Delegation pattern .. 40

Table 12. Escalation pattern ... 40

Table 13. Reallocaation Pattern ... 41

Table 14. Dellocation pattern .. 41

55

Bibliography

[1] M. J. Adams, “Facilitating Dynamic Flexibility and Exception Handling for
Workflows,” Queensland University of Technology, Brisbane, Australia, 2007.

[2] S. Sadiq, P. Soffer, and H. Völzer, “12th International Conference: BPM 2014.”
Springer Verlag, Haifa, Israel, pp. 151 – 160, 2014.

[3] T. Allweyer, BPMN 2 .0 - Bussiness Process Management and Notation:
Einführung in den Standard für die Geschäftsprozessmodellierung, 2. ed.
Books on Demand GmbH, 2008.

[4] I. Benbasat and R. Weber, “Research Commentary: Rethinking ‘Diversity’ in
Information System Research.” Australia, pp. 389 – 399, 1996.

[5] “Signavio GmbH,” 05.08.2015. [Online]. Available: http://www.signavio.com/de/.

[6] B. Schultheiß, J. Meyer, R. Mangold, and M. Reichert, “Prozessentwurf für den
Ablauf einer ambulanten Chemotherapie.” p. 29, 1996.

[7] B. Schultheiß, J. Meyer, R. Mangold, and M. Reichert, “Prozessentwurf am
Beispiel eines Ablaufs aus dem OP-Bereich: Ergebnisse einer Analyse an der
Universitätsfrauenklinik Ulm,” p. 116, 1996.

[8] B. Schultheiß, J. Meyer, and R. Mangold, “Prozessentwurf für den Ablauf einer
stationären Chemotherapie.” 1996.

[9] I. Konyen, B. Schultheiß, and M. Reichert, “Prozessentwurf für den Ablauf einer
radiologischen Untersuchung.” 1996.

[10] I. Konyen, B. Schultheiß, and M. Reichert, “Prozessentwurf eines Ablaufs im
Labor.” 1996.

[11] I. Benbasat, D. K. Goldstein, and M. Mead, “The Case Research Strategy in
Studies of Information Systems,” MIS Q., vol. 11, no. 3, pp. 369–386, 1987.

[12] M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers, Fundamentals of
Business Process Management. Springer Berlin Heidelberg, 2013.

[13] J. Meyer, “Anforderungen an zukünftige Workflow-Management-Systeme:
Flexibilisierung, Ausnahmebehandlung und Dynamisierung - Erörterung am
Beispiel medinzinisch-organisatorischer Abläufe,” 1996.

[14] W. M. van der Aalst, “A decade of business process management conferences:
personal reflections on a developing discipline,” in Business Process
Management, Springer Berlin Heidelberg, 2012, pp. 1–16.

56

[15] E. P. Kelly, “The One Best Way: Frederick Winslow Taylor and the Enigma of
Efficiency.,” Academy of Management Perspectives, vol. 11, no. 3. pp. 101–
104, 1997.

[16] B. Westfechtel, Models and tools for managing development processes, 1646th
ed. Springer Verlag Berlin - Heidelberg, 1999.

[17] M. Weske, Business Process Management: Concepts, Languages,
Architectures, 2nd ed. Springer Verlag Berlin - Heidelberg, 2012.

[18] M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers, Fundamentals of
business process management. Springer Verlag Berlin - Heidelberg, 2013.

[19] M. Reichert, “Dynamische Ablaufänderungen in Workflow-Management-
Systemen,” Ulm University, Institute of Database and Information Systems,
2000.

[20] P. J. Kammer, G. A. Bolcer, R. N. Taylor, A. S. Hitomi, and M. Bergman,
“Techniques for Supporting Dynamic and Adaptive Workflow,” Computer
Supported Cooperative Work (CSCW). pp. 269–292, 2000.

[21] M. Reichert and D. Peter, “ADEPT flex – Supporting Dynamic Changes of
Workflows Without Loosing Control,” J. Intell. Inf. Syst., no. 2, pp. 93–129,
1998.

[22] N. Russell, W. Van Der Aalst, and A. Ter Hofstede, “Exception Handling
Patterns in Process- Aware Information Systems,” BPM Cent. Rep. BPM-06-
04, pp. 288–302, 2006.

[23] M. Reichert and B. Weber, Enabling Flexibility in Process-Aware Information
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[24] A. Fortis, A. Cicortas, and V. Iordan, “Considerations on Resource Usage in
Exceptions and Failures in Workflows,” Ann. Univ. Tibiscus, Comp. Sci., 2009.

[25] “BPMN 2.0 - Business Process Model and Notation,” 04.08.2015, 2011.
[Online]. Available: http://bpmb.de.

[26] F. Daniel, K. Barakaoui, and S. Dustdar, Business Process Management
Workshops: BPM 2011 International Workshops. Clermont- Ferrand, France:
Springer Heidelberg Dordrecht London New York, 2011.

[27] W. M. P. Van der Aalst, a. H. M. Ter Hofstede, B. Kiepuszewski, and a. P.
Barros, “Workflow patterns,” Distrib. Parallel Databases, vol. 14, no. 1, pp. 5–
51, 2003.

[28] B. S. Lerner, S. Christov, L. J. Osterweil, R. Bendraou, U. Kannengiesser, and
A. Wise, “Exception Handling Patterns for Process Modeling,” IEEE Trans.
Softw. Eng., vol. 36, no. 2, pp. 162–183, 2010.

57

[29] W. M. P. Van Der van der Aalst and M. Pesic, “Towards a Reference Model for
Work Distribution in Workflow Management Systems,” First Int. Work. Bus.
Process Ref. Model., pp. 76–82, 2005.

58

Acknowledgment

First of all, my sincere thanks go to Professor Dr. Manfred Reichert for his continuous

support, guidance as supervisor and for being motivating and optimistic mentor,

especially for the helpful advices and for the interesting discussions.

Moreover, I take this opportunity to express the profound gratitude from my deep

heart to my family for their love and continuous support.

Güven Manay and Dr. Rahime Gök-Manay are acknowledged for proof-reading of

this thesis.

Special thanks my boyfriend Mehmet Dinc for his personal and mental support.

At the end of my thesis I would like to thank all those people who made this thesis

possible and an unforgettable experience for me.

59

Name: Serife Öztemür Matrikelnummer: 748114

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Serife Öztemür

