
Ulm University | 89069 Ulm | Germany Faculty of
Engineering,Computer
Science and Psychology
Institute of Databases and
Information Systems

Design, concept and implementation for
an electronic and mobile patient health
record of tinnitus affected patients using
the iOS platform
Master’s Thesis at Ulm University

Submitted by:
Carmen Vazinkhoo
carmen.vazinkhoo@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert
Dr. Winfried Schlee

Supervisor:
Dipl. Inf. Rüdiger Pryss

2015

Version September 16, 2015

c© 2015 Carmen Vazinkhoo

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Satz: PDF-LATEX 2ε

Abstract

Tinnitus is increasingly affecting individuals who report that they hear a whistilng or

other noise without any external sound source. Currently, there is no treatment that

completely eliminates tinnitus. However, there are ways to allay this, for example by

questionnaires or therapies. On the basis of auditory tests changes can be documented

in the perception of tinnitus. Through observation of event triggers and amplifiers,

appropriate actions can be taken. For all of these approaches, the TinnitusNavigator

app has been developed which supports the patient in dealing with tinnitus and brings

the patient closer to a relief of symptoms. Users will find an easy navigation since the

iOS-ware Guidelines were considered in the design. Using the Core Data framework of

Apple supported the realisation of the model from the Model View Controller pattern. At

the end the outcome of this work is a working application.

iii

Note of thanks

At this point I would like to thank everyone who has supported me during the preparation

of this master’s thesis and during my student days.

With special thanks to Prof. Dr. Manfred Reichert who has always supported me during

my academic studies.

To my advisor Rüdiger Pryss, who supported me through his feedback and knowledge

during the master’s thesis.

My greatest thanks dedicates to my parents and family which not only funded my studies

and enabled me the possibility to study, but also constantly showed a great interest in

my work as well as supported me wherever they could.

v

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Structure of this thesis . 3

2 Fundamentals 5

2.1 Definition of tinnitus . 5

2.2 Kind of tinnitus . 6

2.3 Questionnaires and severity levels . 8

2.4 Audiometry . 10

2.5 Related work . 11

3 Requirements Analysis 13

3.1 Functional requirements . 13

3.2 Non-functional requirements . 15

4 Introducing the app 19

4.1 General Structure . 19

4.1.1 Login screen . 20

4.1.2 Events tab . 21

4.1.3 Questionnaires tab . 22

4.1.4 Therapies tab . 23

4.1.5 Audiometry tab . 25

4.1.6 More tab . 26

4.2 Server . 28

vii

Contents

5 Architecture 29

5.1 General structure . 29

5.1.1 View Controller & Table View Controller 30

5.1.2 Table View Cells . 32

5.1.3 Data Model . 33

5.2 Relation between app and server . 34

6 Implementation and implementation aspects 37

6.1 Exchange process with data persisting . 37

6.2 Design . 42

6.3 Used frameworks . 43

6.4 Challenges and findings . 50

7 Requirements Comparison 53

7.1 Functional requirements . 53

7.2 Non-functional requirements . 55

8 Outlook 59

9 Conclusion 61

viii

1
Introduction

Affected person describe the tinnitus as a noise, whistling, hissing or rattling in the ear

and in the head. There is no external sound source and no other person can hear the

tinnitus of the patient. The annoying noise or whistling appears particular unpleasant

when there is surrounding silence. Sometimes it occurs suddenly and fades away

immediately. But in some cases it persists and can torture the patient. Ear noises or

whistles are symptoms which can be compared to pain or fever. Tinnitus can again lead

to numerous concomitant symptoms like sleep problems, poor concentration, anxiety and

depression. Also, tinnitus is a warning signal of pressure both mentally and physically. It

is assumed that inflammation of the ear or of the respiration track, noise damage, organic

sickness like autoimmune diseases as well as viral infections are possible causes but the

actual creation mechanism is still unsolved. Therefore it is often difficult to cure the root

cause. Discussed influences and risk factors are alcohol, nicotine, various medicines,

1

1 Introduction

food and as already mentioned, stress. However, the symptoms can be eradicated with

help of combined treatment methods, self-help groups or hearing aids.

1.1 Motivation

There is a set of methods for treating tinnitus. For example, one method uses different

questionnaires each with a different focus. It takes time until the filled out questionnaires

of the patients are evaluated and so the feedback is not immediately available. Finding

the right treatment and likewise keeping track of the results takes a lot of effort. Patients

have to rely on the documentation of the doctor and wait for the results. If the patient

want to check up their health record, they have to make an appointment and wait to get

a copy. The tinnitus is always abstract to the affected person and complex to understand

relation between treatments and results.

Mobile applications for the medical and psychological context are complex to implement

[1, 2, 3]. To improve this situation, in 2008 the Tinnitus Research Initiative was founded

to develop effective treatments for various forms of tinnitus in order to provide a relief for

the patients. From that the TrackYourTinnitus project has been formed which enables

the affected person to monitor individual variations of the tinnitus perceptions with their

own smartphone. This provides a systematic documentation over several weeks.

Suitable for this task are smartphones as they are omnipresent and can be used

everywhere at any time. Patients can record an occurring event right away and also

look up certain data. As there is a set of different therapies, a smartphone can support

keeping track of the therapies.

An instrument to capture differences in the hearing perceptions are audiometries. With

that, hearing thresholds and changes can be documented as well as be compared. In

this way everything is stored in one place and can be fetched when needed, such as at

a doctor’s appointment to discuss progress of a therapy or to find a suitable new one.

Therefore the goal of this thesis is to implement an app, called TinnitusNavigator, which

provides input options for events, audiometric measurements and therapies. Also the

2

1.2 Structure of this thesis

app includes different questionnaires answered and saved. The user can access the

data any time and anywhere it is required. TinnitusNavigator app can been seen as a

mobile health record of the patient to navigate through the tinnitus handling.

1.2 Structure of this thesis

This section provides an overview of the structure of this work. Chapter 2 lists all

necessary medical fundamentals and summarizes previous implementations within the

TrackYourTinnitus projects. Based on this knowledge, the requirements analysis, which

is separated into functional and non-functional requirements, is elaborated in chapter 3.

The TinnitusNavigator app is introduced with its functionality and its structure in detail

within chapter 4. Afterwards follows in chapter 5 a general overview of the application’s

architecture with its components and also the data model and the relation of the app to

the corresponding server. Chapter 6 gives further insights into the implementation as well

as implementation aspects. Then, the defined requirements are matched with the level

of development in chapter 7. Chapter 8 provides an outlook on further improvements

and chapter 9 concludes this thesis.

3

2
Fundamentals

This chapter presents the fundamentals that are required for a better understanding of

tinnitus. It deals with its definition, present types, explains questionnaires and defines

audiometry. Finally, related implementations for the TrackYourTinnitus projects are

introduced.

2.1 Definition of tinnitus

Tinnitus is defined as a phantom perception of sound if an external sound source is

missing [4]. Tinnitus aurium is the Latin word for ringing in the ears (tinnire = sound,

ringing) [5]. As a medical term tinnitus means a perception of acoustic nerve impulses

that are generated at any point of the auditory pathway and do not necessarily come

from external acoustic stimuli. At the same time tinnitus is a symptom of disturbed

5

2 Fundamentals

auditory perception, almost always as a consequence or associated symptom of hearing

impairment. It is distinguished from many more rare sound varieties existing in the

body such as vascular or muscular clacking noises. This may be perceived also from

unaffected individuals objective tinnitus, even if they actually belong to the body’s intrinsic

noises. Tinnitus affects about 10% of all adults in the world [6]. Thus it is starting to be

recognized as a global health problem.

2.2 Kind of tinnitus

The tonal appearance of tinnitus far from uniform, because a tinnitus can occur in a

variety of forms [7]. It describes pure tones at different frequencies, tonal mixtures

and narrowband or broadband noise. In general, however, most tinnitus forms are

high-frequency whistling, which can be a result of hearing loss in the high frequencies. It

may vary in its intensity, at least in the subjective perception and finally can be constant

or pulsating. However, for therapeutic considerations, it has been proven that one can

not only rely on such subjective descriptions of tinnitus, and it is more important to follow

a certain classification system which distinguishes the following forms of tinnitus.

Objective/subjective tinnitus

Sometimes ringing in the ears can be heard from the outside, by doctors under investi-

gation, which are very rare (0.01%). Actually, however, the patient hears pathologically

increased body self noise. This is called objective tinnitus. The normal hearing person

perceives nerve impulses that occur in the body, usually near the ear. Many autonomic

body functions with noises occur, such as breathing, heart and bowel function. Generally,

these are not perceived as these are experienced as naturally and are usually very quiet.

Only if they become louder like the heartbeat during exercise, they will be consciously

heard. If such noises occur regularly in the body but are not immediately classified by

the body as such noises, then this can be perceived as objective tinnitus.

6

2.2 Kind of tinnitus

The vast majority of tinnitus forms are subjectively in nature, for example, they can

not be heard from outside. The body’s own sound sources are not detectable with

current methods of audiometric examination. However, the corresponding tinnitus are

not imaginary. To date researchers have not yet succeeded in finding appropriate

methods to uniquely measure the electrophysiological effects of tinnitus. This is because

the actual noises in the ear are never more than 5-10dB above the hearing threshold.

Therefore, stimulations of its intensity would only be audible directly to the auditory nerve,

but it would be too invasive to directly attempt to measure the response of the auditory

nerve.

Tinnitus with/ without hearing loss

One of the main distinguishing characteristics is the coincidence of tinnitus and ac-

companying hearing loss. Rarely is the hearing in tinnitus patients completely normal.

Rather, tinnitus arises precisely when the hearing gets diminished. Its frequency is

almost always the frequency of the largest hearing loss. This applies in particular to the

high-frequency noises in the ear, which are the associated with symptoms of weakness

in the high frequencies or deafness. If the hearing is completely normal, the ear noise is

then considered as a result of a general over stimulation and an incorrect processing in

the auditory pathway.

Acute/ chronic tinnitus

Duration and persistence of ear noise are of great importance, especially with regard to

therapeutic possibilities. An acute tinnitus (first occurring) is one that often disappears

spontaneously or after appropriate therapies. If the tinnitus symptoms persist longer

than 3 months, it is called a chronic tinnitus. However, this depends on the meaning that

the ear noise has for each patient.

7

2 Fundamentals

Compensated/decompensated tinnitus

Choices for therapy and need for treatment depends on how each patient can deal

with their tinnitus and how much they suffer. According to current surveys, 25% of all

Germans have already experienced tinnitus at least once and 13% hear the tinnitus

above a longer period. However, only 2% are significantly affected by the noises. This

means that the majority of people who hear a ringing in the ears, feel that it is not very

disturbing even if it is present permanently. In this case, tinnitus is compensated by

normal habituation processes so regardless of temporal phases or the duration of its

presence, the ear noise rarely disturbs the patient. In this case, tinnitus is compensated

by normal habituation processes so regardless of temporal phases or the duration of

its presence, the ear noise rarely disturbs the patient. If tinnitus is accompanied by

a network of listening issues triggering emotional responses, a normal habituation is

prevented. This gives rise to a suffering on tinnitus situation where tinnitus threatens to

decompensate or is already decompensated, the symptoms dominate the patient, and

their quality of life may be greatly restricted. This possible development is carried out

regardless of whether tinnitus occurs in the inner ear, in auditory nerve, or is generated

in the brain stem or central auditory processing.

2.3 Questionnaires and severity levels

Both experimental and clinical measurements of tinnitus are central concerns of modern

tinnitus research and therapy [8]. Until today, however, there is no reliable measurement

method available for localization and quantification of tinnitus. Therefore subjective

methods, such as psychoacoustic comparative measurements and the self-assessment

of patients are the basis of deliverable data for the detection of the tinnitus severity [9, 10].

These tools are especially helpful in capturing the multidimensional nature of tinnitus

distress and to detect the biopsychosocial aspect of tinnitus through a wide range of

issues [11, 12]. These include questions about tinnitus distraction, concentration, sleep

problems, hearing problems, worries about the future, catastrophizing, psychosomatic

stress factors, etc., which can be answered by the patients in varying degrees [13, 14]. A

8

2.3 Questionnaires and severity levels

number of differentiated tinnitus questionnaires to capture the severity levels have been

developed [15]. Below are the tinnitus questionnaires that are used in the app:

Mini Tinnitus Questionnaire

The purpose of this questionnaire is to find out whether the noises in the ears/head have

had any effect on the patient’s moods, habits or attitudes [16]. Some questionnaires

are problematic because they require a relatively large number of questions which are

needed to determine a global distress measure. If the available time for investigation

is restricted and other measurements are also need to be completed, this could be a

disadvantage. Therefore, there is a growing need for a quicker and compact measure of

overall tinnitus distress. The primary goal is to obtain excellent psychometric qualities.

All twelve questions of the Mini Tinnitus Questionnaire were selected under strictly

defined psychometric criteria. Questions were only considered if they were greatly corre-

lated with the general score. The questionnaire indicates changes of symptomatology.

This is important because analysing therapy results using the same questionnaire is an

important component of the therapy process. Most central and characteristic aspects of

tinnitus distress are represented by the twelve questions. The Mini Tinnitus Question-

naire is more useful for chronic tinnitus, since psychological distress in acute patients

may be temporary and of lower prognostic value.

Tinnitus Sample Case History Questionnaire

Questionnaires can request information about the history and descriptive characteristics

of the patient’s tinnitus or tinnitus related conditions [17]. An international body agreed

that a question list for Case History Questionnaires should be generated which should

contain those questions common to many of the questionnaires (and structured inter-

views) in latest use in order to reach comparability The Tinnitus Sample Case History

Questionnaire contains 35 questions which can be used in its entirely or modified. This

app will use the Tinnitus Sample Case History Questionnaire as it is.

9

2 Fundamentals

Worst symptom

There are a number of symptoms reported by many patients (for example insomnia,

concentration difficulties, anxiety) which can become worse with tinnitus [18]. Of this,

however, almost every patient has one symptom that is worst for him. This questionnaire

aims to identify this symptom.

Create a profile

This questionnaire obtains the most important information about the current situation of

the patient [19]. These questions help to determine how strong the patient suffers from

his ear noise and what measures have already been taken.

2.4 Audiometry

For the diagnostic evaluation and subsequent therapeutic recommendation a thorough

objective audiometric testing is always desired in order to recognize and differentiate

diseases, especially of the middle or inner ear, as well as the auditory nerve and central

auditory processing [5]. However, the lack of objective detection methods leads the

practitioners to try to measure the tinnitus by using pitch and intensity comparisons.

The sound threshold should be determined with special care, especially as the affected

patients may indicate different levels od hearing losses or - more rarely - a normal or

even remarkably normal hearing threshold. Much effort has to be made while trying

to detect the type of tinnitus: sound or noise, in what frequency and at what volume.

Generally, tinnitus patients are a challenge to even experienced audiometry assistant

regarding the accuracy and reproducibility of measurements.

If the hearing threshold is determined the patient will be offered a comparison sound,

which is beginning with the frequency of the largest hearing loss, about 10dB above the

threshold, to accurately determine the tinnitus frequency, This will be changed in pitch

until it becomes about the same as the sound in the ear.

10

2.5 Related work

Frequency in kHzFrequency in kHz

H
ea

rin
g

Lo
ss

 in
 d

b
H

L

H
ea

rin
g

Lo
ss

 in
 d

b
H

L

Figure 2.1: Example for a documentation of a tinnitus and the discomfort threshold [5]

The actual loudness of ear noise is generally about 5-10dB above the hearing threshold,

even if the patient’s tinnitus appears subjectively louder.

The relation of tinnitus loudness to hearing threshold must be carefully documented.

Amazingly, the measured level is often unchanged even if, for example after a treatment

the subjective loudness appears decreased. That’s an indication of the adaptive abilities

of central tinnitus processing.

The values found for pitch, timbre and loudness of tinnitus are entered in the audiogram

of each ear (see figure 2.1). The pitch affiliation is identified in the frequency coordinate

with a circle. A tonal tinnitus is entered as a small zigzag. The discomfort threshold

(marked as U) is often noticeablely low.

2.5 Related work

The TinnitusNavigator app belongs to the TrackYourTinnitus research project of the

Tinnitus Research Initative and of the Institute of Databases and Information Systems at

11

2 Fundamentals

the Ulm University [20]. In this context, the following products are developed: Servers for

each type of app, Website, TrackYourTinnitus app (for iOS & Android) and TinnitusNavi-

gator app (only for Android) [21].

The TrackYourTinnitus app supports the patient to understand the tinnitus by asking

specified question in order to register variation of perception, which can only be done

in an app not on the website [18]. Main function is a questionnaire which monitors the

perception that reminds the user in irregular periods to fill out a short questionnaire [22].

An extension of the TrackYourTinnitus app is the TinnitusNavigator app which can be used

to compared to the patient’s health records [19]. The app contains the questionnaires,

input options for results of an audiometry measurement, events and therapies [23]. The

server of the Android app is still under development [24]. Both apps have their own

server which synchronizes the users data.

12

3
Requirements Analysis

In this chapter the requirements of the mobile application, the TinnitusNavigator, are de-

scribed. These requirements are divided into functional and non-functional requirements

and summarized in table 3.1.

3.1 Functional requirements

This section shows the functional requirements of the app. The main features of the app

are shown, which should be provided to the user. The following section explains the

functional requirements in detail.

FR 1: Sign up:

The user can not make use of the app without a user account, because the user’s

13

3 Requirements Analysis

data and the questionnaires are saved on the server. A user account is necessary

to get access to the server. It should be possible to register without leaving the

app.

FR 2: Log in:

If a user has an account, it should be possible to sign in to the sever through the

app. Afterwards, the data of the user, which are stored on the server, can be

downloaded into the app and can be displayed.

FR 3: Log out:

It should be possible to log out. Either another user wants to log into the app or

the user himself wants to end its connection to the server.

FR 4: Reset password:

Did a user forget the password or just can’t remember it there should be a way to

reset it from within the app instead of opening the browser separately.

FR 5: Operate without internet connection:

There are situations that the user may not have an access to the internet, like on

journeys or inside of buildings. If the user is already logged in and has pulled the

initial data like the questionnaires, the app should still work independently of the

internet connection. The user should be informed that there is currently no internet

connection but also be able to use the app like before.

FR 6: Synchronize local data with server data:

If the app loses the connection to the server (like in offline mode) the modified data

should be stored on the phone and automatically be synchronized as soon as the

connection to the server is re-established.

FR 7: Display all kinds of questionnaires from the server in app:

The questionnaires from the server have different types of answer options. The

app should be able to display the answer options dynamically. This way new or

changed questionnaires on the server will always be displayed correctly in the app.

14

3.2 Non-functional requirements

FR 8: Fill out questionnaires:

The user should be able to answer the questionnaires in the app and see which

questionnaires are already filled out and are synchronized with the server.

FR 9: Enter/show/delete events:

It is important to keep track of the events of a patient in relation to their tinnitus.

Therefore it should be possible to enter such an event, like a tinnitus attack or an

appointment, view this event and delete it if necessary. Additionally, a calendar

view that includes all events would increase the usability.

FR 10: Enter/show/delete therapies:

Also it is important to maintain records of the kinds of therapies a patient is currently

in or has completed. That’s why it should be possible to enter a new therapy /

treatment, view this therapy and delete it if necessary.

FR 11: Enter/show/delete measurements of audiometry:

The perception of the tinnitus can vary over time. Also, the results of therapies can

only be measured with audiometry. To keep track of the changes of the hearing

perceptions,it should be possible to enter a new measurement, for both ears,

view such measurements and delete them if necessary. Sometimes the standard

frequencies are not enough, therefore the user should be able to enter custom

ones. For a better visualisation the result should be displayed in a diagram for

each ear.

FR 12: Update data automatically and manually:

The data on the phone should synchronize automatically with the server, but the

user should also have an option to do the synchronization manually.

3.2 Non-functional requirements

Next, requirements are introduced that are primarily important for appearance and

operation of the app as well as for data protection. Like the functional requirements, the

non-functional requirements are listed below with a detailed description.

15

3 Requirements Analysis

NFR 1: No saving of email addresses or ip addresses:

Due to legal restrictions it is not allowed to store the email address of a user

without a permission. Also it is not lawful to store the ip address of the user while

accessing the app. This should be considered during the implementation.

NFR 2: Use colour of TrackYourTinnitus app:

The main colours of the TrackYourTinnitus app are blue and green. These colours

should also be used as it associates that these apps are belonging together.

NFR 3: Following iOS design guidelines:

As the TinnitusNavigator will be an iOS app, the iOS design guidelines should

be followed. This makes it also easier for the user to use the app without being

confronted with a whole different and unfamiliar design.

NFR 4: Intuitive user interface:

The user should be able to navigate quickly to the desired destination. Also the

user should be presensted with similar user elements and interfaces despite of its

logic in the background. Tasks should be completed fast.

NFR 5: Make app scalable as much as possible:

As the data on the server grows or is modified, the app should be able to handle it.

For example, when an additional questionnaire is added to the server, it should be

displayed in the app without making any changes.

NFR 6: Release in Apple App Store:

The app would be useless if nobody could use it, hence it should be released in

the Apple App Store after the implementation is completed.

16

3.2 Non-functional requirements

No. Description Kind of requirement
FR 1 Sign up functional

FR 2 Log in functional

FR 3 Log out functional

FR 4 Reset password functional

FR 5 Operate without internet connection functional

FR 6 Synchronize local data with server data functional

FR 7 Display all kinds of questionnaires from server in app functional

FR 8 Fill out questionnaires functional

FR 9 Enter/show/delete events functional

FR 10 Enter/show/delete therapies functional

FR 11 Enter/show/delete measurements of audiometry functional

FR 12 Update data automatically and manually functional

NFR 1 No saving of email addresses or ip addresses non-functional

NFR 2 Use colour of Track Your Tinnitus project non-functional

NFR 3 Following iOS design guidelines non-functional

NFR 4 Intuitive user interface non-functional

NFR 5 Make app scalable as much as possible non-functional

NFR 6 Release in Apple App Store non-functional

Table 3.1: Summarizing table with all requirements

17

4
Introducing the app

This chapter introduces the TinnitusNavigator app from a user’s perspective. The first

section 4.1 describes the individual functions based on the app flow illustrated in figure

4.1. Section 4.2 is about the server with which the app is communicating.

4.1 General Structure

The TinnitusNavigator app opens with a login view, since the app can not be used without

a user account. If the user is logged in, a tab menu is shown with the following five tabs:

Events, Questionnaires, Therapies, Audio and More. In the Events, Therapies and Audio

tabs, the user can add new entries, view details or delete them. The Questionnaires

tab shows all available questionnaires from the server which the user can fill out or has

already filled out. As usual the imprint, about and licenses elaborations can be found

19

4 Introducing the app

in the More tab. Also included in the More tab are the logout option and a link to the

TrackYourTinnitus app in the Apple App Store.

start

loginregister reset password open TYT
homepage

menu

Events tab Questionnaires
tab Therapies tab Audio tab More tab

fill out a
questionnaire

show
details

add new
event

delete
an event

show
details

add new
therapy

delete a
therapy

show
measurement

add
measurement

delete
measurement

logout

open
TYT app

licenses

imprint

about

Figure 4.1: The app flow of the TinnitusNavigator app

4.1.1 Login screen

On the first start of the app the login screen is shown. If the user has an account but

has forgotten the password, then there is also a reset button which, like the registration

button, opens a mobile view inside the app. The register view is the mobile view of the

project homepage which is included in the app. That way the user does not need to

leave the app for the registration.

20

4.1 General Structure

Does the user have an account but forgot the password, then there is also a reset button

which, like for the registration, opens a mobile view inside the app. The user can stay in

the app again.

For login the user has to type in its user name and password. If they are not correct or

one of the two is missing, an error message is shown and the user can try again. On

success, the tabbed menu is shown.

For more information about the project that this app belongs to, there is a button that

leads to its website. This website is also like the other displaying websites integrated in

the app.

All mentioned views can be seen in the figure 4.2.

Figure 4.2: Welcome view, register view, reset password view and TrackYourTinnitus
website view

4.1.2 Events tab

An event is an occurrence that is related to the patient’s tinnitus. It can be an appointment,

mental illness, tinnitus attack or something else. As mentioned in chapter 2, it is

important to keep track of a variety of information surrounding the patient to find out

21

4 Introducing the app

which influences increases the perception of the tinnitus. Figure 4.3 shows all associating

views.

To add a new event its name, date and type have to be filled in. The type can be selected

from a spinning wheel which has the above mentioned options. A description can be

entered optional. If one of the mandatory entries is missing an error message is shown.

The user can get an overview of all previously inserted events in the Events tab. They

are indicated with their name and date. As that overview is about events, the sorting of

them is by date.

If an event is selected from the overview, details of this are shown. The details are in the

same order as they are filled out to make it easier to orientate and to find the desired

information faster.

An event can be deleted in the overview section. For that the event has to be shifted to

the left. On the right side appears a delete button. If the delete button is pressed, the

event is deleted. To not delete the event, then the event can be pushed back to the right

and the delete button disappears again.

4.1.3 Questionnaires tab

As shown in section 2.3 questionnaires make up one of the main tools of the treatments

to determine the impact of the tinnitus. Questionnaires that are used by the project are:

create profile, Mini Tinnitus Questionnaire, Tinnitus Sample Case History Questionnaire

and worst symptom. All questionnaires are accessed from server and displayed dy-

namically depending on the answer types of each question which can be seen in figure

4.4.

To fill out a questionnaire, it is selected from the overview. The questions are always

coloured white on a green background. Each question has, as mentioned, a different

answer type: radio buttons, text, check buttons, scale values or date of birth.

If a questionnaires is fully filled out, it can not be filled out again. This is indicated by the

green check mark to the right of the questionnaire’s name in the overview. Otherwise

there is an grey arrow on the right.

22

4.1 General Structure

Figure 4.3: All associating views if Events tab

4.1.4 Therapies tab

A therapy can help the patient reduce the perception of tinnitus. It is important to maintain

an overview of therapies which are administered. The Therapies tab is structured as in

figure 4.5. The following types are currently available in the app:

• Auditory stimulation

• Biofeedback

• Dental treatment / treatment of the jaw

• Hearing aid

• Medical treatment

• Neurofeedback

• Physical therapy

• Psychotherapy

23

4 Introducing the app

Figure 4.4: Questionnaires tab with its overview and the beginning of the Tinnitus Sample
Case History Questionnaire

• Sport/physical exercise

• Tinnitus masker / tinnitus noiser

• Tinnitus Retraining Therapy (TRT)

• Traditional Chinese Medicine

• Transcranial Magnetic Stimulation (TMS)

• Other

To add a therapy, the user has to type in a name, start date, end date, type of therapy

and a note. Name, start date and type are mandatory whereas end date and note are

optional. The therapy type can be selected using a spinning wheel.

All inserted therapies are listed in the overview. Each therapy is indicated by its name

and type. This time the focus is on the therapy, that is why the overview list is sorted by

types.

24

4.1 General Structure

With selecting a therapy from the overview its details are shown. The details view is set

up similar to the add view, again for better orientation and faster finding of information.

The delete procedure is the same as that presented in the Events tab. To delete, swipe

the therapy it to the left and push the delete button. Swipe the therapy back to the right

to abort the deletion.

Figure 4.5: Therapies tab and its associating views

4.1.5 Audiometry tab

Audiometry a help determine changing in the hearing. It is simple for the patient to keep

the results of the audiometry together with the events, therapies and questionnaires.

Adding a measurement requires a date and all measured results of the left and right ears

for all frequencies. Standard frequencies are 125Hz, 250Hz, 500Hz, 1000Hz, 2000Hz,

4000Hz and 8000Hz.

All measurements of the audiometry are indicated in the overview by its date. As there

is only this indicator, the overview is sorted by it.

25

4 Introducing the app

As in the previous tabs, the details for each measurement of the audiometry can be

accessed by selecting one from the overview. The details view is similar to the adding

view.

Figure 4.6 displayed all above mentioned views.

Figure 4.6: Audio tab with overview, adding view and details view

4.1.6 More tab

The More tab is the last tab in the app. It contains a table with five elements that

are shown in 4.7. First element is logout. By selecting it, the user is requested, if

logout should really perform. Confirming this question logs the user out. This additional

question prevents to log out the user by accident.

The second element is used to open the belonging TrackYourTinnitus app in the Apple

App Store. With this other app the patient can track the change of its tinnitus. Also it

considers daily routines and activities.

Next element is the licenses, which contains the licenses of the used frameworks in the

26

4.1 General Structure

app which are described more in detail in section 6.3.

Fourth element is the imprint which contains the legally prescribed declaration of origin.

Last element is about the TrackYourTinnitus project and its contributors.

Figure 4.7: More tab with views of all five elements

27

4 Introducing the app

4.2 Server

App is communicating with a server which is the same like of the Android TinnitusNavi-

gator app. The user’s data, which are entered through the app or on the website, are

stored in the server. In case the user changes his/her phone the data are not lost as they

are synchronized with the server. After every change made in the app a date exchange

with the server is performed. Additionally, a refresh button can be pushed to force the

exchange. If the server is unreachable a message informs the user and the modified

data are flagged for the exchange when the server is reachable again.

28

5
Architecture

This chapter is about the architecture of the TinnitusNavigator app. A brief overview

section is followed by a detailed description of the components of the architecture. At

the end, the relation between the app and the server is presented.

5.1 General structure

The TinnitusNavigator app supports all iPhones that are running with iOS 7 and later.

As measured by the Apple Store on August 17th 2015, 86% of devices are using iOS 8

and 13% are using iOS 7 [25]. Less than 2% are using older versions. That is why the

app supports versions starting from iOS 7. All classes have the prefix TNA which stands

for TinnitusNavigator app and guarantees a unique class name within the app [26]. The

29

5 Architecture

prefix has to be three letters or more because the two-letter options are reserved for use

by Apple; for example,like UI, which stands for User Interface.

5.1.1 View Controller & Table View Controller

UIViewController

TNATableViewController TNAWelcomeViewController

TNAWebsiteViewControllerTNARegisterViewController

TNAResetViewController TNADetailViewController

TNADetailAudioViewControllerTNAAddEventsViewController

TNAAddTherapiesViewController TNAAddAudioViewController

TNALogoutViewController UITableViewController

TNATableViewController TNAQuestionsViewControllerTNAMoreViewController

UIResponder

TNAAppDelegate TNACoreDataController TNADataExchange TNAAFClient

NSObject UIResponder

Figure 5.1: View controllers and table view controllers

Every view controller inherited from UIViewController excepts that a table can be found

there which it inherits from UITableViewController. In figure 5.1 is the architecture of the

view controller and other classes. At the start of the app the TNATableViewController

is loaded which checks if the user is logged in. If not the TNAWelcomeViewController

handles the login. It loads the view, manages the whole login mechanism and saves

the received access token of a successful log in. More details about the log in process

is described in section 6.3 as the AFOAuth2Manager framework is used to realize

this process. From this view the TNAWebsiteViewController can be called to get to

30

5.1 General structure

the website of the TrackYourTinnitus project which is loaded in a UIWebView inside

of the app. Also the TNARegisterViewController which shows the register web view

and the TNAResetViewController which shows the web view to reset the password

can be invoked from the TNAWelcomeViewController. If the user successfully logged

in then the TNATableViewController is shown. It manages whether the user is logged

in and the dynamic table views of the tabs: Events, Questionnaires, Therapies and

Audio. These four do not have their own user interface as the same interface is simply

reused. They all have the same structure. To configure properties for each view, they

need a unique User Defined Runtime Attribute which allows it to address the right view

[27]. All views have in common that they are showing NSManagedObjects (cf. 5.1.3).

That is why the entity name of this objects is selected as the attribute. Depending

on the attribute the corresponding data is fetched, refreshed, added, deleted or dis-

played. For switching to another view segues are defined which specify which view

is loaded. TNAAddEventsViewController can be called to add a new event, TNAAd-

dTherapiesViewController to add a new therapy and TNAAddAudioViewController to

add a new audiometric measurements. By selecting a row of the table view in the

TNATableViewController the details for this object are displayed. Event and therapy

objects have the same structure for the details hence they are both handled in the

TNADetailViewController. Audiometric measurements are composed of several objects

so TNADetailAudioViewController needs special handling. All corresponding objects for

the details view have to be fetched and sorted. The TNAQuestionsTableViewController

needs to fetch the questions for the selected questionnaire and implement the right

answer types. Last tab is connected to the TNAMoreTableViewController. It contains

a static table which is defined in the storyboard and needs less effort for realizing the

view. All called views from the TNAMoreTableViewController are modal views which are

managed by the storyboard because they show static text and have no user interaction.

Only the TNALogoutViewController is called to show the log out view and to execute the

log out process.

Additionally to the view controllers are these classes: TNACoreDataController, TNA-

DataExchange, TNAAFClient and TNAAppDelegate. TNACoreDataController is used to

persistently store the data into the internal storage. Within TNADataExchange where all

31

5 Architecture

data management is realized. The TNAAFClient is responsible for the communication

with the server is the . The TNAAppDelegate defines methods that are called by the

singleton UIApplication object in response to important events in the lifetime of the app

[28].

5.1.2 Table View Cells

UITableViewCell

TNATableViewCell TNACheckCell

TNABirthCellTNAQuestionCell

TNARadioCell TNASliderCell

TNAAddAudioCellTNAShowAddCell

TNATextCell TNAUnkownCell

Figure 5.2: Table view cells diagram

Each row of a table in a table view controller is represented by an object of the class

UITableViewCell. All used sub classes of UITableViewCell are displayed in figure 5.2.

As mentioned above, the table views of the tabs for Events, Questionnaires, Therapies

and Audio are managed together. The contents of those table views are dynamic which

means the number of rows depends on the data is to be shown. All rows have two

text labels which are defined in the class TNATableViewCell. For each answer type

a class is defined. The TNATextCell shows an input text view for multi line answers.

There is a button with a label defined to display previously unspecified radio buttons in

TNARadioCell. Check button answer types are realized with TNACheckCell. Like the

TNARadioCell the TNACheckCell has a label and a button. These two answer types

have two different classes for easier handling purposes. TNASliderCell pictures an

answer type int scale which is used for selecting a single value from a continuous range

of values. The TNABirthCell stands for a single line user input which gets a date picker

in the TNAQuestionsTableViewController. In case there are new questionnaires with

32

5.1 General structure

answer types which are not specified yet, TNAUnknownCell is catching this case to

prevent the app from crashing.

Presenting details of an audiometric measurement requires three labels for each object

to display frequency, value of left ear and value of right ear which is implemented in the

TNAShowAudioCell whereas TNAAddAudioCell has only one label for the frequency

and two text input fields since this class is designed for adding a new measurement.

5.1.3 Data Model

NSManagedObject

Answers Events

TherapiesAudio

Questionnaires Questions

Figure 5.3: Data model diagram

TinnitusNavigator uses the Core Data framework to manage its model objects (cf. 6.3).

The data model is based on the JSON (JavaScript Object Notation) objects which are

received from the server and are extended with attributes that are used for realizing the

data exchange. All classes are subclasses of NSManagedObject, which implements all

the basic behaviour required of a Core Data model object which the class diagram in

figure 5.3 is showing. An object of the class Events contains fields for time, title, type,

description, updated_at, id, created_at and remote_id and additional objectId as well as

exchangeState of one event. For a therapy the attributes name, start_date, end_date,

type, note, updated_at, id, created_at and remote_id and additional objectId as well

as exchangeState are saved in Therapies. The Audio class contains time, value_left,

value_right, frequency updated_at, id, created_at, remote_id and additional objectId as

well as exchangeState properties for each result of a measurement. Questionnaires

contains following attributes: configuration, which describes the answer possibilities,

if all of them are the same as the questionnaire, title, id, created_at, remote_id and

33

5 Architecture

additionally objectId as well as exchangeState. All questions of all questionnaires are

stored in Questions. They have a configuration (similar to answer possibilities), if they

are not already configured in Questionnaires, which includes id, position for the order

to display, question, questionnaire_id for mapping, type of the answer and additional

objectId as well as exchangeState.

5.2 Relation between app and server

Track your
Tinnitus Server

Core Data

Rest-like
JSON
APIJSON Objects

NSManagedObjects

TinnitusNavigator App

Figure 5.4: Relation between app and server [29]

The TinnitusNavigator communicates with the TrackYourTinnitus server. On the server

side all questionnaires and optionally data of events, therapies or audiometric measure-

ments. The user has the option to use the website or to use an app. All communications

34

5.2 Relation between app and server

between the app and the server is done over a REST-like JSON API. A JSON is a

data-interchange format. The advantage is that it is simple for humans to read and write

but also simple for machines to parse and generate. JSON provides objects or array

of objects which need to be parsed to objective-c objects in order to be processed and

saved into Core Data. This action is called serialization or deserialization if it is the other

way around. A detailed description of how this is done in the app is presented in 6 and

the figure 5.4 illustrates the described process.

35

6
Implementation and implementation

aspects

This chapter presents how the exchange process of the app and the server takes place.

Afterwards the design criteria are described as well as the used frameworks. Finally, the

challenges and findings of the implementation are summarized.

6.1 Exchange process with data persisting

An app that works only when connected to the internet is not very practical. Consequently

this aspect was included from the beginning of the implementation.

The app uses the AFNetworking framework for the communication with the API, which

makes tasks like asynchronous HTTP requests easier to handle. TNAAFClient is a

37

6 Implementation and implementation aspects

subclass of AFHTTPRequestOperationManager which origins from the framework and

is using the singleton pattern. A singleton pattern guarantees that only one instance is

alive for a given class and that there is a global access point to that instance [30].

Managing all of the exchange routines, between Core Data and the server is the job of

theTNADataExchange class which is also a singleton class and NSManagedObject

sub-classes are registered with it. The routine is the process to take data from the server,

parse it and save it into Core Data. All registered classes are stored in an array.

In consideration of the user’s data plan, the goal is to make use of every call in the most

efficient way possible and make sure that every piece of data pulled over the mobile

networks counts. Therefore it does not make sense to download and deal with every

record each time the exchange process is performed. It makes more sense to compare

the updatedAt attribute on the entities and determine which is the most recent one. Then

to ask the server by using this date to only send those which were modified after this

date.

It is important to keep track of all exchange actions as each should not start more than

once. The method startExchange (c.f. listing 6.1) first checks if an exchange is already

running. If not, it sets the property exchangeInProgress to YES.

1 − (vo id) startExchange {

2 i f (! s e l f . exchangeInProgress) {

3 [s e l f wil lChangeValueForKey :@" exchangeInProgress "] ;

4 _exchangeInProgress = YES;

5 [s e l f didChangeValueForKey :@" exchangeInProgress "] ;

6 s e l f . backgroundExchangeQueue = dispatch_get_global_queue (

DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0) ;

7 dispatch_async (s e l f . backgroundExchangeQueue , ^ {

8 [s e l f requestDataOfClasses :YES toRemoveOff l ine :NO] ;

9 }) ;

10 }

11 }

Listing 6.1: Method startExchange

With the use of Grand Central Dispatch (GCD), which runs the processing tasks in the

background [31], it kicks off an asynchronous block that calls the method requestDataOf-

38

6.1 Exchange process with data persisting

Classes: toRemoveOffline:. Objects which are deleted on the server and exist locally

should also be deleted. Therefore the method processJSONDataRecordsForRemoval

compares the JSON response with all locally stored records and those which can not

be matched are deleted. To decrease network traffic even more, as many operations

as possible are performed in a single batch with a queue of all requests. The methods

applicationCacheDirectory and JSONDataRecordsDirectory return a location where to

save the files and the method writeJSONResponse (c.f. listing 6.2) stores the responses

to that location before processing them.

1 − (vo id) writeJSONResponse : (i d) response toDiskForClassWithName : (NSString ∗)

className {

2 NSURL ∗ f i leURL = [NSURL URLWithString : className relat iveToURL : [s e l f

JSONDataRecordsDirectory]] ;

3 i f (! [(NSDict ionary ∗) response w r i t e T o F i l e : [f i leURL path] a t o m i c a l l y :YES]) {

4 NSArray ∗ records = [response objectForKey :@" r e s u l t s "] ;

5 NSMutableArray ∗nul lFreeRecords = [NSMutableArray ar ray] ;

6 f o r (NSDict ionary ∗ record i n records) {

7 NSMutableDict ionary ∗nul lFreeRecord = [NSMutableDict ionary

d i c t i o n a r y W i t h D i c t i o n a r y : record] ;

8 [record enumerateKeysAndObjectsUsingBlock : ^ (i d key , i d obj , BOOL ∗stop) {

9 i f ([ob j isKindOfClass : [NSNull c lass]]) {

10 [nul lFreeRecord setValue : n i l forKey : key] ;

11 }

12 }] ;

13 [nul lFreeRecords addObject : nul lFreeRecord] ;

14 }

15 NSDict ionary ∗ n u l l F r e e D i c t i o n a r y = [NSDict ionary d i c t i ona ryWi thOb jec t :

nul lFreeRecords forKey :@" r e s u l t s "] ;

16 i f (! [n u l l F r e e D i c t i o n a r y w r i t e T o F i l e : [f i leURL path] a t o m i c a l l y :YES]) {

17 NSLog(@" Fa i led a l l a t tempts to save response to d isk : %@" , response) ;

18 }

19 }

20 }

Listing 6.2: Method writeJSONResponse:toDiskForClassWithName:

In order to know if the exchange is finished and if it is the first time, there are two

constants kTNDateExchangeInitialCompleteKey and kTNDataExchangeCompletedNoti-

39

6 Implementation and implementation aspects

ficationName as well as two methods initialExchangeComplete and setInitialExchange-

Completed which track this information. Furthermore the property exchangeInProgress

is set to NO in the method executeExchangeCompletedOperations.

Until that moment the data is stored in a property list format rather than into Core

Data. Method JSONDictionaryForClassWithName gets the files from disk and returns

an NSDictionary, but NSArrays are easier for handling purposes. Consequently the

method JSONDictionaryForClass calls the previous method and returns an NSArray of

all records in the response that are ordered by a given key.

The JSON responses are no longer required and the method removeJSONDataRecords-

ForClassWithName deletes them.

During conversion of JSON values to objective-c properties the dates are handled in a

special way using the NSDateFormatter is, which is costly and is therefore re-usable.

Following three methods implement the converting:

• initializeDateFormatter : is for initialization

• dateUsingStringFromAPI: gets an NSString object and returns an NSDate object

• dateStringForAPIUsingDate: gets an NSDate object and returns an NSString

object

These methods are used in setValue:forKey:forManagedObject: which gets a value, key

and managedObject and converts them if the key is equal to created_at, updated_at,

time, start_date, end_date, _time or description. Otherwise the values stay as they are,

set in the managedObject.

The enum TNAObjectExchangeState has the variables TNAObjectExchanged, TNAOb-

jectCreated and TNAObjectDeleted. The flag TNAObjectCreated in the enum TNAOb-

jectExchangeState indicates which objects are created locally and need to be pushed to

the server. TNAObjectDeleted flag is needed to mark local records for deletion.

A new NSManagedObject is created in the backgroundManagedObjectContext with the

method createManagedObjectWithClassName:forRecord (c.f. listing 6.3), which gets a

class name and a record from the JSON response.

40

6.1 Exchange process with data persisting

1 − (vo id) createManagedObjectWithClassName : (NSString ∗) className forRecord : (

NSDict ionary ∗) record {

2 NSManagedObject ∗newManagedObject = [NSEnt i t yDescr ip t ion

insertNewObjectForEnt i tyForName : className inManagedObjectContext : [[

TNCoreDataControl ler sharedInstance] backgroundManagedObjectContext]] ;

3 [record enumerateKeysAndObjectsUsingBlock : ^ (i d key , i d obj , BOOL ∗stop) {

4 [s e l f setValue : ob j forKey : key forManagedObject : newManagedObject] ;

5 }] ;

6 [record setValue : [NSNumber numberWithInt : TNObjectExchanged] forKey :@"

exchangeState "] ;

7 }

Listing 6.3: Method createManagedObjectWithClassName

Sorting managedObject classes for a defined exchange state is needed to post the

right data to server or to delete data on server. For this purpose, the method man-

agedObjectForClass:withExchangeState is implemented and called from the methods

postOfflineObjectsToServer and removeObjectsFromServer. The method manage-

dObjectsForClass:sortedByKey:usingArrayOfIds works in similar way, excepts it is for

processing JSON data records. It gets a class name, a defined key for sorting and an

array of objectIds and returns an NSArray of NSManagedObjects. Used is this method

of processJSONDataRecordsIntoCoreData and processJSONDataRecordsForRemoval.

After all HTTP requests are finished, the response is written into Core Data and can be

grabbed on demand. The registration for the exchange complete notifications is stored

TNATableViewController. After the view is loaded, method viewDidAppear is called

and adds an observer for the notification. The observer is again removed in method

viewDidDisappear.

The classes TNAAddEventsViewController,TNAAddTherapiesViewController and

TNAAddAudioViewController each have the method saveButtonTouched which sets

the exchangeState flag in the enum if a new record is added.

Before the data can be sent to the server, they have to be translated into JSON objects

with the class NSManagedObject+JSON because all classes have different JSON

objects. The class contains the methods JSONToCreateObjectOnServer for generating

41

6 Implementation and implementation aspects

the JSON object and dateStringForAPIUsingDate for converting the NSDate into a

NSString. JSONToCreateObjectOnServer returns an NSDictionary which contains the

JSON value required to create the object on the remote service.

AFNetworking converts the NSDictionary to a string for the POST request to the server.

The postOfflineObjectsToServer method initiates the post procedure. If a record is

deleted locally the TNAObjectDeleted flag is set and the method removeObjectsOn-

Server fetches all objects with this flag and executes the deletion.

There is a refresh button in each view of the TNATableViewController class is a refresh

button is placed, which allows the user to manually update the data. Observers for

changes in class TNADataExchange are registered with the implementation of observe-

ValueForKeyPath:ofObject:change:context:. In case changes are made, the observer

calls the method checkExchangeState that questions the TNADataExchange-singleton

to see if an exchange is in progress. If this is true, method replaceRefreshButtonWithAc-

tivityIndicator is called and the refresh button shows an indicator. Otherwise the indicator

is removed and the refresh icon is shown.

6.2 Design

The iOS design guidelines describe what has to be considered while designing this

app [32]. For an easy and smooth navigation in the app, the chosen structure for the

TinnitusNavigator app is flat. This app has a lot of information to display which have to be

clearly arranged. Due to the tab view all menu items are accessible from the main screen

and the user does not have to navigate through a lot of screens to reach the desired

destination. Also the user can not get lost as the user’s path is logical, predictable and

easy to follow. This navigation style is also used in the Apple App Store.

The key colour is the blue tone of the TrackYourTinnitus app which is used in the

TinnitusNavigator app to indicate interactive elements and also to show the closeness of

both.

Although data from the server is not always well structured (for example, for the result of

an audiometry measurement), the user interfaces always keeps the same clarity and a

42

6.3 Used frameworks

uniform appearance throughout the app.

Radio buttons and check boxes are not standard in iOS and have to be implemented

explicitly. The characteristic of a radio button is that is allows a single selection while a

check box allows multiple selections. Both are implemented as normal buttons which

changes their image to indicate the selection.

6.3 Used frameworks

Cocoa Pods is the dependency manager used to include third party libraries in this iOS

application [33].

Without Cocoa Pods, it would be harder to achieve the same results because the

following steps would need to be separately coded: download and unzip files, drag

frameworks and bundles to the project, link with new iOS libraries and add linker flags.

If the library has dependence on other libraries all of the steps have to be done again.

Also updates have to be done manually which would mean that the above described

procedure has to be done once more.

With cocoa pods, the author of a library simple writes a podspec file that specifies what

the developer needs for the proper installation, such as which files are required, where

the source location is, what iOS libraries need to run it, pre or post processing stops and

so on. The key information required is only its name and perhaps a specific version if

needed.

1 p la t fo rm : ios , ’ 7.0 ’

2 pod ’ AFNetworking ’ , ’ ~> 2.2 ’

3 pod ’ AFOAuth2Manager ’

Listing 6.4: Podfile of the TinnitusNavigator app

The podfile, which is written by the developer of the app, lists the names of the podspecs

that represents the libraries which will be used in the application. Cocoa Pods takes care

of the rest.

There are over 8000 podspec files in the official Cocoa Pods repository which gets

automatically updated and all included ones can be easily updated together. To include

43

6 Implementation and implementation aspects

Cocoa Pods into Xcode a project has to be created and closed afterwards. In the same

directory as the Xcode project the podfile needs to be created.

First, the platform and its minimum deployment target, because libraries might only

work on certain versions of iOS, have to be entered. Next the podspecs which are

needed can be listed (c.f. listing 6.4), (for example, for his app AFNetworking and

AFOAuth2Managerwhich are described in details in the next section would be listed) .

Cocoa Pods then grabs and installs the libraries which are needed. It creates a

xcworkspace file that is a collection of projects and is used from then on for further

implementations. There is the original application, that is an empty application which

was created earlier and the pods projects which builds all of the Cocoa Pods as static

libraries. Cocoa Pods alters the original project to rely on the static libraries built by this

other project.

AFNetworking is used for network operations and helps with communication manage-

ment, serialization, reachability, security and UIKit integration [34].

1 − (AFHTTPRequestOperation ∗) GETAPIRequestForClass : (NSString ∗) className

2 parameters : (NSDict ionary ∗) parameters

3 success : (SuccessBlockType) success

4 f a i l u r e : (Fai lureBlockType) f a i l u r e {

5 AFOAuthCredential ∗ c r e d e n t i a l = [AFOAuthCredential

r e t r i e v e C r e d e n t i a l W i t h I d e n t i f i e r :@" TYTCredent ials "] ;

6 NSString ∗access_token = c r e d e n t i a l . accessToken ;

7 NSString ∗classNameLow = [className lowercaseSt r ing] ;

8 NSString ∗apiClass = @" api / " ;

9 NSString ∗ c lass = [apiClass s t r ingByAppend ingSt r ing : classNameLow] ;

10 AFHTTPRequestOperation ∗opera t ion = [s e l f GET : [NSString s t r ingWi thFormat :@"%@

?access_token=%@" , class , access_token] parameters : parameters success :

success f a i l u r e : f a i l u r e] ;

11 r e t u r n opera t ion ;

12 }

Listing 6.5: GET request with the use of AFNetworking framework

The AFHTTPRequestOperationManager class is used in this app in the TNAAFClient

class for creating the http requests like GET (c.f. listing 6.5) and POST (c.f. listing 6.6)

44

6.3 Used frameworks

as well as serializing the responses.

The serialization module of AFNetworking makes it very easy to serialize a request

before executing it, by encoding the parameters that need to be included in that request

and also helps decoding the response to a specified type. The AFHTTPRequestOp-

eration class in the classesTNADataExchange and inTNAWelcomeViewController it

creates and manages the NSURLSession based on a specific configuration and passes

to class TNAAFClient.

1 − (AFHTTPRequestOperation ∗) POSTAPIRequestForClass : (NSString ∗) className

2 parameters : (NSDict ionary ∗) parameters

3 success : (SuccessBlockType) success

4 f a i l u r e : (Fai lureBlockType) f a i l u r e {

5 AFHTTPRequestOperation ∗opera t ion = n i l ;

6 NSString ∗classNameLow = [className lowercaseSt r ing] ;

7 AFOAuthCredential ∗ c r e d e n t i a l = [AFOAuthCredential

r e t r i e v e C r e d e n t i a l W i t h I d e n t i f i e r :@" TYTCredent ials "] ;

8 NSString ∗access_token = c r e d e n t i a l . accessToken ;

9 opera t ion = [s e l f POST : [NSString s t r ingWi thFormat :@" ap i /%@?access_token=%@" ,

classNameLow , access_token]

10 parameters : parameters

11 success : success

12 f a i l u r e : f a i l u r e] ;

13 r e t u r n opera t ion ;

14 }

Listing 6.6: POST request with the use of AFNetworking framework

AFOAuth2Manager simplifies the process of authenticating against an OAuth 2.0

provider for third party applications [35]. OAuth 2.0 is a fundamental component which

puts the user in control of its data on the server [36]. If the user sends the user

name and password with the traditional model with each request, the credentials have to

be validated each time and also be saved in the application which is a security weakness.

45

6 Implementation and implementation aspects

With OAuth 2.0 the user gets an access token from the server, which is a string and

has a specific scope, expiration time and other access attributes. There are four roles

defined for the OAuth authorization and in the following applied to the TinnitusNavigator

app:

Client

Resource Server

Authorization Server

Resource Owner

(a) Authorization Request

(b) Authorization Grant

(c) Authorization Grant

(d) Access Token

(e) Access Token

(f) Protected Resource

Figure 6.1: Abstract authorization flow [36]

1. Resource owner:

The user of the TinnitusNavigator app, who is able to grant access to a resource.

2. Resource server:

The TrackYourTinnitus server that is hosting the resources, capable of accepting

and responding to protected resource requests using access tokens.

3. Client:

The TinnitusNavigator makes protected resource requests in instruction of the user

and with its authorization.

46

6.3 Used frameworks

4. Authorization server:

The TrackYourTinnitus server is also issuing access tokens to the TinnitusNavigator

app after successfully authenticating the user and obtaining authorization.

As can be seen above the authorization server is the same server as the resource server

in the TinnitusNavigator application.

The image 6.1 illustrates the interaction between the app and the server and includes

the following steps:

(a) The app requests authorization from the user. The authorization request is the login

screen of the app.

(b) The app receives an authorization grant, which is a credential representing the user’s

authorization, expressed using the grant type user password credentials.

(c) The app requests an access token by authenticating with the server and presenting

the authorization grant.

(d) The server authenticates the app by the provided client_id with a client_password

and validates the authorization grant, and if valid, issues an access token.

No user’s credentials are persisted on the device. Only the access token is saved and

needed for the data exchange with the server.

(e) The app requests the protected resource from the server and authenticates by pre-

senting the access token.

(f) The server validates the access token, and if valid, serves the request. Otherwise,

the access token became invalid and the user needs to authenticate again.

47

6 Implementation and implementation aspects

The implementation of the authorization is displayed in listing 6.7.

1 − (IBAct ion) Login {

2 . . .

3 / / GET ACCESS_TOKEN

4 NSURL ∗baseURL = [NSURL URLWithString :@" h t t ps : / / secure . db is . i n f o /ma/ t i n n i t u s k

/ l o g i n "] ;

5 AFOAuth2Manager ∗OAuth2Manager = [[AFOAuth2Manager a l l o c] initWithBaseURL :

baseURL c l i e n t I D :@" 124324324 " secre t :@" 123123 "] ;

6

7 [OAuth2Manager authent icateUsingOAuthWithURLStr ing :@" h t t ps : / / secure . db is . i n f o

/ma/ t i n n i t u s k / oauth / access_token / "

8 username : username password : password scope :@" " success : ^ (

AFOAuthCredential ∗ c r e d e n t i a l) {

9 s e l f . access_token = c r e d e n t i a l . accessToken ;

10 . . .

11 [AFOAuthCredential s t o reCreden t i a l : c r e d e n t i a l w i t h I d e n t i f i e r :@"

TYTCredent ials "] ;

12 . . .

13 }

14 f a i l u r e : ^ (NSError ∗ e r r o r) {

15 s e l f . infoMessage . t e x t = NSLocal izedStr ing (@" Try again " , n i l) ;

16 . . .

17 }] ;

18 username = n i l ;

19 password = n i l ;

20 s e l f . infoMessage . t e x t = infoMessage ;

21 }

Listing 6.7: Requesting the access token procedure

Core Data is a framework from Apple which is integrated with the Core Foundation

framework [37]. Therefore no i is needed for this framework. It works as a database

although it is not a database. Core Data is the model layer of the TinnitusNavigatorn

app in the Model-View-Controller pattern and it manages an object graph. That object

graph is persisted by writing it to disk. The heart of the framework is the Core Data stack

which is a collection of objects. Managed object model, persistent store coordinator and

48

6.3 Used frameworks

managed object contexts are the key objects of the stack. The stack is illustrated in

figure 6.2

Managed Object Context Managed Object Model

Persistent Store Coordinator

Persistent Object Store

Data Model

Figure 6.2: Core Data Stack [37]

The managed object model is the data model and includes information about the models

or entities of the object graph, attributes and the relation to each other. The NSManage-

dObjectModel object knows about the data model by loading one or more data model

files during its initialization.

With the NSPersistentStoreCoordinator object data is saved, loaded and cached to

disk and guarantees the persistent store(s) and the data model match. It communicates

between the persistent store(s) and the managed object context(s). NSManagedObject-

Context object administers a range of model objects, entities of the NSManagedObject

class. Every managed object context is secured by a persistent store coordinator.

Therefore multiple managed object contexts are feasible.

Data Model contains entities, attributes and relationships. Entities can be compared

to a table in a database and attributes are like a column of a table. Relationships are

only loaded if they are needed in the application. A record is represented in Core Data’s

49

6 Implementation and implementation aspects

backing store by instances of NSManagedObject like a row in a database table. Each

NSManagedObject instance is linked with an instance of NSEntityDescription. The

entity description includes information about the managed object, such as the entity of

the managed object, its attributes and relationships. A managed object is also associated

to an instance of NSManagedObjectContext. The managed object context to which a

managed object belongs to, monitors the managed object for changes.

6.4 Challenges and findings

During the implementation a couple of problems occurred. The app uses the same

server as the Android app, which is still under construction as mentioned in section

2.5 and was the major challenge during the implementation. In the API not all needed

functions were defined at the beginning like the one for the therapies or for deleting

any records. Additionally, some received data types are not consistent, for example the

date which is in certain cases a normal date or the date in milliseconds. That was a

pitfall while implementing the events or therapies part and had to be considered as well

handled.

On the server side the function for the registration is faulty. After all data for the

registration is typed in complete, the server should send a activation link to the new user,

but an old and inactive email address is deposited. As a result, no new user can create

an account also can not reset a password due to the same fault. This is only possible,

if someone with the rights on the server activates the account or resets the password

manually

Towards the end of the implementation, to the data model on the server a further attribute

called "remote_id" was added which identifies an object in the server database and

makes is easier to modify or delete objects on server side. This was not a big problem

as the app used an attribute "object_id" with handled the local data management and

only had to be adjusted.

Another challenge was the way the data is stored in the objects. Events or therapies are

saved in an object each. On the other hand the data of an audiometry measurement are

50

6.4 Challenges and findings

distributed in several objects with each containing a time, frequency, value of the left ear

and value of the right ear. That situation was solved fast, because of the use of Core

Data which made fetching the wanted data simple.

On the subject of Core Data, it was one of the findings during the implementation. It

supported to keep everything modular for extension and simplified the communication

with server. Also it saved a lot of time with the data management on the app and

requesting the data from the server.

A great finding as well was the tables with dynamic prototype with custom cells that

are likewise helping the modular feature of the app. Especially for the realisation of the

questionnaires they were a big advantage. With them, the tables can be configured as

needed, the cells can be reused and keep the designing light.

51

7
Requirements Comparison

This chapter describes the requirements that have been defined in chapter 3, compared

to the implementation and functions of the app. Like in the definition of the requirements

this chapter is divided into functional and non-functional requirements as well as a

summary in table 7.1.

7.1 Functional requirements

This section shows the comparison of the functional requirements of the app. It checks

whether all the functional requirements have been met in the current implementation.

FR 1: Sign up - fulfilled

The user is able to register inside the app as the mobile sign up website is opened

in a web view, but an error on the server-side prevents to complete the process.

53

7 Requirements Comparison

FR 2: Log in - fulfilled

By providing a user name and a password the user can log in through the app. For

the authorization is OAuth 2.0 used.

FR 3: Log out - fulfilled

In the More tab the user has the possibility to logout. With the logout the access

token is deleted and the log in view is shown again.

FR 4: Reset password - fulfilled

Like for the sign up there is a web view with the mobile reset password website,

due to the mentioned server-side problem, this function is not working as well.

FR 5: Operate without internet connection - fulfilled

The app checks for the internet connection before every request. If there is none,

the user sees an error message about this and can continue working in the app.

FR 6: Synchronize local data with server data - fulfilled

Local created data and data which could not be send to the server due to missing

internet connection get flagged to be exchanged when the internet connection is

established (again).

FR 7: Display all kinds of questionnaires from server in app - fulfilled

On basis of the answer types from each question every questionnaire can be built.

If there will be a new answer type in the future, the app does not crash instead it

shows that these answer type is not supported yet. That prevents the app from

being unusable.

FR 8: Fill out questionnaires - partially fulfilled

The user can fill out questionnaires and if all questions are answered completely,

they can be saved at the end. Yet, the indicator that signals which questionnaires

are already filled out is missing.

FR 9: Enter/show/delete events - partially fulfilled

In the events tab, the user can add a new one with providing a title, date from the

date picker, type of the item picker and an optional description. To delete an event,

the user has to swipe the one in the overview to the left. For the details view of

54

7.2 Non-functional requirements

an event, the event has to be selected as well from the overview. Displaying a

calender with all entered events is not implemented.

FR 10: Enter/show/delete therapies - fulfilled

Entering, showing and deleting is the same procedure as for the events. Therapies

consist of a name, start date & end date from a date picker, a type of a item picker

and an optional note.

FR 11: Enter/show/delete measurements of audiometry - partially fulfilled

It is the same for entering, showing and deleting measurements of audiometries.

A measurement is made of a date and values of both ears for eight defined

frequencies. What is missing are a diagram for each ear and that the user can add

additional frequencies.

FR 12: Update data automatically and manually - fulfilled

It is monitored if data is changing and in that case an exchange with the server is

activated. Further the user has the option to push a refresh button.

7.2 Non-functional requirements

Next, the requirements comparison with the non-functional requirements are following.

NFR 1: No saving of email or ip addresses - fulfilled

The app only saves an access token after a successful log in. Entered user names,

email addresses or password are only needed for obtaining the access token and

never persisted.

NFR 2: Use colour of TrackYourTinnitus app - fulfilled

The key colour for user interaction is the same blue tone as from the TrackYourTinnitus

app. Also the background colours are the TrackYourTinnitus’ blue and green.

NFR 3: Following iOS design guidelines - fulfilled

Like in the iOS design guidelines the TinnitusNavigator app has a flat navigation,

the menu items are arrange in a tab view for a fast access and one key colour is

used.

55

7 Requirements Comparison

NFR 4: Intuitive user interface - fulfilled

Not only the tab view provides a intuitive and time saving navigation but it is also

known for use from the Apple App Store.

NFR 5: Make app scalable as much as possible - fulfilled

It does not matter how many events, therapies, questionnaires or audiometry

measurements a user has, the app is designed with the table view to list the data

in them.

NFR 6: Release in Apple App Store - not fulfilled

This requirement could not be achieved due to incomplete functionality of the

TinnitusNavigator app and missing methods on the server.

56

7.2 Non-functional requirements

No. Description Fulfilled?
FR 1 Sign up yes

FR 2 Log in yes

FR 3 Log out yes

FR 4 Reset password yes

FR 5 Operate without internet connection yes

FR 6 Synchronize local data with server data yes

FR 7 Display all kinds of questionnaires from server in app yes

FR 8 Fill out questionnaires partially

FR 9 Enter/show/delete events partially

FR 10 Enter/show/delete therapies yes

FR 11 Enter/show/delete measurements of audiometry partially

FR 12 Update data automatically and manually yes

NFR 1 No saving of email addresses or ip addresses yes

NFR 2 Use colour of Track Your Tinnitus project yes

NFR 3 Following iOS design guidelines yes

NFR 4 Intuitive user interface yes

NFR 5 Make app scalable as much as possible yes

NFR 6 Release in Apple App Store no

Table 7.1: Summarizing table with all comparisons

57

8
Outlook

With termination of this thesis, the development of the TinnitusNavigator app is not yet

completed. There are some ideas for the future in addition to the requirements which

can be developed afterwards.

For example, it would be comfortable to be able to search on the tables for certain data

for a faster access. Therefore, a search bar could be added above each table where the

keyword can be typed in and the table only displays the corresponding entries.

Currently registered data can not be changed after they are saved. Thus, the data do

not always need to be deleted and recreated. It would be better to simply change those

entries. The above mentioned search function would be very useful in this case.

Another idea is a user specific sort of therapies and events, that way the app is even

more personalized and the focus stays on what is important to the user. Sort options

could be the name, date or time of the entries.

59

8 Outlook

The TinnitusNavigator app could also remember the user that the end date of a therapy,

if set, is coming closer so the necessary action can be taken. A reminder can also be

used, if the app was not used for a long period, to insert new data and profit from it.

Before those ideas are implemented, the not entirely fulfilled requirements need to be

completed. The calendar view for the events has not yet been implemented. Also the

entered auditory measurements should be visualized in diagrams. For adding a new

result of audiometry, the user needs to be able to add values for custom frequencies.

After all, adding the indicators of the questionnaires which are already completed, will

finalize the app. To ensure the TinnitusNavigator app is working on all target devices, it

should be tested, as it was only checked with the simulator and on an iPhone6 Plus.

Is the TinnitusNavigator app completed and everything is fixed on the server side, like

the register and reset password functions, it is time to release it in the Apple App store

to be available for patients.

60

9
Conclusion

This master’s thesis deals with the concept and implementation of a mobile health record

application for tinnitus patients. The focus was to develop a scalable app which can

keep events, therapies, questionnaires and audiometry measurements online as well as

offline. It is successful implemented with the TinnitusNavigator app.

During forming the user interface a lot of attention was spent on the operation concepts

of the iOS User Guideline to provide a short familiarization period. Due to the tab menu,

the TinnitusNavigator app has a flat navigation. It enables a fast selecting of menu

items and the entries can be deleted with a swipe gesture. New events, therapies and

audiometry measurements can easily be added and are shown in an overview table

with their representing key words. Also questionnaires loaded from the server can be

comfortable filled out inside the app and the answered ones are saved. Despite of the

incomplete server at the beginning of this thesis, the functionality of the TinnitusNavigator

61

9 Conclusion

app is achieved anyway. The dominate colours are blue and green tones, that are the

colours like in the TrackYourTinnitus app to symbolize the affiliation. A new experience

was to work with the Core Data framework that was a great help to realize the model

view controller pattern. It was challenging to figure out how the principle of the exchange

between the TinnitusNavigator app and the server should work and how to integrate

this in the application. As soon as all issues from the previous chapter are solved, the

TinnitusNavigator app will be published in the Apple App Store.

62

Bibliography

[1] Pryss, R., Langer, D., Reichert, M., Hallerbach, A.: Mobile task management for

medical ward rounds - the medo approach. In: 1st Int’l Workshop on Adaptive

Case Management (ACM’12), BPM’12 Workshops. Number 132 in LNBIP, Springer

(2012) 43–54

[2] Pryss, R., Mundbrod, N., Langer, D., Reichert, M.: Supporting medical ward

rounds through mobile task and process management. Information Systems and

e-Business Management 13 (2015) 107–146

[3] Schobel, J., Schickler, M., Pryss, R., Nienhaus, H., Reichert, M.: Using vital sensors

in mobile healthcare business applications: Challenges, examples, lessons learned.

In: 9th Int’l Conference on Web Information Systems and Technologies (WEBIST

2013), Special Session on Business Apps. (2013) 509–518

[4] Jastreboff, P.J.: Phantom auditory perception (tinnitus): mechanisms of generation

and perception. Neuroscience research 8 (1990) 221–254

[5] Lehnhardt, E., Laszig, R.: Praxis der Audiometrie. Georg Thieme Verlag (2009)

[6] Baguley, D., McFerran, D., Hall, D.: Tinnitus. The Lancet 382 (2013) 1600–1607

[7] Hesse, G.: Tinnitus. Georg Thieme Verlag (2008)

[8] Goebel, G., Hiller, W.: Qualitätsmanagement in der therapie des chronischen

tinnitus. Oto-Rhino-Laryngologia Nova 10 (2000) 260–268

[9] Schobel, J., Schickler, M., Pryss, R., Maier, F., Reichert, M.: Towards process-

driven mobile data collection applications: Requirements, challenges, lessons

63

Bibliography

learned. In: 10th Int’l Conference on Web Information Systems and Technologies

(WEBIST 2014), Special Session on Business Apps. (2014)

[10] Crombach, A., Nandi, C., Bambonye, M., Liebrecht, M., Pryss, R., Reichert, M.,

Elbert, T., Weierstall, R.: Screening for mental disorders in post-conflict regions

using computer apps - a feasibility study from burundi. In: XIII Congress of European

Society of Traumatic Stress Studies (ESTSS) Conference. (2013) 70–70

[11] Isele, D., Ruf-Leuschner, M., Pryss, R., Schauer, M., Reichert, M., Schobel, J.,

Schindler, A., Elbert, T.: Detecting adverse childhood experiences with a little help

from tablet computers. In: XIII Congress of European Society of Traumatic Stress

Studies (ESTSS) Conference. (2013) 69–70

[12] Ruf-Leuschner, M., Pryss, R., Liebrecht, M., Schobel, J., Spyridou, A., Reichert,

M., Schauer, M.: Preventing further trauma: Kindex mum screen - assessing

and reacting towards psychosocial risk factors in pregnant women with the help

of smartphone technologies. In: XIII Congress of European Society of Traumatic

Stress Studies (ESTSS) Conference. (2013) 70–70

[13] Schobel, J., Ruf-Leuschner, M., Pryss, R., Reichert, M., Schickler, M., Schauer, M.,

Weierstall, R., Isele, D., Nandi, C., Elbert, T.: A generic questionnaire framework

supporting psychological studies with smartphone technologies. In: XIII Congress

of European Society of Traumatic Stress Studies (ESTSS) Conference. (2013)

69–69

[14] Schobel, J., Pryss, R., Reichert, M.: Using smart mobile devices for collecting

structured data in clinical trials: Results from a large-scale case study. In: 28th

IEEE International Symposium on Computer-Based Medical Systems (CBMS 2015),

IEEE Computer Society Press (2015)

[15] Schobel, J., Schickler, M., Pryss, R., Reichert, M.: Process-driven data collection

with smart mobile devices. In: Web Information Systems and Technologies - 10th

International Conference, WEBIST 2014, Barcelona, Spain, Revised Selected

Papers. LNBIP, Springer (2015)

64

Bibliography

[16] Hiller, W., Goebel, G.: Rapid assessment of tinnitus-related psychological distress

using the mini-tq. Int J Audiol 43 (2004) 600–4

[17] Langguth, B., Goodey, R., Azevedo, A., Bjorne, A., Cacace, A., Crocetti, A., Del Bo,

L., De Ridder, D., Diges, I., Elbert, T., et al.: Consensus for tinnitus patient

assessment and treatment outcome measurement: Tinnitus research initiative

meeting, regensburg, july 2006. Progress in brain research 166 (2007) 525–536

[18] Herrmann, J.: Konzeption und technische realisierung eines mobilen frameworks

zur unterstützung tinnitusgeschädigter patienten. (2014)

[19] Lindinger, M.: Konzeption und implementierung einer mobilen anwendung zur

unterstützung von tinnitus-patienten. (2014)

[20] : Trackyourtinnitus project website. (Online) https://www.

trackyourtinnitus.org/de/home Last checked: 14.09.15.

[21] Pryss, R., Reichert, M., Herrmann, J., Langguth, B., Schlee, W.: Mobile crowd

sensing in clinical and psychological trials ? a case study. In: 28th IEEE Int’l

Symposium on Computer-Based Medical Systems. (2015)

[22] Pryss, R., Reichert, M., Langguth, B., Schlee, W.: Mobile crowd sensing services for

tinnitus assessment, therapy and research. In: IEEE 4th International Conference

on Mobile Services (MS 2015), IEEE Computer Society Press (2015)

[23] Schlee, W., Herrmann, J., Pryss, R., Reichert, M., Langguth, B.: Moment-to-

moment variability of the auditory phantom perception in chronic tinnitus. In: 13th

Int’l Conf on Cochlear Implants and Other Implantable Auditory Technologies. (2014)

[24] Schlee, W., Herrmann, J., Pryss, R., Reichert, M., Langguth, B.: How dynamic is

the continuous tinnitus percept? In: 11th International Tinnitus Seminar. (2014)

[25] : Apple - app store. (Online) https://developer.apple.com/library/

mac/documentation/General/Conceptual/DevPedia-CocoaCore/

Singleton.html Last checked: 14.09.15.

[26] : Apple - defining classes. (Online) https://developer.

apple.com/library/ios/documentation/Cocoa/Conceptual/

65

https://www.trackyourtinnitus.org/de/home
https://www.trackyourtinnitus.org/de/home
https://developer.apple.com/library/mac/documentation/General/Conceptual/DevPedia-CocoaCore/Singleton.html
https://developer.apple.com/library/mac/documentation/General/Conceptual/DevPedia-CocoaCore/Singleton.html
https://developer.apple.com/library/mac/documentation/General/Conceptual/DevPedia-CocoaCore/Singleton.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/DefiningClasses/DefiningClasses.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/DefiningClasses/DefiningClasses.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/DefiningClasses/DefiningClasses.html

Bibliography

ProgrammingWithObjectiveC/DefiningClasses/DefiningClasses.

html Last checked: 14.09.15.

[27] : Apple - adding user defined runtime attributes. (Online) https://developer.

apple.com/library/mac/recipes/xcode_help-interface_builder/

Chapters/AddUserDefinedRuntimeAttributes.html Last checked:

14.09.15.

[28] : Apple - appdelegate reference. (Online) https://developer.

apple.com/library/ios/documentation/UIKit/Reference/

UIApplicationDelegate_Protocol/index.html Last checked: 14.09.15.

[29] : Apple - iphone6. (Online) http://www.apple.com/shop/buy-iphone/

iphone6 Last checked 14.09.15.

[30] : Apple - singleton. (Online) https://developer.apple.com/library/

mac/documentation/General/Conceptual/DevPedia-CocoaCore/

Singleton.html Last checked: 14.09.15.

[31] : Apple - grand central dispatch (gcd) reference. (Online) https:

//developer.apple.com/library/mac/documentation/Performance/

Reference/GCD_libdispatch_Ref/ Last checked: 14.09.15.

[32] : Apple - ios human interface guidelines. (Online) https://developer.

apple.com/library/ios/documentation/UserExperience/

Conceptual/MobileHIG/index.html#//apple_ref/doc/uid/

TP40006556-CH66-SW1 Last checked: 14.09.15.

[33] : Cocoapods. (Online) https://cocoapods.org Last checked: 14.09.15.

[34] : Afnetworking. (Online) http://cocoadocs.org/docsets/AFNetworking/

2.6.0/ Last checked: 14.09.15.

[35] : Afoauth2manager. (Online) http://cocoadocs.org/docsets/

AFOAuth2Manager/2.2.0/ Last checked: 14.09.15.

[36] D. Hardt, E.: Rfc 6749 - the oauth 2.0 authorization framework. Technical report,

Internet Engineering Task Force (IETF) (2012)

66

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/DefiningClasses/DefiningClasses.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/DefiningClasses/DefiningClasses.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/DefiningClasses/DefiningClasses.html
https://developer.apple.com/library/mac/recipes/xcode_help-interface_builder/Chapters/AddUserDefinedRuntimeAttributes.html
https://developer.apple.com/library/mac/recipes/xcode_help-interface_builder/Chapters/AddUserDefinedRuntimeAttributes.html
https://developer.apple.com/library/mac/recipes/xcode_help-interface_builder/Chapters/AddUserDefinedRuntimeAttributes.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html
http://www.apple.com/shop/buy-iphone/iphone6
http://www.apple.com/shop/buy-iphone/iphone6
https://developer.apple.com/library/mac/documentation/General/Conceptual/DevPedia-CocoaCore/Singleton.html
https://developer.apple.com/library/mac/documentation/General/Conceptual/DevPedia-CocoaCore/Singleton.html
https://developer.apple.com/library/mac/documentation/General/Conceptual/DevPedia-CocoaCore/Singleton.html
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/index.html#//apple_ref/doc/uid/TP40006556-CH66-SW1
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/index.html#//apple_ref/doc/uid/TP40006556-CH66-SW1
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/index.html#//apple_ref/doc/uid/TP40006556-CH66-SW1
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/index.html#//apple_ref/doc/uid/TP40006556-CH66-SW1
https://cocoapods.org
http://cocoadocs.org/docsets/AFNetworking/2.6.0/
http://cocoadocs.org/docsets/AFNetworking/2.6.0/
http://cocoadocs.org/docsets/AFOAuth2Manager/2.2.0/
http://cocoadocs.org/docsets/AFOAuth2Manager/2.2.0/

Bibliography

[37] : Apple - core data programming guide. (Online) https://developer.apple.

com/library/mac/documentation/Cocoa/Conceptual/CoreData/

CoreData.pdf Last checked: 14.09.15.

67

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/CoreData.pdf
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/CoreData.pdf
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/CoreData.pdf

List of Figures

2.1 Example for a documentation of a tinnitus and the discomfort threshold [5] 11

4.1 The app flow of the TinnitusNavigator app 20

4.2 Welcome view, register view, reset password view and TrackYourTinnitus

website view . 21

4.3 All associating views if Events tab . 23

4.4 Questionnaires tab with its overview and the beginning of the Tinnitus

Sample Case History Questionnaire . 24

4.5 Therapies tab and its associating views 25

4.6 Audio tab with overview, adding view and details view 26

4.7 More tab with views of all five elements 27

5.1 View controllers and table view controllers 30

5.2 Table view cells diagram . 32

5.3 Data model diagram . 33

5.4 Relation between app and server [29] . 34

6.1 Abstract authorization flow [36] . 46

6.2 Core Data Stack [37] . 49

69

List of Tables

3.1 Summarizing table with all requirements 17

7.1 Summarizing table with all comparisons 57

71

Listings

6.1 Method startExchange . 38

6.2 Method writeJSONResponse:toDiskForClassWithName: 39

6.3 Method createManagedObjectWithClassName 41

6.4 Podfile of the TinnitusNavigator app . 43

6.5 GET request with the use of AFNetworking framework 44

6.6 POST request with the use of AFNetworking framework 45

6.7 Requesting the access token procedure 48

73

Name: Carmen Vazinkhoo Matrikelnummer: 668633

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Carmen Vazinkhoo

	Introduction
	Motivation
	Structure of this thesis

	Fundamentals
	Definition of tinnitus
	Kind of tinnitus
	Questionnaires and severity levels
	Audiometry
	Related work

	Requirements Analysis
	Functional requirements
	Non-functional requirements

	Introducing the app
	General Structure
	Login screen
	Events tab
	Questionnaires tab
	Therapies tab
	Audiometry tab
	More tab

	Server

	Architecture
	General structure
	View Controller & Table View Controller
	Table View Cells
	Data Model

	Relation between app and server

	Implementation and implementation aspects
	Exchange process with data persisting
	Design
	Used frameworks
	Challenges and findings

	Requirements Comparison
	Functional requirements
	Non-functional requirements

	Outlook
	Conclusion

