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Abstract

Tinnitus is a prevalent disease that mainly states a big mystery to all kinds of scientific

faculties and causes enormous costs due to further research. An initial assumption of

the disease was the coherence of Tinnitus with a worse spatial hearing ability of the

patient. With the assistance of mobile devices, it is the aim of this thesis to realize a

mobile web application that allows it to draw conclusions that might support this theory

in an easy available and ambulant way. The application is created as a game that

has its focus on spatial hearing. The thesis depicts the used Application Programming

Interfaces and names possible improvements.
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1 Introduction

According to a research study from 2006, about 60% of Germans of all age were at

least temporarily suffering under Tinnitus or deafness during their lifetimes. There are

also studies concerning only young people: A survey under pupils brought up, that

about 60% of 580 probands already had to deal with Tinnitus. Globally, the number

of people suffering from Tinnitus ranges from 5% to 15% and most frequently can be

determined in the older male population. Altogether, it can be said that Tinnitus is an

omnipresent disease, with which almost everyone comes in touch [42, 25].

60%Germans

15%Global

60%Young Germans

0% 20% 40% 60% 80% 100%

Figure 1.1: Tinnitus statistics: regarding young German study participants, Germans
in general and the global number of diseased persons.

Temporarily or persistently appearing Tinnitus seems to be triggered for example by

acoustic or workplace stress. Tinnitus can be classified into forms that are caused

by other environmental causes or diseases, but there are still forms that do not have

any perceptible reasons. Altogether, Tinnitus is mostly not sufficiently investigated and

states an interdisciplinary challenge for all kinds of scientific faculties [42, 25].

As a result, this thesis should contribute to the investigation of this disease. This should

be realized by the help of latest technical developments, the fact that almost every

person can access a smartphone. Patients should now be able to use these devices

to better draw conclusions about their diseases.
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1.1 Motivation

This Bachelor thesis should realize a web application that gives the opportunity to ex-

amine the Tinnitus disease in a better way. As a coherence between spatial sound

recognition and the Tinnitus disease was assumed in the initial meetings with psychol-

ogist Winfried Schlee, the main focus of this work is the playback of spatialized sound

sources. The cooperation is caused by his brought knowledge in the Tinnitus research

that lead among other things to the Track your Tinnitus project [21, 3, 36]. To reach

the best possible coverage in realizing this application on all popular mobile platforms,

there are three other Bachelor theses realized on the mobile platforms Android, iOS

and Windows Phone. This should result in Tinnitus related studies that could operate

in an ambulant way, without resulting in enormous costs caused by special experimen-

tal designs. The hypothesis of the coherence between Tinnitus and reduced spatial

localization abilities should be supported by these works.

1.2 Aim of this thesis

The objective of this web application is to be a highly accessible possibility which can

imitate spatial audio. Like presented in [41] about so called "audio games", the idea

is to create an application that mainly uses sound for the user-interaction. The screen

should only have a minor role. To make the application interesting for both, children

and older people, it was created like a safari game in which the user is a photographer.

Throughout the game, various animal sounds appear auditory around the user who is

wearing headphones to better recognize the spatial effect. The user rotates with the

device until the animal appears to be right in front. Now the screen is touched to take

a photo of the animal. With the elapsed time that was needed to find the supposed po-

sition of the animal, as well as the difference in the animal’s and the user’s orientation,

it is intended to draw conclusions about the user’s hearing abilities. This should reveal

potential correlations between the Tinnitus disease and the hearing abilities.

As the final mobile application has to deal with limited technical resources (like slow

network connections) but also has advanced technical possibilities (like the sensors

for orientation detection) compared to stationary devices, this thesis shows up weak-

nesses of the used technologies, depicts the realized web application and compares

the requirements with the reached. Despite of these challenges, modern mobile de-
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vices have the necessary equipment to run new types of business applications that

conquer the limited technical resources and make use of the possibilities [35].

1.3 Structure of this thesis

The further thesis is structured as follows: chapter 2 deals with the technical and psy-

chophysiological backgrounds the whole thesis is based on. Chapter 3 names all the

requirements that were set for the final web application. How the application got con-

clusively implemented is named in chapter 4. Some examples of usual interactions

between the user and the application can be found in the subsequent chapter 5. A

comparison of the requirements and the implementation is found in chapter 6. The

survey that was performed is depicted and evaluated in chapter 7. Problems, their

improvements as well as a final statement are given in chapter 8. After this follows

chapter 9 which covers the acknowledgements.

Introduction Fundamental  
Knowledge

Requirements  
Analysis Implementation

Interaction  
Example  
Cases

Comparison Survey
Acknowl-
edgements

Conclusion  
and  
Future Work

Figure 1.2: Structure of the thesis



Introduction 4



2 Fundamental Knowledge

The following chapter deals with the background of the used technologies as well as

the psychophysiological process of spatial hearing. The technical background refers to

the highest possible accessibility of the application on mobile devices. As a result, the

most popular operating systems and browsers are summarized.

2.1 Mobile Web Application

Android (51.59%)

iOS (38.98%)

Java ME (3.84%)

Windows Phone (2.45%)
Symbian (1.93%)
BlackBerry (1.02%)
Others (0.19%)

Figure 2.1: Mobile/ Tablet Operating System Market Share (May 2015) [31]

As the application should be accessible from a wide range of mobile devices, it was

decided to create a solution that is not depending on the operating system of a mobile

device. So, next to the applications for the popular operating systems Android, iOS and

Windows Phone this web application should be realized in the scope of this work. As
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shown in chart 2.1 about 94% of the globally used mobile devices run on the above

mentioned operating systems. This application aims mainly at the remaining 6% of

devices that cannot be supported by the other applications. In this context there arises

the question, if these partly technical obsoleted devices are capable of dealing with the

application and the used Application Programming Interfaces (APIs). In the conclusion

there is given an outlook how also desktop devices could be supported.

27.24%Chrome

22.23%Safari

20.53%Android

11.11%UC Browser

9.76%Opera

3%Nokia

2.25%IEMobile

1.16%BlackBerry

0.94%Netfront

1.78%Other

0% 6% 12% 18% 24% 30%

Figure 2.2: Mobile Browser Stats: Top 9 Mobile Browsers from May 2014 to May 2015
[19]

An analysis of the mobile browser distribution brought up, that most users are using

the mobile Chrome browser, followed by Safari and the Android browser. As shown

in chart 2.2, supporting these three browsers can cover 70% of the market share of

mobile devices. Indeed, it is unclear if all of the devices that run a supported browser

belong to the 6% of devices that cannot run a native application. Nevertheless, a better

support could be reached and even users that are able to run native applications might

prefer the web solution. In the implementation part of this work a further analysis of

the available APIs of these browsers is presented. To reach a look that is optimized for

touch inputs, the JavaScript framework jQuery mobile was used. Buttons and popups

can be used due to this framework. This enables the creation of native-application-like

user-interfaces [13].
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2.2 Sound Localization

This paragraph should depict the process of sound localization against the psychophys-

iological background. The spatial recognition of sound sources located not directly in

front of the listener’s head (at 0◦), depends mostly on the so called Interaural Time

Difference (ITD). ITD is caused by a longer way that the acoustic noise has to take

to one ear, if the sound source is not located directly in front of the listener. As the

pinna and the head act like a filter for specific bandwidths, these bands are cued in

different strengths. Being formed individually, every head has its own Head Related

Transfer Function (HRTF) that describes the alteration of the sonic waves by the head

and pinna. These different bandwidths are called Blauert’s directional bands. The cue

of these bandwidths, that is caused by the HRTF, is called Interaural Level Difference

(ILD). As shown in figure 2.3, the polar angle α is described by the angle between the

horizontal line and the line which connects the sound source and the listener’s head,

the lateral angle β describes the difference in the user’s orientation and the orientation

of the sound effect. The basic distinction within a lateral angle of -90◦ (left) and 90◦

(right) is performed mostly by the ITD. But even in this basic form of sound localization,

the ILD plays an important role. The polar angle α as well as the differentiation if the

sound source is located in front or behind the listener is fully ILD dependent [26, 5, 4].

Figure 2.3: Auditory Angles

A very primitive form of sound localization can be achieved by simply cueing the audio

volume on one ear. Here, the ear that is headed more towards the sound source is the

one with the higher audio volume. The Blauert’s directional bands are not taken into

account. It is simply assumed that all of these bands are cued with the same intensity.

A more advanced version of sound localization can be achieved by using band filters

in order to manipulate Blauert’s bands with different intensities. These ideas will be

discussed in the implementations chapter of the Sound API.
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2.3 Device Position Sensors

Thinking of device position sensors may lead to beliefs of masses attached to a spring

or compass needles that point northwards. But as we are in the 21st century, these

imaginations have nothing in common with reality. The following three paragraphs will

take a closer look at the distinctive device position sensors that almost every modern

smartphone has build-in: accelerometer, gyroscope and magnetometer. These sen-

sors are for example used by the Device Orientation API and are essential for this

application feature.

2.3.1 Accelerometer

x0

(a) ... with no acceleration.

x0 x1

∆x

(b) ... with acceleration.

Figure 2.5: A Basic Spring-Mass System Accelerometer

The Accelerometer measures roughly said the acceleration relative to free fall. This

is realized along the three main axis X, Y and Z. It can be visualized by graphics 2.5.

This basic accelerometer measures the deflection of the spring with the attached mass

by measuring the δx value. If three of these are arranged parallel to the main axis,

every change in orientation can be realized and measured. This makes it possible for

the device to change for example from portrait to landscape mode when rotating the

device.

Obviously there are no solid metal balls attached to springs inside the smartphone.
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These Micro Electro Mechanical Systems (MEMS) are nowadays rather realized with

a seismic mass made of silicon that swings in between the sensor which measures the

deflection [27, 23, 18].

2.3.2 Gyroscope

A gyroscope by contrast is used to measure spins of the device. These cannot be

measured very accurately by the accelerometer. The basic gyroscope works with a

rotating disk that is not depending on any rotation axis. Due to the gyroscopic forces,

the rotating disk is almost in the same state, after the device changed its orientation.

These differences can be measured and so the corresponding orientation change is

computed.

Mobile devices use a variation of this sensor that uses Piezo-elements which are oscil-

lating. A modified device orientation results in measurable changes in the electromag-

netic field that lead to a computation of the new orientation [27, 24].

2.3.3 Magnetometer

After gyroscope and accelerometer were introduced as sensors for determining the di-

rection of movement of a device, the magnetometer is introduced. This can simply be

compared to a compass that points northward.

Technically seen, this sensor measures the strength of the magnetic field of earth and

adapts a coordinate system to it. So, this rather takes the orientation relative to the

ground into account [27].

For computing the correct device orientation like in the Device Orientation API, all of

these three sensors are used to approximate the real orientation and position of a

mobile device.
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3 Requirements Analysis

The following chapter should name and depict the requirements which emerged during

the first phase of the meetings for the applications. They are mainly based upon rec-

ommendations and necessaries which were determined in initial conversations. Marc

Schickler and Rüdiger Pryss of the Institute of Databases and Information Systems at

the University of Ulm and psychologist Winfried Schlee took part together with the ap-

plication team that was formed by students. Schickler, Pryss and Schlee could already

raise their profile in previous Tinnitus-related works like the Track your Tinnitus project

[21, 3]. As Tinnitus disease should be investigated in a better way, these requirements

aim on certain aspects that were observed under Tinnitus patients. As named in the

introduction, spatialized sound playback, device orientation and time measurement are

the most important parameters to investigate.

3.1 Functional Requirements

This paragraph aims at introducing the functional basics the application should have

to investigate Tinnitus in a better way. As the application should be realized as a

game, playing back sounds in a spatial context, detecting orientation-change events,

measuring the needed time and saving the acquired results are the main functional

requirements.

3.1.1 Game

The application should have the structure and main functionality of a game application.

There should be a main menu where basic settings can be made. These settings

should concern the number of appearing sounds and whether there is a background

sound. For the survey there should be a text input field to enter the current user ID and

finally there should be a possibility to set the number of rounds to play. As described in

the introduction, the actual game should mainly work with auditory signals rather than
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visual ones. So, for each round that was set as number of rounds in the main menu,

a defined number of sounds should appear in an auditory way. The user is wearing

headphones to not be disturbed by any background noises and to accurately realize

the auditory changes. Now the user has to rotate the device in a horizontal way in order

to make the spawn points change their spatial positions. The effect should convey the

illusion of real sound sources that stay on the same position, even if the user rotates.

As soon as the users think that they are heading towards the currently searched spawn

point, there should be a possibility to touch the screen in order to save the result. As

a background task, the time between the spawn of the sound and the user-interaction

should be measured. The user should receive a visual feedback in form of a rendered

photo that shows the difference between the user’s heading and the orientation of the

spawn point. There should also be displayed the needed time, as well as a photo of the

corresponding animal. After playing the predefined number of rounds, the user should

be redirected back to the main menu.

3.1.2 Orientation Detection

As most devices have built-in orientation sensors (such as gyroscope, accelerometer

or compass), it should be possible to use these sensors to determine a change in

orientation. So, if the users hold the device in their hands and turn on the spot, this

change in direction should result in events that should have an influence on the other

game features. For example the spatial sound should be affected by these orientation-

change events. It should also be possible to determine the difference between the point

that the user is heading to and the real orientation of the spawn point. This feature

should be powerful in a way that it allows real-time processing, besides be reliable and

allow it to detect changes as accurate as to measure changes correct to one degree.

3.1.3 Spatial Sound

The spatialized sound feature should convey the illusion of randomly distributed sound

sources that seem to stay on the same position, even if the users rotate with their

devices. The perceived sound should make it possible to clearly determine the cur-

rent localization of the spawn point. Together with the currently described orientation-

detection, an orientation-change event should result in real-time changes of the sound

localization. Wearing headphones, the users should be able to adjust their orientation
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by rotating the devices. This should allow them to make orientation adjustments until

they point towards the supposed target direction.

3.1.4 Time Measurement

As it is an important issue for the investigation of Tinnitus to know more about po-

tentially occuring problems in sound localization, time measurement should also be

present. As a result, it may be possible to draw conclusions about a relation between

the disease and a worse spatial sense of hearing. In this context, time measurement

should start every round at the spawn of a new sound effect. The user-interaction

should state the end of every measurement. These values should be correct to one

decimal place.

3.1.5 Saving Results

All the acquired data should be saved reliable in a persistent way. This saved data

should be accessible at every point of time. The data should be stored in a standard-

ized format like the comma-separated values (CSV) format [39].

3.2 Non-Functional Requirements

The non-functional requirements are depicted in this paragraph. As the main focus of

this application lies on the real-time processing of sound, these requirements mostly

concern the performance of different game modules. Other basic requirements of an

application with user-interaction like user-feedback or a non-freezing screen are also

named.

3.2.1 Performance

The performance requirements refer to the main application on the one hand and the

modules related to the sound-localization and orientation-detection on the other hand.

This means in particular that the application should have an interface that reacts within

a decent time without freezing at any point of time. Additionally the sound-localization

and orientation-detection modules have to be able to process the sound in real-time.
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No perceivable delay should be present. Resources should be loadable within an ac-

ceptable time, depending on the current network connection.

3.2.2 Feedback

In general, the users should get a feedback for every action they perform.

As the users are playing a safari game when using this application, they should receive

a visual feedback of the animal they took a photo of. This should happen in form

of a popup that shows the animal, the difference between the target and the user’s

heading and finally the time that was needed to take the photo. At the end of a round,

a conclusion of the acquired data should be shown. As well as the visual feedback,

auditory feedback should be given to the user while rotating.

3.2.3 Accuracy

Next to the time that the user needed to take a photo of the animal, the difference in

direction should be measured in an accurate way. To be more specific: It should be

possible to measure the time correct to 0.1 seconds and the differences in direction

correct to one degree.

3.2.4 Availability

As named in the introduction, the application should be a highly accessible web appli-

cation. Optimally, it should cover all of these devices, which are not natively supported

by the mobile platforms Android, iOS and Windows Phone. So, the most possible ac-

cessibility should be reached. For that purpose, it is necessary that the used APIs are

supported by a wide range of browsers. It is also important, that the application can be

used at every point of time.



4 Implementation

The following chapter should give an overview of the implementation of the final ap-

plication. In addition to that, ideas that came up during the development-process as

well as improvements and their causes will be demonstrated. In the first section the

general coding paradigm, the development pattern and the project architecture are

depicted. The architecture is focusing only the most important components of each

module. This is followed by a section for the server-side as well as the client-side im-

plementation. Both depicts the used frameworks and APIs. The application is available

on http://soda.dbisuulm.de/. For the development-process, an Android phone

(version 5.0.2) with the mobile Chrome browser (version 45) was used.

The browser support of the used APIs is rated as can be seen in table 4.1

Support Levels

Full feature support Only partly supported Not supported

Table 4.1: Support Levels Explanation: color code for the ’Can I Use’-tables for certain
APIs

4.1 General

The next paragraph names the used programming-paradigm and design pattern for the

application structure. These standards were followed as far as possible to create an

easy to use framework that can be maintained and extended in an uncomplicated way.

4.1.1 Coding Standards

The implementation follows the SOLID principles (see table 4.2) and is designed, as

far as possible, with the MVC pattern (see table 4.3). As a result, the JavaScript, that is

responsible for the functionality of the application, is implemented in an object-oriented

http://soda.dbisuulm.de/
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5 SOLID Principles

Single Responsibility Principle A class should have one, and only
one, reason to change.

Open Closed Principle You should be able to extend a
classes behavior, without modify-
ing it.

Liskov Substitution Principle Derived classes must be
substitutable for their base
classes.

Interface Segregation Principle Make fine grained interfaces that
are client specific.

Dependency Inversion Principle Depend on abstractions, not on
concretions.

Table 4.2: The Five SOLID Principles [30]. Robert C. Martin describes how the object-
oriented class design should look like in these five SOLID principles.

manner. Based on an article about writing efficient and fast Javascript [32], it was

always tried to write the client-side Javascript code in the most efficient way.

By using the SOLID principles and the MVC pattern, a maintainable and extendable

application could be created.

MVC Pattern

Model Contains the data and
logic of the application.

View Responsible for user-
interactions and display-
ing the content provided
by the model

Controller Acts as a link between the
Model and the View.

Table 4.3: The MVC Pattern [34]. The MVC pattern describes how the written code can
be improved by making it more editable and extendable.

4.1.2 Main Architecture and the role of JavaScript

As mentioned before, the application is fully client-side and only uses the server to

fetch resources, which can be seen in figure 4.1. Because of the used programming
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Figure 4.1: Main Architecture

language being JavaScript, the browser states the programming environment. The fig-

ure above shows basically, how the APIs, the application and the server interact.

With exceptions, ECMAScript 5 (better known as JavaScript) can be interpreted by

most browsers [10] and thus is the perfect possibility to provide client-side functional-

ity. First of all, one of the advantages of a script language like JavaScript is that the

interpretation of the code happens at run-time. Additional time for compiling is not nec-

essary at all. There is also a dynamic type system and a prototype-based object model

which allows very easy and flexible programming [16, 29].

As the implementation is event-based, there is an object ActionHandler that is a cen-

tralized controller for the performed actions of the application. For that purpose, the

ActionHandler communicates mainly with the Web Storage API [22], the Web Audio

API [2] and the Device Orientation API [6].

In this connection the Web Storage API is responsible for saving and retrieving the

acquired data of the game or of the settings-menu. The Device Orientation API is

incorporated when changes in the devices orientation are detected or the current ori-

entation is needed. The Web Audio API is responsible for the spatialized playback of

the spawning animal sounds.

4.1.3 Code Structure

The following paragraph takes a closer look at the structure of the main application

part. Figure 4.1 only shows how the application interacts with the used APIs. Now, the

modules that use the APIs are observed more closely. The most important objects of

the modules are shown in figure 4.2.
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Figure 4.2: Code Structure

An important module that is mostly essential for the application-like view of the website

is the jQuery mobile module. Especially the popup feature should be observed in the

examples part. Another module that is indispensable for the smooth operation of the

application is the Utils module. All objects that perform background tasks or provide

other information for other objects are located here. The objects that underlie the

modules jQuery mobile, Web Storage, Web Audio and Web Orientation are further

depicted in the implementation parts of the APIs or frameworks they belong to.

4.2 Server-Side Implementation

As it was decided to store all the survey data directly on the device, the server can get

along without a database. How this decision came up is discussed in the implementa-

tion part of the Web Storage API.

As the server was implemented, the only requirements that came up for it were rout-

ing and a possibility to determine if the device is a mobile one or not. The Apache

server can check for mobile devices out of the box by altering the RewriteRules in the

.htaccess file. In the same manner, all incoming requests could be mapped to a single

index.php file where these requests are processed and mapped to the corresponding

resources.

But it was decided to use the Slim micro-framework [28] for the routing purpose, as

well as the mobiledetect framework [17] for the mobile devices detection because it

seemed more flexible and comfortable to use.

The first idea was to make the website also available for users of non-mobile devices.
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Because it could not be realized within the limitations of this work, this feature is not

available now. This is discussed in the conclusion part of this work. As a result, visitors

of the website that use a device that is not detected as a mobile one are redirected to

an error page.

4.3 Client-Side Implementation

It follows a section about the used APIs and frameworks which made the client-side

functionality possible. All of them were mainly chosen according to a device support

as high as possible. So, the application should cover most of the devices that are not

supported by the similar theses for the mobile platforms Android, iOS and Windows

Phone.

4.3.1 jQuery Mobile

Figure 4.3: Screenshot, displaying the main-menu

The ability to provide a real cross-platform application is given with the jQuery mobile

framework. After its browser support [14], there are only few mobile browsers that

are not fully supported. According to that a more precise statistics of mobile browsers

[8] than the one mentioned in the introduction part of this work, less than 1% of the

browsers are not rated grade ’A’ in the jQuery mobile browser support. This means
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they support every feature. A part of these non-grade-’A’-rated browsers are rated

grade ’B’, which means, they do not provide Asynchronous JavaScript and XML re-

quests (Ajax-requests) [20].

Apart of these deprecated devices, it could be assumed that, at least theoretically,

about 99% of the mobile devices could use this framework without deduction. The

framework was mainly used to create a user-interface that looks like a native appli-

cation and not like a website. The framework offers a broad range of user-interface-

components that are designed for the touch-based user-interaction: for instance but-

tons, input fields and more general - pages with sliding transitions. Figure 4.3 displays

for example, how these elements look like in the implemented version. As can be seen

in figure 4.4, popups were used to give the users feedback of achievements they made.

The framework does not only supply a good-looking front end. In fact, interesting fea-

tures such as preloading content were used as well.

Figure 4.4: Screenshot, displaying a popup with the results of the user-interaction

4.3.2 Web Audio API

This paragraph depicts the development-process of one of the main application mod-

ules, namely the sound module [2]. As mentioned earlier, this module is responsible

for the illusion of spatialized sound. Before using the Web Audio API, it was the initial

idea to create the spatial character by using the ILD and ITD, which where mentioned

in the introduction chapter. For this purpose, the stereo sounds were converted to

mono sounds with the audio software Audacity in order to reduce potential spatial im-

pressions. First of all, a version of the application was created that calculated a audio
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volume cue for the ear that is averted from the sound source. It was simply assumed

that each of Blauert’s directional bands is cued with the same intensity.

Figure 4.5: ITD (in ms) as a function of the lateral angle for sinusoids of three frequen-
cies and clicks ([26] on page 24, figure 3)

The values of the ITD provided in figure 4.5 show, that the maximum delay on one

ear may be at about 0.8 ms if the sound source is at an angle of 90◦. These small

values could not be reproduced within this primitive reproduction. The approached

function that should simulate the hyperbolic cueing level of the ear that is aversed from

the sound source can be seen in figure 4.6. A big problem of this approach is that

the user is not able to differ if the sound comes rather from the front (0◦ to 90◦) or

back (90◦ to 180◦) direction. This is because a sound source located at e.g. 30◦ to

the user’s right, technically is the same as a sound located at 150◦. A differentiation

is only possible after the user realized that a rotation of the device has another result

as suspected. Undoubtedly, this problem is not acceptable. Next to this temporarily

insoluble problem, there was also trouble with the performance. The calculation in

real-time was not possible at all with this version of the application. Nevertheless, this

primitive approach imitated the spatial sound in an amazingly good way.

The problems with the approach from above lead to a second idea: The usage of a

HRTF for the individual manipulation of specific bands [26] had to be implemented in a

performant way. These so called Blauert’s directional bands can be manipulated by the

implementation of bandpass filters, assuring variously dampened frequency bands. As

it was mentioned in the introduction chapter, every head is different and so the usage

of averaged values for the HRTF is necessary. Due to the fact that there are various

libraries or APIs that give the possibility to play spatialized audio on the web, it was

decided to not implement it manually, because it would have gone beyond the limits of
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Figure 4.6: Cueing level for the ear aversed from the sound source with the approached
function f(x) = x2/81

this work. Instead, different possibilities as the WebAL library [43] or the Web Audio

API [2] were compared. Although, an analysis of the possible usage of the Web Audio

API (see table 4.4) brought disillusioning results, it was the best choice to make. The

API itself works on a lower level, uses Assembly, C or C++ code, according to the

browser implementation. The API is very performant but it must not be forgotten that

the API still is in the development process and no standard yet.

IOS
Safari

Opera
Mini

Android
Browser

Blackberry
Browser

Opera
Mobile

8.4 8 44 10 30

Chrome
for
Android

Firefox
for
Android

IE
Mobile

UC
Browser
for
Android

44 40 11 9.9

Table 4.4: Can I Use Web Audio API: supported browsers [11]

The Web Audio API has a graph-based schema that works within an AudioContext.

This interface holds a list of AudioNodes and their connections. Each of the nodes

performs a specific processing step with the audio data. The most minimal version can

be implemented by initializing and connecting the SourceNode and the DestinationN-

ode. In every case, the SourceNode receives the audio data by an AudioBuffer object

that should only be used for sounds no longer than one minute. By contrast, the Des-
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tinationNode can be seen as a hardware-connected node that outputs the sound as

the user finally perceives it. For adding additional effects to the sound that is provided

by the SourceNode, the corresponding node simply has to be inserted in the graph

between the Source- and DestinationNodes. A preceding node is effected by the sub-

sequent ones. In this application, especially the PannerNode and GainNode will be

observed [2].

Figure 4.7: Web Audio API Structure

As shown in figure 4.7, there are SourceNodes for every sound file that has to be

loaded. The approach of loading the sound files in an asynchronous way follows the

idea of [40]. Thereafter the Ajax-requests for loading the audio files are performed

within BufferLoader objects. There are two paths that are taken on the path between

SourceNode and DestinationNode: The background sound only needs the functional-

ity to gain the whole audio volume. For that purpose, only a GainNode was created

on that path. As opposed to this, every sound effect needs both the possibility to gain

the whole sound level and to spatialize the sound. As a result, a GainNode and a

PannerNode were created for every sound effect. A PannerNode works with the infor-

mation where the Listener object and the sound source are located in relation to each

other. For that purpose, the position and orientation of the Panner and the Listener

can be configured by simply giving them 3D-coordinates respectively the direction of

the normal. The Listener is the equivalent of the DestinationNode that has to be posi-

tioned on the AudioContext. To achieve the desired results, the sound sources move

on a circular orbit around the static Listener if a rotation-action takes place. The sound

that the user hears has a specific sound level and imitates the spatial character that
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the application wants to achieve.

How this works in action will be shown in the examples chapter.

4.3.3 Device Orientation API

Next to the Web Audio API, the orientation module of this application plays a significant

role for the success. In the beginning it was clear that a compass- or gyroscope-based

solution would only make the application available for mobile devices. Although the

website can be accessed from each browser (that supports the used APIs), the mobile

version is in the foreground. A possible desktop version is discussed in the conclusion.

As shown in table 4.5, the browser support for this API can be considered very good.

The reason why most browsers are only partially supported is the missing ’compass-

needscalibration’ event that is fired, when the compass is in need of calibration.

IOS Sa-
fari

Opera
Mini

Android
Browser

Blackberry
Browser

Opera
Mobile

9 8 44 10 30

Chrome
for
Android

Firefox
for
Android

IE
Mobile

UC
Browser
for
Android

44 40 11 9.9

Table 4.5: Can I Use Device Orientation API: supported browsers [9]

It is recommended by the W3C, that the "common sources of information include gyro-

scopes, compasses and accelerometers" [6]. So due to the API, the high-level JavaS-

cipt does not depend on any raw sensor data at all. Events that are fired by the browser

can be received by adding an EventListener to the current browser window (repre-

sented by the ’window’ object). The EventListener has to watch for ’deviceorientation’

events to be able to get the alpha-, beta- and gamma-properties of this event. An

alpha-event is equal to a rotation around the Z-axis, a beta-event means a rotation

around the X-axis and a gamma-event equals a rotation around the Y-axis. The device

is flipped 90◦ to the left to be in landscape-mode.

In the beginning, it was assumed that the device-orientation can simply be achieved by

getting the alpha-property of the current orientation-event. But as this only works for

a device laying flat on a table when being rotated, it had to be assumed that both the
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Figure 4.8: Coordinate system of the Device Orientation API flipped by 90◦ to the left
to be in landscape-mode

beta- and gamma-values are not equal zero. Taking into account that the device can

also be tilted towards the user or sideways, the following trigonometric formula has to

be used to calculate the heading of the device [6]:

Θ = tan−1(
− cosα · sin γ − sinα · sin β · cos γ

− sinα · sin γ + cosα · sin β · cos γ
) (4.1)

For performance reasons, there is a buffer that was implemented to only process the

event data if it is above a certain threshold. This may be improved in a further way but

is discussed in the improvement paragraph. In the beginning of the implementation-

period, the Painter object was used to draw a dot in north direction of the user in order

to allow easier debugging concerning the device-rotation. This was dismissed later. In

the comparison chapter will be discussed why the compass lost reliability during the

survey.

4.3.4 Web Storage API

As the decision came up how to save the data, the first idea was to create a RESTful

web service [7] on the server in order to save game results. Due to the use of the

Slim framework, the implementation of this would not have been a big deal. But on

the one hand it was decided to create a fully client-side application, on the other hand

the question raised, which underlying conditions had to be met to save the user data

legally. The server-sided implementation of a RESTful interface would also have raised

the need for a web interface to retrieve the acquired data that would have to be saved

in a database. At that point of time, the game settings like the number of sound effects

were saved with the non-persistent SessionStorage object of the WebStorage API [22].



Implementation 26

The saved key-value-pairs usually exist for one session. In other words, as long as the

browser window is opened.

IOS Sa-
fari

Opera
Mini

Android
Browser

Blackberry
Browser

Opera
Mobile

9 8 44 10 30

Chrome
for
Android

Firefox
for
Android

IE
Mobile

UC
Browser
for
Android

44 40 11 9.9

Table 4.6: Can I Use Web Storage API: supported browsers [12]

The API has an excellent mobile browser support, as seen in table 4.6. Next to the

non-persistent SessionStorage, there is a more persistent way to save data in key-

value-pairs within the used API. The LocalStorage object allows to save the data in a

persistent way on the client’s device until the browser’s cache is cleared. In extraor-

dinary cases the Session- as well as the LocalStorage objects can be flushed by the

user agent itself. This depends on the actual implementation and the state of the user’s

device. But this should only happen if the browser exceeds the available space and

requires all resources.

In the Chrome browser (version 45), that was used on the test device (with operating

system Android 5.0.2), the WebStorage API has a fixed space of 5 MB to use. Consid-

ering that a single char needs 8 bits, this space would suffice for about 6200 different

datasets of the three test-cases that were used in the survey: three times one single

sound with background sound, three times two sounds with background sound and

three times only two sounds without background sound. It has to be mentioned, that

the format of the saved datasets can be adapted and for that purpose could be relieved

of many unnecessary chars.



5 Interaction Example Cases

It is intended to show some basic actions which appear very often during the usage

of the application: a spawn event, an orientation-change event and an user-interaction

event. The most important objects that are involved in these actions should be de-

picted. The central character of these actions is the ActionHandler object. As the

application follows the MVC-pattern, this class is the controller that is responsible for

the performed actions. The three examples show the connection that the classes have

against each other.

5.1 Spawn Event

Figure 5.1: Spawn

This action occurs every time a new sound effect should spawn in a spatialized way.

This happens for the first time, when the MusicPlayer finished loading the sound files

asynchronously and is ready for playback. Every time a game round finished and the

user starts a new round, this action takes place again. Due to the ability of stopping

and restarting the background music from the in-game settings drawer, all the sounds

have to be loaded completely when the MusicPlayer is initialized. As soon as these

sound-files are available on the client’s device, the ActionHandler is informed about the

successful transfer. The ActionHandler now checks, how many rounds remain until the

current game is finished.
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In case of the first played round, the ActionHandler now has to instantiate the Timer

objects and needs to create the random spawn parameters for each sound effect. With

the help of this set of parameters, the MusicPlayer creates the corresponding sound

nodes and starts with the playback. Additionally, a message which sound to look for is

displayed. The spawn parameters contain the spatial position of the sound effect and

its index of the sound-buffer- and sound-name-array. As mentioned in the implemen-

tation part of this work, the WebAudio API uses 3D-coordinates to position the listener

and the sound source. Based on the agreement that the sound effects always have the

same elevation, the sounds only move on a circular orbit around the listener.

If it is not the first round, the playback of the current first sound effect as well as the

timer for that sound start. Here it has to be mentioned that in the beginning of the

development-process the idea was to make the sound effects disappear after a ran-

domly generated time. So, certain difficulty levels could be created. This plan was

dismissed at a later point of time.

5.2 Orientation-Change Event

Figure 5.2: Orientation Change

As already mentioned in the implementation part of the Device Orientation API, on

start of the main application page an EventListener is attached to the current browser

window to listen for ’devicemotion’ events. If the device orientation changes around

the X-, Y- or Z-axis, such an event is fired. For performance reasons, a buffer was

implemented to detect only changes above a certain threshold. First of all, the Action-

Handler calculates the difference in direction that was caused by the rotation. As the
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effects move along a circular orbit around the Listener, it has to be calculated where

the new positions of the sound effects are. These new positions are updated in the

spawn parameters of each effect. As the sound sources can also be behind the lis-

tener, the sound effects are gained if they are behind the user’s field of view (> 90◦ or

< -90◦). A simulation by using the orientation of the PannerNode and the AudioContext

listener did not bring the desired effect. The sounds did not seem to have changed

their positions. As a last step, the MusicPlayer uses the reduction percentage and new

PannerNode positions to update these sound nodes. The reduced audio volume ef-

fects the GainNode that is connected intermediate between the SourceNode and the

PannerNode (Figure 4.7). The new coordinates on the circular orbit around the listener

effect the position of the PannerNode. In doing so, the illusion of a spatially positioned

sound effect, that stays on the same position even if the user rotates with the device,

is created.

5.3 User-Interaction Event

Figure 5.3: User Interaction

This action presupposes the playback of one or more sound effects. This implicates

that the spawn event already took place and as a result the timer is running and the

OrientationListener listens for rotation events that effect the position of the PannerN-

odes. The users rotate with their devices, until the sound source they are searching

for appears to be right in front of them. The playback of the sound stops as well as the

Timer object does. The jQuery mobile popup-widget is used to display the result of the

currently searched sound effect. Depending on the number of remaining rounds, that

are determined by a RoundCounter object, a decision, which actions take place after

the popup is closed, is made. As a first step, it is checked if this sound effect is the last

within this round. If it is, an overview-popup of this round is shown. Closing this new

popup results in starting a new round or in finishing the game by redirecting to another
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page. A RoundCounter object determines, if there are remaining rounds to play. If the

sound was not the last within this round, another spawn action takes place. The popup

that shows the result for each sound effect displays the difference angle between the

orientation of the device and the orientation the sound source really has. As the Timer

object stops when this action happens, it is also possible to determine and display the

time that elapsed from the spawn to the user-interaction. The majority of the popup

surface is next to texts containing the results filled with a rendered image of the virtual

photo the user took. Based on the following formula, the angle that a standard photo

covers horizontally was determined [1].

αvisual = 2 · tan−1(
d

2 · f
), (5.1)

where d is the diagonal and f is the focal distance. According to the focal distance of

the used lens, a visual angle of between 62◦ and 40◦ can be reached (when using a

standard lens with a focal distance of 36-60 mm).

By simplifying the formula with the assumption that d = f , the following visual angle is

reached:

αvisual_simplified = 2 · tan−1(
1

2
) ≈ 53◦ (5.2)

So the image consists of a background image and the image of the corresponding

animal that belongs to the sound effect in the foreground. The rendered animal image

is only visible within the determined angle of 53◦ and according to the difference angle

shifted to the left or right. The shifting level depends on the absolute value of the

difference angle. The overview popup that is visible at the end of each round contains

a list of the differences and the needed time for each sound effect that was searched.



6 Comparison

The next paragraphs compare the list of requirements that was established in the re-

quirements chapter with the finally implemented features. According to the require-

ments, this chapter is segmented into functional and non-functional requirements and

their corresponding subsections. The rating is described in table 6.1.

Ratings (from requirements not met at all to fully met)

[–] [-] [o] [+] [++]

Table 6.1: Rating Explanation

6.1 Functional Requirements

All the functional requirements could be implemented. The way they meet the require-

ments will be shown in the following paragraphs.

6.1.1 Game

Requirement Comparison Rating

Game-like application
with main-menu and
mostly auditory signals
for the user. Furthermore,
time measurement and
orientation-differences
should be determined.
There must be visual
feedback as well as a
round-based game play.

Requirements fully
met.

[++]

Table 6.2: Game Requirements Comparison

It was the requirement to create an application with the structure and the functionality of

a game. More precisely, there must be a main-menu where to alter the game-settings,
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the game should mostly work with auditory signals and give the users a visual feedback

with the reached result if they interact. Thereby, the needed time and the differences

between user-orientation and sound effect should be displayed. The game should work

in a round-based manner.

The requirements could be fully met.

6.1.2 Orientation Detection

Requirement Comparison Rating

Detect real-time device-
orientation change events
in an accurate and reli-
able way.

The API is not reli-
able at all points of
time. In all other
aspects, fully imple-
mented.

[+]

Table 6.3: Orientation Detection Requirements Comparison

The web application must be able to use the built-in sensors to determine changes in

orientation. This should work in real-time and be as accurate as to measure changes

correct to one degree. This should be done in a reliable way.

The requirements could almost be met. Through the used Device Orientation API,

a real-time orientation change detection could be realized. The final implementation

works really accurate and allows it to control other application modules. In the survey,

it was found, that the application did not work as expected after a bigger count of played

rounds. As a reboot of the browser fixed the problem for some time, it was assumed

that the problems occured either because of issues within the hardware or because of

issues with this or the Web Audio API.

It could not be determined, where the problems came from. Unfortunately, the ’com-

passneedscalibration’ event is not supported by all browsers. So it could also not be

determined if the lack of calibration caused the issues.

6.1.3 Spatial Sound

It must be able for the user to clearly determine the position of each spatialized sound

effect. These must be randomly distributed around the user. A change in direction,

which the users perform with their devices, must result in the illusion of each sound

source still being at the same position. This module must be able to receive controls of
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Requirement Comparison Rating

Spatialize sound effects
and be able to receive
and process changes in
orientation.

API is not stan-
dardized yet and
as a result not reli-
able. Reached all
requirements.

[+]

Table 6.4: Spatial Sound Requirements Comparison

the orientation detection module, for instance.

In the survey after a big number of played rounds, a orientation change did not result in

a changing auditory position of the effect sound. Like mentioned in the Device Orien-

tation comparison, it could not be determined where the problem came from. Besides,

the requirements were fully met.

6.1.4 Time Measurement

Requirement Comparison Rating

Measure time from spawn
to user-interaction correct
to one decimal place.

Reached all require-
ments.

[++]

Table 6.5: Time Measurement Requirements Comparison

The time measurement starts with the spawn and ends at the point of time, the user

interacts. The measured time is correct to 0.1 s.

6.1.5 Saving Results

Requirement Comparison Rating

Save data reliable and
persistent in the CSV for-
mat so that it is available
at every point of time.

Possible loss of data
if the browser flushes
the storage.

[o]

Table 6.6: Saving Results Requirements Comparison

The requirements for the storage of the acquired data were, that the data is saved in

a standardized format in a reliable and persistent way. An access must be possible at

every point of time.
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The data is saved in a quite persistent and reliable way on the user’s device. Data loss

should only happen in extraordinary cases, when the browser flushes the cache. Else

it is accessible until it is manually deleted by the user. As the storage format can be

adapted, it can fit every format requirements.

6.2 Non-Functional Requirements

In the broadest sense, the non-functional requirements could be met. The application

allows a normal usage with loading times within an acceptable range of time, feedback

on user-interactions and real-time changes in the behaviour of the application. The

single aspects from the requirements chapter are picked up and compared with the

implementation.

6.2.1 Performance

Requirement Comparison Rating

Fast-loading and real-
time reacting application
with modules.

Loading times could
partly be improved.
Despite, fully met re-
quirements.

[+]

Table 6.7: Performance Requirements Comparison

The whole application as well as the modules must react within an acceptable range

of time. Feedback must be given in real-time and the screen is not allowed to freeze at

any point of time. In particular the sound-localization and orientation-detection should

work in real-time without any perceivable delay.

The loading times could be improved, all other requirements are totally met. Improve-

ment possibilities are named in the conclusion chapter.

6.2.2 Feedback

The users must receive a visual or auditory feedback after each interaction. Especially

the visual feedback during the game must contain an image of the animal that was

searched for. Additionally, the needed time as well as the difference in orientation

between the user’s heading and the heading of the sound effect must be visible. An
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Requirement Comparison Rating

Visual and auditory feed-
back for user-interactions.

Reached all require-
ments.

[++]

Table 6.8: Feedback Requirements Comparison

overview of the results must be visible at the end of each round. Rotations must result

in changes of the sound.

All requirements could be met.

6.2.3 Accuracy

Requirement Comparison Rating

Measure time correct to
one decimal place and
differences in direction
correct to one degree.

Reached all require-
ments.

[++]

Table 6.9: Accuracy Requirements Comparison

The time measurement from the spawn of an effect until the user-interaction must be

accurate to one decimal place. Orientation changes must be measured correct to one

degree.

All requirements could be met.

6.2.4 Availability

Requirement Comparison Rating

Be available at every point
of time for a maximum of
devices.

Browser support for
some used APIs are
not that good. The
server is available if
mobile device is con-
nected to the inter-
net.

[o]

Table 6.10: Availability Requirements Comparison

The application must be useable at every point of time if the device has a connection

to the internet. The support of devices must be as high as possible.
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Some of the used APIs support a wide range of browsers, whereas others are in a

development state and are not standardized yet. The server is available all the time if

the mobile device is connected to the internet.



7 Survey

Within the borders of this thesis, it was also possible to carry out a survey. This survey

should depict how the web application, which was realized within this thesis, as well

as the applications for the other mobile platforms behave in a survey situation. Addi-

tionally, it should be possible to see differences between the single platforms or normal

and Tinnitus-diseased participants.

For this purpose, a participant should use all the applications, one after the other. As

this is not a clinical study in general that should only draw conclusions about the Tinni-

tus disease, it was no requirement for the survey participants to be Tinnitus-diseased.

Despite, two of the participants were suffering from Tinnitus and one other suffered

from a smaller auditory system related disease (multiple ear infections).

7.1 Survey Design

The initial development processes of the different mobile applications brought up that

the used interfaces for the orientation detection were highly sensitive for disturbance

sources. The test applications for the orientation detection revealed enormous dis-

turbances even if the device lies flat on the table. To reduce these electromagnetic

disturbances to a minimum, the survey was performed in the open air. To reduce back-

ground noises and improve the spatial hearing, it was necessary wear headphones

during the survey.

The actual survey was divided into a questionnaire that had to be completed by the

participant and the use of the application on each mobile platform for a defined num-

ber of rounds. The mobile platforms were the Android, the iOS, the WindowsPhone

and this web platform. The rounds each participant had to perform were structured as

follows:
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1. 3 × one effect sound without background sound

2. 3 × two effect sounds without background sound

3. 3 × two effect sounds with background sound

The starting platform should be determined randomly to have a more expressive re-

sult and to prevent the survey from habituation effects. The survey questionnaire con-

tained questions about the age, gender and if the person already suffered from auditory

system related diseases. The technical background of the participants was asked by

questions to video game and smartphone experiences. It was also asked, which kind

of smartphone the respective person was used to.

7.2 Survey Realization

Due to the recently named disturbance problems, the survey was performed on the

rooftop of the building of the University of Ulm. All participants completed the anonymized

questionnaire on which they received an identification number that was used for the fur-

ther evaluation. Afterwards, every participant started with the usage of the first random

application. During the survey, all users were standing upright, holding the devices in

their hands and wearing headphones. After the settings for each round were made and

the sound volume was adjusted, each user had to locate the current effect sound and

tap on the screen to save the result. After the nineth round, the user changed to the

next platform until each was used.

7.3 Survey Result

It was not directly the intention to draw conclusions about the Tinnitus disease, but

rather monitoring the behavior of the applications during a survey and seeing potential

differences between the platforms and under the users. So, the results rather concern

the angular differences and needed times to find the effect sounds within each user

regarding the different platforms.
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16.7%Women

83.3%Men

0% 20% 40% 60% 80% 100%

Figure 7.1: The percentage of women and men that took part in the survey.

7.3.1 Paper Questionnaires

Evaluations of the questionnaire brought up that the majority of the participants were

male (see chart 7.1) with an average age of 27.8 years. The female average was

at 25.5 years. All participants had to rate their experiences concerning the usage of

mobile devices and their experiences in video games.

3.5Women

4.4Men

4.2Overall

0 1 2 3 4 5

Figure 7.2: The average experience ratings concerning the mobile devices.

As can be seen in charts 7.2 and 7.3, the experiences on mobile devices were slightly

higher under men (about 1 skill point). Additionally, men were more used to play video

games than women; the average skill level was 1.5 points higher. If men are more affine

to technical devices or if psychological aspects influenced the questionnaire, can not

be determined here.

2.3Women

3.8Men

3.5Overall

0 1 2 3 4 5

Figure 7.3: The average experience ratings concerning video games.
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7.3.2 Platform Evaluations

For statistical analysis SPSS Statistics 21 (IBM) was used to create the following graph-

ics 7.4 and 7.5. The time and the absolute angular difference between the single plat-

forms were compared with ANOVA (Analysis of Variance). ANOVA compares the av-

erage values of the dependent variable (here: time, absolute angular difference) within

the defined groups (here: platforms). For all statistical tests p ≤ 0.05 was considered

significant. To identify whether there are differences in time and angle in recogniz-

ing the target IDs (ID 0 for the bluejay, ID 1 for the frog), a t-test was performed. In

graphics 7.4 (a), the average data points of all participants on each single platform are

plotted. Graphics 7.5 shows the average values of every single user for every platform,

whereas in graphics 7.4 (b) the two effect sounds are compared.
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Figure 7.4: The average data points for ...

Due to the ANOVA, it could be observed that there is a significant difference in time

(p ≤ 0.001) and absolute angular difference (p ≤ 0.001) between the single platforms.

To identify these correlations between the time and the absolute angular difference,

scatter plots were generated for each platform in graphics 7.5 and 7.4 (a). In the first

graphics, each single dot represents a pair value (time on x-axis, absolute angular

difference on y-axis) of one individual questionnaire participant whereas in graphics

7.4 (a), each dot represents the average of all participants within a single platform.
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Figure 7.5: The average user results for the platforms Android, iOS, Web and Windows
Phone applications.

Two of the 24 participants of this survey were suffering from Tinnitus. They were spe-

cially marked by red dots in the plots that represent all of the participants. Imaginary,

each plot can be divided into four quadrants. Data points that are located in the lower

left square represent persons that localize the sound origin rapidly and only with lit-

tle angular difference. By contrast, pairs of values that are located in the right upper

square represent persons that could not localize the sound origin this fastly and cor-

rectly. It can be observed that in the Android and iOS applications most data points

concentrate in the lower left part whereas they are more spread in the Web and Win-

dows applications. One could expect that persons suffering from Tinnitus rather might

be located in the right upper square compared to healthy individuals. Interestingly, this

was not the case for the Android, iOS and Windows applications. In the Web applica-

tion they are slightly shifted.

Further analysis of the sound effects (see figure 7.4 (b)) showed that the time difference
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in localizing the bluejay and frog effect sounds is significant (p = 0.01). By contrast, the

angular difference is not significant (p = 0.536).

7.3.3 Conclusion

The results of the survey brought up that the native iOS and Android applications made

it easy for the survey participants to locate the sound effects. The majority of the partic-

ipants is located in the lower left quadrant of the plot. This means that the sound effects

were rapidly located with only a small angular difference. In the iOS platform, the aver-

age values of the Tinnitus-diseased participants even belonged to the best in the whole

data set. In the Android platform, these participants are located in the average of all

participants. Slightly worse were the results concerning the Windows application. The

worst results were made with the web application. Here, the angular difference was

extremely high. These bad results are mainly caused by the not standardized APIs

that were used to develop this application. During the survey, the browser had to be

restarted for several times because the rotation of the user did not result in changes of

the localization of the sound effect.

The two APIs Web Audio and Orientation Detection have to be improved to use this

application for further surveys.



8 Conclusion and Future Work

In the scope of this thesis, an application was created that allows it to measure the re-

sults from the corresponding safari game. These data sets allow it to draw conclusions

about the spatial hearing abilities of the user and might support further research in this

direction.

The application could fulfill the requirements of being an accessible web application in

the broadest sense. As the development of websites is always a big challenge due to

the big variety of user-agents and devices, this application can be considered a suc-

cess. Problems that appeared during the development process as well as possible

improvements will be given in the following paragraphs.

The development of this application lead past the usage of different APIs that emerged

after self-produced features did not lead to success. As an example, the Web Audio

API can be named. After the self-produced cueing of different audio bands did not

bring the desired results, this API was used, although its work-in-progress character.

This development could give an insight on how modern browsers give the opportunity

to run complex applications - only client-side, the server only supplying the resources.

A survey could test the abilities and show weaknesses of this, as well as the other

mobile applications. It brought up, that the web solution can not directly be compared

to the native implementations but is an alternative that can be used.

8.1 Problems

This section deals with the problems that appeared during the development-process.

Most of them came up because of compatibility problems or non-standardized features.

8.1.1 Work-in-progress Character

As can be seen in the implementation part of this work, some of the used APIs like

the Web Audio API are not standardized yet and as a result are not supported by all
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browsers. Others are not fully implemented in each browser like the Device Orientation

API. This work-in-progress character produced problems because one cannot rely on

the used APIs.

8.1.2 Storage

The biggest problem within the application storage feature was to determine whether

the data should be saved on the user’s device or on a server. Because it was not clear

how to save the data legally on the server, the Web Storage API was used to save the

results of the game rounds directly on the user’s device. The problem that appeared

through this implementation is possible data loss. This only happens in extraordinary

cases, if the user agent runs out of resources and so finally flushes the cache data

where the Web Storage API data is saved in. As the data is saved client-side, the user

can delete it by either deleting the cache or through an option in the in-game menu.

8.1.3 Device Orientation API

As this feature is not standardized yet, there is no uniform implementation of the API.

As mentioned before, the W3C recommends fetching the orientation data from gyro-

scopes, compasses and accelerometers [6]. As the ’compassneedscalibration’ event

is not fully implemented in all browsers, issues in the orientation change detection may

appear. During the survey, this problem appeared due to the big number of played

rounds. A rotation did not result in firing rotation events and so the spatial sound posi-

tion did not change for the user. The browser had to be closed and reopened again to

fix this.

8.1.4 Web Audio API

The application ran on the mobile Chrome browser (version 45) on an Android device

(version 5.0.2) during the development-process of this work. This worked very perfor-

mant and almost without any bigger problems in the smaller scale. During the survey,

problems with orientation changes appeared. A orientation did not result in a reposi-

tioning of the spatialized sound source. Additionally, the browser support for this API is

only given within the modern browser implementations.
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8.2 Future Work

After handling the problems within this work, the possible future work will be named.

This contains improvements for concrete modules and features or for the application in

general. Next to improvements of the already realized application features, it would be

more comfortable for the evaluation process if the paper questionnaire that was used

in the survey was also an implemented feature. A recommendable approach would be

the process-driven data collection that was realized in this paper [38].

The use of external sensors (like an oximeter) would allow it to measure other vital

parameters while the application is used. Within the limitations of this paper [37], a

framework was realized that allows it to address these external sensors. It has to be

mentioned that compatibility problems may occur due to non-existing interfaces but this

will be discussed no further.

8.2.1 Storage

To improve this module, it might be possible to create a REST-interface [7] that saves

the user data legally on a server. In addition, a web interface would be required to

manage the saved data and to retrieve them.

A further implementation might also improve our knowledge about Tinnitus. If this

application was distributed to a large group of patients, a server connection would be

very helpful. Due to the mass of people that used the application periodically, a large

amount of data would be gathered - regarding for example the different life situations

or points of time. In other words: Mobile Crowd Sensing would be realized [33].

8.2.2 Device Orientation API

This concerns the OrientationListener that takes the ’orientationchange’ events from

the window object. The smoothing that is realized through the soften() method calcu-

lates whether the change in orientation is above a certain threshold. At the moment,

rotations around the Z- and Y-axis from figure 4.8 can not be handled without using

the formula from [6]. Maybe there is a more performant way to only detect orientation

changes around the X-axis.

In the actual implementation, the application is only available to users with mobile de-

vices. This is mostly caused by the used Device Orientation API. A device without
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built-in orientation sensors cannot use the API. A possible solution for this problem

might be another GUI for users without a mobile device and users whose device does

not support the API. These players would see buttons or be able to use the direction

keys on their keyboard to change their direction.

8.2.3 Web Audio API

The support of the used API might only be improved by using another library. The API

only supports the latest mobile browsers. This might seem to be a big disadvantage,

but there is the question whether devices that use unsupported browsers have the re-

quired hardware resources to run this advanced application. This may lead to other

performance issues.

The current spatial audio feature might be improved in some points. The first imple-

mentation required an in-game menu to change settings like the number of sounds, to

toggle the background sound or to alter the sound-level. As these setting options re-

mained in the in-game menu but the main-menu appeared, it is questionable whether

these settings are still necessary. These settings resulted in always loading all sound

files. The application might be improved by deleting these settings and thus be only

loading the required sound files per game.

Another point is the audio volume gain that is also available in the in-game settings.

As all devices give the opportunity to alter the audio volume from a flip-switch, it is the

questionable whether the GainNodes from 4.7 are necessary. This may save technical

resources and improve the performance. To reach this, there has to be found a way

to cue the audio volume if it is behind the user. Maybe this can be done by increasing

the distance between Listener and SourceNode if the sound is behind the user. The

approach of simply altering the orientations of the Panner- and ListenerNodes did not

work properly.

8.2.4 Preloading

The jQuery mobile framework provides the functionality to preload HTML content from

another subpage of the same domain. Scripts and styles are excluded.

The framework manages the single pages that are located in one or more HTML files

within a PageContainer object [15]. This allows preloading of the HTML content of other

pages but excludes scripts and styles due to processing problems that may appear.
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Loading times might be improved by loading the sound files already in the main-menu.

These files caused additional loading times of about one second in a normal DSL wifi

network - in slower networks the loading time is accordingly longer. As this is not

a practicable solution, maybe a loading screen should be implemented that is visible

while loading and afterwards starts a countdown before the game is started.

8.3 Final Statement

The application gives the opportunity to improve our understanding of Tinnitus. Next

to the native solutions for the mobile platforms Android, iOS and WindowsPhone, this

web application states a good alternative. Although the browser support is not as high

as desired, at least older browsers like Opera Mini and BlackBerry browser could be

fully supported [11, 9, 12]. As a result, this application could contribute to the ambulant

treatment of Tinnitus and helps to understand this disease in a better way.

In which way the assumptions of a coherence between Tinnitus and worse hearing

abilities could be supported will be further discussed in the survey.
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