
Universität Ulm | 89069 Ulm | Germany Faculty of Engineering and

Computer Science

Institute of Databases and

Information Systems

Implementation and evaluation of a mobile
Android application for auditory stimulation
of chronic tinnitus patients
Master’s thesis at Ulm University

Submitted by:

Jan-Dominik Blome

jan-dominik.blome@uni-ulm.de

Reviewers:

Prof. Dr. Manfred Reichert

Dr. Winfried Schlee

Supervisor:

Marc Schickler

2015

Version October 21, 2015

c© 2015 Jan-Dominik Blome

Abstract

Tinnitus is a common symptom where the affected person perceives a sound without

an external source. To support the development of new therapies a tinnitus tracking

platform, including mobile applications, was developed at Ulm University in cooperation

with the tinnitus research initiative. In the future, these mobile applications should

be extended to include a simple game that requires the user to concentrate on an

auditory stimulation, distracting them from their tinnitus. This is accomplished by using

localization of an audio source as a game mechanic. The measurement of the offset

between the position the user guessed for an audio source and its actual location could

also serves as an additional data point. In this thesis an application for the Android

operating system is designed that implements such a game and serves as a proof of

concept. Since the Android API does not include the capability for positional audio, a

separate audio API based on OpenAL was created as part of this thesis. This API as

well as the framework developed to implement the game are designed to be reusable

for future, similar projects. The game concept was also evaluated in a study using the

demonstration application.

iii

Contents

1 Introduction 1

1.1 Goal of this Thesis . 1

1.2 Tinnitus . 2

1.3 Structure of this Thesis . 3

2 Requirements Specification 5

2.1 Functional . 5

2.2 Non-Functional . 8

3 Audio Fundamentals 9

3.1 Digital Audio . 9

3.2 Binaural Audio . 13

3.3 Head-Related Transfer Functions . 16

4 Architecture 19

4.1 Project Structure . 19

4.2 Build System . 22

4.2.1 Gradle . 22

4.2.2 CMake . 24

4.3 External Dependencies . 25

4.3.1 Java Dependencies . 26

4.3.2 Native Dependencies . 27

4.4 Documentation . 28

5 Framework 29

5.1 Utility Libraries . 29

5.2 Audio API . 31

5.2.1 Basic Classes . 32

v

Contents

5.2.2 Positional Audio API . 33

5.2.3 Abstract Helper Classes . 36

5.2.4 Audio Filters . 39

5.2.5 Audio Utilities . 42

5.3 Sensor API . 44

5.3.1 Rotation Sensor API . 45

5.3.2 Sensor Data Filters . 47

5.3.3 Available Sensor Implementations 49

6 OpenAL 53

6.1 The OpenAL Library . 53

6.2 Build Process . 54

6.3 Configuration . 55

6.4 Audio API Implementation . 58

7 Game Engine 61

7.1 Architecture . 61

7.1.1 Structure . 62

7.1.2 Components . 63

7.2 Engine . 64

7.2.1 Components API . 65

7.2.2 Game Data Classes . 70

7.2.3 Utility Classes . 73

7.3 Graphics . 75

7.3.1 Rendering Process . 77

7.3.2 Panorama Renderer . 82

7.3.3 Entity Renderer . 82

7.4 Audio . 84

7.5 Input . 87

8 Application 91

8.1 Common Application Classes . 91

8.2 Demo Application . 93

9 Evaluation 97

9.1 Participants and Methods . 97

9.2 Results . 98

vi

Contents

9.3 Comparison . 101

10 Conclusion 105

10.1 Results . 105

10.2 Requirements Comparison . 106

10.3 Future Work . 108

List of Figures 109

List of Source Codes 111

List of Tables 113

List of Acronyms 115

Bibliography 117

vii

1
Introduction

Tinnitus, that is the perception of a sound without an external source, is a common

problem for a significant number of people [8]. In 2013 a mobile and web application to

track individual tinnitus perception was developed at Ulm University in cooperation with

the tinnitus research initiative (TRI) [44]. This application, called Track Your Tinnitus,

allows people affected by a tinnitus to regularly record the severeness of their tinnitus

perception. Collecting this data over the course of several weeks can reveal regular

patterns that in turn might give clues to the cause of the increased severity. Besides

allowing the user to track their own tinnitus, the application also enables researchers to

access the anonymized data to further research the tinnitus symptom [44].

1.1 Goal of this Thesis

In this thesis, the foundation necessary to extend the Android version of the Track Your

Tinnitus application with a game that requires the users to concentrate on a specific

1

1 Introduction

sound played through their headphones will be developed. Using binaural audio the

source of the sound can be placed at a virtual location around the listener. The goal of

the game is to locate this sound source. To further challenge the user the difficulty of this

task may be increased by adding additional sound sources or ambient audio. The data

gathered from a game session could then for example show if it is possible to distract

the user from their tinnitus using this method. By measuring the offset between the

actual position of the sound source and the position guessed by the user the game could

also show if their ability for audio localization is affected. In this thesis the framework

necessary to create such a game for the Android operating system will be developed

and demonstrated in an application. This application will also be evaluated using a

study. This framework can then serve as a basis to integrate the described or similar

games into the Android version of the tinnitus tracking application, enabling it to be used

for further data collection.

1.2 Tinnitus

Over the course of their lives many, if not most, people will experience a tinnitus [8]. The

term tinnitus (from the Latin word tinnire, to ring) describes the perception of a sound

without an external sources. In some cases the sound has a physical source inside

the body of the affected person, it is then called an objective tinnitus. But in case of

the more prevalent type of tinnitus, the subjective tinnitus, there is no physical source

of the noise [49]. This perceived sound can vary for each affected person, and it is

typically describes as a pure tone, a hissing or a roaring noise [67]. It can be localized

to the left or right ear, or it can appear to originate from the middle of the head [51].

Most of the time the tinnitus was triggered by an external source, like loud music or

medication, and vanishes by itself over a time span of between a few seconds and up to

a few days [8]. This type of tinnitus is called a transient tinnitus. If the tinnitus lasts more

than six months it is called a chronic tinnitus. The chronic type of tinnitus is experienced

by between 5 and 15 percent of the general population [67].

It is easy to imagine that such a condition can impact the quality of life of affected

individuals. Effects can include sleep disturbances, difficulties to concentrate and

psychiatric distress. About 1 to 3% of the general population report to be affected by a

tinnitus strong enough to have these or other effects reduce their quality of life [67].

2

1.3 Structure of this Thesis

1.3 Structure of this Thesis

After the introduction, this thesis will detail the design, implementation and evaluation

of the developed application. As first part of this process, the requirements for the

project, both functional and non-functional, are specified in chapter 2. Since the auditory

stimulation using positional audio is a core concept of the application, the basics of

such a system are explained in chapter 3. Then, in chapter 4, the overall structure of

the project is explained. Besides an overview of the included modules, this chapter also

details the build process and the external dependencies of the application.

The project is split into different modules to improve reusability. The modules making

up the basic framework of the application are described in chapter 5. This includes a

positional audio application programming interface (API) developed for this project. To

implement this API, the OpenAL library is used. How this library was integrated into the

application is described in chapter 6. Since the application is designed like a game, a

basic game engine was implemented as part of the project. It is described in chapter 7.

Finally, the actual application is detailed in chapter 8.

During development, a study was carried out to compare the implementation described

in this thesis with similar applications developed for other systems. The results of this

study are explained in chapter 9. Finally, in chapter 10, the final state of the project is

described and compared to the requirements. The chapter concludes with an outlook

over possible future improvements.

3

2
Requirements Specification

This chapter defines the requirements for the project. Both functional and non-functional

requirements are specified. A comparison between these requirements and the imple-

mented functionality of the application is done in section 10.2.

2.1 Functional

This section defines the functional requirements for both the application as well as

the underlying framework. These requirements describe the expected behavior of the

individual systems.

FR1 Android application for auditory stimulation

The main goal of this work is to create an application that lets the user

react to auditory stimulations in the form of positional audio. The application

should be designed as a game in order to motivate the user.

5

2 Requirements Specification

FR2 Positional audio sources

The application uses positional audio as a game mechanic. Since posi-

tional audio support is not part of the Android API this feature has to be

implemented as part of this project. The used audio framework should also

support multiple simultaneous playing audio sources. This allows for the

design of more challenging scenarios.

FR3 Ambient audio sources

In addition to the positional audio sources described in FR2, the audio

framework should allow the use of at least one ambient audio track. Unlike

the other audio sources this track is unaffected by the actions of the player.

This feature could also be used to make the game more challenging.

FR4 Per-source audio volume control

Both positional and ambient audio sources should have individual audio

volume control. This allows fine-tuning the challenge presented to the player

when creating a game scenario.

FR5 Audio file format

The application should support at least one commonly used compressed

audio file format. This reduces the space required by the used audio files

and shrinks the overall size of the application package ditributed to the users.

FR6 Audio framework

The capabilities implemented in FR2 to FR5 should be packaged as an audio

framework that is usable independently of the actual application. This would

allow it to be used in the future to implement different types of applications

for Android based on positional audio.

FR7 Rotation detection using sensors

The application should be able to use the rotation sensors available on many

Android devices to control the orientation of the player in the game. This

could make the game more intuitively controllable by allowing the user to

point the device into the direction they are facing and having the game react

accordingly.

6

2.1 Functional

FR8 Alternative input using the touch screen

The application should support an alternative input scheme that does not

depend on the rotation sensors of the device. This can be useful when either

the device does not posses the required sensors or the current environment

of thr user does not allow for free rotation. In that case the application should

still be controllable by using the touchscreen of the device.

FR9 Graphics for the game

The application should be able to visualize the game world. This provides

a way of showing the results directly to the user after they locked in their

guess for the direction from which the target sound originated.

FR10 Picture representation of the target

When visualizing the game world, the application should be able to display

a static picture representing the target at the correct location relative to the

user. The picture should be changeable, so it can be chosen to match the

sound that is played from that target.

FR11 Panorama picture as backdrop

The application should be able to draw a panorama picture as backdrop for

the game world visualization. This panorama should be cropped to only

show the parts visible from the current orientation of the player.

FR12 Reusable game engine

The systems described in FR7 to FR11 should be packaged as a game

engine that can be used independently of the application. This facilitates

the extension of the application with different game modes and allows these

systems to be reused in another application.

FR13 Display results to the user

After the user has located a target, the difference between the guessed and

the real position, as an angle in degrees, should be displayed to the user. In

addition, the shown results should include the time it took the user before

committing to a guess.

7

2 Requirements Specification

2.2 Non-Functional

This section defines the non-functional requirements, also for both the application and

the underlying framework. These requirements describe characteristics of the individual

systems not covered by the functional requirements.

NFR1 Backwards compatibility

The application and by extension the used libraries should work and be

usable on all Android versions down to 2.3.3, or API level 10. This allows

the application to be used on about 99.7% of all Android devices that access

the Google Play Store [20].

NFR2 Small application package

Because mobile phones have limited storage capacity and application

might have to be downloaded using mobile data connections the final

package of the application should be kept small. It also should include

all necessary assets to allow the application to work without requiring a

network connection.

NFR3 Code documentation

All public classes and methods should have documentation in the form of

JavaDoc comments. This increases their reusability by providing documen-

tation directly inside the code.

NFR4 Extensibility and reusability

The application and its libraries should be designed with extensibility and

reusability in mind. The goal of this requirement is to simplify future changes

to the game and to allow the underlying systems to be reused to create

a different application. This requirement is a more general version of the

functional requirements FR6 and FR12.

NFR5 Good audio localization

The goal of the game designed in this thesis is for the user to localize an

audio source by its sound only. For this to be possible the quality of the

positional audio framework created as part of this application (see FR6)

should be maximized.

8

3
Audio Fundamentals

The design of the application includes the blind localization of a virtual audio source

as a key concept. To allow the user to determine the position of a target only by its

sound, a positional audio system has to be used. In this section some concepts of

digital audio as well as techniques that may be used to generate positional audio will be

described.

3.1 Digital Audio

Sound, as perceived by humans, is a pressure wave in a medium, usually air. The

frequencies contained in the wave determine the tonal content. Using a microphone

such a sound wave can be converted to an electrical signal. This signal is still analog, to

transform it into a digital format it needs to be sampled. The sampling happens by taking

measurements of the signal amplitude at regular time intervals. This sampling rate

has to be at least double the maximum frequency that should be recorded [4]. Since

9

3 Audio Fundamentals

[00101010]QuantizeSample

(a) Encoder

Quantize-1 Interpolate[00101010]

(b) Decoder

Figure 3.1: A PCM encoder and decoder [4]

humans typically can hear tones up to 20 kHz, a typical sampling rate is 44.1 kHz, used

for example on audio CDs. The amplitude of each sample then has to be quantized to

a binary value. Common binary representations are 16 bit signed integers, for example

used on audio CDs, or 32 bit floating point numbers. This type of encoding is called

pulse code modulation (PCM) [4]. Both a PCM encoder and a decoder are shown

in Figure 3.1. If the audio signal contains multiple channels they are usually stored

interleaved. This makes streaming of the data easier since all output channels can be

fed from the same signal. By reversing the encoding process using a PCM decoder the

data can again be transformed into an analog electrical signal that can be played back

using a speaker.

It is also possible to transform a digital audio signal. This is done by a filter using digital

signal processing (DSP). Since the audio data consists of discrete samples, such a

filter is applied for each sample individually. A generic signal filter is shown in Figure 3.2,

where xn is the input sample and yn is the transformed output sample [2]. While the

shown filter has exactly one input and one output signal this is not a requirement for

a DSP system. A system could, for example, have several input signals and combine

them to one output signal or create several output signals for a single input signal. They

can also be combined by connecting the output of one system to the input of another.

Each DSP system is constructed from some common operations that are performed on

a signal. In the following the operations used by filters and systems described in this

thesis will be introduced. The first is the multiplication operator, shown in Figure 3.3. It

xn yn

Figure 3.2: A generic digital signal filter

10

3.1 Digital Audio

multiplies all incoming samples with a value. This scales the input signal by the supplied

factor, called g in the figure. For audio signals this is the equivalent of a volume control

knob [2].

xn g yn

Figure 3.3: Multiplication of a signal with g

The summation operator, shown in Figure 3.4, combines two signals by adding their

respective samples. For this to work the signals must use the same sampling rate.

A gain factor is often applied to one or both input signals to prevent clipping of the

produced signals [2].

xn1 yn+

xn2

Figure 3.4: Summation of two signals

The final building block is the delay operator, shown in Figure 3.5. This operator buffers

any incoming samples, up to a set delay value (k in the figure). Once the next sample is

received, the oldest sample in the buffer is removed, becoming the new output value.

Then the newly received sample is added instead. The buffer works on the first in, first

out (FIFO) principle. If no samples are available yet, the output of this operator is the

value 0 [2].

xn ynZ-k

Figure 3.5: Delay of a signal by k samples

A common pattern used in DSP filters is called convolution. It can be thought of as an

operation working on two arrays, resulting in a new output array. This can be written

as y(n) = x(n) ∗ h(n) where x(n) is the input array, h(n) is the filter array and y(n) is

the output array. Each element of the output array is calculated by summing the last

yn =
N−1∑
i=0

xn−i · hi (3.1)

11

3 Audio Fundamentals

321 14

321

7 17 15 11

++

h(n)

x(n)

y(n)

Figure 3.6: Calculation of yn as the result of the convolution of x(n) and h(n)

N elements of the input array x(n), each weighted by a corresponding factor stored in

h(n), where N is the length of the h(n) array. This calculation for a single element of the

output array is also shown in Equation 3.1 and visualized in Figure 3.6. The resulting

output array y(n) has the length of x(n) plus the length of h(n) minus 1. [2]

The convolution operation can be realized as a DSP system, as shown in Figure 3.7.

This system is called a finite impulse response (FIR) filter. It is finite because the length

of the output y(n) can be determined from the length of x(n) and h(n) [2]. The filter

uses delay operations to keep the previous values in a buffer. They are then available

to calculate the next output value. Each new output shifts all values down to the next

delay operation. The output of these delay operations is multiplied with the associated

value of h(n) and finally added with all the other values to generate the result.

h1

Z-1

h2

+

Z-1

+

hN

xn yn

Figure 3.7: A finite impulse response filter

It is also possible to use a past output value of a DSP system as input by storing it using

a delay operation. This is called a feedback loop. Using multiple delay operations allows

using output values from further into the past. Unlike with the FIR filter, the length of

12

3.2 Binaural Audio

xn yn

Z-1

+

Z-1

h2

hN

+

Figure 3.8: An infinite impulse response filter

the output of such a filter can not be determined from the length of the input. For that

reason this type of filter is called infinite impulse response (IIR) filter. An example for

such a filter is shown in Figure 3.8.

3.2 Binaural Audio

Humans possess the ability of sound localization, that is determining the position of

an object based solely on the sound it is emitting. This is possible because the brain

can analyze the differences between the audio heard by both ears. In this thesis, the

term 3D audio refers to a system that can use this mechanism to create the illusion of a

virtual, sound-emitting object for a user. The terms positional or binaural audio are also

used synonymously. Such a system has to be able to direct different audio signals to

each ear of the listener, otherwise no spatial localization is possible. This can easily be

accomplished by using stereo headphones.

If both the consumed content as well as the position of the user are static, a binaural

recording can be performed. This is done using a head, either a mannequin or the real

head of the recording technician, that is equipped with a microphone in each ear [52].

The result of such a recording is limited in that the recorded content is static and the

listener can only experience the acoustics of the position the recording was done from.

For interactive applications this is often not an option. They need a system that can

generate the appropriate audio signals for both ears based on a virtual world.

13

3 Audio Fundamentals

distance

azimuth

elevation

sound
source

listener

Figure 3.9: The coordinate system used for positional audio

To describe the position of a virtual audio source in the world a coordinate system has

to be defined. In this thesis I will use a spherical coordinate system centered on the

listener (see Figure 3.9). The position of each virtual sound source is then defined by

three value: distance, azimuth and elevation.

Both the azimuth and the elevation angle describe the angular perception of the sound

source. The azimuth is the angle from the front of the listener to the sound source

around an axis perpendicular to the ground. When expressed in degrees, 0◦ is directly

in front of the listener. The object can also be rotated up to 180◦ to either side, with

180◦ meaning the source is directly behind the listener. Since the ears are positioned at

almost opposite sides of the head, human hearing is very perceptive to the azimuth of a

sound source [2]. The elevation is limited to 90◦, where 90◦ upwards is directly above

the listener and 90◦ downwards is directly below the listener. While the placement of

the two ears on a horizontal plane helps with the localization of sound sources around

the listener, up- or downward positions are more difficult to discern [2].

There are two important cues used by the human brain to localize a sound source. The

first is the interaural intensity difference (IID). A sound source to one side of the listener

will be heard louder on the ear directed towards the source than on the other one. The

difference in intensity is dependent on the frequency of the sound, it gets smaller with

lower frequencies. The reason for this is that sound waves with a longer wavelength will

diffract more around obstructions, like the head of the listener. Below approximately

1 kHz IID is no longer an effective localization cue [2]. Using volume differences to

provide 3D audio cues is a very common technique used by computer games. Even

14

3.2 Binaural Audio

90°

0°

-90°

180°

Target

Target Percept

Percept
front-to-back

back-to-front

(a) Aimuth confusion

90°

0°

-90°

180°

Target

Target Percept

Percept

down
to
up

up
to
down

(b) Elevation confusion

Figure 3.10: Localization errors caused by ambiguity [52]

some of the very first 3D games, like Wolfenstein 3D by id Software, already used

stereo-panning to simulate positional audio [72].

The second important cue is the interaural time difference (ITD). Any sound source

located to either side of the listener’s head will have a different distance to each ear.

This means the ear located on the far side of the head as seen by the audio source

is farther away and will receive the audio signal later than the other ear. This time

difference between the two signals can be interpreted by the brain to help localize the

source. It is most effective bellow a frequency of about 1.6 kHz, after that the wavelength

of the sound waves is smaller than the width of a typical human head [2].

Even when using both IID and ITD to localize a sound source there are still some

possible ambiguities. They can result in a localization error, with a common error being

a front and back reversal (see Figure 3.10a). These types of error typically result

in a source in the frontal hemisphere being judged by the listener to be in the rear

hemisphere, although the opposite is also possible [52]. The same type of error can

happen with the elevation of an audio source, where up and down can be misjudged by

the listener (see Figure 3.10b). These types of errors have their origin in the so called

cone of confusion. Assuming a spherical head with symmetrically located ears canals,

there are several possible source locations for any IID or ITD cue. An example of this is

shown in Figure 3.11. The four marked points all produce identical IID and ITD cues,

possibly leading to reversals on both the front-back and on the up-down axis. Besides

these marked points every point on the circle also produces the same cues. They,

15

3 Audio Fundamentals

A

B
X

Y

Figure 3.11: The cone of confusion [2]

together with the listener’s head, form the cone of confusion. In reality, the pinnae, or

outer ears, provide additional cues that are not present when using a simplified model

without the outer ears. These cues can also be interpreted by the human brain, possibly

resolving an otherwise existing ambiguity [2].

There are more effects that might be desirable when creating a virtual acoustic envi-

ronment. One of them is reverberation, caused by the reflection of the sound waves

from obstacles in the environment [2]. Another is the doppler shift which is a change

in perceived pitch in the sound emitted by moving objects [2]. Since neither of these

effects will be used by the application discussed in this thesis they will not be explained

in detail.

3.3 Head-Related Transfer Functions

To improve the ability of a listener to localize an audio source the effect of the pinnae on

the audio signal can be simulated. The necessary transformation is done by applying

two convolution operations to the audio signal, one for each ear (see Figure 3.13). The

function applied for each ear is called a head-related transfer function (HRTF). The

actual factors used by the HRTF (named gn in the figure) depend on the relative position

of the listener to the audio source. These factors can be derived from a measured

impulse response. Such a measurement can be done using a dummy head that includes

modeled pinnae. This approach was for example used by the Massachusetts institute

of technology (MIT) Media Lab using a Knowles Electronics mannequin for acoustics

research (KEMAR) dummy head (see Figure 3.12) [10]. Another way to obtain HRTF

16

3.3 Head-Related Transfer Functions

Figure 3.12: A KEMAR dummy head with pinnae [61]

measurements is by using a real human being equipped with microphones in their ear

canals. This approach was for example used to create the Listen HRTF database, which

contains the measured head related impulse responses of 51 test subjects [46].

Since the geometry of the outer ear varies from person to person, so does the corre-

sponding HRTF. Ideally each user of a binaural audio system could have their own

HRTF matched for their individual pinnae. But since the measurements necessary to

generate an individual HRTF are complicated and require special equipment, this is

not easily realized. Wenzel et al. have shown that using non-individualized HRTFs can

still allow for a satisfactory ability to localize individual audio sources [71]. When using

a non-individual HRTF, it should be based on data measured using a good localizer,

meaning a person that can determine the position of real audio sources with a high

accuracy [71].

When using the DSP system shown in Figure 3.13, the head-related impulse responses

(HRIRs) applied with the FIR filters must use the same sampling rate as the audio

data it is applied to. Otherwise either the audio data or the HRIR has to be resampled.

Since the HRTF data is based on measurements, it is only available for the points

(defined by azimuth and elevation) where a measurement was taken. If the relative

position of an audio source to the listener’s head does not exactly match one of these

points, the HRTF data has to be interpolated by using the available measurement points

surrounding the actual source position.

Since the user can change the orientation of the virtual listener, the latency of the audio

system is also important. Experiments with head-tracking audio systems suggest that

a latency of 60 milliseconds or below is undetectable to almost all listeners when no

17

3 Audio Fundamentals

h1

Z-1

h2

+

Z-1

+

hN

yR,n

h1 +

Z-1

h2 +

Z-1

hN

yL,n

xn

hR

hL

Figure 3.13: Convolution using a separate FIR filter for each ear [2]

low-latency reference tone is present [7]. Since this application requires the user to

wear headphones that would block out such an external reference tone this lower bound

is applicable to the game described in this thesis.

18

4
Architecture

In this chapter the overall architecture of the project is described. This includes an

explanation of the different modules as well as the build system used to compile the

project. The external depencendies used by the application are also described.

4.1 Project Structure

The project is split into several modules, as shown in Figure 4.1. Modules shown in blue

include native code. Also shown are the dependencies of the modules to each other. A

dashed arrow shows a dependency for the tests only.

The Java code is also organized into different namespaces. A module usually contains

all classes of one namespace. Exceptions are the audio modules, which all add to the

same namespace and the engine module which uses sub-namespaces to further subdi-

vide the code. The different namespaces used in this project and their dependencies

are shown in Figure 4.2

19

4 Architecture

Native Utilities

Vorbis Loader OpenAL

Utilities

Game Engine

Audio API Sensor API

Application Common

Demo Application

Figure 4.1: Project module dependencies

The utilities module contains static utility classes and functions. Currently it only con-

tains functions to convert and normalize angles in degrees or radians. It is implemented

in the utilities namespace and described in detail in section 5.1.

The native utilities module is completely implemented in C++ without any Java code.

It contains classes and functions that facilitate the implementation of code using the

Java native interface (JNI). Like the Java utility module it is described in section 5.1.

The sensor API module defines a simple interface to access a rotation sensor on an

Android device. It also includes adapters for some of the potentially available Android

sensors to this interface. Both the interface and its implementations are defined in the

sensors namespace. The module is described in detail in section 5.3.

The audio API module defines an implementation-independent API to access a posi-

tional audio system. It also contains an audio data class, a WAVE file reader, audio

filter implementations and support classes to help with an implementation of the API.

Everything in the module is contained in the audio namespace. A detailed description

can be found in section 5.2.

20

4.1 Project Structure

utilities

audio sensorsengine

engine.audio engine.graphics engine.input

app.common

app.demo

Figure 4.2: Java package dependencies

The Vorbis loader module extends the audio API by adding an Ogg-Vorbis file reader

to the audio namespace. Since the file reader is based on a native library, the

module uses JNI and the native utilities module. The file reader class is described in

subsection 5.2.5 together with the other audio API utilities.

The OpenAL module provides an implementation of the audio API. Since OpenAL is

used as a native library this module also uses JNI and the native utilities module. In

addition, the included tests depend on the Java utilities module. The implementation

is also located in the audio namespace. An explanaiton of the functionality provided

by this module as well as more details about the OpenAL library can be found in

chapter 6.

The game engine module defines the framework used in the application. It is imple-

mented in the engine namespace, which contains three sub-namespaces: The audio

21

4 Architecture

part of the game engine is implemented in the engine.audio namespace and de-

pends on the audio API. The graphics part uses the engine.graphics namespace.

Finally, the input part is contained in the engine.input namespace. It makes use of

the sensor API. More information about all parts of the game engine can be found in

chapter 7.

The demo application module contains the actual Android application that is used

to demonstrate the game concept. It is implemented in the app.demo namespace.

Classes that might be of interest to other applications based on the game engine or the

other framework modules are split into the common module, using the app.common

namespace. The application is described in chapter 8.

4.2 Build System

The project uses two different build systems. For the Java part of the project, Google’s

Android build system, which is implemented as a plugin for Gradle, is used. For the

native code CMake is used. Both build systems will be described in this section.

4.2.1 Gradle

The Java part of the project is build using Gradle. Gradle is a build automation tool that

uses the Java-based Groovy programming language to configure the build process [40].

It is extensible using plugins. The Android build tools used for this project are one

example of such a plugin. They are included in the Android software development

kit (SDK) [15]. The Android Studio integrated development environment (IDE) can

directly import and build a Gradle project using this plugin. When not using Android

Studio, the build process can be started using the Gradle wrapper included with the

source code. This is a batch or shell script, that can automatically download Gradle and

run the build process [41]. This way no local Gradle installation is necessary.

The project is divided into the root project and several sub-projects. The configuration

for the root project is done in the build.gradle file located in the root directory

of the source tree. Here the used version of the Android build tools as well as the

repository from which it is downloaded are specified. The repository used by the sub-

projects to download any required Maven packages is also defined. In addition, the

22

4.2 Build System

ExtraPropertiesExtension plugin is used to define variables that are available to

all sub-projects (see Listing 4.1). Here the target Java, Android SDK and build tools

versions are set. In addition, a list of all supported application binary interfaces (ABIs)

and their priorities are defined. Also in the root directory is the settings.gradle file.

In this file all sub-projects are added to the main Gradle project.

1 minSdkVersion = 10
2 targetSdkVersion = 23
3 compileSdkVersion = 23
4 buildToolsVersion = ’23.0.1’
5 sourceCompatibility = JavaVersion.VERSION_1_7
6 targetCompatibility = JavaVersion.VERSION_1_7
7 supportedAbis = [’armeabi-v7a’, ’arm64-v8a’, ’x86’, ’x86_64’]
8 abiVersionCodes = \
9 [’armeabi-v7a’: 1, ’arm64-v8a’: 2, ’x86’: 3, ’x86_64’: 4]

Listing 4.1: Gradle project properties

Each sub-project also has its own build.gradle file, located in the root directory

of the module. In this file the necessary plugins for the sub-project are applied. The

idea plugin is used to name the module for display purposes in Android Studio. The

sub-projects also define their dependencies in this file. Both external as well as local

dependencies are supported. Not shown in Figure 4.1 are the libraries sub-projects.

These Gradle projects contain no Java code and are only used to build and manage the

external native libraries. This is done using a custom plugin, which will be described in

the next chapter. Any Java dependencies are managed and if necessary downloaded

by the Gradle build system.

Each sub-project either uses the Android application or the Android library plugin. For

either of these plugins, the build options are set by using the global extra properties set

in the root project. For the application project some additional configuration is required:

For versioning purposes both a version number as well as a name are set. The version

number is used to handle automatic upgrades, the version name is only used when

displaying the version to the user [39].

To reduce the overall file size of the final Android application package (APK), ABI splitting

can be enabled. If this option is set, instead of packing all versions of the native libraries

into the same APK file, a different file is generated for each supported CPU architecture.

Only the compiled libraries for this ABI are then packed into the associated APK file.

Since this project is based on several native libraries, using this option reduces the final

23

4 Architecture

size of the application file. Using the ABI splitting option requires some additional work

when versioning. If a device supports more than one ABI it is important that the APK

using the preferred ABI has a higher version number. Otherwise it could for example

happen that an ARMv8 based device would use its backwards compatibility to run an

ARMv7 version of the application instead of using the optimized ARMv8 version. To

prevent this the million digit of the version number is set to a different code for each

supported API. More modern or advanced ABIs get higher numbers so devices that

support them use the optimal version for their hardware. For example, 64-bit ABIs get

higher numbers then their 32-bit counterparts. The ABI also gets appended to the

version name in a readable format.

The Android build system includes ProGuard, a program that shrinks, optimizes and

obfuscates Java code [50]. For this project, ProGuard is used to further reduce the

size of the final APK file. This is done by removing unused code from the external Java

libraries used by this project. ProGuard is only enabled for release builds. Configuration

is done in the proguard.pro file located in the root of the application sub-project.

Besides the necessary configuration for external libraries this file also disables the

obfuscation feature. This is done to help with debugging of the release version since

any stack trace generated by the obfuscated version would itself also be obfuscated [33].

If enabled, the obfuscation of the stack trace can be reversed using the retrace script

included in the Android SDK.

4.2.2 CMake

To compile native C or C++ code for Android applications, the Android native devel-

opment kit (NDK) is used [13]. It includes the necessary compilers and libraries to

build native code for the different Android platforms. Different versions of both the GNU

compiler collection (GCC) as well as the Clang compiler are included. Native Android

libraries can interact with Java code by using JNI. The Android NDK includes a version

of GNU Make that can be used to build native libraries and applications.

While Android Studio allows the compilation of NDK projects, this capability is depre-

cated. In May 2015 Google announced that a new system for building NDK projects

will be released with version 1.3 of Android Studio [42]. This new version will include

syntax highlighting for C and C++ code as well as debugging support for native code.

During the development of the application described in this thesis this new build system

24

4.3 External Dependencies

was not yet available. While a preview build of Android Studio 1.3 was released in July

2015 [14], including support for the new NDK features, the necessary Gradle plugin was

still experimental. Since the API and by extension the domain-specific language (DSL)

of this experimental plugin are likely to change [22], this new system to build native

libraries is not yet used in this project.

Instead the cross-platform build system CMake is used [48]. This software allows the us-

age of platform and compiler independent configuration files to control the build process.

These configuration files are processed by the CMake application and translated into

makefiles for a chosen target compiler and platform. Cross-compilation is supported

and the same configuration file can be used to generate makefiles for different target

architectures. To build native libraries for the Android platform and its many ABIs, the

android-cmake build scripts are used. These scripts were originally developed to

compile OpenCV for Android by allowing the creation of makefiles that use the Android

NDK. Using CMake as native build system also allows for an easy integration of other

project that include CMake configration files. Once such project is the OpenAL library

that is used by this project.

To facilitate the parallel development of the Java and the native code portions of this

project, the CMake build process is integrated into the Gradle build. This is done

by defining a plugin that adds new build tasks to the Gradle build process. The first

task runs when a build of the Android application is started and generates a CMake

configuration file. The contents of this file are defined in the Gradle project configuration

file. It also includes directives to build all submodules that apply the CMake plugin. This

CMake configuration is then used by another task to generate a makefile that builds

all the native libraries required by the application. This task is defined and run several

times, once for each supported ABI. Finally, tasks are added that run these makefiles

and compile the actual libraries. These tasks are also defined for each ABI separately.

All tasks defined by the CMake build plugin are added as dependencies to the regular

build process. This makes sure that all native libraries are up-to-date when the Android

application is build using Gradle.

4.3 External Dependencies

In this section the external or third-party libraries used by the application described in

this theses are introduced. They are split between Java and native dependencies.

25

4 Architecture

4.3.1 Java Dependencies

The project uses several third-party Java libraries. One of them is an implementation

of the Java annotations introduced in Java specification request (JSR) 305 [57]. While

these annotations don’t have any effect by themselves, a compatible IDE can use

the additional information provided by using the annotations to find bugs that are not

detected by the Java compiler itself. Since it is based on IntelliJ IDEA, the Android

Studio IDE [16] can for example use the @Nonnull and the @Nullable annotations

to detect incorrect handling of object references that might be null. While the Android

support annotations also include nullness annotations [27], I decided to use the JSR 305

annotations because they provide a way of setting a default for method parameters.

This allows the annotations to be omitted in a lot of cases without loosing their benefits,

reducing the clutter in the method signatures. Such a default value can be specified

per Java package. The JSR 305 annotations are used in every Java module of this

project.

The game engine module also depends on the Guava Java library developed by

Google [25]. This library is mainly used for the collections it adds, including immutable

implementations of many basic Java collection classes. The cache implementation

as well as the precondition checking utilities defined by Guava are also utilized by the

game engine. It also uses the JSR 305 annotations, extending the nullness checking

done by the IDE to calls into the library. Since dependencies are transitive, any module

depending on the game engine also has access to the full Guava library. To reduce the

file size of the final APK, ProGuard is used to remove unused features of the library

during the build process.

To facilitate the implementation of backwards compatible Android applications, Google

provides several support libraries [38]. The application modules depend on both the v4

“support” as well as the v7 “appcompat” library. The support library can be used with

Android API level 4 and above. It includes a backwards-compatible implementation of

fragments. These are encapsulations of layouts that can be reused in different activities

and were added in API level 11. Since the application targets API level 10, usage of the

support library is required to make use of fragments. The appcompat library depends

itself on the support library. It can be used with Android API level 7 and above. It

provides activity classes that use the action bar user interface [11]. These activities are

compatible with fragments designed using the support library. The appcompat library

was also updated to enable the creation of user interfaces using the material design

26

4.3 External Dependencies

theme introduced with Android 5.0 [29]. This allows designing an application using the

modern material theme while still maintaining backwards-compatibility.

4.3.2 Native Dependencies

The external Java libraries are automatically downloaded by Gradle, using Maven

package repositories. For the native libraries, this is not an option. Instead, their source

code is included in the project in the libraries folder. The code is included as git

subtrees [60]. This way the native dependencies are available with the project and no

additional download of any libraries is required to build the application.

The first external dependency is the android-cmake project. It provides scripts that

facilitate using CMake to build native Android libraries. This is done by configuring

the toolchain used by CMake to point to the compilers and libraries included with the

Android NDK for the chosen ABI. Compilation for different ABIs is done by calling

CMake multiple times. Since this project uses CMake exclusively to build any native

code, this script is essential to building any modules using native code.

To reduce the size of the audio files used by the application, they are encode using the

Vorbis audio codec and stored using the Ogg container format [74]. Since Ogg-Vorbis

files use a lossy compression, the resulting files can be much smaller than files storing

the raw PCM data, like for example WAVE files. Unlike the popular MPEG-2 audio

layer III (MP3) codec, Vorbis is patent and royalty free [75]. To decode the Ogg-Vorbis

audio files, the libvorbis library is used. It is released under a BSD-like license. To

parse the Ogg container containing the Vorbis encoded audio data, it uses the libogg

library. This library is released under the same BSD-like license. Both libraries are

written in the C programming language. In this project libogg is statically linked into

the libvorbis library, which is compiled as a shared library. Since neither the Ogg

nor the Vorbis library include a CMake build script, one is supplied as part of this project.

Also included is the necessary configuration header file with settings appropriate for an

Android systems as well as a Gradle build file that makes the resulting library available

as Android library module. This library is then accessed by the Vorbis loader module

using JNI and used to decode the Ogg-Vorbis files included with the application.

To create positional audio, the OpenAL Soft library is used. This is a software based

implementation of the OpenAL API, written in C. It supports multiple platforms, including

27

4 Architecture

Android, and is licensed under the GNU lesser general public license (LGPL). More

details about this library can be found in chapter 6.

4.4 Documentation

The modules of this project are documented in two different ways. One is in the form of

this thesis, where the content of the different modules will be described in the following

chapters. This is only meant to give an overview over the existing interfaces and

functionality. To provide more detailed information about classes, methods and fields,

the JavaDoc style of commenting is used [55]. These comments can be converted

to HTML pages and are understood by many IDEs, including Android Studio. To

save space, these comments are not reproduced in the source code listings used

throughout this thesis. The annotations introduced with JSR 305 are also used to

document the code. The @Nullable and @Nonnull annotations are used with every

method to define if the return value can be null. All packages in this project use

the @ParametersAreNonnullByDefault annotation to mark all parameters as not

accepting null by default. Where appropriate, the @Nullable annotation is used to

override this default. The @Immutable annotation, also imported from JSR 305, is

used to explicitly document immutability in classes.

Both in Java as well as in the native code methods are only documented where they

are first declared. This means that for the native code, most documentation is done in

the header files. Here the Doxygen style of commenting is used, which is very similar to

the JavaDoc style [43]. JNI methods, that is methods that are declared in Java using

the native keyword and implemented in native code, are documented in the Java

file using the JavaDoc syntax. This documentation is not repeated in the native file.

Java fields and methods are documented in the interface or class where they are first

declared. Methods that override another method are not documented again, here the

description provided by the parent class or interface is inherited.

28

5
Framework

Several parts of the application are implemented in library modules. Each of these

modules provides an API to access their functionality. This allows them to be reused

easily. In this chapter, the utility library, the audio framework as well as the rotation

sensor module used by the application will be described.

5.1 Utility Libraries

The project contains two utility library modules. Both contain classes and functions

used by the other modules of the project. One module is implemented purely in Java,

the other contains only native code. They can be used independently of each other.

The Java module only contains one class, called Angle (see Listing 5.1). This class

contains static utility methods to handle angles expressed as floating point numbers

of the type float. It defines both π (as PI) and τ = 2π (as TAU) as well as conver-

sion functions between radians and degrees. They make use of their respective Java

29

5 Framework

standard library versions and exist only to reduce the amounts of casts necessary

while writing code using float-based angles. It also defines functions to normalize

angles to the range [−180◦, 180◦), [0◦, 360◦) or [−π, π) for angles in degrees and radi-

ans respectively. The implementation of the normalization functions is based on the

normalizeAngle function from the Apache commons MathUtils class. Since the

class only defines static methods, its constructor is private [3].

1 public final class Angle {
2 public static final float PI;
3 public static final float TAU;
4 public static float toRadians(float degrees);
5 public static float toDegrees(float radians);
6 public static float normalizeRadians(float angle);
7 public static float normalizeDegrees(float angle);
8 public static float normalizeDegreesPositive(
9 float angle);

10 }

Listing 5.1: Angle class

The native utility library module contains only native code implemented using C++.

While some functions and classes are header-only, most of the code is compiled into a

shared library called utilities-jni. This file has to be loaded by the Java virtual

machine (JVM) before any other native libraries that depend on the utility library can be

used.

The library defines two header-only template classes: vector and scope_guard.

The vector class represents a resizable block of memory in the application heap. It

is implemented using the C standard library memory functions. Memory allocated by

this class is not cleared before being made available to the user. The scope_guard

class can be used to create an object that calls a user-supplied function when the

current scope is left. It supports the lambda-functions introduced in C++11 [73]. This

functionality can be used in a similar fashion as a finally-block may be used in Java, for

example to release a previously acquired lock when a function returns.

Also included are some classes to facility interactions with Java classes and class

members using JNI. The class called java_class finds and holds a reference to

a Java class given its fully qualified name. It also optionally registers native method

implementations with their Java counterparts for the represented Java class. The library

also contains classes to access methods and fields of Java classes. Both static and

30

5.2 Audio API

instance methods and fields are supported. These classes are specializations of the

template class java_class_member. The field and method ids are found using a

java_class instance, the name and the signature of the class members. All of these

classes are implemented using the JNI functions of the JVM [56].

The library also contains some standalone functions to facilitate JNI programming

further. The function java_long_from_ptr converts a pointer to a value that is safely

storable in Java long field. This pointer can later be retrieved using the java_long_-

to_ptr function. It is the responsibility of the user to specify the correct type when

retrieving the pointer. Using a long field guarantees that the pointer is safely storable

even on a 64-bit architecture. The function get_thread_java_env allows getting the

Java environment given a pointer to the Java virtual machine object. If this function is

called from a thread not yet attached to the JVM this will attach the thread using the

JNI Invocation API [58]. A POSIX thread-specific data key [70] is used to detach the

thread once it shuts down.

Finally, the library also defines two functions that translate between POSIX file pointers

and Java streams. The first is called fopen_input_stream and opens a Java Input-

Stream as a read-only file pointer. The other is called fopen_output_stream and it

opens a Java OutputStream as a write-only file pointer. Both are implemented using

the JNI utility classes described in the previous paragraphs. To create a file pointer

that uses custom fread, fwrite and fclose implementations the function funopen

is used. This function is not part of the POSIX standard, it is instead an extension

introduced in the Berkeley software distribution (BSD) C standard library, which bionic,

the Android C standard library, is based on [5].

5.2 Audio API

The audio API module defines interfaces that provide an implementation-independent

way to access the positional audio functionality needed by the application. It also

contains some other audio-related classes that either implement parts of the API or

that can be used in conjunction with it. The audio API module does not depend on any

native libraries, it is purely written in Java.

Since the API is not meant to be a general purpose audio framework, it only supports

single channel, or mono, audio data. The data has to be single channel since the

31

5 Framework

positional audio API assumes each source only emits sound from one position. When

using stereo audio data there would be two sources of sound that have to be positioned.

This data also has to be statically available, streaming of audio data is currently not

supported. The mixing process has to be fast enough to keep up with the playback and

by preparing the complete audio data buffer in advance the necessary performance for

real-time audio mixing is reduced.

5.2.1 Basic Classes

To store the single channel audio data the module contains the AudioData class (see

Listing 5.2). This class stores audio samples as 16-bit signed integers of the Java type

short as well as the sample rate of the audio data. It is also immutable [3]. To enforce

this both the constructors as well as the getSampleArray method make a defensive

copy of the data array before storing or returning it [3]. The ShortBuffer instance

returned by getSampleBuffer is a read-only buffer, so it can wrap the internal data

array directly without violating the immutability guarantee.

1 @Immutable
2 public final class AudioData {
3 public AudioData(short[] samples,
4 int sampleRate);
5 public AudioData(ShortBuffer samplesBuffer,
6 int sampleRate);
7 @Nonnull
8 public ShortBuffer getSampleBuffer();
9 @Nonnull

10 public short[] getSampleArray();
11 public int getSampleRate();
12 public int getSampleCount();
13 }

Listing 5.2: AudioData class

An implementation of the audio API might be using resources that should be released.

For example, if the API is implemented using native code, there might be memory that

has to be freed when a resource is no longer in use. Such a class usually implements

the AutoCloseable interface, which defines a method called close that relinquishes

any resources held by the implementing object [17]. This interface would also allow the

usage of the try-with-resource syntax [59]. On Android, this interface was added in API

32

5.2 Audio API

DisposableAudioBackend.Factory

AudioBackend AudioBuffer AudioSource

creates

creates creates

Figure 5.1: Audio API interfaces

version 19 [17]. Since the audio API is designed to be backwards-compatible with API

version 10, using this interface is not an option. While the Closeable interface exists

since version 1 of the Android API, it is defined to throw an IOException, which is a

checked exception [18]. Releasing the resources that may be in use by an audio API

implementation should either be unable to fail or throw a RuntimeException, since

a failure to release the resources might leave the audio API implementation in a non-

recoverable state. Because of these reasons the audio API defines the Disposable

interface (see Listing 5.3). It serves the same function as the AutoCloseable interface,

but is available on all supported Android API levels.

1 interface Disposable {
2 void dispose();
3 }

Listing 5.3: Disposable interface

5.2.2 Positional Audio API

The main part of the Positional Audio API are the interfaces that provide a generic

method of accessing a positional audio framework. A realization of the API has to imple-

ment the AudioBackend, the AudioBuffer as well as the AudioSource interface.

The relationship between these interfaces can be seen in Figure 5.1. Since each of

them may hold resources that need to be released, they all extend Disposable.

Before actually creating a positional audio source, first the chosen audio back-end has

to be initialized. An audio back-end is represented by the AudioBackend interface (see

Listing 5.4). To create an instance of this class, a factory object should be used. This

33

5 Framework

1 public interface AudioBackend extends Disposable {
2 @Nonnull
3 AudioBuffer createBuffer(AudioData audioData);
4 void pauseAll();
5 void resumeAll();
6 float getOrientation();
7 void setOrientation(float azimuth);
8 float getGain();
9 void setGain(float gain);

10 }

Listing 5.4: AudioBackend interface

object should implement the Factory subinterface of the AudioBackend interface

(see Listing 5.5). This interface defines a factory method to create an audio back-

end instance [9]. Having a common factory interface is especially useful when using

dependency injection. It allows an application or library to create an audio back-end

without having to know its actual type. The create method takes a Context object

as its only argument to allow the back-end to access Android system services or load

assets [19]. If a back-end is not supported on a device the creation may fail by returning

null from the factory method. The getBackendName method returns the name of

the back-end created by this factory, it can for example be displayed when allowing the

user to choose an implementation.

1 public interface AudioBackend extends Disposable {
2 interface Factory {
3 @Nonnull
4 String getBackendName();
5 @Nullable
6 AudioBackend create(Context context);
7 }
8 }

Listing 5.5: AudioBackend.Factory interface

Once created the AudioBackend provides methods to get or set the listener orientation

and the gain factor of the output. The orientation is given as a counter-clockwise rotation

in radians. It also can pause and later resume all audio sources currently managed by

the back-end. Finally, the createBuffer factory method can be used to create an

audio buffer filled with the audio data provided as parameter.

34

5.2 Audio API

The created buffer implements the AudioBuffer interface (see Listing 5.6). It defines

only one method: createSource. This factory method is used to create an audio

source backed by this buffer. Multiple audio sources can be backed by the same

buffer.

1 public interface AudioBuffer extends Disposable {
2 @Nonnull
3 AudioSource createSource();
4 }

Listing 5.6: AudioBuffer interface

The created audio sources implement the AudioSource interface (see Listing 5.7).

This interface defines methods to play or pause playback as well as a method to query

if the source is currently playing. Stopping, that is pausing and resettings the playback

position, is also supported. The source can be set to loop, it will then not stop playing

when it reaches the end of the audio data buffer but instead restart playback from the

beginning. The playback position can also be queried or set manually. Each source

has its own gain factor that is applied in addition to the gain factor set by the back-end.

Finally, since this is a positional audio API, the position of the source can be set. It is

set in polar coordinates as an angle and a distance. As with the listener, the angle is

given as a counter-clockwise rotation in radians. The distance has no predefined unit,

but if the distance is set to one unit or less, the amplitude gain factor of the source will

1 public interface AudioSource extends Disposable {
2 void play();
3 void pause();
4 void stop();
5 boolean isPlaying();
6 float getPositionAzimuth();
7 float getPositionDistance();
8 void setPosition(float azimuth, float distance);
9 boolean isLooping();

10 void setLooping(boolean looping);
11 float getGain();
12 void setGain(float gain);
13 int getPlaybackPosition();
14 void setPlaybackPosition(int position);
15 }

Listing 5.7: AudioSource interface

35

5 Framework

not be lowered because of the distance. If the distance is more than unit, the amplitude

gain factor is calculated as the inverse of the distance (see Equation 5.1) [47]. The

distance amplitude gain factor is applied in addition to the source amplitude gain factor.

If the distance of a source is set to zero it is an ambient source. The sound of such a

source does not change with the orientation of the listener and is equally audible on all

output channels.

gaindistance =

1 if |distance| ≤ 1

|distance|−1 if |distance| > 1
(5.1)

5.2.3 Abstract Helper Classes

The audio API module also contains some abstract helper classes that assist with

implementing the positional audio back-end interfaces. They are based on the ab-

stract ObservableDisposable class (see Listing 5.8). This class implements the

Observer pattern [9]. Observers of this class must implement the Observer subinter-

face. They can then be registered using the addObserver method and removed using

the removeObserver method. The class keeps a strong reference to each registered

observer. The generic type parameter O specifies the type of the class that extends

this abstract class. Making the class and by extension the Observer interface generic

allows for the onDispose method to receive a reference to the disposed object using

its actual type without needing any casts. The notifyDispose method should be

called by the implementing class to notify any registered observers when the object is

is being disposed.

1 abstract class ObservableDisposable
2 <O extends ObservableDisposable<O>>
3 implements Disposable {
4 interface Observer<O extends ObservableDisposable<O>> {
5 void onDispose(O disposable);
6 }
7 final void addObserver(Observer<O> observer);
8 final void removeObserver(Observer<O> observer);
9 final void notifyDispose(O observable);

10 }

Listing 5.8: ObservableDisposable class

36

5.2 Audio API

Disposable ObservableDisposable

AudioBackend AudioBuffer AudioSource

ManagedAudioBackend ManagedAudioBuffer ManagedAudioSource
* *

Figure 5.2: Managed Audio API classes

The actual abstract helper classes are called ManagedAudioBackend, Managed-

AudioBuffer and ManagedAudioSource. Their relationship to each other can be

seen in Figure 5.2. All three classes have to be used in conjunction with each other,

meaning a back-end implementation that extends ManagedAudioBackend has to cre-

ate buffers of the type ManagedAudioBuffer that in turn create sources of the type

ManagedAudioSource. All helper classes are implemented in a thread-safe way.

The abstract ManagedAudioBackend class implements the AudioBackend interface

(see Listing 5.9). It keeps a list of all ManagedAudioBuffer instances created by its

extending class. For this to work, each time the superclass creates a new buffer, it

should also call the registerBuffer method. This method adds the buffer to the

internal list kept by the helper class, this way a strong reference to the buffer is kept.

The method also registers the internal observer instance of the helper class with this

buffer. When the buffer is disposed the observer is called and removes the disposed

buffer from the list, allowing it to be garbage collected once it is no longer reachable by

other references. Adding the ManagedAudioBackend as observer guarantees that the

buffer always has a strong reference to the back-end. This prevents the back-end from

being garbage collected while a buffer created by it is still reachable. When the back-end

itself is disposed, it should call the disposeAllBuffers method. This will dispose

any remaining buffers. The class also implements the pauseAll and resumeAll

method defined in the AudioBackend interface. Their implementations will iterate

through all buffers created by this back-end and call their respective pauseAll and

resumeAll methods.

37

5 Framework

1 abstract class ManagedAudioBackend
2 implements AudioBackend {
3 final void registerBuffer(ManagedAudioBuffer buffer);
4 final void disposeAllBuffers();
5 @Override
6 public final void pauseAll();
7 @Override
8 public final void resumeAll();
9 }

Listing 5.9: ManagedAudioBackend class

The audio buffers created by a ManagedAudioBackend have to extend the abstract

ManagedAudioBuffer class (see Listing 5.10). To be observable by the audio back-

end this class extends the abstract ObservableDisposable class. It also extends

the AudioBuffer interface, although it doesn’t implement any of its methods. When

the super-class that extends this helper class creates an audio source, it should be

registered using the registerSource method. When disposed, the disposeAll-

Sources method will dispose any sources created and backed by this buffer. A two-way

strong reference will be maintained between this buffer and each created source until

it or the buffer are disposed. Since the buffer also keeps the back-end reachable,

the back-end can not be garbage collected while an active buffer or source exist. If

the back-end is disposed, all buffers and by extension all sources are disposed. The

pauseAll method is used by the back-end to pause all sources created by this buffer.

The paused sources are kept in a list and can later be resumed by the back-end using

the resumeAll method. If a paused source is disposed it is also removed from the

paused sources list.

1 abstract class ManagedAudioBuffer
2 extends ObservableDisposable<ManagedAudioBuffer>
3 implements AudioBuffer {
4 final void registerSource(ManagedAudioSource source);
5 final void disposeAllSources();
6 final void pauseAll();
7 final void resumeAll();
8 }

Listing 5.10: ManagedAudioBuffer class

38

5.2 Audio API

The abstract ManagedAudioSource class does not define any additional methods

(see Listing 5.11). Like the buffer variant, it extends the ObservableDisposable

class. It also extends the AudioSource interface. The declaration of this class is

necessary to implement the ManagedAudioBuffer class in a type-safe way without

any additional type parameters.

1 abstract class ManagedAudioSource
2 extends ObservableDisposable<ManagedAudioSource>
3 implements AudioSource { }

Listing 5.11: ManagedAudioSource class

5.2.4 Audio Filters

The audio API also provides a generic filtering interface. Because filtering audio data

may be a potentially expensive operation, it is done once before the audio data is written

to a buffer. This allows the filters to be implemented independently of the chosen audio

back-end implementation. Most back-end implementations would probably chose to

use native code for the audio mixer implementation, including the OpenAL back-end

implemented as part of this Project. Applying the filter to the audio data before writing it

to the buffer allows the filter code to be implemented purely in Java.

Each audio filter should implement the AudioFilter interface (see Listing 5.12). This

interface only defines one method which takes an AudioData object, applies the filter

to the audio data, and returns a new AudioData instance containing the filtered audio

data. This method is not allowed to fail, it must always return a valid AudioData object.

Since it is immutable the audio data can not be filtered directly. Instead a copy has

to be made. All audio filters should also be implemented so that their instances are

immutable. They also have to be able to handle different sampling rates, since they

may be used multiple times on audio data with different sampling rates. The interface

1 public interface AudioFilter extends Parcelable {
2 @Nonnull
3 AudioData filter(AudioData input);
4 }

Listing 5.12: AudioFilter interface

39

5 Framework

xn yn

Z-1

Z-1

-a1

-a2

Z-1

b2

b1

Z-1

b0

+

+

+

Figure 5.3: A biquad filter in direct form 1 [68]

extends the Parcelable interface. This allows filter instances to be stored in and later

restored from a Parcel object without requiring the user to save the filter parameters

manually.

Given this simple interface it is easy to apply several audio filters sequentially. The

AudioFilterChain helper class can be used to define such a chain (see Listing 5.13).

It also implements the AudioFilter interface itself, allowing it to be used anywhere a

single audio filter might be used. It is initialized with an array of audio filters. When the

filter method is called, these filters are applied to the input data in the order they

where given during construction. Once all filters have been applied the resulting audio

data is returned.

1 @Immutable
2 public final class AudioFilterChain implements AudioFilter {
3 public AudioFilterChain(AudioFilter... filters);
4 @Nonnull @Override
5 public AudioData filter(AudioData input);
6 /* Parcelable implementation omitted */
7 }

Listing 5.13: AudioFilterChain class

The audio API also includes three predefined filters. They are a low-pass filter, a

high-pass filter and a notch, or narrow band-stop, filter. They are implemented as

second-order recursive linear filters using the direct form 1 (see Equation 5.2 and

Figure 5.3) [68]. The parameters for the filters are taken from Robert Bristow-Johnson’s

Filter Cookbook [6].

40

5.2 Audio API

y[n] = b0

a0
x[n] + b1

a0
x[n − 1] + b2

a0
x[n − 2] − a1

a0
y[n − 1] − a2

a0
y[n − 2] (5.2)

These filters are defined in the BiquadAudioFilters class (see Listing 5.14). The

class is implemented using the abstract factory pattern [9]. Each filter factory method

accepts two parameters: a frequency and a Q factor. The frequency in hertz is the

cutoff frequency for the low-pass and the high-pass filter or the center frequency for the

notch filter. The Q factor is the quality factor of the filter [68]. Each static factory method

instantiates an instance of the class using the private constructor. This constructor

expects the type of the filter as defined in the FilterType enum as parameter. Each

value of this enum contains an implementation of the private FilterImpl subinterface.

This encapsulates the actual filter algorithm by using the strategy pattern [9]. The

1 public final class BiquadAudioFilters {
2 @Nonnull
3 public static AudioFilter lowPass(double frequency,
4 double q);
5 @Nonnull
6 public static AudioFilter highPass(double frequency,
7 double q);
8 @Nonnull
9 public static AudioFilter notch(double frequency,

10 double q);
11 @Nonnull
12 private static AudioData filter(AudioData input,
13 double a0, ...);
14 private interface FilterImpl {
15 @Nonnull
16 AudioData filter(AudioData input,
17 double frequency, double q);
18 }
19 private enum FilterType {
20 LOW_PASS(...), HIGH_PASS(...), NOTCH(...);
21 FilterType(FilterImpl filterImpl);
22 }
23 private BiquadAudioFilter(FilterType filterType,
24 double frequency, double q);
25 @Nonnull @Override
26 public AudioData filter(AudioData input);
27 /* Parcelable implementation omitted */
28 }

Listing 5.14: BiquadAudioFilters class

41

5 Framework

actual instance of the BiquadAudioFilters class only has to store the filter type

enum as well as the chosen frequency and Q factor. This simplifies implementing

the required Parcelable interface and avoids the code duplication that would be the

result of implementing each filter type in its own class. Each implementation of the

FilterImpl interface is responsible for creating the actual audio filter given the audio

data to filter as well as the frequency and the Q factor. This is done by calculating the

filter parameters a0 to a2 and b0 to b2. These have to be calculated for each audio data

instance separately since they are not only depend on the frequency and Q factor but

also on the sample rate of the filtered audio data [6]. All filter implementations then call

the static filter method that does the actual filtering.

5.2.5 Audio Utilities

The audio API module also contains several utility classes. The first one can be used

to get information about the default audio device. It is called AudioDeviceInfo (see

Listing 5.15). Once this class is instantiated, the method getSampleRate can be

used to get the native sample rate of the device. The getFramesPerBuffer method

returns the native buffer size of the device in samples. These values can be used by

an audio API implementation to match its output parameters to the native values used

by the device. This can reduce the latency added by the system by allowing access

to the fast audio mixer [21]. How these values are acquired depends on the Android

API version. Starting with API 17 these values can be read directly from an instance

of the AudioManager class. On older API versions the AudioTrack class is used to

get these values. While the native sample rate can be queried directly, the buffer size

is more difficult to get. It requires extending the AudioTrack class in order to call the

protected getNativeFrameCount method. Since this function is deprecated since

API 19 both methods using the AudioTrack class are also annotated as deprecated.

Because the audio API should be backwards-compatible down to Android API 10 they

are still necessary as fall-back. When instantiating the AudioDeviceInfo class the

correct method to populate the internal values is chosen automatically.

Another utility class allows the loading of files using the WAVE format into an audio data

object. It is called WaveFile (see Listing 5.16) and only defines one static method:

decodeStream. Since no instantiation is needed the access to the constructor is set

to private [3]. This method takes an input stream and reads the content of a WAVE

file from it. The file must use single-channel 16-bit PCM samples. If the file is not a

42

5.2 Audio API

1 @Immutable
2 public final class AudioDeviceInfo {
3 public AudioDeviceInfo(Context context);
4 public int getSampleRate();
5 public int getFramesPerBuffer();
6 @TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
7 static int getOutputSampleRate(
8 AudioManager audioManager);
9 @TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)

10 static int getOutputFramesPerBuffer(
11 AudioManager audioManager);
12 @Deprecated
13 static int getOutputSampleRate();
14 @Deprecated
15 static int getOutputFramesPerBuffer();
16 }

Listing 5.15: AudioDeviceInfo class

valid WAVE file or is uses a different audio format the method throws an IOException.

Since the input stream is not opened by the method it also does not close it when

finished, this has to be done by the user.

1 public final class WaveFile {
2 @Nonnull
3 public static AudioData decodeStream(
4 @WillNotClose InputStream inputStream)
5 throws IOException;
6 }

Listing 5.16: WaveFile class

WAVE files store the audio data uncompressed. While this makes them very easy to

decode, they take up a lot of space. There are several audio codecs that try to reduce

the file size of audio files. I decided to implement support for the Vorbis format, since it

is a free codec and its decoder library is licensed under a BSD-like license [75]. Like

the MP3 codec, Vorbis encodes the audio data in a lossy way. Vorbis encoded audio

data is usually contained in a file using the Ogg container format.

The class used to decode Ogg Vorbis files is called OggVorbisFile (see Listing 5.17).

Like with the WaveFile class, the decoding is done using a static method called

decodeStream. Internally this method calls another native method to do the actual

decoding using the libogg and libvorbis libraries. The native method is implemented in a

43

5 Framework

JNI library, using the native utility library (see section 5.1). By using the getLibrary-

ABI method the processor instruction set the native library was compiled for can be

queried. In order to not make the audio API module dependent on any native code, this

class is contained in a separate module.

1 public final class OggVorbisFile {
2 @Nonnull
3 public static AudioData decodeStream(
4 @WillNotClose InputStream inputStream)
5 throws IOException;
6 @Nonnull
7 public static native String getLibraryABI();
8 }

Listing 5.17: OggVorbisFile class

The main audio API module also contains a class that loads audio files using the

codecs provided by the device. It is called MediaFile (see Listing 5.18). Unlike the

WAVE or the Ogg Vorbis decoder this class does not use an input stream. Instead,

the decodeAsset method takes an Android asset file descriptor as argument. It then

determines the type of the audio file, decodes it and returns the resulting audio data.

Internally, this class is implemented using the MediaCodec class that is part of the

Android API since version 16 [30]. Because of this, the decodeAsset method can also

only be used on API version 16 or above.

1 public final class MediaFile {
2 @Nonnull
3 @TargetApi(Build.VERSION_CODES.JELLY_BEAN)
4 public static AudioData decodeAsset(
5 AssetFileDescriptor assetFileDescriptor)
6 throws IOException;
7 }

Listing 5.18: MediaFile class

5.3 Sensor API

Letting the user control the application by rotating the phone to point into the desired

direction can be an intuitive way to change the orientation. This is possible by using the

44

5.3 Sensor API

z-axis

(a) Lying on a surface

z-axis

(b) Held by the user

Figure 5.4: Possible device orientations

sensors available on the Android device. Which sensors are available can vary from

device to device. The goal of the sensor API is to provide a common way to access the

sensors capable of providing information about the current orientation of the device.

5.3.1 Rotation Sensor API

All sensors available for the sensor API implement the RotationSensor interface

(see Listing 5.19). This interface provides access to current the orientation of the

device around an axis perpendicular to the ground and pointing to the sky. This value

is independent of the position of the device. The sensor should for example work if

the device is is lying on a table (see Figure 5.4a) as well as when it is held in front of

the user (see Figure 5.4b). It should also work in both landscape and portrait mode.

Implementations of this interface serve as an adapter to the real sensor [9].

1 public interface RotationSensor {
2 interface OnAzimuthChangeListener {
3 void onAzimuthChange(RotationSensor rotationSensor,
4 float azimuth);
5 }
6 void addListener(OnAzimuthChangeListener listener);
7 void removeListener(OnAzimuthChangeListener listener);
8 boolean isEnabled();
9 void setEnabled(boolean enabled);

10 }

Listing 5.19: RotationSensor interface

45

5 Framework

To access the orientation the observer pattern is used [9]. The methods addListener

and removeListener can be used to register or unregister an observer of the type

OnAzimuthChangeListener. By extending this interface the observer must provide

a method called onAzimuthChange. Every time an active sensor the observer is

registered with gets a new reading, this method is called. The current orientation (called

azimuth) is provided as counter-clockwise rotations in radians. For a sensor to become

active it first has to be enabled. This is done using the setEnabled method. If the

application does not require orientation data any more it should disable the sensor. The

sensor is enabled and disabled on a per-instance basis, other instances of the sensor

are not affected.

To create a RotationSensor instance, each type of sensor should provide a factory

object. This factory should implement the RotationSensor.Factory subinterface

(see Listing 5.20). By defining a common factory interface, a sensor instance can

be created without having to know the actual type of the sensor [9]. Instead, only an

instance of the factory creating the chosen sensor needs to be available. This factory

interface is very similar to the audio back-end factory interface (see subsection 5.2.2).

Like its audio API counterpart, the create method takes a Context object as its only

parameter. It then either returns the created sensor instance, or null if the sensor is

not supported on the device. The getSensorName method returns a short description

of the sensor type created by the factory.

1 public interface RotationSensor {
2 interface Factory {
3 @Nonnull
4 String getSensorName();
5 @Nullable
6 RotationSensor create(Context context);
7 }
8 }

Listing 5.20: RotationSensor.Factory interface

To facilitate the implementation of rotation sensors, the AbstractRotationSensor

class (see Listing 5.21) contains several methods common to most implementations

of the RotationSensor interface. One of its features is that it manages the addition

and removal of the observers. When the sensor reads a new value, the super-class

should call the notifyListeners method. This method will then notify all registered

observers. The class also manages the state of the sensor. When the state changes,

46

5.3 Sensor API

that is the sensor is enabled or disabled, the onEnabled method is called. The super-

class can then react to the change. Finally, it defines the static field HANDLER using

the type of the same name, which represents a thread with a message queue [26].

This thread can be used to receive sensor value updates. This prevents blocking the

main thread of the Android application, even if a listener does an expensive or blocking

operation in its notification method. By defining one thread common to all sensor

instances, unnecessary thread creation can be avoided. The thread is started when

the class is first loaded and exists until the application is exited. Because a sensor

implementation can make use of this update thread, the listener notification method has

to be implemented in a thread-safe way.

1 abstract class AbstractRotationSensor
2 implements RotationSensor {
3 protected static final Handler HANDLER;
4 protected final SensorManager sensorManager;
5 protected AbstractRotationSensor(
6 SensorManager sensorManager);
7 @Override
8 public final boolean isEnabled();
9 @Override

10 public final void setEnabled(boolean enabled);
11 protected abstract void onEnabled(boolean enabled);
12 @Override
13 public final void addListener(
14 OnAzimuthChangeListener listener);
15 @Override
16 public final void removeListener(
17 OnAzimuthChangeListener listener);
18 protected final void notifyListeners(float azimuth);
19 }

Listing 5.21: AbstractRotationSensor class

5.3.2 Sensor Data Filters

Some sensors need filters to improve the stability of the data they receive. The filters

created as part of the sensor API all implement a common interface called Sensor-

Filter (see Listing 5.22). Unlike the audio data filters (see subsection 5.2.4) the

sensor filters are designed to manipulate input data in real time. Each sensor filter

implementation must implement two methods. The first is called applyFilter. It

47

5 Framework

takes an array of floats as its only parameter. Each time a sensor on Android updates,

a SensorEvent is generated [36]. This event can then be received by event listeners

registered for this sensor. The actual sensor readings are stored in an array of floats

accessible using the values field of the sensor event object. This field can be used

directly as parameter for the applyFilter method. While the length of the value array

depends on the type of the sensor, each filter expects to always receive arrays of the

same length. This means a single instance of a filter class should not be used with

different types of sensors. Instead a new instance should be created for each sensor.

The applyFilter method returns an array of filtered values of the same length as the

input array. Like the original values array, this array should not be directly modified. If

the filter has an internal state it can be reset using the clearFilter method.

1 interface SensorFilter {
2 void clearFilter();
3 @Nonnull
4 float[] applyFilter(float[] values);
5 }

Listing 5.22: SensorFilter interface

Like the audio data filters, multiple sensor filters can be applied consecutively. This

is done using an instance of the SensorFilterChain class (see Listing 5.23). Its

constructor takes a list of sensor filter instances. After instantiating the object these

filters should no longer be used on their own. When the applyFilter method of the

sensor filter chain is called, all filter are applied in the order they were given to the

constructor. Each filter is applied to the results of the previous filter. Once all filter have

been applied, the result is returned. The clearFilter method simply calls the same

method for each filter instance that is part of the chain.

1 final class SensorFilterChain implements SensorFilter {
2 SensorFilterChain(SensorFilter... filters);
3 @Override
4 public void clearFilter();
5 @Nonnull
6 @Override
7 public float[] applyFilter(float[] values);
8 }

Listing 5.23: SensorFilterChain class

48

5.3 Sensor API

Currently there are two filter classes implemented. The first is the LowPassFilter.

This class implements a simple low-pass filter that can be used to isolate the force

of gravity from an accelerometer reading. It is implemented using the formula shown

in Equation 5.3, which is also described in the Android sensor event documentation

for the accelerometer [36]. The formula uses only a constant factor (α), the previous

filtered value (gravityi) and the new sensor reading (sensori). To create an instance

of the filter the user has to supply the dimension of the arrays that will be filtered as

well as the α value. The filter is applied to each value of the array individually. Since

the filter has to support a high frequency of calls, it uses an internal array to store the

filtered values. They are then overwritten on the next call. The filter itself does not

make a defensive copy when returning the results [3]. This prevents the unnecessary

allocation of a new array on each run of the filter function. If the user needs to preserve

or modify the values returned by the filter, a copy has to be made. Using the returned

array with another filter or a function designed to take the values array of a sensor event

as argument is safe, in that case no copy has to be made.

gravityi = α · gravityi + (1 − α) · sensori (5.3)

The other implemented filter is the HistoryFilter. It can be used to smooth the

output values of a filter. This is done by keeping a history of the previous readings, up

until a maximum number of values. When applied to a new set of values, the oldest

pair of values is removed, the new pair is saved and the average of all currently saved

values is returned. The history is implemented as a circular buffer, removing the need

for allocations to save a new set of values. The calculation is done independently for

each dimension of the filter values. Like the low-pass filter, the array used to return the

filtered values is reused the next time the filter is applied. This means the returned array

has to be copied by the user if their value should be preserved after returning from the

callback functions. The constructor of the filter takes the dimension of the arrays that

will be filtered as well as the size of the circular buffer used to save the history. Clearing

the filter resets all values in the buffer to zero.

5.3.3 Available Sensor Implementations

There are currently four supported sensor types, implemented in two classes. In

addition there is a virtual sensor, called NullSensor (see Listing 5.24). This sensor

49

5 Framework

RotationSensor

NullSensor AbstractRotationSensor

MagneticFieldSensor SynthesizedSensor

Figure 5.5: Sensor API classes

implementation is not backed by a real sensor and never updates. Is is always enabled

and all of its methods do nothing. Since it has no internal state, the class is immutable

and implemented as a Singleton using the enum type [3]. The factory of the null sensor

always returns this Singleton instance. This class can be used when code expects

a sensor object but either no real sensor is available or any sensor input should be

ignored.

1 @Immutable
2 public enum NullSensor implements RotationSensor {
3 INSTANCE;
4 public static final Factory FACTORY;
5 /* RotationSensor implementation omitted */
6 }

Listing 5.24: NullSensor class

The real sensor implementations are grouped into two classes. Both extend the

AbstractRotationSensor class to implement the basic sensor functionality. Their

class hierarchy can be seen in Figure 5.5.

The first class is called MagneticFieldSensor. It uses the magnetic field sensor

in combination with a gravity sensor to allow the device to function as a compass.

This sensor measures the ambient magnetic field relative to the device, which can be

transformed into a real-world orientation if the gravity vector is known. The sensor

class supports two ways to determine this vector. One is to use the accelerometer to

determine the direction of the acceleration caused by gravity. The accelerometer data

50

5.3 Sensor API

y

x

z

(a) Normal

y

x

z

(b) Inverted

Figure 5.6: Sensor world coordinate systems [37]

is transformed with a low-pass filter to try and remove any acceleration caused by the

user [36]. Some devices also provide a virtual gravity sensor [35]. This sensor type

returns the gravitational acceleration directly. Which sensor is used depends on the

factory that is used to create an instance of the MagneticFieldSensor class (see

Listing 5.25). A history filter is then applied to the data before any further calculations are

done. In case of the accelerometer this is done after the low-pass filter was applied.

1 public final class MagneticFieldSensor
2 extends AbstractRotationSensor {
3 public static final Factory FACTORY_ACCELEROMETER;
4 public static final Factory FACTORY_GRAVITY;
5 /* AbstractRotationSensor implementation omitted */
6 }

Listing 5.25: MagneticFieldSensor class

To get the actual device rotation the getRotationMatrix method of the sensor

manager is used [37]. This returns a rotation matrix using the coordinate system shown

in Figure 5.6a. The method may fail when the device is in free-fall since in that case the

gravity vector can not be determined. If the creation of the rotation matrix succeeds, the

getOrientation method of the sensor manager is then used to determine the Euler

angles describing the rotation. The rotation around the Z axis, called the azimuth, is

then forwarded to any listeners of the sensor. Since the Euler angles are relative to a

different world coordinate system (shown in Figure 5.6b) with an inverted Z axis, the

azimuth is negated before the listeners are notified.

51

5 Framework

The second sensor class is called SynthesizedSensor. It uses the rotation vector

sensor to get the orientation of the device in the world space. This sensor is a virtual

sensor that can use several real sensors present on the device to derive the orientation.

The used sensors typically include the accelerometer, the magnetic field sensor and, if

present, the gyroscope. The sensor readings are also already filtered using a Kalman

filter, making additional filtering unnecessary [66]. When a new reading becomes

available, it is returned as a rotation vector [36]. Using the getRotationMatrix-

FromVector method of the sensor manager this rotation vector can be converted to a

rotation matrix [37]. Then the orientation can be extracted using the same procedure

as with the MagneticFieldSensor. On Android API 18 or above, a second type of

rotation vector sensor is available, called the game rotation vector sensor. This sensor

does use the same techniques as the normal rotation vector sensor, except it does not

use the geomagnetic field [36]. The SynthesizedSensor (see Listing 5.26) class

provides factory objects for both types of sensors. Thanks to their use of the gyroscope

and a Kalman filter both sensors can be expected to provide much more accurate

readings than the magnetic field sensor on its own. Since, for the purpose of a game,

the true position of the earth’s poles is not relevant, the game version of the sensor

should be used if available.

1 public final class SynthesizedSensor
2 extends AbstractRotationSensor {
3 public static final Factory FACTORY_DEFAULT;
4 public static final Factory FACTORY_GAME;
5 /* AbstractRotationSensor implementation omitted */
6 }

Listing 5.26: SynthesizedSensor class

52

6
OpenAL

For this project the positional audio API for Android that was introduced in section 5.2 is

implemented using the OpenAL Soft audio library. Both the library as well as the code

used to integrate it into the project will be described in this chapter.

6.1 The OpenAL Library

OpenAL (for "Open Audio Library") was designed as an API to access audio hardware. It

was first implemented by Loki Entertainment Software, a company specializing in porting

games to the Linux operating system. The API was then standardized in collaboration

with Creative Labs and the OpenAL 1.0 specification was released in the year 2000.

Implementations for Windows, Linux, MacOS and BeOS were released in the same

year. Creative Labs also released a hardware-accelerated version supporting their

SoundBlaster sound card. Support for other operating systems and hardware has since

53

6 OpenAL

been added. The OpenAL API is specifically designed to produce multichannel audio

output of three-dimensional arrangements of sound sources around a listener [45].

OpenAL Soft is a software implementation of OpenAL, licensed under the LGPL. It sup-

ports multiple platforms and several audio output back-ends, including OpenSL ES [65].

OpenSL ES is another audio API designed to access audio hardware. It was designed

as a cross-platform audio interface for embedded and mobile devices by the Khronos

Group [69]. It is supported on Android since version 2.3 or API version 9 [32]. Although

OpenSL ES defines a profile that support 3D audio [69], this functionality is not available

on Android [32]. Since OpenAL Soft implements its own 3D audio mixer and does not

rely on the 3D audio functionality of OpenSL, it can be still be used to create positional

audio on Android.

OpenAL Soft includes support for head-related transfer functions since version 1.14.

This feature has to be explicitly enabled using an option in the configuration file. The

HRTF data has to be converted to a special format before it can be used. The source

for a conversion tool is supplied with OpenAL Soft. The following description of the

format is based on the documentation included in the OpenAL Soft source code. In

the HRTF data set format used by OpenAL Soft, the data is stored in a little-endian

binary format, using a separate file for each supported sample rate. The conversion

tool can be used to resample such a data file for other sampling rates. To reduce the

necessary filter length when applying the HRTF, the stored HRIRs are minimum-phase.

When using minimum-phase HRIR data, it is necessary to apply an additional delay to

generate the correct ITD [53]. This delay is also stored for each HRIR. The position of

each individual pair of HRIR values and corresponding delay is defined by an azimuth

and an elevation angle. The format supports a minimum of 5 and up to 128 different

elevation angles. For each elevation between 1 and 128 azimuth angles can be used.

Only the data for the left ear is stored. For the right ear the same data is used, but

with the azimuth reversed. The HRIR data is stored as signed 16 bit samples. OpenAL

Soft defaults to using a 32 point filter. To reduce the workload for the processor I also

created 16 point filter versions of the HRTFs used by the application.

6.2 Build Process

The OpenAL Soft library source code includes a CMake project configuration file that

provides several options to configure and build the library as well as the included HRTF

54

6.3 Configuration

file conversion utility. This allows the library to be built for Android using an appropriate

toolchain configuration file. The actual build process of the library as used in this project

is started using another CMake configuration file.

This CMake project configuration file first builds a small helper library created for this

project. This library is called fopen-wrapper and can be used to wrap calls to the

fopen function and redirect them. It only consists of one source and one header file

and has one publicly visible function called fopen_wrapper_set_callback. This

function takes a pointer to a callback function as its only argument. The callback function

defined by the pointer has the same signature as the fopen function. Internally the

library also defines a wrapper function for fopen. When it is called, it first checks if

a callback function was set. If it was, the callback is called and its result is returned.

Otherwise the function will simply return NULL, indicating a failure to open the requested

file. This helper library is built as a shared library.

After that, the CMake project file configures the build of the OpenAL library. First it

disables the generation of any example or documentation files. It also prevents the

HRTF utility from being build. To use this utility it should be build separately for the host

system. It also disables the WAVE file output back-end and instead forces the build of

the OpenSL back-end. Finally, the global CMake linker flags are used to configure the

linker program to wrap any calls to fopen and to link the fopen-wrapper library to

handle these calls instead. This is done using the wrap option of the GNU linker used

by the Android NDK. Then the OpenAL library is build by including its subdirectory,

which completes the build process. The resulting shared libraries are included in an

otherwise empty Android library module. The OpenAL JNI module can then declare

this module as dependency and have access to the compiled files.

6.3 Configuration

OpenAL does not use HRTFs by default, instead they have to be enabled in a configura-

tion file. On systems that are not Windows, this configuration file is searched in the etc

configuration directory as well as in the home directory of the user. Once configured,

the HRTF files are also loaded from the filesystem. One way to configure OpenAL on

Android would be to create he configuration file on the internal data storage path of

the application and using environment variables to make OpenAL search at the correct

location. But in this project another approach is used. As described in the previous

55

6 OpenAL

section, the OpenAL shared library file build by this project it is linked against another

library that wraps all calls to the fopen function. Since OpenAL uses fopen to open its

configuration files, this wrapper can be used to provide the content of these files from

other sources.

To handle the intercepted calls to fopen, the OpenAlFileMapper class is used. This

class is implemented as a singleton because only one callback function can be active

at any time [9]. Since the class needs to be initialized with a reference to an Android

context object, the singleton uses lazy initialization instead of defining an enum class

for the singleton [3]. Except for the static initialize method that does the lazy

initialization, the class only has private Java methods. For this reason the initialization

function does also not return the singleton instance of the class. When initialized, the

class uses JNI to register a native callback function with the fopen-wrapper library. It

also sets some environment variables to cause OpenAL to use a logfile and to set a

specific logging level.

When OpenAL now tries to open a file, the call is handled by the wrapper function

defined in the fopen-wrapper library, which then calls the native callback function

of the OpenAlFileMapper. This function first uses the JNI utility library to attach the

calling thread to the JVM if it is not already attached. It then, again using the utility

library, calls the fopenCallback Java method of the OpenAlFileMapper class to

determine how to handle the request. The class can then use the fopenInputStream

and fopenOutputStream functions to map Java input or output stream to a file pointer.

Internally these functions also use the utility library described in section 5.1. The pointer

is then returned to the JNI callback function and from there through the wrapper to the

original call to fopen. This whole process is also shown in Figure 6.1.

There are three types of file request that are handled by the file mapper class. The

first is a request to open the main OpenAL configuration file for reading. Instead of

trying to open the, on Android systems non-existing, global configuration file in etc, the

1 [general]
2 channels = stereo
3 stereo-mode = headphones
4 hrtf = true
5 hrtf_tables = /etc/openal/mit-kemar-%r-16.mhr

Listing 6.1: OpenAL configuration file

56

6.3 Configuration

«Java»
OpenAlFileMapper

«JNI»
OpenAlFileMapper

«Native»
fopen wrapper

«Native»
OpenAL

initialize

fopenInit

set_callback

fopen

callback

Attach
to JVM

fopenCallback

fopenInputStream

pointer

pointer

pointer

pointer

Figure 6.1: OpenAL file mapper operation

file is instead dynamically created in memory as a ByteArrayInputStream. This

stream is then mapped to a file pointer and returned. The generated configuration file

(see Listing 6.1) sets the output mode to stereo for headphones and enables the use

of HRTFs. It also configures which HRTF file to use. Currently this is set to use the

MIT KEMAR files with a 16 point filter. The necessary files are included as assets in

the OpenAL module of this project. While OpenAL has configuration options to set the

native sample rate and buffer size of the audio device, these settings are ignored by

the OpenAL library when using the OpenSL ES back-end. After specifying them in

the virtual configuration file, the file mapper also has to handle the calls to open the

HRTF definition files. These requests are handled by loading the requested files from

the asset store of the Android application and then mapping their input streams to file

pointers. Finally, calls to open the log file defined per environment variable for writing

57

6 OpenAL

are also handled. Here a special output stream is created that takes all messages

written into it and prints them using the Android logging capabilities. This facilitates

the debugging of any OpenAL related problems. Any other file request are rejected by

returning a null pointer.

6.4 Audio API Implementation

The Java wrapper for OpenAL created for this application implements the audio API

described in section 5.2. Before using OpenAL, an instance of the OpenAlBackend

class has to be created using the provided factory. Since this factory object is a subclass

of the back-end class, the classes static initialization block is already executed when the

factory object is accessed. In the static initialization block the required shared libraries

are loaded. The factory also initializes the file mapper before creating an instance of

the OpenAL back-end class (see Figure 6.2). Since OpenAL only loads its configuration

on the first initialization, this is necessary to guarantee that the file mapper is already

initialized and its callback registered when OpenAL is used for the first time.

The OpenAlBackend class extends the abstract ManagedAudioBackend class de-

scribed in subsection 5.2.3. This helper class keeps track of all created audio buffers

and disposes them when the back-end itself is disposed. The class uses native func-

tions to access the OpenAL API. The device and context pointers used by OpenAL are

stored in the Java class as fields using long integers. This allows them to be safely

stored even on systems using 64-bit pointers. Since the native resources acquired by

OpenAL can not be released by the garbage collector, the dispose method is used

to free these resources. This method has to be called on an instance of the class

before it is collected by the garbage collector. As a safeguard the class overrides

OpenAlBackend.Factory

OpenAlBackend OpenAlBuffer OpenAlSource

OpenAlFileMapper
initializes

creates

creates creates

Figure 6.2: OpenAL classes

58

6.4 Audio API Implementation

the finalize method [3]. When an instance of the class is finalized, it checks if the

dispose method was called. If it wasn’t, it is called now and a warning is written to the

log. The OpenAlBackend class also defines a method called getLibraryABI which

returns the name of the ABI the library was compiled for as a string. This can be used

to check if the correct version of the shared library was loaded. Otherwise, when using

split APKs, it can happen that a version for an ABI compatible only through emulation

was installed. This could severely impact the performance of the library and should be

avoided.

Both the OpenAlSource as well as the OpenAlBuffer class also extend their man-

aged counter-parts. Like the back-end, they are mostly implemented in native code.

Both also store the pointer to the OpenAL context in a field of the type long. In addi-

tion, the identification number for their backing buffer or source is simply stored in an

integer, allowing the native methods to access them easily. They also both overrider

the finalize method, implementing it in a similar fashion to the OpenAL back-end

class. Since OpenAL uses a Cartesian coordinate system while the audio API uses

polar coordinates, the OpenAL source class has to translate between the two.

While calls to OpenAL itself are thread-safe, the implementation of the audio API

methods often need to make several calls to achieve the desired result. For these calls

to succeed, they have to be executed while the correct global OpenAL context is active.

If the global context is changed by another thread the call will fail which is translated into

an exception by the JNI code. To prevent this from happening, every native method that

implements the audio API using OpenAL has to acquire a global lock before executing.

This way they can safely be used from multiple threads.

59

7
Game Engine

The application described in this thesis is designed as a game in order to motivate the

user. The game engine module contains classes that facilitate the development of such

a game. The contents of this module are described in this chapter.

7.1 Architecture

A game engine is a software framework designed to facilitate the development of a

video game. By moving the code that is not specific for one single game into an engine

project, it can easily be reused for other games of the same type. This also allows the

engine to be developed and improved separately and have all games based on the

engine profit from these changes. For these reasons I decided to put the parts of the

application that might be useful for other projects of a similar kind into a game engine

module. This game engine uses the audio and sensor APIs described in chapter 5.

61

7 Game Engine

engine

engine.audio engine.graphics engine.input

Figure 7.1: Game engine package dependencies

7.1.1 Structure

The game engine designed for this thesis is split into a graphics, an audio and an input

package (see Figure 7.1). Each of these depends on the main engine package, but is

independent of the other packages. The engine implements the model-view-controller

architecture. The data, or the model, is implemented in the main engine package. Both

the graphics and the audio package provide views of the data. How the data is rendered

is configured using components, which will be described later in this chapter. The input

package provides controllers that may manipulate the data. A direct manipulation by

the user of the game engine is also possible.

Traditionally many game engines are based around the concept of a main loop [54].

This is a loop that starts running when the game begins and is only stopped when the

game ends. It usually processes any user input, updates the game state, renders the

game and then repeats. For this game engine I decide to not use a game loop, but

to implement a callback based system instead. This means that instead of running

a loop and calling the different sub-systems, the engine relinquishes control back to

the application and is only called when an update becomes necessary, similar to the

Observer pattern [9]. The callback based approach fits well with the different Android

API classes that also use this design, like for example the Activity class [12] or the

Renderer interface [24].

The model of the game engine consists of exactly one player and one world object. The

world is a 2-dimensional plane with the player at the center (see Figure 7.2). When

a view is added, it typically renders the world from the position of the player. Since

movement of the player is currently not part of the game, the position of the player is

fixed. Rotation of the player on the other hand is possible. The game can also contain

entities. These belong to the world object and can be positioned anywhere in it. Their

62

7.1 Architecture

WorldEntity

Entity

Entity

Player

Figure 7.2: The game world, the player and three entity objects

position is expressed in polar coordinates. Unlike the player they are not directional and

can not be rotated.

These entities are used to decorate the world, to place ambient audio sources or to

create a target for the player. The engine supports creating and destroying entities

dynamically during the game. This can for example be used to add a new target or to

remove a target the player has discovered. When used to create a target the entity is

both an audio source as well as a visible object in the world. But since is should only

become visible once the player has decided where they suspect the target to be, the

visibility of the entity has to be dynamically controllable.

7.1.2 Components

There are several ways of implementing the entity objects used by the game engine.

Since there are different kinds of entities one way would be to use different classes.

In this object-oriented design one could for example create a base entity class. This

class would then be extended by an audio entity as well as a graphic entity class. The

graphic renderer could then check every added entity if it is an instance of the graphic

entity class and render the entity if it is. The audio player would do the same, only

with the audio entity class. But this leads to a problem when creating the target entity

class: since it has an audio as well as a graphical aspect, it should extend both these

63

7 Game Engine

classes. This is known as multiple inheritance and is not supported by Java. The type

comparison could be avoided by implementing the strategy pattern instead [9]. In that

case a common interface for all entities would be defined. This interface would contain a

draw method that can be called by the renderer when the implementing entity instance

should be drawn. The entity can then draw itself, or simply do nothing if it is invisible.

The audio player would be implemented in a similar way. When implementing these

methods for an entity type, it is often desirable to be able to reuse code. For example

the target entity implementation might want to reuse the drawing code from a decorative

entity. Since it might also want to reuse the code of another audio playing entity, the

multiple inheritance problem is also present with this solution. This approach would

also lead to situations where both graphical as well as audio code is implemented in

the same class. Separating the two systems is then not longer easily possible.

To solve this problem a design based on composition instead of inheritance is used [3].

In this design the entity class contains merely the data common to all types of entities.

For the purpose of this game engine, this is only the position of the entity in the game

world. In addition, each entity object can hold different components [54][63]. These

components can then be queried and used by the different systems, like the renderer

or the audio player. The component classes can easily be combined in any variation

necessary to define the desired type of entity. Since neither the entity class needs

to know about the actual types of the components, nor do the components need to

know about each other, this design minimizes the dependencies between the different

systems. As seen in Figure 7.1 the package containing the graphics rendering classes

is completely independent of the package containing the audio playback classes, and

vise versa. The main engine package, which implements the model, is itself also

not dependent on the different packages that implement either views or controllers.

This system also allows users of the game engine to define and implement their

own components and their associated systems without having to change the engine

module.

7.2 Engine

The engine package contains the basic classes used by the game engine. Here the

interfaces and classes of the component system described in the previous section are

defined. The package also contains the classes used to create and manage the game

64

7.2 Engine

world. Both these and the utility classes contained in the package will be described in

this section.

7.2.1 Components API

The components API allows to add and remove objects, called components, from a

parent object at runtime. These components can then be retrieved from the parent

object in a type-safe way. The parent class does not need to know about the component

at compile time. By using observers, other engine systems can be notified when a

component of a certain type is added, removed or updated.

All components used with the engine must implement the Component interface (see

Listing 7.1). This interface specifies two generic type parameters. The first one, called C,

defines the type of the component. It is meant to be used as a recursive type parameter,

similar to the one in the Enum<T> type definition. While there is no way to prevent

the definition of a component class that is not an instance of the type specified in this

generic parameter, such a component can not be used with the other parts of the

component API. The second generic type parameter, called P, defines the class of the

parent this component can be added to. This interface also extends the Parcelable

interface. This means any component can be stored and later retrieved from an Android

Parcel instance.

1 public interface Component<C extends Component<C, P>,
2 P extends ComponentContainer<P>>
3 extends Parcelable {
4 @Nonnull
5 Class<C> getComponentType();
6 @Nonnull
7 C newInstance(P parent);
8 void onRemoved(P parent);
9 void onParentUpdate(P parent);

10 }

Listing 7.1: Component interface

The interface also defines several methods. The getComponentType method returns

the type of the component, as defined by the generic type parameter C. This is nec-

essary, since because of type erasure, the generic parameter is not longer available

at runtime without using reflection. When a component is added to a parent object its

65

7 Game Engine

newInstance method is called. This method gets the parent object of the component

as its only argument and should return a copy of the component in its current state.

This way the component can be used as a prototype [9]. The component can than be

modified without these modifications affecting the other component instances previously

added to different parent objects. Since the component is copied every time it is added

to a new container, each component instance can only have one or zero parents. Once

the component is added to a component container, it may receive two additional call-

backs. When the component is removed from the container, the onRemoved method is

called. For convenience it also receives the parent object the component was removed

from as parameter. If the parent is modified, the onParentUpdate method is called. It

also receives the parent object as parameter. This callback can be used to notify any

listeners of the component that the container object was changed.

Since most component implementation only require a reference to their container to

notify it about any changes to the component, this functionality is implemented in

an abstract helper class. It is called BaseComponent (see Listing 7.2). This class

implements the newInstance method of the Component interface by first calling an

abstract method, also called newInstance but without parameters, that has to return

a new instance of the component using the current instance as prototype. Before this

copy is then returned by the original newInstance method, a reference to the parent

object is stored in the new instance. If the component is removed, the onRemoved

implementation clears this reference. When the component is modified, the protected

notifyUpdate method can be used to notify any listeners. Since a parent object is

required to notify the listeners, this method does nothing if the component does not have

a parent. The onParentUpdate method is implemented to also call notifyUpdate.

1 public abstract class BaseComponent
2 <C extends BaseComponent<C, P>,
3 P extends ComponentContainer<P>>
4 implements Component<C, P> {
5 protected final void notifyUpdate();
6 @Nonnull
7 protected abstract C newInstance();
8 /* Component implementation omitted */
9 }

Listing 7.2: BaseComponent class

66

7.2 Engine

Unlike the other overridden methods it is not declared final, so this behavior can be

suppressed.

To use these components, they have to be added to a component container. Such

a container is defined by the abstract ComponentContainer class (see Listing 7.3).

Like the Component interface, this class expects its actual type as type parameter. This

parameter, called P, has to be identical with the one used by any components that may

be used with this container. The getThisAsParent method has to be implemented by

any subclasses to return a reference to this using the actual type of the implementing

class. The class is package-private since it is only meant to be used by the game engine

itself. Each instance of this class keeps a reference to the event manager used by the

game it belongs to. The event manager can be queried using the getEventManager

method. Components can be added and removed using the addComponent and

1 abstract class ComponentContainer
2 <P extends ComponentContainer<P>> {
3 /* Generic type parameter declarations for methods
4 are omitted, where applicable C is defined as
5 C extends Component<C, P> */
6 protected ComponentContainer(EventManager eventManager);
7 @Nonnull
8 public final EventManager getEventManager();
9 @Nonnull

10 protected abstract P getThisAsParent();
11 @Nullable
12 public final C getComponent(Class<C> type);
13 @Nonnull
14 public final C getComponentUnchecked(Class<C> type);
15 @Nonnull
16 public final Collection<Component<?, P» getComponents()
17 @Nonnull
18 public final P addComponent(C component);
19 @Nonnull
20 public final P removeComponent(Class<C> type);
21 @Nonnull
22 public final P clearComponents();
23 public final void postComponent(C component);
24 public final void postComponentCreatedTo(
25 ComponentListener<C, P> listener);
26 protected final void updateComponents();
27 /* Parceling and copying methods omitted */
28 }

Listing 7.3: ComponentContainer class

67

7 Game Engine

removeComponent methods. The generic parameter signature prevents any invalid

types of components from being added to the container. To store the components, a

map is used where the type of the component serves as the key. This means only

one instance per component type can be registered with the container. By using the

clearComponents method all components can be removed from the container.

To get a specific component from the container the getComponent method can be

used. It returns the component of the specified type, or null if no such component is

registered. There is also an alternate version of this method, it throws an unchecked

exception instead. This can be useful if the user is certain that a component of

the specified type is registered with the container. The postComponent method

causes the container to notify the event manager that the specified component, which

has to be registered with this container, was updated. When a new listener for a

component type is initialized, it may want to receive creation events for all currently

existing components of the matching type. This can be accomplished by using the

postComponentCreatedTo method. Calling this method sends a creation event if

the container has a component of the type specified by the listener. This bypasses the

event manager, the event is only received by the listener specified as parameter. The

protected updateComponents method can be used to notify all registered components

that this container was updated. Since the engine is designed to be used with multiple

threads, the whole component container class is implemented in a thread-safe way.

As mentioned in the description of the component container, event listeners can be

used to be notified whenever a component is added or removed from a container or

otherwise updated. To create such a listener the ComponentListener interface has

to be implemented (see Listing 7.4). The getComponentType method of this interface

returns the type of the component the listener wants to receive updates for. This has

1 public interface ComponentListener
2 <C extends Component<C, P>,
3 P extends ComponentContainer<P>> {
4 @Nonnull
5 Class<C> getComponentType();
6 void onComponentCreated(P parent, C component);
7 void onComponentUpdated(P parent, C component);
8 void onComponentRemoved(P parent, C component);
9 }

Listing 7.4: ComponentListener interface

68

7.2 Engine

Component

Component
Container

Component
Listener Component

addComponent

newInstance

newComponent

instance

onComponentCreated

modify

postComponent

onComponentUpdated

removeComponent

onRemoved

onComponentRemoved

Figure 7.3: Component instance lifecycle

to be the same value that is returned by the method of the same name in the relevant

implementation of the Component interface. The other three methods are callbacks.

They are invoked by the event manager when a component of the relevant type is

created, updated or removed. How these events relate to the lifecycle of a component

instance is also shown in Figure 7.3.

To manage these listeners, an instance of the EventManager class is used (see

Figure 7.4). Each game has exactly one event manager. This class simple defines

methods to register and unregister listeners for components as well as the player class,

which will be described later. It also has the same callbacks as both the component

and the player listener interfaces. When any of them are called it propagates them to all

currently registered listeners.

69

7 Game Engine

EventManager

PlayerListener ComponentListener
C extends Component<C, P>,

P extends ComponentContainer<P>

* *

Figure 7.4: The event manager class

7.2.2 Game Data Classes

When using the game engine, it is necessary to create a world in which the game can

take place. This is done using the GameData class. It serves as root of the model used

by the game, as described in subsection 7.1.1. Every instance of the GameData class

has its own EventManager. It also owns exactly one Player and one World object

(see Figure 7.5). To allow the current state of a game to be saved, it implements the

Parcelable interface.

The Player object represents the human player in a game (see Listing 7.5). It is only

created by the GameData class and every game has its own instance. The player object

currently only manages the orientation of the player in the world. It is expressed in

radians in the range [−π, π), with the the angle increasing when the player rotates in

counter-clockwise direction. This angle can be queried using the getOrientation

method and manipulated using the setOrientation method. The player object

keeps a reference to the event manager used by the game it belongs to. Whenever

the orientation of the player changes, the event manager is notified. It then calls all

registered PlayerListener implementations (see Listing 7.6). To force an update of

1 public final class Player {
2 Player(EventManager eventManager);
3 public void postTo(PlayerListener listener);
4 public float getOrientation();
5 @Nonnull
6 public Player setOrientation(float orientation);
7 /* Parceling and copying methods omitted */
8 }

Listing 7.5: Player class

70

7.2 Engine

GameDataEventManager

Player
«ComponentContainer»

World
Component<World>

«ComponentContainer»
Entity

Component<Entity>

*

*

*

Figure 7.5: Game data classes

such a listener, the postTo method of the Player class can be used. It updates only

the listener supplied as argument. This is useful when a new listener is added to the

game, but it should not have to wait for an update until the player is actually modified the

next time. While this class does not implement the Parcelable methods, it still can

be stored in an Android Parcel using its own parceling methods. This is necessary to

allow the GameData class to implement Parcelable correctly.

1 public interface PlayerListener {
2 void onPlayerUpdate(Player player);
3 }

Listing 7.6: PlayerListener interface

The World class represents the game world surrounding the player (see Listing 7.7).

Like the Player class, it is created by the GameData object it belongs to and each

game has its own instance. The World class extends the abstract component container

class. This makes it possible to add and remove Components from the game world

itself, using the methods described in subsection 7.2.1. The world object also serves

as container for the entities used in this instance of the game. An entity is created by

calling the createEntity factory method. The newly created entity object returned

by this method is automatically part of the world that spawned it. It can be removed by

using the removeEntity method. The clearEntities method removes all entities

that are currently part of the game world. To get a list of all entities in a specific

71

7 Game Engine

world instance, the getEntities method can be used. This method returns an

immutable collection, it can not be modifies and any changes to the original world object

are not reflected by it. This is also the case for the getEntitiesWithComponent

method, but it returns only entities that have a component of the specific type provided

as argument. Finally, the class provides a method that is a shortcut for calling the

postComponentCreatedTo method on all entities currently part of the world. This

class can store both its components as well as its entities in an Android parcel. The

methods to do so are only used by the game data object the world belongs to and are

not declared public. Access to the underlying collection is synchronized, this class can

therefore be safely accessed by multiple threads in parallel.

1 public final class World extends ComponentContainer<World> {
2 /* Generic type parameter declarations for methods
3 are omitted, where applicable C is defined as
4 C extends Component<C, Entity>. */
5 World(EventManager eventManager);
6 @Nonnull
7 public Collection<Entity> getEntities();
8 @Nonnull
9 public Collection<Entity> getEntitiesWithComponent(

10 Class<C> type);
11 @Nonnull
12 public Entity createEntity();
13 public void removeEntity(Entity entity);
14 public void clearEntities();
15 public void postEntityComponentsCreatedTo(
16 ComponentListener<C, Entity> listener);
17 /* ComponentContainer implementation omitted */
18 /* Parceling and copying methods omitted */
19 }

Listing 7.7: World class

Every game world can have an arbitrary amount of entities. They are implemented

in the Entity class (see Listing 7.8). To create an instance of this class, the factory

method of the world object should be used. Because of this, the constructor for the

class is declared package-private. Like the game world itself, each entity is also a

component container. In addition, every entity has a specific position in the world, which

can be queried by using the getPosition method. This position is not static and can

be modified during the game using the setPosition method. When this is done all

current components of the entity are notified that their parent was updated. If they are

72

7.2 Engine

using the default implementation defined in the abstract base component class, this will

notify any listeners of this component type. Since the listeners also get the parent of

the component they were notified by as parameter, they can then read the new position

and update any views accordingly. Like the game world class, this class can store its

current state, consisting of its components and its position, in a parcel.

1 public final class Entity
2 extends ComponentContainer<Entity> {
3 Entity(EventManager eventManager);
4 @Nonnull
5 public PolarPosition getPosition();
6 @Nonnull
7 public Entity setPosition(PolarPosition position);
8 /* ComponentContainer implementation omitted */
9 /* Parceling and copying methods omitted */

10 }

Listing 7.8: Entity class

7.2.3 Utility Classes

The game engine, like the audio API, uses polar coordinates to describe positions.

To define such a position, the package contains the PolarPosition class (see

Listing 7.9). This class is final and immutable [3]. Both the azimuth and the distance

field are public, since they are final there is no danger of them being changed. The class

also implements the common object methods toString, hashCode and equals.

But since the equals method is implemented by comparing the azimuth and distance

floating point values for equality, it is of limited usefulness. The class also implements the

Android Parcelable interface, allowing it to be stored to and restored from a Parcel.

Since the class is immutable, its usage is inherently thread-safe. The static field called

ORIGIN is a PolarPosition instance pointing at the origin of the coordinate system.

Both its azimuth and its distance is set to zero.

All three parts of the engine, namely the graphics, the audio and the input system,

require some configuration. This is done by supplying a configuration object to them on

initialization. The actual interfaces of these objects are defined for each sub-system

independently in their respective package. But since they all have some parameters

in common, the EngineContext interface (see Listing 7.10) serves as a common

base interface. The configuration object implementing this interface has to provide two

73

7 Game Engine

1 @Immutable
2 public final class PolarPosition implements Parcelable {
3 public static final PolarPosition ORIGIN;
4 public final float azimuth;
5 public final float distance;
6 public PolarPosition(float azimuth, float distance);
7 /* Common object methods omitted */
8 /* Parcelable implementation omitted */
9 }

Listing 7.9: PolarPosition class

methods. One is called getGameData. It should return the root game data object that

defines the game the sub-system will be attached to. For views this defines which game

is rendered and for input systems which game is controlled. The other method is called

getApplicationContext. It provides access to an Android application context [19].

This context can be used to load assets, to create views or to access sensor data. Since

all sub-systems need at least access to these two methods, all configuration objects

inherit this interface.

1 public interface EngineContext {
2 @Nonnull
3 GameData getGameData();
4 @Nonnull
5 Context getApplicationContext();
6 }

Listing 7.10: EngineContext interface

Both the graphics as well as the audio rendering systems store data in buffers. To be

usable this data has to be uncompressed. Both uncompressed audio data as well as

textures can take up considerable amounts of memory. To reduce the impact on the

memory requirements of the application, buffers can be shared. If there are for example

several objects using the same texture in the world, they all can share the same texture

buffer. At the same time unused buffers should be released to free the memory space

they occupy. To help implement such a buffer, the main engine package contains the

AssetBufferReference class (see Listing 7.11). This abstract class represents a

reference counted buffer that is re-usable by different objects. It is initialized with the

name of the asset it represents, which can later be queries using the getAssetName

method. To increment or decrement the internal reference counter, the acquire or the

74

7.3 Graphics

release method is used. Each call to acquire increases the counter by one, while

release decreases it. When acquire is called and the current reference count is

zero, the abstract createBuffer method is called. Here the implementing class can

create a buffer containing the data identified by the asset name. Providing access to

the buffer is also the responsibility of the implementing class. When the last reference

to a buffer is release, that is when the reference count reaches zero again, the abstract

deleteBuffer method is called. Here the implementing class can delete the buffer

and free its memory. The reference counting methods are synchronized, the class can

safely be used by multiple threads.

1 public abstract class AssetBufferReference {
2 protected AssetBufferReference(String assetName);
3 @Nonnull
4 protected final String getAssetName();
5 public final synchronized void acquire();
6 public final synchronized void release();
7 protected abstract void createBuffer();
8 protected abstract void deleteBuffer();
9 }

Listing 7.11: AssetBufferReference class

7.3 Graphics

The graphics system of the game engine is used to display the game world to the user.

This is done using OpenGL ES 2.0, which is part of the Android API since version 8 [31].

On Android, all OpenGL rendering happens on a separate thread, decoupled from

the main UI thread. To access this thread, the Android Renderer interface provides

callbacks that are called whenever the target surface is changed or it is time to render

a frame. One challenge faced when using OpenGL on Android is that the OpenGL

context can be destroyed by the system at any time, for example when the device goes

to sleep. When this happens, all resources are deleted and have to be recreated when

a new context becomes available [24].

To setup the rendering system, the user must provide a configuration object. This

object has to implement the GraphicsContext interface (see Listing 7.12). Like

all configuration object interface definitions used by the game engine, it extends the

EngineContext interface. This allows accessing the root game data object as well as

75

7 Game Engine

width

h
eig

h
t

vertical field
of view

Figure 7.6: The field of view when rendering the game world

the Android application context. Additionally, this interface defines two more methods.

The getVerticalFov method set the vertical field of view used when rendering the

game world. This is the angle in radians covered by the screen in the vertical direction,

as illustrated in Figure 7.6. The second method is called getBitmapAssetCache and

has to return an instance of a LoadingCache as defined by the Guava library. This

is a class that can load and optionally cache assets given their name. In this case the

assets are textures which have to be provided as uncompressed bitmaps. Making the

implementation of the cache the responsibility of the user results in more flexibility when

using the game engine. The user can then decide how much memory, if any, to reserve

for the texture cache and how the textures are loaded.

1 public interface GraphicsContext extends EngineContext {
2 float getVerticalFov();
3 @Nonnull
4 LoadingCache<String, Bitmap> getBitmapAssetCache();
5 }

Listing 7.12: GraphicsContext interface

The root class of the graphics system is the OpenGLRenderer class (see Listing 7.13).

To create an instance of this class an object implementing the GraphicsContext

interface has to be provided. Internally, this class then creates an OpenGL surface

and registers its private Renderer implementation. After construction is finished, the

getView method can be used to get a reference to this surface. It can then be added to

a layout and displayed. The stop and start methods should be called when the view

is no longer visible or when it becomes visible again. This allows the underlying surface

76

7.3 Graphics

1 public final class OpenGLRenderer {
2 public OpenGLRenderer(GraphicsContext context);
3 public synchronized void start();
4 public synchronized void stop();
5 @Nonnull
6 public View getView();
7 private final class Renderer
8 implements GLSurfaceView.Renderer {
9 /* GLSurfaceView.Renderer implementation omitted */

10 }
11 }

Listing 7.13: OpenGLRenderer class

to free resources while rendering is not required. The Renderer implementation

defined in this class does not do any actual rendering. Instead, it delegates the task

to different sub-renderers, which implement the OpenGLSubRenderer interface (see

Listing 7.14). These sub-renderers get called when the surface is recreated or when a

frame is drawn, using the onSurfaceCreated and onDrawFrame methods. Both of

these methods receive the current rendering parameters as argument. Since the game

world is rendered form the view of the player, the OpenGLRenderer class contains

a PlayerListener implementation, allowing it to react to changes in the player

orientation. When the renderer is not needed anymore, for example because the activity

containing it is destroyed, the stop method has to be called. This will unregister the

instance from the event manager which otherwise would hold a reference to the object

and prevent its garbage collection.

1 interface OpenGLSubRenderer {
2 void onSurfaceCreated(RenderParameters renderParameters);
3 void onDrawFrame(RenderParameters renderParameters);
4 void start();
5 void stop();
6 }

Listing 7.14: OpenGLSubRenderer interface

7.3.1 Rendering Process

There are currently two sub-renderers implemented. The first one renders the panorama

used as backdrop of the game world. Its implementation will be described in subsec-

77

7 Game Engine

tion 7.3.2. The other one is the entity renderer, which draws all entities with a visual

component onto the screen. This renderer will be described in subsection 7.3.3. In

order for these entities to be visible, they have to be drawn above the panorama. One

way this can be accomplished by using a depth test. Here, the depth of every drawn

pixel is stored into a buffer. When another pixel should be drawn at the same location,

its depth can be compared against the one already stored in the buffer. If the new pixel

would be in front of the already drawn one, it overwrites it. Otherwise it is discarded.

This depth test is already part of OpenGL ES 2.0. In this game engine, transparency is

implemented using alpha blending. That means each pixel can have an alpha value

in addition to the usual red, green and blue color values. This value represents the

opacity of the pixel, with zero being transparent and one being opaque. When using

alpha blending, each object is rendered on top of the scene behind it. For the result

to be correct, this requires sorting the objects in the scene and rendering them back

to front rtrendering. For sorted objects that are drawn back to front, a depth test is

unnecessary since it can not discard any pixels. Since in this engine all object except

the panorama are rendered using alpha blending, requiring them to be sorted, no

depth test is used at all. Instead the panorama backdrop is rendered first, followed by

rendering all entities in back to front order. The ordering happens relative to the center

of the scene, where the player is located.

On Android, accessing the OpenGL ES 2.0 API is done using the GLES20 class. It

provides static methods that mirror many of the native OpenGL functions. Since the

OpenGL API is not object oriented, neither are these functions. They can be called

anywhere and modify the global state, although they can only be used on the thread the

OpenGL context belongs to. To make some common tasks used by the engine simpler

and to avoid code duplication, the graphics package includes several utility classes.

During the rendering process, OpenGL uses shader programs to define how something

is drawn. These programs define the positions and the colors of each pixel that is

rendered to the screen. For the purposes of this game engine, only one shader

program is necessary. It is implemented in the BlendingShaderProgram class (see

Listing 7.15). The methods of this class can only be used from the OpenGL thread

since they directly use the functions provided by the GLES20 object. When initialized,

this class compiles both a vertex and a fragment shader and links them into a shader

program. This program is then ready to be executed by the graphics processing

unit (GPU). Should the compilation fail, the class will throw a runtime exception and

print the cause description to the Android error log. Otherwise the program can then be

78

7.3 Graphics

used by calling the use method. After this method is called, the program stays active

until a different shader program is used. All other methods of this class depend on

the program represented by their object being the one currently in use. The shader

program compiled by this class supports the use of a texture as well as both alpha

and color blending. Before a texture buffer can be bound, a texture has to be activated.

This is done using the activateTexture method. The blending factors can be set

using the setBlendingFactors method. To determine both the perspective as well

as the camera position and orientation a matrix is used. This matrix is the result of

multiplying three other matrices. The first is the model matrix. It determines where the

currently rendered object is positioned in the world. This also includes any rotation

or scaling done to the object. The second is the view matrix. It provides the position

and orientation of the camera in the scene. Finally there is the projection matrix. It

determines the projection used when rendering, usually either perspective or orthogonal.

This matrix also determines the aspect ratio and, in case of a perspective projection,

the field of view the scene is rendered in. The combined matrix is then supplied to

the shader object using the setMvpMatrix method. The array given as parameter is

compatible with the arrays used by the methods defined in the Matrix class that is

part of the Android API. The Matrix class also defines several methods that calculate

or manipulate any of the matrix types described above.

1 final class BlendingShaderProgram
2 implements TextureShaderProgram {
3 public void initialize();
4 public void delete();
5 public void use();
6 public void activateTexture();
7 public void setBlendingFactors(float r, float g,
8 float b, float a);
9 public void setMvpMatrix(float[] matrix);

10 /* TextureShaderProgram implementation omitted */
11 }

Listing 7.15: BlendingShaderProgram class

Currently all object rendered by the engine are drawn as textured squares. When

rendering in OpenGL, all objects are build using triangles. They are defined by their

vertices. A quad can be built by combining two triangles that share two vertices with

each other. This is illustrated in Figure 7.7. Also shown are the texture coordinates

associated with each vertex. When rendered with a texture, these coordinates are used

79

7 Game Engine

3 4

21
(0,0)

(1,1)(1,0)

(0,1)

Figure 7.7: A quad build by using two triangles

to map the texture to the polygon. In this case the texture is mapped to simply cover

the entire square with the edges of the texture lining up with the edges of the quad.

Since a textures quad is used for every object currently supported by the engine,

the graphics package includes a utility class to create such a square. It is called

VertexQuad (see Listing 7.16). As with the shader program class, all methods of this

class must only be called from the OpenGL thread. The vertex quad is initialized with an

instance of a shader program. After the call to the initialize method, the quad can

only be used when this shader is active or until it is re-initialized with a different shader.

During initialization, an OpenGL array buffer is created an filled with the vertices that

create a single quad. This quad is square with an edge length of exactly one unit. It is

created with its center at the origin. Both its position and size can be modified while

rendering by using a model matrix. When it is time to draw the textured quad, the bind

method has to be called first. This binds the underlying vertex array buffer in the current

OpenGL context. It also points the position and texture coordinate attributes of the

shader to the correct locations inside the buffer. After that, the quad can be drawn using

the draw method. This method can be called multiple times. The texture that is used

is defined by the shader used to draw the quad. When done drawing, the release

method should be called.

1 final class VertexQuad {
2 public void initialize(
3 TextureShaderProgram shaderProgram);
4 public void delete();
5 public void bind();
6 public void draw();
7 public void release();
8 }

Listing 7.16: VertexQuad class

80

7.3 Graphics

Before a texture can be used by a shader, it has to be stored in an OpenGL texture buffer.

Such a buffer can be used by multiple objects that share the same texture and should

be deleted once the texture is no longer needed. The TextureBufferManager class

(see Listing 7.17) is designed to facilitate such a reuse of texture buffers. It is initialized

with the OpenGL surface it manages the texture buffers for as well as a bitmap cache

used to load texture data. An instance of this class is created by the OpenGL renderer

used by this engine, which is then passed to all the sub-renderers. It uses the bitmap

loading cache defined in the graphics context. If a sub-renderer wants to use a texture,

it can call the get method with the name of the image asset it wants to use as a

texture. This method will then return an object implementing the TextureBuffer

interface. Internally, the class first checks if a texture buffer for the requested asset

already exists. If it does not, a new texture buffer reference is created for this asset

and added to the map. Since it extends the asset buffer reference class it is reference

counted and the asset will be loaded and stored in a texture buffer the first time it is

accessed. This buffer will also be deleted as soon as there are no more references to it.

The texture buffer reference is then wrapped in a texture buffer proxy, which implements

the TextureBuffer interface. This class is simply an adapter for the actual texture

buffer reference [9]. The get method can be safely called on any thread. The texture

buffer manager also defines a method called invalidate. It should be called if the

OpenGL context is recreated after it was deleted. Since the previous texture buffers are

not longer valid, this method recreates all of them. After this is done all buffer references

created by this manager are valid again. Since this method must be called on the

OpenGL thread, preventing any other renderers from running, the users of this manager

will not be affected and can simply continue using their texture buffer objects.

1 final class TextureBufferManager {
2 TextureBufferManager(GLSurfaceView glSurfaceView,
3 LoadingCache<String, Bitmap> bitmapCache);
4 @Nonnull
5 TextureBuffer get(String textureName);
6 void invalidate();
7 private final class TextureBufferReference
8 extends AssetBufferReference;
9 private static final class TextureBufferProxy

10 implements TextureBuffer;
11 }

Listing 7.17: TextureBufferManager class

81

7 Game Engine

7.3.2 Panorama Renderer

The panorama renderer implements the sub-renderer interface and draws a panorama

image as backdrop for the game world. Because such a panorama picture has to be

very wide to show a full 360 degrees image its width might be larger than the maximum

supported texture size supported by the Android device. The panorama texture is

therefore split into an arbitrary number of identically sized square textures. Since the

textures must, when arranged side by side, cover exactly 360 degrees the renderer

can calculate the horizontal angle covered by one texture form the number of parts.

Because the textures are square and the renderer does not support stretching the

textures in one dimension only, the angle covered by each texture is identical along

the horizontal and the vertical axis. It is therefore important to choose an appropriate

number of pictures to split the panorama into. The application uses by default a vertical

field of view of 40 degrees. In order to have the panorama fit the screen exactly with

this field of view, the panorama has to be split into 360◦/40◦ = 9 images. The names

of these images is defined in the panorama component, of which an instance can be

added to the game world. This component also allows setting the blending factors the

panorama is rendered with.

To render the panorama, the texture quad and shader program classes introduced in

the previous section are used. After they are set up, the renderer determines how many

of the square texture the panorama image is split into have to be drawn to fill the screen.

If the left side of the screen does not fall exactly on the cut between two textures, this

offset has to be factored in when determining the number of quads to draw. They are

then drawn from left to right, with the vertex quad being reused for each individual

texture. Each time the quad is draw, the next texture has to be selected. The panorama

is drawn using orthogonal projection. This means the distance of the backdrop has no

influence on the final appearance of the panorama on the screen. Because of the alpha

blending technique used by this game engine, the backdrop should be drawn first. This

allows all other objects to cover it while fully supporting transparency.

7.3.3 Entity Renderer

Entities in the game world, like for example the target or decorative objects, are rendered

using a technique called screen-aligned billboarding [1]. This means they are rendered

as a textured quad that always faces the camera. The texture is determined by the user

82

7.3 Graphics

of the game engine when adding the billboard rendering component to the entity. The

billboard renderer then draws this texture using the vertex quad utility class. To make

the quad face the screen, the top left three by three sub-matrix of the model-view-matrix

is replaced with the identity matrix. This part of the model-view-matrix is responsible

for the scaling and rotation of the drawn object. While the removal of the rotation

component is necessary to draw the entity as a billboard, the loss of scaling information

is not necessarily desirable. The scaling transformations can therefore be reapplied

after this modification. After the projection matrix is applied, the rendered entity will be

at its correct position on the screen while still facing the camera. Unlike the panorama

renderer, the entity billboard renderer uses the perspective projection matrix. This

means objects that are farer away will be rendered smaller.

The entity billboard renderer also uses the shader program class introduced in sub-

section 7.3.1, including support for alpha blending. The blending factors used when

rendering can be defined at two places. The first is in a world component. Since it

belongs to the world object that is unique for each game, only one instance of this

component can be active for a single game. The blending factors set in this component

are applied to all entities rendered with this renderer, as well as to the background

panorama. Another set of blending factors can be defined for each instance of the

entity component. These factors are multiplied with the global ones defined by the

world component before being applied to the entity billboard they belong to. The entity

component also allows the modification of several other settings that affect how the

entity is rendered. One is the scaling factor that is applied to the vertex quad after it

was made into a billboard. An offset along the Y axis can also be set. Since the entity

position does not include a Y component, this property is necessary to affect the vertical

drawing position of the final billboard. Finally, the texture can be flipped along the X

axis.

Before the entities can be drawn they have to be sorted, with the entities that are the

furthest away being the ones that are drawn first. This is necessary when using alpha

blending so billboards in the front can have transparent pixels that show the billboards

behind them. Fixing the drawing order also prevents the billboards from intersecting

each other since the ones that are drawn later will always appear in front of the ones

drawn before. Because the positions of the entities is not static, this sorting has to be

redone every time an entity moves closer or farther away from the player. To reduce the

load on the processor this is only done once it is actually time to draw and even then

only if there was a position change.

83

7 Game Engine

7.4 Audio

The audio system of the game engine uses the API introduced in section 5.2 to cre-

ate and manage the audio sources defined by the game world. This system, like

the graphics system, is set up using a configuration object. This object has to im-

plement the AudioContext interface which extends the EngineContext interface

(see Listing 7.18). One of the methods the AudioContext interface adds is called

getAudioBackendFactory. This method has to return the audio back-end factory

that will be used to create the audio back-end instance used by the game engine. Using

a factory instead of simply passing an instance of the audio back-end allows the engine

to destroy and later recreate the audio back-end. This might for example be necessary

when the application looses the audio focus. The other method defined by the interface

is called getAudioDataAssetCache. Like its counterpart in the GraphicsContext

interface this method has to return a LoadingCache that will be used to retrieve the

audio data. This allows the user to create a cache and reduce loading times if the data

is used again in the future.

1 public interface AudioContext extends EngineContext {
2 @Nonnull
3 AudioBackend.Factory getAudioBackendFactory();
4 @Nonnull
5 LoadingCache<String, AudioData> getAudioDataAssetCache();
6 }

Listing 7.18: AudioContext interface

To use the audio system, an instance of the AudioPlayer class has to be created (see

Listing 7.19). Its constructor takes an object implementing the AudioContext interface

as its only argument. Like the graphics system, the player has to be started using

the start method before it becomes active. Once it is not longer needed, the stop

method stops the audio playback. To temporarily silence the audio, the mute method

can be used. Alternatively, the duck method lowers the output volume by 80 percent.

These methods are useful to allow notification sounds to be heard without completely

stopping the audio player. The resume method undoes the volume reduction caused

by ducking or muting.

When playing audio on a mobile device there are situations where an application should

stop its audio output without requiring any user input. For example when the mobile

84

7.4 Audio

1 public final class AudioPlayer {
2 public AudioPlayer(AudioContext context);
3 public synchronized void start();
4 public synchronized void stop();
5 public void mute();
6 public void duck();
7 public void resume();
8 }

Listing 7.19: AudioPlayer class

phone is receiving a call, the running application should automatically lower or even

mute its output volume to allow the ringing tone to be heard clearly. On Android devices

this is done using an audio focus system [28]. Each application that wants to playback

audio should first request one of the two types of audio focus. The first type is a transient

focus. This can for example be used to play a notification sound and the application

should keep the audio focus only for a short time. The other type is a permanent focus,

which can for example be used to play music or for a game. Once an application has the

audio focus, it will receive a notification when it looses the focus again, either temporarily

or permanently.

The AudioSystem class is a wrapper for the AudioPlayer that requests the audio

focus and handles any changes in the focus state of the application (see Listing 7.20).

It is initialized with an implementation of the AudioContext class which is saved to be

used when creating a new audio player instance. When the start method is called,

the class requests a permanent audio focus. Only if the request is granted a new

instance of the audio player class is created and started. It also registers an audio

focus listener. If the request is declined, the method simply returns false. Once the

system is not longer needed, the stop method abandons the audio focus and disposes

of the wrapped audio player instance. It is safe to call this method even if a previous

call to start returned false. The audio focus listener registered by the class handles

a temporary focus loss by either muting or, if allowed by the operating system, ducking

the volume of the audio player. A permanent focus loss is handled like a call to the

stop method. The current state of the audio focus can be queried using the hasFocus

method. The class also allows registering its own version of a simplified focus listener,

which can be set or cleared using the setFocusListener method. Unlike the Android

version, this listener is only notified when the focus is lost permanently. This allows the

user to react to such an event. Once lost, a new request to regain the audio focus can

85

7 Game Engine

1 public final class AudioSystem {
2 public interface FocusListener {
3 void onFocusLost();
4 }
5 public AudioSystem(AudioContext context);
6 public synchronized boolean start();
7 public synchronized void stop();
8 public synchronized boolean hasFocus();
9 public synchronized void setFocusListener(

10 @Nullable FocusListener focusListener);
11 }

Listing 7.20: AudioSystem class

be triggered by calling start again. If the focus is abandoned because of a call to

stop by the user, the listener is not called.

The AudioBufferManager class (see Listing 7.21), like its counterpart in the graphics

system, facilitates the reuse of existing audio buffers and takes care of their disposal

once they aren’t used any longer. It is initialized with the audio back-end that is used

to create the buffers as well as a loading cache instance that is used to load the audio

data. This class creates two types of audio buffers. The first type simply contains

the audio data read from the cache and is implemented with reference counting using

the AssetBufferReference class. A call to the get method, either with only a

single argument or with the second argument as null, will create such a buffer if it not

already exists and then return an adapter object referencing that buffer. This adapter

intercepts calls to the dispose method of the buffer and instead of deleting the buffer

only decrements the reference count. Only when the reference count reaches zero,

meaning the buffer is not used anymore, the actual underlying audio buffer is deleted.

The other type of buffer is created by passing an audio filter as second argument

to the get method. This will create an audio buffer which content is modified using

the supplied audio filter instance. While these types of buffers are not cached in the

manager, they are otherwise implemented in the same way as regular audio buffers.

To create an audio source in the game world, it has to be added to an entity as

a component. Currently only looping audio sources are supported. Once such a

component is added to an entity, it will play the audio data stored in the backing buffer

until the component is removed again. The audio source has the same position as

the entity it belongs to, allowing it to move in the game world. Each instance of this

86

7.5 Input

1 final class AudioBufferManager {
2 AudioBufferManager(AudioBackend audioBackend,
3 LoadingCache<String, AudioData> audioDataCache);
4 @Nonnull
5 AudioBuffer get(String audioName);
6 @Nonnull
7 AudioBuffer get(String audioName,
8 @Nullable AudioFilter audioFilter);
9 private final class AudioBufferReference

10 extends AssetBufferReference;
11 private static final class AudioBufferProxy
12 implements AudioBuffer;
13 }

Listing 7.21: AudioBufferManager class

component class is initialized with the audio data asset name and optionally the audio

filter to apply to the audio data. It is also possible to set an individual gain factor that is

only applied to the audio source belonging to this component. Unlike the audio data this

gain is dynamic and can be changed at any time. It can for example be used to lower

the volume of an individual audio source temporarily. This component is also used to

create ambient audio sources, that is audio sources that have no positional component.

Such a source is created by adding the audio component to an entity that is places at

the center of the game world, which is also the position of the player.

7.5 Input

The input package of the game engine module contains classes that provide different

methods to control the player orientation in the game world. Like the other systems of

the game engine, the input system is set up using a configuration object. This object has

to implement the InputContext interface (see Listing 7.22). This interface defines a

method that returns the vertical field of view used when rendering the game. The method

has the same signature as the method of the same name in the GraphicsContext

interface. Knowing the field of view is necessary when touchscreen controls are used.

The other method returns the factory that is used to create the rotation sensor used. If

no sensor input should be used, this method can return the NullSensor as described

in section 5.3.

87

7 Game Engine

1 public interface InputContext extends EngineContext {
2 float getVerticalFov();
3 @Nonnull
4 RotationSensor.Factory getRotationSensorFactory();
5 }

Listing 7.22: InputContext interface

An intuitive way to control the player orientation is by using a rotation sensor to follow

the direction the device is pointing to. This can be done using the SensorInput class

(see Listing 7.23). It is initialized with an instance of the input configuration object that

defines the sensor to use. Once the start method is called, it maps the rotation read

from the sensor to the orientation of the player in the game world until stop is called.

The first value received from the rotation sensor is used to calibrate the orientation.

This prevents the player orientation from suddenly jumping once the sensor is activated.

The input can be temporarily disabled by using the setEnableRotation method.

Finally, the isNullSensor method can be used to check if a real sensor is used. If

this method returns true, the sensor input class will never receive a sensor reading

and another form of input should be used.

1 public final class SensorInput {
2 public SensorInput(InputContext context);
3 public synchronized void start();
4 public synchronized void stop();
5 public void setEnableRotation(boolean enableRotation);
6 public boolean isNullSensor();
7 }

Listing 7.23: SensorInput class

Another way to control the player orientation is by using the touchscreen of the device.

This is a useful fallback input method that can be used when no appropriate sensors

are present or the sensors are unreliable. When the user touches the screen, the input

is usually received by the view element currently visible at that position of the screen.

While some view classes allow the user to register a touch listener. this is not the case

for the GLSurfaceView class used to render the game [34]. To still enable touchscreen

controls for the game, the TouchViewInput class can be used (see Listing 7.24). This

class is initialized with the configuration object and the view that defines the area of

the screen where touch inputs should be received. Internally the class puts this view

88

7.5 Input

into a view group that intercepts all touch inputs and allows the input class to handle

them instead. This works independently of the actual type of the wrapped view. Once

start is called, the intercepted horizontal scroll gestures are translated into orientation

changes for the player in the game world until stop is called. To allow this translation

to match the view of the game world, the field of view returned by the configuration

class should be the same that was used to set up the game view. Like in the sensor

input class the setEnableRotation method can be used to temporarily disable this

type of input. Whenever this class is used, the view returned by the getView method

should be used in place of the wrapped view. The returned view also supports setting a

click handler that can be used as an additional input method.

1 public final class TouchViewInput {
2 public TouchViewInput(InputContext context,
3 View wrappedView);
4 public synchronized void start();
5 public synchronized void stop();
6 public void setEnableRotation(boolean enableRotation);
7 @Nonnull
8 public View getView();
9 }

Listing 7.24: TouchViewInput class

89

8
Application

To demonstrate the game concept a demo application was created. It uses the game

engine introduced in chapter 7 and, by extension, the framework described in chapter 5.

As implementation of the Audio API it uses the OpenAL back-end outlined in chapter 6.

The code for the application is split into two modules. The common application module

is implemented as a library. It contains classes that would be useful when designing

or embedding a similar game into another application. The actual demo application,

including its assets, is located in a separate module. Both modules will be described in

this chapter.

8.1 Common Application Classes

The common application library mainly contains classes that facilitate the integration of

the game engine in a typical game application. One of these classes is a rotation sensor

manager. Since the sensor input system of the game engine expects to be provided

91

8 Application

with a rotation sensor factory, it falls to the application to choose the appropriate sensor

implementation. The sensor manager can take care of finding the best available sensor

supported by the device. To do this it can either try to find any working sensor or it

can only return a sensor if it is likely that it uses a gyroscope. If no such sensor can

be found, it returns the null sensor. The demo application uses the rotation sensor

manager to allow the user to choose if they want to use a sensor and, provided they do,

if sensors must utilize the gyroscope to be considered valid.

The module also contains factory classes for the bitmap and audio data cache required

by the game engine. Both provide loaders that can read their respective data files

from the assets embedded in the application. While the bitmap cache loader used the

decoder provided by the Android system, the audio data cache loader uses the WAVE

and Ogg-Vorbis file decoders implemented as part of the audio API. Also implemented

by both caches is the weigher function that allows the creation of a cache with a

maximum memory footprint. This enables the application to explicitly allocate a part of

its available memory to either of these caches.

In the game engine module the different systems, namely graphics, audio and input,

are implemented independently of each other. While this approach increases flexibility,

it also increases the amount of code needed to setup a game. The common application

library therefore includes a class that simplifies the setup for the common case where

exactly one OpenGL renderer, one audio output system and one input method is

required. The class is implemented as a fragment, which is a reusable user interface

component [23]. This allows it to be embedded in different Android activities. The

fragment expects that its parent activity implements a special interface that is used for

communication. This way the activity can provide the game data definition, the caches

needed to access the assets as well as the used rotation sensor manager. The input

method used by the fragment is determined by the type of sensor that is returned by

this sensor manager. If it is the null sensor, the touchscreen is used to control the game.

Otherwise the returned sensor is used. While the different systems are automatically

created by the fragment, they still have to be started and stopped by the activity. To

do this the class provides start and stop methods that do this for all systems managed

by the fragment. These methods are synchronized which allows them to be called in

different threads. This way the main thread is not blocked while the graphics and audio

system load or decode assets. The fragment sets the vertical field of view used by the

OpenGL renderer to 40 degrees.

92

8.2 Demo Application

Also included in the module is a fragment that manages a single thread that can be

used to load data in the background. While the thread is working on a task, a dialog

containing a loading indicator is displayed on the activity managing the fragment. It also

allows the execution of code on the main thread after a task is done, similarly to the

AsyncTask class defined in the Android API.

8.2 Demo Application

To demonstrate the capabilities of the different frameworks implemented as part of this

thesis, a demo application was created. It implements a game where the user has to

locate a target purely based on the sounds it emits. This means that when the game is

started, the target is not visible. Instead it is only audible, with its sound transformed

using HRTFs to appear to come from a specific direction. The user can hold their

Android device in front of them and start rotating, like when taking a picture, to try and

locate it. The game reacts to this rotation and adjusts the audio output. When the user

believes the virtual target to be in front of their device, they can press a button to trigger

a virtual camera. Instead of using sensors to detect the rotation, the touchscreen can

also be used to play the game. In that case the user can simply scroll left or right to

rotate the game world. When the virtual camera is triggered, the target is made visible.

The game also shows the user how far off the mark they hit as well as the time they

took to find the target.

The game can be customized using different settings. Besides the choice between

sensors and the touchscreen as primary input device, the user can choose if they want

to see a darkened version of the game backdrop while searching or if only a blank

screen should be shown. It is also possible to lock the orientation when the result is

shown. Otherwise the user is allowed to further look around, which can be useful if they

missed the target and want to look where it would have been.

When first started, the main menu of the application, shown in Figure 8.1a, is displayed.

Here a game can be started by choosing one of the two currently implemented game

modes. The first mode starts a game where the user has to search each enabled

target exactly once, then the game is over. The other type of game does not have a

predetermined end. Instead, after every round a new target is added and the previous

one is removed. This way the game will only end when the user quits it by pressing the

back button. These games can also be configured using the dialog shown in Figure 8.1b.

93

8 Application

(a) Main menu screen (b) Game configuration dialog

Figure 8.1: Main menu of the demo application

Here the user can choose which targets should be used in the games and which are

disabled as well as if ambient background audio should be played during the game. The

application settings can be accessed using the action bar.

Both game modes are implemented based on a common abstract game activity class.

This class handles setting the screen orientation to the format preferred by the user and

initializing the rotation sensor manager. The asset caches used by the game systems

are managed by the application object. This way they are global and can keep assets

cached after a game is ended. If the Android system requests the application to trim

its memory usage all cache entries are invalidated which makes them available for

garbage collection. This happens when the system starts to run out of memory or when

the application is moved into the background. The game interface is implemented in

94

8.2 Demo Application

Figure 8.2: Game result screen of the demo application

a separate fragment. In the game activity an instance of this fragment is displayed

on top of an instance of the game render fragment. This effectively projects the user

interface elements on top of the rendered game world (see Figure 8.2). The base game

activity class also handles saving the game state when the activity is destroyed and

restoring it on recreation. This way a game can be continued even after the activity was

interrupted. When restoring the game world, a special component is used to identify the

target entities in the game world. Any call to the game engine that might result in assets

being loaded is executed in a background thread, using the loading fragment described

in the previous section. The game is paused while this happens and a progress dialog

is shown if loading takes longer than a few milliseconds.

The common game activity also handles the setup of the game world. It creates the

panorama component and, if enabled by the user, adds the decorative tree entities.

If ambient background audio is enabled the activity also creates the entity necessary

for its playback. The target entities are not created by this class. Instead, this task is

delegated to the implementing subclasses. In the endless game variant, this is handled

by creating a new target entity after the search for the previous one is finished. In

the other game mode all targets are created during the game world initialization. The

methods that are called when the game state changes, for example from the search

state to showing the result screen, are all designed to be overridable. This flexibility

makes it possible to implement these and other game modes using the abstract base

game activity class.

95

9
Evaluation

To evaluate the quality of the audio localization when using the application a study was

carried out. In this chapter the methods used to conduct the study and its results will be

described. Then these results will be compared to the results achieved by two other,

similar applications that were developed for different mobile operating systems.

9.1 Participants and Methods

The study had a total of 24 participants. Four of these participants were female. The

average age of the subjects was 27.2, with a standard deviation of 8.6. The youngest

participant was 21 and the oldest was 64 years of age. One participant did not disclose

their age. Two of the subjects indicated that they were affected by tinnitus.

In addition, each participant was asked to rate their experience level with both mobile

devices and videogames. This was done on a scale of one to five with one being the

least and five being the most experience. The experience with mobile devices had an

97

9 Evaluation

average rating of 4.2 with a standard deviation of 1.1. The experience with video games

had an average rating of 3.5 with a standard deviation of 1.4. Each subject also was

asked what smartphone operating system (OS) they usually use. With 19 users, Android

was the most popular mobile OS. Apple’s iOS had 3 users and Microsoft’s Windows

Phone had 2 users. One participant indicated they don’t usually use a smartphone and

one participant uses both Android and Windows Phone regularly.

Each subject played the game in three different modes. In the first mode, the participant

had to locate a bird by the sounds it was emitting. No ambient audio was used at this

stage. The second mode added a second target in the form of a frog. For this round

the subjects had to first find the bird, which was identical to the one used in the first

mode, and then the frog. Finally, the third round added ambient audio in the form of

rainforest noises. Otherwise it was identical to the second mode. The participants used

headphones and were asked to repeat each mode three times. For each round the time

required by the subject to find the target as well as the difference between the actual

and the guessed position was recorded. The sounds used for the targets were identical

to the ones available in the demo application described in the previous chapter.

9.2 Results

During the study 378 measurements were recorded by the Android application. The

expected number of measurements would have been 360, meaning several participants

replayed a game mode after they reached the required number of three repetitions.

There are also three cases where a participant quit a game before completing it. Both

can be attributed to accidental inputs while handling an unfamiliar device. If a user

accidentally quit a game session prematurely, they might have decided to replay the

game, resulting in the higher than expected number of individual play sessions. Since

the subjects had to have full control over the smartphone while playing the game in

order to use the sensor input method, monitoring for such errors proved to be difficult.

For the purposes of the following analysis, all recorded measurements are taken into

account.

Using R [64] a linear mixed effect model [62] of the relationships between the time

each participant took to complete a game and the different game settings was created.

The game mode and the target were used as fixed effects, the identification number

of the participant was entered as a random effect. The analysis of variance (ANOVA)

98

9.2 Results

0 25 50 75 100

Single target: Bird

Multiple targets: Bird

Frog

With ambient audio: Bird

Frog

Time in seconds

Figure 9.1: Playtime on the Android device by game mode and target

calculated for this model shows a possible significance for the game mode (F (2, 351) =
4.20, p = 0.016). The target the participant searched for is probably not significant

(F (1, 351) = 3.77, p = 0.053). For further analysis the results of the measurements

taken with the first game mode, which uses only a single target, are excluded. The

remaining two game modes both use two targets, but only one uses ambient audio.

The new model uses the game mode, the target and their interaction as fixed effects.

Here neither the remaining game modes (F (1, 276) = 3.78, p = 0.053), nor the target

(F (1, 276) = 3.49, p = 0.063) show convincing significance. The interaction between

the game mode and the target is also not significant (F (1, 276) = 1.00, p = 0.319). A

boxplot of the playtime measurements, grouped by game mode and target, is shown in

Figure 9.1.

A similar analysis was done for the absolute offset angles achieved by the participants.

The same fixed and random effects as in the time analysis where used. Here the

ANOVA shows no significance for the game mode (F (2, 351) = 0.37, p = 0.69). The

target on the other hand is significant (F (1, 351) = 8.68, p = 0.003). As before, the

measurements taken using the single target game mode are removed for further

analysis. This shows that the interaction between game mode and target is also not

significant for the offset angle (F (1, 276) = 0.57, p = 0.451). Otherwise the target is still

significant (F (1, 276) = 8.55, p = 0.004) while the game mode is not (F (1, 276) = 0.27,

p = 0.605). A boxplot of the offset angle measurements, grouped by game mode and

target, is shown in Figure 9.2.

99

9 Evaluation

0 90 180

Single target: Bird

Multiple targets: Bird

Frog

With ambient audio: Bird

Frog

Offset angle in degrees

Figure 9.2: Offset angles on the Android device by game mode and target

To further analyze the data the measurements for each valid combination of user, game

mode and target were aggregated by calculating the mean of both time and absolute

offset angle. This results in a new set of 120 aggregated measurements. Using the

aggregated data the average time and offset angles were calculated. The average time

the participants took to find the target was 12.1 s with a standard deviation of 11.5 s. The

average offset angle was 20.6◦ with a standard deviation of 32.1◦. Table 9.1 shows the

averages itemized in regard to the different game modes and targets. The impact of the

outliers on the calculated averages can be reduced by using the median instead of the

mean. The median time was 9.2 s and the median offset angle was 7.2◦.

Mode Target
Time Offset

Average SD Average SD

Any
Bird 11.3 s 11.4 s 23.6◦ 37.5◦

Frog 13.4 s 11.8 s 16.1◦ 21.5◦

Single target Bird 10.4 s 6.0 s 18.2◦ 28.6◦

Two targets
Bird 13.1 s 16.5 s 27.8◦ 39.2◦

Frog 14.0 s 13.6 s 16.4◦ 21.2◦

With ambient audio
Bird 10.4 s 8.4 s 24.9◦ 41.8◦

Frog 12.8 s 9.2 s 15.9◦ 21.4◦

Table 9.1: Averages for the aggregated evaluation results itemized by game
mode and target

100

9.3 Comparison

9.3 Comparison

Similar applications to the one described in this thesis were developed for Apple’s

iOS and Microsoft’s Windows Phone. A device independent version based on web

technologies was also developed. During the study each participant used all four

applications. In this section, the data measurements recorded by the iOS and Windows

Phone devices will be compared to the data measured on the Android device.

First a linear mixed effect model is created using the combined data of the Android,

the iOS and the Windows Phone application. In addition to the game mode and the

target the used operating system is also entered as a fixed effect. The participant

remains the only random effect. This model is then used to explore the relationship

of the measured time values to the different factors. An ANOVA calculated for this

model shows strong significance for both the operating system (F (2, 1082) = 44.05,

p < 0.0001) and the target (F (1, 1082) = 20.71, p < 0.0001). While the game mode is not

significant (F (2, 1082) = 1.60, p = 0.203), the interaction between operating system and

game mode possibly is (F (4, 1082) = 3.01, p = 0.017). By keeping the effects, the same

model is also used to analyze the absolute angle offset values. The OS again shows

strong significance (F (2, 1082) = 8.90, p = 0.0001). The game mode (F (2, 1082) = 0.91,

p = 0.401), the target (F (1, 1082) = 0.02, p = 0.882) and the interaction between

operating system and game mode (F (4, 1082) = 1.74, p = 0.138) are not significant.

To analyze the interaction between the target and the other effects, the data from the

Effect DF
Time Offset

F p F p

OS (2, 852) 33.55 < 0.0001 10.67 < 0.0001

Mode (1, 852) 0.60 0.438 0.11 0.745

Target (1, 852) 24.76 < 0.0001 0.020 0.889

OS × Mode (2, 852) 4.28 0.014 1.46 0.233

OS × Target (2, 852) 0.90 0.407 9.24 0.0001

Mode × Target (1, 852) 1.54 0.214 1.52 0.218

OS × Mode × Target (2, 852) 3.88 0.021 0.23 0.796

Table 9.2: ANOVA of the combined data of any multi-target game mode played
on the Android, iOS or Windows Phone version

101

9 Evaluation

0 40 80 120 160

Android

iOS

Windows Phone

Time in seconds

Figure 9.3: Playtimes on the different operating systems

single target game mode is removed again. The results of an ANOVA on this data is

shown on in Table 9.2. This data shows a strong significance for the interaction of the

operating system with the target regarding the achieved angel offset. The interaction

between the operating system and the game mode is also possibly significant regarding

the time value. A boxplot comparing the playtime values measured using the different

operating systems is shown in Figure 9.3. A comparison of the absolute offset angles is

shown in Figure 9.4.

To better compare the individual results of the applications, every valid combination of

operating system, user, game mode and target was aggregated by calculating the mean

of both time and absolute offset angle. This results in 120 aggregated measurements for

both Android and iOS. The Windows Phone version is missing data for two combinations,

OS Target
Time Offset

Average SD Average SD

All
Bird 11.5 s 9.1 s 17.8◦ 25.4◦

Frog 14.2 s 9.8 s 19.1◦ 22.6◦

Android
Bird 11.3 s 11.4 s 23.6◦ 37.5◦

Frog 13.4 s 11.8 s 16.1◦ 21.5◦

iOS
Bird 8.5 s 4.8 s 11.3◦ 16.6◦

Frog 11.8 s 7.3 s 16.2◦ 21.5◦

Windows Phone
Bird 14.8 s 8.9 s 18.6◦ 14.0◦

Frog 17.5 s 9.0 s 25.0◦ 24.1◦

Table 9.3: Comparison of the aggregated evaluation results itemized by operat-
ing system and target

102

9.3 Comparison

0 90 180

Android

iOS

Windows Phone

Offset angle in degrees

Figure 9.4: Offset angles on the different operating systems

resulting in 118 aggregated measurements. The average time the participants took

to finish a game on the iOS version was 9.8 s with a standard deviation of 6.1 s. This

compares favorably to the Android version’s 12.1 s. The Windows version has an

average play time of 15.8 s with a standard deviation of 9.0 s. The average of all available

aggregated measurements is 15.6 s with a standard deviation of 9.5 s. When comparing

the absolute offset angles, the iOS version achieved the best results with an average of

13.3◦ and a standard deviation of 18.8◦. With 20.6◦ the Android version has only slightly

better results than the Windows version, which has an average of 21.1◦ and a standard

deviation of 18.9◦. The overall average of the measured absolute angle offset is 18.3◦

with a standard deviation of 24.3◦. The same calculations were also done for each

individual target with the results shown in Table 9.3.

103

10
Conclusion

In this chapter the results of this project are summarized. This includes a comparison

of the requirements for the application and its frameworks with its actual capabilities.

An outlook over possible future improvements is also given.

10.1 Results

The goal of this project was the creation and evaluation of an Android application that

lets a user react to auditory stimulations. This goal was achieved by implementing a

game that uses positional audio as its primary game mechanic. An evaluation was also

done in a study where the Android application was compared to similar applications

implemented on other operating systems. The positional audio capabilities are usable

independently of the main application. They can be accessed using the positional

audio API designed as part of this project. This API is implemented using OpenAL

and HRTFs. In addition, a loader class for Ogg-Vorbis audio files was created that can

105

10 Conclusion

be used in conjunction with the positional audio API. On top of that, a reusable game

engine module was designed and implemented. This facilitates the creation of similar

games and may serve as a framework for future application with a similar design.

10.2 Requirements Comparison

This section compares the implemented functionality of the frameworks and the applica-

tion with the requirements specified in chapter 2. Both functional and non-functional

requirements are considered.

FR1 Android application for auditory stimulation

A demo application with the required capabilities was created and is de-

scribed in section 8.2.

FR2 Positional audio sources

Implemented using OpenAL and HRTFs.

FR3 Ambient audio sources

Implemented using OpenAL. Setting the distance of a positional audio

source to zero will make it an ambient audio source.

FR4 Per-source audio volume control

Implemented using OpenAL.

FR5 Audio file format

A class to decode files in the compressed Ogg-Vorbis audio format was

implemented as part of the audio API.

FR6 Audio framework

A positional audio API was designed and is described in section 5.2. An

implementation based on OpenAL that fulfills FR2 to FR4 is also provided.

FR7 Rotation detection using sensors

Different types of rotation sensors are supported using the sensor API

described in section 5.3.

106

10.2 Requirements Comparison

FR8 Alternative input using the touch screen

Supported as fallback if no sensor is available.

FR9 Graphics for the game

Implemented using OpenGL.

FR10 Picture representation of the target

Implemented using the billboard rendering technique with OpenGL.

FR11 Panorama picture as backdrop

Implemented using OpenGL.

FR12 Reusable game engine

A flexible game engine was designed and implemented. It is described in

chapter 7.

FR13 Display results to the user

Implemented as part of the demo application

NFR1 Backwards compatibility

All frameworks and the demo application are backwards compatible to

Android version 2.3.3.

NFR2 Small application package

A release build of the demo application has an APK size of 8 Megabytes.

The assets, stored as compressed Ogg-Vorbis, PNG or JPEG files, take

up 4.8 Megabytes of this APK. With ABI splitting the size of the application

package can be reduced to 7.2 Megabytes.

NFR3 Code documentation

All interfaces and classes of the project are documented using JavaDoc or

Doxygen comments.

NFR4 Extensibility and reusability

The application was designed with both reusability and extensibility in mind.

Most features are located in framework packages that are usable outside

the application.

107

10 Conclusion

NFR5 Good audio localization

Of the 24 participants that took part in the study, 18 managed to localize the

different targets with an average accuracy of less than 20 degrees. Twelve

subject even achieved an average of less than 10 degrees. It is currently

unclear why the remaining 6 participants could not achieve this level of

accuracy.

10.3 Future Work

While the project reached its goals, there are still several ways both the framework as

well as the game application could be extended and improved. One possibility would

be to improve the audio API by adding support for true three dimensional audio by

allowing the user to set the elevation of audio sources. With these capabilities the

application could be extended with a game mode that requires the user to guess the

position of an audio source in two dimensions. Since OpenAL supports the positioning

of audio sources in three dimensions, the implementation should be straightforward.

Another way to improve the audio framework would be to allow the user of the API

to specify the HRTF definition file that will be used by OpenAL. The challenge with

implementing this feature would be that OpenAL only parses its configuration file on

startup. Loading a different HRTF file while the application is running would require

either significant changes to the OpenAL source code or a way to reload the native

library during runtime.

The application itself could also benefit from future improvements. It could be extended

with new game modes that employ some of the features provided by the game engine

that are not currently used. A new game mode could for example use moving targets to

increase the challenge presented to the user. Another currently not utilized feature are

the audio filters, which could also be used to create more a new variation of the game.

Another way to increase the replayability of the game would be to simply increase

the number of assets used by the application. A bigger variation in possible targets,

backdrops and ambient audio files would make the game a more interesting experience

for returning players.

108

List of Figures

3.1 A PCM encoder and decoder [4] . 10

3.2 A generic digital signal filter . 10

3.3 Multiplication of a signal with g . 11

3.4 Summation of two signals . 11

3.5 Delay of a signal by k samples . 11

3.6 Calculation of yn as the result of the convolution of x(n) and h(n) 12

3.7 A finite impulse response filter . 12

3.8 An infinite impulse response filter . 13

3.9 The coordinate system used for positional audio 14

3.10 Localization errors caused by ambiguity [52] 15

3.11 The cone of confusion [2] . 16

3.12 A KEMAR dummy head with pinnae [61] 17

3.13 Convolution using a separate FIR filter for each ear [2] 18

4.1 Project module dependencies . 20

4.2 Java package dependencies . 21

5.1 Audio API interfaces . 33

5.2 Managed Audio API classes . 37

5.3 A biquad filter in direct form 1 [68] . 40

5.4 Possible device orientations . 45

5.5 Sensor API classes . 50

5.6 Sensor world coordinate systems [37] 51

6.1 OpenAL file mapper operation . 57

6.2 OpenAL classes . 58

7.1 Game engine package dependencies 62

109

List of Figures

7.2 The game world, the player and three entity objects 63

7.3 Component instance lifecycle . 69

7.4 The event manager class . 70

7.5 Game data classes . 71

7.6 The field of view when rendering the game world 76

7.7 A quad build by using two triangles . 80

8.1 Main menu of the demo application . 94

8.2 Game result screen of the demo application 95

9.1 Playtime on the Android device by game mode and target 99

9.2 Offset angles on the Android device by game mode and target 100

9.3 Playtimes on the different operating systems 102

9.4 Offset angles on the different operating systems 103

110

List of Source Codes

4.1 Gradle project properties . 23

5.1 Angle class . 30

5.2 AudioData class . 32

5.3 Disposable interface . 33

5.4 AudioBackend interface . 34

5.5 AudioBackend.Factory interface . 34

5.6 AudioBuffer interface . 35

5.7 AudioSource interface . 35

5.8 ObservableDisposable class . 36

5.9 ManagedAudioBackend class . 38

5.10 ManagedAudioBuffer class . 38

5.11 ManagedAudioSource class . 39

5.12 AudioFilter interface . 39

5.13 AudioFilterChain class . 40

5.14 BiquadAudioFilters class . 41

5.15 AudioDeviceInfo class . 43

5.16 WaveFile class . 43

5.17 OggVorbisFile class . 44

5.18 MediaFile class . 44

5.19 RotationSensor interface . 45

5.20 RotationSensor.Factory interface 46

5.21 AbstractRotationSensor class . 47

5.22 SensorFilter interface . 48

5.23 SensorFilterChain class . 48

5.24 NullSensor class . 50

111

List of Source Codes

5.25 MagneticFieldSensor class . 51

5.26 SynthesizedSensor class . 52

6.1 OpenAL configuration file . 56

7.1 Component interface . 65

7.2 BaseComponent class . 66

7.3 ComponentContainer class . 67

7.4 ComponentListener interface . 68

7.5 Player class . 70

7.6 PlayerListener interface . 71

7.7 World class . 72

7.8 Entity class . 73

7.9 PolarPosition class . 74

7.10 EngineContext interface . 74

7.11 AssetBufferReference class . 75

7.12 GraphicsContext interface . 76

7.13 OpenGLRenderer class . 77

7.14 OpenGLSubRenderer interface . 77

7.15 BlendingShaderProgram class . 79

7.16 VertexQuad class . 80

7.17 TextureBufferManager class . 81

7.18 AudioContext interface . 84

7.19 AudioPlayer class . 85

7.20 AudioSystem class . 86

7.21 AudioBufferManager class . 87

7.22 InputContext interface . 88

7.23 SensorInput class . 88

7.24 TouchViewInput class . 89

112

List of Tables

9.1 Averages for the aggregated evaluation results itemized by game mode

and target . 100

9.2 ANOVA of the combined data of any multi-target game mode played on

the Android, iOS or Windows Phone version 101

9.3 Comparison of the aggregated evaluation results itemized by operating

system and target . 102

113

List of Acronyms

ABI application binary interface

ANOVA analysis of variance

API application programming interface

APK Android application package

BSD Berkeley software distribution

CD compact disc

CPU central processing unit

DF degrees of freedom

DSL domain-specific language

DSP digital signal processing

FIFO first in, first out

FIR finite impulse response

GCC GNU compiler collection

GNU GNU’s not unix

GPU graphics processing unit

HRIR head-related impulse response

HRTF head-related transfer function

HTML HyperText markup language

IDE integrated development environment

115

List of Acronyms

IID interaural intensity difference

IIR infinite impulse response

ITD interaural time difference

JNI Java native interface

JPEG joint photographic experts group

JSR Java specification request

JVM Java virtual machine

KEMAR Knowles Electronics mannequin for acoustics research

LGPL GNU lesser general public license

MIT Massachusetts institute of technology

MP3 MPEG-2 audio layer III

MPEG moving picture experts group

NDK native development kit

OS operating system

PCM pulse code modulation

PNG portable network graphics

POSIX portable operating system interface

SD standard deviation

SDK software development kit

TRI tinnitus research initiative

UI user interface

116

Bibliography

[1] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-Time Ren-

dering. 3rd ed. CRC Press, 2008. ISBN: 978-1439865293.

[2] Durand R. Begault. 3-D Sound for Virtual Reality and Multimedia. National

Technical Information Service, 2000.

[3] Joshua Bloch. Effective Java. 2nd ed. Addison-Wesley, 2008. ISBN: 978-

0321356680.

[4] Marina Bosi and Richard E. Goldberg. Introduction to Digital Audio Coding

and Standards. The Springer International Series in Engineering and

Computer Science. Springer, 2003. ISBN: 978-1402073571.

[5] Patrick Brady. “Anatomy and Physiology of an Android”. In: Google I/O

Developer Conference 2008. (May 28–29, 2008).

[6] Robert Bristow-Johnson. Cookbook formulae for audio EQ biquad filter

coefficients. URL: http://www.musicdsp.org/files/Audio-EQ-

Cookbook.txt (visited on June 6, 2015).

[7] Douglas S. Brungart, Brian D. Simpson, and Alexander J. Kordik. The

detectability of headtracker latency in virtual audio displays. Georgia In-

stitute of Technology, 2005.

[8] Jos J. Eggermont and Larry E. Roberts. “The neuroscience of tinnitus”. In:

Trends in neurosciences 27.11 (2004), pp. 676–682.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley, 1995. ISBN: 978-0201633610.

117

http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt

Bibliography

[10] Bill Gardner and Keith Martin. HRTF Measurements of a KEMAR Dummy-

Head Microphone. URL: http://sound.media.mit.edu/resources/

KEMAR.html (visited on July 4, 2015).

[11] Google. Action Bar. URL: http://developer.android.com/guide/

topics/ui/actionbar.html (visited on July 9, 2015).

[12] Google. Activity class. URL: http://developer.android.com/

reference / android / app / Activity . html (visited on July 12,

2015).

[13] Google. Android NDK. URL: https://developer.android.com/

ndk/index.html (visited on July 9, 2015).

[14] Google. Android NDK Preview. URL: http://tools.android.com/

tech-docs/android-ndk-preview (visited on July 11, 2015).

[15] Google. Android SDK. URL: https://developer.android.com/

sdk/index.html (visited on July 9, 2015).

[16] Google. Android Studio Overview. URL: http://developer.android.

com/tools/studio/index.html (visited on July 6, 2015).

[17] Google. AutoCloseable interface. URL: http://developer.android.

com/reference/java/lang/AutoCloseable.html (visited on

June 4, 2015).

[18] Google. Closeable interface. URL: http : / / developer . android .

com/reference/java/io/Closeable.html (visited on June 4,

2015).

[19] Google. Context class. URL: http://developer.android.com/

reference/android/content/Context.html (visited on June 4,

2015).

[20] Google. Dashboards. URL: https://developer.android.com/

about/dashboards/index.html (visited on Aug. 18, 2015).

118

http://sound.media.mit.edu/resources/KEMAR.html
http://sound.media.mit.edu/resources/KEMAR.html
http://developer.android.com/guide/topics/ui/actionbar.html
http://developer.android.com/guide/topics/ui/actionbar.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/ndk/index.html
https://developer.android.com/ndk/index.html
http://tools.android.com/tech-docs/android-ndk-preview
http://tools.android.com/tech-docs/android-ndk-preview
https://developer.android.com/sdk/index.html
https://developer.android.com/sdk/index.html
http://developer.android.com/tools/studio/index.html
http://developer.android.com/tools/studio/index.html
http://developer.android.com/reference/java/lang/AutoCloseable.html
http://developer.android.com/reference/java/lang/AutoCloseable.html
http://developer.android.com/reference/java/io/Closeable.html
http://developer.android.com/reference/java/io/Closeable.html
http://developer.android.com/reference/android/content/Context.html
http://developer.android.com/reference/android/content/Context.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html

Bibliography

[21] Google. Design For Reduced Latency. URL: https://source.android.

com/devices/audio/latency_design.html (visited on June 7,

2015).

[22] Google. Experimental Plugin User Guide. URL: http://tools.android.

com/tech-docs/new-build-system/gradle-experimental

(visited on July 11, 2015).

[23] Google. Fragments. URL: http://developer.android.com/guide/

components/fragments.html (visited on Aug. 22, 2015).

[24] Google. GLSurfaceView.Renderer interface. URL: http://developer.

android.com/reference/android/opengl/GLSurfaceView.

Renderer.html (visited on July 12, 2015).

[25] Google. Guava: Google Core Libraries for Java. URL: https://github.

com/google/guava (visited on July 6, 2015).

[26] Google. Handler class. URL: http://developer.android.com/

reference/android/os/Handler.html (visited on June 9, 2015).

[27] Google. Improving Code Inspection with Annotations. URL: http://

developer . android . com / tools / debugging / annotations .

html (visited on July 6, 2015).

[28] Google. Managing Audio Focus. URL: http://developer.android.

com/training/managing-audio/audio-focus.html (visited on

Aug. 9, 2015).

[29] Google. Material Design for Android. URL: http://developer.android.

com/design/material/index.html (visited on July 9, 2015).

[30] Google. MediaCodec class. URL: http://developer.android.com/

reference/android/media/MediaCodec.html (visited on July 27,

2015).

[31] Google. OpenGL ES. URL: http : / / developer . android . com /

guide/topics/graphics/opengl.html (visited on July 28, 2015).

[32] Google. “OpenSL ES for Android”. In: Android NDK documentation.

119

https://source.android.com/devices/audio/latency_design.html
https://source.android.com/devices/audio/latency_design.html
http://tools.android.com/tech-docs/new-build-system/gradle-experimental
http://tools.android.com/tech-docs/new-build-system/gradle-experimental
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/reference/android/opengl/GLSurfaceView.Renderer.html
http://developer.android.com/reference/android/opengl/GLSurfaceView.Renderer.html
http://developer.android.com/reference/android/opengl/GLSurfaceView.Renderer.html
https://github.com/google/guava
https://github.com/google/guava
http://developer.android.com/reference/android/os/Handler.html
http://developer.android.com/reference/android/os/Handler.html
http://developer.android.com/tools/debugging/annotations.html
http://developer.android.com/tools/debugging/annotations.html
http://developer.android.com/tools/debugging/annotations.html
http://developer.android.com/training/managing-audio/audio-focus.html
http://developer.android.com/training/managing-audio/audio-focus.html
http://developer.android.com/design/material/index.html
http://developer.android.com/design/material/index.html
http://developer.android.com/reference/android/media/MediaCodec.html
http://developer.android.com/reference/android/media/MediaCodec.html
http://developer.android.com/guide/topics/graphics/opengl.html
http://developer.android.com/guide/topics/graphics/opengl.html

Bibliography

[33] Google. ProGuard. URL: http://developer.android.com/tools/

help/proguard.html (visited on July 9, 2015).

[34] Google. Responding to Touch Events. URL: http://developer.android.

com/training/graphics/opengl/touch.html (visited on Aug. 10,

2015).

[35] Google. Sensor class. URL: http://developer.android.com/

reference/android/hardware/Sensor.html (visited on June 10,

2015).

[36] Google. SensorEvent class. URL: http://developer.android.com/

reference/android/hardware/SensorEvent.html (visited on

June 10, 2015).

[37] Google. SensorManager class. URL: http://developer.android.

com/reference/android/hardware/SensorManager.html (vis-

ited on June 10, 2015).

[38] Google. Support Library. URL: http://developer.android.com/

tools/support-library/index.html (visited on July 9, 2015).

[39] Google. Versioning Your Application. URL: http://developer.android.

com / tools / publishing / versioning . html (visited on July 8,

2015).

[40] Gradle. Gradle - Endgame Open-Source Enterprise Build Automation.

URL: https://gradle.org/ (visited on July 9, 2015).

[41] Gradle. The Gradle Wrapper. URL: https://docs.gradle.org/

current/userguide/gradle_wrapper.html (visited on July 6,

2015).

[42] Chet Haase and Dan Sandler. “What’s new in Android”. In: Google I/O

Developer Conference 2015. (May 28–29, 2015).

[43] Dimitri an Heesch. Doxygen. URL: http://www.stack.nl/~dimitri/

doxygen/ (visited on July 9, 2015).

120

http://developer.android.com/tools/help/proguard.html
http://developer.android.com/tools/help/proguard.html
http://developer.android.com/training/graphics/opengl/touch.html
http://developer.android.com/training/graphics/opengl/touch.html
http://developer.android.com/reference/android/hardware/Sensor.html
http://developer.android.com/reference/android/hardware/Sensor.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorManager.html
http://developer.android.com/reference/android/hardware/SensorManager.html
http://developer.android.com/tools/support-library/index.html
http://developer.android.com/tools/support-library/index.html
http://developer.android.com/tools/publishing/versioning.html
http://developer.android.com/tools/publishing/versioning.html
https://gradle.org/
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/

Bibliography

[44] Jochen Herrmann. Track your tinnitus. URL: https://www.trackyourtinnitus.

org/ (visited on Aug. 27, 2015).

[45] Garin Hiebert. OpenAL 1.1 Specification and Reference. 2005. URL: http:

//openal.org/documentation/openal-1.1-specification.

pdf (visited on June 18, 2015).

[46] Information Society Technologies. Listen HRTF Database. URL: http:

//recherche.ircam.fr/equipes/salles/listen/index.html

(visited on July 4, 2015).

[47] 3D Working Group of the Interactive Audio Special Interest Group. Inter-

active 3D Audio Rendering Guidelines - Level 2.0. Sept. 20, 1999.

[48] Kitware. CMake. URL: http://www.cmake.org/ (visited on July 9,

2015).

[49] Peter M. Kreuzer, Veronika Vielsmeier, and Berthold Langguth. “Chronic

tinnitus: an interdisciplinary challenge”. In: Deutsches Ärzteblatt Interna-

tional 2013 (2013), pp. 278–284.

[50] Eric Lafortune. ProGuard. URL: http://proguard.sourceforge.

net/ (visited on July 9, 2015).

[51] Aage R. Moller, Berthold Langguth, Goran Hajak, Tobias Kleinjung, and

Anthony Cacace. Tinnitus: Pathophysiology and Treatment. Progress in

Brain Research. Elsevier Science, 2007. ISBN: 9780080554464.

[52] Henrik Møller. “Fundamentals of Binaural Technology”. In: Applied acous-

tics 36.3 (1992), pp. 171–218.

[53] Juhan Nam, Miriam Kolar, and Jonathan Abel. “On the Minimum-phase

Nature of Head-Related Transfer Functions”. In: The 125th Audio Engi-

neering Society Convention. San Francisco, CA, USA: AES, 2008.

[54] Robert Nystrom. Game Programming Patterns. ISBN: 978-0990582908.

[55] Oracle. javadoc - The Java API Documentation Generator. URL: http:

/ / docs . oracle . com / javase / 7 / docs / technotes / tools /

windows/javadoc.html.

121

https://www.trackyourtinnitus.org/
https://www.trackyourtinnitus.org/
http://openal.org/documentation/openal-1.1-specification.pdf
http://openal.org/documentation/openal-1.1-specification.pdf
http://openal.org/documentation/openal-1.1-specification.pdf
http://recherche.ircam.fr/equipes/salles/listen/index.html
http://recherche.ircam.fr/equipes/salles/listen/index.html
http://www.cmake.org/
http://proguard.sourceforge.net/
http://proguard.sourceforge.net/
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html

Bibliography

[56] Oracle. JNI Functions. URL: http://docs.oracle.com/javase/7/

docs/technotes/guides/jni/spec/functions.html (visited on

June 1, 2015).

[57] Oracle. JSR 305: Annotations for Software Defect Detection. URL: https:

//jcp.org/en/jsr/detail?id=305.

[58] Oracle. The Invocation API. URL: https : / / docs . oracle . com /

javase/7/docs/technotes/guides/jni/spec/invocation.

html (visited on June 1, 2015).

[59] Oracle. The try-with-resources Statement. URL: https://docs.oracle.

com/javase/tutorial/essential/exceptions/tryResourceClose.

html.

[60] Avery Pennarun. git-subtree - Merge subtrees together and split repos-

itory into subtrees. URL: https://raw.githubusercontent.com/

git/git/master/contrib/subtree/git-subtree.txt.

[61] Chris Pike. Listen Up! Binaural Sound. URL: http://www.bbc.co.

uk/blogs/researchanddevelopment/2013/03/listen- up-

binaural-sound.shtml (visited on July 4, 2015).

[62] Jose Pinheiro, Douglas Bates, Saikat DebRoy, Deepayan Sarkar, and

R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R pack-

age version 3.1-121. 2015. URL: http://CRAN.R-project.org/

package=nlme.

[63] Nick Prühs. “Komponentenweise: Component-Based Entity Systeme in

Spielen”. In: iX Developer (2015), pp. 70–74.

[64] R Core Team. R: A Language and Environment for Statistical Computing.

Version 3.2.2. R Foundation for Statistical Computing. Vienna, Austria,

2015. URL: https://www.R-project.org/.

[65] Chris Robinson. OpenAL Soft. URL: http://kcat.strangesoft.

net/openal.html (visited on June 18, 2015).

122

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
https://jcp.org/en/jsr/detail?id=305
https://jcp.org/en/jsr/detail?id=305
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/invocation.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/invocation.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/invocation.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://raw.githubusercontent.com/git/git/master/contrib/subtree/git-subtree.txt
https://raw.githubusercontent.com/git/git/master/contrib/subtree/git-subtree.txt
http://www.bbc.co.uk/blogs/researchanddevelopment/2013/03/listen-up-binaural-sound.shtml
http://www.bbc.co.uk/blogs/researchanddevelopment/2013/03/listen-up-binaural-sound.shtml
http://www.bbc.co.uk/blogs/researchanddevelopment/2013/03/listen-up-binaural-sound.shtml
http://CRAN.R-project.org/package=nlme
http://CRAN.R-project.org/package=nlme
https://www.R-project.org/
http://kcat.strangesoft.net/openal.html
http://kcat.strangesoft.net/openal.html

Bibliography

[66] David Sachs. “Sensor Fusion on Android Devices: A Revolution in Motion

Processing”. In: Google Tech Talk. (Aug. 2, 2012).

[67] Winfried Schlee, Isabel Lorenz, Thomas Hartmann, Nadia Müller, Han-

nah Schulz, and Nathan Weisz. “A global brain model of tinnitus”. In:

Textbook of Tinnitus. Springer New York, 2011, pp. 161–169. ISBN: 978-

1607611448.

[68] Julius O. Smith. Introduction to Digital Filters with Audio Applications.

URL: https://ccrma.stanford.edu/~jos/filters/ (visited

on July 22, 2015).

[69] The Khronos Group. OpenSL ES Specification Version 1.0.1. Sept. 24,

2009. URL: https://www.khronos.org/registry/sles/specs/

OpenSL_ES_Specification_1.0.1.pdf (visited on June 18, 2015).

[70] The Open Group Base Specifications Issue 7. IEEE 1003.1. 2013.

[71] Elizabeth M. Wenzel, Marianne Arruda, Doris J. Kistler, and Frederic

L. Wightman. “Localization using nonindividualized head-related trans-

fer functions”. In: The Journal of the Acoustical Society of America 94.1

(1993), pp. 111–123.

[72] Jörg Weske. Digital Sound and Music in Computer Games. URL: http:

//3daudio.info/gamesound/games.html (visited on June 23,

2015).

[73] Working Draft, Standard for Programming Language C++. ISO N3337.

Jan. 16, 2012.

[74] Xiph.Org Foundation. Vorbis audio compression. URL: https://xiph.

org/vorbis/ (visited on July 10, 2015).

[75] Xiph.Org Foundation. Vorbis.com FAQ. URL: http://www.vorbis.

com/faq/ (visited on June 8, 2015).

123

https://ccrma.stanford.edu/~jos/filters/
https://www.khronos.org/registry/sles/specs/OpenSL_ES_Specification_1.0.1.pdf
https://www.khronos.org/registry/sles/specs/OpenSL_ES_Specification_1.0.1.pdf
http://3daudio.info/gamesound/games.html
http://3daudio.info/gamesound/games.html
https://xiph.org/vorbis/
https://xiph.org/vorbis/
http://www.vorbis.com/faq/
http://www.vorbis.com/faq/

Name: Jan-Dominik Blome Matrikelnummer: 642979

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Jan-Dominik Blome

	Introduction
	Goal of this Thesis
	Tinnitus
	Structure of this Thesis

	Requirements Specification
	Functional
	Non-Functional

	Audio Fundamentals
	Digital Audio
	Binaural Audio
	Head-Related Transfer Functions

	Architecture
	Project Structure
	Build System
	Gradle
	CMake

	External Dependencies
	Java Dependencies
	Native Dependencies

	Documentation

	Framework
	Utility Libraries
	Audio API
	Basic Classes
	Positional Audio API
	Abstract Helper Classes
	Audio Filters
	Audio Utilities

	Sensor API
	Rotation Sensor API
	Sensor Data Filters
	Available Sensor Implementations

	OpenAL
	The OpenAL Library
	Build Process
	Configuration
	Audio API Implementation

	Game Engine
	Architecture
	Structure
	Components

	Engine
	Components API
	Game Data Classes
	Utility Classes

	Graphics
	Rendering Process
	Panorama Renderer
	Entity Renderer

	Audio
	Input

	Application
	Common Application Classes
	Demo Application

	Evaluation
	Participants and Methods
	Results
	Comparison

	Conclusion
	Results
	Requirements Comparison
	Future Work

	List of Figures
	List of Source Codes
	List of Tables
	List of Acronyms
	Bibliography

