
Towards the Automation of E-Negotiation
Processes Based on Web Services -

A Modeling Approach?

Stefanie Rinderle1?? and Morad Benyoucef2

1Dept. DBIS, University of Ulm, Germany, rinderle@informatik.uni-ulm.de
2 School of Management, University of Ottawa, Canada

benyoucef@management.uottawa.ca

Abstract. E-Negotiation is the process of conducting negotiations be-
tween business partners using electronic means. The interest in
e-negotiation is motivated by its potential to provide business partners
with more efficient processes, enabling them to draft better contracts
in less time. Most of today’s e-marketplaces support some form of e-
negotiation. Numerous attempts are being made to design e-marketplaces
that support more than one negotiation protocol. The main problem in
designing these e-marketplaces is the lack of a systematic approach. In
our view, the e-marketplace enforces negotiation protocols and therefore
should make them available for consultation by humans and for automa-
tion by software agents. Separating the protocols from the e-negotiation
media is a step towards a configurable e-marketplace. In this paper we
address the requirements for modeling e-negotiation protocols. Then we
adopt the Statechart formalism as a modeling language and provide de-
scriptions of five commonly used e-negotiation protocols. Finally, we dis-
cuss how we move from these Statechart descriptions of the protocols to
modeling the interactions between the e-marketplace participants using
a web service orchestration language.

1 Introduction

Contracts are the basis for creating business relationships between organiza-
tions. A possible sequence of contract operations includes: (1) the establishment
phase where the parties negotiate the terms of the contract; and (2) the per-
formance phase where the contract is monitored and enforced [1]. The recent
developments of electronic means for communication and collaboration between
business partners led to the emergence of electronic contracting (e-contracting)
as an alternative to manual contracting. By integrating their IT infrastructures
with those of their partners, traditional businesses move a step closer towards
becoming real e-businesses. We believe e-contracting to be a cornerstone in that

? This work was conducted as part of a SSHRC funded project on Electronic Negoti-
ations, Media, and Transactions for Socio-Economic Transactions.

?? This research work was conducted during a post doctoral stay at the School of
Management, University of Ottawa, Canada

integration. Electronic negotiation (e-negotiation) is defined as the process of
conducting negotiations between business partners using electronic means. The
interest in e-negotiation is motivated by its potential to provide business part-
ners with more efficient processes, enabling them to arrive at better contracts in
less time. The research community recognizes three categories of e-negotiation
systems [2]: (1) negotiation support systems assist users with communication
and decision-making activities; (2) negotiation software agents replace users in
their communication and decision-making activities; and (3) e-negotiation me-
dia provide a platform that implements a negotiation protocol. There are two
categories of e-negotiation media: servers which implement multiple protocols,
and applications which implement a single protocol. Traditionally, applications
have dominated negotiation design, but lately, the importance of servers has
increased, and a need for configurable servers is being felt [3]. Attempts were
made to design configurable e-negotiation media to support more than one ne-
gotiation protocol. They were partially successful, but they were designed in an
ad-hoc manner. Some of these attempts were: the AuctionBot [4] which supports
the configuration of various auctions; GNP [5] which separates auction specifi-
cations from the logic of the server, and eAuctionHouse [6] which allows for the
configuration of auctions with the help of an expert system. Recently, Kersten
et al. [7] designed a configurable negotiation server that supports bargaining,
based on a process model which organizes negotiation activities into phases; and
a set of rules that govern the processing, decision-making, and communication.
The main problem in designing e-negotiation media is the lack of a systematic
approach. Indeed, to this day, design has been a trial-and-error process. We pro-
pose a new model for configurable e-negotiation systems in which “e-negotiation
media” is the electronic marketplace (e-marketplace) where human and software
participants meet to negotiate deals. We refer to “negotiation software agents”
as automated negotiation systems. In our model, automated negotiation systems
provide a framework for the existence of software agents. The e-marketplace en-
forces negotiation protocols, and therefore should make these protocols available
for consultation (by humans), and for automation purposes (by automated ne-
gotiation systems). Separating the protocols from the e-negotiation media is a
first step towards a configurable e-marketplace. Separating negotiation strategies
from protocols will also give flexibility to the design of automated negotiation
systems. The design of e-marketplaces will have a direct effect on the design of
automated negotiation systems. Fig. 1 clarifies this model.

(1) Negotiation protocols are designed, formally specified, and made available
to the e-marketplace. (2) Negotiation strategies are designed, formally specified,
and made available to the automated negotiation system. (3) The e-marketplace
configures the negotiation based on the protocol. (4) The automated negotiation
system obtains the protocol from the e-marketplace and uses it (5) along with the
negotiation strategies to configure the software agent. (6) Automated negotiation
takes place. In this paper we only detail the e-marketplace part of the framework.
The other part will be elaborated in future publications.

The first objective of this paper is to investigate and assess various formalisms
for specifying negotiation protocols, suggest a set of requirements for a formalism

that enables configurable e-marketplaces, and select and apply a formalism that
satisfies the requirements.

E-Marketplace Automated Negotiation

System

Negotiation

Protocol

Software

Agent

Negotiation

Strategies

6Negotiation

Engine

53

21

4

Internet

Fig. 1. Model for Configurable e-Marketplaces and Automated Negotiation Systems

Businesses are moving towards exposing their services on the web, hoping
to interact more efficiently with their partners and to achieve high levels of au-
tomation at lower cost. The second objective of this paper is to propose a service
oriented architecture (SOA) for our model. According to Kim and Segev [8] web
services are the most appropriate way to deploy e-negotiation systems for the
following reasons: (1) relationships between negotiating partners are dynamic
therefore run-time binding is preferable to design-time binding; (2) negotiation
is part of procurement, therefore interoperability with internal and external IT
systems is important; and (3) web services provide a standardized and flexible
integration technology that no organization can afford to ignore if it wants to
interact with its partners. Web services provide the means for software compo-
nents to communicate with each other on the web using XML. A web service
describes itself (using WSDL), can be located (using UDDI), and invoked (us-
ing SOAP). A SOA will permit, for instance, an online auction to be deployed
on the e-marketplace, and located and invoked through the web by a distant
Automated Negotiation System. A web services orchestration language will be
used to describe the negotiation process on the e-marketplace. The paper is or-
ganized as follows: In Section 2 we propose a set of requirements for a formal
specification of e-negotiation protocols and assess different formalisms based on
these requirements. Section 3 presents Statechart models for five commonly used
e-negotiation protocols. In Section 4 we provide an approach towards the im-
plementation of e-negotiation processes within a SOA. In Section 5 we discuss
related work and close with a summary and an outlook in Section 6.

2 Requirements for Modeling E-Negotiation Protocols

In this section we state and discuss a set of requirements for describing1 e-
negotiation protocols using common business process modeling formalisms. We
proceed in two steps by first summarizing general requirements for business pro-
cess modeling and then by discussing special requirements in the context of mod-
eling e-negotiation protocols. Based on this, different formalisms are assessed.
Finally we select the formalism that best meets our requirements.
1 Throughout the paper we interchangeably use the terms formal description, model-

ing, and representation for the same purpose.

2.1 General Requirements for Business Process Modeling

There are different formalisms for modeling business processes, e.g., Petri Nets
or Statecharts. General requirements for comparing these formalisms are:
Expressiveness/Completeness: A first important requirement is the expres-
sive power of the formalism; i.e., which constructs (e.g., sequences, parallel
branchings, loops) are supported by the respective formalism. Intensive research
has been spent on this question within the workflow patterns project
(www.workflowpatterns.com). Important workflow patterns have been identi-
fied and commercial workflow systems as well as standard formalisms have been
compared to each other regarding their support of these patterns [9]. Like other
formalisms (e.g., Petri Nets), Activity Diagrams and Statecharts support the
majority of the standard workflow patterns and even some which are typically
not supported by commercial Workflow Management Systems (WfMS) [10].
Formalization/Verification: It is very important to precisely define the syntax
and semantics of a formalism for business process modeling in order to be able
to detect modeling errors or inconsistencies (e.g., deadlock causing cycles) at
design-time. Petri Nets, for example, provide a sound mathematical foundation
such that their dynamic behavior can be examined at design-time. Statecharts as
defined in [11] also have a formal specification and a precise operational semantics
which enables the use of standard verification methods [12].
Automation: In many projects the modeling of business processes comes prior
to their automation within, for example, a WfMS. In this case the choice of
a business process modeling formalism may also be dependent on whether the
processes can be directly executed (e.g., using Petri Nets) or whether or not there
exists a mapping to an executable formalism. In the context of process execution
within a SOA (which is a major goal within the e-negotiation application domain
[8]), the orchestration of web services has become very important. Therefore it is
beneficial to use a formalism for which a mapping to a web service orchestration
language, for instance the Business Process Execution Language for Web Services
(BPEL4WS), can be found. Examples of such model-driven approaches include
mappings from Statecharts or Activity charts to BPEL4WS [13, 14].

2.2 Specific Requirements for Modeling E-Negotiation Protocols

In addition to these general requirements there are also requirements which are
especially important in the context of describing e-negotiation protocols.
Design for Reactive Systems: When modeling e-negotiation protocols it is
often required to express situations in which the system is waiting for a message
(e.g., making a new offer). From this two important requirements can be de-
rived: (1) the modeling formalism should allow to model wait states [10] as well
as (2) the sending and receiving of messages. In contrast to many other modeling
formalisms Statecharts fulfill both requirements [10]. Statecharts are transition
systems where arcs are labeled by Event-Conditions-Action rules. If the State-
chart is in a given state then it waits (see (1) above) until a certain event under

a certain condition triggers an action and the system transits to another state.
Such events may be sending or receiving messages (see (2) above).
Understandability/Compactness: In order to increase user acceptance, busi-
ness process models should be easy to understand. In particular, models of e-
negotiation protocols should be compact and clear. [12] argues that, for instance,
Statecharts are perceived by users as being more intuitive and easier to learn
than alternative business process modeling formalisms such as Petri Nets. In con-
trast with activity-oriented formalisms, Statecharts usually lead to much more
compact process models as we know from comparative studies. In summary
Statecharts meet all the requirements discussed in this section. In particular the
compact and understandable representation of the e-negotiation protocols has
convinced us to select this formalism for our approach.

3 Statechart Models for Five Commonly-Used
E-Negotiation Protocols

In this section we provide Statechart models for five commonly-used e-negotiation
protocols. We will not discuss the details of the Statechart models since they are
self-explanatory. Understandability (see Section 2.2.2) is one of the man require-
ments of the description formalism. Since the language is complete these models
can be modified as needed. Generic templates can also be provided to be used
as building blocks for new negotiation protocols.
Fixed Price: The Statechart depicted in Fig. 2a) describes the fixed price sale.
This protocol (also called the “take-it-or-leave-it” protocol) is a special case of
e-negotiations where there is no exchange of offers and counter-offers. A unique
offer is created by an “offer to sell” message from the seller which can either be
accepted by a buyer or can be withdrawn by the seller to close the negotiation.
English Auction: Fig. 2b) shows the Statechart description of the English
auction protocol. Each buyer receives an update message containing the bid
submitted by a rival buyer and can respond to it with a counter-bid. The auction
is closed after a certain time. We modeled this by using the hierarchical state
Auction closed which contains the final states Deal and No Deal2. There is a
deal if there is at least one bid and the last bid exceeds the reserve price [15].
Dutch Auction: Dutch auctions are often used to sell perishable goods such
as vegetables or airplane seats where the seller starts with a high price and
gradually decreases this price [16]. The Statechart depicted in Fig. 2c) reflects
a Dutch auction for an arbitrary number of items, i.e., buyers can specify how
many items they will purchase at the current price.
Bargaining: The bargaining protocol is a two-party negotiation model since
both the seller and the buyer can make offers. As can be seen from Fig. 2d)
the initial offer is made by the seller. Note that there may be other variations
where, for example, initial offers from the buyer are also possible. In order to
keep the number of states low we parameterized the offer messages such that we
can distinguish between a regular counter-offer and a final offer.
2 In our models final states are recognized by the absence if outgoing edges.

Double Auction: Within a double auction (cf. Fig. 2e) buyers and sellers are
bidding at the same time. A match between a seller’s and buyer’s bid implies a
deal. We represented the matchmaking within a clearing phase which is again
modeled by using the hierarchical state Auction closed.

Offer Deal

No deal

Offer_to_sell(seller_id, product_description, price)

[Registered(seller_id)]

update(product_description, price)

Withdraw_offer(seller_id)

/ close_negotiation

Accept_offer(buyer_id)

[Registered(buyer_id)]

/ update(notification)

 update_inventory

Fixed price

Offer
Clearing

Deal

No deal

Auction closed

Offer_to_sell(seller_id, product_description)

[Registered(seller_id)]

/ update(product_description)

New_bid(buyer_id, bid)

[Registered(buyer_id)

 bid > highest_bid]

/ highest_bid := bid

 winner := buyer_id

 update(winner, highest_bid)

 [inactivity_period > limit timeout]

/ update(“closing”)

[number_of_bids < 0

 highest_bid < reserve_price]

 update(“no_deal”)

 [number_of_bids > 0

 highest_bid >= reserve_price]

 / update(notification)

English auction

Offer Deal

Auction closed

Offer_to_sell(seller_id, product_description, price, current_amount)

[Registered(seller_id)]

/ update(product_description, price, current_amount)

 [timeout price = reserve_price]

/ update(“closing”)

Accept_offer(buyer_id, amount)

[Registered(buyer_id) amount <= current_amount]

/ update(notification)

 current_amount := current_amount - amount

Dutch auction (n items)

New_offer(seller_id, decrement)

[Registered(seller_id) decrement > 0]

/ price := price - decrement

 update(price, current_amount)

[current_amount > 0]

[current_amount = 0]

/ update(“closing”)

Deal

No deal

Offer_to_sell(seller_id, product_description, price, st)

[Registered(seller_id)]

/ update(product_description, price, st)

Refuse_offer(seller_id)

[Registered(seller_id)]

/ update(notification)

Bargaining

New_offer(buyer_id, price, bt)

[Registered(buyer_id) st <> “final”]

/ update(price, bt)

New_offer(seller_id, price, st)

[Registered(seller_id) bt <> “final”]

/ update(price, st)

Refuse_offer(buyer_id)

[Registered(buyer_id)]

/ update(notification)

Accept_offer(buyer_id)

[Registered(buyer_id)]

/ update(notification)

Accept_offer(seller_id)

[Registered(seller_id)]

/ update(notification)

S_Decision B_Decision

Double auction

S_Offer

B_Offer

Offer

Offer_to_sell(seller_id, price)

[Registered(seller_id)]

/ update(price)

Offer_to_buy(buyer_id, price)

[Registered(buyer_id)]

/ update(price) [
ti

m
eo

u
t]

 \
 u

p
d

at
e
(“

cl
o

si
n
g

”)

Clearing

Deal

No deal

Auction closed

[nomatch]

Match(seller_id, buyer_id)

[Registered(seller_id)

 Registered(buyer_id)]

/ update(match) update_offer

a) b)

c) d)

e)

Fig. 2. Statechart Models for Commonly-Used E-Negotiation Protocols

4 Implementation within a Service-Oriented Architecture

In this section we introduce our approach towards the automation of e-negotiation
processes within a SOA.

4.1 Why Use a Service-Oriented Architecture?

As pointed out in [8] it is crucial to provide automated e-negotiation systems in
order to build flexible inter-organizational supply chain systems. Traditionally,

e-negotiation processes have been carried out by humans registering themselves
at certain web pages, placing bids and making offers through fill-in forms, and re-
ceiving counter-offers of other participants by updating the respective web pages.
One major drawback of this human-centered way of e-negotiation is that the un-
derlying processes are not explicitly modeled but only kept within the human
minds. The next step towards automated e-negotiation systems was achieved
through software agents which acted as participants in the e-marketplace. In
this approach the e-negotiation processes are still not described in an explicit
manner. Though they are no longer kept in the human minds they are now
hard-coded within the implementation of the software agents. This, in turn,
raises important problems regarding the flexibility of the systems in question.
Reason is that each process change taking place results in modifying the software
agent code. Therefore, on the one hand, an adequate solution for the automa-
tion of e-negotiation processes has to be based on the separatio5n of process
logic and program code of the invoked applications as realized, for example, in
WfMS. On the other hand, a very important requirement for the automation
of e-negotiation processes is the adequate support of interoperability between
the partner processes in the e-negotiation application domain. In order to meet
this requirement, the dynamic invocation of web services within a SOA is the
most appropriate approach [8]. Using a SOA also supports the interoperability
between internal and external systems of the particular partners. This is crucial
since e-negotiation processes are generally part of larger procurement or sales
processes [8]. Generally, within a SOA a service provider registers a web service
offering a certain functionality (e.g., placing a bid) with a service broker. If a
service requester is searching for a certain service it can find the corresponding
web service by asking the service broker. The service broker provides a link to
the service provider to which the requester can bind. The communication be-
tween the parties involved is based on SOAP. Since web services themselves are
stateless web service orchestration languages have been developed in order to
compose web services into long-running processes. One example for such web
service orchestration languages is BPEL4WS. Going back to our Statechart de-
scription of e-negotiation protocols and considering a SOA implementation for
such protocols it is clear that we need to model the interactions between partic-
ipants in a given e-negotiation protocol. A web service orchestration language is
the obvious solution in this case. The following section provides the BPEL4WS
processes for the English and Dutch auction.

4.2 Web Service Orchestration for E-Negotiation Processes

Fig. 3a) depicts the BPEL4WS process model for the English auction. In order
to illustrate our approach we use an abstract visualization here. The English auc-
tion process is initiated if the e-marketplace receives an “offer-to-sell” message
from the seller (activity type receive). Using a switch construct a conditional
branch is inserted afterwards in order to check whether the seller is registered
or not. If so, an update broadcast message is sent using an invoke activity. The
bidding phase is modeled using a while construct. The e-marketplace waits until

it receives a “new bid” message from the buyer. After checking the registration,
the e-marketplace assigns the new highest bid and sends an update broadcast
message including the current highest bid to all participants. If the while loop
is terminated by a timeout or by exceeding the inactivity period an update
message is sent to all participants indicating that the auction has been closed.
Finally, depending on whether there is a deal or not a respective update message
is sent to all. Note that in a concrete implementation we precisely distinguish
between the different message types. For the sake of understandability we used
an abstract update broadcast message type in Fig. 3a). Finding a mapping be-
tween the parameterized event messages used within the Statechart models (cf.
Fig. 2) and the messages sent within the BPEL4WS processes is one important
challenge of our future work.

E-Marketplace (English Auction)
Offer_to_sell

offerupdate

Inactivity_period < limit AND
 timeout = FALSENew_bid

bid

Offer

Registered = TRUE AND

bid > highest_bid

assign

Seller

Offer_to_sell

update

Buyer
i
 (i = 1,..,n)

New_bid

update

otherwise

receive invoke

empty switch while

variable

port

otherwiseRegistered = TRUE

numberOfBids>0 AND

highest_bid > reserve_priceotherwise

update

update update

update

E-Marketplace (Dutch Auction)

current_amount > 0 AND

timeout = FALSE AND

 price > reserve_price

Offer

Accept_offer New_offer

assign

decrement > 0otherwise

Seller

Offer_to_sell

New_offer

update

Buyer
i
 (i = 1,..,n)

Accept_offer

update

otherwise
amount <= current_amount AND

Registered = TRUE

amount
decrement

offer

receive invoke empty

switch while

variable

portpick

Offer_to_sell

otherwiseRegistered = TRUE

update

update

update

update

a) b)

Fig. 3. Web Service Orchestrations for English and Dutch Auction

To initiate a Dutch auction the same BPEL4WS pattern (a receive activity
waiting for an “offer to sell” from the seller plus a switch construct checking
the registration) can be used as in the English auction (cf. Fig. 3b). Finding
such patterns is important in order to provide generic e-negotiation protocol
templates within the service-oriented e-marketplace. These templates may then
be modified and mapped to BPEL4WS processes. The initial phase is followed by
a while loop. Here the e-marketplace waits until either a buyer sends an “accept
offer” message or the seller sends a “new offer” message. This is modeled using
a pick construct. After the auction is closed by terminating the while loop an
update broadcast message including all necessary information is sent.

5 Discussion

In [15] different price negotiation protocols such as fixed price sale or the Dutch
auction are described using finite state machines. The authors aim at discover-
ing common elements, such as basic activities, within auction services in order
to provide a design for an auction software. Though finite state machines are a
formally founded formalism, Statecharts provide additional constructs (e.g., hier-
archical states) which make them better suited for the modeling of e-negotiation
protocols. Rolli and Eberhart [17] propose a reference model for describing and
running auctions as well as an associated three-layered architecture which is
prototypically implemented using a BPEL4WS editor. The processes are then
executed within a Java environment. The definition of a reference model and an
associated architecture is important. However, it remains unclear how the auc-
tion processes are fed into the system. Apparently they are modeled manually
using BPEL4WS which might be a complex task for users in general. Therefore
our approach of providing generic Statechart models for auction protocols which
can then be automatically mapped to web service orchestrations is complemen-
tary to the approach proposed by Rolli and Eberhart. Kim and Segev [8] also
follow an approach for establishing a web-service enabled e-marketplace. The
authors provide a Statechart description for one e-negotiation protocol and the
corresponding BPEL4WS process. In this paper we adopt the idea of providing
understandable models for e-negotiation protocols and to automate them within
a SOA. In [18] e-negotiation protocols are modeled using the Petri Net formal-
ism. Special focus is put on the modeling of attributes which reflect the different
strategies the participants in the e-negotiation might adopt. In this paper we
focus on the understandability of e-negotiation protocols and therefore we use
Statecharts instead of Petri Nets. We also address the question of automating
the e-negotiation processes within a SOA afterwards. Chiu et al. [19] present
an interesting approach for developing e-negotiation plans within a web services
environment. The authors provide meta models for e-contract templates and
e-negotiation processes which can be used to set up the concrete e-negotiation
processes within a web service environment. Though this approach is generic we
believe that providing (generic) e-negotiation templates (i.e., Statechart mod-
els) to users which can be individually modified and immediately mapped onto
executable web service orchestrations is more intuitive and user-friendly.

6 Summary and Outlook

In this paper we introduced Statechart models for five commonly-used e-negotiation
protocols. For that we first systematically elaborated the requirements for mod-
eling e-negotiation protocols and select the Statechart formalism as the most
appropriate one. We discussed the importance of automating the corresponding
e-negotiation processes within a service-oriented environment in order to meet
the flexibility and interoperability requirements of the e-negotiation application
domain. In order to illustrate our ideas we presented the web service orches-
trations for the English and the Dutch auctions which were executed in a web

service environment. In the future we will work on formalizing a mapping be-
tween the Statechart models of the e-negotiation protocols and the corresponding
web service orchestrations. Based on this mapping it will be possible to provide
generic e-negotiation protocol templates to users which are understandable and
adaptable. If such a protocol template is chosen and possibly adapted it can
be immediately mapped to a BPEL4WS process and then executed in a web-
service enabled e-marketplace. This will increase user acceptance and application
of e-negotiations and e-marketplaces in practice.

References

1. Goodchild, A., Herring, C., Milosevich, Z.: Business contracts in B2B. In: Work-
shop on Infrastructures for Dynamic B2B Service Outsourcing. (2000)

2. Bichler, M., Kersten, G., Strecker, S.: Towards a structured design of electronic
negotiations. GDN 12 (2003) 311–335

3. Neumann, D., Benyoucef, M., Bassil, S., Vachon, J.: Applying the MTL taxonomy
to state of the art e-negotiation systems. GDN 12 (2003) 287–310

4. Wurman, P., Wellman, M., Walsh, W.: The michigan internet auctionbot. In:
Autonomous Agents. (1998) 301–308

5. Benyoucef, M., Keller, R., Lamouroux, S., Robert, J., Trussart, V.: Towards a
generic e-negotiation platform. In: Re-Technologies for Inf. Syst. (2000) 95–109

6. University of Washington: The eAuctionHouse (2002)
7. Kersten, G., Law, K., Strecker, S.: A software platform for multi-protocol e-

negotiations. Technical report, An InterNeg Research Report 04/04 (2004)
8. J.B. Kim, Segev, A.: A web services-enables marketplace architecture for negotia-

tion process management. Decision Support Systems. 40 (2005) 71–87
9. Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. DPD

14 (2003) 5–51
10. Dumas, M., Hofstede, A.: UML activity diagrams as a workflow specification

language. In: UML’02. (2001) 76–90
11. Harel, D.: Statecharts: A visual formulation for complex systems. Scientific Com-

puter Programming 8 (1987) 231–274
12. Muth, P., Wodtke, D., Weienfels, J., Kotz-Dittrich, A., Weikum, G.: From cen-

tralized workflow specification to distributed workflow execution. JIIS 10 (1998)
159–184

13. Baina, K., Benatallah, B., Casati, F., Tournani, F.: Model-driven web service
development. In: CAiSE’04. (2004) 290–306

14. Mantell, K.: From UML to BPEL. Model-driven architecture in a web services
world. Technical report, IBM Research (2003)

15. Kumar, M., Feldman, S.: Business negotiations on the internet. Technical report,
IBM Research (1998)

16. Kumar, M., Feldman, S.: Internet auctions. Technical report, IBM Research (1998)
17. Rolli, D., Eberhart, A.: An auction reference model for describing and running

auctions. In: Wirtschaftsinformatik. (2005)
18. Simon, C., Rebstock, M.: Integration of multi-attributed negotiations within busi-

ness processes. In: BPM’04. (2004) 148–162
19. Chiu, D., Cheung, S., Hung, P., Chiu, S., Chung, A.: Developing e-negotiation

support with a meta-modeling approach in a web services environment. Decision
Support Systems 40 (2005) 51–69

