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Abstract

When modifying existing information systems, one might face some difficulties at best, a night-

mare at worst. This is commonly caused by the Big Ball of Mud design anti-pattern [FY97],

leading to “code that does something useful, but without explaining how” [Eva04]. To tackle this

problem, Eric Evans suggests Domain-Driven Design (DDD) for the creation of new software

systems [Eva04]. Having a model based on a shared language at its core, DDD helps to im-

prove the understanding and thereby facilitates communication between the involved parties.

As DDD was designed for new systems, the question naturally arises at this point, whether and

how DDD-based architectures can be created from existing information systems. The applica-

tion of DDD to an existing information system might result in benefits in communication and

maintenance while minimizing development risks. To evaluate the feasibility, the existing Time

Slot Management system of MERCAREON GmbH is used as a research object for this thesis.

To evaluate DDD for refactoring existing information systems, this work first extracts business

knowledge from an existing information system. This knowledge is comprised of the used

terms, supported operations and the data accessed by these operations. Based on this, DDD

models are created both manually, and automatically to be used for refactoring towards an

architecture with a domain model at its core. In order to automatically generate models, sev-

eral transformation approaches are utilized, artifact-model transformations generate the initial

DDD model, multiple model-model transformations transform the initial model into a more ab-

stract DDD model, and model-artifact transformations ultimately generate source code based

on the DDD model.

The approach has to be flexible enough to support continuous changes as the Time Slot Man-

agement system by MERCAREON is constantly maintained and improved.

To handle the challenges arisen from continuous maintenance, a Java prototype for the creation

of DDD models has been developed accordingly and is presented in this work as well. It

not only supports the creation of the model but also helps to track and communicate the

impact of changes on the model. Furthermore, bubble strategies, which are also suggested by

Eric Evans [Eva13], were evaluated as a strategy to evolve from an original architecture to one

with a domain model at its core.

Based on a proof of concept dealing with a Live Yardview, a new view for the current Time Slot Man-

agement system implemented as a DDD style, the approach of this work shows promise for the

evolution of an existing system towards a DDD-based one.
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1
Introduction

1.1 Motivation

One way to tackle complexity involved with information systems1 is through abstraction,

problem decomposition, and separation of concerns. Software architects aim to achieve

this by moving the focus from programming to solution modeling resulting in a more

human-friendly abstraction [SK03]. Over time, several different model solutions have

been proposed, such as Domain-Driven Design (DDD) [Eva04]. Having a model at its core,

DDD supports the creation of a more safe and sound software architecture as well as it

aims to be as human-friendly as possible.

Software architecture, as defined by Ralph Johnson, is a subjective, shared understanding

of a system’s design by the system’s expert developers [Joh02]. This understanding

ranges from knowledge what the major components of a system are to how they interact.

Also, it contains early design decisions that are perceived to be important and are hard to

revert in the later stages of the project [Joh02].

The question arises what steps have to be taken when software architecture outgrows

it’s original purpose, slowly drifting towards a Big Ball of Mud [FY97] which is an anti-

pattern for software systems lacking perceivable architecture and therefore increasing

maintenance efforts and costs. Architectural refactoring, as suggested by Stal [Sta07]

was designed to solve this problem. Though it was suggested in 2007, this refactoring

method is still in its infancy today [Zim15].

1An information system, in this context, is a software system “for collecting, storing, and processing data and
for providing information, knowledge, and digital products” [Bri16]
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1 Introduction

This thesis examines the possibility of applying architectural refactoring towards DDD

on an existing information system. The challenge faced is that DDD was meant for the

creation of new green or brown field systems but not for refactoring existing ones.

1.2 Problem Statement

Architectural refactoring is a common topic in today’s software development. When

information systems have evolved over time, they become difficult to maintain. This is

due to the fact that system’s architectures become obsolete as most were not designed

to be adapted to new requirements. By utilizing architectural refactoring, the obsolete

architectures can be adapted to the new needs. This leads to the problem that the

new refactored architecture will also become obsolete over time. For this reason, the

refactored system should have an adaptable architecture removing the need of repetitive

refactorings and therefore reducing costs in the future. Domain-Driven Design provides

such an architecture by being based on an adaptive model.

The MERCAREON company (see Section 2.1) decided to incorporate a new software

architecture in their Time Slot Management System (see Section 2.2). This brings MER-

CAREON in the difficult situation of having to maintain the system while adding new

desired features. By choosing Domain-Driven Design (see Chapter 3) as the future archi-

tecture, MERCAREON aims to reduce maintenance time and cost by making the system’s

architecture more human-friendly.

The problem faced with DDD is that it was not designed for architectural refactoring

process. Therefore, a mapping of the old architecture towards DDD is required in order to

extract the knowledge for Domain-Driven Design from the existing information system in

an efficient way. This mapping must be created in a feature complete way supporting fast

adaptation, thus, the question arises whether parts often being subject to change like En-

tities (see Section 3.4.1), Value Objects (see Section 3.4.2), Aggregates (see Section 3.4.3),

and Services (see Section 3.4.5) could be obtained automatically whereas parts, seldom

changed, like Modules (see Section 3.3.4) and Bounded Contexts (see Section 3.3.2) are

2



1.3 Goal

maintained manually. Furthermore, protective layers must be created preventing the leak

of unrelated information into the new architecture (see Section 3.4.7).

1.3 Goal

The goal of MERCAREON is to obtain a Domain-Driven Design based software architecture

which can immediately be used for the development of new features integrated in the

old system’s architecture while the old architecture is step by step refactored to the new,

DDD-based architecture. When the architectural refactoring process is complete, the

Time Slot Management system (TSM system) will mainly be powered by an architecture

having a domain model at it’s core. The goal of deploying this new architecture, driven

by an ubiquitous language, is to impact communication, to reduce misunderstandings,

and providing improved communication channels. Additionally, a model based, better

structured, and self-explanatory code base facilitates the code maintenance. This in turn,

improves the shipping time of new features due to the ability to adapt the model to new

requirements while assuring an overall high quality of code.

Therefore, the goal of this work is to find and establish an approach to refactor the old

system’s architecture to the new DDD-based architecture by extracting knowledge such

as Ubiquitous Language (see Section 3.2) and Business Operations (see Section 5.1.2)

from the old system used as a basis for the new DDD-based system. The approach must

support that system changes can easily be verified and translated to the new DDD driven

system architecture later on. As discussed in Section Problem Statement (see Section 1.2),

the parts being subject to frequent changes should be translated to the DDD-based

architecture automatically. Finally, the DDD-based architecture is to be translated to Java

code automatically utilizing template based code generation.

1.4 Structure of Work

Firstly, the Chapter Context (see Chapter 2) discusses the reason and circumstances in

which this thesis was created highlighting the problems solved by this work. The Chap-

3



1 Introduction

ter Domain-Driven Design (see Chapter 3) explains DDD and its components, such as the

ubiquitous language, laying the theoretical groundwork for the heart of this work, the

architectural refactoring process. The Chapter Related Work (see Chapter 4) qualifies

other applicable modeling approaches and discusses a distributed database approach

showing similarities to this work’s approach. Then, the Chapter Domain-Driven Design for

an Existing Information System (see Chapter 5) describes the automatic creation of DDD

models ultimately enabling architectural refactoring. The Chapter Prototype (see Chap-

ter 6) utilizes the previously defined model-model transformation theory showcasing the

utilization and generation of fragments used by the architectural refactoring technique.

In addition, the refactoring is evaluated in a case study of the Live Yardview in the com-

pany of MERCAREON. Finally, the Chapter Conclusion and Future Work (see Chapter 7)

summarizes and concludes this thesis and points out possible future work.

Figure 1.1 shows the methodology used in this work. It starts with researching the

foundation of the topic (see Chapter 3) and continues with evaluating related work

(see Chapter 4). Next, combining the found approach with the techniques suggested by

Eric Evans [Eva04], the architectural refactoring approach is presented (see Chapter 5).

Finally, the approach is prototyped (see Chapter 6) and realized (see Section 6.5).

Related
Work

Refactoring
Approach

Prototype RealizationFoundation

Figure 1.1: Methodology
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2
Context

The goal of this chapter is to highlight the context in which this work was created. For

this, an overview of the MERCAREON company (see Section 2.1) is provided. Then their

Time Slot Management System (see Section 2.2) is presented showcasing its context and

challenges which ultimately lead to the creation of this work.

2.1 About MERCAREON

MERCAREON GmbH, part of the TRANSPOREON Group, is a software company located

in Ulm with a branch office in Poland, having currently 28 employees and being founded

in 2009. As the name indicates, the companies of the TRANSPOREON Group are creating

logistic software supporting the transport and management of goods. The company of

MERCAREON provides a software system which supports the delivery process of ordered

goods. As it is based on time slots, the system created by MERCAREON is called the

Time Slot Management system and was decided to be architectural refactored towards

Domain-Driven Design.

2.2 Time Slot Management System

The Time Slot Management system (TSM system) is a web based system enabling a Carrier

to book a specific time slot to deliver the goods he was ordered to transport.

When a Retailer orders goods from a Supplier, the Supplier procures the goods and assigns

the transport of the goods to a Carrier. As shown in Figure 2.1 in red, there was no

5



2 Context

definitive communication channel between the Carrier and the Retailer before the TSM

system was in effect. A Carrier usually used phone calls or transmitted lists via fax to

make delivery appointments leading to imprecise timed arrangements as there were

usually no information about the unloading capacities at a certain time. For the Carrier,

this situation meant inestimable waiting times until the transport vehicle was handled at

its destination. The Retailer had a logistic problem since he had no information on the

time of arrival nor the quantity of goods. Besides, the Supplier had no means of assessing

his Carriers in terms of efficiency.

SupplierRetailer Carrier

Order

Transport
AssignmentTSM

Figure 2.1: Environment of the Timeslot Management System1

With the help of a TSM system (see Figure 2.1), the Retailer enters the order, identified

by an order-number, into the system. When the Carrier gets the delivery assignment, a

time slot can be booked for the pending delivery by using the order number and providing

additional information such as how many goods are being transported enabling the TSM

system to calculate an estimated unloading duration. Thereby, the Retailer may perceive

the important information when the Carrier arrives and how long it approximately takes

to unload the delivery. Moreover, the Retailer can plan and additionally control deliveries

by constraining the bookable time slots (e.g. limiting slots for beverage deliveries at a

certain gate). Knowing when to deliver and how long the delivery takes, the Carrier

in turn has lower idle times and, thus, will likely save money. The supplier can view

statistics about the Carriers’ deliveries and, therefore, rate their effectiveness.

1adapted from MERCAREON GmbH
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2.3 Refactoring towards a Domain-Driven Design

2.3 Refactoring towards a Domain-Driven Design

Although the Time Slot Management system is running successfully, MERCAREON decided

to change the system’s architecture by introducing Domain-Driven Design.

The first reason originates from the TSM system’s long history. Before MERCAREON was

founded, TRANSPOREON had already worked on the creation of a TSM system in C#.

MERCAREON took over in the year of 2009 and ported the application from C# to Java

resulting in the system containing both MERCAREON and deprecated TRANSPOREON

terms that may confuse developers. Furthermore, when communicating in-house or with

customers, the staff of MERCAREON faces another type of communication problem: for

example, a customer care member has to make sure that he will not mix up both customer-

specific and in-house communication terms. In-house communication can thereby range

from talking to other customer care members, to TRANSPOREON colleagues, speaking

their own diverged dialect, or to the developers. This can be very daunting especially

when the system is evolving and is constantly being influenced by external factors such

as companies working with, or contributing to the TSM system. In addition, developers

of the system are based partly in Germany and partly in Poland. The spatial distance in

combination with fuzzy terms increases communication difficulties. To solve this issue,

an Ubiquitous Language (see Section 3.2) needs to be introduced as suggested by DDD.

Secondly, in systems with ever changing requirements, complexity is likely to increase

while maintainability decreases. The TSM system, in particular was created with a

traditional layered architecture. Further, it is deployed in an environment containing

various companies (Retailer, Supplier, and Carriers) continuously facing newly arising

requirements. Hence, the TSM system will likely suffer from rising complexity in the

future. As any architecture’s maintainability, Domain-Driven Design architectures will also

suffer from high complexity but not as much as traditional approaches (see Figure 2.2).

This is due to the fact that Domain-Driven Design (DDD) helps coping with the complexity

by using a domain model at its core abstracting reality to make it easier to grasp for

the developers and other involved parties [Eva04; Avr07]. With DDD program code is

simplified making it easier to grasp its meaning [Eva04] thus code starts to be part of the

documentation [Fow05a].

7



2 Context

Domain Complexity

Maitenence
Effords Domain Model

Table Module

Transaction Script

Figure 2.2: Maintenance Costs vs. Complexity of Domain Logic2

2adapted from [Fow02]
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3
Domain-Driven Design

Domain-Driven Design (DDD) is a Model-Driven Engineering (MDE) software development

approach designed “for complex needs by deeply connecting the implementation to an

evolving model of the core business concepts” [Git07]. It aims to provide practices and

terminology enabling design decisions which focus and accelerate the creation of complex

software. It therefore is neither a technology nor a methodology. [Git07]

The goal of this chapter is to introduce the DDD approach (see Figure 3.1) as required

for the architectural refactoring as stated in the Section Goal (see Section 1.3).

Ubiquitous Language

Model-Driven
Design

model gives structure to

Bounded Context

define model within

names
enter

Services

express model with

Domain Events

express model with
Entities

Value
Objects

express model with

express model with

Aggregates

encapsulate with

encapsulate with

act as root of

Repositories

access withaccess root with
publishes

Core & Subdomain

cultivate rich model with
mapped to one or multipe

(optimally one)

Module

names enter

partitions

Ports and Adapterspart of / protected by

communicates with

Figure 3.1: Domain-Driven Design Overview1

9



3 Domain-Driven Design

The approach has three premises: firstly, a collaboration between developers and domain

experts is required to get the conceptual heart of the problem (see Section 3.1). Secondly,

complex designs are based on models such as the ones suggested by Eric Evans (see Chap-

ter 3) or presented in the Related Work (see Chapter 4). Thirdly, the main focus should

be on the core domain and its domain logic (see Section 3.3.1) [Git07].

Eric Evans describes how models are utilized by DDD in three different ways [Eva04]:

The “backbone for language” – the Ubiquitous Language (see Section 3.2) – that is de-

rived from the Domain Model (see Section 3.1) specifies the terms used by the partic-

ipating parties and forms a foundation of DDD. [Eva04] Then models of the Strategic

Design (see Section 3.3) serve as distilled knowledge. Additionally, the models convey

how the domain model is structured while distinguishing the elements of most interest.

They are furthermore used to break down and relate concepts helping to select terms

defining the way of distributing the parts of the application and specifying the boundary

for components and external sub systems. The strategic design contains parts which are

seldom changed in later stages of the project and are therefore created manually. The

shared language supports involved developers and domain experts to transform their

knowledge into this second model usage [Eva04].

Lastly, the Tactical Design (see Section 3.4) is created by utilizing Model-Driven Design

(MDD) which helps to reflect the domain model in the systems’ software design. The

model thereby serves as a bridge to the implementation. The code can therefore be

grasped more easily as it is based on the model. The model contains the building blocks

of the system surrounding parts that are subject of frequent changes [Eva04]. Therefore,

their generation is automated as explained in Chapters 5 and 6.

When looking at the final software design, the strategic design represents the distribution

of code, modules and high level packages in system whereas tactical design contains low

level packages wrapping the actual different classes.

Ports and Adapters (see Section 3.4.7) then describes how a DDD-based architecture

combining both strategic and tactical design could look like.

1adapted from [Eva14]
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3.1 Domain Model

3.1 Domain Model

“ If the design, or some central part of it, does not map to the conceptual

domain model, that model is of little value, and the correctness of the

software is suspect.

”– Eric Evans, [Eva04]

When creating complex business software, problems arise when an understanding of

concepts is missing. For example, in order to create a booking software, proper un-

derstanding of the domain – the “sphere of knowledge, influence or activity” [Eva14] of

booking – is required. Knowledge of the problem can be obtained through inquiry of

domain experts. This approach leads to the problem, though, that an approach is required

to abstract the acquired knowledge which will finally lead to working code.

Eric Evans suggests to create a domain model in order to tackle this problem, which is an

internal representation of the domain [Eva04]. The domain model thereby stands for the

solution of the problem, an abstraction of the reality. For this, abstraction, refinement,

division, and grouping of the information gathered about the domain are required [Avr07].

The domain model is therefore the organized and structured distilled problem knowledge

containing the domain’s key concepts [Bro14]. It should be communicated to and shared

with all involved parties ensuring its integrity and supporting a common understanding.

When dealing with changing requirements, creating a perfect model covering all future

requirements is impossible. However, it can be continuously evolved ensuring to be as

close to the domain as possible [Avr07].

3.2 Ubiquitous Language

When working with a team of experts from multiple areas, a further challenge arises: the

communication barrier. As they rely on different concepts, experts being from different

areas face a problem of mutual understanding (see Figure 3.2). Experts from different

areas are speaking in their own language (e.g. developers speak of databases, events,

...) [Eva04]. Moreover, people tend to have a different language when communicating

11



3 Domain-Driven Design

Account

Retailer

Shipperschedule condition

location

dispa
tch state
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Figure 3.2: Communication Barrier between Stakeholders

in text or speech, they tend to create a “layman’s language”2 to communicate difficult

aspects [Avr07]. As an example for this, a developer could use the pictorial language of

a computer reading and writing on a note-book when trying to explain operations on

computer memory. This communication barrier proves to be a huge risk for projects since

misunderstandings drastically reduce the chance of success [Eva04].

To circumvent this problem, an ubiquitous language derived from the domain model

shared by all participating parties is required [Avr07; Eva04; Bro14]. As the word

“ubiquitous” states, the language is used by the involved experts and (third) parties not

only when creating the application but also when communicating with each other. It is

of importance not to mistake the ubiquitous language as a global and company wide

language. It is meant to have an ubiquitous meaning with unambiguous words and

phrases only in a specific part of a domain (see Section 3.3.1). In fact, the larger the

ubiquitous language boundary is, the higher the ambiguity making it more and more

“fuzzy”. Therefore, its boundaries have to be explicit helping to make it precise and well

defined [Vau13].

When developing the language, the domain’s key concepts are introduced whereby the

language’s nouns are mapped to objects and their associated verbs become part of their

behavior [Avr07].

2The use of simple terms that a person without specific knowledge in a complex area can understand.
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During the development of the system, especially with changing requirements, the

ubiquitous language must be continuously maintained and updated by the involved

domain experts. Whenever a domain expert thinks a phrase or word sounds wrong, he

should raise concerns so that the language can be further improved [Vau13; Eva04].

3.3 Strategic Design

Containing how to distill the domain into distinct parts small enough for the human mind

to handle, the strategic design is important for handling complexity.

This Section first discusses the Core and Subdomains (see Section 3.3.1), partitioning

the application based on the importance. In an optimal case, Bounded Contexts (see Sec-

tion 3.3.2), serving as a ubiquitous language barrier would be directly mapped. In reality,

however, they may intersect with one or more core or subdomains. Last, Modules (see Sec-

tion 3.3.4) are presented partitioning a bounded context into smaller logical units.

3.3.1 Core and Subdomains

The word domain is often misleading unfortunately. When used in the context of DDD,

the word might lead to the conclusion that the goal is to create an all-knowing model

of the whole business in DDD. This is not the case as already hinted in Section 3.2.

Creating a DDD model, the domain is partitioned naturally into the core domain and

several subdomains based on their business relevance. The former contains the heart of

the application: the critical core that will get the most attention in the shape of resources,

and experienced developers. It is supported by the subdomains, which can be divided into

supporting subdomains and generic subdomains. Subdomains come in these two different

forms helping to prevent the core domain to get overly complex and, thus, harder to

grasp [Eva04; Vau13].

When partitioning, the core domain can be determined by asking the following ques-

tions [Oli09]:

• What makes the system worth writing?

13
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• Why not buy it off the shelf?

• Why not outsource it?

Supporting subdomains offer supporting functions to the business or model aspects

of the business. Supporting subdomains are required, but are not as important as

the core domain. Therefore, more inexperienced developers can be assigned to the

teams responsible for the supporting subdomains or they might sometimes even be

outsourced [Vau13; Eva04; Oli09]. Generic subdomains contain parts that are not “core”

to the business but are still required. They contain specialties and support the system in

a generic way. However, they are still essential for the system’s function. Usually these

functions can be purchased or outsourced [Eva14; Eva04; Oli09].

The TSM system by MERCAREON is their main area of competence sold to their customers

(see Figure 3.3). As no comparable system exists in Europe, it can’t be bought off the

shelf and it makes the system worth writing. Additionally, being most crucial to business

and MERCAREON having the know-how, it makes no sense to outsource the TSM system.

All in all, it is save to assume the TSM system is the core domain of MERCAREON.

The User Management connected to the TSM system manages its users and therefore di-

rectly supports the core domain. Therefore, User Management is a supporting subdomain.

In contrast, reporting is an (outsourced) component with which companies can access

statistics of their bookings. It is also part of the business but not crucial to the core.

Therefore, reporting is a generic subdomain.

3.3.2 Bounded Contexts

Especially in large projects, the domain can have words and phrases colliding with each

other making the Ubiquitous Language (see Section 3.2) fuzzy and therefore hard to grasp.

When one wants to merge different models into one big system, the result gets prone to

bugs, is difficult to understand and therefore hard to maintain. To solve this dilemma,

the use of bounded contexts is suggested by [Eva04]. They serve mainly as the ubiquitous

language boundary and can contain multiple aggregates [Eva14; Vau13]. Each word or

phrase has to be unique within one bounded context. Furthermore, the assigned team,
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code base, and resources like the database have to be differentiated by the bounded

context in order to protect the model [Eva14]. When working with Java, for example, a

project may be divided in separate JAR, WAR or EAR files or create multiple dependent

projects [Vau13].

In a perfect (green field) environment, core and subdomains can be mapped to bounded

contexts one to one. In reality, a bounded context can span multiple core and subdomains.

It is also possible that multiple bounded contexts are part of one core or subdomain.

The communication between bounded contexts proves to be difficult because each context

has its own ubiquitous language. Therefore, a translation layer is required translating

messages between the contexts into their respective language (see Section 3.3.3).

Example 1. The TSM system was chosen to be a bounded context of MERCAREON. As

seen in Figure 3.3, the bounded contexts are mapped to core or subdomains.

3.3.3 Bounded Context Communication

Domain

TSM Context

Reporting
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User and Company
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Accounting

Core Domain

Generic
Subdomain

Supporting
Subdomain

Supporting
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OH/PL

D
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OH/PL

ACL

U

D

Imported Order
ContextO

H
/P

LU
D

Customer-Supplier

Shared Kernel

ConformistSupporting
Subdomain

OH/PL
U

D
Conformist

Figure 3.3: MERCAREON’s Subdomains and Bounded Contexts

When two bounded contexts communicate by exchanging messages, they have two

different kinds of interaction (see Figure 3.3):

Firstly, the way one bounded contexts influences the other is described. In [Eva04], this

is modelled as an upstream (U) and downstream (D) relation arising from the picture of
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a city polluting a river. The city itself is not affected but affects cities down the stream

of the river. Logically, cities upstream can not be affected by cities down the stream

and, therefore, they have no direct incentive to avoid polluting the river. From a model

point of view, the upstream model provides an interface to exchange information and the

down stream mode has to cope with what kind of information it receives and how the

information is represented [Eva04].

Secondly, the relationship that exists between two bounded contexts is discussed. When

the teams maintaining two bounded contexts must cooperate since either both of their

contexts succeed or fail together, the bounded contexts share a Partnership relation.

This relationship requires coordinated planning of development and integration. The

interfaces must be created in a way satisfying the needs of both contexts.

Forming an intimate relationship, Shared Kernel shares a part of the model and associated

code. It is of importance to define small explicit boundaries defining which subset of the

domain model is shared. When the shared part is changed, both responsible teams have

to be consulted. It is suggested to define a continuous integration process keeping the

shared model small aligning the ubiquitous language of the two involved teams.

Customer-Supplier relationships exists only for up and downstream relationships. The

upstream team’s success is mutually dependent of the downstream team’s success. The

downstream team’s needs must be addressed by the upstream team.

Last but not least, the Conformist relation also only exists for up and downstream

relationships in which the upstream team has no incentive to address the downstream

team’s needs. The downstream team has to eliminate the complexity of translation by

using parts of the model created by the upstream team [Vau13].

There are three concepts enabling a regulated communication: The Open Host Service

(OHS) as can be seen on the upstream contexts in Figure 3.3, defines the protocol for

accessing subsystems as a set of services. The protocol has to be open for all parties who

need to communicate with the system.

The Published Language is required as the translation (e.g. via Anti Corruption Layer)

requires a common language. The common shared language should be well documented
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and expresses necessary domain information enabling the translation into and, when

necessary, out of that common language. The published language is often combined with

the open host service.

Last, the Anti Corruption Layer.

Anti Corruption Layer

When working with a domain model, special attention has to be paid that it stays pure. It

has to be ensured that application and other domain logic does not leak into it, especially

when systems must communicate over large interfaces. The difficulties in mapping these

two systems’ models can corrupt the resulting model [Eva14; Vau13].

The Anti Corruption Layer (ACL) is the protecting mechanism of the domain model. When

communicating with with another bounded context or external systems such as databases,

the ACL can be used as a two way translator translating between the external system and

the current system’s language [Eva14; Vau13]. For bounded contexts, it is used when

having limited to no control over the communication. In a Shared Kernel, Partnership,

or Customer-Supplier relationship the ACL translates between different domain models.

The layer communicates to the other system through its interface requiring little to no

modification to it. Then, internally, the communication is translated to the target’s model.

3.3.4 Modules

When creating a complex application, bounded contexts can get too big to apprehend

the relationships and interactions. In such a case, it is recommended to split them into

modules. Modules’ sole purpose is to “organize related concepts and tasks in order to reduce

complexity” [Avr07]. As being used in most of the existing software projects, modules help

to manage complexity and improve code quality. This is achieved by grouping related

classes into modules. These modules contain a cohesive set of concepts, increasing code

cohesion3 and decreasing coupling4.

3Measures the relationship between functional components, [SMC74].
4The strength of the relationships between modules, [Abr+01].
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When deciding which parts of an application to be grouped into a module, it is recom-

mended to select models separating high-level domain concepts and their respective

code. Further, they should be given names from the ubiquitous language representing

these [Avr07].

Example 2. The TSM system by MERCAREON is separated into several different modules

(see Figure 3.4) interacting with each other in the bounded context.

Reporting
Context

Customer
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TSM Context
Attatchment

Yardbook

Requested Booking

Location

Imported Order
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Schedule

Transaction Log

Message
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Figure 3.4: TSM System Modules

3.4 Tactical Design

The tactical design contains the building components that connect models to the implemen-

tation. The implementation is part of a module in a bounded context (see Section 3.3).

Entities (see Section 3.4.1) and Value Objects (see Section 3.4.2) are the smallest pieces

of the tactical design. Aggregates (see Section 3.4.3) wrap both entities and value objects

and are stored in Repositories (see Section 3.4.4). Services (see Section 3.4.5), in turn,

hold operations performed on aggregates and Domain Events (see Section 3.4.6) inform

about internal or external state changes.
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3.4.1 Entities

Max
id:224231

Figure 3.5: Unique Identity for the Person ’Max’

Entities are objects in DDD de-

fined by an unique identity

(see Figure 3.5) remaining the

same through and beyond the

life cycle of the system. They are

not defined by their attributes

enabling multiple different entities with the same attributes (e.g. person entities sharing

the same name) [Avr07].

The system has to ensure the uniqueness of the entity’s identity. A database could, for

example, create these unique identities [Eva14].

The identities can range from technical entities to natural entities. For example, an

unloading gate entity could have some sequential auto-generated identifier or its identifier

could be constructed out of a set of human readable metadata (e.g. company – country –

locationName – gate name) [Vau13].

Example 3. As an example, Company, User, Role, Booking, and Task are entities in the

context of MERCAREON’s TSM system.

3.4.2 Value Objects

Since many objects in a system have no conceptual identity, creating entities for each

of these would bring no benefit. In fact, it would corrupt the system by introducing the

required complexity to find unique identities for all these objects. Therefore Eric Evans

suggested the so called value objects. Value objects have no identity and represent the

objects of the system that don’t apply for being an entity. Having no identity they can

easily be created and removed which simplifies the design. Moreover, value objects

are recommended to be modeled as immutable objects5. This brings the advantage of

shareability, thread safety and the absence of side effects. Although value objects can

5The state of immutable objects can not be changed after creation. Therefore, the object has to be replaced
by a new instance when its state is changed.

19



3 Domain-Driven Design

hold multiple attributes, it is recommended to split long lists of attributes into multiple

value objects. The attributes held by a value object should be conceptual whole. For

example a location can have GPS coordinates and a name but should not contain the

colors of buildings located there. [Eva14]

Example 4. As an example Order Number, Company Id and Delivery Quantity are value

objects in MERCAREON’s TSM system.

3.4.3 Aggregates

“ A much more useful view at aggregates is to look at them as consistency

boundaries for transactions, distributions and concurrency.

”– Eric Evans, [Eva09]

Aggregates define object ownership and consistency boundaries. Aggregates gather

entities and value objects into groups enforcing data integrity and abidance of invariants.

They are globally identified and accessed by an ID. Every aggregate has one root entity

(see Section 3.4.1). It is the only part of the aggregate that is accessible from outside

and holds references to all other entities and value objects of the aggregate. As soon as a

change to an inner part of an aggregate is required, the root entity has to be asked to

apply these changes while maintaining the aggregate’s invariants. Other objects can only

hold references to the root. As value objects are immutable the root entity can decide to

expose them to its accessors. The accessors of aggregates thereby have to pay attention

to reference value objects only temporary or they are in danger of working with outdated

values. Furthermore, holding references could lead to memory leaks since, as soon as the

root entity is deleted, all inner objects are not supposed to be referenced any more and

should be deleted too. [Avr07]

A problem faced when defining aggregates is that aggregates should both not be too large

and too small. When they are designed too large, they will likely perform badly. Especially

when lazy loading comes into play, a small change to an aggregate may require to load

the whole aggregate into memory. In addition, as realizing a transactional boundary,

modifying aggregates will lock all of its components [Vau13]. Since only aggregates can
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be obtained from repositories (see Section 3.4.4), they work as consistency gatekeepers

for the data. One important rule regarding aggregates is, that only one may be modified

during a transaction at a time.

Example 5. The Booking is represented as an Aggregate (see Figure 3.6) with the Booking

as its root entity which provides the uniqueness and contains several value objects.

3.4.4 Repositories

The question of how instances of Aggregates (see Section 3.4.3) can be obtained obviously

arises while working with DDD. One option is to trigger the creation operation giving us

a reference to the root entity of an aggregate [Vau13].

Another option is to traverse entity references between aggregates. For this, a reference

to any entity is required. Repositories can give us the reference to a root entity of an

aggregate. From an object oriented point of view, these entities are newly instantiated

through data retrieved from an external system (e.g. a database). From the DDD’s

point of view existing entities are referenced. Therefore, this operation is referred to as

“reconstruction” [Eva14; Vau13].

Repositories can be seen as an Anti Corruption Layer (see Section 3.3.3) around databases

[Vau12] and, as a rule of thumb, should not be accessed from within aggregates [Vau13].
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Example 6. The Booking Repository enables access to Booking Aggregates by providing

access to their root entities.

3.4.5 Services

“ For example, to transfer money from one account to another; should that

function be in the sending account or the receiving account? It feels just as

misplaced in either.

”– Abel Avram, [Avr07]

When developing the domain model, there are typically behaviors that can not be incor-

porated into entities or value objects. However, they represent important requirements

and, therefore, they can not be ignored. If these behaviors were added to entities or value

objects, they would make them more complex than necessary and introduce functionality

that does not belong to these objects. Furthermore, working with multiple aggregates

would be impossible since repositories should not be called within aggregates [Avr07;

Vau13].

Services solve this problem by providing stateless functionality important to the domain.

They can access repositories and therefore refer to multiple aggregates in the domain.

Another characteristic of services is that the operations performed in them refer to a

domain concept whereas, as the quote above already states, they do not naturally belong

to either entity or value object [Avr07].

Services are subdivided into two categories, the domain services and the application

services.

Domain Services

Domain services implement functionalities required for the application. They require

domain-specific knowledge for providing the functionalities. The domain service does

not provide security or transactional safety since its operations are too fine grained for

this purpose [Vau13].

22



3.4 Tactical Design

Example 7. Calculating the amount of time slots for a booking contains domain logic

and is therefore part of the domain service.

Application Services

“ Keep Application Services thin, using them only to coordinate tasks on the

model.

”– Vernon Vaughn, [Vau13]

Residing in the Application Layer (see Section 3.4.7), the application services contain no

domain logic but directly communicate with the domain model. Application services offer

all possible operations supported by the bounded context while remaining lightweight.

Application services utilize repositories to operate on domain objects. In summary, they

provide the execution environment where operations are coordinated to the domain

model (including the domain services). Moreover, an application service controls transac-

tions, and ensures the state transitions in the model are handled atomically. It is respon-

sible for security and is in charge for event based messaging. When implemented, the

application service has either method signatures consisting of primitive types (e.g. short,

int, float, double, ...) and Data Transfer Objects6, or, it alternatively uses the command

pattern7 [Vau13].

Example 8. To book an order in the TSM system, the application service is queried and

asks the imported order repository for the open booking aggregate. Then, the application

service uses a schedule aggregate instance for creating a new booking for the resulting

imported order entity. The whole process is transactionally save which ensures that only

one booking is created for the orders.

6Especially when calls are expensive, more data needs to be transfered with a single call. This is problematic
as long parameter lists are not desired and programming languages as Java only support one return value.
Therefore a transfer object can be used to assemble all required parameters or results for an operation,
[Fow02].

7“Encapsulate a request as an object, thereby letting you parameterize clients with different requests, queue or
log requests, and support undoable operations”, [Gam95].
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3.4.6 Domain Events

Domain events were not included in [Eva04]. Evans later added them to DDD due the

benefit of decoupling systems and therefore supporting the creation of distributed sys-

tems by enabling different bounded contexts to communicate [Eva09]. Besides, highly

scalable systems like high transaction finance software can be created using event sourc-

ing [Vau13; Fow05b].

“ Something happened that domain experts care about.

”– Vernon Vaughn, [Vau12]

As the quote states, domain events are created when something important—according to

domain experts—has happened. The level of granularity is therefore of importance since

not every event in the domain is important. For example, creating an event for every step

a person makes might be of interest in the context of a step counter but not in the context

of a navigation software.

Events generally have a timestamp, either when they actually took place or when they

were recorded. They also have a person associated with them, let it be the person who

recorded it or the person responsible for the event’s creation. Like value objects, domain

events are immutable since they record something that happened in the past [Eva09;

Eva14].

When working with domain events, special attention has to be paid as systems might not

be consistent all the time [Vau13; Eva09].

For example, the unloading of a truck could be separated into each pallet being moved.

However, that might not be important to the domain experts and, therefore, only the start

and end of the process are eventually tracked. As soon as one of these events is fired,

services of the bounded context responsible for handling unloading eventually notify

the interested bounded contexts. The system’s user might not see the change directly

after committing the unloading process as the change takes place asynchronously and

the user’s GUI is outdated until the responsible bounded context is notified accordingly.
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3.4.7 Ports and Adapters

The ports and adapters architecture8 utilizes the ACL and protects the domain model.

The architecture is comprised of three layers where inner layers are independent from

the outer layers.

• Domain Layer – This layer contains the domain model (consisting of bounded

contexts, entities and value objects), domain services, and repositories. [Vau13]

• Application Layer – This layer wraps the domain layer and utilizes its components

using application services. It adapts requests from the infrastructure layer to the

domain layer. In addition, it dispatches events raised in the domain layer to the

outside [Vau13].

• Adapters Layer – This layer is the outermost layer wrapping the application layer.

It contains adapters to external systems like databases, mailing systems, rest in-

terfaces, messaging systems, but also 3rd party libraries. These adapters are ACLs

enabling the system to utilize different protocols and systems without corrupting

the domain with the knowledge of these systems. They relay messages from and

to the application layer using the domain’s language. When a message is received

from outside, at a port, an adapter converts the technology specific message into

a form suitable for the underlying layers. If an underlying layer wants to send a

message, an appropriate adapter transforms the message to something the external

system can work with and sends it out on a port [Coc05].

• Ports – Defines the exposed functionality to and the applications view of the outside.

In the implementation shown in Figure 3.7, Adapter A and B use events to communicate

(in this case with another ports and adapters system), C is a message listener connected

to a Message Bus, D accesses the REST API of a three layered system whereas E to H

communicate with external or memory databases and are represented by repositories in

the DDD context.

8Previously known as Hexagonal Architecture [Coc05; Coc06] or Onion Architecture [Pal08]
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Figure 3.7: Ports and Adapters9

The interested reader might have noticed that the independence of inner layers does

not fit with the need of inner layers to access parts of the outer layers. For example, an

implementation of a repository in the domain layer, most likely requires any form of

persistence—be it in file, memory, or database. For this reason, ports and adapters achieve

minimal coupling [Fow02] by using the inversion of control containers paradigm [Fow04].

The paradigm utilizes dependency injection where outer layers implement interfaces

defined by inner layers. For example, the domain layer provides an interface stating

that it requires some repository with a given set of functionalities. The implementation

in the infrastructure then provides these functionalities by implementing the interface.

9adapted and extended from [Vau13]
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This implementation is then injected into the inner layer at run time. Looking at the

dependencies, the domain layer is independent from the outer infrastructure layer as it

provides the interfaces implemented by the outer layer. In the testing phase, parts of the

system can be easily replaced by other implementations due to this decoupling [Vau13].

For example, to test the application, the adapters communicating to external databases

could be replaced with in-memory test databases.
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4
Related Work

This chapter is comprised of two parts. First, Modeling (see Section 4.1), introduces and

compares three alternative models to Domain-Driven Design for creating and refactoring

information systems. Second, Section 4.2 introduces research on the field of Distributed

Databases and compares a similar fragmentation concept to this work’s approach.

4.1 Modeling

Domain-Driven Design (see Chapter 3) utilizes models for the creation of complex infor-

mation systems. This Section discusses similarities, differences, strengths, and weak-

nesses of different existing modeling approaches in comparison to DDD. First off, the

popular standard Unified Modeling Language (UML) (see Section 4.1.1) is introduced

due to its strong connection to Model Driven Architecture. Based on this, Model Driven

Architecture (see Section 4.1.2) is presented, which is, as DDD, a MDE approach and is

strongly related to UML 2.0. In general, UML was specially tailored to fit MDA’s needs.

4.1.1 Unified Modeling Language

The Unified Modeling Language (UML), introduced by the Object Management Group

(OMG) in 1994, unifies the three object-oriented design methods Booch Method, Object

Modeling Technique, and the Objectory Method providing a common visual notation for

describing today’s software [Pet13; Tho04]. UML is said to have been established as

de-facto standard of software engineering supporting a variety of different diagrams

from package diagrams to class diagrams [OMG04]. UML is used differently from
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company to company: some use its class diagrams, some use it to make a quick sketch

on a white board, and some even use it for model-driven development [Pet13]. In a

study of 2013 [Pet13], doubts were raised whether UML is really a standard. As of 50

practicing professional software developers, 35 did not use UML at all. They reasoned

that UML would not “offer them advantages over their current evolved practices” and “what

was good about UML was not new, and what was new about UML was not good”. They

further criticized the lack of context dealing primarily with the software architecture than

the whole system. Furthermore, UML is reasoned to be unnecessarily complex as the

notation is considered to have significant overheads and is too close to programming

to be readable by all involved stakeholders. Moreover, it is argued that UML has no

“consistency, redundancy, completeness or quality” checks leading to difficulties maintaining

large project’s UML models.

In comparison to Domain-Driven Design, some of the criticism targeted at UML is aligned

to DDD’s main goals as it focuses on the context while trying to be simple and as human-

friendly as possible. As DDD does not specify the type of models to be used but only the

content, it is possible though to use models similar to UML in the DDD design process.

The usage of UML has its weaknesses though as DDD also utilizes models to work out

contexts while UML is meant as a tool to model object oriented issues. For example, the

ubiquitous language can not be reasonably modeled in UML as a different representation,

such as a glossary, is required.

4.1.2 Model Driven Architecture

Model-Driven Architecture (MDA) is as DDD a MDE approach. It was defined by the

Object Management Group and is a model-based approach to cope with complex systems

specifying structure, semantics, and notations of models [OMG14]. Moreover, it has

a domain model comparable to DDD (see Section 3.1) which is called Computation

Independent Model (CIM) and specifies systems without constructional details at its core.

Models, that are conform to these standards, are called MDA Models. These models can

be used for producing documentations, generating artifacts, and executable information

systems [OMG14]. UML, though formally not required, is used by almost all MDA projects
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as the 2.0 standard was tailored for MDA [OMG15]. The only exception are projects in

specialized fields requiring a specifically tailored modeling language [OMG15].

Using meta-models, the foundation of MDE, MDA can utilize powerful model transforma-

tions [Tho04; MV06]. A meta-model is a model that defines the abstract syntax of model-

ing languages (e.g. UML, BPMN, ER) specifying the model boundaries in the language

[OMG14] and serving as a necessary prerequisite for automated model transformation

[MV06; OMG10].

A key aspect for the proposed DDD architectural refactoring approach (see Chapter 5)

is the automated model transformation as provided by MDA. It is used to automatically

generate DDD models that are being subjected to frequent changes (see Section 1.2).

Meta-models are a prerequisite for these model transformations and therefore had to be

created before (see Chapter 5).

Other than the DDD approach, MDA separates the models into three distinct layers

(see Figure 4.1). The CIM layer which serves as a basis for the Platform Independent Model

(PIM) and the Platform Specific Model (PSM) layer [OMG01]. Abstracting technical details,

PIM provides a platform independent formal structural and functional specifications

[OMG01]. PSM in contrary represents the target platform, such as JavaEE [Ora] or

.Net [Mic07] enabling model transformations from PIM to source code [Tho04]. Moreover,

PSM is criticized to be too complex, especially for describing target platforms containing

a huge amount of APIs such as JavaEE or .Net.

Computation Independent Model

Platform Independent Model

Platform Specific Model

Source Code

transformation

transformation

code generation

Figure 4.1: MDA Layers1

All in all, MDA can be used to create and refactor information systems. As DDD, it utilizes

models but unlike DDD, it utilizes meta-models to enable model transformations. These

model transformations are used to adapt to new requirements and allow the deployment

of the system to different target platforms. For this, MDA requires the PSM which
1adapted from [SM07]
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describes the target platforms. DDD in contrary is more abstract and its tactical design

components (such as entities and value objects) can be deployed in any modern object

oriented programing language. As utilizing model transformation, the target platforms

supported by MDA are not limited to object oriented programing languages but, therefore,

it has an increased complexity.

4.2 Distributed Databases

A Distributed Database (DDB) system is a system consisting of multiple, interrelated

databases that are not sharing the same memory and that are distributed over a computer

network. They have become the dominant data management tool for data-intensive

information systems [ÖV96]. Data is distributed over several data sites by fragmenting

and replicating. A fragmentation on a relational database scheme can be horizontal by

partitioning the table rows using a selection operation or vertical by partitioning the table

columns using a projection operation. The advantages of fragmenting the data are, among

others, to improve the performance of database systems and to reduce transmission cost

by placing the required data in close proximity of its usage. Further, fragmentation can

speed up response times by reducing the amount of relations having to be processed in

an user query. A replication fragmentation replicates data over multiple data sites. This

is desirable when the same data is accessed over multiple sites and, therefore, a lower

response time can be achieved by duplicating rather than to transferring the data each

time [ÖV96; KH10].

For fragmenting horizontally, [KH10] suggested a Create, Read, Update, and Delete Matrix

(CRUDM) based approach which does not require the frequency of queries, unlike

previous horizontal fragmentation techniques. This is beneficial, as the frequency of

queries is not available at the initial state of the database creation.

As a partition was required for the DDD approach and the operations of an information

system (see Section 5.1.2) can also be subdivided into Create, Read, Update, and Delete

(CRUD) operations [Fow02], a similar approach to the CRUDM fragmentation has been

taken. The approach also utilizes weighted functions partitioning based on CRUD access.
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However, the operations are not stored as a matrix but in a graph (see Section 5.8.3).

Likewise, as an existing information system is to be architecturally refactored, the access

frequency of business operations is available so that additional weighting is possible. As

the DDB fragmentation approach, partitioning entities and value objects into aggregates

wrongly can also impact performance negatively since business operations having to

access more aggregates than necessary for a single operation. This negative performance

impact is modeled with negative weighting function called the Access Frequency Negative

Weight Function (see Section 5.8.3). Finally, like in the DDB fragmentation approach, the

best partition is selected maximizing the sum of the weight functions.
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Domain-Driven Design for an Existing

Information System

Chapter 5 describes the conceptual key aspects of the approach (see Figure 5.1). First,

this chapter outlines the Refactoring Process (see Section 5.1) containing an ubiquitous

language and appropriate business operations based on the analysis of the domain model.

As shown in Figure 5.1, the information of the ubiquitous language and the business

operations are merged to create a source model (see Section 5.7) which contains entities,

value objects, and modules. The source model is defined by a meta-model (see Section 5.2)

called the source meta-model and contains entities, value objects, modules, and business

operations. By utilizing different transformation rules (see Section 5.4), the source model

can be transformed from the source meta-model to a target meta-model. The created target

model can be used as a source model for the next transformation. Finally, after one or

more transformations, the final model, such as the aggregate model (see Section 5.8.1)

or the service model (see Section 5.9) is obtained. The process for generating the first

model is called artifact-model transformation. The model transformation processes are

called model-model transformations.
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Buisiness Operations

update

Ubiquitous Language

update

Source Meta-Model

Source Model

Target Meta-Model

Target Model

Transformation Rule

Entities & Value Objects
Operations

artifact-model
transformation

model-model
transformations

Final Meta-Model

Final Model

Figure 5.1: Transformation Process

5.1 Refactoring Process

Architectural Refactoring describes the process of changing the infrastructure of an existing

system to a new one while reusing information and components of the old architecture if

it is beneficial. The goal of Architectural Refactoring is to improve the overall software

quality bypassing limitations of the old architecture [Ste16].

The benefit of this approach is clearly that one does not have to write the system

completely anew but is able to utilize the old system’s structure. However, when designing

a Domain-Driven Design based system, one usually creates a new system and utilizes the

experience of domain experts for its design. It was decided against a direct transformation
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as it seldom succeeds in practice because “most such systems have multiple, intermingled

models and/or the teams have disorderly development habits” [Eva13]. The approach

presented in the next chapter also creates a Domain-Driven Design by utilizing information

about the business operations to support the refactoring process. The "detour" utilizing

business operations for transformation was chosen, as their information can be collected

even when dealing with a Big Ball of Mud [FY97] scenario.

The goal of this section is to describe the architectural refactoring process towards

Domain-Driven Design. This process utilizes the strategic design and the tactical design as

suggested by Eric Evans [Eva04]. The process to obtain the strategic design is close to the

original process. The tactical design however utilizes automated model transformations

incorporating business operations into the design process. After creating the important

elements of the tactical design automatically, developers can modify the ubiquitous

language and the business operations to see the impact of the change on the architecture.

5.1.1 Ubiquitous Language

The ubiquitous language (see Section 3.2) is the main pillar of DDD. It should contain

the terms of the core and subdomains, bounded contexts, and modules. As the bounded

contexts serve as a barrier of the ubiquitous language, the language has to be determined

for each bounded context. Furthermore, it facilitates the terms of the tactical design

(see Section 3.4) and serves as basis for the definition of business operations.

The glossary is used to capture the ubiquitous language. For the architectural refactoring

process, it is created from the terms used in the old system. In addition, terms used by

the people involved in the domain are collected. The benefit of this approach is that it

does not alienate the new design. Terms are distilled and improved by finding unique

terms and thereby tackling redundancy. Moreover, terms can be changed if they do not

fit their use case. This can lead to a resistance of the employees as they are used to old

terms and have to adapt. For this, it was found that involving all parties into the creation

of the ubiquitous language is important. [Eva13] describes the ubiquitous language as

a company wide language . If the ubiquitous language is created locally and only for a

small part of the project, it will not gain this required coverage.
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MERCAREON, for example, decided to use the ubiquitous language as defined in the

glossary as a company wide language used for any type of communication.

As mentioned before, it is important to constantly update the ubiquitous language lan-

guage whenever a change to the domain model occurs. Changes can thereby range from

new customers to new requirements. In some cases, changes may require adjustments

to the strategic design (see Section 3.3) but in most cases they require changes to the

tactical design (see Section 3.4).

The ubiquitous language is a collection of entries defined in Definition 1:

Definition 1 (Ubiquitous Language).

Let L be the ubiquitous language with L = {e1, ..., en}, n ∈ N

Then let e = (term, bounded context, module, Identity, Has-a, Is-a) be an entry of the ubiqui-

tous language (with entry sets starting with a capital letter) where:

• term: Term of the entry. Has to be unique within the bounded context.

• bounded context: Context to use the word in (see Section 3.3.2).

• module: Module in the bounded context the word is required for (see Section 3.3.4).

• Identity: (Possibly empty) Set of entries identifying this entry. The identity is required

for separating entities and value objects (see Section 5.1.4).

• Has-a: (Possibly empty) Set of entries that are part of this entry. Has-a can be

annotated with a quantity and is required to detect the root entity (see Section 3.4.1)

and its components.

• Is-a: (Possibly empty) Set of entries that are parent of this entry. Is-A enables

inheritance between entries of the language.

Example 9 exemplifies Definition 1 with the ubiquitous language entry of a booking:

Example 9 (Booking entry). • term: booking

• bounded context: TSM system

• module: Booking
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• Identity: {company, booking number}

• Has-a: {(un)loading date[1], gate[1]}

• Is-a: {expected delivery}

5.1.2 Business Operations

Transferring information directly from the old system’s architecture to the new was not

intended by DDD. By utilizing the business operations, information about the operations

that should be supported are added using Create, Read, Update, Delete, and Input (CRUDI).

In addition, the frequency annotation of each operation conveys the experience gained

from the previous system helping to create tactical design DDD models for each bounded

context.

Section 6.1.2 exemplifies how the business operations are stored. To gather the initial

operations, domain experts need to categorize the bounded context’s business operations

into Create, Read, Update, Delete, and Input operations for each module. When the

ubiquitous language changes, the business operations have to be updated as the business

operations are based on the ubiquitous language. Moreover, the business operations are

also subject to changes as soon as the requirements of the system have been changed.

System maintenance therefore results in constant updates to the glossary and business

operations.

The collection of Business Operations (BO) comprises operations that were categorized

as important for the domain by its domain experts. Though not part of the original

DDD concept, the gathering of business operations was introduced to enable a more

powerful analysis, e.g. what performance the execution of a method has and if it requires

transactional safety. The analysis is then used for transformations determining aggregates

(see Section 3.4.3) and services (see Section 3.4.5). The supported operations for each

business operations are Create, Read, Update, and Delete (CRUD) with the extension of

Input (CRUDI). The Input extension enables to distinguish between data read by business

operations ( e.g. by accessing Repositories (see Section 3.4.4) ) and data passed to the

business operation as parameters.
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Since “any of the use cases in an enterprise application are fairly boring CRUD [...] use

cases on domain objects” [Fow02], CRUDI was chosen to support categorizing data

elements (entities and value objects) and business operations into aggregates. The

frequency determines how often a business operation is executed, is required to weight

the occurrence of the CRUDI operations and, moreover, determines the performance

impact of the business operation.

Definition 2 introduces the different components of the business operations.

Definition 2.

Let BO be the set of business operations with BO = {bo1, ..., bon}, n ∈ N.

Then let bo = (name, bounded context, module, Precondition, Input, Create, Read, Update,

Delete, frequency) be a business operation where:

• name: unique identifier of the business operation.

• bounded context: context to use the business operation in (see Section 3.3.2).

• module: module in the bounded context the term is required for (see Section 3.3.4).

• Precondition: conditions that have to hold for the business operation to be executed.

• Input: data elements passed as parameters.

• Create: business operation that creates a data elements.

• Read: business operation that reads an existing data element.

• Update: operation that changes an existing data element.

• Delete: removes an existing data element.

• frequency: ranges between "always" and "almost never" and states how often a business

operation is executed with: 1 ≤ frequency ≤ 5, frequency ∈ N

5.1.3 Strategic Design

Strategic Design proposed in [Eva04] has to be determined once upon designing the

system architecture. It was therefore decided to determine this design manually instead
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of creating an automated solution. The approach of strategic design for architectural

refactoring is very similar to the traditional approach (see Section 3.3) and therefore only

shortly discussed in the following.

Core and Subdomain

The first step in refactoring information systems is to divide the domain into core and

subdomains (see Section 3.3.1). For this, domain experts have to evaluate which parts of

the system is crucial to the domain and which parts are not.

This decision is important for the architectural refactoring process since it facilitates the

decision of what parts of the old system should be transfered to the new architecture, what

parts could stay in the old architecture, and what parts can be completely outsourced.

Bounded Contexts

Bounded contexts (see Section 3.3.2) mainly serve as the boundary for the ubiquitous

language. Legacy systems communicating with the new architecture should be encapsu-

lated with bounded contexts. The same is valid for outsourced components. In a perfect

scenario, a bounded context should be matched to a single core and subdomain.

Domain experts can create a map of the bounded contexts showing the mapping to core

and subdomains and the communication strategy between different contexts. Figure 3.3

shows the map created for the MERCAREON company. An important point to notice when

creating a context map is that bounded contexts also hint how to distribute different

teams. Therefore, it should be taken into consideration that the distribution of the old

system’s architecture also influences the team distribution.

As discussed in Section 3.3.3, the bounded contexts, having different ubiquitous language,

may require a translation layer. Furthermore, bounded contexts can be encapsulated with

the Ports and Adapters (see Section 3.4.7) architecture to communicate with databases,

third party libraries, and other external systems.
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Module

As soon as bounded contexts have been designated, they can be subdivided into smaller

logical units—the modules. They are used to reduce complexity and can be created from

high level domain concepts. Modules are created by domain experts responsible for the

bounded context the modules are located in.

When the old architecture has not yet degraded to a Big Ball of Mud, modules may be

partly extrapolated. Having familiar modules supports development process as developers

can conjecture the modules’ functionality.

5.1.4 Tactical Design

Tactical Design is affected by every change to the business operation and its underlying

glossary. To face this challenge, it has been decided that the tactical design will be

generated automatically using a Java prototype (see Chapter 6). Moreover, the prototype

helps in creating the initial and following Domain-Driven Designs by validating the

glossary and business operations. In addition, it provides a graphical overview of the

tactical design. This can help to evaluate the positive and negative sides of the current

design. Moreover, as the prototype can cope with any change to the business operations

the involved developers can try out different variants getting immediate feedback how

the tactical design is changed.

Entities and Value Objects

The entries in a ubiquitous language that have an identity or that are child of an entity

having an identity are entities (see Definition 3 and Section 3.4.1).

Definition 3 (Entity).

Let E be the set of all entities in the ubiquitous language L,
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E = {e1, ..., en | hasIdentity(e, L) = 1} k ∈ N, k ≤ n,

hasIdentity(e, L) =



1 Identity(e) 6= ∅ ∧ Identity(e) ⊂ L

hasIdentity(Is-a(e), L) Is-a(e) 6= ∅ ∧ Identity(e) = ∅

0
(Identity(e) = ∅ ∨ Identity(e) * L)

∧ Is-a(e) = ∅

Entries in the ubiquitous language that have neither an identity nor are child of an entity

having an identity are value objects (see Definition 4 and Section 3.4.2).

Definition 4 (Value Object).

For the ubiquitous language L and the set of entities E,

V = {e1, ..., en | hasIdentity(e, L) = 0} k ∈ N, k ≤ n is the set of all value objects of L.

Example 10 showcases the difference between entities and value objects on the case of

the booking entry:

Example 10 (Booking Entry Entity). The booking entry of Example 9 is an entity because

it has the identity of company and booking number. If it had not, it still might be an entity

if one of its parents connected to it via an is-a relation is an entity. In case of the booking,

the expected delivery is an entity. Otherwise it would be a value object.

Example 11 presents the business operation which is being used to create a reservation

in the MERCAREON company. Reservations are created when timeslots are assigned to a

carrier company.

Example 11 (Create reservation).

The business operation entry used for the create reservation operation:

• name: create reservation

• bounded context: TSM system

• module: Schedule

• Precondition: ∅

• Input: {gate, date, time, property values, carrier id}
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• Create: {reservation, transaction log entry}

• Read: {schedule}

• Update: ∅

• Delete: ∅

• frequency: 2

Aggregates

The aggregate model (see Section 5.8) is created from the source model using automa-

tized model-model transformations by utilizing transformation rules (see Section 5.4).

The generated model helps the developers to see object ownership and transactional

boundaries. When a change to the source model occurs, it affects the created aggregates

and their manual counterparts. Developers are warned if their manual definition becomes

outdated and whether they have to review the generated aggregates. Like the source

model, the generated visualization supports the developers to get an overview of how a

change affects the ownership and boundaries.

Moreover, as the aggregates are obtained from repositories, the aggregate model sheds

light on which repositories exist. Using a model-artifact transformation, it is possible to

create the method stubs for the required repositories creating the aggregates.

Services

By creating the service model (see Section 5.9) utilizing a model-model transformation,

the prototype supports developers to categorize business operations into object methods

and services. This categorization is especially important to prevent anemic domain models.

Anemic domain models [Eva04; Fow03] is an anti-pattern where hardly any behavior

resides inside the objects making them “little more than bags of getters and setters” [Fow03].

Anemic domain models are especially problematic as they resemble valid domain model

implementations. With the prototype creating a visual representation, developers can

immediately identify potential anemic designs for each bounded context.
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5.2 Defining Modeling Languages using Meta-Model

The best way to define a modeling language is by employing a meta-models. A meta-

model, however, is also being defined by a modeling language itself [OMG14].

The goal, as can be seen in Figure 5.1, is to establish model-to-model transformations

by applying a transformation specification consisting of multiple transformation rules

[OMG10].

5.3 Semantic Network Meta-Model

The concept of a Semantic Networks (sNets) model is defined as follows:

“ A [model] is a set of nodes. Any sNet node belongs to a [model]. A sNet

node cannot belong to many [models]. [Models] bring modularity to the

sNets.

”– University Nantes, [Nan98]

The sNets meta-model (see Figure 5.2) enables to draw models representing semantic

relationships between concepts [Nan98]. Within a sNets model, a model is create out

of several nodes. As shown in Figure 5.3, a node has a type which is a subtype of the

node Root. This is illustrated by a meta relation between a node and its root node.

This relationship represents an is-a relationship that is to be distinguished from the

business operation’s is-a relationship (see Definition 2). Furthermore a node has a name

represented by a character sequence. Each node is part of a model (originally universe).

Each model is described by a meta-model (originally Semantic Universe). Root nodes are

part of the meta-model which is connected to the model of the root’s child node by a

semantic relation (sem). The meta-model in sNets is a subtype of a model consisting of

Node and Link Nodes. Each model must be linked to its meta-model by a sem link. Since

a model is also a Root node in sNets nesting of models is also possible (see Figure 5.2)

[CST00; Lem98a].

The sNets models were extended to support weighted edges required for modeling Has-a

relations and business operations’ access frequencies: a meta-model in sNets can contain
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Figure 5.2: sNets UML Representation1
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Figure 5.3: sNets Node2

Link* Nodes which represent a weighted link. The weight may be any numeric number, +

for one or more, and * for zero or more.

To create sNets models more easily, [Lem98b] proposed a simplified notation as shown in

Figure 5.4. In this notation, the model and meta-model are represented by squares with

rounded edges. The model has a sem relation to its meta-model. Nodes are displayed as

halved circles exposing the type on the top and the name on the bottom part. The partOf

link is modeled by the node being drawn inside of a model. It is of importance that this

is only another graphical representation and, even though not in the figure, the name

and partOf links still exist and they therefore can be accessed by transformation rules

(see Section 5.4).

Example 12 shows how a booking entry of the TSM system is represented in sNets.

Example 12 (Booking entry). Figure 5.5 is a simplified sNets representation of Example 9.

It shows how entities and value objects are defined and also how the definition of edges

1adapted from [CST00]
2adapted from [Lem98b]
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Figure 5.4: Simplified sNets Notation3

between them are modeled. Additionally, it exemplifies how models are being nested by

nesting the Booking module into the TSM system context. Moreover, the example is a

simplified version of reality since it contains entities without a matching identifier.

3adapted from [Lem98b]
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5.4 Transformation Rules

As [Lem98b] explains, a transformation between models of two different meta-models

can be achieved by applying a set of rules.

The transformation rules are defined in EBNF [Lem98b]. Firstly, every transformation

rule contains the source and target meta-model. Secondly, a transformation rule contains

a set of statements. The latter is executed until no statement is applicable any more and,

therefore, the transformation is finished. A statement can have multiple variables bound

to either nodes or edges. Statements can not be applied multiple times with the same

bounded variable whereby each bounded variable can not be bound to an already bound

node or edge. The transformation rules’s EBNF definition was adapted to fit the needs of

transforming DDD models.

The EBNF transformation rule is defined as follows:

〈TransformationRule〉 ::= 〈Header〉 ":"{〈Statement〉};

〈Header〉 ::= 〈SourceMetaModel〉 → 〈TargetMetaModel〉;

〈Statement〉 ::= [ "Priority " 〈Priority〉 ":"] 〈Conditions〉 → 〈Conclusions〉 ";" ;

〈Conditions〉 ::= ( "("〈Conditions〉 ")" ) | ( 〈Condition〉 {("∧"|"∨") 〈Conditions〉} );

〈Conclusions〉 ::= ( "("〈Conclusion〉 ")" ) | ( 〈Conclusion〉 {"∧"〈Conclusion〉} );

As defined in the EBNF, transformation rules have a 〈Header〉 and a set of 〈Statements〉.

The following Section 5.5 explains the header of a transformation rule. Thereafter Sec-

tion 5.6 discusses the different 〈Conditions〉 and 〈Conclusions〉 available in a 〈Statement〉.

5.5 Transformation Rule – Header

The Header of a transformation rule describes the source meta-model and the target meta-

model for which the statements of the transformation rule are applicable [Lem98b]. A

model can be transfered from the source meta-model to a target meta-model by applying

the statements defined by the transformation rule.
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5.6 Transformation Rule – Statement

A 〈Statement〉 defines a set of positive or negative conditions (see Section 5.6.1) that, if

satisfied, will result in the fulfillment of the conclusion (see Section 5.6.2) which creates

a set of new nodes and links [Lem98b].

Definition 5 defines the sNets model mathematically and is used for defining the different

conditions and conclusions available in the transformation rule’s statement.

Definition 5 (Semantic Network).

• G ∈ {SourceMetaModel, SourceModel, TargetMetaModel, TargetModel}

• V (G) are vertices of the graph G

• E(G) are edges of the graph G

• Each edge e ∈ E(G) has a type(e) and each node n ∈ V (G) has a type(n).

• VVT(G) := {v ∈ V (G) | type(v) = V T} are the vertices of the type V T . The set of V T

is defined according to the meta-model.

• EET(G) := {e ∈ E(G) | type(e) = ET} are the edges of the type ET . The set of ET is

defined according to the meta-model.

• Each node n ∈ V (G) has a character sequence name(e).

• Each edge e ∈ ELink*(G) has a natural number w(e), called its weight.

Note: In the definition, the sNets model is called a graph G. sNets nodes are called vertices

while sNets links are called edges.

Priority (Extension)

The 〈Priority〉 is used to give the statements of a transformation rule an execution order.

The priority is a natural number. Statements with a higher priority will be executed

before the ones with a lower priority. Statements with the same priority will be executed

in a random order. If no 〈Priority〉 is specified, the statement can be executed randomly

and, therefore, behaves like the statements that were suggested by [Lem98b].
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5.6.1 Statement – Conditions

Formally, a condition constraints the type of a variable or requires a link between two

variables. The conditions have been extended to support weighted links and arithmetic

formulas.

A condition, therefore, is defined as follows:

〈Condition〉 ::= 〈TypeConstraint〉

| 〈LinkConstraint〉

| 〈TempLink〉

| 〈WeightedLinkConstraint〉

| 〈Formula〉

The following Sections introduce the different available constraints of a statement con-

dition. For this, the negation extension is firstly presented as each constraint also has a

negative variant.

Negation (Extension)

Especially with the arithmetic formulars and the temporary links, there is the need for

negation. The negation is expressed with a logical negation (¬) symbol. It allows more

powerful statements such as, for example, filter for all nodes of the source model without

a link to a certain different node in the source model.

Type Constraint

The 〈TypeConstraint〉 are used in statements to filter a variable for nodes of a specific

node type.

A 〈TypeConstraint〉 has the following form:

〈TypeConstraint〉 ::= ["¬"] ["target_"]〈Type〉 "("〈Node〉")"

In case the 〈TypeConstraint〉 condition does not start with “target_”, the condition is

true iff the node of the source model specified by 〈Node〉 has a meta link to a node with
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the type 〈Type〉 in the source meta-model.

This is equivalent to:

∀ Node ∈ V (SourceModel) ∃ t ∈ V (SourceMetaModel) :

(Node, t) ∈ {Emeta(G) | name(t) = Type}

In case the 〈TypeConstraint〉 condition starts with “target_”, the condition is true iff the

node of the target model specified by 〈Node〉 has a meta link to a node with the type

〈Type〉 in the target meta-model.

This is equivalent to:

∀ Node ∈ V (TargetModel) ∃ t ∈ V (TargetMetaModel) :

(Node, t) ∈ {Emeta(G) | name(t) = Type}

In turn, the negated variant is true iff the node has no meta link to a node with the name

〈Type〉 in the respective models:

∀ Node @ t : (Node, t) ∈ {Emeta(G) | name(t) = Type}

Link Constraint

〈LinkConstraint〉 ::= ["¬"] ["target_"]〈LinkType〉 "(" 〈FromNode〉 "," 〈ToNode〉 ")"

In case the 〈LinkConstraint〉 condition does not start with “target_”, the condition is

true iff there are links with the type 〈LinkType〉 between the nodes 〈FromNode〉 and

〈ToNode〉 of the source model.

This is equivalent to:

∀ FromNode ∈ V (SourceModel) ∀ ToNode ∈ V (SourceModel) :

(FromNode, ToNode) ∈ ELinkType(G)

In case the 〈LinkConstraint〉 condition does start with “target_”, the condition is

true iff there are links with the type 〈LinkType〉 between the nodes 〈FromNode〉 and

〈TargetNode〉 of the target model.
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This is equivalent to:

∀ FromNode ∈ V (TargetModel) ∀ ToNode ∈ V (TargetModel) :

(FromNode, ToNode) ∈ ELinkType(G)

The negated variant is true, iff no link of the type 〈LinkType〉 exist between 〈FromNode〉

and 〈ToNode〉 in the respective models:

∀ FromNode, ToNode : (FromNode, ToNode) /∈ ELinkType(G)

Temporary Link Constraint

Temporary links start with an underscore (_) character in order to distinguish them from

normal links. The temporary link constraint is true iff there are temporary links of the

type 〈LinkType〉 between the nodes 〈FromNode〉 and 〈ToNode〉.

Temporary links are defined as follows:

〈TempLink〉 ::= ["¬"] "_" 〈LinkType〉 "(" 〈FromNode〉 "," 〈ToNode〉 ")"

The formal definition is equivalent to the definition of normal link constraints (see

Section 5.6.1 – Link Constraint). Temporary links are used to associate created nodes

in the target model with nodes out of the source model. For example, when creating a

node of the type table in the target model from a node in the source model. In order to

add new nodes and connect them to the table node for each node connected to the node

of the source model, a temporary link between these two nodes is required. Without

the temporary link, the creation of the connected node in the target model would prove

difficult as the association to the node in the source model is lost. Moreover, temporary

links can be used to indicate the previous execution of a statement to statements executed

later on.

As the name already indicates, temporary links are removed after the execution of the

transformation rule concluding a model transformation.

Weighted Link Constraint (Extension)

To support the addition of weighted links (Link*), the following constraint was added.
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〈WeightedLinkConstraint〉 ::= ["¬"] 〈LinkType〉 "("〈FromNode〉 "," 〈ToNode〉 "," 〈Weight〉 ")"

The condition is true iff there are links of the type 〈LinkType〉 between the nodes

〈FromNode〉 and 〈ToNode〉. In addition, 〈Weight〉 has to match the link weight.

This is equivalent to:

∀ FromNode ∈ V (SourceModel) ∀ ToNode ∈ V (SourceModel) let

x := (FromNode, ToNode) ∈ ELinkType(G) where

∃ y ∈ {VLink*(SourceMetaModel) | type(x) = name(y)} and

weight(x) = Weight

The negated variant is true, iff there are no links at all or only links with a different

weight between FromNode and ToNode:

∀ FromNode ∈ V (SourceModel) ∀ ToNode ∈ V (SourceModel) let

x := (FromNode, ToNode) ∈ ELinkType(G) where

@ y ∈ {VLink*(SourceMetaModel) | type(x) = name(y)} or

weight(x) 6= Weight

Temporary Weighted Link Constraint (Extension)

The temporary weighted link constraint start with an underscore (_) character in order

to distinguish them from normal weighted links. It behaves like the temporary link

(see Section 5.6.1 – Temporary Link Constraint) with the addition of a link weight

(see Section 5.6.1 – Weighted Link Constraint (Extension)). Therefore, the temporary

weighted link is also removed when the transformation is finished.

〈WeightedLinkConstraint〉 ::= ["¬"] "_"〈LinkType〉 "("〈FromNode〉 "," 〈ToNode〉 "," 〈Weight〉

")"

Functions (Extension)

One drawback of the sNets formalism is that there is no option to constrain the transfor-

mation based on sophisticated mathematical formulas. For example, one only transforms
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if the income of the employee is greater than 1000 Euro. Since the aggregate detection is

based on heuristics, it was necessary to add a way of performing calculation into transfor-

mation rules. Moreover, helper functions could be defined to traverse the graph and, for

example to get the root node of a tree-based structure.

A 〈Function〉 condition starts with a hash (#) character and is expressed as follows:

〈Function〉 ::= ["¬"] "#"〈FunctionName〉 "("〈Parameter〉 ( "," 〈Parameter〉) * ")"

Let Parameteri ∈ V (SourceModel) ∪ E(SourceModel), i ∈ N. The 〈Function〉 condition

is true iff the result of the function is greater than zero for all parameter permutations:

∀ p1 ∈ Parameter1 ... ∀ pn ∈ Parametern : fFunctionName(p1, . . . pn) > 0

The negated variant is true iff the result of the function is less or equal than zero:

∀p1 ∈ Parameter1 ... ∀pn ∈ Parametern : fFunctionName(p1, . . . pn) ≤ 0

5.6.2 Statement – Conclusions

A conclusion may be the creation of new nodes or the creation of a (temporary) link

between two bound variables. A conclusion, therefore, is defined as follows:

〈Conclusion〉 ::= 〈NodeCreation〉

| 〈LinkCreation〉

| 〈WeightedLinkCreation〉

| 〈TempLinkCreation〉

Node Creation

Nodes are created in the target model by using a 〈NodeCreation〉 conclusion.

〈NodeCreation〉 ::= 〈TypeName〉 "("〈Variable〉")"

The created node has the name specified by 〈V ariable〉 and is of the type 〈TypeName〉.

Therefore, it has a meta link to the node of the corresponding type in the meta-model.
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This is equivalent to:

∃ Node ∈ V (TargetModel), t ∈ V (TargetMetaModel) :

(Node, t) ∈ {Emeta(G) | name(t) = Type}

Link Creation

Links are created between two nodes of the target model by using a 〈LinkCreation〉

conclusion.

〈LinkCreation〉 ::= 〈LinkType〉 "(" 〈SourceVariable〉 "," 〈TargetVariable〉")"

The 〈LinkCreation〉 conclusion creates a link of the type 〈LinkType〉 between the nodes

〈FromNode〉 and 〈ToNode〉.
This is equivalent to:

∃ FromNode ∈ V (TargetModel)∃ ToNode ∈ V (TargetModel) :

(FromNode, ToNode) ∈ ELinkType(G)

Weighted Link Creation (Extension)

As the extended sNets meta-models support weighted links (Link*), the creation of

weighted links between two nodes of the target model was added to the statement’s

conclusions.

〈WeightedLinkCreation〉 ::= 〈LinkType〉 "("〈SourceVariable〉 "," 〈TargetVariable〉 ","

(〈Weight〉 ["+"〈Weight2〉]) | (〈Function〉) ")"

The 〈WeightedLinkCreation〉 conclusion creates a weighted link of the type 〈LinkType〉

with the weight 〈Weight〉 between the nodes 〈SourceV ariable〉 and 〈TargetV ariable〉.

〈Weight2〉 is set to zero if not specified. Alternatively the result of a 〈Function〉 can be

used to set the weight of the link.
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This is equivalent to:

∃ FromNode ∈ V (TargetModel) ∃ ToNode ∈ V (TargetModel) with

x := (FromNode, ToNode) ∈ ELinkType(G) where

∃ y ∈ {VLink*(SourceMetaModel) | type(x) = name(y)} and

((weight(x) = Weight + Weight2) or

(weight(x) = fFunctionName(p1, ..., pn))

Temporary Link Creation

Temporary links can be like normal links created between two nodes. The difference

between temporary links and a normal link creation is, that temporary links can be

created in the source model, the target model or even spanning both the source and the

target models (see Section 5.6.1 – Temporary Link Constraint).

〈TempLinkCreation〉 ::= "_" 〈LinkType〉 "(" 〈SourceVariable〉 "," 〈TargetVariable〉 ")"

Temporary Weighted Link Creation

The temporary weighted link creation is similar to a normal weighted link creation (see

Section 5.6.2 – Weighted Link Creation (Extension)). The difference between temporary

links and a normal link creation is, that temporary links can be created in the source

model, the target model or even spanning both the source and the target models (see

Section 5.6.1 – Temporary Weighted Link Constraint (Extension)).

〈TempWeightedLinkCreation〉 ::= "_"〈LinkType〉 "("〈SourceVariable〉 "," 〈TargetVariable〉 ","

〈Weight〉 ["+"〈Weight2〉] ")"

5.6.3 Examples

The following examples showcase the EBNF for different condition and the conclusion.

Example 13 (Statement Conditions).
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• Entity(e) is true for all nodes of type “Entity”

• Entity(e) ∧ Identity(e,v) ∧ Entity(v) is true for all “Entity” nodes connected with an

“Identity” edge to a node of the type “Entity”.

Example 14 (Statement Conclusions).

• Entity(e) ∧ name(e,"booking") creates a node of type “Entity” with the name of

“booking”.

• has-a(a,b) creates a has-a link between the nodes a and b.

5.7 Source Model

The DDD source model is directly converted using an artifact-model transformation

(see Figure 5.1) on the ubiquitous language and the business operations.

As required by the aggregate and service determination, the initial source meta-model

can be seen in Figure 5.6 and contains entities and value objects with their relations

and categorization by modules. They are being accessed by business operations also

belonging to the module. The source model is created for each bounded context of the

DDD adhering to the source meta-model. Besides, as explained in Section 5.1.2, the

business operations accesses (represented as edges of the corresponding types in the

source model) the entities and value objects with one of the Create, Read, Update, Delete,

and Input operations.

The goal of the source model is not only to be able to determine aggregates and services,

but also to graphically validate the ubiquitous language and the business operations. To

create this model, an artifact-model transformation [OMG10] is performed to transform

both the information of the ubiquitous language and the business operations to the source

model. Moreover, as ranging from the distribution in modules to evaluating the bounded

context borders, the source model also helps to evaluate strategic design decisions.
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Figure 5.6: Source Meta-Model
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5.8 Aggregate Models

Aggregates are being determined by two model-model transformation steps (see Fig-

ure 5.1). First, a source model is generated. This model is then transformed into the

potential aggregates target model containing all candidates for aggregates by the appli-

ance of a transformation rule. Then, by reusing the created target model as a source model

for the next transformation rule, the potential aggregate source model is transformed

into the final aggregate model containing the actual aggregates. First, the three models

(see Section 5.8.1) and then the transformation rules (see Section 5.8.2) are presented.

5.8.1 Models

This section describes the different models involved in the transformation in order to

finally determine aggregates.

Potential Aggregate Model

The potential aggregate model (see Figure 5.7 for the meta-model) contains all candi-

dates applying for being an aggregate in the final aggregate model grouped by potential

aggregate models. In this model several potential aggregate nodes can contain the same

entities having the same value objects. Since sNets only support one node being in one

model at a time, entities and value objects being in different potential aggregates are

represented by different nodes consequently. Furthermore, the is-a relation of the source

model is replaced by inheriting all has-a relations from the parent.

For example, if a booking is a delivery, and the delivery has a delivery date, the book-

ing inherits this date. The business operations are left out of the model as being part

of a service,an entity, or a value object which are being analyzed by the Service Mod-

els (see Section 5.9).

Potential aggregates are transformed from the source model. The first part is transformed

by creating the transitive closure over the has-a relations in the source model and then

walking through every node adding it and its children to the model.

60



5.8 Aggregate Models

Potential Aggregate
Meta-Model

Entity

Node

Is-a

Link
outgoing

incoming

Value Object

Node

has-a

Link*

o
u
tg

o
in

g

in
co

m
in

g

Identity

Link
outgoingincom

ing

incoming

o
u
tg

o
in

g

in
co

m
in

g

Potential Aggregates
Meta-Model

Potential
Aggregate

Node

AccessFreq

Link*

o
u
tg

o
in

g

in
co

m
in

g

meta

Figure 5.7: Potential Aggregate Meta-Model

In the second part, the nodes accessed together by business operations in the source

model are also added to the potential aggregates since it is likely that they share the same

transactional boundary.

Final Aggregate Model

The aggregate model (see Figure 5.8 for the meta-model) contains the selected aggregates

from the potential aggregate model. It is obtained through the application of transfor-

mation rules on the potential aggregate model reducing the set of potential aggregates

until all entities occur once in the aggregate model. This results in potential aggregates

being left out since one of their entities was part of a potential aggregate that was chosen

before by a transformation rule to be part of the aggregate model. The main difference to

the potential aggregate meta-model is the absence of the frequency link* which was only

required for transformation (see Section 5.8.3)
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Figure 5.8: Aggregate Meta-Model

5.8.2 Aggregate Transformation Rules

This section describes the two step transformation of the source model to the potential

aggregate model and then from the latter to the final aggregate model.

From Source Model to Potential Aggregate Model

The first two statements create a transitive closure in the source model over the has-a

edges using temporary has-a edges. The first statement, named 〈tempHasA〉, creates

temporary has-a edges for each has-a edge and has the highest priority (see Section 5.6

– Priority (Extension)). This step simplifies the other statements because as temporary

has-a edges are created later on, the statements don’t need to distinguish between normal

and temporary edges.

The second statement, 〈transitiveClosure〉 creates a temporary edge A→ C if an (tempo-

rary) edge exists from between A → B and from B → C, therefore, after all statements

are executed, a transitive closure exists in the graph.
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Figure 5.9: Has-a Constellation

For creating the potential aggregate entity permutations, intermediate steps of the

transformation to a transitive closure are required. Therefore, the 〈newPotAggregate〉

and 〈hasA1〉 statements have a higher priority than the 〈transitiveClosure〉 statement.

This results in copying the nodes from source to the target model as soon as a new

temporary has-a edge has been created. The 〈newPotAggregate〉 statement creates the

new potential aggregate with only one entity. Then, the 〈hasA1〉 statement copies all

entities connected to this entity. This approach ensures to have all has-a permutations in

the model, from a single has-a node to its has-a childrens and their children.

In Figure 5.9, the approach would result in the combinations {{A}, {A, B}, {A, B, C}, {B},

{B, C}, {C}}. Lastly, the hasA2 statement creates all regular has-a links spanning poten-

tial aggregate boundaries. These are required for the External HasA Function (see Sec-

tion 5.8.3).

〈tempHasA〉 ::= Priority 4 : Entity(e) ∧ has-a(e,v) → _has-a(e,v);

〈transitiveClosure〉 ::= Priority 1 :

Entity(e) ∧ _has-a(e,v) ∧ _has-a(v,w) → _has-a(e,w);

〈newPotAggregate〉 ::= Priority 2 :

Entity(e) ∧ name(e,eName) ∧ Entity(v) ∧ _has-a(e,v)
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→ Enitiy(root) ∧ name(root,eName) ∧ PotentialAggregate(p) ∧ partOf(root,p) ∧

_createdFrom(e,root);

〈hasA1〉 ::= Priority 3 : _source(e,v) ∧ _has-a(e,n) ∧ name(n,nName) ∧target_partOf(v,p)

→ Enitiy(new) ∧ name(new,nName) ∧ has-a(v,new) ∧ partOf(new,p) ∧

_source(n,new);

〈hasA2〉 ::= Priority 1 : _source(e,v) ∧ _source(f,w) ∧ has-a(e,f) → has-a(v,new);

The 〈move〉 statement accounts for the business operations and adds potential aggregates

for multiple entities being modified or accessed by business operations. Note that with

these statements, duplicate potential aggregates could be created. This does not lead to a

later aggregate multiplication because if one of the similar potential aggregates is chosen

in the transformation to the aggregate model, the duplicates are marked with a temporary

edge and, therefore, ignored by statements executed later on.

〈move〉 ::= Priority 1 : BusinessOperation(bo) ∧ Entity(e) ∧ (Create(bo,e) ∨ Read(bo,e)

∨ Update(bo,e) ∨ Delete(bo,e) ∨ Input(bo,e)) ∧ name(e,eName)

→ Enitiy(newE) ∧ name(newE,eName) ∧ PotentialAggregate(p) ∧ partOf(new, p) ∧

_source(v,new);

Last, the 〈accessFreq〉 statement provides information how often an entity is accessed by

a business operation is required by the Access Frequency Positive Weight Function (see Sec-

tion 5.8.3). The information is stored in a weighted edge on the potential aggregate

containing the sum of all frequencies of business operations that access all entities of the

potential aggregate.

〈accessFreq〉 ::= Priority 1 :

¬target_Entity(te) ∧ ¬target_partOf(te,p) ∧ target_PotentialAggregate(p) ∧

BusinessOperation(bo) ∧ (¬Create(bo,e) ∧ ¬Read(bo,e) ∧¬Update(bo,e) ∧

¬Delete(bo,e) ∧ ¬Input(bo,e)) ∧ _source(se,te) ∧ freq(bo,bo,f) ∧

target_accessFrequency(p,p,fOld)

→ target_accessFrequency(p,p,fOld+f);
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The 〈accessFreq〉 statement can be read as follows: When there is no entity in the

target model that is part of the potential aggregate p that is not being CRUDI accessed

by the business operation b, then add the freq value of the business operation b to the

accessFrequency of the potential aggregate p.

From Potential Aggregate Model to Final Aggregate Model

First of all, weights for potential aggregates are being calculated by the 〈weight〉 statement

to be able to determine the order in which potential aggregates are transformed to

aggregates. Therefore an edge with the weight of the weightPotentialAggregate function

(see Section 5.8.3) is created, self referencing the potential aggreagte. Note that although

the statement has not the highest priority, it is executed before the other statements.

This is because the other statements can not be executed before the stage statement is

executed.

〈weight〉 ::= Priority 2 : PotentialAggregate(e) → _weight(e,e,#fweightP otentialAggregate(e));

After weighting all potential aggregates (ensured by a lower priority than the weight

statement), the aggregate which has not been finished yet and has the highest weight is

determined and staged for transfer to a newly created aggregate of the final aggregate

model by the 〈stage〉 statement.

〈stage〉 ::= Priority 1 : PotentialAggregate(e) ∧ PotentialAggregate(v) ∧ _weight(e,e,we)

∧ ¬_weight(v,v,wv) ∧ #fhigher(wv, we) ∧ ¬ _finished(e,e)

→ Aggregate(a) ∧_stage(e,a);

The 〈stage〉 statement can be read as follows: There is no potential aggregate v with a

weight higher than the weight of the potential aggregate e.

The function fhigher is thereby defined as follows:

fhigher(a, b) =


1 a > b

0 otherwise

When a potential aggregate has been staged for transfer, all potential aggregates containing

an entity node created from the same entity of the source model are marked as finished.
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The selection of the same node is based on the nodes’ names. Hence the names have

has to be unique in DDD within a single-bounded context. For this, the 〈markDuplicate〉

statement finds and marks duplicate entity names.

〈markDuplicates〉 ::= Priority 3 : Entity(e) ∧ _stage(p,a) ∧ partOf(e,p) ∧ Entity(v) ∧

¬ partOf(e,v) ∧ name(e,aName) ∧ name(v,aName) ∧ PotentialAggregate(p2) ∧

partOf(v,p2)

→ _finished(p2,p2);

With the same priority, the entities are copied by the 〈moveEntities〉 statement from the

potential aggregate model to the final aggregate model. Additionally, a createdOf temporary

link is created helping to identify which entity was created by which entity in the source

model.

〈moveEntities〉 ::= Priority 3 : Entity(e) ∧ _stage(p,a) ∧ partOf(e,p) ∧ name(e,eName)

→ Entity(new) ∧ name(new,eName) ∧ partOf(e,a) ∧ _createdOf(new,e);

After entities have been copied to the final aggregate model, the has-a relations have to

be transfered as well. The first statement copies the value object for each created entity

and creates a has-a relation between the entities and their value objects. The second

statement creates has-a relations between entities of the same aggregate.

〈moveValueObjects〉 ::= Priority 2 :

_createdOf(new,e) ∧ partOf(e,a) ∧ has-a(e,v) ∧ ValueObject(v) ∧ name(v,vName)

→ ValueObject(newV) ∧ name(newV,vName) ∧ partOf(v,a) ∧ has-a(e,v);

〈restoreEntityHasA〉 ::= Priority 1 :

_createdOf(ae1,pe1) ∧ has-a(pe1,pe2) ∧_createdOf(ae2,pe2)

→ has-a (ae1,ae2);

5.8.3 Weight Potential Aggregate Function

The fweightP otentialAggregate(e) function calculates the sum of six distinct weight functions

returning positive or negative infinity, or a value in the range of −4, ..., 0, ..., +4. Zero is

returned when the no decision can be made based on the evaluated potential aggregate.
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Minus infinity is returned when it is absolute certain that the evaluated potential aggregate

can not be an aggregate and overrules other decimal values. Lastly, plus infinity is

returned when it is absolute certain that the potential aggregate is an actual aggregate

also overruling other decimal values.

Prefer Single Entity Cluster Function

The prefer single entity cluster function rates aggregates based on the involved amount

of entity clusters in an potential aggregate. An entity cluster is a set of entities where

one entity is the root entity of the cluster reaching all other cluster entities over a set of

has-a links. Entity clusters can overlap, but they may not contain each other’s root entity.

The prefer single entity cluster function returns a fixed positive number iff only one cluster

exists and a negative number for potential aggregates with more than one entity cluster.

This reflects that aggregates with multiple clusters can not be completely obtained using

a single repository access.

Access Frequency Positive Weight Function

The access frequency positive weight function weights by summing up the times entities

of the potential aggregate were accessed by business operations. This is due to the fact

that entities which are often accessed together, are more likely to be part of the same

transaction and, therefore, belong to the same aggregate.

Access Frequency Negative Weight Function

In contrast to the positive version, the access frequency negative weight function calculates

a negative weight based on different business operations changing entities or value objects

of the evaluated potential aggregate while also changing different potential aggregates. The

access frequency negative weight function was created as these operations would infringe

the statement not to modify multiple aggregate at a time (see Section 3.4.3). Moreover,

the function acts as a counterweight to the above-mentioned positive version.
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HasA Weight Function

The HasA weight function traverses has-a relationships of entities and multiplies their

weight. The higher the weight, the lower the function’s result. The purpose of this function

arises from the downside of having high has-a relationship counts in an aggregate. The

high has-a relationships results in many entities having to be loaded when retrieving the

aggregate from its repository. In addition, the transactional boundary is increased as

more entities have to be locked. The performance of the aggregate therefore decreases

with every entity [Vau13].

Prefer Small Aggregate Function

The prefer small aggregate function returns a positive result, if the aggregate contains only

few entities and, in turn, a negative result, if the aggregate contains many entities. This

function can be regarded as an extension to the above mentioned HasA weight function

which is only based on the weight between entities and not on the amount of different

entities.

External HasA Function

If the potential aggregate has an entity with no incoming has-a edges, but every other

entity can be reached from this entity, it is considered as the aggregate’s root entity

(see Section 3.4.3). If the root aggregate’s root entity can’t be determined or is not

referenced from the outside, the external HasA function will return zero. It will return

a positive number if entities from outside of the aggregate have has-a edges to the root

entity and a negative number if they reference entities other than the aggregate root.

5.9 Service Models

Figure 5.10 shows the final service meta-model for the model-model transformation

(see Section 5.4) from the source meta-model. Unlike the Aggregate Models (see Sec-
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tion 5.8), determination of the service model can be achieved in one single model-model

transformation.

As business operations can reside as services outside, or as object methods inside of

entities, the meta-model allows for nesting of business operations into entities.

Comparing the source meta-model to the service meta-model, the main difference, aside

from entities having object methods, is that, unlike the business operations, services

only have a read and write link leading to a more simple diagram. Moreover, the

transformation rules are shorter as they have not to deal with each of the CRUDI links.

5.9.1 Service Transformation Rules

As the service meta-model and the source meta-model are highly comparable, the first

set of statements copy entities, value objects, and their relations from the source to the

service meta-model.

〈moveEntities〉 ::= Priority 12 : Entity(e) ∧ name(e,eName)

→ Entity(new) ∧ name(new,eName) ∧ _createdOf(new,e);

〈moveValueObjects〉 ::= Priority 11 :

_createdOf(new,e) ∧ has-a(e,v) ∧ ValueObject(v) ∧ name(v,vName)

→ ValueObject(newV) ∧ name(newV,vName) ∧ has-a(e,v);

〈restoreEntityHasA〉 ::= Priority 10 : _createdOf(target_e1,source_e1)

∧ has-a(source_e1,source_e2) ∧ _createdOf(target_e2,source_e2)

→ has-a (target_e1,target_e2);

As soon as the copying procedure is complete, the statements for creating the services

and object methods are executed.

The first statement, namely 〈createService1〉, creates a service for business operations

that only deletes entities as these business operations require repositories (which are

not accessible from the object methods). The second statement, 〈createService2〉,

handles business operations creating entities. The third statement, as can be seen

in 〈createService3〉, handles business operations updating two or more entities.
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〈createService1〉 ::= Priority 9 : BusinessOperation(bo) ∧ ¬_createdOf(bo,_) ∧

name(bo,boName) ∧ delete(bo,_) ∧ ¬create(bo,_) ¬update(bo,_)

→ Service(newService) ∧ name(newService,boName) ∧ _createdOf(newService,bo);

〈createService2〉 ::= Priority 8 : BusinessOperation(bo) ∧ ¬_createdOf(bo,_) ∧

name(bo,boName) ∧ create(bo,_) ∧ ¬delete(bo,_) ¬update(bo,_)

→ Service(newService) ∧ name(newService,boName) ∧ _createdOf(newService,bo);

〈createService3〉 ::= Priority 7 : BusinessOperation(bo) ∧ ¬_createdOf(bo,_) ∧

name(bo,boName) ∧ update(bo,x) ∧ update(bo,y) ∧ ¬delete(bo,_) ¬create(bo,_)

→ Service(newService) ∧ name(newService,boName) ∧ _createdOf(newService,bo);

Next comes the 〈createObjectMethod1〉 statement which creates object methods. Firstly,

business operations which only read exactly one entity are transformed to an object

method of the entity as they only require the entities information. This statement utilizes

the enforcement that multiple variables may be bound to the same element at a time

(see Section 5.4).

〈createObjectMethod1〉 ::= Priority 6 : BusinessOperation(bo) ∧ ¬_createdOf(bo,_)

∧ name(bo,boName) ∧ read(bo,source_e) ∧ ¬read(bo,v) ∧ ¬update(bo,_)

∧ _createdOf(target_e,source_e) ∧ ¬update(bo,_) ∧ ¬delete(bo,_) ¬create(bo,_)

→ ObjectMethod(newMethod) ∧ name(newMethod,boName) ∧

part-of(newMethod,target_e) ∧ _createdOf(newMethod,bo);

The other way around, business operations reading multiple entities are represented as a

service because object methods have no access to repositories.

〈createObjectMethod2〉 ::= Priority 5 : BusinessOperation(bo) ∧ ¬_createdOf(bo,_)

∧ name(bo,boName) ∧ read(bo,source_e) ∧ read(bo,v) ∧ ¬update(bo,_) ∧

_createdOf(target_e,source_e) ∧ ¬update(bo,_) ∧ ¬delete(bo,_) ¬create(bo,_)

→ Service(newService) ∧ name(newService,boName) ∧

part-of(newService,target_e) ∧ _createdOf(newService,bo);

The following 〈createObjectMethod3〉 statement covers business operations updating
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exactly one entity. The statements utilizes the fact that updates, of two or more elements

have already been processed by statements with a higher priority.

〈createObjectMethod3〉 ::= Priority 4 : BusinessOperation(bo) ∧ ¬_createdOf(bo,_)

∧ name(bo,boName) ∧ update(bo,source_e) ∧ _createdOf(target_e,source_e) ∧

¬delete(bo,_) ∧ ¬create(bo,_)

→ ObjectMethod(newService) ∧ name(newService, boName) ∧

part-of(newService,target_e) ∧ _createdOf(newService,bo);

A special case are methods updating exactly one entity, but also modifying others. These

methods are created as object methods but also require support of an external service.

Therefore, they are modeled as a separate set of object methods called supported object

methods. The following statement shows how they are created.

〈supportedObjectMethods〉 ::= Priority 3 : BusinessOperation(bo) ∧ ¬_createdOf(bo,_)

∧ name(bo,boName) ∧ update(bo,source_e) ∧ _createdOf(target_e,source_e)

→ SupportedObjectMethod(newService) ∧ name(newService,boName)

∧ part-of(newService,target_e) ∧ _createdOf(newService,bo);

Next, the 〈createTempLinks〉 is used to cover business operations modifying multiple

entities (e.g., creating an entity and updating another). This type of business operations

are either services utilizing Domain Events (see Section 3.4.6) or parts of the same

aggregate. In order to prevent the listing of permutations, the 〈createTempLinks〉

statement creates temporary links (see Section 5.6.1 – Temporary Link Constraint) for

create, update, and delete operations. The 〈createMulti〉 statement is then executed for

business operations with more than two temporary links.

〈createTempLinks〉 ::= Priority 2 :

BusinessOperation(bo) ∧ ( create(bo,e) ∨ update(bo,e) ∨ delete(bo,e) )

→ _writeLink(bo,e);

〈createMulti〉 ::= Priority 2 : BusinessOperation(bo) ∧ _writeLink(bo,a) ∧_writeLink(bo,b)

→ Multi(mult) ∧ name(mult,boName) ∧ _createdOf(mult,bo);
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Business operations which do not match any of the previous statements, are transformed

into uncategorized nodes. The low priority ensures all other categorization statements

are executed before this statement comes into play.

〈createUncategorized〉 ::= Priority 1 :

BusinessOperation(bo) ∧ ¬_createdOf(bo,_) ∧ name(bo,boName)

→ Uncategorized(uncat) ∧ name(uncat,boName) ∧ _createdOf(uncat,bo);

Last but not least, after all operations and services are determined, read and write access

operators are inserted.

〈createReadLinks〉 ::= Priority 0 : BusinessOperation(bo) ∧ _createdOf(service,bo) ∧

(read(bo,e) ∨ input(bo,e)) ∧ Entity(source_e) ∧ _createdOf(target_e, source_e)

→ read(target_e,service);

〈createWriteLinks〉 ::= Priority 0 : BusinessOperation(bo) ∧ _createdOf(service,bo) ∧

(write(bo,e) ∨ delete(bo,e)) ∧ Entity(source_e) ∧ _createdOf(target_e, source_e)

→ write(service,target_e);
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6
Prototype

In Figure 6.1, the proof-of-concept is introduced implementing the artifact-model, model-

model, and model-artifact transformations. To begin with, the structure of the artifacts

(namely the business operations and the glossary) used in the first transformation is

explained in Section 6.1.

Utilizing these artifacts, the artifact-model transformation (see Section 6.2) creates the

source model, a tactical DDD model with modules containing entities, value objects, and

their relations. In the java implementation, the DDD model is stored through an object

graph. By analyzing this model (see Section 6.2.4), the additional information of access

frequency to the DDD data types is gathered and added to the model.

As described in Section 6.3, multiple model-model transformations are then applied. This

transformations translate the source model created by the artifact-model transformation

to the aggregate model (see Section 6.3.1) and the service model (see Section 6.3.6).

Using the created models, the model-artifact transformation can be executed (see Sec-

tion 6.4). This last transformation step transfers the different models to artifacts such as

exports for media wiki (see Section 6.4.2), different visualizations of the model (see Sec-

tion 6.4.1), and additionally, generates source code by utilizing a template engine(see Sec-

tion 6.4.3).
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Figure 6.1: Prototype’s Architecture

6.1 Artifacts

“ An artifact is a piece of information that is used or produced by a system

development process, or by deployment and operation of a system.

”– OMG Architecture Board, [OMG10]

In context of the prototype, artifacts are information stored in different formats such as

xlsx (Excel spreadsheet), text, gml, or log messages. They serve either as an input for the

prototype or are created by the it as an output.
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The prototype receives two artifacts as input, the Glossary (see Section 6.1.1) and the

Business Operations (see Section 6.1.2) containing the ubiquitous language and the

business operations. After multiple transformation steps the input is finally converted

to different types of output artifacts (see Section 6.4). These artifacts then represent a

distilled knowledge representations of the input artifacts.

6.1.1 Glossary

The glossary is an artifact used to grasp the Ubiquitous Language (see Sections 3.2

and 5.1.1) as suggested in [Eva04]. At first, only the significant terms, their definitions,

and deprecated alternatives were collected and stored in a simple text document. While

the glossary had been growing, multiple problems with this solution were identified:

firstly, the glossary has to be consistent in itself. For example, when having the word

“gate” defined, all usages of the concepts of gates must refer to this definition. This led

to the problem that changes applied to one term in the document would require that

the complete document is edited manually. Secondly, as the used text processors have

the tendency to insert special characters (e.g. non breakable spaces, different hyphen

characters,... ), parsing the document proved challenging. Lastly, as the number of terms

grew, the document became increasingly complicated and confusing.

To cope with this, a LATEX (LaTeX) document was evaluated as words could be defined in

macros. This provided the ability to reuse them in descriptions of other terms. In addition,

if properly used, it allows to refactor terms easily always providing a document-wide

consistency. By using the hyperref LaTeX package, links from terms to their definitions

can be automatically integrated in the resulting PDF document. Furthermore, LaTeX

text processors usually does not include special characters in the document. As LaTeX

stores its information in text files, it is easily parsed with both traditional and modern

programming languages, it is easily deployable on multiple target platforms, and it can

be naturally shared using version control systems.

However, there is a problem with using LaTeX for MERCAREON. As MERCAREON relies

on Microsoft OfficeTM products and the LaTeX toolchain is not installed on the personal

computers by default, the usage of LaTeX for a company-wide language definition proved
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difficult. Furthermore, as LaTeX has a complex syntax, it is more difficult to write for the

involved domain experts. This would endanger its required company wide acceptance.

Therefore, spreadsheets based on Microsoft ExcelTM has been selected as a more company

compliant document type. With the spreadsheets’ tabular layout, it offers a better readable

representation of the glossary. The downside is, that as spreadsheets were not made

for text representations, cross references were hard to accomplish, and even harder to

maintain.

In total, three spreadsheets were used for each bounded context where each spreadsheet

contains one data table. The first spreadsheet contains a summary of the other two

spreadsheets created by a macro1. The second sheet can partly be seen in Example 15 and

is specified in Definition 1. It contains terms, the module of the terms, optional identifiers,

descriptions, has-a relations, and is-a relations. The third table contains deprecated terms,

their modules, and their descriptions.

Example 15 (Excerpt of the second spreadsheet).

Term Module Identity Has-a Is-a

gate Location gate group,

name

booking cond{*},

schedule cond{*}

-

user Authentication

and

Authorization

company,

login

company{1},

role{*}

-

activated

order

Order order number,

properties,

activation num-

ber

- imported order

6.1.2 Business Operations

Based on Definition 2, the business operation spreadsheet contains the following columns:

the name of the operation, the operation’s module, the precondition for executing the
1The macro firstly copies the complete second spreadsheet and then adds an alternative terms column for

each term of the second spreadsheet. This additional column contains the alternative words gathered
from the third spreadsheet.
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operation, the execution frequency between zero and five, and the column for each

CRUDI operation respectively. Example 16 shows an excerpt of the business operation

spreadsheet. The business operation spreadsheet is defined for each bounded context.

Example 16 (Excerpt of the business operation spreadsheet).

Operations’ Module: Order

Name Freq Input Reads Creates Updates Deletes

activate

order

4 activation

criteria

imported

order

activated

order

- -

delete

activated

order

2 activated

order

- - - activated

order

6.2 Artifact-Model Transformation

The artifact-model transformation (see Figure 6.2) creates the source model, represented

by a Java object graph, from the previously mentioned spreadsheets (see Section 6.1).

Glossary spreadsheet

Glossary Parser

BO Parserdefinitions
identities
modules
has-a
is-a Source Model

creates

Analyzer Validator

BO spreadsheet

Artifact-Model

Figure 6.2: Artifact-Model Transformation

The transformation is performed in two steps: First, Glossary Spreadsheets Parser (see Sec-

tion 6.2.1) parses the glossary entries into a Java data-structure. Then, the Business

Operation Parser (see Section 6.2.2) is executed creating the DDD-based object graph

and thereby constructs Modules (see Section 3.3.4), Entities (see Section 3.4.1), Value Ob-

jects (see Section 3.4.2), and their relations to each other. Additionally, the graph contains
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the Business Operations (see Section 5.1.2) which are not specified by the DDD mod-

els but required for performing Model-Model Transformations (see Section 6.3). As this

transformation requires meta-models, the object graph created from the artifact-model

transformation adheres to the source meta-model as defined in Section 5.7.

6.2.1 Glossary Spreadsheets Parser

To enable the artifact-model transformation, the glossary spreadsheet has to be parsed

into a format suited for this task. Therefore, first, the spreadsheets’ tables were parsed

row by row creating a Hashmap containing the column’s name mapping to the column’s

data. This map is then passed to the constructor of the GlossaryEntry class (see List-

ing 6.1) creating an instance with matching columns from the map. As some columns in

the spreadsheet are not mandatory, they might be set to null. The identity which is re-

quired to identify entities, is not used to identify glossary objects as value objects have no

such information. Instead, the combination of module and term was chosen for the object

identity. As the prototype is meant to be executed on every bounded context seperately,

the GlossaryEntry class has no bounded context affiliation entry. Last, the deprecatedTerms

map is filled to enable the export of deprecated terms into other formats such as Media

Wiki (see Section 6.4.2).

1 public class GlossaryEntry implements

HasID < ElementIdentifier > {

2 @NotNull private final String module ;

3 @NotNull private final String term;

4 @Nullable private String identity ;

5 @Nullable private final String description ;

6 @NotNull private final String [] hasA;

7 @NotNull private final String [] isA;

8 @NotNull private Map <String , DeprecatedTerm >

deprecatedTerms ;

9 @Override
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10 public ElementIdentifier getID () {

11 return ElementIdentifier .of(module , term);

12 }

13 }

Listing 6.1: Excerpt of GlossaryEntry Class

6.2.2 Business Operation Parser

The module parser uses GlossaryEntry instances created by the Glossary Spreadsheets

Parser (see Section 6.2.1) to create entities and value objects connected by isA and

hasA relations. For this, the business operations’s CRUDI accesses of data elements, and

recursively their hasA and isA relations, are traversed to create the respective entities or

value objects. The decision whether a data element is regarded as an entity or a value

object, is based on the identify column (value objects have no unique identities).

Listing 6.3 shows the super class MethodImpl of entities and value objects. The imple-

mentation differs significantly from the entity and value object representations used in

the source code artifact created by the code generation unit (see Section 6.4.3). This

difference arises as the implementation in the prototype is meant to represent different

nodes in a graph where each node needs to be differentiated and therefore has an node

id. Value objects, as used later in artifacts, don’t require such an node id as being part of

an entity.

Next, the module’s business operations are created using the Builder Pattern [Gam95]

adding their CRUDI data accesses to entities and value objects. As can be seen in List-

ing 6.2, the class representing the business operations holds: a reference to the business

operation’s module, a list of edges encapsulating the access to entities and value objects

providing the information of the access type, the frequency of how often the business

operation is executed, and the name of the operation. The precondition field is missing in

the example since it was not required for the later performed model-models transforma-

tions.
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1 class MethodImpl implements Method {

2 @NotNull private final Module module ;

3 @NotNull private final List <Edge > accessMap ;

4 @NotNull private final AccessFrequency frequency ;

5 @NotNull private final String name;

6 }

Listing 6.2: Excerpt Class Representing a Business Operation

1 public class DataElementImpl implements DataElement {

2 @NotNull protected ElementIdentifier id;

3 @NotNull protected String name;

4 @NotNull protected Map < DataElement , HasAFreq > hasA;

5 @NotNull protected Set < DataElement > hasAChildOf ;

6

7 @NotNull protected Set < DataElement > isA;

8 @NotNull protected Set < DataElement > isAParentOf ;

9 }

Listing 6.3: Excerpt of the Entities’ and Value objects’ Superclass

6.2.3 Artifact Validation

The validation of the artifacts is performed in two distinct steps. At first, while parsing

the data to an object model (see Section 6.2), the validity of relationships (isA, hasA)

is checked. Since the business operations are based on the glossary, it is also checked

whether every operation is based on an actual glossary entry.

As soon as the source model has been created, it is piped through additional validation

steps. This second validation is based on the Decorator Pattern [Gam95]. Enabling

programmers to extend validation routines as required. The simple validation program

at the core of the pattern checks whether the parser has created a valid output so that

all mandatory fields are set. This validator is then decorated with more sophisticated
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validators checking if there are data elements that are being written, but not read, and if

there are is-A cycles in the object graph.

Listing 6.4 shows the source code of the cycle detection decorator. Has-A relationship

cycles are detected and the user of the prototype is warned as circular “are tricky to main-

tain” [Eva04].

1 class NoCycleValidator extends ValidatorDecorator {

2 public NoCycleValidator ( ModuleValidator parent ) {

3 super ( parent );

4 }

5 @Override

6 public boolean validate (Set <Module > modules ) {

7 boolean parentResult = super . validate ( modules );

8 if (! parentResult )

9 return false ; // skip if previous validation failed

10 // iterate all existing data elements ( entities or value

objects ) searching for cycles

11 boolean cycle= false ;

12 for( Module module : modules ){

13 for ( DataElement dataElement :

module . getDataElements ( DataElementType .ALL)) {

14 cycle = cycle || cycleDetection ( dataElement );

15 }

16 }

17 return !cycle;

18 }

19 // ...

20 }

Listing 6.4: Has-A Cycle Detection
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6.2.4 Analyzer

After the documents have been successfully transfered into a DDD object graph (see Sec-

tion 6.2) and passed the Artifact Validation (see Section 6.2.3), the graph is analyzed.

Entities and value objects are tagged with the access frequency metric telling how often

they are being accessed. This information is important for the later detection of aggre-

gates. Aggregates, which contain many frequently accessed elements, perform worse

from a transactional point of view than aggregates that are accessed less frequently. Fur-

thermore, as this information is also visualized (see Section 6.4.1), it can be used to

determine which data elements are important for the domain.

6.3 Model-Model Transformations

The model-model transformations (see Figure 6.3) utilize meta-models and transforma-

tion rules (see Chapter 5). The goal is to transform from the source model created by

the artifact-model transformation (see Section 6.2) to an aggregate model containing

the domain models aggregates (see Section 3.4.3) and a service model containing the

services (see Section 3.4.5).

Source Model

Analyzer

Transformation Rules

Aggregate Model

Model-Model

Service Model

Figure 6.3: Model-Model Transformation
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6.3.1 Aggregates

The aggregate determination algorithm is based on the model-model transformation as

defined in Aggregate Transformation Rules (see Section 5.8.2). As described, aggregates

are determined in two transformation steps: firstly, potential aggregates are generated

(see Section 6.3.2) and weighted (see Section 6.3.3). Secondly, based on the weighting,

a set of potential aggregates is selected and converted to aggregates (see Section 6.3.4).

Section 6.4.1 shows the result of the model-model transformation as exported from yED—

a Java based graph visualization tool.

6.3.2 Generating Potential Aggregates

The first step described by the Aggregate Transformation Rules (see Section 5.8.2) is to

transform from the source model to a potential aggregates (see Section 5.8.1) object

model. During the determination process, the potential aggregates are collected in a map

with the contained entities HashSet as key and the PotentialAggregate instance as value.

The HashSet, has a specialized implementation calculating the hash code only once on

creation and not every time accessed. As the map invoke the hash code method multiple

times, the proposed HashSet implementation is faster as it has not to iterate all contained

entities for each access.

As described in Section 5.8.1, the potential aggregates determination algorithm consists

of several different steps.

To summarize: firstly, has-a relations are inherited over the is-a relations. Then, the root

entity (see Sections 3.4.3 and 5.8.3) is determined in the module boundary. Starting

from the root entity, the transitive closure over the has-a relation is determined and

potential aggregates are created. The process is described in Section 5.8.2 by the

〈tansitiveClosure〉 rule. Lastly, entities accessed together by business operations are also

grouped in potential aggregates. When the set of entities already exists as a potential

aggregate, the new potential aggregate is (unlike in Section 5.8.2) not a duplicate but

is merged with the existing one as it makes gathering access frequencies for potential

aggregates easier.
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6.3.3 Weighting Potential Aggregates

The weighting process, as described in Section 5.8.3, is implemented as a set of classes

implementing the Heuristic class (see Listing 6.5). Each Heuristic class’ calcAggregate-

Likelihood method is executed. The parameters of the execution are the entities of the

potential aggregate, methods accessing the whole entity set (also containing the access

frequency), and invariants representing a groups of entities and should be protected by

an aggregate (see Section 3.4.3). The methods finally return a likelihood enum ranging

from ‘impossible’ over ‘unlikely’, ‘maybe’, and ‘likely’ to ‘definitely’. After the likelihood

is being calculated, it is converted into a numeric value from -∞ over values from -4

to +4 to ∞(see Section 5.8.3). This values are then weighted using the result of the

method’s weight() function (usually 1.0) and then collected. When all weighted results

are gathered, the potential aggregate is simply tagged with the sum of all positive or

negative results. The sum enables zero likelihoods indicating that the method could not

decide for or against the potential aggregate. By choosing an average function instead,

potential aggregates with a lower overall certainty might be chosen, as their average is

higher.

1 public abstract class Heuristic {

2 public abstract Likelihood calcAggregateLikelihood (

3 @NotNull Set <Entity > entities ,

4 @NotNull HashSet <Method > accessingMethods ,

5 @Nullable HashMap < DataElement , List <Invariant >>

invariantMap );

6 public abstract double weight ();

7

8 \\...

9 }

Listing 6.5: Abstract Heuristic Class
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6.3.4 Creating Aggregates

Concluding the aggregate model-model transformation, aggregates are created from the

weighted set of potential aggregates (see Section 5.8.2). For this, potential aggregates

are sorted first by their weight and second by their size (preferring smaller aggregates

(see Section 3.4.3)). Then the potential aggregate with the highest weight is drawn and

converted to an aggregate. The process is repeated as long as potential aggregates exist

with no entity in an already created aggregate.

As a final step, value objects are added to the aggregate. Multiple aggregates may hold

the same value objects. This leads to the problem that elements are being distinguished

using Java’s object equality. Two different value objects would be painted as one node as

they share the same hash code and are equal. Thus, the ElementIdentifier, as described in

Section 6.2.2, contains a default Java Universally Unique Identifier enabling the creation

of randomized identifier copies when needed.

6.3.5 Manually Defining Aggregates

As the heuristics for determining of aggregates are not perfect and sometimes one even

have to choose between variants that have the same weight, a feature was build in to

manually define aggregates.

For this, a row can be added to a Java property file (see Listing 6.6, Line 2 and 3) con-

taining the name of the aggregate and its entities. An aggregate is generated from this

definition and its entities are excluded from further transformation steps. It is possible

to let the prototype name the aggregate by adding “auto_” as a prefix to the aggregate’s

name.

1 # AggregateAssignment . properties

2 auto_location = location ,gate group

3 company = company

Listing 6.6: Manual Aggregate Definition
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6.3.6 Services

Services (see Section 3.4.5) are obtained using a model-model transformation which

translates the source model to the service model. For this, transformation rules (see Sec-

tion 5.9.1) are applied to the source model. Unlike the aggregate determination, the

model-model transformation can be performed in one single step. This and the fact that

the required transformation rules are straightforward simplify the transformation process.

The prototype contains a simple loop for the transformation iterating over all business

operations and checking which statement applies. As soon as a matching statement is

found, the business operation is converted to a service or an object method continuing

with the next loop iteration (see Listing 6.7).

1 // Create without updating or delete

2 if ( created > 0 && deletedOrUpdated == 0) {

3 serviceMethods .add( method );

4 continue ;

5 }

Listing 6.7: Service Transformation Loop Excerpt

6.4 Model-Artifact Transformation

The last step of the prototype utilizes a model-artifact transformation to create artifacts

from the different created models (see Figure 6.4). The first type of artifacts (see Sec-

tion 6.4.1) are graph files used to visualize the different models created by model-model

transformations (aggregate and service models) and the artifact-model transformation

(source model). The second type of artifact, namely a media wiki table (see Section 6.4.2),

is a simple representation of the source model. It contains the identical information like

the glossary and is used for communicating the ubiquitous language. The third and last

artifact is source code generated from the aggregate and service models. Section 6.4.3

shows how FreeMake, a template generator, can be utilized for creating this code artifact.
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Figure 6.4: Model-Artifact Transformation

6.4.1 Visualization

To create a human friendly representation, yED (see Section 6.4.1) was chosen as it sup-

ports user friendly tools to interact with the graph and has various layouting mechanisms.

To be able to utilize yED, a custom Java Graph Modeling Language (GML) exporter has

been written (explained in the following). Lastly, this Section presents the result of trans-

forming the object graph created in the Artifact-Model Transformation (see Section 6.2)

to a human-friendly visual graph representation.

yED

Since the free version of yED [yWo] offers a good layout algorithm, it was chosen as the

program of choice to display the graphs. To export the graph for yED, the GML [Him97]

export function of the Java library jgraphT [Nav+] was chosen. Therefore, the created

object graph is transformed into a jgraphT graph and, from there, into the gml format.

Since the jgraphT’s GMLWriter only offers limited support for the GML format as used by

yED, a custom GML writer was created supporting different node types, borders, colors,

edge types, labeled edges, arrows, and groups which can hold multiple nodes.
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Listing 6.8 shows the interface created to define the layout of a graph for the custom

GML writer. For each node V, edge E and (if exist) group G, the corresponding method is

called where the formatting definition for the graph element is created and returned.

1 public interface YedGmlGraphicsProvider <V, E, G> {

2 NodeGraphicDefinition getVertexGraphics (V vertex );

3 EdgeGraphicDefinition getEdgeGraphics (E edge ,

4 V edgeSource , V edgeTarget );

5 @Nullable NodeGraphicDefinition getGroupGraphics (G group ,

6 Set <V> groupElements );

7 }

Listing 6.8: Graphics Provider

Example 17 (Custom Entity Style). Listing 6.9 shows an implementation painting every

entity node white, with a dashed border, and a red font of the size 18. A simple if statement

checks for entities in the getVertexGraphics(V vertex) method. When the if statement

holds, an immutable NodeGraphicDefinition is returned with respective parameters set,

otherwise a default NodeGraphicDefinition is returned.

1 @Override

2 public NodeGraphicDefinition getVertexGraphics ( GraphNode

vertex ) {

3 if( vertex instanceof Entity ){

4 return new NodeGraphicDefinition . Builder (

5 Color.white , GraphicDefinition . LineType . dashed )

6 . setLabelColour (Color.red)

7 . setFontSize (18)

8 .build ();

9 }else{

10 return new NodeGraphicDefinition . Builder ().build ();

11 }

12 }
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Listing 6.9: Custom Entity Style

Source Model Visualization

Figure 6.5 shows the result of the conversion of the source model to GML. The GML

representation was then loaded it into yED where the organic layout was applied. The

graph shows the different modules, e.g., Order, Location, Company. Each model contains

entities as circles, value objects as dashed circles and business operations as yellow

squares. Entities and value objects are colored in a scale from green to red according

to the access frequency (see Section 6.2.4). Additionally, has-a edges are represented

by lines with black arrows which are annotated with the weight of the relationship. Is-a

relationships are drawn with dashed lines and white arrows.

This initial graph helps to get an overview of the domain model. It also helps to graphically

validate the created glossary and business operations. In addition, as frequently accessed

nodes are drawn in a red color, the visualization gives some indication which data is often

accessed. Furthermore, business operations accessing many different data elements can

be identified by analyzing the outgoing edges.

Figure 6.6 shows a visualization of module dependencies. Every time a method reads,

writes or creates entities or value objects, a directed dependency edge is created. The

dependancy edges are drawn between the modules pained as yellow squares. Further-

more, a has-a or is-a relation between the modules’ data elements also results in drawing

a dependency edge. This visualization helps to get an overview over the dependencies in

the system at an early stage of the refactoring process. With this, unwanted dependencies

(which partly exist in the figure) can be removed more easily. Especially when comparing

to a self drawn dependency model, unwanted dependencies can be found and traced by

looking at cross module accesses (see Figure 6.5). For this, realizing the graph in yED is

helpful as modules could be moved freely. To compare the accesses of two modules, they

can be simply moved next to each other in the source model visualization.
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Figure 6.5: Source Model Visualization
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Aggregate Visualization

The aggregate visualization can be seen in Figure 6.7. Aggregates are represented as grey

dashed boxes containing entities and their value objects. The name of every aggregate is

determined by its root entity. The number behind the name represents the confidence

calculated from the summed up results of the weighting methods.

Service Visualization

The service visualization (see Figure 6.8) shows the business operations converted either

to object methods or to services. When converted to object methods, they reside in

an entity drawn as a green circle. Otherwise, they are visualized as yellow circles

representing services. Value objects are also drawn as green circles but with a dashed line.

A dotted line on an object method indicates the support of an service for its function.

For example, the object method uncombine combined order in completed order requires

a service to delete the combined order entity. Services with dotted lines represent those

accessing multiple entities in a way that these entities must either be part of an aggregate

or be maintained by utilizing Domain Events (see Section 3.4.6). Last but not least, grayed

out circles represent business operations for which the algorithm could not decide their

category.

6.4.2 Media Wiki

With the spreadsheets set as the preferred document type for managing the ubiquitous

language, the desire arose to communicate the content of the spreadsheets over the

company-wide Wiki. This was achieved by transforming the source model (see Sec-

tions 5.7 and 6.2) to a text file artifact. Listing 6.10 shows an excerpt of the exported

text file. The export itself is very basic: the object structure is iterated using ‘for’-loops

and the required data strings are concatenated including separators such as “||” and “!!”.

The document starts with a class definition which sets the design for displaying the data

as html. The start of each line is annotated with “|-” whereby the first line is treated as
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the header of the table.

1 {| class =" wikitable "

2 |-

3 ! Term (en) !! Term (de) !!

Module !! Identity !!

Description !! has -a !! is -a

4 |-

5 | company || Firma ||

Company || company id || External

assosiation . || relation {*} ||

6 |-

7 | company id || Firmen ID ||

Company || || Companies Unique

identifier . || ||

8 |-

9 | relation || Beziehung ||

Company || || Connection

between two companies . || ||

10 |-

11 | relation type || Beziehungstyp ||

Company || || Relation type

between companies defining their roles.

|| ||

12 |}

Listing 6.10: Media Wiki Export

6.4.3 Code Generation

To generate source code from the previously created aggregate and service models,

Apache FreeMaker [Fou] was chosen as a tool of choice. FreeMaker is a template engine
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implemented as a Java library. It enables the creation of text files based on templates

combined with the data accessible by a Java application.

Templates

FreeMaker templates can be used to generate Java sourcecode. For this, templates can be

created for the elements of the Tactical Design (see Section 3.4). These templates contain

special directives annotated with ${...} to be replaced with data from a Java data model.

Listing 6.11 shows a template which is used to create entity classes. At the top (Line 1 to

7), there is a function definition which converts the space separated names of entities

and value objects into a CamelCase format. This function is first used to define the Java

identifier of the class. In the class, references to value objects (Line 8 to 12), entities

(Line 14 to 17) and the object methods (Line 21 to 25) are created. As some information

is unknown, such as how the method operates, the developer has to fill in the missing

information after the creation of the sourcecode.

1 <# function CamelCase word > <# assign result = "">

2 <#list ${word?split(" ")} as w>

3 <# assign result = result + w?cap_first >

4 </#list >

5 <# return result >

6 </# function >

7 public class ${ CamelCase ( Entity .name)} implements Entity {

8 // value objects

9 <#list valueObjects as valueObject >

10 <# assign valueObj = CamelCase ( valueObject .name?>

11 private ${ valueObj } ${ valueObj ? uncap_first };

12 </#list >

13 // entities

14 <#list entities as entity >

15 <# assign ent = CamelCase ( entity .name?>
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16 private ${ent} ${ent? uncap_first };

17 </#list >

18 public ${ Entity .name }() { // todo implement constructor

19 }

20 // object methods

21 <#list objectMethods as method >

22 public Object method (<# list method . inputs as

parameter >${ parameter },</#list >){

23 return null; // todo implement

24 }

25 </#list >

26 // ...

27 }

Listing 6.11: Template for an Entity Class
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Figure 6.6: Module Dependency Visualization
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Figure 6.7: Aggregates

98



6.4 Model-Artifact Transformation

Figure 6.8: Services

99



6 Prototype

6.5 Refactoring Realization

As the development team had no previous experience with DDD and still has to maintain

the current TSM system it was decided against architectural refactoring of the whole

TSM system. For this reason, MERCAREON decided that as a first step only a small

module, the Live Yardview, is created using the proposed refactoring techniques based

on DDD to establish an well maintainable architecture. This module is going to coexists

with the existing TSM system. When completed, the module’s bounded context is to be

continuously expanded until reaching a fully-fledged architectural refactoring.

The Live Yardview’s purpose is to act as a timeline resource planing tool for the retailer

where resources have multiple tasks. The resource stands for an individual capacity for

unloading. The task represents a delivery that is planned to be executed by a resource.

The delivery is an unloading task expressed by a workflow comprised of a series of dispatch

states. The active dispatch state hereby represents the current unloading status of a

delivery.

For example, when goods are delivered, resources such as fork lifts or more abstract gates

can be assigned to the (un)loading task of the goods. The progress of an (un)loading task

is reflected by a change to the active dispatch state.

As described in Chapter 5, for creating a Domain-Driven Design for the Live Yardview, the

collection of the ubiquitous language and the business operations is required to utilize

model-model transformations. Therefore, the development started with collecting the

glossary and the business operations of the TSM system’s bounded context. The collection

went through several iterations in cooperation with the management of MERCAREON.

They are bound to go through additional iteration in the future as being maintained by

the MERCAREON staff.

Next, the strategic design was determined for the existing systems architecture by follow-

ing the advices of [Eva04] and [Vau13] to talk to the involved domain experts. After the

strategic design had reached an acceptable state, the tactical design was created by gain-

ing insights from the visualizations created by model-artifact transformations. Moreover,

utilizing these visualizations, the different involved components were validated.
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When the glossary for the ubiquitous language and the business operations are collected

and the strategic and tactical design is created, the question arose how to fuse the existing

TSM system with the refactored DDD-based architecture. For this, the bubble context

approach was chosen.

The bubble context approach suggested by [Eva13] is used for the creation of DDD systems

which are being surrounded by legacy systems. For this, a small, clean bounded context,

as required by DDD, is created. This small bubble isolates the team’s work from the

existing legacy system. Additionally, the bubble context strategy does not require a big

commitment to DDD. It allows a small team to create a working DDD design.

As can obtained of Figure 6.9, the bubble context used for the Live Yardview which

utilizes Ports and Adapters (see Section 3.4.7) and the dependency inversion principle.

The Live Yardview’s Domain Layer contains the interfaces for repositories (R1,...,Rn)

and services (S1,...,Sn) which are being implemented in the Application Layer. The

repositories accesses the persistence layer of the TSM system over its DAO interface.

The services accesses the logic layer of the TSM system over its Service interface. The

translation between the two different ubiquitous language of the TSM system and the

Live Yardview bounded contexts is realized in the repository and service implementations.

These implementations act as an ACL in order to protect the newly created bounded

context.

The goal is ultimately to evolve the bubble constantly by importing existing business

operations of the TSM system’s bounded context to achieve the desired architectural

refactoring. For this, the ACL has to be adapted and maintained to cope with the growing

bounded context. Furthermore, the bubble will, at some point, require its own data

storage becoming an autonomous bubble [Eva13] and, thereby, resolving its dependencies

to legacy parts.

By creating the bubble context, MERCAREON’s development team has obtained the

required experience to create further Domain-Driven Designs at minimal cost and risk

[Eva13]. Additionally, parts of the bubble such as the glossary will continue to improve

the experience within the company. Moreover, the developers of MERCAREON will gain

a better insight into the domain improving continuous developments.
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7
Conclusion and Future Work

Domain-Driven Design (DDD) was not intended to be used for architectural refactoring. In

[Eva13] it was even stated that the old model can be considered, but transformation of the

model does not often succeed in practice as most systems have multiple and intermingled

models. By utilizing the Create, Read, Update, Delete and frequency based business

operations abstraction, the suggested approach was able to circumvent these problems by

providing a graph transformation approach not directly coupled to the models of the old

system.

The graph transformation approach, which was devised from the Model-Driven Architec-

ture approach, utilizes artifact-model, model-model, and model-artifact transformations

in order to support the creation of the DDD. A prototype has been created which utilizes

these transformation steps to generate visual representations of the DDD tactical design

from spreadsheets containing the ubiquitous language and the business operations. More-

over, based on the Model-Driven Architecture transformation approach, the prototype

showcased how Java source code can be generated from DDD models.

The architectural refactoring approach was then realized by the MERCAREON company.

For this, a small new module was created by the development team—the Live Yardview.

The new module was created with a refactored DDD based architecture, which communi-

cates with the legacy three-tier architecture. The design utilizes the ports and adapters

architecture to protect the domain model. The communication with the legacy system

is realized with bubble contexts [Eva13] in mind whereby repositories and services are

utilized as an Anti Corruption Layer.

The created DDD based architecture will likely be extended in the near future. The

functionality of the legacy TSM system is planned to be transfered step by step to the new
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architecture. This is possible as DDD is based on an adaptable model which, in turn, is

adapted to the new needs by utilizing the prototype. As a future work, the benefits of

continuous architectural refactoring towards the new DDD information system can be

evaluated.

Another aspect that could be reviewed in the future, is whether the creation of the

strategic design could be supported further. Currently the strategic design can only be

evaluated after its creation, utilizing the automatically created tactical design artifacts.

As for the tactical design, the selection of aggregates from the set of potential aggregates

utilizes a greedy approach. This greedy approach certainly has some limitations, as

selecting one particular aggregate might block several others. Choosing the wrong

aggregate boundaries could lead to a suboptimal solution. Alternative approaches to

solve this problem should be investigated.

All in all, it was observed that the presented architectural refactoring approach based on

model transformations as suggested by Model-Driven Architecture is promising but also

has some drawbacks. These drawbacks have to be addressed when dealing with systems,

that have no clear models to work with.
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