
Integrating Process Learning and Process

Evolution – A Semantics Based Approach

Stefanie Rinderle1, Barbara Weber2, Manfred Reichert3, and Werner Wild4

1 Dept. Databases and Information Systems, University of Ulm, Germany
rinderle@informatik.uni--ulm.de

2 Quality Engineering Research Group, University of Innsbruck
Barbara.Weber@uibk.ac.at

3 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

4 Evolution Consulting, Innsbruck, Austria
werner.wild@evolution.at

Abstract. Companies are developing a growing interest in aligning their
information systems in a process-oriented way. However, current process-
aware information systems (PAIS) fail to meet process flexibility require-
ments, which reduces the applicability of such systems. To overcome this
limitation PAIS should capture the whole process life cycle and all kinds
of changes in an integrated way. In this paper we present such a holis-
tic approach providing full process life cycle support by combining the
ADEPT framework for dynamic process changes with the concepts and
methods provided by case-based reasoning (CBR) technology. This al-
lows expressing the semantics of process changes, their memorization
and their reuse to perform similar changes in the future. If the same or
similar process instance changes occur frequently, potential process type
changes are suggested to the process engineer. The process engineer can
then perform a schema evolution and migrate running instances to the
new schema version by using the ADEPT framework. Finally, the case–
base related to the old schema version is migrated as well.

1 Introduction

Adaptive process management technology offers a promising approach for realiz-
ing highly flexible, process–oriented information systems [1,2,3,4]. In particular,
it enables dynamic process changes during runtime to handle exceptional situ-
ations and changing needs. Basically, such process changes can be made at two
levels – the process type and process instance level [5].

In our experience an adaptive process management system (PMS) must sup-
port both kinds of changes in an integrated way [6]. In the ADEPT project we
have elaborated a conceptual framework which enables changes at the process
instance and at the process type level. For the latter we support the subsequent
migration of both unbiased and biased process instances to the changed process
type schema. This is especially important for long–running process instances [7].

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 252–267, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Integrating Process Learning and Process Evolution 253

We denote process instances as unbiased if they are running according to the
original process schema they were derived from [8], whereas process instances
are denoted as biased when they have been individually modified by an ad–hoc
change [6].

So far, our work on adaptive processes (e.g., [7,8,9]) has not incorporated
application semantics, i.e., it has not considered the reasons for and the con-
text of a change. Instead, very similar to database technology, all checks and
procedures necessary to perform a dynamic change have been applied solely at
the syntactical level, which, nevertheless, is an important prerequisite for any
adaptive process management technology. To provide more intelligent support
to its users and to reuse knowledge about previously applied process changes
semantical aspects must be considered as well. This paper shows how adding
semantics contributes to the seamless integration of process changes into the
process life cycle (cf. Fig. 1).

Lab

test

Add / Reuse

Case LabTest

I (= 1...n)

I (= 1...n)

Changed Process

Instances

Lab

test

CCBR

In
st

a
n
tia

tio
n

P
ro

c
e
s
s

T
y
p
e

C
h
a
n
g
e

Process Instance Change

Notific
ation

Threshold exceeded

Process Instances

Process User

Process Engineer

Process

Engineer

Migrate

case-base

Prepare

Patient

Examine

patient

Make

appointment

Schema S‘:

Enter

order Inform

patient

Lab

Test

Make

appointment

Deliver

report

Prepare

Patient

Schema

S:

Enter

order Inform

patient

Prepare

Patient

Examine

patient

Deliver

report

Make

appointment

Fig. 1. Process Life Cycle

In this paper we combine the ADEPT framework for process changes with
the concepts and methods provided by CBRFlow [10], a process change ap-
proach using case-based reasoning (CBR) technology. This allows us to express
the semantics of process changes and to provide users with information about
the context of and the reasons for process changes, ensuring the traceability of
instance changes. The latter is a crucial requirement in many domains (e.g., hos-
pitals have strict guidelines regarding the documentation of deviations from the
predefined treatment process). Respective change information is stored as cases

254 S. Rinderle et al.

in a process schema specific case–base. This information can be used to sup-
port process actors in reusing information about similar ad-hoc changes which
have been applied to previously executed process instances. Change definition
requires significant user experience, especially when further adaptations become
necessary (e.g., when deleting a particular activity, data-dependent activities
may have to be deleted as well [9]). Therefore, reuse of existing knowledge about
previous ad-hoc changes is highly desirable.

Furthermore, case–bases are continuously monitored in order to automati-
cally derive suggestions for process type changes from previously applied process
instance changes. In practice, necessary type changes are frequently indicated by
process instances whose execution deviates from the original process type schema
over and over again. In such a situation a process type change is desirable to
move the respective optimizations up to the process type level.

In the ADEPT framework a process type change is performed by deriving a
new version of the process type schema and – if possible and desired – by au-
tomatically migrating the already running process instances to this new schema
version [7,8]. This may include the migration of both unbiased and biased process
instances. Interestingly, not only processes but also case-bases evolve over time.
When a case–base is ”migrated” to a new process schema version, it should only
keep information which is still relevant for instances of the new process schema
(and for changes to them). In our approach a process schema evolution is al-
ways accompanied by the evolution of the related case-base. This poses several
challenges which will be discussed later in this paper.

In Section 2 we provide background information. Section 3 presents funda-
mentals of CBR and their application to process instance changes. In Section 4
we show how to learn from instance changes by using CBR techniques and we
provide an overview of our process evolution approach. The evolution of case–
bases is described in Section 5. We discuss related work in Section 6 and close
with a summary and an outlook in Section 7.

2 Background Information

In this section we give basic definitions for process type schemes and process
instances as needed for our further considerations. To improve readability we
restrict the discussion to Activity Nets [11]; however, our approach is applicable
to more complex process meta models as well (e.g., WSM Nets [7]).

For each business process to be supported a process type T is defined. It is
represented by a process type schema which may exist in different versions.

Definition 1 (Process Type Schema). A tuple S with S = (N, D, CtrlEdges,
DataEdges, EC) is called a process schema, if the following holds:

– N is a set of activities and D a set of data elements
– CtrlEdges ⊂ N × N is a precedence relation

(notation: nsrc → ndst ≡ (nsrc, ndst) ∈ CtrlEdges)

Integrating Process Learning and Process Evolution 255

– DataEdges ⊆ N × D × {read, write} is a set of read/write data links between
activities and data elements

– EC: CtrlEdges �→ Conds(D) where Conds(D) denotes the set of all valid
transition conditions on data elements from D.

For a process type schema several correctness constraints exist, e.g., (N,
CtrlEdges) must be an acyclic graph to ensure the absence of deadlocks.

At runtime new process instances are created from a process schema S and
are then executed. Each instance I is associated with an instance-specific schema
SI := S + ∆I

1. S = S(T,V) denotes the original process schema S from which
instance I was derived, whereby T is the process type of I and V the version of
the process type schema. ∆I = {op1, ..., opn} comprises the change operations
opi (i = 1, ..., n) applied to I so far (cf. Fig. 4). In this context a change operation
opi = (opType, s, paramList) (i = 1, ..., n) is specified by an operation type (e.g.,
insertion of an activity), a subject (e.g., the newly inserted activity), and a list
of parameters (e.g., position of the newly inserted activity). Selected change
operations are shown in Table 1.

The execution state of I is captured by marking function MSI =(NSSI , ESSI).
It assigns to each activity n its current status NS(n) and to each control edge
e its marking ES(e). Markings are determined according to well defined rules,
markings of already passed regions and skipped branches are preserved.

Definition 2 (Process Instance). A process instance I is defined by a tuple
(T, V, ∆I , MSI , V alSI) where

– T denotes the process type of I and V the version of the process schema S
:= S(T,V) = (N, D, CtrlEdges, ...) instance I was derived from. We call S
the original schema of I.

– ∆I comprises the instance-specific changes op1, . . . , opm that have been ap-
plied to I so far2. We call ∆I the bias of I. Schema SI := S + ∆I (with
SI = (NI , DI , . . .)) which results from the application of ∆I to S, is called
the instance–specific schema of I.

– MSI = (NSSI , ESSI) describes node and edge markings of I:
NSSI : NI �→ {NotActivated, Activated, Running, Completed,
Skipped}
ESSI : (CtrlEdgesI) �→ {NotSignaled, TrueSignaled, FalseSignaled}

– ValSI is a function on DI. It reflects for each data element d ∈ DI either
its current value or the value UNDEFINED (if d has not been written yet).

Table 1 presents a selection of high-level change operations on process
schemes which can be used to create or modify schemes at the type as well
as at the instance level. These change operations also include formal pre- and

1 For unbiased instances ∆I(S) = ∅ and consequently SI = S holds.
2 Thereby an operation opj := (opTypej, sj , paramListj) (j = 1, ..., m) consists of

an operation type opTypej , the subject sj of the change, and a parameter list
paramListj (cf. Tab. 1).

256 S. Rinderle et al.

post-conditions. They automatically perform the necessary schema transforma-
tions while ensuring schema correctness. An example for such a change operation
is the insertion of an activity and its embedding into the process context.

Table 1. A Selection of High-Level Change Operations on Process Schemes

Change Operation opType subject paramList Effects on S
op Applied to S

Additive Change Operations
sInsert(S, X, A, B) Insert X S, A, B inserts activity X between two directly

succeeding activities A and B
cInsert(S, X, A, B, sc) Insert X S, A, B, sc inserts activity X between two directly

succeeding activities A and B as a new
branch with selection code sc; edge (A,
B) gets selection code ”default”

Subtractive Change Operations
delAct(S, X) Delete X S deletes activity X from schema S

Order-Changing Operations
sMove(S, X, A, B) Move X S, A, B moves activity X from its current posi-

tion to position between directly suc-
ceeding activities A and B

3 Providing Change Semantics Through CCBR

In this section we describe how CBR can be used to capture the semantics of
process changes, how these changes can be memorized, and how they can be
retrieved and reused when similar changes become necessary in the future.

3.1 Introduction to Case-Based Reasoning

Case-based reasoning (CBR) is a contemporary approach to problem solving
and learning [12]. New problems are dealt with by drawing on past experiences
– described in cases and stored in case–bases – and by adapting their solutions
to the new problem situation. Reasoning by using past experiences is a powerful
and frequently applied way to solve problems by humans [13]. A physician, for
example, remembers previous cases to determine the disease of a new patient. A
banker working on a difficult loan decision uses her experiences about previous
cases in order to decide whether to grant a loan or not.

A case is a contextualized piece of knowledge representing an experience [12],
which typically consists of a problem description and the corresponding solution.
As opposed to most other approaches in Artificial Intelligence, CBR uses spe-
cific knowledge of past experiences to solve new problems. CBR also contributes
to incremental and sustained learning: every time a new problem is solved, in-
formation about it and its solution is retained and therefore immediately made
available for solving future problems [13].

Conversational CBR (CCBR) is an extension of the CBR paradigm, which
actively involves users in the inference process [14]. A CCBR system can be char-
acterized as an interactive system that, via a mixed-initiative dialogue, guides
users through a question-answering sequence in a case retrieval context (cf.

Integrating Process Learning and Process Evolution 257

Title

Description

Question-Answer Pairs

Question Answer

Patient has diabetes? Yes

What is the patient’s age? > 40

Actions

sInsert LabTest S, PreparePatient, Examine Patient

Operation Type Subject Parameters

Select Operation Type Insert

Select Activity/Edge Lab Test

Please Answer the Questions

Question Answer

Patient has diabetes? Yes

What is the patient’s age? > 40

Lab Test required

Title

125

Case ID

100%

Similarity

25

Reputation Score

Display List of Cases

Fig. 2. CCBR User Dialogs - Adding a New Case and Retrieving Similar Cases

Fig 2). Unlike traditional CBR, CCBR neither requires the user to provide a
complete a priori problem specification for case retrieval nor requires him to
provide knowledge about the relevance of each feature for problem solving. In-
stead, the system assists the user in finding relevant cases by presenting a set of
questions to assess the given situation. It guides users who can supply already
known information on their initiative. Therefore, CCBR is especially suitable for
handling exceptional or unanticipated situations that cannot be dealt with in a
fully automated way.

3.2 Conversational Case-Based Reasoning and Adaptive Workflows

In our approach CCBR is used to provide semantical information about changes
to process instances. This information can be reused when either similar ad-hoc
modifications become necessary or to trigger process type changes.

Case Representation. In our context, a case c represents a concrete ad-hoc
modification to one or more process instances providing the context of and the
reasons for the deviation (cf. Fig. 2). It consists of a textual problem description
pd which briefly describes the exceptional or unanticipated situation which made
the ad-hoc modification necessary. The reasons for the change are described as
question-answer pairs {q1an1, . . . , qnann}. Each question-answer pair denotes
a condition under which the modification has become necessary; they are used
to retrieve similar cases when a problem arises in the future. The solution part
sol (i.e., the list of actions) contains the change operations (and related context
information) to be executed to deal with the exceptional or unanticipated situ-
ation. Finally, the reputation score rScore of a case indicates how successfully
it has been reused in the past, i.e., the trust users can have into the semantical
correctness of this case. The reputation score is calculated as the sum of the
feedback scores (see below).

Definition 3 (Case). A case c is a tuple (pd, {q1an1, . . . , qnann}, sol, rScore)
where

– pd is a textual problem description
– {q1an1, . . . , qnann} denotes a set of question-answer pairs

258 S. Rinderle et al.

– sol = { opj | opj = (opTypej, sj, paramListj), j = 1, ..., k} is the solution
part of the case denoting a list of change operations (i.e., the changes that
have been applied to one or more process instances; cf. Def. 2)

– rScore indicates how successfully case c has been applied in the past. It is
calculated as the sum of the feedback scores.

All information on process instance changes related to a process schema
version S are stored as cases in the associated case-base of S.

Definition 4 (Case–Base). A case–base cbT,V is a tuple (T, V, {c1, . . . , cm},
freqT,V)) where

– S := S(T,V) denotes the schema version cbT,V is currently associated with
– {c1, . . . , cm} denotes a set of cases
– freqT,V (ci) denotes the frequency ci was reused in connection with schema

version S(T,V) in the past, formally:
freqT,V : {c1, . . . , cm} �→ N

Case Retrieval. When deviations from the predefined process schema become
necessary, the user initiates a case retrieval dialog in the CCBR component.
The system then assists her in finding already stored similar cases (i.e., change
scenarios in our context) by presenting a set of questions. The user may apply
a filter to the case-base and/or answer any of the questions in arbitrary order.
Filtering is done by specifiying an operation type opType and a subject s on
which the operation is supposed to operate on. Cases not matching the filter
criteria are removed from the displayed list of cases. The system then searches
for similar cases by calculating the similarity for each case in the filtered case-
base and displays the top n ranked cases (ordered by decreasing similarity) as
well as their reputation scores. This is repeated for any other question answered
by the user. Case similarity is calculated by dividing the number of correctly
answered questions minus the number of incorrectly answered questions by the
total number of questions in the case [15].

Case Reuse. When a user decides to reuse an existing case, the actions specified
in the solution part of the case are forwarded to and performed by the ADEPT
change engine. The reuse counter is incremented and a work item is created for
this user for evaluating the ad-hoc change later on to maintain the quality of the
case-base.

Adding a New Case. If no similar cases can be found when performing a
process instance change, the user adds a new case c = (pd, {q1an1, . . . ,}, sol, 1)
to case-base cbT,V . She enters this case by briefly describing the current problem
pd and by entering a set of question-answer pairs to describe the reasons for the
ad-hoc deviation. Question-answer pairs can be entered either by selecting the
question from a list of previously defined questions (i.e., reusing questions from
existing cases) or, if there is no suitable question in the system, by defining a new
one and by giving the appropriate answer. The user then specifies the actions
to perform by selecting the desired operation types opType1, . . . , opTypep. She

Integrating Process Learning and Process Evolution 259

further defines the subjects s1, . . . , sp they operate on (e.g., activities and control
edges), and provides the parameters for each selected operation. Moreover, the
reuse counter of the case is initialized to 1. Finally, the case is stored in case-base
cbT,V of process schema S = S(T, V) and thus immediately made available for
future reuse.

Ensuring Semantical Correctness through Evaluation Mechanisms. In
our approach we use the concept of reputation to indicate how successfully an ad-
hoc modification represented by a case has been applied in the past. Whenever a
user adds or reuses a case she is encouraged to provide feedback on the performed
process instance change. For this, a work item representing the feedback task
is generated and inserted in the worklist of this particular user. She then can
later rate the performance of the respective ad-hoc modification either with 2
(highly positive), 1 (positive), 0 (neutral) , -1 (negative) or -2 (highly negative),
and may optionally specify additional comments. The reputation score of a case
is calculated as the sum of feedback scores regarding the ad-hoc modification
specified in this case. While a high reputation score of a case is an indicator
for its semantical correctness, negative feedback probably results from problems
after performing a process instance change. As ADEPT ensures the syntactical
correctness of changes, a negative feedback thus indicates semantical problems.
Negative feedback therefore results in an immediate notification of the process
engineer, who can then deactivate the case to prevent its further reuse. The case
itself, however, remains in the system to allow for learning from failures as well
as to maintain traceability.

Example 1. As depicted in Fig. 3 the examination of a patient usually takes
place after a preparation step. Before an examination the physician recognizes
that the patient suffers from diabetes and he detects several other important risk
factors. The physician decides to request an additional lab test for this patient
to be performed after activity Prepare patient and before activity Examine
Patient. As the system contains no similar cases, the physician enters a new
case describing the situation and the action to be taken (cf. Fig. 2). ADEPT then
checks whether inserting activity Lab Test is possible for the respective process
instance, and, if so, applies the specified insert operation to that instance. The
latter includes updating the instance markings and all user worklists. If, for
example, Prepare patient is completed and Examine Patient is activated,
this activation will be undone (i.e., respective work items are removed from all
user worklists) and the newly inserted activity Lab test becomes immediately
activated. In any case, the newly inserted activity is treated like any other process
step, i.e., the same scheduling and monitoring facilities exist.

When talking with another diabetic patient later on, the physician vaguely
remembers that there has been a similar situation before and initiates the CCBR
sub-system to retrieve similar cases. For example, as he still remembers that he
had performed an additional lab test he selects the Insert operation type as well
as the Lab Test activity to optionally filter the case-base. He then answers the
questions presented by the system, finds the previously added case, and reuses
it (cf. Fig. 2).

260 S. Rinderle et al.

Enter

order

Examine

patient

Deliver

report

Make

appointment

Prepare

Patient

Prepare

Patient
Examine

patient

Make

appointment

Deliver

reportPrepare

Patient
Examine

patient

Make

appointment Prepare

Patient
Examine

patient

Make

appointment

Lab

test
Process Instance I:

Enter

order

Prepare

Patient
Examine

patient

Make

appointment

Lab

test

Prepare

Patient
Examine

patient

Make

appointment

Deliver

reportPrepare

Patient
Examine

patient

Make

appointment Prepare

Patient
Examine

patient

Make

appointment

Lab

test
Process Instance I:

Enter

order

Prepare

Patient
Examine

patient

Make

appointment

Lab

test

Prepare

Patient
Examine

patient

Make

appointment

Deliver

report
Prepare

Patient
Examine

patient

Make

appointment Prepare

Patient
Examine

patient

Make

appointment

Lab

test
Process Instance I:

Enter

order

Prepare

Patient
Examine

patient

Make

appointment

Reuse Frequency 104

Question-Answer Pairs

Question Answer

Patient has diabetes? Yes

What is the patient’s age? > 40

Actions

sInsert LabTest S, PreparePatient, Examine Patient

Operation Type Subject Parameters

Case ID 1

Title Lab test required

Reputation Score 104

Perform Process Type Changes

Lab

test

Deliver

patient

Schema Version S := S(T,1)

Enter

order

Lab test

Examine

patient
Deliver

report

Make

appointment

sc1: age > 40

diabetes =„yes“

Prepare

Patient

patData patData

sc2: default

Process Engineer

Schema Version S‘ := S(T,2)

Process

User

Fig. 3. Perform Process Type Change

4 Process Learning and Seamless Process Evolution

When the same or similar changes occur frequently, the process engineer is noti-
fied about the potential need for a process type change (Sect. 4.1). The process
engineer can then perform a change of the process type schema and migrate
running instances to the new schema version by using the ADEPT framework
(Sect. 4.2).

4.1 On Suggesting Process Optimizations

To derive suggestions for process type changes from a collection of previous
instance changes we need the following information:

– Case–base cbT,V = (T, V, {c1, ..., cm}, freqT,V)
– rIT,V denoting the number of process instances created from schema version

S := S(T, V)
– thr denoting a configurable threshold (0 ≤ thr ≤ 1)

If there is a case cj ∈ cbT,V with

freqT,V (cj)
rIT,V

≥ thr (1)

Integrating Process Learning and Process Evolution 261

the process engineer is notified that a process type change should be considered.
In this notification the system suggests the solution part solj of the respective
case cj as the process type change to be applied, but allows the process engineer
to customize it if desired.

Example 2. Let rIT,V = 10397, thr = 0.01, cbT,V = {c1 = (..., sol1 = {insert(S,
X, A, B)},...)}, and freqT,V (c1) = 104. As

freqT,V (cj)
rIT,V

= 104
10397 exceeds threshold

0.01, the system suggests to pull change operation sInsert(S, X, A, B) up to the
process type level.

Generally, the situation is more complex, as a certain change operation may
have been applied to several instances for different reasons. Note that in our
approach this is reflected by sets of different question-answer pairs in separate
cases. As a consequence the respective case–base contains distinct cases, i.e.,
cases with the identical solution parts but different question-answer pairs. Then
equation (1) is no longer adequate and must be adapted for a set of cases.

Example 3. Let rIT,V = 10397 and thr = 0.01; cbT,V now becomes:
cbT,V = {c1 = (..., sol1 = {sInsert(S, X, A, B)}, ...),

c2 = (..., sol2 = {sInsert(S, X, A, B)}, ...),
c3 = (..., sol3 = {sInsert(S, X, A, B)}, ...), ... } with

freqT,V (c1) = 48, freqT,V (c2) = 23, and freqT,V (c3) = 33

Exceeding the threshold thr can be determined by summing over the frequen-
cies of all cases which have the same solution part, i.e., if there is a set of cases
cbT,V (sol) := {csol = (..., sol, ...) ∈ cbT,V) } with

∑
cj∈cbT,V (sol) freqT,V (cj)

rIT,V
≥ thr (2)

Thus, in the example above a process type change is indicated and the system
suggests sol as process type change to the process engineer (e.g., sInsert(S,
X, A, B)).

Equation (2) still does not reflect the most general scenario as the solution
parts of the cases indicating a process type change may not be identical but may
have one or more overlapping changes.

Example 4. Assume the following example (rIT,V = 10397 and thr = 0.01):
cbT,V = {c1 = (..., sol1 = {sInsert(S, X, A, B), delAct(S, C)}, ...),

c2 = (..., sol2 = {sInsert(S, X, A, B)}, ...),

c3 = (..., sol3 = {sInsert(S, X, A, B)}, ...), ... } with
freqT,V (c1) = 48, freqT,V (c2) = 23, and freqT,V (c3) = 33

All cases contain the same change operation sInsert(S, X, A, B) but case
c1 contains an additional change operation delAct(S, C). This is not relevant
for the evaluation of the case-base and the suggested process type change. (Note
that the migration of the respective process instances is handled by the process

262 S. Rinderle et al.

schema evolution framework [7].) This can be taken into account by determining
the following set

cbT,V (sub sol) := {c = (..., sol, ...) ∈ cbT,V) | sub sol ⊆ sol }
and by applying equation (3):

∑
cj∈cbT,V (sub sol) freqT,V (cj)

rIT,V
≥ thr (3)

In this case sub sol is suggested to the process engineer as the process type
change to perform (sInsert(S, X, A, B) in our example).

The process engineer has to examine the cases that exceeded the threshold
as well as the cases with overlapping solution parts in order to decide how to
perform the process type change. When a change operation is relevant for all
process instances it can be pulled up to the process type level. In most situations
the change operations cannot directly be applied to the process schema as the
changes have been performed in a particular context. Examining the question-
answer pairs allows the process engineer to gain valuable insights into the context
of a change operation as each question-answer pair represents a (semantic) con-
dition under which the case was applied. Assume, for example, that a particular
change operation has been primarily performed for patients older than 40 years
who suffer from diabetes. Therefore, the solution part of the case is not directly
pulled up to the process type level, but the process engineer inserts the neces-
sary XOr nodes and transitions (cf. Fig. 3). However, it must be ensured that
the necessary data, e.g., patient’s age and diabetes (yes/no), is provided to the
running process instances after applying the respective process type change, i.e.,
to guarantee that all necessary data is available within the system.

In the ADEPT approach change operations have formal pre- and postcon-
ditions which ensure their correct application, in particular a correct data flow
after applying the changes. Therefore, if we can insert a new XOrSplit at the
process type level it is guaranteed that all necessary data is available at runtime,
as ADEPT allows the application of correct changes only. Data availability can
be achieved if either the activities preceding the XOr-Split set the respective
data elements (e.g., activity admit patient writes patient age and diseases)
or parameter provisioning services are inserted directly before the XOrSplit. At
runtime these services ask the user for the missing information.

4.2 Process Schema Evolution and Process Instance Migration

Assume that the process engineer decides to apply change operation cInsert(S,
Lab test, Prepare Patient, sc1) as depicted in Fig. 3 and 4. The challenge
is then to migrate the already running process instances to the new schema
version S’. As we can see from Fig. 4 we are confronted with different kinds
of running process instances: instances still running according to their original
schema (unbiased instances, e.g., I1) and instances which have already been indi-
vidually modified (biased instances, e.g., I2 – I4). We further have to distinguish
between biased instances for which their instance–specific change (bias) overlaps
the process type change (e.g., I3, I4) and biased instances with a disjoint bias

Integrating Process Learning and Process Evolution 263

Process Type Level:

Enter

order

Examine

patient

Deliver

report

Make

appointment

Prepare

Patient

Schema Version S := S(T,1)

Enter

order

Lab test

Examine

patient

Make

appointment

sc1: age > 40

diabetes =„yes“

Prepare

Patient

patData patData

sc2: default

Schema Version S‘ := S(T,2)

I1 on S: Migration Policy 1:

adapt markings

Migration Policy 1:

adapt markings

CompletedActivated

Process Instance Level:

Lab test

Lab test

T = cInsert(S, Lab test, Prepare Patient,

Examine Patient, sc1)

I1 on S‘:unbiased

I3 on S: I3 on S‘:

I2 on S: disjoint bias Migration Policy 2:

adapt markings +

keep bias on S‘

Migration Policy 2:

adapt markings +

keep bias on S‘

I2 on S‘:

subsumption equivalent bias
Migration Policy 3:

adapt markings +

bias on S‘ =

Migration Policy 3:

adapt markings +

bias on S‘ =

I4 on S: I4 on S‘:

I3(S)= {sInsert(S, Lab test, Prepare Patient, Examine Patient)} I3(S‘)=

I4(S)= {sInsert(S, Lab test, Prepare Patient, Examine Patient),

delAct(S, deliver Report)

I4(S‘)= [delAct(S‘, deliver Report)}

provide suggestion

to user

provide suggestion

to user

partially equivalent

Deliver

report

I2(S)= {delAct(S, deliver Report)}

Fig. 4. Process Instance Migration

(e.g., I2). Process instances with overlapping bias have already anticipated the
process type change (cf. Sect. 4.1) and require a different migration policy than
the process instances with disjoint bias (for details see [16]).

For unbiased process instances state–related compliance with the new schema
version has to be checked [8]. Compliant instances are then migrated to the new
schema version by applying marking adaptations (as, for example, depicted in
Fig. 4 for instance I1). Process instances with disjoint bias can be migrated to
the new schema version S′ if they are compliant regarding their state and their
structure [6]. In Fig. 4 instance I2 has a disjoint bias and is compliant with S′.
Therefore I2 is migrated to the new schema version by adapting its marking and
keeping its instance–specific bias in the new schema version (cf. Tab. 2).

The most interesting question is how to deal with the process instances which
have totally or partially anticipated the process type change (resulting in an
overlap of process type and instance–specific changes). The migration policy to
be applied to such instances depends on the particular degree of overlap between
process type and instance–specific changes, which can be determined precisely by
a hybrid approach (for details see [7,16]). Table 2 shows the different degrees of
overlap and the related migration policies; default migration policies for partially
equivalent changes can only be provided in certain situations.

In Fig. 4, for example, instance I3 would be classified as having a subsumption
equivalent bias related to type change ∆T . ∆I3 and ∆T both insert activity lab

264 S. Rinderle et al.

Table 2. Degrees of Overlap Between Changes and Related Migration Policies

Degree of Overlap between ∆T and ∆I Migration Policy

∆T and ∆I disjoint, i.e., ∆T ∩ ∆I = ∅ • apply ∆T on SI := S + ∆I

• migrate I to S’
• ∆I(S

′) = ∆I(S)
∆T and ∆I equivalent, i.e., ∆T ≡ ∆I • migrate I to S’

• ∆I(S
′) = ∅

∆T subsumes ∆I , i.e., ∆T ≺ ∆I • migrate I to S’
• calculate ∆I(S

′)
∆I subsumes ∆T , i.e., ∆I ≺ ∆T • migrate I to S’

• ∆I(S
′) = ∅

∆T and ∆I partially equivalent, i.e., ∆T � ∆I default policies not always possible
→ provide suggestion to user

test, but ∆T additionally creates an alternative branching. According to Table
2, I3 can be migrated to S′ by adapting the instance markings of I3. The instance-
specific bias ∆I3(S′) becomes empty after the migration. Comparing ∆T with
∆I4 we see that both changes are partially equivalent, thus we cannot provide a
default migration strategy [7], but only make a suggestion to the user (cf. Fig.
4). Note that there are optimizations regarding the determination of the precise
degree of overlap [7].

In total, we provide a complete framework for migrating process instances to
a new schema version even if they have anticipated the type change. This closes
the process life cycle depicted in Fig. 1.

5 Case–Base Evolution

Process type changes are accompanied by migrating compliant process instances
to the new schema version S′ as well as migrating the associated case-base cb to
cb′. The challenge is to decide which cases of case-base cb should be transfered
to cb′ and which ones are already covered by the new schema version S′ and can
therefore be dropped.

If a case or a group of cases exceeds the predefined threshold the resulting
process type change can either be relevant for all process instances or only for
a particular subset (cf. Section 4.1). In the former scenario the solution parts
of the cases that triggered the change are directly reflected in the new process
schema S′. Therefore, cases whose solution part is a subset of ∆T are not trans-
ferred to the new case-base version cb′. Cases whose solution parts are a true
superset of ∆T are presented to the process engineer who then decides whether
to transfer these cases or not. Cases without overlapping solution parts are auto-
matically transferred to cb′ as they are not covered by S′. In the latter scenario
the migration from cb to cb′ is more complicated. It involves finding the regions
of the process graph that are affected by the process type change ∆T . In our
example the change region corresponds to the subgraph induced by the newly

Integrating Process Learning and Process Evolution 265

CCBR:

cb := cbT,1:

c1: (..., {sInsert(S, X, C, D)}), freqS(c1) = 48

c2: (..., {sInsert(S, X, C, D)}), freqS(c2) = 23

c3: (..., {sInsert(S, X, C, D)}), freqS(c3) = 33

c4: (..., {sInsert(S, Y, A, B)}), freqS(c4) = 5

c5: (..., {deleteAct(S, D)}), freqS(c5) = 60

c6: (..., {deleteAct(S, E),

sInsert(S, Y, A, B)}), freqS(c6) = 2

cb‘ := cbT,2:

Case-Base MigrationCase-Base Migration

T1 = {sInsert(S, X, C, E), deleteAct(S, D)} T2 = {deleteAct(S‘, F)}

Process Type Level:

Enter

order

Examine

patient

Deliver

report

Make

appointment

A C D E
Prepare

Patient

B

Schema Version S := S(T,1)

Enter

order

Lab test

Examine

patient
Deliver

report

Make

appointment

A C

X

D E

sc1: age > 40

diabetes =„yes“

Prepare

Patient

B

patData patData

sc2: default

Schema Version S‘ := S(T,2)

Process Type

Change T

c4: (..., {sInsert(S, Y, A, B)}),

c5: (..., {deleteAct(S, D)})

c6: (..., {deleteAct(S, E),

sInsert(S, X, C, D)})

c7: (..., {sInsert(S, Y, A, B)})

c8: (..., {deleteAct(S, B)})

c1, c2, c3

c4, c6

c5

c7, c8

dropped by process engineer

automatically transferred

transfered by process engineer

new cases for instances based on S'

Migration

T = cInsert(S, Lab test, Prepare Patient, Examine Patient, sc1)

Fig. 5. Case–Base Evolution

inserted activity X and the insertion context (i.e., activities C and D). It can be
determined by applying the hybrid approach described in [7]. The cases which
contain change operations referring to activities or edges within these regions
as subjects or parameters are presented to the process engineer who then can
manually transfer relevant cases. All other case are automatically transferred to
case-base cb′.

Example 5. As illustrated in Fig. 5 the process engineer has been notified to
perform a schema evolution as cases c1, ..., c3 exceed the predefined threshold
value. After migrating schema S to S′ the process engineer has to migrate case-
base cb to cb′ as well. Cases c4 and c6 are automatically transferred to cb′ as
they do not use activities or edges within the affected process graph region. All
other cases are presented to the process engineer, who then decides to drop cases
c1, ..., c3 which are already covered by the process type change and to transfer
case c5. Of course, new cases may be added to cb′ due to ongoing ad-hoc changes
of instances based on S′. Later on, migrating cb′ will become necessary when
another process schema evolution takes place.

6 Related Work

Process Mining [17] and Delta Analysis [18,19] are techniques to improve the
quality of business processes. Though these approaches are very inspiring, they
do not answer how they feed the improved process type schemes into the system.
To our best knowledge this is accomplished by establishing the mined process
schemes as new process type schema versions. Already running process instances

266 S. Rinderle et al.

are then completed according to the ”old” (suboptimal) process type schema and
new instances are started according to the improved one. This leads to a ”gap”
within the process life cycle which can be closed by applying the derived process
optimization to the current process type schema. Already running process in-
stances are then smoothly migrated to the improved process type schema [15,20].

Related work also includes approaches dealing with process schema evolution
[1,2,4,21]. However, none of them covers the interplay between process type and
process instance changes, i.e., there is no approach which allows to migrate biased
process instances to a changed process type schema.

This paper is based on the idea of integrating ADEPT [9] and CCBR [10] (see
also [15]). In related work traditional CBR has been applied to configure com-
plex core processes by using process components [22]. Workflows are configured
during their instantiation by combining predefined process components in order
to reduce the number of possible process variants. As each process instance has
to be configured before its start, this approach is more suitable for long-running,
complex core processes with a limited number of process instances; the process
configuration is similar to a project planning task. Similarily, Madhusudan et al.
[23] use CBR to provide workflow modeling support by facilitating the reuse of
existing models and their components. In contrast to our approach, CBR tech-
niques are applied to support the modeling of business processes and not their
execution.

7 Summary and Outlook

The integration of ADEPT and CBRFlow offers promising perspectives, as pro-
cess instance changes are enriched with semantic information. This, on the one
hand ensures the traceability of instance changes and on the other hand supports
users in reusing information about previous instance changes. Furthermore, our
approach provides techniques to automatically derive suggestions for process
type changes from previously applied instance changes. If the process engineer
decides to pull up an instance change to the process type level, already running
process instances can be smoothly migrated to the new process schema version.
Finally an evolution of the associated case–base is done.

Currently we implement a prototype integrating the concepts of ADEPT and
CBRFlow and plan to evaluate the resulting prototype in different application
scenarios. Future work will focus on the semantic compliance of process type
and process instance changes when they are concurrently applied to the same
process schema. In this context the representation and the evaluation of semantic
information stored for process changes are challenging research topics.

References

1. v.d. Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoret. Comp. Science 270 (2002) 125–203

2. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: Proc. Int’l COOCS’95, Milpitas, CA (1995) 10–21

Integrating Process Learning and Process Evolution 267

3. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. DKE 50 (2004) 9–34

4. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: Proc. HICSS-34. (2001)

5. Reichert, M., Rinderle, S., Dadam, P.: On the common support of workflow type
and instance changes under correctness constraints. In: Proc. Int’l CoopIS’03.
LNCS 2888, Catania, Italy (2003) 407–425

6. Rinderle, S., Reichert, M., Dadam, P.: On dealing with structural conflicts between
process type and instance changes. In: Proc. BPM’04, Potsdam (2004) 274–289

7. Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis,
University of Ulm (2004)

8. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. DPD 16 (2004) 91–116

9. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

10. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling adaptive workflow manage-
ment through conversational case-based reasoning. In: Proc. ECCBR’04, Madrid
(2004) 434–448

11. Leymann, F., Altenhuber, W.: Managing business processes as an information
ressource. IBM Systems Journal 33 (1994) 326–348

12. Kolodner, J.L.: Case-Based Reasoning. Morgan Kaufmann (1993)
13. A. Aamodt, E.P.: Case-based reasoning: Foundational issues, methodological vari-

ations and system approaches. AI Communications 7 (1994) 39–59
14. Aha, D.W., Muñoz-Avila, H.: Introduction: Interactive case-based reasoning. Ap-

plied Intelligence 14 (2001) 7–8
15. Weber, B., Rinderle, S., Wild, W., Reichert, M.: CCBR–driven business process

evolution. In: Proc. Int. Conf. on Cased based Reasoning (ICCBR’05), Chicago
(2005)

16. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and overlapping process changes:
Challenges, solutions, applications. In: Proc. CoopIS’04, Cyprus (2004) 101–120

17. v.d. Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.: Workflow mining: A survey of issues and approaches. DKE 27 (2003) 237–267

18. v.d. Aalst, W.: Inheritance of business processes: A journey visiting four notorious
problems. In: Proc. Petri Net Technology for Communication Based Systems.
LNCS 2472 (2003) 383–408

19. Guth, V., Oberweis, A.: Delta analysis of petri net based models for business
processes. In: Proc. Applied Informatics. (1997) 23–32

20. Weber, B., Reichert, M., Rinderle, S., Wild, W.: Towards a framework for the agile
mining of business processes. In: Proc. of BPM 05 BPI workshop. (2005)

21. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. DKE 24 (1998)
211–238

22. Wargitsch, C., Wewers, T., Theisinger, F.: An organizational memory-based ap-
proach for an evolutionary workflow management system. In: Proc. HICCS-31.
(1998) 174–183

23. Madhusudan, T., Zhao, J.: A case-based framework for workflow model manage-
ment. In: Proc. Int’l Conf. BPM’03, Eindhoven (2003) 354–369

	Introduction
	Background Information
	Providing Change Semantics Through CCBR
	Introduction to Case-Based Reasoning
	Conversational Case-Based Reasoning and Adaptive Workflows

	Process Learning and Seamless Process Evolution
	On Suggesting Process Optimizations
	Process Schema Evolution and Process Instance Migration

	Case--Base Evolution
	Related Work
	Summary and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

