
Cache-Aware Instruction SPM Allocation for Hard
Real-Time Systems

Arno Luppold
Institute of Embedded

Systems
Hamburg University of

Technology
Germany

Arno.Luppold@tuhh.de

Christina Kittsteiner
Institute of Databases and

Information Systems
Ulm University

Germany
Christina.Kittsteiner@uni-

ulm.de

Heiko Falk
Institute of Embedded

Systems
Hamburg University of

Technology
Germany

Heiko.Falk@tuhh.de

ABSTRACT
To improve the execution time of a program, parts of its in-
structions can be allocated to a fast Scratchpad Memory
(SPM) at compile time. This is a well-known technique
which can be used to minimize the program’s worst-case
Execution Time (WCET). However, modern embedded sys-
tems often use cached main memories. An SPM allocation
will inevitably lead to changes in the program’s memory
layout in main memory, resulting in either improved or de-
graded worst-case caching behavior.

We tackle this issue by proposing a cache-aware SPM allo-
cation algorithm based on integer-linear programming which
accounts for changes in the worst-case cache miss behavior.

CCS Concepts
•Mathematics of computing→ Integer programming;
•Computer systems organization → Real-time sys-
tem architecture; •Software and its engineering →
Compilers;

Keywords
Compiler; Optimization; WCET; Real-Time; Integer-Linear
Programming

1. INTRODUCTION
In hard real-time systems an application does not only

have to return functionally correct results, but must also re-
turn its results within a given time period. This deadline is
determined by the underlying physical system, e.g., a com-
bustion engine control or a car’s antilock braking system and
must not be violated.

Subsequently, programs running on hard real-time sys-
tems should be optimized with regard to their WCET in-
stead of the average case performance. Several scientific

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SCOPES ’16, May 23-25, 2016, Sankt Goar, Germany
c© 2016 ACM. ISBN 978-1-4503-4320-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2906363.2906369

approaches exist on automated compiler-based WCET op-
timizations. One well-known technique which can lead to
massive WCET improvements is a static instruction scratch-
pad memory (SPM) allocation. In this optimization, timing-
critical program parts are moved to the fast but small SPM
im order to reduce the WCET.
An optimization using Integer-Linear Programming (ILP)

exists [6] to find the set of basic blocks which is to be assigned
to the SPM. Due to the ILP formulation, the approach is
optimal with regard to the underlying model. However, it
does not account for cached memory.
If a basic block is moved from main memory to SPM,

all subsequent blocks change their position in main mem-
ory, thus changing the caching behavior for better or worse.
Therefore, moving a basic block to the SPM might theoret-
ically even degrade the WCET if the subsequent rearrange-
ment of the blocks in main memory results in additional
cache evictions.
In this paper, we extend the static instruction SPM opti-

mization by [6] to account for changes in the memory layout.
We add a model to express each basic block’s address range,
used cache line mapping and possible cache conflicts within
the ILP.
The key contributions of this paper are:

• We modeled each basic block’s memory address range
if it is located in main memory within the ILP.

• We used this address range to compute the cache lines
which are occupied by each basic block.

• We integrated a cache conflict analysis into the ILP
to account for cache evictions of each basic block. To
our best knowledge, this is the first approach which
expresses a cache model and conflict analysis as an
ILP model.

• We implemented the optimization for the Infineon Tri-
Core 1796 micro controller and compared the results
to a cache-unaware SPM allocation.

Section 2 will first give a brief overview of related research.
Section 3 introduces the cache-unaware ILP model by [6], as
well as the cache model used throughout the paper. Sec-
tion 4 presents our cache-aware SPM allocation algorithm.
In Section 5, we evaluate our approach and show the im-
provements on the WCET. This paper closes with a conclu-
sion and an overview of future challenges.

SCOPES 2016

77

2. RELATED WORK
Suhendra et al. [14] introduced an ILP to perform a

WCET-oriented static data SPM allocation.
The approach was later adapted for instruction memo-

ries [6]. The ILP based formulation has proven to be a
promising optimization approach and was subsequently im-
proved to optimize multiprocessing systems with regard to
the system’s schedulability [13]. However, those existing
approaches consider the main instruction memory as non-
cached Flash memory and do therefore not account for cache
hits or misses. In modern embedded systems, Flash mem-
ory is often cached with cache hit times similar to the access
times of the SPM.

Several works exist on WCET-oriented cache optimiza-
tions. Falk and Kotthaus [7] proposed a greedy heuristic
which reorganizes the position of basic blocks in the main
memory to reduce the number of cache conflicts with regard
to a program’s WCET. Additionally, much work has been
done on cache locking techniques, e.g., [5], [9], [12], and cache
partitioning [2]. All those works show that the layout of a
program in cached memory may have a huge effect on the
number of worst-case cache misses and subsequently on the
program’s WCET. However, they do not account for the
presence of an SPM.

Verma et al. [15] propose a cache-aware SPM optimiza-
tion to reduce a system’s average case energy consumption
using an ILP model. They operate on a relatively coarse-
grained level using so-called traces. Traces are basic blocks
which are located consecutively in memory and end with an
unconditional jump. The presented approach relies on all
traces being aligned with cache line boundaries.

The approach doesn’t offer a way to express for changes in
the memory layout if a trace is moved to the SPM. Instead,
NOP operations are inserted to assure alignment and pre-
vent changes in the memory layout, subsequently increasing
the program’s memory size. Finally, as the paper is focused
on energy reduction, it cannot be directly used to minimize
the WCET of a program, as the used traces are too coarse-
grained to precisely model the longest execution path in the
program within their ILP model.

In this paper, we present a static instruction SPM allo-
cation which allows for a cache-aware SPM allocation using
Integer-Linear Programming. This way, the optimization
can take into account both positive and negative effects on
the caching behavior if a basic block is relocated to SPM or
left in Flash.

3. SYSTEM MODEL

3.1 Notational Conventions
Table 1 shows the abbreviations which are used through-

out this paper. Uppercase letters describe values which are
calculated outside the upcoming ILP model or are consid-
ered a physical constant. They are added to ILP constraints
as constants.

Lowercase letters denote values which are added to the
ILP as variables and are calculated by the ILP solver. We
assume that all timings are modeled as a multiple of CPU
clock cycles and are therefore integer values.

Due to our focus on the existing TriCore 1796 micro con-
troller, our cache model focuses on set associative caches
with Least-Recently Used as replacement strategy.

Table 1: Nomenclature used within this paper
Abbreviation Description

α Number of bits for the cache offset.
β Number of bits for the cache offset and

index.
γ Number of bits for the cache offset, index

and tag.
bi,k Binary decision variable set to 1, iff the

k’th set of Bi may be evicted.
Bi Basic Block with index i.
i An Index.

coi,j,k,k′ Binary ILP variable denoting whether the
k′ occupied cache line of Bj conflicts with
the k’th occupied cache line of Bi.

Ci The set of all basic blocks which are in
conflict with Bi.

Ci,F lash WCET of one execution of the single ba-
sic block Bi if it is assigned to Flash mem-
ory.

Ci,SPM WCET of one execution of the single ba-
sic block Bi if it is assigned to the SPM.

Ei − 1 Maximum number of cache lines occupied
by Bi.

FL Maximum number of iterations of loop L.
Gi Timing gain if Bi is moved to the SPM.
ji,j Binary decision variable set to 1 if a jump

correction is needed from Bi to Bj .
J Additional timing penalty due to a jump

correction.
Li Set of basic blocks in Flash with lower

addresses than Bi.
mi,0 Start address of Bi in Flash.
mi,Ei End address of Bi in Flash.
missi,k Binary ILP variable forced to 1 if a cache

miss of the k’th cache line of Bi mac oc-
cur.

ni,k Index of the k’th occupied cache line by
Bi.

nik,k′ Binary ILP variable which is 1 if two
cache indices k and k′ are identical.

oi,k Offset of the k’th cache line occupied by
Bi.

N The cache associativity.
qi Equals si, if Bi is in Flash, 0 else.
si Total size of Bi.
Si Net size of Bi.

SSPM Size of the SPM.
Succi Number of successors of basic block Bi

ti,k Tag of the k’th occupied cache line by Bi.
tdk,k′ Binary ILP variable which is forced to 1

if the tags k and k′ differ.
V Set of all basic blocks of a program.
wi ILP variable which describes the accumu-

lated execution time of Bi and all its suc-
cessors.

xi Binary ILP variable set to 1 iff Bi is as-
signed to the SPM.

Z A large constant. The definition of large
may differ at each usage. Safe bounds are
given at the respective occurances.

SCOPES 2016

78

Figure 1: Control Flow of an Exemplary System

3.2 Static SPM Allocation
This section gives a brief overview of the approach origi-

nally presented by [6] to describe the underlying ILP model
for a static instruction SPM allocation. The model operates
on a basic block level on the Control Flow Graph (CFG) of
a program.

We define Ci,F lash to be the WCET of a single execution
of basic block Bi if it is located in Flash memory. Ci,SPM

is the WCET if Bi is moved to the SPM. Calculating the
timing gain Gi for one execution of Bi is straight forward:

Gi = Ci,F lash − Ci,SPM (1)

As an example, we will model the underlying inequation
system for the simple CFG depicted in Figure 1. The ILP
model is built starting at the exit nodes of the CFG, implic-
itly summing up the WCET of the whole program starting
at each basic block. The accumulated WCET wE and wF

from the start of each exit block to the end of the program
obviously equals the execution time of the exit blocks them-
selves:

wE = CE,Flash − xE ·GE (2)

wF = CF,F lash − xF ·GF (3)

For a basic block Bi, an additional binary decision variable
xi is introduced. If the ILP solver chooses xi to be 1, then
the basic block will be assigned to SPM, otherwise the block
remains in Flash memory.

If a basic block has one successor, it is modeled by its own
execution time and the accumulated WCET of its successor
as additional summand. If a block has multiple successors,
an inequation is added for each successor. For basic block
BC in the exemplary presented CFG, this leads to:

wC ≥ CC,Flash − xC ·GC + jC,E · J + wE (4)

wC ≥ CC,Flash − xC ·GC ++jC,F · J + wF (5)

The additional binary decision variable jC,E will be set to 1
iff C is assigned to SPM and its successor E in the CFG stays
in the Flash memory or vice versa. In this case, additional
code must be added in order to create valid jump instruc-
tions to handle the displacement between the two memory
regions. J is a constant to account for the timing costs of
this additional code. jC,F is defined accordingly.

To prevent cyclic dependencies in the ILP formulation
which would result in an infeasible inequation system, loops
are linearized by converting them into a sequential meta ba-
sic block, whose execution time wEntry is then multiplied by
the maximum number of loop iterations. Function calls can
be modeled accordingly.

Following this scheme, inequations can be defined for the
whole CFG:

wA ≥ CA,Flash − xA ·GA + wLoop + jA,B · J (6)

wLoop ≥ cLoop + CB,Flash − xB ·GB + jB,C · J + wC (7)

cLoop ≥ 10 · wEntry (8)

wEntry ≥ CB,Flash − xB ·GB + jB,D · J + wD (9)

wD ≥ CD,Flash − xD ·GD + jD,B · J (10)

Because memory fetches are much faster from SPM than
from Flash memory, J differs depending on whether the
jump correction code is placed in SPM or not. We accounted
for this, but because it is not necessary for understanding the
proposed cache-aware allocation, we will not further discuss
this.
It can be further observed, that the execution time of

block BB is accounted twice: Once in equation (7) and once
in equation (9). This stems from the fact that if the loop is
executed 10 times, the entry node BB is actually executed
11 times: 10 times the conditional jump enters the loop, and
one time the conditional jump precedes to executing block
BC .
The jump penalty decision variable jA,B can be modeled

as logical XOR between xA and xB :

h1 ≥ xA − xB (11)

h1 ≤ xA (12)

h1 ≤ 1− xB (13)

h2 ≥ −xA + xB (14)

h2 ≤ 1− xA (15)

h2 ≤ xB (16)

jA,B ≤ h1 + h2 (17)

jA,B ≥ h1 (18)

jA,B ≥ h2 (19)

h1 and h2 are binary auxiliary variables which are not used
elsewhere in the ILP formulation. Newly added auxiliary
variables are needed for each XOR formulation. These in-
equations ensure that jA,B is forced to 1 if and only if exactly
one of xA or xB equals 1.
Finally, one additional constraint must restrict the num-

ber of basic blocks which are assigned to the SPM due to
the SPM’s limited size SSPM . If the original size of a basic
block Bi is defined as Si, and Bi’s successor is Bj , the total
size of Bi can be expressed by:

si = Si + ji,j · SJump (20)

The sum of all sizes over all basic blocks can now be lim-
ited to the size of the SPM SSPM :

SSPM ≥
∑

∀Bi∈V
xi · si (21)

with V being the set of all basic blocks of the program.
If Bi has multiple successors, both successors’ jump terms

must be added. For the exemplary CFG, this results in:

sA = SA + jA,B · SJump (22)

sB = SB + jB,C · SJump + jB,D · SJump

· · ·
SSPM ≥xA · sA + xB · sB + xC · sC+

xD · sD + xE · sE + xF · sF

SCOPES 2016

79

The products like xi · si in equation (21) are not linear,
as two variables are multiplied. However, because xi is a
binary decision variable, the product can be linearized by
expressing it as a conditional. This has been previously
described by, e.g., [3].

To achieve best results, platform-specific characteristics
like branch prediction awareness have previously been pre-
sented [13]. We included the proposed branch prediction
model, but, due to the lack of novelty and direct relevance
for the proposed cache-aware SPM allocation, we will not
further describe it in this work.

In this paper, we focus on single-tasking systems. The
ILP objective function can therefore be chosen to minimize
the accumulated WCET of the program’s entrypoint wA:

Minimize wA (23)

The ILP solver will now assign those basic blocks to the
SPM which lead to the maximum overall reduction of the
WCET.

4. ACCOUNTING FOR CACHES

4.1 Describing the Memory
To be able to account for caching effects within the ILP,

the address range of each basic block which is not moved
to the SPM must be modeled. This can then be used to
determine which cache lines are used by each block. In this
paper, we assume that the program’s first basic block is
located at memory address 0 relative to the start of the Flash
memory region. However, it is trivial to add a constant offset
to the inequation system if needed.

As we focus our optimization on the Infineon TriCore mi-
cro controller, we assume an N-way set associative cache
with a Least Recently Used (LRU) replacement strategy.

We first model the start address mi,0 and end address
mi,Ei of each block Bi. These addresses are then used to
calculate the cache lines a basic block occupies. Finally,
this information is used in combination with the program’s
control flow graph to add inequations which model possible
cache evictions.

If a basic block Bi is assigned to the SPM (i.e., xi = 1),
the block’s memory addresses are not relevant for this opti-
mization, as the block will obviously neither cause nor suffer
from a cache eviction. Therefore, we do not add any inequa-
tions specifying the address behavior in this case. If xi = 1,
then the memory address will not be used for modeling the
block’s actual execution time, therefore the ILP solver may
set mi,0 and mi,Ei to an arbitrary value.

We define the rank of a basic block by its position in mem-
ory relative to other basic blocks, if all blocks are assigned
to Flash memory. A basic block Bj has a lower rank than
Bi if its address in memory is lower. With mi,0 being the
start address of a basic block Bi, Li is the set of basic blocks
which have a lower address in memory if they are not moved
to the SPM:

Li = {Bj |mj,0 < mi,0} (24)

When a basic block is moved from Flash to SPM, the
order of all basic blocks which reside in the Flash memory
is not changed. As a result, for each given basic block Bi

which resides in Flash, Bi’s start address is determined by
all those blocks which also stay in Flash memory and have

a lower rank. With this information, the start address mi,0

of each block Bi as well as its end address mi,Ei can be
modeled using integer-linear programming:

mi,0 =
∑

j∈Li

sj · (1− xj) (25)

mi,Ei = mi,0 + si (26)

xj is the the binary decision variable, which was intro-
duced in equation (2) to denote whether block Bj is moved
to the SPM or not. sj is the overall size of block Bj from
equation (20).
Equation (25) is not linear, as a binary decision variable is

multiplied with an integer variable. However, the equation
may be transformed to a set of linear inequations. For this,
we introduce the auxiliary integer variable qj ∈ Z+

0 . We
define:

mi,0 =
∑

j∈Li

qj (27)

with

qj =

{
sj if xj = 0

0 else.
(28)

This conditional expression may be re-written as:

qj ≥ sj − xj · Z (29)

qj ≤ sj + xj · Z (30)

qj ≤ Z − xj · Z (31)

Z is a large number which must be bigger than the maximum
size of the basic block. Inequations (29) and (30) ensure that
qj = sj if xj = 0. The two inequations will always hold for
xj = 1, therefore qj may take arbitrary values. Therefore,
inequation (31) is used to enforce qj = 0 in case of xj = 1.
Because qj ∈ Z+

0 , qj must not be set to a negative value by
the ILP solver.
Being able to express both start and end address of each

basic block which resides in Flash memory in the ILP, we
can now model which cache lines are occupied by each block
in the next section.

4.2 Modeling the First and Last Cache Sets

Figure 2: Mapping of a memory address to its cache
parameters [11, App. B].

Figure 2 shows how a given memory address is associated
with a corresponding cache line. The bits α through β − 1
determine the range of the cache line index which determines
the cache line a memory block will be mapped to. For any
given architecture, α, β and γ are known constants. In nor-
mal programming, one can use Boolean operations and shift

SCOPES 2016

80

instructions to calculate the index of a given memory ad-
dress. However, in an integer linear equation system, shift
and modulo operators cannot be used. To solve this prob-
lem, we can decompose an address mi,ν , which maps to the
ν’th cache line of basic block Bi, using its base number rep-
resentation:

mi,ν = 20 · oi,ν + 2α · ni,ν + 2β · ti,ν (32)

0 ≤ oi,ν ≤ 2α − 1 (33)

0 ≤ ni,ν ≤ 2β−α − 1 (34)

0 ≤ ti,ν ≤ 2γ−β − 1 (35)

oi,ν is an ILP variable which will hold the offset of block
Bi at its address mi,ν . Accordingly, ni,ν signifies the index
and ti,ν the cache tag.

While this formulation may look unfamiliar at first, it
is basically a base factor decomposition. As an example,
assume γ = 6 and mi = 35. Then, the dyadic base factor
decomposition of 35 may be written:

35 = 1 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 1 · 20 (36)

It is obvious that there exists only one distinct base factor
decomposition.
Instead of using a full base factor decomposition, we can

also combine summands without loosing the unambiguous-
ness of the representation. As an arbitrary example, we can
set α = 1 and β = 3:

35 = 20 · oi + 21 · n+ 23 · t (37)

0 ≤ o ≤ 21 − 1 = 1 (38)

0 ≤ n ≤ 23−1 − 1 = 3 (39)

0 ≤ t ≤ 26−3 − 1 = 7 (40)

As we limit each factor such that its term may not overlap
with a term with a higher order, there is still only one valid
decomposition, which is:

35 = 20 · 1 + 21 · 1 + 24 · 2 (41)

As a result, equations (32) to (35) yield an unambiguous
result. By applying the equations to both start and end
addresses, we can create inequations to calculate the first
and the last cache line which is occupied by a given block
Bi:

mi,0 = 20 · oi,0 + 2α · ni,0 + 2β · ti,0 (42)

mi,Ei = 20 · oi,Ei + 2α · ni,Ei + 2β · ti,Ei (43)

With the maximum size Si,max, the basic block Bi will oc-

cupy at most
⌈

Si,max

2α

⌉
+1 cache lines. The additional cache

line stems from the fact that the start of a basic block might
not be aligned with the start of a cache line. Therefore, even
a tiny basic block might reside in two different cache lines.

We define Ei + 1 as the maximum number of cache sets
which may be occupied by Bi. Therefore:

Ei =

⌈
Si,max

2α−1

⌉
(44)

mi,0 denotes the block’s start address, mi,Ei the block’s end
address. As a result, ni,0 describes Bi’s first and ni,Ei its
last cache line. ni,k, k = 1, . . . , Ei − 1 denotes the index of
th k’th occupied cache line of Bi. Block offsets and tags are
defined accordingly.

4.3 Calculating Corresponding Cache Lines
To model the number of cache misses along the longest

possible path within the program’s control-flow, the so-called
Worst-Case Execution Path (WCEP), we need to express
which basic block occupies which cache lines. Using the re-
sults of the previous section, we can express the first and
the last set which is occupied in the cache as ILP variables.
However, depending on its size, a basic block may ob-

viously occupy more than two cache lines. Additionally,
the number of occupied cache lines may change if additional
code for jump corrections has to be inserted. Finally, a basic
block might get bigger than the cache, resulting in multiple
occupations of the same cache line. Depending on the cache
associativity, a block might even evict itself from the cache.
We assume that a basic block will always be smaller than

the net cache size. If a basic block is too large, it may be
split into smaller parts for the optimization to comply with
this requirement. The net cache size is determined by the
overall cache size divided by the cache’s associativity. For
caches with parameters which are determined as shown in
Figure 2, the net size is determined by the sum of bits which
are used for the index and the offset. As a result, the size of
a basic block is therefore limited to 2β − 1 byte.
As basic blocks are usually not aligned with the cache

boundaries, all memory addresses which belong to a given
basic block will map to at most two different tags and 2β−α

cache lines.
The maximum size of a basic block is known before for-

mulating the ILP by summing its net size and the maximum
size of additional jump instructions:

Si,max = Si + SJump · Succi (45)

Succi is the number of successors of basic block Bi.
The tag and index ti,0 and ni,0 for the first and ti,Ei and

ni,Ei for the last occupied cache line have been modeled in

the previous section. For s = 0 and Ei =
⌈

Si,max

2α−1

⌉
, each

middle set’s parameters ni,k and ti,k with k = 1, · · · , Ei − 1
can be calculated by incrementing ni,k−1 by 1 using the
formulation from equation (32). As the offset is not needed,
it can be left out and we can express the increment by:

2β−α · ti,k−1 + ni,k−1 + 1 = 2β−α · ti,k + ni,k (46)

To ensure valid cache index and tag sizes, the bounds from
equations (34) and (35) are applied to the variables.
These variables can now be used to express whether and

for which parts of a basic block a cache eviction may occur.

4.4 Determine Possible Conflicts
In a program’s control flow, a cache conflict between two

blocks can only occur, if the first block is executed more than
once and the second block might be fetched from Flash mem-
ory between two consecutive executions of the first block. If
the first condition is not fulfilled, evicting the first block from
cache will not lead to any timing penalties, as the block is
never needed again. If the second block is not fetched be-
tween two consecutive executions of the first block, it can ob-
viously not evict it from memory. Therefore, cache conflicts
are typically created either by instructions within a (pos-
sibly nested) loop or by code of a function which is called
within a loop, therefore possibly evicting code from the loop.
Additionally, the instructions of a function may be evicted
by instructions which are executed between two subsequent

SCOPES 2016

81

function calls.
We define a basic block Bi to be in conflict with another

block Bj , if Bj may be executed between two subsequent
executions of Bi. In this case, mapping both blocks to the
same cache line could lead to a cache miss for Bi. We define
Ci as the set of all blocks which are in conflict with Bi. Due
to the significant computational complexity, we currently
only consider blocks in loops and nested loops within each
function separately in the ILP’s conflict analysis.

Context and infeasible path analysis on the control flow
graph as well as global conflict analysis across different func-
tions may provide even better solutions. However, they also
come at the cost of further increasing the ILP’s complexity
and solving time. We did therefore not consider them within
this paper.

For two basic blocks Bi and Bj , a cache conflict occurs if
and only if the blocks are in conflict and at least one of each
blocks’ cache index ni,k and nj,k′ are equal and the blocks’
cache tags ti,k, k = 0, . . . , Ei and tj,k′ , k′ = 0, . . . , Ej are
not equal. Therefore, all occupied cache lines of both basic
blocks have to be compared pairwise.

If both blocks have different cache indices, they will not
map to the same cache line. If they share the same cache in-
dex but also the same cache tag, they use the identical cache
line and therefore do not evict each other. If a cache conflict
exists between Bi and Bj , Bi may be evicted from cache by
Bj , depending on the cache’s associativity and replacement
policy.

For two blocks which are in conflict with each other, we
can describe a cache conflict coi,j,k,k′ between a cache line
k of Bi and a cache line k′ of Bj :

coi,j,k,k′ =

{
1 if (nj,k′ = ni,k) ∧ (tj,k′ 6= ti,k)

0 else.
(47)

coi,j,k,k′ can be expressed as a set of ILP inequations in
two stages. First, we introduce a binary decision variable
tdk,k′ which is forced to 1 if the tags differ:

ti,k + tdk,k′ · Z ≥ tj,k′ (48)

tj,k′ + tdk,k′ · Z ≥ ti,k (49)

Again, Z is a sufficiently large number. In this case, a safe
value for Z is the maximal allowed tag number.
We can now model another binary decision variable nik,k′

which is forced to 1 if both indices are identical:

ni,k − nj,k′ + nik,k′ · Z ≥ 0 (50)

nj,k′ − ni,k − nik,k′ · Z ≤ 0 (51)

ni,k − nj,k′ + y · Z ≥ nik,k′ (52)

nj,k′ − ni,k + (1− y) · Z ≥ nik,k′ (53)

y is a binary auxiliary variable which is not used elsewhere.
Equations (50) and (51) force nik,k′ to 1 if the cache indices
are not identical. In case of identical indices, nik,k′ can
be set arbitrarily by the ILP solver. Therefore, equations
force nik,k′ to 0 if both indices are identical. Again, Z is a
sufficiently large number. Here, a safe lower bound is given
by the maximum number of cache lines.

We can now finally model coi,j,k,k′ :

y′ = 1− nik,k′ (54)

coi,j,k,k′ ≥ tdk,k′ + y′ − 1 (55)

coi,j,k,k′ ≤ y′ (56)

coi,j,k,k′ ≤ tdk,k′ (57)

y′ is yet another binary auxiliary variable which is needed
to invert nik,k′ . It is not used elsewhere. For each nik,k′ a
separate binary auxiliary variable y′ has to be created.
Because our approach targets caches with Least Recently

Used (LRU) replacement policy, a block may be evicted from
cache in a worst-case scenario, if the number of conflicting
blocks reaches the cache’s associativity N . For example, in
a 2-way associative cache, a single basic block Bj can never
evict parts of Bi from cache. However, if two blocks Bj and
Bk are both in conflict with Bi, and all blocks map to the
same cache lines, Bi may be evicted between two consecutive
executiosn.
Therefore, all cache conflicts are summed up for each

cache set k of each basic block Bi and are compared to the
cache’s associativity N . We introduce a binary variable bk,i
which will then be forced to 1 if the number of conflicting
blocks is equal to or bigger than the cache associativity N :

−bk,i · Z +
∑

j∈C

Ej∑

k′=0

coi,j,k,k′ ≤ N − 1 (58)

where Ej − 1 is the maximum number of cache lines which
may be occupied by Bj .
A miss will occur if bi,k is 1 and Bi is not in the SPM, i.e.,

xi = 0. Therefore, a binary decision variable missi,k which
accounts for a possible cache miss of the k’th cache line of
Bi can be expressed as:

missi,k ≥ bi,k − xi (59)

missi,k ≤ bi,k (60)

missi,k ≤ 1− xi (61)

which leads to the final inequation to model the accumu-
lated WCET of a basic block, based on equation (5):

wi ≥ Ci,F lash,Hit − xC ·GC +
∑

k

mi,k · PMiss + (62)

jC,F · J + wF

where Ci,F lash,Hit is the static WCET of Bi in case of a
cache hit, and PMiss is the constant timing penalty of a
single cache miss.
It should be mentioned that the presented approach does

not model the LRU caching behavior precisely. We assumed
fixed costs which have to be added in case of a necessary
jump correction. However, jump correction costs may vary,
depending on the actual steps which have to be performed.
For jump displacements of up to 32 bit, the jump target is
read from one of the CPU’s registers. If no register is avail-
able, additional spill code has to be added which leads to
jitter in both the jump timing penalty J and the size costs
SJump of the added instructions. Additionally, the linker
can introduce NOP instructions in order to align functions
to improve the utilization of the TriCore’s fetch unit. We did
not model such effects to not even further increase the ILP’s
complexity. As a result, the mapping of basic blocks to cache
lines may not be exact, as will be further illustrated in the

SCOPES 2016

82

a
d
p
cm

_d
e
co

d
e
r

a
d
p
cm

_e
n
co

d
e
r

b
in

a
ry

se
a
rc

h
b
so

rt
1
0
0

co
m

p
re

ss
d
a
ta

co
u
n
tn

e
g
a
ti

v
e

co
v
e
r

cr
c

d
u
ff

e
d
n

e
x
p
in

t
fa

c
fd

ct
ff

t1
fi
b
ca

ll fi
r

in
se

rt
so

rt
ja

n
n
e
_c

o
m

p
le

x
jf
d
ct

in
t

lc
d
n
u
m

lm
s

lu
d
cm

p
m

a
tm

u
lt

m
in

v
e
r

n
d
e
s

n
s

p
e
tr

in
e
t

p
ri

m
e

q
so

rt
-e

x
a
m

q
u
rt

re
cu

rs
io

n
se

le
ct

sq
rt

st
a
te

m
a
te st

0.5

0.6

0.7

0.8

0.9

1.0

1.1
R

e
la

ti
v
e
 W

C
E
T
 C

h
a
n
g
e

20% 40% 60% 80% 100%

Figure 3: Relative Improvement of the WCET due to the cache-awareness of the SPM allocation for different
relative SPM and cache sizes.

20 40 60 80 100

Relative Cache and SPM size (percent)

100

101

102

103

104

105

IL
P
 S

o
lv

in
g
 T

im
e
 [

se
co

n
d
s]

Figure 4: ILP solving time for the cache-aware SPM
allocation.

upcoming evaluation section. Therefore, the ILP model may
under or over approximate the cache miss behavior. Addi-
tionally, due to the massive complexity, the conflict analysis
is quite basic compared to the current state of the art when
it comes to WCET analysis. However, the model provides a
good approximation of the caching behavior which basically
points the ILP solver into the right direction to determine
which basic blocks should be assigned to the SPM. For safe
and tight WCET estimates a dedicated WCET analyzing
tool like AbsInt aiT [1] should be used to analyze the opti-
mized program.

5. EVALUATION
We implemented the approach described above for the In-

fineon TriCore 1796 micro controller which features a 2-way
set associative cache with LRU replacement strategy. We
used the WCET-aware compiler framework WCC [8] as basis
for our optimization. Memory accesses in case of a cache hit
as well as in case of a fetch from the SPM can happen within
one CPU cycle without a timing penalty for the memory ac-
cess. Fetches of blocks which are not in the cache will result
in a penalty of 6 cycles. The SPM is programmed at sys-
tem startup prior to executing the program’s main routine.
Therefore, it is not necessary to add the timing overhead of
programming the SPM itself to the program’s WCET.

We based the implementation on our own compiler frame-
work. We evaluated our proposed approach using the MRTC
benchmark suite [10]. The benchmarks are available with
annotated loop bounds from [4]. The benchmark duff can-
not be optimized, as it contains irregular loops which cannot
be handled by the underlying ILP model.
All timing constants for each basic block as well as the

WCET of the optimized benchmarks were calculated using
AbsInt aiT version b217166 [1]. aiT features a configuration
switch to assume each memory access as a cache hit. This
was used to calculate the underlying WCET of each basic
block in case of a cache hit which is needed in equation (62).
The optimizations were performed on an Intel Xeon server
using IBM CPLEX 12.5.
As discussed at the end of Section 4.4, the ILP model may

slightly over- or under-approximate the number of cache
misses. Additionally, the underlying ILP model is neither
meant nor able to precisely analyze the micro-architectural
behavior of the target CPU. Therefore, the WCET as re-
turned by the ILP solver should not be used to evaluate
the optimization’s quality. We therefore analyzed all op-
timized and linked programs, both with cache-aware and
cache-unaware SPM allocation, using the AbsInt aiT tim-
ing analyzer. All presented results are based on the precise
WCET estimates which were returned by aiT. When using
aiT for these final evaluations, aiT will always perform its
regular cache analysis, thus returning as tight WCET esti-
mates as possible.
To illustrate the effect of the cache and SPM size on the

optimization, we optimized each benchmark for several SPM
and cache sizes. As a starting point, we defined that the
size of each SPM and instruction cache equals 20% of the
program’s code size in each case. We then subsequently
increased both values simultaneously to 40, . . . , 100% of its
code size.
For each SPM and cache size, we performed both the

cache-aware and the cache-unaware optimization. Prior to
the optimization, we applied a couple of standard compiler
optimizations like value propagation, removal of redundant
code or the removal of unneeded function arguments. Our

SCOPES 2016

83

applied standard optimizations focus on the benchmarks’
average-case runtime behavior and are comparable to gcc’s
−O2 optimization level.

Figure 3 shows the results as quotient between the WCET
after cache-aware SPM allocation and the cache-unaware
SPM allocation. I.e., a value of 1.0 means that the cache-
aware SPM allocation leads to the sameWCET as the cache-
unaware SPM allocation. Results smaller than 1 show that
the cache-aware optimization could reduce the WCET more
than the cache-unaware allocation. Results larger than 1
indicate an increase of the WCET, therefore applying the
cache-aware optimization actually leads to worse results than
running the cache-unaware version.

It can be observed that a few benchmarks like adpcm_-
encoder, binarysearch and countnegative yield a higher
WCET. As discussed at the end of Section 4.4, the actual
block addresses may be predicted slightly imprecise by the
ILP model. For benchmarks with only small optimization
potential, this can lead to the observed increase in the worst-
case execution time.

As described above, each of the 34 evaluated benchmarks
was evaluated for 5 different cache and SPM sizes. From
the resulting 170 optimization runs, 41 were left out as IBM
CPLEX could not solve the underlying ILP model within
several hours. Especially for petrinet, no solution could be
found for any cache and SPM size within reasonable time.

For minver, only for a cache and SPM size of 80% a result
could be calculated.

To reduce the optimization time of the cache optimization,
tuning CPLEX’s timing parameters significantly helped for
some benchmarks. For example, solving time of the ILP for
the ns benchmark at an SPM and cache size of 80% was
reduced from over 2 hours to 50 seconds on our evaluation
server by reducing CPLEX’s optimality precision to 5%. At
the same time, the WCET of the optimized program as re-
ported by aiT did not change at all. However, this setting ac-
tually lead to increased solving times for other benchmarks,
thus they could not be used as a general tuning method.

Figure 4 shows an overview of the time needed by the
ILP solver to solve the cache-aware ILP allocation prob-
lem as boxplot. The red line denotes the median solving
time. The boxes contain all solving times between the first
and the third quartiles. The whiskers are limited by the
25th and 75th percentile. As discussed above, solving times
are heavily dependent on the solver’s settings and ideal set-
tings may vary from benchmark to benchmark. As we did
not try to find ideal settings for each and every benchmark,
these numbers should be seen as a rough estimate only. For
the cache-unaware optimization, the ILP was usually solved
within well under 1 second. The maximum time needed was
18 seconds for the petrinet benchmark with an SPM and
cache size of 80%.

Despite the optimization runtime, several results show the
huge impact of a cache-aware SPM optimization. For an
SPM and cache size of 40% of the program size, the WCET
of the janne_complex benchmark could be reduced from 657
cycles after applying the cache-unaware SPM allocation to
only 358 cycles when using the cache-aware allocation.
Other benchmarks show improvements in the WCET be-

tween 10% and 20% as shown in Figure 3. Considering
caching effects in the instruction SPM allocation can there-
fore lead to massive further improvements on the program’s
worst-case runtime behavior.

6. CONCLUSIONS
We showed that considering caching effects when perform-

ing instruction SPM allocation of basic blocks may massively
improve the program’s WCET. We proposed an extended
ILP which models the addresses and occupied cache lines
of each basic block, thus enabling us to integrate a cache
conflict analysis into the ILP. As peak value, our proposed
cache-aware SPM allocation could reduce the WCET of a
benchmark by almost 50% compared to the cache-unaware
SPM allocation.
On the downside, the proposed approach has a huge com-

putational complexity, which significantly affects its usabil-
ity for large benchmarks and real-world problems. Future
work will therefore focus on improving the optimization’s
runtime while still maintaining good or nearly-optimal re-
sults. Additionally, we aim at heuristic approaches like ge-
netic algorithms or simulated annealing and compare their
results regarding both optimization quality and time to the
results of the ILP approach.

7. ACKNOWLEDGMENTS
This work received funding from Deutsche Forschungsge-

meinschaft (DFG) under grant FA 1017/1-2. This work was
partially supported by COST Action IC1202: Timing Anal-
ysis On Code-Level (TACLe).

8. REFERENCES
[1] AbsInt Angewandte Informatik, GmbH. aiT

Worst-Case Execution Time Analyzers, 2016.

[2] S. Altmeyer, R. Douma, W. Lunniss, and R. I. Davis.
Evaluation of Cache Partitioning for Hard Real-Time
Systems. In Proceedings of the 26th Euromicro
Conference on Real-Time Systems, pages 15–26, 2014.

[3] J. Bisschop. AIMMS. Optimization Modeling. Paragon
Decision Technology, Haarlem, Netherlands, 3rd
edition, 2009.

[4] COST. European Cooperation in Science and
Technology. TACLe. Timing Analysis on Code-Level.
http://www.tacle.eu/index.php/activities/taclebench,
2016.

[5] H. Ding, Y. Liang, and T. Mitra. WCET-Centric
Dynamic Instruction Cache Locking. In Proceedings of
Design, Automation & Test in Europe Conference &
Exhibition, pages 1–6, Dresden, Germany, 2014.

[6] H. Falk and J. C. Kleinsorge. Optimal Static
WCET-aware Scratchpad Allocation of Program
Code. In Proceedings of the 46th Design Automation
Conference, pages 732–737, San Francisco, USA, 2009.

[7] H. Falk and H. Kotthaus. WCET-driven Cache-aware
Code Positioning. In Proceedings of the International
Conference on Compilers, Architectures and Synthesis
for Embedded Systems, pages 145–154, Taipei, Taiwan,
2011.

[8] H. Falk and P. Lokuciejewski. A Compiler Framework
for the Reduction of Worst-Case Execution Times.
Real-Time Systems, 46(2):251–298, 2010.

[9] H. Falk, S. Plazar, and H. Theiling. Compile-Time
Decided Instruction Cache Locking Using Worst-Case
Execution Paths. In Proceedings of the 5th
IEEE/ACM/IFIP International Conference on

SCOPES 2016

84

Hardware/Software Codesign and System Synthesis,
pages 143 –148, Salzburg, Austria, 2007.

[10] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper.
The Mälardalen WCET benchmarks – past, present
and future. In B. Lisper, editor, Proceedings of the
10th International Workshop on Worst-Case
Execution Time, pages 137–147, Brussels, Belgium,
2010.

[11] J. L. Hennessy and D. A. Patterson. Computer
Architecture. A Quantitative Approach. Morgan
Kaufmann, Waltham, MA, fith edition, 2012.

[12] T. Liu, M. Li, and C. Xue. Minimizing WCET for
Real-Time Embedded Systems via Static Instruction
Cache Locking. In Proceedings of the 15th IEEE
Real-Time and Embedded Technology and Applications
Symposium, pages 35–44, San Francisco, USA, 2009.

[13] A. Luppold and H. Falk. Code Optimization of
Periodic Preemptive Hard Real-Time Multitasking
Systems. In Proceedings of 18th International
Symposium on Real-Time Distributed Computing,
pages 35–42, Auckland, New-Zealand, 2015.

[14] V. Suhendra, T. Mitra, A. Roychoudhury, et al.
WCET Centric Data Allocation to Scratchpad
Memory. In Proceedings of Real-Time Systems
Symposium, pages 223–232, San Antonio, Texas, USA,
2005.

[15] M. Verma, L. Wehmeyer, and P. Marwedel.
Cache-Aware Scratchpad Allocation Algorithm. In
Proceedings of the Conference on Design, Automation
and Test in Europe, pages 1264 – 1269, Washington,
DC, USA, 2004.

SCOPES 2016

85

