
Faculty of
Engineering, Computer
Science and Psychology
Institute of Databases and In-
formation Systems

Assess Your Stress: Conceptual re-
design of the Track Your Tinnitus system
for measuring stress at the workplace
Master’s thesis at the University of Ulm

Submitted by:
Bojan Klečina
bojan.klecina@uni-ulm.de

Reviewers:
Prof. Dr. Manfred Reichert
Dr. Rüdiger Pryss

Supervisor:
Dr. Rüdiger Pryss

2016

Version 2016-07-22

c© 2016 Bojan Klečina

Satz: PDF-LATEX 2ε

Abstract

The Track Your Tinnitus (TYT) platform has been developed in a joint project by the universities

of Ulm and Regensburg in Germany for several years. The framework was created to assist

tinnitus patients in measuring and keeping track of their symptoms over extended periods of

time. For this purpose, TYT provides a central, WWW-based platform to manage and distribute

questionnaires to users, who fill in these questionnaires using their mobile devices multiple times

per day when prompted by the application. In comparison to other non-computerized methods,

this approach offers a more precise and reliable measurement of psychological phenomena and

symptoms like tinnitus, which are generally difficult to estimate otherwise. However, the general

principles behind TYT can also be applied to other use cases. After a new German law was

passed, which aims to improve public health through a variety of measures in all areas of life,

the stakeholders of the TYT project decided to initialize a project to apply TYT to measurement

of stress at the workplace. Another purpose of this project was to completely redesign and

rebuild the framework from scratch due to flaws in its design and the now outdated software it

was built on. This new iteration of the TYT concept was named Assess Your Stress (AYS). The

main goals were to apply the TYT concept to stress tracking, while also generalizing the platform

to make it more open for extensions and different fields of application in the future. The project’s

main contributions are a detailed concept of the platform overhaul, a stable core system, upon

which future extensions can be built, and a basic web-based client developed as a single-page

application in AngularJS. While the system’s application to stress tracking is prototypical in this

release, it serves as a preliminary indication that the principles behind TYT are useful in the

context of stress tracking.

iii

iv

Contents

1 Introduction 1

1.1 Tracking stress at the workplace . 1

1.1.1 Motivation . 1

1.1.2 Track Your Tinnitus . 2

1.2 Generalizing TYT . 2

1.3 Outline . 4

1.3.1 Concept overview . 4

1.3.2 Mobile stress tracking . 5

1.3.3 Personalized feedback . 5

1.3.4 Extensibility . 5

1.4 Content overview . 6

2 Related work 7

3 Requirements 11

3.1 Use cases . 11

3.1.1 Guest . 14

3.1.2 Administrator . 14

3.1.3 User . 17

3.2 Functional requirements . 19

3.2.1 General . 20

3.2.2 Questionnaire . 20

3.2.3 Question . 22

3.2.4 User group . 22

3.2.5 User . 23

3.2.6 Results . 23

3.3 Non-functional requirements . 24

3.4 User interface requirements . 25

3.5 System requirements . 26

4 Architecture 29

4.1 Overview . 29

4.1.1 General architecture . 29

4.1.2 Primary usage scenarios . 31

v

Contents

4.2 Static structure . 32

4.2.1 Domain model . 32

4.2.2 Server . 35

4.2.3 Client . 42

4.3 Dynamic structure . 45

4.3.1 Register user . 46

4.3.2 Create questionnaire . 46

4.3.3 Edit questionnaire . 47

4.3.4 Fill in questionnaire . 47

4.3.5 Coping advice . 48

4.4 User interface design . 49

4.4.1 Dialog structure . 49

4.4.2 Page layout . 58

4.4.3 Visual design . 65

5 Prototypical implementation 67

5.1 Utilized software and technology . 67

5.1.1 Laravel 5 . 67

5.1.2 AngularJS . 78

5.1.3 JWT . 80

5.1.4 JSON API . 81

5.2 Implementation details . 83

5.2.1 Dynamic translation system . 84

5.2.2 Version control . 92

5.2.3 Model inheritance and user roles . 93

5.3 Client . 96

5.3.1 Initially hidden slider handle . 96

6 Conclusion 99

6.1 Summary . 99

6.1.1 Self-assessment . 100

6.2 Future development . 101

Bibliography 103

vi

1 Introduction

1.1 Tracking stress at the workplace

1.1.1 Motivation

On July 25, 2015, the Preventive Health Care Act (Präventionsgesetz) took effect in Germany.

This bill aims to improve public health through various initiatives for increased health awareness

and preventive healthcare. The proposed measures are meant to encompass all integral areas

and phases of life, such as infancy, education and work. One of these proposals is the imple-

mentation and scientific evaluation of preventive healthcare measures and financial investment

in such programs as a joint effort of German insurance companies. Another goal of the bill is to

encourage corporations to take measures for the improvement of employee health through ac-

tive, preventive care. This has led to the inception of this project by the Universität Regensburg

and Ulm University.

Beginning in 2013, the two universities have developed the Track Your Tinnitus system (TYT).

This framework, which is described in more detail in the next section, is used by patients of

tinnitus to measure and track their symptoms. The concept of this system can, however, also be

adapted for other purposes. This fact and the passing of the Preventive Health Care Act was the

impetus for the two institutes involved in the TYT project to develop a new, adapted iteration of

TYT for the measurement and tracking of stress at the workplace. Stress has been researched

from a medical standpoint and it is well-known that excessive and prolonged stress can be a

serious health concern. Intense and chronic overwork has been linked to various health issues

such as chronic fatigue, depression, cardiovascular disease and, in some extreme cases, it can

even cause death.

Using a system similar to TYT, employees should be able to keep track of when and to what

degree they feel stressed at work. First and foremost, this should help employees gain a more

palpable sense of their workload and when and why it might be too much or too little. On the other

hand, these data should also provide employers with an overview of their employees’ well-being

and help balance work tasks, detect signs of overwork among employees and offer assistance

in taking appropriate countermeasures.

In addition to the adapted version of TYT, this project has another goal. TYT was implemented

using the PHP framework Laravel version 3. Because Laravel has since changed dramatically,

the parties involved in the long-term development of TYT have expressed the wish to not build

1

1 Introduction

on the current implementation of TYT, but instead to rebuild the framework entirely from scratch

using the current version 5 of Laravel. Furthermore, since TYT was more or less customized

for its one particular use case of tracking tinnitus symptoms, the new version of the system

should aim for a more generalized and extensible design for forward-compatibility with future

developments and extensions of the system.

1.1.2 Track Your Tinnitus

Beginning with [11], the universities of Ulm and Regensburg have developed the Track Your

Tinnitus system. Due to its nature as a phenomenon that, in most cases, only the patients them-

selves can perceive, tinnitus is inherently difficult to measure and track accurately. TYT aims to

alleviate this problem be providing a mobile framework for tinnitus sufferers that they can use to

log the quality and intensity of their symptoms. The general usage of the system is as follows: A

patient creates a user account. Next, they must complete a number of statistical questionnaires,

which gather relevant personal and general information pertaining to the patient’s illness. The

mobile app will then begin issuing notifications at random intervals throughout the day, which

can be adjusted by the user. On receiving a notification, the patient must fill in a questionnaire,

logging the current state of their tinnitus. The data are gathered and can then be viewed as dia-

grams on the mobile app or the web portal. These logs provide an at least somewhat accurate

overview of the patients’ symptoms and can help the patients and their doctors identify factors

that affect their well-being. With [11] as its foundation, TYT has since evolved into an ecosystem

of various client implementations and server extensions (cf. chapter 2), as its general concept is

suitable for various applications and use cases.

1.2 Generalizing TYT

While TYT offers a solid foundation for a mobile stress tracking application, there are several

changes to the system and the concept itself that need to be implemented for this project.

TYT employs two kinds of questionnaires: statistical questionnaires and app questionnaires.

Statistical questionnaires collect relevant personal and general information pertaining to the pa-

tient’s illness. After creating a user account, users must complete these questionnaires once,

and only once, before they can start tracking their symptoms. Statistical questionnaires can be

filled out via both the web portal and the smartphone app and can be edited by administrators.

The so-called app questionnaires can, as the name implies, only be filled out using the mobile

application. Since the new version of the system aims to be more general, constraints related to

questionnaires have been relaxed or dropped entirely. The system should support various types

of questionnaires and newer versions of the system should be able to easily add new question-

naire types, ideally without having to modify the inner workings of the system. All questionnaires

should be accessible from all platforms that the framework serves. Furthermore, for the use

2

1.2 Generalizing TYT

case of this project, statistical questionnaires must still be filled out once, but users can revisit

them and edit their answers at any time. Lastly, all questionnaires can be edited and deleted and

new questionnaires of all types can be created.

In the current version of TYT, there can only be one app questionnaire at a time and it is not

editable. Moreover, its structure is hard-coded in a database table, which contains fields for each

of its eight questions. Clearly, this solution is not conducive to extensibility and should therefore

be replaced with a more flexible solution. As mentioned above, administrators should be able to

create any number of questionnaires of any type, including app questionnaires, and edit these

questionnaires as needed.

The aforementioned generalization of the questionnaire concept also has implications for the

visualization of questionnaire results. In TYT, all results were displayed in diagrams, one for

each question in the app questionnaire. However, when the number and type of questionnaires

and questions is arbitrary, this solution is not optimal. A more general solution will have to em-

ploy a different approach. It should be able to group results of various questions into combined

diagrams for a more terse overview of data. Additionally, edited questions also become a prob-

lem. Users must be able to differentiate between edited versions of the same questions in the

diagrams in order to get an accurate representation of their results.

TYT currently includes a rather rudimentary solution for version control for questions. For sta-

tistical reasons, it is important that answers can always be linked to questions in the exact state

they were in when a particular user answered those questions. Therefore, when a user answers

a question, the system saves a copy of the question’s text with the answer. This way, the original

question texts are preserved and unaffected by changes to the question records. However, not

only does this violate the Single Source of Truth principle [38], but the system currently does

not even leverage this feature in the questionnaire editor or result views, i.e. any past question

versions, which might exist inside the database, are hidden from both users and administrators.

In the new iteration of the system, a proper solution for version control that can be applied to any

type of entity in the system should be implemented.

Originally, TYT offered users the option to delete their e-mail address used for registration from

the system and sign in anonymously. This requirement has been dropped from the new version

of the system as it has proved impractical in the past.

TYT supports internationalization of questionnaires and questions. In the current implemen-

tation, questionnaires and questions each reference separate database tables that contain the

data of their respective parent questionnaires or question that should be localized. This solu-

tion is not ideal in that the localization tables have to be adjusted manually if the questionnaire

and question tables were to change. Furthermore, this solution is specific to questionnaires and

questions in the system. If any other entity were to be localized, the same solution has to be im-

plemented again for that particular case. The new iteration of this system aims to provide a more

flexible and adaptable solution for internationalization, which can be used wherever necessary

within the system with minimal extra implementation.

3

1 Introduction

1.3 Outline

This section outlines the general aims of the system designed and implemented in this project.

1.3.1 Concept overview

Since this system is a direct successor of Track Your Tinnitus, the name for this system was

chosen to appropriately reflect this connection: Assess Your Stress, or AYS for short.

This system, much like TYT, aims to provide a web-based solution for user-driven measure-

ment and tracking using questionnaires. Unlike TYT, which is aimed toward patients of tinnitus,

this system is an adaptation of the same concept applied to stress at the workplace. For this

purpose, users complete questionnaires containing questions that are suitable to measure per-

ceived stress levels. In its first iteration, the system offers a web-based interface, but in future

developments, users should also be able to access and fill in questionnaires using mobile de-

vices like smartphones and tablets, possibly even smart watches. After measuring their stress

levels for a while, users can access diagrams that represent their stress levels as measured

through the questionnaires. Users may also choose to export an overview of their results in a

file format such as CSV or PDF. These results should then help employees using this system

get a clearer image of their workload and mental well-being. If need be, the results can also be

the basis for intervention and adjustment of workload after review by the employer. The ques-

tionnaires, which the system offers, are not "hard-coded" and uneditable, like it is the case with

some similar systems described above.

Administrators can create and edit questionnaires using different question types. This particular

system includes three types of questionnaires, each for different purposes: statistical, snapshot

and burnout questionnaires. All questionnaires can be completed repeatedly and at any time.

Statistical questionnaires collect general information on the user and are usually only completed

once. Unlike the other two questionnaires types, users can edit their answers for statistical

questionnaires even after they have been submitted. The so-called snapshot questionnaires

are the system’s implementation of the Experience Sampling Method [10]. They are filled out

multiple times per day and create most of the data used for the analysis of users’ stress levels.

Burnout questionnaires are a third type that TYT does not offer. This category is for specialized

questionnaires that psychologists use to gauge symptoms of burnout. The system might also

actively encourage users to complete burnout questionnaires if it detects elevated levels of stress

over extended periods of time.

Lastly, users are divided into user groups. User groups are also managed by administrators. All

users belong to the default group, which is simply the superset of all users that the system man-

ages. User groups and user roles are separate concepts. While the system uses user roles to

grant access to system functionality to specific types of users, user groups are used for question-

naire access control. Like user roles, users can belong to any number of groups. Administrators

4

1.3 Outline

assign both users and questionnaires to user groups. Users can only access questionnaires

that are assigned to any of the groups they belong to. All other questionnaires, which exist in the

system, are invisible to those users. This is useful, for example, for research groups and enables

researchers to create closed groups for study participants to evaluate special questionnaires.

1.3.2 Mobile stress tracking

Like TYT, this system should provide a framework for mobile, web-based, user-driven measure-

ment and tracking of stress at the workplace. Regular usage of the framework should provide

both employees and employers with meaningful insights regarding their work environment. The

system is also intended for use in as many types of professional environments as possible.

Naturally, these professions vary greatly in regards to the physical workplace, available IT in-

frastructure, environmental conditions, working hours etc. In particular, a constant and stable

Internet connection cannot be required of all clients, as certain professionals have to move a

lot during their workday or work in environments without mobile connectivity. These constraints

must be considered in the design of this system in order to be useful to as many people as

possible. Ideally, the framework should provide interfaces for various types of clients, especially

mobile, and be able to accommodate more and new types in the future.

1.3.3 Personalized feedback

In addition to the simple visualization of results implemented in TYT, the new iteration of the

framework should provide personalized feedback to users regarding their stress levels. For

example, upon detecting elevated levels of stress over a certain period of time, the system

should offer valuable information on how to deal with stress at the workplace. It should help

users detect the exact sources of their stress and offer common relaxation and coping methods.

In the future, it might also be desirable to augment the system with more advanced features such

as situational reasoning and analysis based on particularly stressful events logged in the system

by the user. This would also enable dynamic adaptation features like automatic adjustment of

notification frequencies and intelligent choice of questions tailored to the user’s current situation,

perhaps when the system detects that a recent event has significantly affected the user’s stress

levels.

1.3.4 Extensibility

Section 1.1.2 outlines the current implementation of TYT and points out specific issues with the

system. A number of these issues pertain to a lack of extensibility. While the main goal of this

project is still the design and implementation of an overhaul of TYT adapted for stress tracking,

the shortcomings of TYT in regards to extensibility should be eliminated as much as possible

5

1 Introduction

to provide a more stable basis for future developments. This particularly concerns international-

ization, questionnaires, questions, version control and client interfaces. The framework should

be general enough to be forward-compatible with new types of questionnaires and questions

that developers might choose to implement for their special use cases. These questionnaires

and questions should be translatable into any number of languages with minimum effort. The

translation mechanism itself should also be as general as possible so that it may be used for

other entities within the system as well, in present or future iterations of the software. Lastly, the

API for access to questionnaires, questions, answers, statistics and user administration should

also be adaptable to different kinds of software and possibly even hardware clients in the future.

1.4 Content overview

The rest of this document discusses the design and implementation of the proposed system as

follows:

Chapter 2 provides a general overview of previous work and research related to the subject

matter of this project and highlights how this projects fits in with those past efforts. Following

that, the requirements for this project are described in detail in chapter 3. Chapter 4 then defines

the systems’ architecture based on different views, such as the data model, use cases, system

interactions and the user interface. The prototype of this system, which was implemented for

this project, is presented and discussed in chapter 5. Finally, this document closes with chapter

6, which contains a summary of the project, discusses the gained insights and offers points of

extension for future development.

6

2 Related work

This chapter discusses some previous related work, which influenced this project.

Stress and other psychological phenomena can and have been measured in a number of differ-

ent ways. Some techniques, which are commonly used, rely on physiological effects that can

indicate changes in a person’s affect, such as body temperature, heart rate or electrodermal

activity. Sensors record these effects and the data are later compiled, analyzed and correlated

with one another to derive conclusions about the variables under investigation. Other techniques

rely on journals. Patients or study participants must regularly update their journals with all data

relevant to the phenomena that are being measured. In the case of stress, people often have

to rely on their memory and recount stressful situations in their journals after the fact. How-

ever, both these techniques come with a host of problems. While physiological manifestations

of psychological effects are objective and can be measurable and significant, they also tend

to be imprecise, unreliable, and, naturally, only an indirect measurement of the psychological

phenomenon at hand. With journals, patients and study participants are the direct source of

data pertaining to the measured variables. While this approach can offer some valuable in-

sight into internal psychological processes, which cannot be observed otherwise, the reliability

of the recorded data naturally varies with each study participant. If the phenomenon cannot be

recorded as it is happening, people have to rely on their memories, which further distorts the al-

ready fuzzy data. Additionally, the quality of the journal entries can vary and some people might

occasionally forget to update their journals altogether. Moreover, while physiological measure-

ments offer some degree of objectivity, journals are highly subjective and can only represent the

perceived quality of some psychological process.

Today, with the spread of smart mobile devices, most importantly smartphones, and increased

connectivity between devices, various research groups have attempted to leverage these new,

technological capabilities to alleviate some of the shortcomings of the techniques described

above. [26] uses interconnected, wireless sensors to record physiological effects of stress. [17]

is a wireless biofeedback device used to signal high stress levels to its user.

The approach used in [37] is closely related to this project. A native Android application is used

to measure stress in users. The application prompts users ten times per day to complete a ques-

tionnaire containing Likert scale questions about the users’ current perceived stress level. This is

an implementation of the Experience Sampling Method [10], which this project also uses. How-

ever, the main focus of the study was on investigating the validity of the questionnaire itself and

less on the technological aspect. Also, since the application only contains one predetermined

7

2 Related work

and uneditable questionnaire, it is far less flexible than the system developed in this project and

cannot be easily adapted for other uses.

Another smartphone-based system that measures stress was developed in [16], although with

an entirely different approach. This system uses smartphones’ microphones to crowd-sense

users’ voices. A classification framework then analyzes the audio data to detect stress in the

users’ speech in real time. The study shows that using this technique, the system can detect

elevated stress levels with an accuracy of up to 81%. While this approach is vastly different

from this project, it aptly illustrated the novel possibilities that mobile devices open up for mobile

health applications.

StudentLife [36] is a framework that uses smartphones and sensor fusion to measure stress and

mental well-being in university students. The framework was evaluated with 48 students over a

period of 10 weeks. The system uses both smartphone sensors and questionnaires to measure

a number of variables like stress, mood and sleep cycles. The study data was examined for

various effects and correlations. For example, it was shown that an increase in depression and

stress levels in students with increasing workload at the end of the term can be found in the

recorded sensor data and self-reports. Contrary to StudentLife, this project does not use smart-

phone sensors for data collection. Nonetheless, these results demonstrate that measurement of

stress (and other phenomena) aided by smart devices can provide valuable insights into people’s

well-being and can be used to react appropriately and intervene if necessary. Another similar

approach can be found in [3], which also employs data mining techniques to detect stressful

events using people’s digital schedules and other data sources.

[27] presents a research project that aims to improve the above-mentioned journal technique.

Smartphones are used to provide users with context clues when trying to recall past events.

Specifically, the system uses smartphones’ GPS sensors to record the user’s location at certain

points in time. When users later try to recall specific situations, the system offers the recorded

location data as a mnemonic aid. The study shows that this technique does improve recall

accuracy in users.

A number of projects have been built on the TYT platform to further investigate its potential. In

[24] and [25], mobile crowd-sensing applications were developed and integrated with the TYT

platform for use in longitudinal studies. [28] uses TYT as a case study to identify common

patterns and issues in the development of mobile business and e-health applications. A large-

scale clinical study using mobile smart devices for data collection using questionnaires was

conducted in [29]. Two works, [32] and [30], have taken the mobile data collection approach

further by applying business process concepts to it. This was an effort to solve the issue of

the immense workload of "paper-based" questionnaires in health and psychological studies.

[31] explores the possibilities of mobile sensor networks in various applications like fitness and

health. In [23], TYT is used as a tool in a study to investigate the connection between emotional

states, tinnitus loudness, and tinnitus distress.

8

Finally, [4] presents a pervasive and unobtrusive way to detect stress in smartphone users. In-

stead of filling out questionnaires, users simply perform gestures commonly used for interaction

with smartphones. The system can then deduce the user’s stress level from the way they are

performing these gestures. The study shows that this technique can distinguish stressed from

relaxed users with decent accuracy using only swipe and scroll gestures and text input.

These examples demonstrate the potential of mobile crowd-sensing for the measurement of

stress and other psychological phenomena. Most importantly, smart devices enable applications

that are ubiquitous, independent of the users location and current activity and can be integrated

into users’ daily lives in a more unobtrusive way than past techniques. While a number of sensor-

based approaches exist, the use of (mobile) questionnaires for the purpose of measuring stress

seems to be not as thoroughly researched. This project’s aim is to contribute an approach for

this scenario while focusing on flexibility and extensibility, as opposed to some of the above-

mentioned systems.

9

2 Related work

10

3 Requirements

This chapter outlines the requirements that the planned system must or should meet. Require-

ments are divided into four groups: the first two sections define the usual functional and non-

functional requirements, which are part of most software projects. Additionally, this chapter also

includes requirements for the user interface and a number of general requirements and con-

straints, which are called system requirements in this instance. Where appropriate, requirements

are further divided and grouped into smaller categories of related requirements.

It should be noted that this list represents an abridged version of the original requirements de-

fined for this project. Some low-priority requirements have been left out for the sake of brevity.

All requirements have a distinct descriptor and a unique identifier associated with them, which is

used consistently throughout the rest of this document to refer to requirements.

A note on nomenclature: From this chapter on, both lower-case and upper-case versions of

certain terms will be used. The lower-case words will be when the term at hand is discussed

in a general sense, while the upper-case words signify entities as defined in this chapter and

the chapter on the system’s architecture, i.e. classes or objects. In cases where it may still be

unclear, italics may be used for further clarification.

3.1 Use cases

Use cases describe the tasks that users want to complete using the target system. They there-

fore represent the user’s perspective of the system, defining its functionality in terms of goals

and outcomes. Also, use cases often include not only what the input and expected output for a

given interaction should be, but also how users may want to interact with the system. Apart from

perhaps small-scale, routine projects, software can generally not be built on use cases alone,

as they only offer a general, high-level view of the desired functionality. For this reason, the

subsequent section breaks the use cases down into low-level functional requirements.

The system offers different functionality for different types of users, also known as user roles.

Therefore, the following use cases are grouped by user role, since each role has distinctly differ-

ent tasks they need to complete with the system.

For the sake of brevity, the use cases are described in informal text. In cases where the user

interaction is more involved, a somewhat formalized process description is also given.

11

3 Requirements

Figure 3.1: Use Cases for the Administrator role

12

3.1 Use cases

Figure 3.2: Use Cases for the Guest and User roles

13

3 Requirements

The UML Use Case diagrams in figure 3.1 and 3.2 provide a graphical representation of the use

cases that were identified for each user role in the planned system. These use cases are then

further detailed in the subsequent sections.

3.1.1 Guest

The guest role is not an actual user type that the system recognizes or explicitly implements. It

represents rather the lack of any defined role. Nonetheless, there are some functions that only

non-registered users require from the system

UC001 — Sign up

Description and rationale To be able to offer any of its functions, the system must be able to

distinguish users and keep records of their activities within the system. Therefore, all users must

create a user account with the system before they can use it. In this iteration, the system should

offer sign-up through a web-based interface.

Like most IT software that implements user authentication, this system offers a simple sign-up

form, where users enter their e-mail address and password. If the entered data are valid, the

system creates the user account and sends a confirmation link to the user’s e-mail address.

Once the user has confirmed that his e-mail address is correct by clicking the confirmation link,

the system activates the newly created account and the user can begin using the system.

UC002 — Sign in

Description and rationale Once the user has created an account with the system, they must,

naturally, be able to sign in to access their account and the system’s functionality.

Users enter their credentials into a simple sign-in form, unless there is a active, valid session from

a previous login. The system confirms the user’s credentials and signs them into the system.

The user can then begin using the system.

3.1.2 Administrator

One of the two actual user types supported by the system is the Administrator role. Adminis-

trators are users who manage the system "behind the scenes", i.e. they create questionnaires

and questions, maintain user accounts and user groups etc. Administrators are not a superset

of regular users, i.e. they do not have access to any of the functionality that users have.

14

3.1 Use cases

UC101 — Create questionnaire

Description and rationale This system, unlike other similar systems, does not contain any

"hard-coded" and immutable questionnaires, which users have to use to track their symptoms.

Administrators have the ability to manage questionnaires in the framework.

Process

1. Administrator visits the Create Questionnaire view.

2. Administrator enters settings for the new Questionnaire (type, etc.).

3. Administrator creates Questions for Questionnaire.

4. Optional Administrator may assign Questionnaire to one or more User Groups. All Ques-

tionnaires are accessible to the Default Group by default.

5. Optional Administrator may set Questionnaire to be published immediately (see use case

UC104, requirement S003).

6. Administrator submits Questionnaire.

7. Invalid input System informs Administrator of invalid input and Administrator can correct

the input.

8. Valid input System creates Questionnaire.

UC102 — Edit questionnaire

Description and rationale The system enables administrators to edit all questionnaires in the

system. The administrator accesses the questionnaire’s edit form, which is very similar or identi-

cal to the form used to create new questionnaires. The form is pre-filled with the questionnaires

current data, which the administrator then edits as needed. Once all changes are made, the

administrator submits the updated questionnaire, the system validates the input and updates

the questionnaire’s database record. Since this system also supports version control for ques-

tionnaires, all question are submitted to version control if they are modified, meaning that all

previous versions of questions remain in the system as distinct records and can be viewed by

administrators at any time.

Note: The system does not currently support administrator permissions, i.e. all administrators

can manipulate all questionnaires, even if they did not create them themselves.

UC103 — Delete questionnaire

Description and rationale Administrators may delete any questionnaire that exists within the

system. However, the system uses soft deletes, i.e. deleted questionnaires are only effectively

15

3 Requirements

hidden from all users and remain in the database. This is important because users might lose

their previous questionnaire records when questionnaires are deleted. To delete a questionnaire,

administrators can either access the questionnaire’s edit page and request its deletion or do

so from the questionnaire overview. The system always prompts users to confirm destructive

actions to avoid accidental data loss. After the administrator confirms the deletion, the system

soft-deletes the questionnaire.

UC104 — Publish/hide questionnaire

Description and rationale Administrators may decide to create a questionnaire, but not make

it accessible to users right away, possibly because it does not contain all questions yet or has to

be reviewed by other staff. For this reason, all questionnaires are hidden by default after they are

created. As noted in UC101, administrators may also have the system publish questionnaires

immediately after they are created. See requirement S003 for more information.

If any of the conditions in S003 are not met, the system aborts the action and the questionnaire

remains hidden. Once the questionnaire is published, it becomes visible to users in assigned

user groups and they can fill it in. Administrators can also hide questionnaires at any time,

making them immediately invisible to all users regardless of user group.

Like UC103, administrators can publish/hide questionnaire either from within the questionnaire’s

edit form or the questionnaire overview.

UC105 — View question version history

Description and rationale As described in UC102, this system submits all questions to ver-

sion control when they are modified. To review any question’s version history, administrators can

access questionnaire that contains the question. The questionnaire’s edit view contains lists of

previous question version for each question, ordered in chronological order. Previous versions

of questions cannot be modified.

UC106 — Create user group

Description and rationale Administrators also manage user groups. When creating a new

user group, administrators only need to enter a unique name for the group. They may also

choose to assign users and questionnaire from lists to assign to the group, but this can also

be done later in the user group’s edit view. If any users and questionnaires are selected, the

system assigns them to the user group after creating it, making all of the selected questionnaires

immediately available to the selected users.

16

3.1 Use cases

UC107 — Edit user group

Description and rationale Administrators can edit all user groups in the system. They may

change the group’s name, which, however, still has to be unique. They may also assign and

remove both users and questionnaires from the group and they may delete the group altogether.

UC108 — Delete user group

Description and rationale Like questionnaires, user groups can be deleted from the user

group overview or their respective edit view. Since all users always belong to the Default Group,

the users themselves are not deleted, only their association with the group. The same is true for

questionnaires. However, since questionnaires must be assigned to at least one user group to

be published (cf. requirement S003), questionnaires may be hidden by the system if they only

belonged to the deleted group.

3.1.3 User

Apart from the Administrator role, this system also supports "regular" users. In the context of a

"stress at the workplace" application, these regular users would be employees. However, to keep

the concept general and open to extension in the future, the regular user role is simply called

User in this system. It should therefore be noted that the User role is not equal to the superset of

all users in the system including Administrators. The User may complete questionnaires created

by Administrators and view their results and statistics.

UC201 — Reset password

Description and rationale Strictly speaking, this function may be assigned to guests, since

a password reset request is only useful if the user does not remember their password and is

therefore not currently signed it. However, an account must first exist in the system before its

password can be reset. While not signed into the system, the user can simply request a new

password from the sign-in form, as it is known from countless web-based authentication systems.

UC202 — Sign out

Description and rationale This is the logical counterpart to the sign-in function. Users may

choose to end their session with the system at any time. They lose access to the system’s

protected functionality and must therefore first sign in again to gain access.

17

3 Requirements

UC203 — Edit account

Description and rationale Users may edit their account information, which at this point only

contains the user’s e-mail address and password. The system currently does not support dele-

tion of user accounts through the user interface.

UC204 — Fill in questionnaire

Description and rationale This is the main functionality of the system from the perspective of

the User role. Users may access the system to fill in any questionnaire at any time. However,

some constraints apply. These are described below. Users choose a questionnaire from a list

of all available questionnaires and then proceed to fill it in. The system then records the user’s

input for later analysis.

Process

1. User accesses the list of all available Questionnaires.

2. User selects a Questionnaire from the list.

3. Snapshot Questionnaire

a) User has not yet completed all available Statistical Questionnaires: System informs

User that all available Statistical Questionnaires must be completed before Snapshot

Questionnaires can be filled in, and returns to the Questionnaire list.

b) All available Statistical Questionnaires completed

i. User answers Questions.

ii. System validates Answers and saves them if valid.

4. Statistical Questionnaire

a) User has completed Questionnaire before

i. System displays Questionnaire pre-filled with User’s previous Answers.

ii. User edits Answers and submits Questionnaire.

iii. System validates Answers and updates them if valid.

b) User has not completed Questionnaire yet

i. System displays new Questionnaire with empty fields.

ii. User enters Answers and submits Questionnaire.

iii. System validates Answers and saves them if valid.

5. Burnout Questionnaire

18

3.2 Functional requirements

a) System displays new Burnout Questionnaire with empty fields.

b) User enters Answers and submits Questionnaire.

c) System validates Answers and saves them if valid.

UC205 — Review/export results

Description and rationale After completing several questionnaires, users will want feedback

from the system. They may review their answers from within their user account. In the Results

section, the system generates diagrams for each questionnaire and each question that the user

has completed. The type of diagram depends on the question type. For some questions, line

diagrams might be more appropriate, while other question types might be more suited to pie

charts or dot plots. The diagrams should be offer some degree of control for usability. For

example, users should be able to zoom into sections of the diagrams and hide or show lines and

labels. From the same view, users may export an overview of their raw result data in the CSV

file format, possibly also as PDF.

UC206 — Request coping advice

Description and rationale When users notice that there stress levels are currently higher than

usual, they may want to employ countermeasures. This system aims to assist in that by providing

advice on how to cope with stress. While this first iteration of the system does not support any

dynamic and intelligent analysis of user results to provide highly personalized advice, it does

consider the user’s current stress levels when choosing which coping strategies to offer. Users

may also choose to rate the advice provided by the system after trying it out. If users rate it

as useful, the system will be more likely to suggest similar strategies in the future. If it did not

manage to reduce their stress with a specific strategy, the system will more likely to choose

different strategies when requested.

3.2 Functional requirements

The following requirements define the target system in terms of functionality. Specifically, these

requirements describe the functions that the system must offer in order to fulfill the use cases

introduced in section 3.1. While the use cases characterize the system from the user’s viewpoint,

the functional requirements offer a more fine-grained representation of the functions that have to

be implemented for users to be able to complete their tasks with the system.

As with the use cases, functional requirements are described in prose. Where necessary, more

formalized definitions are also given.

19

3 Requirements

Furthermore, simple functions that do not warrant entire sections for themselves may be either

omitted or grouped together into one section for the sake of brevity. This is usually the case

when the description in a related use case mostly matches the actual functionality, e.g. simple

CRUD methods. The unique identifiers and descriptors are still listed, but detailed descriptions

are left out.

3.2.1 General

F001 — Version control

Description and rationale As mentioned in the introducing chapters, one of the desired fea-

tures of this system is full version control. While the predecessor TYT did implement version

control, it was rather rudimentary and limited to specific entities in the system (cf. section 1.2).

This feature is mostly necessitated by statistical integrity. In order to maintain statistical integrity

when reviewing test results, the question must be preserved in the exact state it was in when

it was answered by a user. This way, questions can be edited and deleted without invalidating

users’ statistical records. This is also the reason why the system uses soft deletes for records

like questions and questionnaires.

This system’s approach to version control is exemplified using questions, since this is the use

case that was originally meant for. However, the same process can also be applied to other

entities in principle.

Process

1. Question Q from Questionnaire QS is modified.

2. System creates copy Q’ of Q and applies changes to Q.

3. System submits Q’ to Version Control, creating Version Control Record V. V is linked to the

"root" version Q and the modified version Q’.

4. If necessary, System submits any related records to Version Control as well.

5. QS is still referencing Q, now modified, and has no direct access to Q’.

3.2.2 Questionnaire

F002 — Questionnaire types

The system currently supports the following questionnaire types:

20

3.2 Functional requirements

Statistical questionnaires Statistical questionnaires collect general information about the user

that is relevant to the use case of the system, in this case stress at the workplace. They are dif-

ferent from other questionnaire types in that users can edit their answer after submitting the

questionnaire.

Snapshot questionnaires Snapshot questionnaires correspond to app questionnaires from

TYT. These questionnaires generally contain few questions and users fill them in several times

a day to record a "snapshot" of their current mental state, in this case stress levels.

Burnout questionnaires Burnout questionnaire are a new type of questionnaire that was not

supported by TYT. These specialized questionnaires are used by psychologists to gauge symp-

toms of burnout. The system may detect high stress levels over longer periods of times and sub-

sequently encourage users to complete a burnout questionnaire, which may then offer further

insights into whether the user might be experiencing burnout, which should prompt intervention

by the employer.

F003 — Create questionnaire

Description and rationale When an administrator creates a new questionnaire, the system

creates a new record for the questionnaire and simultaneously one record for each created

question, if all input is valid. As described in use case UC101, administrators may choose

to publish the new questionnaire immediately and they may assign it to user groups. If the

questionnaire should be published but does not fulfill all conditions (cf. use case UC104), it will

be saved but remain hidden. The administrator will be notified that it the questionnaire could not

be published. If user groups are selected, the questionnaire will be assigned to them and the

user groups’ users will have immediate access to the questionnaire, if it has been published.

F004 — Edit questionnaire

Description and rationale When a questionnaire is edited, the system must make sure that

all questions and other entities that are enabled for version control are properly submitted to

version control. Furthermore, if a statistical questionnaire is edited and it has been filled out by

users before, these users must be notified of the changes in the questionnaire so that they may

edit their answers if necessary.

F005 — Delete questionnaire

Description and rationale When questionnaires are deleted, the system does not actually

remove their record from the database, but effectively only hides them from all access by users.

21

3 Requirements

As described in use case U103, this soft delete mechanism is used to maintain statistical integrity

of users’ results.

F006 — Publish questionnaire

Description and rationale A questionnaire can only be published, when it meets the condi-

tions listed in requirement S003.

3.2.3 Question

F007 — Question types

The system currently offers seven question types, which were directly adapter from TYT. They

differ in their representation in the user interface and the types of values they record:

1. Single choice

2. Multiple choice

3. Polar (yes/positive or no/negative)

4. Scalar (numeric scale)

5. Date

6. Single-line text

7. Multi-line text

Manage questions

As mentioned in the references sections on managing questionnaires, questions are submitted

to version control when they are edited or deleted.

F008 — Create question cf. use case UC101

F009 — Edit question cf. use case UC102

F010 — Delete question cf. use case UC103

F011 — Show version history cf. use case UC102

3.2.4 User group

Manage user groups

F012 — Create user group cf. use case UC106

22

3.2 Functional requirements

F013 — Delete user group cf. use case UC108

F014 — Assign user to user group cf. use cases UC106, UC107

F015 — Assign questionnaire to user group cf. use cases UC106, UC107

F016 — Remove user from user group cf. use cases UC106, UC107

F017 — Remove questionnaire from user group cf. use cases UC106, UC107

3.2.5 User

F018 — Create user account

Description and rationale When a new user enters their credentials and the system suc-

cessfully validates it, the system creates a new user account. At this point, the account is not

activated yet and cannot be used. The system also creates a confirmation token that is sent

to the user’s e-mail address. Once the user visits the link in the e-mail, the system verifies the

token and activates the user’s account (cf. requirement F019). The user can then begin using

the system.

F019 — Confirm user account

Description and rationale As described in requirement F016, new user accounts are inactive

when first created. The system creates a confirmation token, which is sent to the user. When the

user visits the link containing the confirmation token, the system verifies that the token is valid.

The token is a hashed value of the user’s e-mail address, a salt value and a Time To Live. If

the token cannot be decoded or it is too old, the system rejects it and the user account remains

locked. If the token is valid, the system activates the account.

Other user functions

F020 — Update user account cf. use case UC203

F021 — Create confirmation token cf. requirement F017

F022 — Sign in user cf. use case UC002

F023 — Sign out user cf. use case UC202

3.2.6 Results

F024 — Save answers

Description and rationale Answers to questionnaires submitted by users are stored in answer

records and linked to a answer set record. If answer records are the counterpart to questions,

23

3 Requirements

answer sets are the counterpart to questionnaires, i.e. they contain meta data related to the

questionnaire or the answers without containing the actual answers themselves.

F025 — Render diagrams

Description and rationale Diagrams are the primary feedback mechanism for users of this

system. This function collects all of a user’s answers, processes them and creates diagram

representations of these values to be displayed in the user’s Results view.

F026 — Export results

Description and rationale Similarly to requirement F023, this function accumulates all of a

user’s answers and summarizes them in a format that can be exported and downloaded to the

user’s device. It is required to export to CSV and should also be able to export to PDF.

F027 — Retrieve coping advice

Description and rationale Users should be able to get advice from the system on how to

cope with high levels of stress. As described in use case UC206, the system should contain

prose descriptions of coping strategies, which it selects based on the user’s current stress levels

and previous user ratings. Higher rated strategies and similar strategies are more likely to be

selected than lower rated strategies.

3.3 Non-functional requirements

Software not only has to conform to functional requirements, but also non-functional require-

ments. While these requirements are generally "softer" than functional requirements, this does

not mean they are any less important, as they are often related to system properties like re-

sponse time. This section outlines some non-functional requirements that were identified for this

system.

N001 — Multiple language support

Description and rationale The system should support multiple languages. While modern

programming frameworks commonly ship with useful localization functionality for static data, de-

velopers generally have to implement custom solutions for dynamically entered data. In this

case, this is mostly relevant for questionnaires and questions, which must be easily translatable

into any number of languages. The predecessor system TYT does contain implement a local-

ization mechanism, but it is rather rigid and inflexible (cf. section 1.2). The new iteration of the

24

3.4 User interface requirements

TYT framework should provide a localization mechanism that is simple, applicable to any entity

in the system that should be dynamically translated and most importantly, it should be able to

handle any number of languages in the future.

N002 — Server-client architecture

Description and rationale Like TYT, this system should be implemented as a client-server ar-

chitecture. This is a very common pattern for modern web-based applications, as it is inherently

distributed and affords interchangeable client implementations and extensibility. Traditionally, the

server contains the part of the system that handles the heavy lifting, i.e. business logic, data per-

sistence, session management etc. The client-side implementation should ideally only request

data from the server that it then displays to the user while responding to user input. Since one of

the principal goals of this system is to be flexible and extensible, this pattern remains the prime

choice, as future developments will easily be able to add new client implementations etc.

N003 — Extensibility

Description and rationale As mentioned several times throughout the introduction and re-

quirement, extensibility is an important goal in this project. This specifically pertains to the im-

plementation of questionnaires, questions, version control, language support and clients. While

this systems offers a number of different questionnaire and question types, developers should

be able to implement additional types with minimal modifications to the core code of the system.

This enables the system to be adapted to other use cases than just measurement of stress lev-

els. This also means that the questionnaire and question concepts used in this system should

not be specific to stress. F001 and N001 already describe the requirements for the version con-

trol and localization subsystems. Lastly, to enable easy addition of new client implementations,

the server should offer a generic public API that clients then use to communicate with the server

and make use of its services.

3.4 User interface requirements

This section outlines requirements for the user interface of this system. Note that all of these

requirements currently only apply to a web-based interface.

UI001 — Slider

Description and rationale This requirement is directly adopted from TYT [11]. One of the

question types supported by this system uses a slider as input for scalar values. However, since

it has been shown that the initial position of the slider’s handle can influence users’ answers due

25

3 Requirements

to a phenomenon called anchoring [13], the slider should not display any handle before the first

interaction. Once the user interacts with the slider widget, the handle is displayed and the slider’s

value can be manipulated.

UI002 — Usability

Description and rationale Good usability is important for any IT system. However, since this

system is an application that measures psychological properties of its users, more specifically

stress levels, and is meant for quick interactions throughout users’ daily lives, special care must

be taken in designing the user interface. Interactions should be as fast and unobtrusive as pos-

sible and, since every user of technical devices knows how frustrating badly designed interfaces

can be, the application should definitely not influence users’ stress levels, for better or worse.

UI003 — Color blindness

Description and rationale Since this system should be employed in various types of profes-

sional environments, color blindness must be considered in the choice of colors for the user

interface. Color blindness is a common condition and can be an significant impediment for suf-

ferers when trying to use interface that heavily rely on color. Therefore, a goal of this system

should be to limit the use of color to only a few cases, where it is useful and meaningful. Impor-

tant information should generally never be conveyed through color alone; color should always

be accompanied by a secondary information channel such as text or symbols. Additionally, as

mentioned in requirement UI002, the interface design for this system should aim not to stress

users. Therefore, jarringly bright colors and extreme contrasts, which can strain the eyes, should

be avoided.

3.5 System requirements

Finally, this section describes a few system requirements, which are general requirements or

constraints that apply to the system as a whole and did not fit other categories.

S001 — Statistical questionnaires first

Description and rationale As noted multiple times before in other requirement definitions,

users must first complete all available statistical questionnaires before they may fill in snapshot

questionnaires. This requirement was adopted from TYT and is supposed to ensure that users

do complete statistical questionnaires instead of only using snapshot questionnaires, since sta-

tistical questionnaires are important to the overall statistics.

26

3.5 System requirements

S002 — Incomplete answer sets

Description and rationale Not all questions need to be answered when a questionnaire is

submitted. Since users might not want to, be able to or have to time to answer all questions

in a questionnaire at a given time, the system should respect this. With that being said, it is

also required that the systems always saves complete answer sets for all questionnaires. If any

questions are left out, the system should save these answers as null values.

S003 — Publishing questionnaires

Description and rationale Questionnaires must meet the following conditions in order to be

publishable:

1. All of the questionnaire’s mandatory data are valid (title, etc.).

2. The questionnaire contains at least one valid question.

3. The questionnaire is assigned to at least one user group.

S004 — Notification on questionnaire edit

Description and rationale When an administrator modifies a statistical questionnaire the sys-

tem should notify any users of these changes, that have completed the questionnaire before.

Like the first constraint in this section, this is to ensure that users’ records accurately reflect the

users and any changes are recorded.

S005 — Multi-language questionnaires

Description and rationale The system should only display questionnaires that are available

in the user’s current system language.

S006 — Optional questions

Description and rationale Questionnaires may contain optional and non-optional questions.

Since questionnaires can be saved in an incomplete state, as mentioned above, this is most

useful for statistical questionnaires to determine their "degree of completion". A statistical ques-

tionnaire is considered completed once all mandatory, i.e. non-optional questions have been

answered.

27

3 Requirements

28

4 Architecture

In this chapter, the architectural blueprint for this system is described from a number of different

perspectives. The first section provides an overview of the planned system’s general structure,

including the main components and short descriptions of the key usage scenarios. The next

chapter then defines the static structure, i.e. the classes and interfaces of which the framework

consists, for both the server and client implementation. Section 4.3 complements the static

system structure defined in 4.2 with a dynamic view of the system by describing the crucial user-

system interactions and illustrating the exchange of information between the software and its

users. Lastly, the general concept for the system’s web-based user interface (UI) is presented in

section 4.4.

Note that some classes and other structures may not be represented in the final implementation

exactly as described here. The designs in this chapter are still part of the concept, which is

independent of the platform used to implement the system. It is therefore possible that some

classes are merged with others in the implementation or their functionality is provided by the

web or client framework.

4.1 Overview

4.1.1 General architecture

The architecture of this framework is based on the client-server model, as required in N002.

This software design pattern is commonly used for distributed systems, especially information

systems, and it is the fundamental architectural pattern for Internet-enabled computer services.

In this model, the server is the central provider of services and data, which it serves to clients

upon their requests. This model is especially suitable for use in the Internet, as it is designed

for the purpose of decoupling. This is crucial in very dynamic and "loose" networks, like the

Internet, with enormous numbers of different computing devices communicating with each other

asynchronously. More specifically, the framework designed in this project consists of a fat server

and thin clients. In this variant of the client-server model, the server handles as much of the

"heavy lifting" as possible, i.e. all business logic, data transformation, data persistence, user

authentication and authorization etc., whereas the clients are kept as simple and ignorant of the

inner workings of the server as possible. Ideally, thin clients should be strictly limited to request-

ing data from the server, displaying it to the user and sending user input back to the server. This

29

4 Architecture

Figure 4.1: The general client-server system architecture; logos copyright of Google and Apple
Inc.

essentially makes the server a "black box" from the viewpoint of the client by hiding implemen-

tation details. Furthermore, thin client implementations are more easily interchangeable, which

is one of the design goals for this framework (cf. requirement N003).

Figure 4.1 illustrates the basic, high-level design of the framework. In the most general terms,

the server’s responsibilities are:

1. Handling data storage (questionnaires, questions, user data, statistics)

2. Handling user authentication and authorization (distinguishing regular users and adminis-

trators)

3. Providing administration interfaces for questionnaires, questions, user groups and users

4. Providing questionnaires for users

5. Collecting, analyzing and storing answers to questionnaires

6. Calculating and storing questionnaire results for each user

7. Providing questionnaire results for each user (diagrams, downloadable overview files)

30

4.1 Overview

All of the services and data described above are offered through a generic interface based on

the JSON API specification. More information on this specification is provided in section 5.1.4.

As can be seen from 4.1, the web-based front end for this system is not part of the core server

implementation. The web front end is designed as a separate client module, which communi-

cates with the server using the server’s generic API, like mobile clients do in the original imple-

mentation of TYT. The client prototype implemented in this project makes use of the AngularJS

framework, version 2. As described above, the client implementation in this project is a thin

client, i.e. its only responsibilities are accessing the services provided by the server, displaying

data retrieved from the server to the user and sending user input back to the server. In the

context of this project, this basically means that the client provides the UI for authentication, dis-

plays questionnaires, sends users’ answers back to the server and displays the users’ results on

request.

The approach of separating the primary UI from the server has two main advantages: The

original TYT implementation provides both a traditional website and a JSON API for mobile

clients. This means that the same or very similar interfaces for data access have to be imple-

mented twice, one "native", internal version for the website and one generic version as the API.

Implementing the website as a separate application eliminates the need for internal interfaces

because all clients now communicate with the server uniformly through its JSON API, as the

main application is then essentially a web service. Secondly, this also has the effect of avoiding

inconsistencies between the two sets of interfaces, meaning that all clients, both present and

future implementations, all access the server in the same fashion and receive the same data

on identical requests. This facilitates the implementation of future clients, since all clients use

the same interface, as indicated in figure 4.1. Additionally, the system’s maintainability is also

improved because there is only a single point of entry and exit to/from the server and changes

to the interface impact all clients in the same, predictable manner.

4.1.2 Primary usage scenarios

The primary usage scenario of this system can be described as follows:

A new user visits the system’s website. Before they can make use of the frameworks services,

they must sign up. Once they have entered valid credentials, they must confirm their e-mail

address by clicking the confirmation link sent to their e-mail address upon registration. When

this is done, the user account is active and the new user can start using the system. Before they

can track their stress levels, however, they must first fill in all statistical questionnaires that are

available. At that point, they can finally begin filling in snapshot questionnaires to record their

daily stress levels. As soon as some data is available in the system, the user may view their

results in the form of different diagrams for each questionnaire. If necessary, the user may also

choose to export their results to a CSV or PDF file and download it to their device. This can be

useful when discussing stress levels with employers.

31

4 Architecture

Meanwhile, administrators are tasked with system maintenance. In particular, this means they

can use the web interface to create, edit or delete questionnaires, add or remove them to/from

user groups and add or remove users to/from user groups. While not planned for this particular

iteration of the framework, they might also have the ability to view anonymous usage statistics to

gain insights into how their questionnaires perform. Furthermore, the system will ultimately also

provide a way for employers to retrieve statistics of their employees to get a general overview of

stress levels within their company. Since privacy is a top priority in health-related applications,

such statistics can only be anonymous. But since employers should also play an active role

in the improvement of employee health, as mentioned in section 1.3.2, the system should at

least help them gain some sense of their employee’s stress levels without forcing employees to

confront their employees about this topic.

4.2 Static structure

The static structure of an IT system describes the data objects that the system manipulates and

stores in order to provide its functionality. This section presents the static structure of the planned

framework in the form of an entity-relationship diagram (ER diagram), UML class diagrams and

textual interface definitions. The ER diagram is part of the system’s high-level domain model.

Based on that, the low-level model class diagram and interface specifications are created through

further refinement.

Since the server and the web client are to be implemented as separate applications, their static

structures are each described in their own subsections. However, because the domain model is

independent from how the implementation is split up between server and client, it is presented

separately.

4.2.1 Domain model

Figure 4.2 shows the ER diagram for this system, i.e. an abstract, high-level model of the

system in the context of the problem domain. As such, it does not define the system in its final,

implemented form, but it is rather an approximation of users’ mental model of the system. The

low-level specifications in the following sections are based on this domain model.

Entities

The domain model defines the entities for this system and how they are interrelated. Entities

represent distinct data objects that correspond to concrete entities or concepts in the problem

domain, which are related to the system’s functionality in one way or another. Some typical

examples are users, products, comments, questionnaires, etc. These entities were extracted

from the requirements outlined in chapter 3. The following entities are defined for this system:

32

4.2 Static structure

Figure 4.2: The domain model as an entity-relationship diagram

33

4 Architecture

SuperUser The superset of all users of the system

User The User role, i.e. regular users (cf. section 3.1). Users can sign up, complete question-

naires and view their results and statistics. In the application context of this project, Users

correspond to employees in companies.

Admin The Administrator role (cf. section 3.1). Administrators are tasked with system mainte-

nance, i.e. management of questionnaires, questions and user groups.

UserGroup Users are grouped into UserGroups. UserGroups are primarily used as group-

based access control for questionnaires, which are also assigned to UserGroups.

Questionnaire Generic questionnaire type (see requirement F002 for details)

StatisticalQuestionnaire Questionnaire type derived from the generic Questionnaire.

SnapshotQuestionnaire Questionnaire type derived from the generic Questionnaire.

BurnoutQuestionnaire Questionnaire type derived from the generic Questionnaire.

Question Generic question type (see requirement F007 for details)

PolarQuestion Question type derived from the generic Question. Also known as yes–no ques-

tion; offers one generally positive (often "yes", "agree") and one generally negative (often

"no", "disagree") answer, from which exactly one must be chosen.

DateQuestion Question type derived from the generic Question; accepts date and time as input

from the user (e.g. User ’s last occurrence of insomnia).

ScalarQuestion Question type derived from the generic Question; accepts a numeric value on

a fixed scale as input from the user (e.g. number of days on which User felt fatigued in the

last week)

SingleChoiceQuestion Question type derived from the generic Question; offers several answer

options from which exactly one must be chosen.

MultipleChoiceQuestion Question type derived from the generic Question; offers several an-

swer options from which one or more must be chosen.

SingleLineTextQuestion Question type derived from the generic Question; accepts a single

line of text as input from the user.

MultiLineTextQuestion Question type derived from the generic Question; accepts multiple

lines of text as input from the user.

Answer Generic answer type (see requirement F002 for details), meaning answers given by

Users, not answer options contained in the Questions.

PolarAnswer Answer type derived from the generic Answer; corresponds to PolarQuestion.

DateAnswer Answer type derived from the generic Answer; corresponds to DateQuestion.

ScalarAnswer Answer type derived from the generic Answer; corresponds to ScalarQuestion.

34

4.2 Static structure

SingleChoiceAnswer Answer type derived from the generic Answer; corresponds to Single-

ChoiceQuestion.

MultipleChoiceAnswer Answer type derived from the generic Answer; corresponds to Multi-

pleChoiceQuestion.

SingleLineTextAnswer Answer type derived from the generic Answer; corresponds to Single-

LineTextQuestion.

MultiLineTextAnswer Answer type derived from the generic Answer; corresponds to MultiLine-

TextQuestion.

Entity relationships

As can be seen from figure 4.2, the ER diagram also reflects relationships between the entities.

For further clarification, the relationships presented in the diagram are to be read as follows:

• Users belong to at least one UserGroup.

• Admins manage all existing UserGroups.

• Questionnaires are assigned to at least one UserGroup.

• UserGroups contain at least one User.

• UserGroups are assigned at least one Questionnaire.

• Questionnaires consist of at least one Question.

• Questions belong to exactly one Questionnaire.

• Questions have many Answers.

• Answers belong to exactly one Question.

4.2.2 Server

Class diagrams are created based on the domain model from section 4.2.1. Each entity from the

ER diagram is supplemented with data attributes, i.e. atomic units of primitive data, which are

specific to each respective entity. Furthermore, the class diagram introduces classes that are

specific to the implementation and not part of the domain model. This section presents the class

diagrams created for the server-side implementation of the system. Since the complete diagram

for the entire system is too large to be shown as a whole in full detail, figure 4.3 represents

an abridged and simplified version with only the essential information. Specific classes are

presented in full detail and discussed later in this section. Note: unlabeled arrows represent a

"has" or "belongs to" relationship.

35

4 Architecture

Fi
gu

re
4.

3:
C

la
ss

di
ag

ra
m

fo
rA

Y
S

(a
br

id
ge

d,
si

m
pl

ifi
ed

)

36

4.2 Static structure

Figure 4.4: Class diagram for the User model and related

Users

Figure 4.4 shows the specification of the user classes in full detail.

In purely object-oriented software, related user classes are a typical use case for inheritance.

For technical reasons, however, this is not a viable solution for this system; see section 5.2.3 for

more details on the role-based approach utilized in this system. Note that the user classes are

represented as child classes of a superclass, even though they are not implemented as such.

The reason for this is that the class diagram is part of the conceptual definition of the system, not

the platform-specific definition. The same is true for a number of other, similar cases described

below.

The system currently requires no personal data from the users, such as names or addresses,

and only stores their log-in credentials.

The UserManager class is discussed in section 4.2.2.

UserGroups

Figure 4.5 shows UserGroup class and all related classes.

UserGroups contain only a single attribute—a unique name string. It also implements all func-

tions needed to add and remove Users and Questionnaires to and from UserGroups. As can

be seen from 4.5, the actual assignment of Users and Questionnaires is delegated to separate

tables, namely UserGroupMembership and QuestionnaireAccessControl. These tables simply

contain pairs of foreign keys of User and UserGroup or Questionnaire and UserGroup respec-

tively for each assignment.

37

4 Architecture

Figure 4.5: Class diagram for the UserGroup model and related

Figure 4.5 also demonstrates that there is no direct relation between Users and Questionnaires.

Both are connected only through UserGroups, i.e. group membership decides which Users may

access which Questionnaires. This additional level of indirection helps keep users organized and

simplifies access control, as Questionnaires only have to be assigned to UserGroups, of which

there are few, instead of individual users, of which there may well be hundreds or thousands.

Questionnaires and Questions

Figure 4.6 shows how Questionnaires and Questions are represented in the system and how

their relationship is implemented.

Like Users, Questionnaires and Questions are both extended by specialized child classes. How-

ever, due to technical limitations of the Laravel framework, PHP’s inbuilt inheritance system can-

not be easily employed for this purpose. The work-around used for this framework is described in

greater detail in section 5.2.3. Currently, all Questionnaire and most Question subclasses do not

contain any additional attributes or functionality and are only used to distinguish Questionnaire

and Question types, since they are rendered differently in the UI. The single and multiple choice

Question types contain an additional answerOptions field, which contains the options from which

Users may choose when answering the Question. The min, max and step attributes of the scalar

Question type are used to define the range of numeric values accepted for this Question. Lastly,

the polar Question type contains labels for both the positive and negative answer option.

The boolean published attribute and the publish and hide functions in the Questionnaire class

implement the publish/hide mechanism described in requirements UC104, F006, S003.

The functions addToUserGroup and removeFromUserGroup in the Questionnaire class are con-

venience methods that simply "redirect" to the respective methods implemented in the User-

38

4.2 Static structure

Figure 4.6: Class diagram for Questionnaire, Question and related

Group class. For the sake of keeping the code DRY [34], only the UserGroup implements the

actual functionality needed to add or remove Questionnaires (or Users) to or from groups.

It should be noted that some of the attributes in the Questionnaire and Question classes, while

noted as regular class attributes, are actually multilingual attributes, such as title, description or

text. The implementation of dynamically translated attributes is discussed in greater detail in

section 5.2.1.

As can be seen from figure 4.6, the intermediary table QuestionnaireContents is used to store

the order of Questions in a given Questionnaire. In TYT, a Questions’ position within the ques-

tionnaire was stored in an integer attribute on the Question class itself. While this is certainly a

workable solution for the scope of this project, the position is, strictly speaking, not a property

of the Question itself, like its text or answer options, and should therefore not be part of its at-

tributes. This has the additional advantage of removing the foreign keys for Questionnaires from

the Questions table and moving them to the QuestionnaireContents table.

Answers and AnswerSets

Figure 4.7 illustrates the relationship between Questions and Answers in this system.

As the class diagram shows, the Answer class can be understood to mirror the Question class.

It has child classes that each correspond to one of the child classes of Question. The Answer

superclass contains a single, generic value attribute, which is overridden by each child class with

a value attribute of the appropriate data type. For example, the date Answer type holds a date

value as its answer, the single choice Answer type stores the index of the chosen answer from

39

4 Architecture

Figure 4.7: Class diagram for Answer and AnswerSet

the options array in the corresponding Question and the multiple choice type holds an array of

such indices.

Like the Answer class complements the Question class, the AnswerSet class fulfills roughly the

same purpose as the Questionnaire class. AnswerSet is used as an aggregate class for An-

swers. Every Answer, therefore, belongs to an AnswerSet and not (directly) to a Questionnaire.

The primary purpose of AnswerSet is to store meta data related to the Questionnaire or all An-

swers given in a specific Questionnaire by a specific User, such as a timestamp of when the

User started filling in the Questionnaire. This kind of meta data would not be appropriate to

store within the Answers themselves. Like discussed for the case of the QuestionnaireContent

class above, this additional level of indirection again simplifies working with Answers by adding.

Furthermore, AnswerSets are the single point of access for Users to Questionnaires and re-

lated classes, since they have no direct relationships with Questionnaires, Questions or even

Answers. This reduces coupling between classes and helps control exactly how the User class

may interact with its related Answers, Questions and Questionnaires.

The approach taken in this project is quite different from the solution implemented in TYT. In

TYT, answers are stored in the standardanswers table. Each answer record contains a foreign

key of a user record. As described above, this system introduces AnswerSets, which now act

as an intermediary table between Users and Answers. Furthermore, the standardanswers table

contains columns question1 through question8. These columns store the values users that

input for each of the eight hard-coded questions in the only available questionnaire. Clearly,

this solution is very specific to TYT and very hard to apply to other use cases and impossible

to extend without modifying the standardanswers table and existing software logic. Since the

new iteration of the system should be more general and extensible, the handling of answers

was completely rebuilt as described above. Since each Question type now has a corresponding

40

4.2 Static structure

Answer table that only stores the specific values needed for that particular Question type, it

becomes easy to add new Question (and Answer) types to the system.

SystemEvents

Figure 4.8 shows the SystemEvent and related classes:

Figure 4.8: Class diagram for SystemEvent and related

The SystemEvent class is one of the classes that was not derived directly from the domain

model defined in section 4.2, but is necessary for the implementation. SystemEvents are used

to communicate information between the system or its administrators and Users. The primary

reason for the inclusion of such a concept was to satisfy requirement S004, i.e. notifying users

when Questionnaires that they have completed before have been edited. However, to keep

the system easily extensible in the future, this concept has been generalized to be applicable

to different types of events occurring in the system as well, such as generic messages from

administrators. For example, this could be used to inform Users about system maintenance

periods, new Questionnaires etc.

Static service and utility classes

The class diagram in figure 4.3 also features a number of static, i.e. non-instantiable classes

that implement various utility functions. These functions are generally not suited to be included

in classes representing entities. Utility classes are used like services throughout the system,

meaning that objects may pass any data to them for processing and then retrieve some result.

41

4 Architecture

UserManager The UserManager class depicted in figure 4.4 is the central facility that man-

ages all user-related functionality like creating new user records, user authentication, verifying

confirmation tokens etc.

InputValidation The InputValidation class provides validation methods for all necessary input

types. All input coming into the system must first be validated by this class before it can be

further manipulated or stored in the database. Validation methods accept the input that should

be validated and return a boolean value indicating whether the input is valid.

Figure 4.9: Class diagram for InputValidation

Statistics The Statistics class is used to calculate and visualize Questionnaire results. The

getDiagramData method summarizes and transforms result data for a given User, either includ-

ing all their results or only for a specific Questionnaire, and returns those data in a form that

clients can use to render diagrams. The export function outputs result summaries in a given file

format (CSV or PDF), which can then be downloaded by the client.

VersionControl The VersionControl class is used to manage versions of arbitrary records

within the system’s database. The general idea behind it is that it keeps references to records

that have been submitted to version control, their related versions and the original or "root"

record. The inner workings of the version control system in this project are described in more

detail in section 5.2.2.

4.2.3 Client

This section discusses the design for the static structure of the prototypical web-based client.

Since the data objects, representing the entities defined in section 4.2.1, passed between server

and client are the basis of the system’s functionality, they constitute the common ground between

the server’s and the client’s static structure. Because the entity classes are practically identical

for both the server and the client, figure 4.10 only contains abridged versions of the classes.

Refer to section 4.2.1 for more details on the entities. Figure 4.10 also shows a number of static

utility classes. These are shortly described below.

42

4.2 Static structure

Since some of the "classes" depicted in 4.10 are not implemented as actual classes in the sense

of object-oriented programming, the descriptions below may also refer to them more generally

as "modules".

Before discussing some of the components that make up the client, a short section is dedicated

to single-page applications, outlining the general principles behind them and why this design

choice was made in this project.

Figure 4.10: Class diagram for the client implementation

Single-page applications

Single-page applications are web applications that run on the client instead of the server, with the

client usually being the user’s browser. Such applications are generally built using JavaScript-

based frameworks such as AngularJS, Ember.js or React, to name only a few. Frameworks

like these were first developed around the year 2010 and have been gaining popularity ever

since. Essentially, single-page applications are, as the name implies, websites that never fully

refresh. In traditional web applications, when the user clicks a link, submits a form or changes

the URL, the client sends a request to the server, which then generates some sort of response

object, typically an HTML document, and sends it back to the client. Upon receiving the server’s

response, the client’s browser refreshes its viewport and renders the new page. This has a

clear impact on the user experience, as there is a noticeable lag between sending requests,

receiving the response and finally rendering a new complete page. Singe-page applications take

a different approach: Instead relying on the server to generate websites and re-rendering the

entire browser viewport on each request, single-page applications utilize the server’s external

API to request only the data they need using AJAX requests [8]. When the requested data

return, the front end application then simply modifies the appropriate parts of the DOM to display

43

4 Architecture

the data. The chief goal of this technique is to provide a more fluid, desktop-like experience,

because only specific parts of the website change dynamically without noticeably re-rendering

the whole page. This is also achieved by the smaller footprint of messages sent between the

server and client. Instead of potentially very large HTML documents, the server only has to send

significantly smaller data objects, most commonly in the JSON format. As discussed in 5.1.4, this

format has the advantages of being small in document size (compared to comparable solutions

like XML), human-readable and easy to encode and decode. These properties also help keep

the server’s response time as short as possible, enabling an improved user experience over the

basic request-response model.

There are two main reasons it was decided to implemented the prototypical client for this sys-

tem as a single-page application: First, the stakeholders for the project requested the use of a

front end framework out of the desire to introduce more technically innovative solutions to TYT.

Second, as mentioned several times before in this document, the early separation of client and

server implementations prepares the system for future extensions with mobile and other clients.

When the generic JSON API is already implemented and used by the single-page application

as the sole communication interface with the server, the web client serves as an example and

boilerplate for mobile applications.

DiagramRenderer

This module receives a User’s Questionnaire results from the server or local storage and creates

a JavaScript-based, interactive visualization of the data from those results. Based on meta data

passed along with the actual results, the class is able to choose the appropriate type of diagram.

This class also listens for user input and adjusts the diagram as necessary, e.g. when the user

wants to zooming into a section of the graph or if specific parts of the graph should be displayed

or hidden.

Renderer

The Renderer module is tasked with rendering the HTML pages and components within them.

This is necessary because single-page applications typically do not receive generated HTML

documents from the server, as explained in section 4.2.3. The Renderer receives the data

objects sent from the server and modifies the page appropriately to represent the data.

Storage

The Session module deals with any data that should be stored locally on the client. Its tasks in-

clude handling the users’ session (or rather an equivalent of that concept), remembering signed-

in users up to a set timeout, caching Questionnaires etc.

44

4.3 Dynamic structure

Authentication

The Authentication module is tasked with the sign-up, sign-in and sign-out procedures. While

the server is still needed to verify users’ credentials, the traditional session concept is not cleanly

mappable to single-page applications, which is why this module is necessary. It uses the Storage

module to sign in users and remember them.

JSONCodec

This module’s purpose is to transform objects from the single-page application into valid JSON

objects and, conversely, to decode JSON objects received from the server and transform them

into class instances that the front end application understands.

Communication

The Communication module handles the "heavy lifting" of sending messages to the server and

receiving its responses via AJAX. It constructs valid, JSON API-compliant messages with the

help of the Router and JSONCodec modules and transmits them to the server. It also validates

incoming messages from the server, handles invalid responses and extracts JSON objects from

the message payload for further processing through JSONCodec.

Router

The Router module holds both internal and external routes defined in the application. External

routes are the server’s API endpoints, to which the client sends requests and data. Users never

interact directly with the server API, as the API is purely used for machine-to-machine com-

munication. In single-page applications, the internal routes take the place of regular URIs that

traditional web applications use to expose their functionality to clients. However, since single-

page applications do not send regular HTTP requests to the server and do not refresh the page,

changes in the URL must be handled in the front end as well. This is the Router’s purpose.

It intercepts changes of the URL and also listens to clicks on links, form submits etc. When a

change occurs, the Router passes the appropriate component to be rendered to the Renderer

according to the internal routes registered with the Router instead of passing the request to the

server and reloading the page.

4.3 Dynamic structure

This section introduces the dynamic aspect of the system’s design. Section 4.2 has defined the

entities and classes that make up the static structure of the system. The other part of the back

45

4 Architecture

end’s architecture is the dynamic part, i.e. how the previously defined objects actually interact.

Section 3.1 describes the system’s behavior in the form of use cases, which are descriptions

from the users’ perspective in terms of goals and outcomes. This section expands upon those

use cases and illustrates the actual underlying functions that have to be implemented to provide

the desired functionality. For the sake of brevity, only non-trivial processes are included in this

section.

Note: As mentioned in the introduction to this chapter, the designs presented here are con-

ceptual and might not represent the final implementation precisely. The described processes,

however, remain the same in principle, even if the implementation adds some steps to the pro-

cess or modifies them.

4.3.1 Register user

See also UC001, F018.

When a new User submits their credentials to sign up to the system, InputValidation first validates

the input and rejects the request if the e-mail address, which must be correctly formatted and

unique within the system, or the password, which has a minimum length, are invalid. Once the

User has submitted valid credentials, UserManager creates the new User record in the database.

It also creates a confirmation token, which is simply a 40-character-long string of random char-

acters, and sends it to the e-mail address the User has just entered. The User then has to click

the link sent in the confirmation e-mail within 24 hours. If the account is unconfirmed after 24

hours, it will be deleted. When the User clicks the confirmation link, UserManager validates the

token that is contained in the query string. If the token matches the User record and it has not

timed out, the account is confirmed and the User is signed it. From this point on, the User can

access the system’s full functionality.

4.3.2 Create questionnaire

See also UC101, F003.

As with all input received from the client, InputValidation first checks all input when an Admin

creates a new Questionnaire. More specifically, it has to make sure that:

1. title is a non-empty string

2. description is valid and does not contain prohibited characters (HTML, JavaScript), if it is

provided

3. An existing Question type is given

4. At least one Question is created and all contained data is valid (text, answerOptions etc.,

depending on the Question type)

46

4.3 Dynamic structure

5. If UserGroups were selected, their IDs exist and are unique

6. If the Questionnaire should be published, a boolean published value is passed

If the input is valid, the system creates the new Questionnaire record, along with Question

records, which it then associates with the Questionnaire. If the Admin has chosen to assign

UserGroups, the system also creates the appropriate relationships between the Questionnaire

and the selected UserGroups.

4.3.3 Edit questionnaire

See also UC102, F004.

While the process of editing Questionnaires is generally similar to creating new ones, the editing

process is slightly more involved as it deals with version control and SystemEvents.

The data passed when editing Questionnaires is identical with the data for creating new Ques-

tionnaires described above. Accordingly, the input must pass the same validation checks. If the

Admin changes the UserGroup assignment, the system synchronizes the associated records

accordingly, i.e. deselected UserGroups are unlinked from the Questionnaire and any new User-

Groups are assigned. The main difference between the editing and creation process is version

control and the use of SystemEvents. As discussed in requirement F001, the system auto-

matically keeps track of any objects, that are enabled for version control, if they are modified.

Questionnaire editing exemplifies this process with Questions. If the Admin edits or deletes any

Questions in the Questionnaire, the VersionControl creates new entries for them and links them

with their "root" versions, which are always the newest revision (see 5.2.2 for more details on

the version control system). The Questionnaire has no direct access to "archived" versions and

always works with the newest one. Finally, as stated in requirement S004, Users who have

already completed a Questionnaire must be notified when that Questionnaire is modified. The

system collects all Users that have already answered the current Questionnaire. It then creates

a new SystemEvent object and adds it the each of those Users’ SystemEventQueues. The next

time the Users sign in, they will be notified of the changes in the Questionnaire and asked to fill

in the Questionnaire.

4.3.4 Fill in questionnaire

See also UC204.

Once the client has received the requested Questionnaire, either from the server or as a cached

version from its local storage, the User begins answering Questions. Once the first Answers

are sent to the server, the server creates a new AnswerSet object for the Questionnaire, setting

its timestamp. and the User (except for StatisticalQuestionnaires, see requirement F002). It

validates and saves the received Answers and stores each as a new Answer object in association

47

4 Architecture

with the newly created AnswerSet. Once the client fires the "submit" command to close the

Questionnaire, the server finalizes the AnswerSet.

A note on Answers: The server does not expect the Answer sent from the client to be grouped in

any specific way, like grouping by "page" or all at once. The server simply expects a collection ob-

ject containing valid Answer objects, which all have to store references to their related Questions.

The reasons for this are twofold: The server should be agnostic to any details of the presenta-

tion, like whether Questions are displayed on pages or all together on one larger page. For this

reason, assumptions about how Answers are sent should be kept minimal. Furthermore, this

enables clients to employ various strategies when displaying Questionnaires. Different clients

can offer different layouts based on device properties and external factors like device orienta-

tion. They may also decide how Answers are submitted, e.g. transparently in the background on

a page-by-page basis without any explicit "submit" commands or all Answers at once after a final

"submit". All this again results in greater flexibility and extensibility as required in requirement

N003.

4.3.5 Coping advice

As described in use case UC206, Users may request stress coping advice from the system. The

system chooses from a selection of pre-written pieces of advice based on the User’s current

stress levels and ratings that each User gives to the advice they have received from the system.

The rating system is simple: Users may access a list of previously received advice in their client.

There they may rate each piece of advice on a scale from 1 to 5 based on the success (or lack

thereof) the User has had coping with stress using each specific strategy. The other factor the

system considers when selecting a coping strategy is the User’s current stress level. The coping

strategies available in the system are divided by tier. Depending on the User’s stress levels, the

system selects a strategy from the corresponding "stress tier". Both stress levels and ratings are

combined into scores for each eligible coping strategy and the strategy with the highest score is

chosen. Note, however, that not only the strategies’ own ratings are considered for the score.

When entering new advice into the system or modifying existing strategies, administrators may

choose to define relations between strategies. Ratings of related strategies will then also affect

the final scores of their related strategies to some degree.

While the current iteration does not support it, the coping strategy system may be extended with

support for tagging in the future. Administrators may choose to tag advice with certain topics, like

"burnout", "chronic fatigue", "depression" and so on. This way, users can give more fine-grained

feedback. Instead of rating the strategy as a whole, they can rate the strategy on each individual

tag. Additionally, they may explicitly signal to the system, that they would like to receive more or

less advice related to a specific tag. This will then also be taken into account in the selection of

strategies.

48

4.4 User interface design

4.4 User interface design

The final component of the system’s architecture is the design of its UI. In the scope of this

project, the UI is conceptualized and implemented as a prototypical, web-based front end. This

chapter first presents the UI’s dialog structure, which describes the UI in terms of the individual

views, generally realized as entire websites, that the user interacts with throughout their usage

of the system. The dialog structure describes which users can access which views, what these

views contain and how users can navigate between those views. This design is illustrated both

graphically as well as textually for each major view. The other part of the UI design is the visual

design of the views. This includes the page layout, color palette, fonts, utilization of images, etc.

These topics are mostly discussed in text form, but some early sketches of interface designs are

also included.

4.4.1 Dialog structure

The dialog structure defines the views of the UI and how those views behave. For the purpose of

this document, views are defined as distinct portions of the browser’s viewport that are used to

display specific parts of the UI. In most cases, these views encompass the entire page, but they

can occasionally be represented in smaller areas such dialog overlays. The diagrams below do

not explicitly differentiate between full-screen views and others, as they main purpose of these

diagrams is only to define the general structure of the UI. The dialog structure diagrams also

include the navigation paths between views. Again, exactly how users navigate the application,

i.e. via links, buttons, URLs etc., is left up to the implementation.

The diagrams are grouped by user role as the system presents itself with distinctly different views

to each user role. Each diagram represents a larger portion of the UI, like the home page, views

related to questionnaires etc.

A note on notation: In the diagrams below, views are represented as rectangles with blue bor-

ders and the view’s title inside the rectangle. Occasionally, views can also represent menus

from which an option must first be chosen to access an actual view—the realization of this is

left to the implementation. Nested views are represented like regular views, but with a light blue

background. This signifies that the nested view contains multiple other views, which have been

grouped under the nested view to reduce clutter in the diagrams. Each nested view is repre-

sented as another complete diagram. The labeled arrows between views define the navigation

paths. The label beside each arrow explains the action or condition that causes the system

to navigate from one view to another, like the user clicking on a menu item, errors occurring

while validating input and so on. Arrows that do not originate from outside the diagram are to

be understood as the initial entry into this portion of the UI, for instance when navigating using

URLs. Arrows that lead outside the diagram signify the transition to another part of the UI, like

navigating back through the browser history.

49

4 Architecture

Figure 4.11: Dialog structure for the guest home view

50

4.4 User interface design

Guest scope

As described in section 3.1, this system recognizes a number of different user types. However,

the system only "knows" of signed-in users. Guests are merely a pseudo-type, but are neverthe-

less an important part of the system, since all new users start out as guests. Figure 4.12 shows

the views that are available to guest users of the system. When guests first arrive on the home

page of the system, they are greeted with general information about the system, the project and

the team behind the project. The guest scope also offers a contact from that users may use

to submit messages, questions and comments to the project team. Most importantly, however,

guests can sign up and sign in. The user enters their credentials into the simple sign-up form in

the Sign-up view. If there are any errors, the client highlights the invalid fields and displays ap-

propriate error messages. Once the user enters valid credentials, they are reminded to confirm

their account via the confirmation link that was just sent to their e-mail address. The Account

confirmed view is what is displayed when the user clicks on the confirmation link in the e-mail

and the confirmation token is valid. The guest is then automatically signed in and redirected to

the home page in the User scope. Finally, if the guest is already registered but not signed in, the

guest scope offers a simple Sign-in view, where users can enter their credentials and are also

redirected to the User scope’s home page, if the entered credentials are valid.

Administrator scope

Figure 4.12: Dialog structure for the Admin home view

51

4 Architecture

Home Figure 4.12 defines the views available to Administrators when they first access the

system. This is also referred to as the home page or dashboard. The system redirects the

user to the home page once they have successfully signed in as an Administrator. The home

page itself does not contain much content and is merely the starting point for navigation. The

home page would be a suitable place for a dashboard, but for the current iteration of the system,

a dashboard is not useful. From the menu, which is permanently visible, the Administrator 1)

sign out, 2) access the questionnaires section, or 3) access the user groups section. If the

Administrator chooses to sign out, they are prompted to confirm their action and if they do so,

their session is ended and they are redirected back to the home page as a guest user.

Figure 4.13: Dialog structure for the Admin questionnaires view

Questionnaire From the questionnaires section depicted in 4.13, Administrators can view a

list of all Questionnaires in the system, create and edit Questionnaires. The default view for

this section is the Questionnaire list. When the Administrator navigates to the create Ques-

tionnaire view, the client displays the Questionnaire editor. The editor is a dynamic form that

Administrators use to input all data for the new Questionnaire including its Questions. When the

Administrator submits the form, the system handles it as described in 4.3.2. If there are any

errors while creating the Questionnaire or its Questions, the view remains in the editor and all

52

4.4 User interface design

errors are highlighted. Once the Administrator submits a valid Questionnaire, the system saves it

and the client redirects to the edit Questionnaire view. The edit Questionnaire and create Ques-

tionnaire views share the same editor with only a few differences: First, when the Administrator

selects a Questionnaire from the list to edit, the editor’s fields are pre-filled with the Question-

naire’s current data. Second, Administrators additionally have the option the hide, publish and

delete the Questionnaire from within the edit Questionnaire view. When the Questionnaire is

hidden or published, the client does not immediately return to the Questionnaire list and, as

opposed to the create Questionnaire view, the same is true when editing the Questionnaire, in

case more changes should be made. If the Questionnaire is deleted, the client does return to

the Questionnaire list as the Questionnaire cannot be displayed anymore when it is deleted.

Lastly, the edit Questionnaire view also contains a list of previous versions for each Question in

the Questionnaire. These view Version History and view Question views are likely candidates

for embedded views. The overview of previous Question revisions is purely for the information

of Administrators; "archived" records are immutable, as described in requirement F001. Finally,

Questionnaires can also be deleted, hidden and published directly from the Questionnaire list

view.

Figure 4.14: Dialog structure for the Admin user groups view

User groups The last UI section exclusive to Administrators is the user groups section, shown

in 4.14. The structure and navigation is very similar to that of the questionnaires section. Admin-

53

4 Architecture

istrators may either choose the create user group or edit user group view from the menu. The

UserGroup editor provides fields to input a unique name for the new UserGroup and optionally

Users and Questionnaires that should be assigned. Like the Questionnaire editor, the User-

Group editor remains in its view and highlights errors if there are any. Upon successful creation

of the UserGroup, the client redirects to the edit user group view, which also operates in much

the same way as the edit Questionnaire view. When the UserGroup is edited, i.e. its name or

assigned Users or Questionnaires are modified, the view remains in the editor. The view returns

to the UserGroup overview on explicit prompt from the Administrator or when the Administrator

deletes the current UserGroup. UserGroups can also be deleted directly from the overview list.

User scope

Home Figure 4.15 illustrates the dialog structure for signed-in Users. Users arrive in this sec-

tion of the UI when they are successfully signed in or when they navigate to the application’s

root URL and a former session is still valid. The Project information and Contact form views are

identical with the views explained in 4.11. Users may sign out using the same Sign-out view as

Administrators, described in 4.12. Finally, Users can navigate to the Questionnaires and Results

sections, and Account settings view using the menu. In the Account settings view, Users may

change their e-mail address and password, which is currently the only personal information the

system kept in user accounts.

Questionnaires When the User navigates to the questionnaires section via the menu, they

are first redirected to the list of Questionnaires, that are currently available to them, which can

be seen from 4.16. Users can only see and access Questionnaires, that are assigned to the

UserGroups of which those Users are members. When a User selects a Questionnaire from the

list, they are redirected to the Fill in Questionnaire view. The Questionnaire is displayed as a

list of Questions that it contains. Each Question is rendered with different UI widgets according

to its Question type. For example, single and multiple choice Questions display a list of answer

options, date Questions offer an HTML5 date input field, etc. The User completes the Ques-

tionnaire as described in 4.3.4 and when the Questionnaire is submitted, the client returns to

the Questionnaire overview. In section 4.2.2, it is mentioned that Users edit their answers when

they fill out StatisticalQuestionnaires repeatedly instead of creating an entirely new AnswerSet

every time. For this reason, the Questionnaire view is displayed with its answer fields pre-filled

with the User’s last answers. Lastly, SnapshotQuestionnaires add an additional validation step

to the navigation when they are accessed. Requirement S001 states that Users may only begin

filling in SnapshotQuestionnaires once they have completed all available StatisticalQuestion-

naires at least once. If the User does not meet this condition when they try to begin filling in a

SnapshotQuestionnaire, the client returns them to the Questionnaire list and displays an error

message stating that they must first complete all StatisticalQuestionnaires.

54

4.4 User interface design

Figure 4.15: Dialog structure for the User home view

55

4 Architecture

Figure 4.16: Dialog structure for the User questionnaires view

Results Once Users begin tracking their stress levels with the system, they will want to view

their test results. This can be done in the results section, which is structured as shown in 4.17.

Users can choose to view result visualizations, export their raw result data or receive stress

coping advice from the Results menu. The Analysis/Coping advice view is where Users can

inspect previously requested coping strategies and request new ones. This view is also where

Users will rate coping strategies. When Users choose to Export results, they must select a file

format—at this point either CSV or PDF. The system will then generate a result overview and

commence the download to the User’s device when ready. Most of the time, however, Users will

want to view the diagrams generated from their questionnaire results. From the Results overview

view, the User may choose to view their results either as Raw Data Tables or Diagrams. The

Raw Data Tables view presents the User’s raw result data in a form similar to the CSV export

file, i.e. as a navigable HTML table. The Diagrams view displays a number of different diagrams.

These diagrams are generated for each Questionnaire the User has completed. The type of

graph depends on the Questions in those Questionnaires; the client’s DiagramRenderer module

(see section 4.2.3) selects and generates the diagrams accordingly. The diagrams are navigable

and interactive. Users can pan through the graph’s x-axis, which corresponds to time, and select

sections of the graph to zoom into. Furthermore, where the diagram type permits it, Users can

also hide and display specific parts of the graph, such as lines of a line chart or segments of a

pie chart. This is useful to remove clutter from the graphs and help with clarity.

56

4.4 User interface design

Figure 4.17: Dialog structure for the User results view

57

4 Architecture

4.4.2 Page layout

This section presents a number of sketches and concepts for layouts of the UI views discussed

in section 4.4.1. A few concepts will be discussed in terms of how they evolved over time, what

their respective advantages and disadvantages are and what designs were finally chosen for the

implementation.

Note that while wide-screen aspect rations have become the most common form factor for desk-

top and laptop computers in recent years [35], the sketches below are in a square-like form

factor. This is because most websites still do not utilize the entire screen width on wide-screen

devices and are designed with a slimmer footprint in order to display correctly even on older

screens with a 4:3 aspect ratio. Furthermore, websites’ width is often limited to keep text lines

shorter. Longer text lines are harder to read because the visual task of "jumping" from the end

of one line to the beginning of the next becomes more difficult and error-prone. Some research

suggests a length of 55 characters per line for text on electronic devices [5].

Guest home page

Figure 4.18 depicts the rough design chosen for the home page as seen by guest users. It

contains nothing more than a large logo for the system, a minimal sign-in form below it and

a small footer at the bottom of the page. Normally, the home page would also contain short,

introductory texts to present the project’s purpose and functionality to visitors, but since this

iteration of the system is built as a prototype, the most important part of the home page is the

sign-in form. The footer contains copyright information and links to the contact form. Since

guests cannot use of the system’s actual functionality, the guest home page is the only view

without a menu.

Navigation and page layout

While menus along the top of the screen, as depicted in figure 4.19, are arguably the most com-

mon type of navigation on the web, side menus have become more common recently. This trend

is most likely due to the popularity of smart phones and tablets, which often employ this type of

menu due to the commonly used portrait orientation [12] and limited screen real-estate. With

side menus, the empty space on the sides of the main page content can be utilized. However,

as can be seen from section 4.4.1, the navigation paths in this project are always fairly simply.

There are only about three menu items in the navigation at any time. This means that a lot of

the side menu would remain empty.

For the reasons discussed above, the more traditional top menu shown in 4.19 was chosen as

the navigation for this version of the client interface to keep it simple and clutter-free. The menu

contains the system’s logo on the far left, which also acts as a link to the home page, next to

that are navigation links and the sign-out button is aligned with the right edge of the menu. The

58

4.4 User interface design

Figure 4.18: Sketch for the guest home page view

main content is hosted in a centered pane with fixed width and flexible height, but at least the full

screen height. If the client device’s screen is wider that the content pane, a background image

spans the remaining space. The top menu along with the minimal content pane is a suitable

choice for requirement UI002, i.e. that the UI should be as simple and minimalistic as possible.

UserGroup editor

The UserGroup editor is a fairly simple form, shown in figure 4.19. It only contains a text field

for the UserGroup’s name and two pairs of selection boxes for Users and Questionnaires. The

boxes on the left contain lists of all Users and Questionnaires. The boxes on the right display the

User and Questionnaires that are currently assigned to the UserGroup.

Since the number of Users and Questionnaire can be quite large, the selection boxes can also

be searched using the text field above them. The potentially large number of records is also

the reason why the selection box is not a standard HTML5 multiple-select box, since it would be

hard to keep track of which Users are assigned to the group by the selection in the box alone.

Additionally, since multiple-select boxes require users to hold the Control key to select multiple

items, users might accidentally deselect everything if they accidentally let go of the Control key.

This is the reason the right-hand side boxes were introduced. Administrators select the items

that they would like to assign to the UserGroup and then click the assign button to send the

selected items to the list of assigned items to the right of the list. Items can be removed from the

UserGroup by selecting them in the list on the right and clicking the remove button. Once the

desired changes are made, they can be submitted to the server by clicking the submit button at

the bottom of the form.

59

4 Architecture

Figure 4.19: Sketch for the user group editor
with top menu

Figure 4.20: Sketch for the user group editor
with side menu

Questionnaire editor

Figures 4.21, 4.22, and 4.23 show three variations of the Questionnaire editor.

Figure 4.21: Sketch for the questionnaire editor version 1

Figure 4.21 represents the first iteration of the Questionnaire editor’s design. It is the most simple

of the three versions. Text fields for the Questionnaire’s title and description are situated below a

heading. Below that, there is a bordered section that contains the Questions. Since the number

of Questions is not fixed, this list must be able to grow dynamically. The first Question is already

created, but its type and content must be filled out. The type is chosen through a drop-down

menu on the right. The large text box is where the Question’s text must be entered. Other

controls are displayed on demand, depending on the Questionnaire’s type. Each Questionnaire

box also contains a delete button that removes the Question from the list. New Questions can be

60

4.4 User interface design

added with the large add button at the end of the Question list. The Questionnaire can finally be

submitted with the large submit button at the bottom of the page once the Administrator has filled

all fields. However, this first version of the Questionnaire editor does not account for some other

Questionnaire properties yet, like whether the Questionnaire should immediately be published

and what UserGroups it should be assigned to.

Figure 4.22: Sketch for the questionnaire editor version 2

Figure 4.22 is an alternative version of the first design. This version shows how the Question-

naire editor might be realized with the side menu instead of the top menu. One problem of the

first version is that the bordered section significantly reduces the space available for Questions

and "squeezes" them together horizontally. This is not an ideal solution for Question types like

single and multiple choice, which also contain nested, dynamically created fields for answer op-

tions. Furthermore, future Question types might be more complex and might require more space

in the editor. This problem is ameliorated in version 2 because the Questions are designed to

span the entire width of the content pane, which itself is also wider than the centered pane.

Version 2 also includes a solution for the Questionnaire settings, that were missing from the first

revision. Because these settings are general and concern the Questionnaire itself and not a spe-

cific part like the title, description or Questions, a second side bar was added on the right side of

the screen. The top part of the right side bar contains all Questionnaire settings like whether it

should be published immediately. The add button that creates new Questions was also moved

to the side bar. With this layout, all the actual content of the Questionnaire, like Users will see

it, is contained in the central pane while all settings and functionality is off to the side. While

this partitioning helps separate content from all other properties of the Questionnaire and also

gives Administrators a better understanding of what Users will actually see, the main problem

is that the side bar is relatively slim. This means that it cannot contain any complex widgets

that take up a lot of screen space. Future developments might extend Questionnaire and add

complex functionality, which cannot comfortably be fit into the side bar. Therefore, version 2 was

61

4 Architecture

rejected in favor of version 3. Additionally, this type of layout works best if it encompasses the

entire viewport. If the client’s viewport is larger than the layout, however, the side bars would

be surrounded by a background image, which eliminates the purposes of bars aligned with the

edges and can look visually unpleasant. One common solution in such cases is to stretch at

least one segment, in this case the content pane, horizontally to fit the viewport size. This is not

a viable solution for this UI because it would only serve to create a lot of empty space and would

needlessly increase the mouse pointer’s travel distance.

Figure 4.23: Sketch for the questionnaire editor version 3

The third and final revision of the Questionnaire editor can be seen in 4.23. This iteration returns

to the top menu layout. Version 3 is essentially a combination of version 1 and 2. It adopts

the linear, section-by-section layout of version 1 and combines it with the Question boxes with

full content pane width from version 3. The title and description are common properties of all

Questionnaire types. Therefore, they are placed at the very top, just below the page heading.

The remaining content of the Questionnaire depends on its type. The Questionnaire settings,

including the selection box for the Questionnaire type, is accordingly placed below the title and

description segment. The third revision also adds a number a features: The text fields and labels

are designed to be fairly large with plenty of negative space between elements to reduce visual

clutter and create and open and light aesthetic. This has the disadvantage that each section

takes up a relatively large amount of space, which can make it difficult for users to review the

Questionnaire at glance. For this reason, all sections can now be collapsed, exposing only the

section’s heading. This also helps with another feature: Questions can be sorted using drag and

drop. With large Questions in their expanded form, this would be difficult because the Questions

would have to be dragged across a much bigger area while simultaneously scrolling the page.

Another feature is inline editing. This means that the title, description and question are displayed

as they would be to Users when they fill out the Questionnaire. Only when the Administrator

62

4.4 User interface design

clicks on one of those fields, they become editable. This gives Administrators a much better idea

of the Questionnaire they are creating. One last minor feature is that the Questionnaire type is

now chosen before the Question is added, since the Question type is one property that is likely

not to be changed as much once the Question is added to the list. This reduces the amount of

necessary controls in each Question box. If the Administrator does want to change the Question

type, they have to remove the Question and create a new one.

Questionnaire

Figures 4.24 and 4.25 depict two alternative versions of how clients might present Question-

naires to Users.

Figure 4.24: Sketch for the questionnaire view version 1

The version shown in 4.24 is the one that was eventually implemented for the prototypical client.

On the top, the title and optional description introduce the User to the Questionnaire and offer

advice and instructions. Below that is a simple list of all Questions created for this Questionnaire

in separate boxes spanning the entire content pane’s width. The Question’s index is displayed

on the left. The Question text is displayed near the top of the box and to the right of the index

number. Below that is the dynamic part of the Question, where the type-specific content is

inserted. For single and multiple choice Questions, it contains a list of answer options as check

boxes or radio buttons. DateQuestions contain an HTML5 date box, ScalarQuestions contain

a slider widget without initial value (cf. requirement UI001), and so on. At the bottom of the

Question list is the submit button that Users click to finalize submission of their answers and

close the Questionnaire.

Version 2, shown in 4.25, is an alternative design that explores a different layout. In this variation,

the Questions are not displayed as an "infinite" list, but each Question is placed on its own page.

63

4 Architecture

Figure 4.25: Sketch for the questionnaire view version 2

These pages span the entire width and height of the content pane. As noted in section 4.4.2,

the minimum height of the content pane is the height of the browser’s viewport. This means

that with this layout, Users do not have to scroll through potentially long lists of Questions. This

gives each Question a lot more space, which might prove useful in the future. If new Question

types are created that introduce more complex widgets for Users to input data, they might be

more difficult to fit into the more compact layout in figure 4.24. On the other hand, none of

the current Question types require a great amount of space, especially on large, high-resolution

computer screens. This would leave a great deal of empty space, giving the UI an unfinished

and unrefined appearance. Moreover, each interaction with a Question is only a few seconds

long, which might make the increased amount of clicking to change pages irritating to Users.

For these reasons, this is not an ideal solution for a web front end. However, the page-based

approach could be suitable for future mobile clients for the system. The relatively small screen

real-estate of mobile devices increases the risk of complex Question types appearing cramped

and compressed. Additionally, the slim form factor forces Question lists to become longer and

long lists are generally uncomfortable to scroll through on smartphones. Utilizing the entire

screen might therefore be a viable option in this context. Changing pages is also faster than

on desktop computers, because native mobile clients could make use of the familiar and quick

swipe gesture to navigate through the Questionnaire.

Result diagrams

The sketch in figure 4.26 represents the Results view that Users access to review their Ques-

tionnaire results.

The design for this page is a natural evolution of TYT ’s results page. Like in TYT, results in

this project are presented as one diagram per Question. However, since TYT only featured one

64

4.4 User interface design

Figure 4.26: Sketch for the results view

Questionnaire with eight hard-coded Questions, the visual representation of results was slightly

adjusted for the more general usage context of this iteration of the system. Users must now

first choose a Questionnaire from a list of all Questionnaire that they have answered before.

The system then generates diagrams for each of the Questionnaire’s Questions. The diagram

type is chosen based on the Question type. Answers to ScalarQuestions, for example, are

presented as line charts as they are a suitable type of diagram to visualize value changes on a

continuous, numeric scale over periods of time. Diagrams are navigable and interactive. They

allow panning, zooming and showing/hiding parts of the diagrams.

Future revisions of the system will further improve result visualization by introducing combined

diagrams for multiple Questions and Questionnaires. This might be realized, for instance, by

enabling Administrators to create scores and other metrics and define logic that combines results

from different Questions in that score.

4.4.3 Visual design

As mentioned above and as required by requirement UI002, the UI should be designed not to

influence User’s stress levels, especially not negatively. One part of this is making sure that

interactions are short, immediately familiar and simple. This is ensured by the dialog structure

presented in section 4.4.1 and the use of common, standard HTML elements in forms and so

on. The other part is the visual design and aesthetic of the interface. This final section discusses

a few of these aspects of the UI’s visual design.

65

4 Architecture

Spacing

As already noted in 4.4.2, the UI should be designed to appear open, friendly and light. One

way to achieve such an impression is leaving ample space between visual elements and groups.

Care must be taken, however, not to make the interface appear disjointed and empty with ex-

aggerated spacing. In cases like the boxes that contain Questions in the Questionnaire view,

subtle drop shadows can also be used to make interface elements appear light and spacious.

Text

The typeface used for texts also has an enormous impact on how User’s perceive the interface.

For this system, a clean, modern, sans serif font with slim glyphs will be chosen. Some examples

for such typefaces are Helvetica, Roboto, and Source Sans. While the text color depends on the

usage context, the base text color will be a dark shade of grey, since solid black text tends to

appear heavy and jarring due to high contrast. For cases like error or success messages, text

color should be coordinated with the background color. Letter spacing and line height will also be

slightly increased to emphasize the open and light aesthetic. Italics and bold text will generally

not be used, or only in rare exceptions, such as table headers.

Color

The UI’s color palette plays the perhaps most important role in defining the interface’s visual

character. Since it should appear calm, relaxed, open and inviting, highly saturated colors and

jarring contrasts must be avoided. It is also a best practice in usability to limit the number of used

colors to a minimum. Since warm colors like red, orange and yellow are generally perceived

as stimulating and arousing, they will be avoided in the general design of the UI and will be

reserved to attract users’ attention, like error messages or warnings. Cold colors like blue and

green are usually perceived as calm and relaxed and will therefore be the main accent colors

of the UI. In this aspect, the new iteration of the system matches the design decision made for

the original TYT system. Large areas will be kept white or very light grey, possibly with a subtle,

geometrical pattern in the background to give the interface more texture. Any used colors should

be somewhat desaturated, as pastel colors are more unobtrusive and suitable for larger surfaces

and backgrounds. Saturated colors should be reserved to convey information like signalling

destructive action, success, errors and so on. The large background image should be subtle so

as not to divert users’ attention from their actual tasks. For example, an understated geometrical

wave pattern in light shades of blue and green that fades to white could be subtle enough not

to be distracting and visible enough to enrich the UI with some texture. The combination of light

blue and white with a slight color gradient also evokes an association with the sky and clouds,

further adding to the calm and open tone the interface should have.

66

5 Prototypical implementation

This chapter summarizes the project’s prototypical implementation. It first introduces the soft-

ware that was used to realize the system. The second part of this chapter then presents the

implementation of the system. After a general discussion showing how the requirements and

design described in chapters 3 and 4 were translated into working code, the rest of this chapter

highlights a selection of components that exemplify the contrast with and improvement over the

predecessor framework TYT. The focus of this discussion is particularly placed on the issues of

language support, version control and class inheritance.

It was mentioned several times throughout this document that the implementation of this system

only represents a prototype of the final product. Since the system is built from the ground up

instead of building upon its predecessor, TYT, the focus of the project was to create a clean and

improved concept for the new iteration of the framework. As was explained in the introductory

chapter to this document, the main goals of this iteration are the creation of a flexible platform

that can easily be adapted to various applications instead of building another specialized vari-

ant of TYT. The main areas for improvement were the system’s architecture itself, which was

presented in chapter 4, and the issues of language support, class inheritance and version con-

trol. Approaches for these three issues each went through several iterations, which will also be

presented.

5.1 Utilized software and technology

This section is provides an overview of the platforms, frameworks, software packages and other

technologies that were used to implement this system.

5.1.1 Laravel 5

Like its predecessor TYT, this system is built on the so-called LAMP stack: Linux (operating

system), Apache (application server), MySQL (database management system), and PHP (ap-

plication programming language). Laravel is a framework for web applications written in PHP. It

was created by Taylor Otwell and first released in 2011. The framework shares its philosophy

and many of its core concepts with the web framework Ruby on Rails (also RoR or Rails for

short), which is written in Ruby. Both of these software packages were created to make web

development faster, easier and more enjoyable for developers. To this end, the toolkits are built

on a few core principles:

67

5 Prototypical implementation

Convention over Configuration Instead of forcing developers to manage and configure ev-

ery single aspect of the web application they are building, Laravel ships with a number

of powerful packages, which are configured with sane defaults that are suitable for most

projects to create rapid prototypes. The Laravel core handles repetitive and complex back-

end tasks like CGI, URL parsing, routing, database connections, and so on. All of this

enables application developers to focus on building the actual application instead of in-

vesting precious development time solving generic problems that are often very similar

across projects. This does mean, however, that frameworks like Laravel or Rails make

assumptions on how developers should tackle specific tasks and implement solutions. For

example, the Eloquent ORM assumes that all models have an $id attribute as their pri-

mary key. If such restrictions do not satisfy the project’s requirements, all modules can be

configured as needed. If this still does not solve the problem, the built-in functionality can

be replaced altogether with custom solutions. While this is all possible, it is recommended

to conform to the framework’s conventions as this significantly accelerates and simplifies

the development process, which is particularly critical for rapid prototyping.

DRY – Don’t Repeat Yourself This is a general coding principle, which stipulates that solutions

should only be implemented once. Writing code that serves the same or similar purposes

in different places needlessly increases the code base, diminishes the application’s main-

tainability, makes the code more difficult to read and introduces code smell. Instead of

solving the same problem multiple times, code should be as generic as possible within

reasonable limits. This principle also applies to primitive values. Especially the use of

magic numbers is strongly discouraged. Both Laravel and Rails encourage DRY coding.

REST The REST paradigm and its advantages were discussed in detail in 5.1.4. Both Laravel

and Rails encourage the use of REST for the application’s public interface. One of the

reasons for this is that REST is a natural fit for the Convention over Configuration principle

as it defines how resources should be accessed through URIs, which gives the interface

routes a predictable structure. RESTful routes can easily be created in Laravel using the

Route::resource() method.

MVC Another assumption that Laravel makes for the developer concerns the system’s archi-

tectural pattern. Laravel applications are by default based on the Model–View–Controller

(MVC) pattern. This pattern splits the system into three general tiers: The Model contains

all business logic and handles data persistence. The View provides the user interface by

presenting data from the Model and handling user input. The Controller is the "glue" be-

tween the Model and the View. It provides interfaces for the View that abstract from data

access on the Model. Laravel ships with classes and functionality that represent each of

these three tiers. For example, Models in Laravel applications typically extend the Model

class provided by the Eloquent package.

68

5.1 Utilized software and technology

Changes and new features of Laravel 5

TYT was built on version 3 of Laravel. Between the creation of TYT and the beginning of this

project, Laravel was steadily developed, altering some core concepts and adding new features.

The current release is version 5.2. The vast differences between version 3 and 5 of the frame-

work was one of the reasons for a complete rewrite of the TYT system from scratch. A few of

the main changes between version 5 and its predecessors are outlined below:

Laravel 5 introduces a new folder structure. The application code is placed in the app folder

below the project’s root. Laravel makes use of the PSR-4 autoloading standard, meaning that

everything in the app folder is automatically namespaced under the App namespace [20]. While

prior to version 5, there was a application directory, the app directory that replaces it has

somewhat different contents. Before version 5, source files for models were placed in the

application/models folder, whereas they are now simply placed in the top-level app folder.

Migrations are moved out of the former application and into the database/migrations di-

rectory. Version 5 also introduces the top-level resources folder that holds all static resources

like CSS and JavaScript files, language files and also views.

Laravel 5 also enables method injection for controller methods. This is Laravel’s implementation

of the Dependency Injection pattern, which provides a method for dynamic instance retrieval.

First, classes that should be instantiable application-wide are registered with a central registrar.

In Laravel, this is called the ServiceContainer. When a class A, such as a controller, depends

on another class B, this dependency can be satisfied by simply passing an instance of class

B into the constructor of class A. When instantiating class A, the class B object need not be

passed explicitly, because it is injected by the ServiceContainer. The advantage of this method

is that dependencies become more transparent to application developers and the instantiation

is abstracted from the actual class that is passed. This enables an interface-like approach, i.e.

class A only requires an object of class B and does not have to care about the specific subclass

it is receiving. Laravel provides expressive methods in the ServiceProvider that enable fine-

grained control over which instances are injected into which consumers.

TYT relied on the OAuth and Sentry packages for user authentication [11]. Beginning with ver-

sion 5, Laravel now ships with a built-in authentication mechanism. This also includes a default

User model with id, email, name and password attributes. The basic authentication solu-

tion can be enabled with a simple php artisan make:auth command, which automatically

registers the necessary routes and provides sign-in and sign-up views. While this bare-bones

approach is often enough to quickly create prototypes, it can also be extended and customized.

Details on how this was done for this project are provided below.

Laravel 5 also changes how routes are mapped to controller actions. Listing 5.1, adapted from

[11], shows an excerpt from the Home_Controller that defines an index method in Laravel

3.

69

5 Prototypical implementation

1 class Home_Controller extends Base_Controller

2 {

3 public function action_index ()

4 {

5 return View::make(’home.index’);

6 }

7 }

Listing 5.1: index method defined in a Laravel 3 Controller class

Listing 5.2 demonstrates how the same method would be written in Laravel 5.

1 class HomeController extends Controller

2 {

3 public function index ()

4 {

5 return view(’home.index’);

6 }

7 }

Listing 5.2: index method defined in a Laravel 5 Controller class

As the example shows, Laravel 5 does not require action methods to be prefixed with action_-

anymore. The above listings also include some other, minor differences: Between version 3

and 4, Laravel has adopted the PSR-0 and PSR-1 standards [33, 21, 22], one of the effects

being that all identifiers that were required to be noted in snake_case are now noted in Camel-

Case, like Home_Controller and HomeController. The base class that controllers extend

was changed from Base_Controller to Controller. Lastly, the new version of the index

method makes use of the view() helper method instead of the static View::make() method.

Concepts and features

While a complete introduction to the Laravel framework is far beyond the scope of this document,

some of its major concepts and features, which characterize the framework from an application

development perspective, are outlined here.

Laravel features the Artisan CLI. This interface is used for all sorts of tasks and can be extended

with custom commands, which greatly increases the workflow of web application development.

Artisan ships with commands that facilitate a number of common tasks for Laravel developers.

These include creating Models, Controllers, and Migrations, displaying a list of routes, resetting,

seeding, or migrating the database, and so on. External packages often also offer custom Artisan

commands, for example to export views from the packages etc. For example, the command in

listing 5.3 creates a new migration file that creates a questions table:

70

5.1 Utilized software and technology

1 php artisan make:migration create_questions_table --create=questions

Listing 5.3: Artisan command that creates a questions table

Developers can construct their application’s database incrementally using migrations. Migra-

tions are class files that define how the database should be defined. They contain an up(),

which is run by Laravel when the database is migrated, and a down() method, which is run

when the database is rolled back. The up() method generally adds or modifies columns to

tables, while the down() method removes columns or destroys tables. With this concept, the

database schema does not have to be defined in one go, but can instead be constantly modi-

fied, even in production. The Schema class provides a variety of methods to create, destroy, and

modify tables, columns and indexes.

Listing 5.4 shows the migration that creates the roles table. The concept of roles in this system

is presented in section 3.1. The migration demonstrates how columns are created using methods

for each data type on a Blueprint object. It also shows how the down() method destroy the

users table when the database is rolled back. This particular migration creates a roles table

with an auto-incrementing integer columns id, which is the primary key, a string column name,

date columns for creation and update timestamps, and an index for the name column that

ensures uniqueness.

1 class CreateRolesTable extends Migration

2 {

3 public function up ()

4 {

5 Schema::create(’roles’, function (Blueprint $table)

6 {

7 $table->increments(’id’);

8 $table->string(’name’)->unique();

9 $table->timestamps();

10 });

11 }

12

13 public function down ()

14 {

15 Schema::drop(’roles’);

16 }

17 }

Listing 5.4: CreateRolesTable migration

The Laravel Router enables developers to map routes to arbitrary controller methods. However,

if the system makes use of a RESTful API, developers can leverage Convention over Config-

uration and simply define all RESTful routes for a resource using the Route::resource()

method. The controller then simply needs to implement the standard REST methods like index

71

5 Prototypical implementation

etc. However, routes can also be defined per HTTP verb, e.g. using Route::get() or Route::post(),

for all HTTP verbs with Route::any(), or for multiple verbs with Route::match(). The

Router also supports route groups, prefixes, and nesting. Groups are useful for applying route

middleware. Middleware, in the context of Laravel, can be understood as a filtering mecha-

nism for incoming and outgoing requests and replies. It can be used for authentication, session

management, adding HTTP headers and so on.

Listing 5.5 shows an example of route definitions that demonstrates several of the above-mentioned

features. It creates a group, applies the web middleware to it, and adds the api prefix. By defin-

ing a prefix, all routes defined with in the group are automatically registered with that prefix. The

example defines two routes, one login route and logout route. Since the group is prefixed with

api, the resulting routes are [RootURL]/api/login and [RootURL]/api/logout. The

login route is only accessible when the request is sent using the HTTP POST verb and the lo-

gout route is accessible with GET. Both route definitions receive an option array as their second

parameter, which each contains a name for the group using the as option and a mapping to a

controller method using the uses option. The third definition is an example for the definition of

RESTful routes. The Route::resource() function registers all REST routes using the given

route fragment, in this case questionnaire, and adds all needed action methods to the given

controller, in this case QuestionnaireController. The final parameter is an option array, in

this case with the except option, which is used to exclude particular actions like the destroy

action here.

1 Route::group([’middleware’ => ’web’, ’prefix’ => ’api’], function ()

2 {

3 Route::post(’login’, [’as’ => ’login’, ’uses’ => ’

AuthController@authenticate’]);

4 Route::get(’logout’, [’as’ => ’logout’, ’uses’ => ’AuthController@logout’

]);

5 });

6

7 Route::resource(’questionnaire’, ’QuestionnaireController’, [’except’ => ’

destroy’]);

Listing 5.5: Sample route definitions

Laravel features the concept of relationships. The framework places a variety of expressive

methods at the disposal of developers that can be used to define relationships between models.

For instance, a Person might have one Account, an Order belongs to a Customer and has many

Items, and so on. Relationships are particularly useful when used with the Eloquent ORM, which

is explained below. Laravel supports one-to-one, one-to-many and many-to-many relationships,

which may also be polymorphic, i.e. models can map to different classes on a single relationship.

Listing 5.6 shows an excerpt from the User class oh this system. The class implements a

userGroups() method, which returns an instance of the Relation class. This instance con-

tains a collection of related models as defined by the call arguments of the relationship method

72

5.1 Utilized software and technology

that returns that instance. User and UserGroup are linked via a many-to-many relationship—

Users can be part of any number of UserGroups and UserGroups contains any number of Users.

This type of relationship requires an intermediary table that holds the foreign keys to the related

records. The second call argument of the function is the name of that table, in this case the

user_group_memberships table. The relationship function in the UserGroup class uses

hasMany(), which is the counterpart of the belongsToMany method.

1 class User extends Authenticatable

2 {

3 public function userGroups ()

4 {

5 return $this->belongsToMany(UserGroup::class, ’user_group_memberships

’);

6 }

7 }

8

9 class UserGroup extends Model

10 {

11 public function users ()

12 {

13 return $this->hasMany(User::class, ’user_group_memberships’);

14 }

15 }

Listing 5.6: Many-to-many relationship between User and UserGroup

The excerpt from an old version of the Questionnaire class shown in listing 5.7 demonstrates

the usage of polymorphic relationships. Since many Users fill in Questionnaires, each Question-

naire has a relation with many AnswerSets. However, section 4.2.1 defines a variety of different

Questionnaire subclasses. Without polymorphic relationships, the AnswerSet class would have

to define a hasMany() method for each Questionnaire subclass. This is detrimental to extensi-

bility and causes lots of duplicated code, because it creates many points in the code that would

have to be updated if any Questionnaire subclasses are renamed, removed are new ones are

created. Instead, the morphTo() and morphMany() functions are used to define a polymor-

phic relationship between Questionnaires and AnswerSets. To achieve this, the answer_sets

table has to contain an integer questionnaire_id column and a string questionnaire_-

type column. The type column contains the fully qualified class name of the Questionnaire and

the id column contains its primary key value.

73

5 Prototypical implementation

1 class Questionnaire extends Model

2 {

3 public function answerSets ()

4 {

5 return $this->morphMany(AnswerSet::class, ’questionnaire’);

6 }

7 }

8

9 class AnswerSet extends Model

10 {

11 public function questionnaire ()

12 {

13 return $this->morphTo();

14 }

15 }

Listing 5.7: Polymorphic one-to-many relationship between Questionnaire and AnswerSet

Another aspect of the Convention over Configuration principle is the abstraction from database

access. Laravel features a powerful object-relational mapping system (ORM) named Eloquent.

Eloquent provides a fluid and expressive interface that developers can use to, retrieve, manipu-

late, save, and delete instances of the models they have defined in their application. Instead of

having to construct SQL statements manually, developers can query the database with chainable

methods that return instances of the application’s models or collections thereof. This especially

comes in handy in combination with relationships, introduced above. The provided Eloquent

methods are far too many to list in this document, the listings below demonstrates only a few of

them.

In listing 5.8, the scopeOptional() method defines a scope on the Question model. Scopes

allow developers to extend Eloquent with their own, chainable methods that modify the current

query. Here, the scope filters the query for Questions that are optional. This is achieved using

the where Eloquent method, which receives a column name and a value as its parameters.

The where() function is the equivalent of the WHERE keyword in SQL. To retrieve only the

Questions that are optional, the where() method reduces the query to records whose is_-

optional value is true.

1 class Question extends Models

2 {

3 public function scopeOptional ($query)

4 {

5 return $query->where(’is_optional’, true);

6 }

7 }

Listing 5.8: Question scope that filters for optional Questions

74

5.1 Utilized software and technology

Listing 5.9 shows how Questionnaires are retrieved for Questions. The design in section 4.2

states that Questionnaires and Questions are not directly related, but through an intermediary

QuestionnaireContent model. While Laravel does offer has-many-through relationships to

access models that are related through an intermediary model, this cannot be utilized in this

case, because both Question and Questionnaire are polymorphic. The solution to han-

dle the indirection manually as demonstrated in listing 5.91. First, the Question’s related

QuestionnaireContent is retrieved with $this->questionnaireContent()->get().

The isEmpty() method is used to determine whether the method has returned any records,

i.e. if the the Question currently has any QuestionnaireContent. When there is a re-

lated QuestionnaireContent, the questionnaire() method can be used to get the re-

lated Questionnaire, because the QuestionnaireContent class declares a one-to-many

relationship with the Questionnaire class. If there are any related Questionnaires, the

function returns the first match using the first() method. There are also some references to

a $withTrashed variable strewn in. This optional flag enables developers to signal whether

they would like to include trashed records in the query. Trashed records are records that were

deleted using soft deleting. When soft deleting is enabled on a model, its instances are not ac-

tually removed from the database when they are deleted. Instead, the model’s table contains a

deleted_at column which saves the date and time when the record was "deleted". This makes

the record a trashed record, which Laravel filters by default. Trashed records can, however, be

retrieved using the withTrashed() scope.

1 class Question extends Models

2 {

3 public function questionnaire ($withTrashed = false)

4 {

5 $questionnaire_content = $this->questionnaireContent($withTrashed)->

get();

6 if ($questionnaire_content->isEmpty())

7 return null;

8

9 $questionnaire = $questionnaire_content->first()->questionnaire(

$withTrashed)->get();

10 if ($questionnaire->isEmpty())

11 return null;

12

13 return $questionnaire->first();

14 }

15 }

Listing 5.9: Retrieving a Question’s parent Questionnaire

1Side note: The excerpt of the Question class in listing 5.9 is actually an older version of the class. One of the reasons
it was revised is the less-than-ideal handling of inheritance. The different approaches and final solution to this issue
that were explored in this project are documented in section 5.2.3

75

5 Prototypical implementation

Laravel also comes with a flexible solution for input validation. The base Controller class

includes a Trait that provides the validate() method. This method can be used in controllers

to define validation rules for incoming requests in a declarative fashion. Rules are defined as an

array in the form ’attribute’ => ’rules’, where rules is a string of validation keywords

and arguments delimited by the pipe character (|). The framework ships with a great number

of validation keywords and it also supports custom validation rules. If the request does not pass

validation, Laravel automatically returns an error message to the client. Developers may also

define form requests. These are classes that extend the Request class and can define valida-

tion (and authorization) rules just like described above by implementing the rules() method.

Controllers can then simply inject (cf. explanation of Dependency Injection in section 5.1.1) the

newly created Request class into a method. Laravel automatically calls the rules() method on

the Request class and handles validation accordingly.

Listing 5.10 shows an abridged version of the input validation used for Questionnaire creation.

The keys of the validation rule array are the Questionnaire’s attributes, like title, description,

and so on, and the values define the validation rules. The required rule indicates that a non-

empty value must be given for the attribute. There are rules for each data type, like string,

boolean, etc. Validation of nested attributes for related models is also possible, as demon-

strated by the questions keys. The questions attribute is required to contain an array. This

array is expected to contain arrays of Question attributes. Nested attributes in collections are val-

idated with the asterisk character (*). In this case, the validation rules require that each Question

have a valid Question type as returned by the Question::getSubclasses() method. The

rule for questions.*.min exemplifies more complex validation logic: It requires each collec-

tion of Question attribute to contain a numeric min attribute, but only if that Question’s type is

defined as question_scalar.

1 class QuestionnaireController extends Controller

2 {

3 public function store (Request $request)

4 {

5 //...

6

7 $this->validate($request,

8 [

9 ’title’ => ’required|string’,

10 ’description’ => ’string’,

11 //...

12 ’questions’ => ’required|array’,

13 ’questions.*.type’ => ’required|in:’.implode(’,’, array_keys(

Question::getSubclasses())),

14 ’questions.*.min’ => ’required_if:questions.*.type,

question_scalar|numeric’,

15 //...

76

5.1 Utilized software and technology

16]);

17

18 //...

19 }

Listing 5.10: Validation of new Questionnaires

This project makes use of a role system for users (cf. sections 3.1, 5.2.3). These roles determine

which actions may be executed by which types of users. Laravel supports this functionality with

its authorization solution. Like validation, the Controller class comes with built-in authoriza-

tion methods. The basic idea is that developers define abilities that can then be checked against

to allow or disallow an action. This can be achieved in a variety of ways, including using the

Gate facade, built-in authorization methods, and Policies.

The most basic variant of authorization, which is the basis on which the alternative methods

build, is demonstrated in listing 5.11. First, the ability manage-questionnaire is defined in

the AuthServiceProvider. This ability is granted to users who should be able to manage

questionnaire, i.e. create, edit, and delete them. It is then used in a controller to verify that the

user attempting to save a Questionnaire is allowed to do so. In this context, only Administrators

are allowed to manipulate Questionnaire. Therefore the ability method returns the user’s is_-

admin flag. This happens in the store() method of QuestionnaireController (the same

method as in listing 5.10). First, the user() method is used to ensure that the user is registered

and signed in. The cannot() method, provided by the Authorizable Trait, is then called on

the User with the manage-questionnaire ability as its parameter. This method returns true

if the User is not allowed to manage-questionnaires, i.e. if they are an Administrator. If the

user is in fact not an Administrator, the method redirect()s to the application’s root URL and

includes a localized error massage.

1 class AuthServiceProvider extends ServiceProvider

2 {

3 public function boot (GateContract $gate)

4 {

5 $gate->define(’manage-questionnaire’, function ($user)

6 {

7 return $user->is_admin;

8 });

9 }

10 }

11 class QuestionnaireController extends Controller

12 {

13 public function store (Request $request)

14 {

15 if (!$request->user() || $request->user()->cannot(’manage-

questionnaire’))

77

5 Prototypical implementation

16 return redirect()->route(’root’)->withErrors(trans(’auth.

unauthorized’));

17 //...

18 }

19 }

Listing 5.11: Authorization example: saving Questionnaires

The features outlined above are only a small sample of the tools included in Laravel. The

framework also comes with the Blade templating engine, modules for caching, queueing, as-

set management, billing, cryptography, and many other common tasks in web development. For

a complete introduction to Laravel, refer to the official documentation [19].

5.1.2 AngularJS

The front end is implemented using the AngularJS framework. This is a departure from TYT,

which provided its website using Laravel’s built-in tools and served it in a traditional request-

response fashion. This project uses version 2 of Angular, which is a complete rewrite of its

previous code base.

AngularJS (or simply Angular) is a front end framework based on JavaScript and developed

by Google. Starting out as a research project, Angular has now been widely adopted for the

development of single-page applications. The advantages and disadvantages of single-page

applications have already been discussed in section 4.2.3. In summary, single-page application

break with the traditional request-response pattern to offer a more fluid and desktop-like user

experience for web services. This is accomplished by communicating with the server’s public

API using AJAX and manipulating only the relevant parts of the DOM with JavaScript instead of

reloading on every request. Some important features of Angular 2 are outlined below.

Concepts and features

By default, Angular 2 applications are developed in TypeScript. TypeScript, developed by Mi-

crosoft, is a superset of JavaScript that adds type checking to this traditionally "untyped" lan-

guage. TypeScript is built on ECMAScript 2015, the most recent version of ECMAScript, which

is the standard that JavaScript is based on. ECMAScript 2015 adds a variety of new features to

traditional JavaScript like arrow functions, function parameter default values, string interpolation,

modules, etc. Angular relies heavily on a number of those features.

Components are the central building block of Angular applications. Each Component imple-

ments the application logic that controls a defined portion of the website by handling the relevant

data and functions that manipulate those data. In terms of the MVC pattern, Components corre-

spond to the Model. Accordingly, the View is represented by Templates. Templates are reusable

HTML fragments that provide the user interface for a given Component. Angular supplements

78

5.1 Utilized software and technology

HTML with its own template syntax, which facilitates the development of dynamic user interface

fragments. The template syntax provides keywords for many common use cases, like ngFor for

repetition of mark-up fragments or ngIf and others for conditional inclusion of mark-up.

The primary way in which Components manipulate Templates and vice versa is data binding.

The template syntax includes concise notation that binds text and input elements in the UI to data

in the Component. Developers that do not utilize frameworks like Angular to build a dynamic

web application have to manually implement functionality that tracks changes in the UI and

synchronizes internal values accordingly, or updates the UI to reflect internal changes. This

approach leads to redundant, repetitive code, is error-prone, and difficult to maintain. In Angular,

developers can make use of data binding to delegate all of this work to the framework. Four

types of data binding are supported:

Interpolation is a form of one-way data binding that inserts a value from a Component and

automatically keeps it updated. Interpolation uses the {{}} notation. For example, mark-up

like {{questions.count}} would render the current number of Questions

managed by the Component and would automatically reflect any changes to that number.

Property binding is used to pass data into child Components as input. For example, a

QuestionnaireList Component might consist of several QuestionnaireDetail Compo-

nents, one for each Questionnaire currently in the list. Within the mark-up for the

QuestionnaireList, the QuestionnaireDetails could be defined as shown in listing

5.12. The ngFor keyword is used to repeat the <div> element for each element in the Compo-

nent’s questionnaires property. The let questionnaire of questionnaires micro-

syntax assigns each value in the questionnaires collection to the questionnaire variable

on each loop. Data binding comes into play when the

questionnaire-detail Component is inserted. The QuestionnaireDetail child Com-

ponent (not depicted) defines an input property named questionnaire, which is bound to

the questionnaire variable, set in the ngFor loop, using the [] notation. The fact that

the child Component’s input value is bound to a property of its parent Component means that

the ngFor loop does not only dynamically create the list once, but it continuously tracks the

questionnaires property and updates the list accordingly. For example, when this Compo-

nent is used in the Administrator’s Questionnaire list and an Administrator deletes a Question-

naire, the list is automatically re-rendered to remove the deleted Questionnaire, because the

questionnaires property has changed.

Listing 5.12: AngularJS property binding example

1 <div *ngFor="let questionnaire of questionnaires">

2 <questionnaire-detail [questionnaire]=questionnaire></questionnaire-detail>

3 </div>

Event binding works similarly to property binding, but instead of data flowing from a parent

Component to a child Component, information flows from child Components or other DOM ele-

ments to parent Components in the form of events. The () notation is used to assign handler

79

5 Prototypical implementation

functions, implemented by the Component, to events fired by a child Component. The example

in listing 5.13 shows a simply example of event binding. A <button> element is defined and

using the (click) notation, the parent Component’s submit() function is assigned as the

handler method for the click event.

Listing 5.13: AngularJS event binding example

1 <button (click)="submit()"></button>

The three techniques explained above are all examples of one-way binding, where information

flows in one direction. Angular also supports two-way binding, where, as the name suggests,

information can flow in both directions. The notation for two-way binding is a combination of

property binding and event binding, i.e. [()]. In the example in listing 5.14, an input field is

bound to the title property of a questionnaire object stored in the Component. The input

field is automatically filled with the questionnaire’s title value and any values to the input

field are automatically passed on to the linked object.

Listing 5.14: AngularJS two-way binding example

1 <input [(ngModel)]="questionnaire.title">

Like Laravel, Angular also makes use of the Dependency Injection pattern. This is mostly used

to inject Services into Components. Services are regular ECMAScript classes that provide

some sort of service to any Component that injects it. Most commonly, Services are used to

load model data from the server, handle logging tasks, etc. The Angular framework itself uses

Services frequently and developers are encouraged to do so as well to extract any functionality

from Components that is not directly related to their main purpose. Components that require

a Service must register the Service in the Component’s @Component Decorator by adding the

Service’s class name to the array under the providers array key. The Component is then

aware of the Service and it can be injected by listing an instance of the Service class as an

parameter to the Component’s constructor method. When the Component is instantiated, its

Injector creates an instance of the Service and passes it to the Component.

5.1.3 JWT

JSON Web Tokens (or JWT) is a standard (RFC 7519) for claim negotiation using encrypted

JSON tokens [1]. JWTs (pronounced jots) are most commonly used for token-based authen-

tication in the web. Claims between two parties are encoded in JSON objects with a specific

structure. These objects are then encrypted and signed to ensure secure transmission and pre-

vent tampering. JWTs consist of three parts: Header, Payload, and Signature. The Header

contains meta information about the JWT, like type and used encryption algorithm. The Pay-

load is the main part of the JWT as it contains the claims. The standard defines a number of

three-character-long keywords for reserved claims, e.g. iss (issuer), exp (expiration date), etc.

Developers can also define their own claims, which is useful for user IDs, user roles, and any

80

5.1 Utilized software and technology

other information that the application may require. Finally, the Signature is combination of the

encoded Header, Payload, and a secret value, that is then hashed with the specified algorithm,

typically HMAC SHA256. All three parts of the message are Base64-encoded and concatenated

with a dot character (.) as a delimiter. The resulting token string is finally transmitted over HTTP

in the Authorization header in the form Authorization: Bearer [TOKEN].

JWTs have a number of advantages over comparable techniques like Simple Web Tokens (SWT).

First and foremost, thanks to the compact size of JSON objects, JWTs are relatively short—so

much so that they can even be transmitted in the URL as query strings. The small size makes

them especially useful for mobile applications where the minimization of data traffic can be cru-

cial. Unlike SWTs, JWTs can be asymmetrically signed with any cryptographic hashing function

that both parties agree upon. Finally, as mentioned in section 5.1.4, encoding and decoding

JSON objects is relatively straightforward and libraries for that purpose are available for most

common programming languages. In contrast, SWTs encode verbose XML files, resulting in

significantly longer tokens and requiring computationally heavy XML parsing.

The following example JWT is adapted from [2]. Listing 5.15 shows the Header and Payload

parts of the JSON object in plain text. The resulting JWT can be seen in listing 5.16.

Listing 5.15: Example JWT Header and Payload in plain text

1 {

2 "alg": "HS256",

3 "typ": "JWT"

4 }

5 {

6 "sub": "1234567890",

7 "name": "John Doe",

8 "admin": true

9 }

Listing 5.16: Resulting JWT with secret string "secret" and hashed with HMAC SHA256

1 eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

2 eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.

3 TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ

5.1.4 JSON API

As discussed in section 4.1.1, the server for this system is implemented as a web service. It

provides its functionality through a REST-like interface [7] and follows the JSON API specification

[15]. The reasons for this design decision are discusses below. This section only outlines the

ideas behind REST and JSON API.

81

5 Prototypical implementation

REST and JSON API

Over the past decade, REST has become a popular, lightweight alternative to traditional, verbose

communication protocols for web services such as SOAP over HTTP [9]. Unlike SOAP, which

is independent from the transport protocol, RESTful APIs rely heavily on HTTP itself. REST is

used to represent distinct resources using URIs and existing HTTP verbs. The REST specifica-

tion defines certain conventions on how URIs should be formed to represent the resources that

the server provides and what HTTP verbs should be used to access these URIs. While not all

use cases in typical, modern web services can be mapped cleanly to this specification, REST

is generally an attractive and simple way to implement interfaces for web services. In addition

to REST, the API for this system is also designed to comply with the JSON API specification

[15]. This is another improvement over the original TYT framework, which provides a custom

JSON-based API. Custom APIs are flexible, but are more difficult to maintain, extend and modify.

New developers, which might wish to extend the interface, first have learn and understand the

way the interface is built and intended by its original developer, which increases development

time and complexity. A possible solution to this problem is building the API to a generic API

specification like JSON API. Since the specification, which in itself also relies on REST-like pat-

terns, defines precisely how the API routes and messages must be constructed, new developers

only need to be familiar with the core principles of JSON API in order to quickly gain a general

understanding of an application’s API. Furthermore, extending the interface simply becomes a

matter of registering the new routes whose format is already predetermined by the specification.

There are also numerous off-the-shelf plug-ins for most popular frameworks for both the back

end and the front end, which further abstract from the communication layer. This essentially

enables application developers to simply transmit and receive objects as they have defined them

for their software without having to deal with encoding or decoding. Lastly, using JSON instead

of XML to encode messages sent or received through the API has the clear advantage of a far

smaller footprint. As mentioned above, XML defines a verbose syntax while JSON messages

are simply stringified JavaScript objects, which are both shorter and more human-readable than

XML documents. Moreover, the decoding overhead for JSON files is next to nothing in many

frameworks, while XML documents have to go through a complex parsing process to extract

any useful data from them. Both the smaller document size and lower encoding overhead make

JSON especially useful for mobile devices because computational resources can be fairly limited

and should be used sparingly.

JSON API format

The JSON API specification defines message formats for a great variety of different use cases,

contexts, and message types, which far exceeds the scope of this document. Refer to [14]

for the complete specification. Listing 5.17 therefore only demonstrates a small and abridged

example of a possible server response payload that conforms to the JSON API specification.

The payload of the JSON API response is referenced by the data key. This key contains either

82

5.2 Implementation details

one or a collection of so-called resource objects. The type and id properties are required for all

resource objects and reference a unique resource. If the attributes key is included, it must

be an object and can contain any valid JSON value. As the name suggests, the attributes

object is used to represent any relevant attributes of the resource that is being described by the

resource object. JSON API also defines how relationships are mapped2. The relationships

key references a relationship object. It contains all information necessary to retrieve the related

models from the server, like links and the types and ids.

Listing 5.17: JSON API-compliant server response (abridged)

1 { "data": [{

2 "type": "questionnaires",

3 "id": "1",

4 "attributes": {

5 "title": "Default snapshot questionnaire",

6 "description": "Please answer the questions below to measure your current

stress level."

7 },

8 "relationships": {

9 "questions": {

10 "links": {

11 "self": "[RootURL]/questionnaires/1/relationships/questions",

12 "related": "[RootURL]/questionnaires/1/questions"

13 },

14 "data": [{

15 "type": "questions",

16 "id": "1"

17 },

18 {

19 "type": "questions",

20 "id": "2"

21 }]

22 }

23 },

24 "links": {

25 "self": "http://example.com/questionnaires/1"

26 }

27 }]}

5.2 Implementation details

The previous chapters have identified and described various issues from the problem domain

and design space. In this section, a selection of solutions to these issues are discussed. The

chosen issues are what sets this iteration of the TYT concept most apart from the original im-

plementation. Most of these solutions have gone through multiple iterations. However, for the

2See section 5.1.1 for an introduction to relationships in Laravel.

83

5 Prototypical implementation

sake of brevity, only the dynamic translation system’s development history is discussed in detail

as an exemplary case. The remaining processes are shortly outlined and their final results are

presented.

5.2.1 Dynamic translation system

Frameworks like Laravel usually ship with internationalization functionality (often i18n for short),

which works well for static data like text on websites. However, these solutions generally do

not work for dynamic data, i.e. database records that are created and edited at runtime. While

TYT does implement an internationalization mechanism, it has a number of drawbacks: First,

the functionality is specifically built for questionnaires and questions. If the translation system

were to be expanded to other classes, it would have to be built again from scratch. Moreover,

the translations are stored in separate tables that mirror parts of the tables whose attributes they

translate. If there are any changes to the questionnaire and question tables, these changes

would have to be propagated to the translation tables and to any code that relies on them as

well. All in all, this approach lacks extensibility and decreases maintainability. One goal of this

project was therefore to find a more flexible solution to this problem. This section discusses the

approaches that were explored to this end.

Version 1

The first version of the dynamic translation system had two major aims:

Maximum flexibility The system should be easily applicable to any alphanumeric attribute type.

Any class that requires translation functionality should be able to opt into it with minimum

configuration and modification. The system should work seamlessly with inheritance (see

section 5.2.3 for more information on inheritance).

Transparent workflow integration Developers should be able to use dynamically translated

attributes like regular attributes, e.g. if the title attribute of the Questionnaire model

is translated, calls like $questionnaire->title should work.

The following general design was created to satisfy the above-mentioned requirements:

All translated values are stored in two tables, translated_strings and translated_-

texts. These tables belong to models of the same name, which are derived from the TranslatedAttribute

model. TranslatedAttribute defines the relationship methods and a content attribute.

The content attribute is used to store the translated values, either with a string or text data type

respectively. Since different database management systems may handle data types like strings

and texts differently, this enables the system to work with both types and offer uniform, type-

agnostic access to translated values using the content attribute. Model attributes that should

be translated are not part of their original tables. Instead, the model in question includes the

84

5.2 Implementation details

Translatable Trait. Translatable contains all functionality concerning the dynamic trans-

lation system, including polymorphic relationships to the translation tables. All that developers

then need to do to make an attribute translatable is add it to either the $translated_strings

or $translated_texts array on the model, depending on the attribute’s data type. When the

translation tables are created and the relationships between them and the model are established,

the translated attribute can then be used almost as usual. Translated attributes are modified as

follows:

• PHP-style attribute access returns the value for the current system locale, for example

$question->text; // => "Do you currently feel stressed?" if system lo-

cale == ’en’

• Analogous to standard attribute access, setting attributes creates a translation for the cur-

rent default locale, or updates an existing translation.

• Setting a translated attribute to null deletes the related translation from the translation

table.

• To retrieve or set multiple translations for one attribute at once, the pluralized version of the

attribute may be used.

– Reading the pluralized attribute returns an array of all available translations, keyed

with the ISO 639-1 language code. Example: $question->texts; might return

["de" => "Fühlen Sie sich im Moment gestresst?", "en" => "Do you

currently feel stressed?"].

– Likewise, the pluralized attribute can be set to an array keyed with ISO 639-1 language

codes to create multiple translations at once.

– Set the pluralized attribute to null to delete all existing translations for this attribute.

• Translatable also provides dynamic getter and setter functions to modify values for

specific locales other than the current system default. These functions are available for

any attribute registered as translatable and do not have to be defined by developers.

– $question->getText(’en’); returns the English translation for the Question’s

text attribute.

– $question->setText(’Do you currently feel stressed?’, ’en’); cre-

ates the English translation for the Question’s text attribute and sets it to the passed

value, or updates the existing translation with the passed value.

– As with dynamic attribute access, passing null to a dynamic setter function deletes

the translation for the attribute in the given locale.

– Translations may also deleted explicitly with the dynamic delete function: $question->deleteText(’en’);

The described functionality was fully implemented and was found to be working as specified.

Transparent attribute manipulation lets developers handle translated attributes naturally like any

85

5 Prototypical implementation

other PHP class attribute and the translation tables remove any specialized columns for trans-

lated attributes from the models. However, the design and implementation of this feature has

several critical flaws that led to further iterations:

The Model class supports whitelisting and blacklisting of attributes as a countermeasure to

mass assignment vulnerabilities [6]. The term mass assignment means setting multiple at-

tributes on an object at once. Without any server-side protection, malicious users may inject

any attribute, for example by modifying a user registration HTML form and adding a hidden

admin flag set to true, which would effectively grant them administrative control of the sys-

tem. To counter this, Laravel requires developers to either add mass-assignable attributes to the

$fillable array on their model or exclude specific attributes from mass assignment by adding

them to the $guarded array.

The process of "filling" a Model instance with attributes is "baked" into the implementation and

does not provide any programming hooks before the object is actually saved to the database.

Therefore, Translatable has to intercept and overwrite a number of methods from the Elo-

quent Model class for its functionality to be as flexible as desired. This is where most of the prob-

lems of this approach arise. When a Model subclass instance is created, the fill() method

implemented in the Model class checks whether the passed attributes are "fillable" (either if they

are listed in the $fillable array or not present in the $guarded array) and sets them on the

object if they are. Attributes that are not fillable are simply ignored. This is a problem when trying

to set translated attributes on an object, because they do not actually exist in the model’s table.

Instead, they are delegated to the translation tables. Since the model would simply reject all

translated attributes as non-fillable, Translatable overwrites the getFillable() method,

shown in listing 5.18, to include translated attributes and their pluralized versions in the list of

fillable attributes. However, because the translations are stored in separate tables and linked

to their parent models using relationships, the translation objects can only be created when the

related model instance already exists. Otherwise, the translation table has no foreign key to refer

to. For this reason, translated attributes have to be cached, when a new record is being created.

Once the model instance is saved to the database, the predefined saved and saving events

are used to retrieve the cached translations, create the translation objects and establish the rela-

tionship with their parent object. This is clearly a very roundabout, inconvenient and error-prone

approach.

Listing 5.18: getFillable() from Eloquent Model overwritten in Translatable v1

1 public function getFillable ()

2 {

3 $original_fillable = parent::getFillable();

4 $fillable_with_plural = array_union($original_fillable, array_map(function (

$attribute)

5 {

6 return $this->isTranslatableAttributeDefined($attribute) ? str_plural(

$attribute) : $attribute;

7 }, $original_fillable));

86

5.2 Implementation details

8

9 return $fillable_with_plural;

10 }

The Translatable Trait also has to overwrite the magic functions __get(), __set(), and

__call(). As an example, the overwritten __get() method is shown in listing 5.19. This

is done to intercept attribute access and function calls and to reroute them to the translation

methods described above if the attribute matches a translated attribute. Laravel does offer the

concept of mutators for access to attributes that are not defined on the model, but mutators

cannot be defined dynamically. Therefore, developers would be forced to manually implement

two mutators for every translated attribute, which violates the requirement for easy extensibility.

While overwriting Model functions does work for this purpose, it is not a robust solution. Ma-

nipulating framework code and interfering with the intended flow of data and control is likely to

introduce many points of failure in the code, which are hard to locate and debug. This is espe-

cially true when the framework code is updated. Any changes to the overwritten code are then

likely to break the application. This is especially true if other Traits extend Model with their own

functionality as well, leading to conflicts between the third-party add-ons.

Listing 5.19: Overwritten magic function __get() implemented in Translatable v1

1 public function __get ($key)

2 {

3 // Test for attribute accessor

4 if ($this->isTranslatableAttributeDefined($key))

5 return $this->handleAccessor($key);

6

7 // Test for pluralized attribute accessor

8 if ($this->isTranslatableAttributeDefined(str_singular($key)))

9 return $this->handlePluralizedAccessor(str_singular($key));

10

11 return parent::__get($key);

12 }

The values in the translation tables are matched with the right models using polymorphic rela-

tionships. This removes attributes from their model’s table, where they should be. Furthermore,

polymorphic relationships rely on tables to save both a foreign key and the referenced table’s

fully qualified class name. However, since translations reference specific attributes, not just ob-

jects, the attribute name must also be stored, adding another level of indirection and requiring

additional functionality to retrieve and set relationships. Moreover, translations created in the

past would break if the referenced attribute names are changed.

Lastly, this version of the translation system does not support inheritance. When supplementing

fillable attributes with translated attributes, only the calling class’s defined translated attributes

are considered. This means that inheriting classes would have to list their own translated at-

tributes as well as all of their parents’ translated attributes explicitly, which is unnatural and

cumbersome.

87

5 Prototypical implementation

Version 2

After version 1 of the translation was scrapped for the reasons discussed above, version 2 was

developed from it. This new iteration follows the same basic principles and goals, but the imple-

mentation was modified in a number of ways.

As mentioned in the discussion of version 1, both the former solutions for inheritance (discussed

in section 5.20) and dynamic translations overwrite Model class code to achieve their function-

ality. In an effort to resolve conflicts between these two modules, it was attempted to unify their

functionality in one common class called InheritableModel instead of relying on Traits. This

class was meant to take the place of Model when creating new application models, i.e. all mod-

els in the application inherit from InheritableModel, which in turn extends Model. While this

does not change the fact that Model’s functionality is modified, a solution like this would be a

sufficient trade-off for the scope of this project. Portions of the Translatable Trait were carried

over into InheritableModel, but some problems were solved differently:

The $translated_strings and $translated_texts arrays are now declared as static.

This enables all classes to only define their own translated attributes. When the class is instan-

tiated, the class’s constructor aggregates the translated attributes of the class and all its parents

and adds them to the fillable attributes. This makes working with inherited, translated attributes

much more natural and encourages separation of concerns between classes. The modified

constructor and the aggregateParentAttributes() method can be seen in listing 5.20.

Listing 5.20: Constructor for InheritableModel and aggregateParentAttributes() method

1 public function __construct (array $attributes = [])

2 {

3 // Aggregate fillable, guarded and translated attributes from parent classes.

4 $this->fillable($this->pluralizeAttributes(array_union($this->getFillable(),

$this->aggregateFillableAttributes())));

5 $this->guard($this->pluralizeAttributes(array_union($this->getGuarded(), $this->

aggregateGuardedAttributes())));

6 static::$translated_strings = $this->aggregateTranslatedStrings();

7 static::$translated_texts = $this->aggregateTranslatedTexts();

8

9 // Add all translated attributes to $appends.

10 $this->append(

11 array_union(

12 $this->getArrayableAppends(),

13 $this->pluralizeAttributes($this->getTranslatedStringsArray()),

14 $this->pluralizeAttributes($this->getTranslatedTextsArray())

15)

16);

17

18 parent::__construct($attributes);

19 }

20

21 protected function aggregateParentAttributes ($array_name)

88

5.2 Implementation details

22 {

23 $array = [];

24

25 // Traverse the chain of inheritance up to the abstract InheritableModel class

26 // and aggregate all inherited attributes.

27 for ($class = get_class($this); $class !== InheritableModel::class; $class =

get_parent_class($class))

28 {

29 $array = array_union($array, $class::$$array_name ?: []);

30 }

31

32 return $array;

33 }

To avoid overwriting the magic functions __get(), __set(), and __call(), they were re-

placed with two simple functions: translation() for singular attribute access and translations()

for plural attribute access. While this solution relinquishes the convenience of transparent at-

tribute access, it is much more robust and less prone to conflict with the framework or third-party

add-ons. Listing 5.21 demonstrates how all the three above-mentioned functions were unified in

one simple method. When null is passed, the translation is deleted, when no value is passed

explicitly (defaults to an empty string), the translation is returned, and when a string value is

passed, the translation is created or updated. If the function does not receive a locale parame-

ter, it uses the current system default.

Listing 5.21: translation() method of InheritableModel for translated attribute access

1 public function translation ($attribute, $value = ’’, $locale = null)

2 {

3 $language = $locale ? Language::getLanguage($locale) : Language::defaultLanguage

();

4 if (!$language)

5 {

6 \Log::warning("Invalid locale $locale");

7 return false;

8 }

9

10 if ($value === null)

11 return $this->deleteTranslatedAttribute($attribute, $language);

12 else if ($value === ’’)

13 return $this->getTranslatedAttribute($attribute, $language);

14 else

15 return $this->setTranslatedAttribute($attribute, $language, $value);

16 }

In the first version of the translation system, translated attributes were cached on the newly

created instance itself. While this does work, it relies on the object remaining in memory from

instantiation up until it is saved to the database. Version 2 instead employs Laravel caching

capabilities. The attributes are stored under a unique key in the cache. For this project, the

89

5 Prototypical implementation

local disk cache is sufficient, but separate key-value stores like Redis could just as well be used.

Listing 5.22 depicts some of the functions used for caching. The getCacheKey() function is

used to construct a unique cache key from the attribute type and the unique hash value of the

current object. This cache key is used to store and retrieve translated attributes to and from the

cache. The method cacheTranslation() stores the attributes with Cache::put(), passing

an array of attributes and the cache key. pullTranslations() retrieves the cached attributes

and simultaneously removes them from the cache.

Listing 5.22: Attribute caching functions in InheritableModel

1 protected function cacheTranslation ($translation, $attribute_type)

2 {

3 $translations = $this->pullTranslations($attribute_type);

4 $translations[] = $translation;

5 \Cache::put($this->getCacheKey($attribute_type), $translations, 5);

6 }

7

8 public function pullTranslations ($attribute_type)

9 {

10 return \Cache::pull($this->getCacheKey($attribute_type), []);

11 }

12

13 protected function getCacheKey ($attribute_type)

14 {

15 return ’translated_’.camel_case(str_plural($attribute_type)).’_’.spl_object_hash(

$this);

16 }

The most marked improvements of version 2 over version 1 are the static translation attribute

arrays and the elimination of transparent attribute access by overwriting magic methods. These

measures improve extensibility, readability, maintainability, and most importantly robustness.

However, this version still has some issues:

While the magic methods overwritten in Translatable were replaced with regular methods,

drastically simplifying the handling of translated attributes, InheritableModel now overwrites

__construct(). This is an approach that is arguably even more intrusive into the Model code

and therefore not ideal. Furthermore, version 2 only slightly improves the creation of translations

by utilizing the built-in caching mechanisms, but the approach itself remains the same as in

version 1 and is still somewhat awkward. All in all, the translation system is still to complex and

requires too much additional work to function. It was therefore further developed in version 3,

which is the final version.

90

5.2 Implementation details

Version 3 — final version

Building on the insights and lessons learned from the first two attempts at building a dynamic

translation system, a third and final version was developed. This iteration utilizes some of the

basic ideas of the other two approaches, but in a much more minimalistic fashion.

One of the most noticeable changes is that the translation tables have been completely elimi-

nated. The translated attributes are now moved back into their respective classes in keeping with

the principles of object-oriented programming (OOP). Each translatable attribute is represented

with a column of the text data type, which stores all translations as a serialized array. This

array is formatted the same as the array returned through pluralized attribute access in the first

two versions, i.e. keyed with ISO 639-1 language codes. While version 1 and 2 of the translation

system also relied on a custom Language class to provide languages, it now simply relies on

plain ISO 639-1 languages codes like the Laravel framework itself. Storing the translations on

the model instance itself solves another minor issue: Updating translated attributes now works

as expected. When translations are stored as records of a separate model, the parent class

does not have to be saved. This can especially be confusing with transparent attribute access

like implemented in version 1. When setting any other attribute, one would have to first set the

attribute and then call $save() on the object. However, since the system creates and edits

translation records in the background when updating translated attributes, $save() does not

have to be called because the object’s proper attributes are unchanged.

Laravel supports automatic casting of model attributes. This is useful for serialized array like

the translation array. To retrieve it as a PHP array instead of a string, like it is represented in

the database, the casting can be defined in the $casts array on the model, e.g. protected

$casts = [’text’ => ’array’];.

The final translation system also does not rely on any arrays to register translated attributes any-

more. Instead, when a developer accesses an attribute as a translated attribute, Translatable

will simply attempt to access it from the database. If the attribute does not contain a serialized

array that contains the requested language code (or if it cannot be saved as such), the attribute

is not translatable.

The core translation functionality has been moved back into the Translatable Trait. It now

provides a translation() method similar to the one introduced in version 2. Creating, editing,

and deleting translations is now significantly simpler than in previous revisions, as demonstrated

in listing 5.23. The translation() method is nearly unchanged from version 2. However, the

translated attributes are now retrieved, set, and deleted through standard array access.

Listing 5.23: translation() method in Translatable v3

1 public function translation ($attribute, $value = ’’, $locale = null)

2 {

3 $locale = $locale ?: Lang::locale();

4

5 if ($value === null)

91

5 Prototypical implementation

6 return $this->deleteTranslatedAttribute($attribute, $language);

7 else if ($value === ’’)

8 return $this->getTranslatedAttribute($attribute, $language);

9 else

10 return $this->setTranslatedAttribute($attribute, $language, $value);

11 }

12

13 public function getTranslatedAttribute ($attribute, $language)

14 {

15 return $this->$attribute[$language];

16 }

17

18 public function setTranslatedAttribute ($attribute, $language, $value)

19 {

20 $this->$attribute[$language] = $value;

21 }

22

23 public function deleteTranslatedAttribute ($attribute, $language)

24 {

25 unset($this->$attribute[$language]);

26 }

In conclusion, the development process has led to a fairly simple, robust, and flexible translation

system. The first attempt was by far the most complex, but it also offered the most transparent

user experience due to dynamic attribute access and function calls. However, this transparency

comes at the cost of robustness and requires some intrusive framework code manipulation. The

second revision then already eliminated some of the method overwrites that caused issues in the

first version. It has also traded maximum transparency for improved robustness, modularization,

and code clarity by reducing the translation mechanisms to the simple translation() method

and its helper functions. Finally, when version 2 was retired as well, the result of this process

was a lean and trimmed-down, and portable solution for dynamic attribute translation. While it

may be less flexible than version 1, the much improved robustness and reduced complexity is a

worthwhile pay-off.

5.2.2 Version control

The version control system was developed in several iteration cycles like the dynamic translation

system. In the following, the development process is outlined shortly:

In the first iteration, version control was implemented in a Trait called Archivable. The Trait

provides a number of convenience methods to retrieve versions of records (previous, succeed-

ing, first, last, etc.) and it defined the archived and withoutArchived scopes. The version

control mechanism was based on self-referential one-to-one relationships. Each model that

should be eligible for version control needed to have a previous_version integer column,

which was used to store the primary key of the previous version of that particular record. This

92

5.2 Implementation details

linked-list approach was functional, but since one of the criticisms of TYT ’s implementation of

version control in section 1.2 was that it required tables to add columns specifically for version

control, the solution was redesigned.

The second iteration moved version cross-references to the newly created version_control

table. Each record in this table referenced the "archived" record and its successor in the next_-

version column through polymorphic relationships. In this approach, when a record should be

edited, it is instead cloned and the clone is edited, while both versions are connected through

the version_control table. This approach was simple and widely applicable, but its most

significant drawback was that all references to the edited record had to be adjusted manually to

reference the new, cloned record.

Therefore, a third iteration was created, in which it is always the original record that is edited.

Its state is preserved by cloning the record before any modifications and linking it to the now

edited version through the version_control table. This eliminated the need for manual rear-

rangement of references to the edited record. However, this approach had one minor flaw. When

cloning a record, the version control record of the current predecessor version would have to be

modified as well to reference the new clone as its successor.

The fourth and final iteration solved this problem by changing the relationships between model

records and their version control records. Instead of linking version control records with one

another, all version control records now reference the root_version, i.e. the original model

record to which modifications are applied. The order of versions is established by simply adding

a version_number integer column to the version_control table3. One drawback of all

these approaches including the final one is that the versions do not have direct access to their

former relationships. However, they can simply be accessed by requesting them from their root

version. Furthermore, any relationships that are relevant to a record’s state have to be archived

independently.

5.2.3 Model inheritance and user roles

While inheritance is the foundational concept of object-oriented languages like PHP 5, it is not

directly applicable to models in Laravel. Laravel provides functionality that handles the interaction

and mapping between model classes and their database tables, but it does not support inherited

models. Although models can extend each other to share their functionality with child classes,

Laravel does not adapt the database model to reflect the model hierarchy. In other words, a

model may have child classes, but they do not automatically inherit their parents’ attributes,

because they need not be explicitly defined on the model, and there is no automatic creation of

child database tables. Some common solutions in such cases include Single Table Inheritance

(STI). In this model, all models that extend a parent class share one common database table.
3The order of versions could also be implicitly derived from the creation timestamps of the version records, but dedicated

version numbers are more explicit, human-readable and they prevent odd behavior. Additionally, retrieving the n-th
version of a record becomes as simple as finding the record with version number n among its linked version control
records.

93

5 Prototypical implementation

Accordingly, this table has to contain all attributes that exist in any of the inheriting classes. That

means that even if one particular child class only adds one attribute of its own, its records will

contain null values for attributes of all its parent, sibling, and child classes. This approach

is sufficient for cases where the differences between related classes are small. When related

classes contain vastly different sets of attribute, however, this quickly results in large, messy

tables full of null values. This is especially true for this project: The various Questionnaire and

Question share most of their attributes, but some of their own and future extensions might very

well be even more specialized. Furthermore, when considered strictly, STI violates the OOP

principle of data encapsulation, i.e. an object may only have access to its own and its parents’

attributes.

Due to the drawbacks of STI, it was decided early on to implement a custom class inheritance

solution that works with Laravel models. Like version control and the dynamic translation system,

the development of the inheritance system went through multiple iterations. This process had the

same basic guiding principles as the translation system, i.e. maximum flexibility and transparent

integration into the framework.

The first draft was designed to work as follows: In order to stay as close to OOP principles

as possible, each models has its own database table. Each table only consists of columns for

the classes’ specific attributes. All child classes extend their parent classes with the standard

PHP extends keywords to inherit functionality. On the database side, the class hierarchy is

reflected in polymorphic one-to-one relationships between parent and child classes. Instances of

inheriting classes are then mapped to multiple records of models in a hierarchy. Each subclass

contains its own specific subset of attributes and is connected to other subclasses for further

specialization through polymorphic subclass reference columns. The necessary functionality

is provided by the ExtensibleModelSuperclass and ExtensibleModelSubclass Traits,

that have to be included by superclasses and subclasses respectively.

This first version of the model-based inheritance mechanism shared a lot of the same issues

that the first version of the translation system also had: ExtensibleModelSuperclass re-

lies on overwriting the framework-provided methods __construct(), __call(), __get(),

and __fill(). The getter and method invocation functions were overwritten to provide trans-

parent access to parent attributes as if they were defined on the child class. As discussed in

section 5.2.1, this approach is not particularly stable and prone to breaking when the frame-

work code is updated. Furthermore, all attributes must be explicitly listed in a constant array

$own_attributes. This is necessary to discern proper attributes from inherited attributes

when mass-assigning, because developers may pass all attributes without explicitly distinguish-

ing own and inherited attributes to keep the system transparent and close to OOP principles.

Like early translation implementations, however, the related objects cannot all be created at the

same time as they are split up across tables. To be able to leverage Laravel’s syntax to create

related objects, one of those objects must first exist in the database so that its primary key is

available. Therefore, when creating an inheriting object, all child attributes must be cached and

94

5.2 Implementation details

their records must be created later during the created and saved events. All of this makes this

approach fairly complex, difficult to handle, and error-prone.

The second version was implemented as the InheritableModel class that was introduced

in section 5.2.1. InheritableModel replaces the constant $own_attributes array with the

static $my_fillable and $my_guarded arrays. This was necessary to differentiate fillable

from guarded attributes, which was not possible before. Another major change that the subclass

tables hold all attributes, both proper and inherited. The inheritance system provides functions

to created these tables; developers are not required to gather the parents’ attributes manually.

InheritableModel also introduces the static $subclasses array, which was used to define

a map of public class names and fully qualified class names. This array was created for several

reasons. First, it creates a central place to hold public class names that can be used to differ-

entiate Question types etc. in the client. It was considered to use the snake_case versions of

class names as public names, but this would pose a serious security threat, because malicious

users might abuse this feature to create instances of arbitrary classes in the system. Therefore,

the system only recognizes classes that are listed in $subclasses. Also, since there is no

easy way in PHP to retrieve all classes that extend a specific class, this list helps with creating

the database tables for child classes in one go. Version 2 of the inheritance mechanism helps

with some of the issues of version 1, like overwriting framework functions. However, it still has a

number of flaws. The handling of attributes still relies on distributed tables, caching on creation,

and event hooks. All in all, the approach has simply proven not as useful as expected in practical

use. While it does generally fulfill its purpose, new issues with the inheritance system constantly

arose with further development and it was very prone to breaking. Therefore, a third and last

version was devised.

After experimenting with distributed, related tables and transparent convenience function, the

concept was mostly abandoned for the reasons discussed above. The third and final version

of the inheritance system was designed to work more smoothly within the Laravel framework

and to interfere less with its intended workflows. Version 3 borrows a number of ideas from the

previous versions. Similarly to version 1, the tables for parent and child classes are again split

up. However, instead of transparently distributing attributes and linking the tables, the record

in the parent class acts is the actual record for the object, unlike version 1, where the records

in each table were treated as dependent parts of the same object. The subclass records are

linked through explicit, polymorphic extension columns on the parent table. When obtaining

an object, it is retrieved from the parent table and any specialized information must be explic-

itly accessed through the extension relationship. This is not as convenient as version 1, but

significantly more robust and requires no additional, complex functionality. Furthermore, when

creating new models, child attributes do not have to be cached anymore. The child models are

simply created from the entire attribute set. This is possible because Eloquent simply ignores

all attributes that are not declared fillable. Lastly, the central subclass register is also eliminated.

In this version, there is no need to know all existing subclasses of a model, because the parent

instance is the "authoritative" part of the object and subtypes can simply be distinguished by the

95

5 Prototypical implementation

polymorphic $extension_type column. Also, a convention is introduced for string identifiers

of types, e.g. for the client: All subclasses must be named after the parent class, concate-

nated with the subtype name in PascalCase. For example, single choice Questions inherit from

the Question model and are therefore named QuestionSingleChoice. By convention, the

QuestionSingleChoice subtype is referenced as single_choice in the code where nec-

essary. Class names can then be dynamically created from the parent class base name and the

PascalCase version of the snake_case string identifier. This enables flexible handling of sub-

class names, while preventing object injection, because the parent’s class name is always used

as a prefix.

The final version of the model inheritance mechanism is currently used for the Question and

Questionnaire classes and their respective subclasses. As was discussed in section 4.2.1,

there are also multiple types of users in this system inheriting from the same, conceptual base

class. The reason that the model inheritance system is not used for the User model is that it

is far simpler that Question and Questionnaire and less likely to be extended in the future.

Moreover, the particular use case of differentiation of users lends itself to a different, commonly

used pattern, which is user roles. This concept was therefore introduced to the system as a

by-product of the development process described above. Section 4.2.1 describes the different

roles users can take on when using the framework. Roles are defined in a roles table. Each

User has one or more Roles. Presently, the system only supports the User and Admin roles,

which correspond to the roles defined in sections 4.2.1 and 4.2.1. The assignment of users to

roles is managed in a user_roles table. This approach has the advantage that permissions

for system functionality can easily be granted or revoked based on users’ Role. New Roles can

be created by simply adding the Role to the Roles table and assigned it to users as desired.

In effect, this results in a rudimentary access control system for system functionality, similarly

to UserGroups for questionnaire access. One disadvantage of a role-based approach is that

all users are stored in the same Users table. For the current iteration of this system, this is

not a problem since regular Users and Admins share the same attributes. However, if future

implementations should add further user models that require additional attributes, this approach

is not sufficient to satisfy that requirement.

5.3 Client

5.3.1 Initially hidden slider handle

In the following, the implementation of the slider without initial value is presented. This custom UI

widget was required in requirement UI001. It has been shown that the position of the handle in

a slider widget can have an influence on users’ behavior when selecting a value [13]. Therefore,

the handle is not displayed at first. Once the user clicks on the slider widget, the handle is shown

and can be moved as usual. AYS implements this in the web-based user interface using an

96

5.3 Client

HTML5 input element of the range type. While there is no way to show or hide the handle

programmatically, CSS can be used for that purpose. Listing 5.24 shows how this is implemented

in AYS. The slider handle is hidden by default by setting its opacity property to 0 using the

pseudo-classes -webkit-slider-thumb and -moz-range-thumb. The UI detects when

the slider has been first clicked by the user and marks it by adding the clicked class to the

input element. The clicked class is then used to set the opacity back to 1, showing the

slider handle. The code used for this functionality was adapted from [18].

Listing 5.24: CSS controlling the slider handle

1 input[type=range]::-webkit-slider-thumb

2 {

3 opacity: 0;

4 }

5 input[type=range]::-moz-range-thumb

6 {

7 opacity: 0;

8 }

9

10 input[type=range].clicked::-webkit-slider-thumb

11 {

12 opacity: 1;

13 }

14 input[type=range].clicked::-moz-range-thumb

15 {

16 opacity: 1;

17 }

97

5 Prototypical implementation

98

6 Conclusion

This chapter concludes the documentation of the AYS project. In the following section, the

project’s development is summarized. After a recapitulation of the initial goals and requirements

follows a critical reflection of the development process. The requirements and results are con-

trasted to assess the success of the project. The oversights and weaknesses of the system, but

also the lessons learned are discussed. Finally, the chapter closes with an outline of potential

future improvements or extensions of AYS to broaden its scope and functionality.

6.1 Summary

In this project, the Assess Your Stress framework was conceptualized and a prototype was

implemented. The development of AYS was initiated with the goal of creating an updated, mod-

ernized, and overall improved version of the Track Your Tinnitus platform. The basic principle of

both systems is the same, but they differ in their fields of application: While TYT was created

for mobile tracking of tinnitus symptoms through questionnaires and the Experience Sampling

Method, AYS provides a platform that employees can use to gauge their stress levels at their

workplaces.

The overhaul of the concept behind TYT was the focus of this work. Some of the key goals of

the project was to revise the platform in a way that makes it more generalizable and applicable

to more fields of application. The issue of stress tracking was used as the exemplary application

to show that the TYT concept can indeed be applied in various ways. Most of the allotted time

for the project was therefore spent conceptualizing and experimenting with different approaches

to specific system components that displayed the most pronounced drawbacks in terms of ex-

tensibility and flexibility in TYT. These components were identified to be the dynamic translation

of questionnaires and questions—or database records in general—, version control and model

inheritance. In TYT, translation of dynamic data was purpose-built for the use cases of question-

naires and questions. A solution for version control was implemented, but only in rudimentary

form, restricted to questions, and not actually used in the system. While model inheritance was

not an issue covered in the TYT project, it was deemed relevant for the new iteration, mostly as

a robust basis for the extension of questionnaires and questions in the future. At the end of the

project, the concept was realized in a basic prototype to apply it to the stress tracking use case.

99

6 Conclusion

6.1.1 Self-assessment

A considerable amount of work was put into eliciting and defining the requirements for this sys-

tem, which were categorized from high-level to low-level and recorded in a semi-formal and fairly

fine-grained fashion. This was done in an effort to make the conceptual foundation for the frame-

work as stable and refined as reasonably possible within the scope of this project. Comparing

the requirements with the prototypical implementation, however, it is clear that not all require-

ments could be verifiably fulfilled. While the project has succeeded in producing a viable system

core, some of the planned features could not be incorporated, mostly due to time limitations.

One of these features that were abandoned for the current release was the overhaul of result

diagrams. Originally, diagrams were planned to be generated in a more intelligent manner than

the straightforward method of TYT. This would be especially useful in AYS as it now handles

arbitrary numbers of questionnaires and questions. Instead of merely presenting separate di-

agrams for each question in a questionnaire, it would be far more insightful for users if results

from different questions and questionnaires were somehow combined into fewer diagrams. This

way, users could easily compare results side by side and gain a more meaningful image of their

stress levels. Further, there is no support for statistical information or feedback on the adminis-

trative side. In a finished, deployed version, this would be a crucial features because employers

just as much need to get feedback from the system as their employees. The system event func-

tionality could also not be fully implemented. Experiments were made as a proof-of-concept,

but a full, functioning messaging system was out of the project’s scope. All things considered,

however, it can be rated as a success that the project did result in a foundation for the system

that implements the core functionality.

The process of developing crucial system components through careful and deliberate evolution

was notably successful in producing useful results. The dynamic translation, version control, and

model inheritance systems were all products of iterative experimentation. It is notable that the

initial approaches to all three of these issues were too complex and unwieldy. The most likely

cause is that is was attempted not to compromise on any of the goals set for the development of

these components. It was recognized that maximum conformance with the requirements had led

to solutions that offered the full, desired functionality, but were generally unstable and prone to

breaking due to the close coupling with the framework. In the subsequent iterations, the solutions

were therefore increasingly reduced and trimmed down as the requirements were relaxed. The

end result of this process was generally lean and effective solutions to some complex tasks. This

effort was therefore certainly one of the project’s more notable achievements. There is also a

lesson that can be learned from it, which is that the common phrase "less is more" does hold true

in software engineering, where guideline is also known as the KISS principle—"Keep It Small

and Simple".

In retrospect, it is quite clear that the planning stage of the project was allotted too much of

the project’s time. As mentioned above, the intention behind this was to ensure a refined and

valuable basis upon which the implementation could be built. However, it is now evident that

100

6.2 Future development

especially the requirements analysis could have been reduced significantly—the chapter on re-

quirements already represents an abridged version of the actual requirements definitions pro-

duced during this project. While it is certainly not amiss to diligently employ established software

engineering practices to the crucial phase of requirement definition, the amount of detail dedi-

cated to each requirement is simply not necessary or particularly useful in a project of this scope,

developed by a single developer.

6.2 Future development

The AYS framework lays the groundwork for a variety of future developments that could enhance,

extend, and further improve the system.

First and foremost, a fully-featured client should be implemented to complement the system’s

back end core. The current prototype is fairly bare-bones and leaves out some desirable func-

tionality. As this system is meant for use by a wide and varied audience, usability is crucial. The

client should therefore also be subjected to systematic usability testing before releasing it to the

general public.

The TYT framework provides mobile clients, that are used for snapshot questionnaires and result

review. Mobile clients would also be very useful in the context of AYS, since people’s workplaces

vary greatly. Many employers may not work with a stationary computer, or they may not have

steady Internet access. Furthermore, this would enable AYS to utilize the Experience Sampling

Method like TYT does. Therefore, mobile clients that work offline would be a highly valuable

addition to AYS.

As mentioned above, some planned functionality had to be dropped from the development of the

current release due to time constraints. These features would be useful additions to the system

and should therefore be implemented in the future. Among these features are improved and

streamlined visualization of questionnaire results, statistical analysis for employers/administra-

tors, and possibly some intelligent result analysis.

Visualization of results also offers some interesting possibilities for future extensions. One ap-

proach to how different questionnaires and question could be combined in unified result dia-

grams could be to let administrators categorize their questionnaires. They could then create

custom scores and define what questions factor into a particular score and how. The scores

would be what the unified diagrams then display. Not only would this reduce the number of dia-

grams needed to represent the results, users could also gain much more meaningful insight with

a high-level score—say, "stress level"—than a set of different, seemingly unrelated result graphs.

This is also a natural advancement since multiple questions in questionnaires are generally used

in concert to measure one particular variable, and not the isolated data of individual questions.

One of the goals of the project was personalized feedback for users. This could not be achieved

in the current release as it soon became clear that it is outside the scope of this project. Such

101

6 Conclusion

functionality would require some level of artificial intelligence implemented in the system to anal-

yse users’ results, possibly correlating them with other data sources like schedules. This could

then be used to identify the exact sources of stress in the users’ daily lives and

102

Bibliography

[1] AUTH0: Introduction to JSON Web Tokens. https://jwt.io/introduction/.

Version: 2016. – [Online; accessed 8-June-2016]

[2] AUTH0: JSON Web Tokens. https://jwt.io. Version: 2016. – [Online; accessed

8-June-2016]

[3] BAKKER, Jorn ; HOLENDERSKI, Leszek ; KOCIELNIK, Rafal ; PECHENIZKIY, Mykola ;

SIDOROVA, Natalia: Stess@Work: From Measuring Stress to Its Understanding, Prediction

and Handling with Personalized Coaching. In: Proceedings of the 2Nd ACM SIGHIT

International Health Informatics Symposium. New York, NY, USA : ACM, 2012 (IHI ’12).

– ISBN 978–1–4503–0781–9, 673–678

[4] CIMAN, M. ; WAC, K. ; GAGGI, O.: iSensestress: Assessing stress through human-

smartphone interaction analysis. In: Pervasive Computing Technologies for Healthcare

(PervasiveHealth), 2015 9th International Conference on, 2015, S. 84–91

[5] DYSON, MARY C. ; HASELGROVE, MARK: The influence of reading speed and line

length on the effectiveness of reading from screen. In: International Journal of Human-

Computer Studies 54 (2001), Nr. 4, 585 - 612. http://dx.doi.org/http://dx.

doi.org/10.1006/ijhc.2001.0458. – DOI http://dx.doi.org/10.1006/ijhc.2001.0458.

– ISSN 1071–5819

[6] ENUMERATION, Common W.: CWE-915: Improperly Controlled Modification

of Dynamically-Determined Object Attributes. http://cwe.mitre.org/data/

definitions/915.html. Version: 2013. – [Online; accessed 8-June-2016]

[7] FIELDING, Roy T.: Architectural Styles and the Design of Network-based Software

Architectures, Diss., 2000. – AAI9980887

[8] GARRETT, Jesse J.: Ajax: A New Approach to Web Applications. http:

//adaptivepath.org/ideas/ajax-new-approach-web-applications/.

Version: 2005. – [Online; accessed 8-June-2016]

[9] GUDGIN, Martin ; HADLEY, Marc ; MENDELSOHN, Noah ; MOREAU, Jean-Jacques ;

NIELSEN, Henrik F. ; KARMARKAR, Anish ; LAFON, Yves: SOAP Version 1.2 Part

1: Messaging Framework (Second Edition). https://www.w3.org/TR/soap12/.

Version: 2007. – [Online; accessed 8-June-2016]

103

https://jwt.io/introduction/
https://jwt.io
http://dx.doi.org/http://dx.doi.org/10.1006/ijhc.2001.0458
http://dx.doi.org/http://dx.doi.org/10.1006/ijhc.2001.0458
http://cwe.mitre.org/data/definitions/915.html
http://cwe.mitre.org/data/definitions/915.html
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://www.w3.org/TR/soap12/

Bibliography

[10] HEKTNER, J.M. ; SCHMIDT, J.A. ; CSIKSZENTMIHALYI, M.: Experience Sampling Method:

Measuring the Quality of Everyday Life. SAGE Publications, 2007 https://books.

google.de/books?id=05e5d_KBYY0C. – ISBN 9781412949231

[11] HERRMANN, Jochen ; REICHERT, Manfred (Hrsg.) ; SCHLEE, Winfried (Hrsg.) ; PRYSS,

Rüdiger (Hrsg.): Konzeption und technische Realisierung eines mobilen Frameworks zur

Unterstützung tinnitusgeschädigter Patienten. http://dbis.eprints.uni-ulm.de/

1037/. Version: March 2014

[12] HOOBER, Steven: How Do Users Really Hold Mobile

Devices? http://www.uxmatters.com/mt/archives/2013/02/

how-do-users-really-hold-mobile-devices.php. Version: 2013. – [Online;

accessed 8-June-2016]

[13] KAHNEMAN, D.: Thinking, Fast and Slow. Farrar, Straus and Giroux, 2011 https://

books.google.se/books?id=ZuKTvERuPG8C. – ISBN 9781429969352

[14] KLABNIK, Steve ; KATZ, Yehuda ; GEBHARDT, Dan ; KELLEN, Tyler ; RESNICK, Ethan: JSON

API Document Structure. http://jsonapi.org/format/#document-structure.

Version: 2015. – [Online; accessed 8-June-2016]

[15] KLABNIK, Steve ; KATZ, Yehuda ; GEBHARDT, Dan ; KELLEN, Tyler ; RESNICK, Ethan: JSON

API Specification. http://jsonapi.org/format/. Version: 2015. – [Online; accessed

8-June-2016]

[16] LU, Hong ; FRAUENDORFER, Denise ; RABBI, Mashfiqui ; MAST, Marianne S. ;

CHITTARANJAN, Gokul T. ; CAMPBELL, Andrew T. ; GATICA-PEREZ, Daniel ; CHOUDHURY,

Tanzeem: StressSense: Detecting Stress in Unconstrained Acoustic Environments Using

Smartphones. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing.

New York, NY, USA : ACM, 2012 (UbiComp ’12). – ISBN 978–1–4503–1224–0, 351–360

[17] MACLEAN, Diana ; ROSEWAY, Asta ; CZERWINSKI, Mary: MoodWings: A Wearable

Biofeedback Device for Real-time Stress Intervention. In: Proceedings of the 6th

International Conference on PErvasive Technologies Related to Assistive Environments.

New York, NY, USA : ACM, 2013 (PETRA ’13). – ISBN 978–1–4503–1973–7, 66:1–66:8

[18] O’BRIEN, Brenna: How to Style Input Type Range in Chrome,

Firefox, and IE. http://brennaobrien.com/blog/2014/05/

style-input-type-range-in-every-browser.html. Version: 2014. – [Online;

accessed 8-June-2016]

[19] OTWELL, Taylor: Laravel Documentation. https://laravel.com/docs/5.2.

Version: 2016. – [Online; accessed 8-June-2016]

[20] OTWELL, Taylor: Laravel Documentation: Application Structure. https://laravel.

com/docs/5.2/structure#the-app-directory. Version: 2016. – [Online;

accessed 8-June-2016]

104

https://books.google.de/books?id=05e5d_KBYY0C
https://books.google.de/books?id=05e5d_KBYY0C
http://dbis.eprints.uni-ulm.de/1037/
http://dbis.eprints.uni-ulm.de/1037/
http://www.uxmatters.com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php
http://www.uxmatters.com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php
https://books.google.se/books?id=ZuKTvERuPG8C
https://books.google.se/books?id=ZuKTvERuPG8C
http://jsonapi.org/format/#document-structure
http://jsonapi.org/format/
http://brennaobrien.com/blog/2014/05/style-input-type-range-in-every-browser.html
http://brennaobrien.com/blog/2014/05/style-input-type-range-in-every-browser.html
https://laravel.com/docs/5.2
https://laravel.com/docs/5.2/structure#the-app-directory
https://laravel.com/docs/5.2/structure#the-app-directory

Bibliography

[21] PHP-FIG: PSR-0: Autoloading Standard. http://www.php-fig.org/psr/psr-0/.

Version: 2014. – [Online; accessed 8-June-2016]

[22] PHP-FIG: PSR-1: Basic Coding Standard. http://www.php-fig.org/psr/psr-1/.

Version: 2016. – [Online; accessed 8-June-2016]

[23] PROBST, Thomas ; PRYSS, Rüdiger ; LANGGUTH, Berthold ; SCHLEE, Winfried: Emotional

states as mediators between tinnitus loudness and tinnitus distress in daily life: Results

from the “TrackYourTinnitus” application. In: Scientific reports 6 (2016)

[24] PRYSS, Rüdiger ; REICHERT, Manfred ; HERRMANN, Jochen ; LANGGUTH, Berthold

; SCHLEE, Winfried: Mobile Crowd Sensing in Clinical and Psychological Trials – A

Case Study. In: 28th IEEE Int’l Symposium on Computer-Based Medical Systems, IEEE

Computer Society Press, June 2015, 23–24

[25] PRYSS, Rüdiger ; REICHERT, Manfred ; LANGGUTH, Berthold ; SCHLEE, Winfried: Mobile

Crowd Sensing Services for Tinnitus Assessment, Therapy and Research. In: IEEE 4th

International Conference on Mobile Services (MS 2015), IEEE Computer Society Press,

June 2015, 352–359

[26] RAHMAN, Md. M. ; BARI, Rummana ; ALI, Amin A. ; SHARMIN, Moushumi ; RAIJ, Andrew

; HOVSEPIAN, Karen ; HOSSAIN, Syed M. ; ERTIN, Emre ; KENNEDY, Ashley ; EPSTEIN,

David H. ; PRESTON, Kenzie L. ; JOBES, Michelle ; BECK, J. G. ; KEDIA, Satish ; WARD,

Kenneth D. ; AL’ABSI, Mustafa ; KUMAR, Santosh: Are We There Yet?: Feasibility of

Continuous Stress Assessment via Wireless Physiological Sensors. In: Proceedings of

the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics.

New York, NY, USA : ACM, 2014 (BCB ’14). – ISBN 978–1–4503–2894–4, 479–488

[27] RAHMAN, Tauhidur ; ZHANG, Mi ; VOIDA, Stephen ; CHOUDHURY, Tanzeem: Towards

Accurate Non-intrusive Recollection of Stress Levels Using Mobile Sensing and Contextual

Recall. In: Proceedings of the 8th International Conference on Pervasive Computing

Technologies for Healthcare. ICST, Brussels, Belgium, Belgium : ICST (Institute

for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2014

(PervasiveHealth ’14). – ISBN 978–1–63190–011–2, 166–169

[28] SCHICKLER, Marc ; REICHERT, Manfred ; PRYSS, Rüdiger ; SCHOBEL, Johannes

; SCHLEE, Winfried ; LANGGUTH, Berthold: Entwicklung mobiler Apps: Konzepte,

Anwendungsbausteine und Werkzeuge im Business und E-Health. Springer Vieweg, 2015

(eXamen.press). http://dbis.eprints.uni-ulm.de/1320/

[29] SCHOBEL, Johannes ; PRYSS, Rüdiger ; REICHERT, Manfred: Using Smart Mobile Devices

for Collecting Structured Data in Clinical Trials: Results From a Large-Scale Case Study. In:

28th IEEE International Symposium on Computer-Based Medical Systems (CBMS 2015),

IEEE Computer Society Press, June 2015, 13–18

[30] SCHOBEL, Johannes ; SCHICKLER, Marc ; PRYSS, Rüdiger ; MAIER, Fabian ; REICHERT,

Manfred: Towards Process-Driven Mobile Data Collection Applications: Requirements,

105

http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-1/
http://dbis.eprints.uni-ulm.de/1320/

Bibliography

Challenges, Lessons Learned. In: 10th Int’l Conference on Web Information Systems and

Technologies (WEBIST 2014), Special Session on Business Apps, 2014, 371–382

[31] SCHOBEL, Johannes ; SCHICKLER, Marc ; PRYSS, Rüdiger ; NIENHAUS, Hans ; REICHERT,

Manfred: Using Vital Sensors in Mobile Healthcare Business Applications: Challenges,

Examples, Lessons Learned. In: 9th Int’l Conference on Web Information Systems and

Technologies (WEBIST 2013), Special Session on Business Apps, 2013, 509–518

[32] SCHOBEL, Johannes ; SCHICKLER, Marc ; PRYSS, Rüdiger ; REICHERT, Manfred: Process-

Driven Data Collection with Smart Mobile Devices. Version: 2015. http://dbis.

eprints.uni-ulm.de/1136/. In: 10th International Conference on Web Information

Systems and Technologies (Revised Selected Papers). Springer, 2015 (LNBIP 226), 347–

362

[33] SURGUY, Maks: Differences between Laravel 3 and Laravel 4. http://maxoffsky.com/

code-blog/differences-between-laravel-3-and-laravel-4/. Version: 2013.

– [Online; accessed 8-June-2016]

[34] VENNERS, Bill: Orthogonality and the DRY Principle. http://www.artima.com/intv/

dry.html. Version: 2003. – [Online; accessed 8-June-2016]

[35] W3SCHOOLS: Browser Display Statistics. http://www.w3schools.com/browsers/

browsers_display.asp. Version: 2016. – [Online; accessed 8-June-2016]

[36] WANG, Rui ; CHEN, Fanglin ; CHEN, Zhenyu ; LI, Tianxing ; HARARI, Gabriella ; TIGNOR,

Stefanie ; ZHOU, Xia ; BEN-ZEEV, Dror ; CAMPBELL, Andrew T.: StudentLife: Assessing

Mental Health, Academic Performance and Behavioral Trends of College Students Using

Smartphones. In: Proceedings of the 2014 ACM International Joint Conference on

Pervasive and Ubiquitous Computing. New York, NY, USA : ACM, 2014 (UbiComp ’14).

– ISBN 978–1–4503–2968–2, 3–14

[37] WEPPNER, Jens ; LUKOWICZ, Paul ; SERINO, Silvia ; CIPRESSO, Pietro ; GAGGIOLI, Andrea

; RIVA, Giuseppe: Smartphone Based Experience Sampling of Stress-related Events. In:

Proceedings of the 7th International Conference on Pervasive Computing Technologies for

Healthcare. ICST, Brussels, Belgium, Belgium : ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering), 2013 (PervasiveHealth ’13). –

ISBN 978–1–936968–80–0, 464–467

[38] WIKIPEDIA: Single source of truth — Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/w/index.php?title=Single_source_of_truth&

oldid=712438403. Version: 2016. – [Online; accessed 8-June-2016]

106

http://dbis.eprints.uni-ulm.de/1136/
http://dbis.eprints.uni-ulm.de/1136/
http://maxoffsky.com/code-blog/differences-between-laravel-3-and-laravel-4/
http://maxoffsky.com/code-blog/differences-between-laravel-3-and-laravel-4/
http://www.artima.com/intv/dry.html
http://www.artima.com/intv/dry.html
http://www.w3schools.com/browsers/browsers_display.asp
http://www.w3schools.com/browsers/browsers_display.asp
https://en.wikipedia.org/w/index.php?title=Single_source_of_truth&oldid=712438403
https://en.wikipedia.org/w/index.php?title=Single_source_of_truth&oldid=712438403

Name: Bojan Klečina Student ID: 713280

Declaration of Academic Integrity

I hereby confirm that this work is original and that if any passage(s) or diagram(s) have been

copied from academic books, papers, the Web or other sources, these are clearly identified by

the use of quotation marks and the references are fully cited. I certify that, other than where

indicated, the work attached is solely my own work.

Ulm, .

Bojan Klečina

	Introduction
	Tracking stress at the workplace
	Motivation
	Track Your Tinnitus

	Generalizing TYT
	Outline
	Concept overview
	Mobile stress tracking
	Personalized feedback
	Extensibility

	Content overview

	Related work
	Requirements
	Use cases
	Guest
	Administrator
	User

	Functional requirements
	General
	Questionnaire
	Question
	User group
	User
	Results

	Non-functional requirements
	User interface requirements
	System requirements

	Architecture
	Overview
	General architecture
	Primary usage scenarios

	Static structure
	Domain model
	Server
	Client

	Dynamic structure
	Register user
	Create questionnaire
	Edit questionnaire
	Fill in questionnaire
	Coping advice

	User interface design
	Dialog structure
	Page layout
	Visual design

	Prototypical implementation
	Utilized software and technology
	Laravel 5
	AngularJS
	JWT
	JSON API

	Implementation details
	Dynamic translation system
	Version control
	Model inheritance and user roles

	Client
	Initially hidden slider handle

	Conclusion
	Summary
	Self-assessment

	Future development

	Bibliography

