A Lightweight Process Engine for
Enabling Advanced Mobile Applications

Johannes Schobel, Riidiger Pryss, Marc Schickler, Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Ulm, Germany
{johannes.schobel, ruediger.pryss, marc.schickler, manfred.reichert}@uni-ulm.de

Abstract. The widespread dissemination of smart mobile devices offers
new perspectives for timely data collection in large-scale scenarios. How-
ever, realizing sophisticated mobile data collection applications raises
various technical issues like the support of different mobile operating
systems and their platform-specific features. Often, specifically tailored
mobile applications are implemented in order to meet particular require-
ments. In this context, changes of the data collection procedure become
costly and profound programming skills are needed to adapt the respec-
tive mobile application accordingly. To remedy this drawback, we devel-
oped a model-driven approach, enabling end-users to create mobile data
collection applications themselves. Basis to this approach are elements for
flexibly defining sophisticated questionnaires, called instruments, which
not only contain information about the data to be collected, but also
on how the instrument shall be processed on different mobile operating
systems. For the latter purpose, we provide an advanced mobile (kernel)
service that is capable of processing the logic of sophisticated instruments
on various platforms. The paper discusses fundamental requirements for
such a kernel and introduces a generic architecture. The feasibility of this
architecture is demonstrated through a prototypical implementation. Al-
together, the mobile service allows for the effective use of smart mobile
devices in a multitude of different data collection application scenarios
(e.g., clinical and psychological trials).

Keywords: Mobile Process Engine, Mobile Data Collection, Smart Mo-
bile Device, Mobile Process, Mobile Healthcare.

1 Introduction

Smart mobile devices are increasingly used in everyday life. In line with this
trend, application domains for which large amounts of data need to be collected
(e.g., clinical trials) will significantly benefit from the use of mobile applications
and data collection procedures will change. Corresponding scenarios range from
fitness trackers up to applications monitoring vital parameters of chronically
ill patients. However, realizing such mobile data collection applications requires
profound knowledge on the demands from real-world scenarios.

In various large-scale mobile data collection applications we realized (cf. Ta-
ble , domain experts (e.g., medical doctors and psychologists) were provided

with specifically implemented mobile applications. The electronic questionnaires
used in these scenarios (so-called instruments) not only provide questions, but
also comprise sophisticated features for guiding their processing (i.e., answer-
ing). For example, instruments require a proper navigation between questions
taking already given answers into account. Moreover, instruments need to be
well tailored to provide statistically valid results. Note that in many application
scenarios (e.g., clinical trials) this is of utmost importance. Recent approaches
aim to realize such instruments as smart mobile applications to reduce the overall
workload for domain experts by digitally transforming paper-based ways of col-
lecting data. Compared to traditional paper-based questionnaires, the collected
data needs not be digitized anymore after completing an instrument, significantly
reducing transcription errors.

To cope with these drawbacks, we propose a generic framework [25] that
allows domain experts to rapidly create executable, robust data collection in-
struments. According to this end-user programming approach, an instrument
can be defined using a high-level modeling language (cf. Fig. 1} (©). The result-
ing specification is then automatically transformed into an executable process
model (cf. Fig.[l} () using a well-defined mapping (cf. Fig. [l (2)). Subsequently,
this process model can be deployed to mobile process engines running on smart
mobile devices (cf. Fig. |1} @). Providing such a process engine running as a
mobile service on heterogeneous smart mobile devices, raises additional chal-
lenges. In particular, a modular process engine architecture is required to enable
the processing of instruments on smart mobile devices. As the latter are often
limited with respect to resources, a lightweight, but robust process engine is in-
dispensable. The following requirements were derived from various case studies
and mobile application engineering projects conducted (cf. Table [1)) and must
be considered in this context:

R1 Enable offline execution. The mobile process engine shall allow for an
offline execution of deployed process models as well as for the storage of
the collected data on the smart mobile device. For example, in the Burundi
project (cf. Table [1} #4), an international team of psychologists could not
rely on stable Internet connection in rural areas.

#[Data Collection Applications [Country [CN[Releases[Instances
1 |Tinnitus Research World-Wide o 3 > 20,000
2 |Risk Factors during Pregnancy Germany o 5 > 1,000
3 |Risk Factors after Pregnancy Germany o 1 > 100
4 |PTSD in War Regions Burundi . 5 > 2,200
5 |PTSD in War Regions Uganda o 1 > 200
6 |Adverse Childhood Experiences Germany . 3 > 150
7 |Learning Deficits among Medical Students Germany . 3 > 200
8 |Supporting Parents after Accidents of Children |Switzerland o 5 > 2,500

[Sum ¥ [[[24 [> 26,350

CN = Complex Navigation; PTSD = Posttraumatic Stress Disorder

Table 1. Realized Mobile Data Collection Applications

1) Instrument (Processing Logic) 4) Mobile Process Engine (Focus of this Paper)

Model Data Collection Mobile Data Collection Application
Instrument
Design Complex moduie1 | [Modue2 ||, [Moduten
Navigation Logic u w - ul
Customized Executable togic Logic . Logc

Components
Process Engine

Wodeing ,—|—| eeanon | | 1=
core
Lightweight Process L Monitoring |_ Anatysis

Engine for E r ~
Database & ORM
P — T:

\N-

and Monitoring

Integrate Hardware

/1nternal Hardware)

Lol

Queitlonnalre maps to Process '.'
................. . Alcohol _ Cigarette
Ipstance Instance Cigareties + Aloohol Ea«aaemem : Consumption Consumption
: Process Technology -=" H
H 1 (e.g., Process Model) ,Eeadmess:
~ H [R— i
N \ ' py e,
Questionnaire | maps to Process — i St Y EIContolFlow _»" _ =72 Jwiten
\ T L = WrteAccess
/ Model Model \ \r\ \ h L e
. \ ’

\
T 1 1 \ N
.
A S [saron ey N\ N
/

Page maps to Process
8 Activity

! (Cigarettes d E""“W
& Alcohol \ T
\
ET_DataFlow \
______ Pt - oTm == (Cigarettes = yes)
ol AND (Alcohol = no)
v eke

Lpocoeocell

LN IllI "xomn
Navigation Operation Based Y N
A maps to Process on Already Given Answers EORsphl \Eiconlmlﬂuwineiau\t
Data Element
2) Mapping 3) Process Model

Fig. 1. Overall Idea: 1) Modeling a data collection instrument, 2 & 3) Mapping the
instrument to a process model, 4) Executing instances on smart mobile devices using
a mobile process engine

R2 Enable flexible processing. The mobile process engine must support do-
main experts in changing (i.e., adapting) instruments during run-time. For
example, the order of questions or labels often need to be flexibly changed
in order to foster understandability of an instrument or to make it more
convenient.

R3 Integrate sensors. The mobile process engine shall allow for the integra-
tion of sensors (e.g., heartrate sensors) in order to further enhance the value
of the data collected. For example, [19] integrates the microphone of the
smart mobile device to analyze the sound level of the environment during
the processing of an instrument (i.e., during answering the questionnaire).

R4 Provide customizable user interfaces. The mobile process engine run-
ning on the smart mobile device shall dynamically create the user interface
of the respective instrument based on its underlying model. For example, all

information related to the structure, processing logic and design need to be
taken into account by the rendering mechanism.

R5 Enable multilingualism. The mobile process engine shall enable domain
experts to provide instruments in multiple languages. For example, three lan-
guages need to be provided for the instruments used in the Burundi project
(cf. Table[l] #4).

R6 Support of different releases. The mobile process engine shall be able
to cope with different releases of a data collection instrument. For example,
one release of a particular instrument may only be suitable for underage
subjects, while adults shall use another one.

R7 Enable real-time monitoring. The mobile process engine shall allow
monitoring the current state of the running instances of an instrument. This
allows, for example, to indicate the percentage of completion or to annotate
the process model with run-time information.

R8 Enable multi-user support. The mobile process engine shall be able to
handle multiple users as well as to distinguish between different roles. For
example, when detecting risks during pregnancy (cf. Table |1} #2) certain
questions may only be answered by a person with role medical doctor,
while others may be answered by the pregnant woman itself.

This paper presents a lightweight mobile process engine for executing data
collection instruments on smart mobile devices. In particular, this mobile process
engine meets requirements R1 — R8. Moreover, a component for dynamically ex-
tending instruments is presented, which enables flexible adaptations of already
deployed mobile applications during run-time. As opposed to hard-coded mobile
data collection applications, changes of an instrument do not require its reim-
plementation and redeployment to respective smart mobile devices. In addition,
data from multiple releases must not be merged manually in order to avoid
inconsistencies. Finally, the validity of instruments can be ensured more easily.

Altogether, the approach enables flexibility regarding the design and execu-
tion of data collection instruments on smart mobile devices [24]. The remainder of
the paper is structured as follows: Section [2discusses fundamental requirements.
Section [3] presents the architecture of the mobile engine, i.e., its Ezecution and
Analysis components, whereas Section [illustrates their use in practice. Section
discusses related work and Section [6] concludes the paper and gives an outlook.

2 Background: The QuestionSys Framework

This section introduces fundamentals of the QuestionSys fraumevvorkEI7 focusing
on the lifecycle phases related to mobile data collection. Both, the architecture
of the framework and the mapping of paper-based instruments to mobile data
collection applications are described.

To properly support domain experts in creating a mobile data collection
instrument, all phases of its lifecycle need to be addressed. Note that related

! http://www.uni-ulm.de/en/in/dbis/research/projects/questionsys.html, accessed: July 13th,

2016

End-User Programming

pecific Requiremehts

Archiving &
Versioning

Design &
Modeling

Mobile Data
monitoring| Collection Lifecycle

Enactment &
Execution

Execution & Monitoring

Fig. 2. Mobile Data Collection Lifecycle

approaches do not provide such an explicit consideration of the different phases
for mobile data collection. In the light of a generic framework for mobile data
collection applications, lifecycle management is crucial. Fig. [2| depicts the life-
cycle of a mobile data collection application, which consists of five phases. The
Design & Modeling phase shall enable domain experts (i.e., end-users) to create
sophisticated mobile data collection applications with a complex logic (i.e., end-
user programming). The Deployment phase deploys the latter on smart mobile
devices. During the FEnactment €& FExecution phase, multiple instances of the
respective data collection instrument may be created and executed in a robust
manner on the smart mobile devices. The Monitoring € Analysis phase, in turn,
deals with the real-time analysis of the data collected on the smart mobile de-
vice. Finally, the Archiving & Versioning phase enables release management for
mobile data collection instruments.

The QuestionSys framework we developed, provides an architecture support-
ing all phases of this lifecycle. As depicted in Fig. [3] the designed instrument
model (@) as well as rules for analyzing the data collected (2) are mapped to XML
documents. The latter are then automatically deployed to the respective smart
mobile devices (3) capable of executing this model. Log files capturing execution
information are stored using an XML structure to allow for their subsequent
analysis (@). In this context, security () is ensured based on state-of-the-art data

PROCESS-DRIVEN

Integrate Domain I_ Create Collection Instruments Using Relieve IT Experts Through . N —l
N Generate Mobile Applications Based On Process Models
Experts Process Technology | Automatic Process Management |

Flexible Mobile Data Collection Clients

Cigarettes Consumption

How many Cigarettes do you smoke each
day?

Domain Expert
e.g., Study Director
Cigarettes Consumption

How many Cigarettes do you smoke

cach day? |
o v

Web Service & Database

Domain Expert
e.g., Analyst

Domain Expert Participant
e.g, Interviewer e.g., Study Subject

w Underage Alcohol Usage:
(oge < 18) && ac. = true)
-
L L | Execution Log
oI | Files X
: :

| Execution Log
| Files (XML)

Fig. 3. QuestionSys Architecture: Supporting Flexible Mobile Data Collection

encryption techniques. Note that the communication required for steps @ — &)
relies on Web Services [26]. Based on this automation, many challenging require-
ments of mobile data collection application projects are mitigated. For example,
when releasing new versions of already existing instruments, IT experts are no
longer required. Note that release management constituted the main cost driver
in the context of the aforementioned mobile data collection projects (cf. Table
1). Finally, changes solely affecting the XML documents require implementation
adaptations to be performed by IT experts. For example, new legal regulations
may cause changes of the used data encryption algorithm.

In QuestionSys, the structure of an instrument is directly mapped to an
executable process model, which then can be enacted by a lightweight process
engine running on smart mobile devices. Using this model-driven approach, a
separation of the processing logic of an instrument from actual application code
[22] of the data collection application becomes possible. Thereby, a process model
acts as the schema for executing instrument instances. This model, in turn,
consists of process steps (i.e., activities) and edges expressing the control and
data flow between them. Additionally, gateways (e.g., AND and XOR-splits)
allow for more complex control flow structures.

Both the logic and the content of a paper-based instrument may be mapped
to a process model using the described approach. In particular, pages of a ques-
tionnaire are mapped to process activities, whereas gateways matches respective
navigation logic. Furthermore, questions correspond to process data elements
connected to activities, which, in turn, may be used to store given answers (cf.

Fig. |1} @ Mapping).

The data collection instruments may be created by domain experts using a
process-aware configurator component (cf. Fig. |3} &). The latter provides an
abstract and comprehensible modeling notation to specify the flow (i.e., process-
ing) logic of the mobile data collection instrument. Navigation operations (e.g.,
decisions based on already given answers) as well as the data elements of instru-
ments are modeled. Data elements, in turn, are connected to pages. Note that the
latter are important for rendering instruments as they represent single screens
on the smart mobile device and allow thematically structuring a questionnaire.
In the context of questionnaire instruments, data elements represent questions,
whereas navigation allows skipping questions (or even pages) depending on pre-
viously given answers. Finally, the configurator component allows defining rules
for the automated evaluation of gathered data (cf. Fig.|3] ®).

The work presented in this paper focuses on the Enactment & FEzxecution
as well as the Monitoring € Analysis phases. In this context, a mobile service
providing a lightweight process engine for executing data collection instruments
is developed. Furthermore, an approach for dynamically extending the logic of
the already running smart mobile application is presented.

3 QuestionSys Mobile Service

This section presents the overall architecture of the realized mobile process en-
gine. Furthermore, insights into the Ezecution and Analysis components are
provided.

The lightweight mobile process engine we developed applies a service-driven
approach. The engine comprises five components (cf. Fig. |4l left part): The most
important one constitutes the core of the engine providing the data model. The
latter represents the process model as well as components enabling robust inter-
actions with process instances (e.g., start or stop activities). Although the pro-
cess model relies on the ADEPT2 framework [2I], other process meta-models
may be used as well. For this purpose, the core provides functions to import
process models. Furthermore, it comprises operations to map one model to an-
other. The other components provide functions to support the different phases
[27] of enacting process models locally on smart mobile devices. Note that these
components only interact with the core itself and may be used as standalone
functions as well (i.e., not all components are required). For example, the Mon-
itoring component uses data provided by the Fxecution component to visualize
the current state of the process instance or to provide information on upcoming
process activities (e.g., delays or insufficient data). This loose coupling of the
components (e.g., no other dependencies between components exist) allows for
a customizable, but still lightweight mobile process engine.

The engine itself strictly follows the Manager pattern (cf. Fig. 4l right part).
Each component corresponds to one specific manager, providing high-level APIs
for interacting with the process engine. The main idea is to manage multi-
ple entities of the same type. As an example, consider the Ezecution com-
ponent, which offers an ExecutionManager for accessing functions related to

Interfaces for Communication
(Between Application and Core)
{_meeee_}— 2 cf. Section 3.1

— T} Libraries Execution

Model ing Libraries

Modeling Manager Runtime Manager
Process Model Creator Model Visualization Manager

Executable Component Creator ~ User Manager
Inte

Execution Manager

;
§
Instance Manager -3
3
[

8
S
z
g
&

Execution
Manager

(0

Model Visualization Manager Worklists
HighLevel Operations
AdHoc Changes
Verification

Data Model
User Authentication / Authorization
Import / Export

Monitoring Transformer

States, ENUMs, DataTypes
Monitoring Manager AnalySIS
KPI Manager
Libraries Rule Manager

Instance Manager
Runtime Manager Libraries
KPI Manager
Ol Evaluator
- O Each Module Provides Own
~ Libraries and Database]
-

Model Visualization Manager
L—{"nterface
No Dependencies Between Modules; [nterface]
Communication via Core

Fig. 4. Components of the Mobile Process Engine

Common Data Model; Basic

Functions; Core Implementation

Instance Manager
IJ

Analysis Manager

the execution of process instances. Note that each running instance has its
own InstanceManager, which manages control and data flow. Furthermore, the
RuntimeManager is used to execute a specific activity of an instance.

As shown in Fig. [d] several components provide similar functions. Consider,
for example, the ModelVisualizationManager provided by the Modeling, Eze-
cution and Monitoring component. In general, these components require differ-
ent functions of the respective managers (e.g., various notations) and, therefore,
must be implemented several times. For example, the Modeling component needs
to provide all elements of the process meta-model (e.g., process activities, data
elements, control and data flow), whereas the Execution component may only
provide information regarding the current and upcoming activities to be exe-
cuted. The interface shared for this manager, however, is defined by the core of
the mobile process engine. In addition, each component contains its own persis-
tence layer. For example, the Ezecution component stores information about the
current state of the enacted process instance (including user information, times-
tamps, data produced and consumed), whereas the Analysis component stores
evaluation rules as well as corresponding results for each process instance. These
separated databases, in turn, foster the modular design of the process engine.
Data between components, however, is shared through the core. Furthermore,
each component may provide additional libraries to enhance functionality. For
example, the Analysis component uses the Java Expression Language (JEXL)
[4] for dynamically evaluating data elements of process instances.

Smart Mobile Application

Resources User Interface EC User Interface

® A
L ®—
O=0= W Controller

O=0=
O=n= Executable
Colors Layouts Languages Component 2 (EC)
Model ° User Interface
3
| Libraries | £ Controller
£
- Model
Mobile Process Engine
Execution Manager Executable

Component 1 (EC)

¥
v Instance Manager User Interface

Controller

@ Model
Resources / Libraries

Ly Runtime Manager —

Interface 4

cf. Algorithm 1

Fig. 5. Enacting Executable Components (ECs) During Run Time

3.1 Mobile Execution Component

Recall that the mobile process engine runs as a service and may be embedded into
another application based on well-defined communication interfaces. The overall
interaction between the mobile data collection application and the lightweight
mobile process engine is shown in Fig.

First, the user, interacting with the smart mobile application, starts a new
instance of an instrument. The mobile data collection application, in turn, di-
rectly interacts with the process engine, which then provides access to the
ExecutionManager (1). The latter offers functions that allow users to control
a particular process instance (i.e., move to the next page of the instrument).
Second, the InstanceManager validates whether or not the current node may
be executed (e.g., if the user has appropriate access rights); all needed data ele-
ments are then provided (2). The node becomes activated and handed over by a
third step to the corresponding RuntimeManager, which is able to call the linked
executable component (EC). The latter covers several aspects. Its main function-
ality is to extract the main class file of the implementation of the EC as well
as to create a list of all required input and output variables for the component
to be called (3). Fourth, the RuntimeManager calls the respective component by
invoking its main method (® and passing both input and output lists to the EC.
Algorithm [1E| specifies how an EC is flexibly loaded and instantiated during run
time. As an EC can be seen as a Micro Service [16], it may provide sophisticated

2 Due to lack of space we only illustrate the algorithm for the Android platform.

Algorithm 1: Dynamically Loading an Executable Component

Data:

ctx: The current context of the application

nodeEC: Node containing meta information and the executable component

Result:

newEC: The instantiated EC to be used within the application

begin

ExecutableComponent ec = null;

String classPath = nodeEC.getClassPath();

String packagePath = nodeEC.getPackagePath();

String dexPath;

DexClassLoader dexLoader = null;

/* load the EC dynamically from an installed APK file */

/* get Android PackageManager to find the installed package */

7 final PackageManager pm = ctx.getPackageManager();

/* search for ApplicationInfo of installed application with specified package path
(Android 5.0 and higher: application id = package path) */

8 ApplicationInfo appInfo = pm.getApplicationInfo(packagePath,

PackageManager. GET_META_DATA);

/* get filepath for installed .APK file of application */

9 dexPath = applnfo.sourceDir;

/* create DexClassLoader for APK file, where optOutPath is a cache directory for
optimized loaded source files */

10 String optOutPath = ctx.getDir("random_name”,

Context. MODE_PRIVATE).get AbsolutePath();

11 dexLoader = new DexClassLoader(dexPath, optOutPath, null,

this.getClass().getClassLoader());

/* instantiate EC with given classPath and initialize its environment (specified in
the nodeEC) */

12 newEC = (ExecutableComponent) dexLoader.loadClass(classPath).newInstance();

13 newEC.setEnvironment(nodeEC.getEC(), packagePath, ctx);

14 return newEC;

15 end

[S A

logic as well as an user interface for interaction. Note that the EC may contain
its own resource files as well as libraries. In a fifth step, the EC user interfaces are
passed back to the ExecutionManager and the respective data collection appli-
cation. This allows the latter to embed it as Ul fragment inside the main user
interface (5). Note that interactions with the UI fragment of the EC (e.g., clicking
a button) are handled by the logic of the EC itself and not by the surrounding
mobile data collection application.

If the respective EC, which is executed as a mobile service, satisfies cer-
tain conditions (i.e., all mandatory elements are correctly filled in), it pro-
duces the canBeFinished event. The latter indicates that the coordinating
RuntimeManager will safely terminate the EC. Furthermore, all output variables
of the terminated EC are transferred back to the InstanceManager, which stores
them in the corresponding data elements of the process instance. Log files con-
taining the data collected during the execution of a specific instrument instance
may be accessed by other components using the ExecutionManager.

3.2 Mobile Analysis Component

The mobile analysis component allows for the analysis of instrument instance
collections following a rule-based approach. Fig. [f] describes the corresponding

Smart Mobile Application

(]

[] []

[] []

. []

User Interface A Mobile ! age => 20 !
Process — <3 ! weight => 74 :

[] []

L]

Controller height => 184

Engine
Model Log Files ’.

| coccccccscscscccccscscscscccccns
o
1 Core

L]

; Evaluation Rule

Evaluation Service | 31 age < 18 && functionB() > 25
[}

| 4
L4
4.’ -
A coalNec" J _
4 1 == ¥ 2| |cccccccccccccafleccccccaa M
Rule Loader Context Manager

K] ¥
Rules 3 @_I
| Rule Resolver Ezependency Manager | functionB()
. y 5
L%/ Rule Evaluator —
cf. Algorithm 2 ~
]

Fig. 6. Analyzing an Instrument Instance Using Evaluation Rules

procedure. The rules, which are created by domain experts, are stored locally in
the database of the Analysis component. First, the user starts the analysis by
selecting a specific process instance (i.e., instrument instance). This request is
then sent to the manager coordinating the further steps. For example, all relevant
rules must be loaded (1). Second, for the specific process instance, execution log
data is requested from the Fzecution component in order to create the Context
(2 of the analysis. Both, the selected rules and the analysis context are then
sent to the RuleResolver, which then replaces variables with the respective
data values collected (3.

Note that an evaluation rule, in addition to variables and simple comparisons,
may comprise user-defined functions specific to the respective application sce-
nario. For example, the calculateBodyMassIndex(int weight, int height)
function may be used to detect obesity of the subjects interviewed. However,
as user-defined functions depend on the respective use case of the mobile data
collection application as well as the instrument, the latter are not directly inte-
grated with the analysis component. Instead, a DependencyManager (2) invokes
the function needed using an approach similar to the one for calling executable
components. Note that these components only need to provide the logic realizing
the required function (e.g., calculate the BodyMassIndex), but need not to pro-
vide a user interface. Finally, the RuleEvaluator (5) checks for the satisfiability
of the respective rule, the given context, and the functions needed. The result is
returned to the smart mobile application, which may provide additional infor-
mation to the user. For example, contact details of a physician may be displayed
if a specific behavior is detected when analyzing the subject’s data. Algorithm
[2] shows, how a specific instrument instance is analyzed using a given rule.

Algorithm 2: Evaluating an Instance Using Rules

Data:

instance: The instance to be analyzed
rule: The rule to be evaluated

ctx: The current context of the application

Result:
report: The report containing information about the evaluation
1 begin
2 EvaluationReport report = new EvaluationReport();
3 RuleEvaluator ruleEngine = new RuleEngine();
4 Expression ruleExpression = ruleEngine.createExpression(rule.getExpression());
5 RuleContext ruleContext = new RuleContext();
/* Load and instantiate dependencies from external JAR file */
6 for ClassDependency cd : rule.getDependencies() do
7 Object op =
loader.loadClass(cd.getDependency()).getConstructor(Instance).newInstance(instance);
/* Add operation object to ruleContext */
8 ruleContext.set(cd.getDependency (), op);
9 end
/* Add data to ruleContext. ruleContext is basically a key-value-store */
10 for DataValue dv : inst.getDataValues() do
11 | ruleContext.set(dv.getElementName(), dv.getValue());
12 end
/* Evaluate Expression on created ruleContext */
13 if (Boolean)ruleExpression.evaluate(ruleContext) then
14 | report.setResultText(rule.getPositiveText(), ctx.getLocation());
15 else
16 | report.setResultText(rule.getNegativeText(), ctx.getLocation());
17 end
18 return report;
19 end

4 Evaluation

In order to demonstrate the feasibility of the approach, the QuestionSys mo-
bile service we implemented is applied to real-world scenarios. Furthermore, we
discuss selected issues.

4.1 Mobile Service in Practice

In order to validate the presented architecture, a mobile application supporting
scientists in collecting trial data was realized and applied in practice.

Fig. [7] presents screenshots of this mobile data collection application. Note
that the overall user interface as well as resources (e.g., icons, color schemes)
are provided by the main application itself. The user interface of the respective
data collection form, however, is provided and rendered by the executable com-
ponent (EC) independently. This executable component may contain additional
resources (e.g., to overwrite existing styles) or add component-specific images.
The Android-specific floating button for proceeding to the next screen of the ap-
plication (i.e., next page of the instrument), in turn, is provided and rendered by
the main application. This button, however, may only be displayed if the inter-
viewer has answered all mandatory questions. The executable component, there-
fore, produces the canBeFinished event indicating that it may be terminated.

: Data Collection Application S ~
.
.

-
P et b e e oo
poa—

Ul Fragment Created by Executable L
Component and Mobile Context r

Fig. 7. Realized Mobile Data Collection Application

Clicking the floating button will try to terminate the currently running exe-
cutable component and persist all collected data. Finally, the InstanceManager
evaluates the next activity in the respective process instance to be started.
The bottom row of Fig. E presents a custom input element (i.e., it is not
available by default) that may be used to enter multiple non-contiguous ranges.
Consider, for example, the question “Select the pregnancy weeks where complica-
tions have occurred?” from an instrument used in the context of pregnancies (cf.
Table #2, #3). If the woman interacting with the smart mobile device selects
the range input field, a modal dialog is displayed, providing available values (i.e.,
values from 1 to 30, depending on the actual pregnancy week). When closing the
dialog, values are directly marked within the input field indicating the selection.

4.2 Discussion

This section discusses selected issues of the QuestionSys mobile service with
respect to the requirements R1 — R8 (cf. Section .

A1 Implementation challenges. When designing the architecture of the mo-
bile engine, extensibility was a particular goal. Specifically, the concept of
executable components fosters the service-driven approach as the latter may
be controlled by the engine itself. Altogether, an easy adaptation of data

collection applications becomes possible, as only these components have to
be adapted when new application-specific requirements arise.

A2 Concept evaluation. Section introduced an advanced mobile data col-
lection application from the psychological domain. In order to get valuable
information regarding the acceptance of different users involved in the process
of data collection, several pre-studies were conducted. Furthermore, a field
study is currently on its way. Although mobile data collection applications
have already proven feasibility in different settings [I5l2], this user-driven
approach needs to be evaluated more deeply in additional studies.

A3 Alternative approaches. Apparently, there exists other approaches to
implement mobile data collection applications instead of mapping instru-
ments to process models. For example, hard-coding applications may still
be acceptable, depending on the respective application scenario. However,
this would limit domain experts in flexibly adjusting their instruments. To
realize these applications, profound programming skills are necessary.

A4 Multi-user and role support. We need to evaluate, which approach for
supporting multiple users interacting within respective mobile data collection
scenarios may be applicable. On the one hand, a dedicated user management
handled by the lightweight process engine itself might be suitable. On the
other, Android offers a sophisticated user management on its own. In order to
use this approach, however, the engine must be installed as service accessible
for users running on respective smart mobile devices.

On one hand, the process-driven modeling supports domain experts to create
mobile data collection instruments on their own. On the other, process technol-
ogy enables the flexible execution of instruments on smart mobile devices. There-
fore, a framework enabling such advanced mobile data collection applications on
smart mobile devices is indispensable.

5 Related Work

Two categories of related work need to be discussed in the context of this paper.

5.1 Mobile Process Engines

Executing business processes on mobile devices has been addressed by several
papers. Some of them provide proprietary execution languages specifically de-
signed for the respective application, whereas others provide middleware services
or frameworks enabling developers to create process-aware mobile applications.

In [12], a context-aware execution language for business processes is pre-
sented. As one of the core concepts of this language, specific aspects of the
mobile device are considered when executing a process instance. For example,
the battery status or the current location of end-users might affect the execu-
tion (e.g., decisions within XOR gateways). [§] presents extensions for WS-BPEL
when integrating mobile devices into business processes. In certain scenarios the

number of available mobile devices to be coordinated is unknown. In order to
cope with this issue, Partner links bound to multiple endpoints are introduced.

In [18], an iPad application supporting medical staff during ward rounds is
presented. Besides reviewing medical records, the staff may add further informa-
tion during rounds. However, if certain keywords are documented, a correspond-
ing process is started (e.g., the keyword blood test may trigger process laboratory
analysis) using a lightweight process engine. Although the concept of automati-
cally invoking processes based on user input data is promising, the functionality
of the respective engine is quite limited, as gateways are not supported, but
only sequences of activities. Besides this limitation, only simple tasks may be
executed, which need to be directly implemented in the iPad application.

A workflow engine that can run on PDAs is introduced in [I7J9IGI28/T3].
All approaches use WS-BPEL to specify the business processes to be executed.
Furthermore, they rely on Web Service standards (e.g., WSDL and SOAP) to
specify the activities to be called. Some approaches use HTML for displaying a
user interface. In order to execute specific activities, some use own extensions
for WS-BPEL, whereas others ship with an Apache Server in order to execute
scripts. However, all approaches provide core activities, like a browser for dis-
playing user forms, maps, a calendar and basic messaging services.

In the ROMEA4EU project [23], a scenario for disaster management, where
no stable Internet connection is available, is addressed. Particularly, the coordi-
nation of emergency teams must be controlled and organized in the field, which
is provided by a process engine running on the smart mobile device of the team
leader. Note that this work relies on WS-BPEL regarding the definition and
execution of the processes (supporting activity sequences, conditional branches,
and parallel routing). The disaster management leader may assign tasks to other
team members (i.e., they can work on respective tasks) or automatic services in
order to complete the process. As all mobile devices are connected to the leader
(e.g., via ad-hoc network), this device acts as orchestrator within the service-
oriented architecture, posing a critical point-of-failure.

In [20], a process engine for smart mobile devices is presented. It allows
defining process models on a server component, which are then fragmented and
deployed on the respective mobile devices for execution. However, the authors
only consider the FEzecution phase to be enacted on the smart mobile device
itself. Other phases of the BPM lifecycle need to be covered by the server.

5.2 Model-Driven Approaches

Obviously, there is a lot of related work on model-driven approaches. However,
in the context of this paper, we focus on model-driven architectures and software
development with respect to smart mobile devices.

In [I0], an approach for model-driven software development for mobile ap-
plications is presented. The authors argue that model-driven development is
well understood in regular desktop and server scenarios, but not discussed in
detail for smart mobile devices so far. Therefore, the authors introduce a cross-
development approach for the latter. Software developers are able to describe the

problem (e.g., the business scenario, data types or device features needed) using
a meta-programming language, which is then translated to respective platform-
specific native code (e.g., Java for Android). Furthermore, it allows automat-
ically generating backend code for a server component offering common CRUD
operations for the interaction with respective generated mobile applications.

Similar to the previously mentioned approach, [5] introduces a WYSIWYG
editor to create mobile applications. Furthermore, the approach borrows tech-
niques known from Apple’s Storyboard. The modeled application is mapped to
a platform independent model and finally compiled to a native language and
deployed to respective platforms.

[7 discusses a framework that allows specifying services that run on smart
mobile devices. The authors rely on the XForms standard, which holds informa-
tion about the model and user interface in order to manipulate the latter. The
model is then transferred to the Service Broker component for the actual process-
ing. In order to allow for an easy development of respective XForms and services,
the presented approach provides a graphical editor implementing a well-defined
domain-specific language. The model derived from this language may then be
transformed to a graphical user interface running on smart mobile devices. Using
this graphical notation, decisions may be modeled as well, allowing adapting the
user-interface and mobile application during run time.

[11] introduces an approach for enabling domain experts to model care plans
for people suffering from chronic diseases. A code generator then transforms
this plan to an Adobe Flash or DHTML application which can be installed on
smart mobile devices. This enables physicians to provide mobile applications
specifically tailored to one patient, triggering reminders or asking about his
physical wellbeing.

6 Summary and Outlook

Based on the insights we gained in several data collection scenarios, this pa-
per advocates the need for sophisticated mobile services running on smart mo-
bile devices. In order to mitigate the efforts between IT and domain experts, a
sophisticated framework allowing domain experts to model data collection in-
struments themselves was proposed. In this context, a mobile service became
necessary to process instances of instruments directly on smart mobile devices.
For this purpose, we present a flexible and modular architecture of a lightweight
process engine. In particular, this architecture allows extending the functional-
ity of already installed mobile data collection applications during run-time based
on the concept of executable components. These components allow providing
domain-specific logic as well as dynamically generated user interfaces for ac-
tivities executed by the process engine. Furthermore, the Analysis component
enables comprehensive analysis of the data collected during run time based on
(user-defined) rules. Along an application scenario, benefits of using presented
mobile services were discussed.

To further validate the presented approach, a study for evaluating the user
interface as well as the user experience working with the realized mobile data col-
lection application is currently conducted. In particular, differences between the
latter and paper-based questionnaires considering complex navigation features
are evaluated. In addition, the novel interaction elements (e.g., slider with no
initial state) need to be evaluated. In order to leverage the overall functionality
of the proposed lightweight mobile process engine, process mining algorithms [I]
and approaches known from business intelligence [3] may be added to the Anal-
ysis component. Also, Monitoring may benefit from complex event processing
techniques [I4]. Finally, executable components using sensors may be realized
allowing domain experts to collect additional information during enactment.

Altogether, the presented approach will significantly change the way instru-
ments may be used in practice (e.g., clinical trials). Moreover, due to its flexi-
bility, the proposed architecture may be suitable for other life domains relying
on collecting and processing data in mobile scenarios.

References

1. Van der Aalst, W.M., Weijters, A.: Process mining: a research agenda. Computers
in Industry 53(3) (2004)

2. Ainsworth, J., Palmier-Claus, J.E., Machin, M., Barrowclough, C., Dunn, G.,
Rogers, A., Buchan, I., Barkus, E., Kapur, S., Wykes, T., et al.: A comparison
of two delivery modalities of a mobile phone-based assessment for serious mental
illness: native smartphone application vs text-messaging only implementations.
Medical Internet Research 15(4) (2013)

3. Anandarajan, M., Anandarajan, A., Srinivasan, C.A..: Business Intelligence
Techniques: A Perspective from Accounting and Finance. Springer Science &
Business Media (2012)

4. Apache Commons: Java Expression Language (JEXL). http://commons.apache.
org/proper/commons-jexl/, last visited: July 10, 2016

5. Balagtas-Fernandez, F., Tafelmayer, M., Hussmann, H.: Mobia Modeler: Easing
the Creation Process of Mobile Applications for Non-Technical Users. In: Proc of
the 15th Int’l Conf on Intelligent User Interfaces. pp. 269-272. ACM (2010)

6. Baresi, L., Maurino, A., Modafferi, S.: Workflow Partitioning in Mobile Information
Systems. Proc. IFIP TC8 Working Conf on Mobile Information Systems pp. 93-106
(2004)

7. Dunkel, J., Bruns, R.: Model-Driven Architecture for Mobile Applications. In: Int’]
Conf on Business Information Systems. pp. 464-477. Springer (2007)

8. Hackmann, G., Gill, C., Roman, G.C.: Extending BPEL for interoperable pervasive
computing. In: Pervasive Services, IEEE Int’l Conf on. pp. 204-213. IEEE (2007)

9. Hackmann, G., Haitjema, M., Gill, C., Roman, G.C.: Sliver: A BPEL workflow
process execution engine for mobile devices. In: Service-Oriented Computing
(ICSOC 2006), pp. 503-508. Springer (2006)

10. Heitkotter, H., Majchrzak, T.A., Kuchen, H.: Cross-Platform Model-Driven
Development of Mobile Applications with md2. In: Proc of the 28th Annual ACM
Symp on Applied Computing. pp. 526-533. ACM (2013)

11. Khambati, A., Grundy, J., Warren, J., Hosking, J.: Model-Driven Development of
Mobile Personal Health Care Applications. In: Proc of the 23rd IEEE/ACM Int’l

http://commons.apache.org/proper/commons-jexl/
http://commons.apache.org/proper/commons-jexl/

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Conf on Automated Software Engineering. pp. 467-470. IEEE Computer Society
(2008)

Kocurova, A., Oussena, S., Komisarczuk, P.; Clark, T.: MobWEL - Mobile Context-
Aware Content-Centric Workflow Execution Language. In: 3rd Int’l Conf on
Advanced Collaborative Networks, Systems and Applications. pp. 61-70 (2013)
Kunze, C., Zaplata, S., Lamersdorf, W.: Mobile Processes: Enhancing Cooperation
in Distributed Mobile Environments. Journal of Computers 2(1), 1-11 (2007)
Luckham, D.C.: Event Processing for Business: Organizing the Real-Time
Enterprise. John Wiley & Sons (2011)

Mudano, A.S., Gary, L.C., Oliveira, A.L., Melton, M., Wright, N.C., Curtis, J.R.,
Delzell, E., Harrington, T.M., Kilgore, M.L., Lewis, C.E., et al.: Using tablet
computers compared to interactive voice response to improve subject recruitment
in osteoporosis pragmatic clinical trials: feasibility, satisfaction, and sample size.
Patient Preference and Adherence 7, 517 (2013)

Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media, Inc. (2015)

Pajunen, L., Chande, S.: Developing workflow engine for mobile devices. In: 11th
Int’l Conf Enterprise Distributed Object Computing. pp. 279-279. IEEE (2007)
Pryss, R., Mundbrod, N., Langer, D., Reichert, M.: Supporting medical ward
rounds through mobile task and process management. Information Systems and
e-Business Management 13(1) (February 2015)

Pryss, R., Reichert, M., Langguth, B., Schlee, W.: Mobile Crowd Sensing Services
for Tinnitus Assessment, Therapy and Research. In: IEEE 4th Int’l Conf on Mobile
Services. IEEE Computer Society Press (June 2015)

Pryss, R., Tiedeken, J., Kreher, U., Reichert, M.: Towards Flexible Process Support
on Mobile Devices. In: Proc. CAiSE’10 Forum - Information Systems Evolution.
pp. 150-165. No. 72 in LNBIP, Springer (2010)

Reichert, M., Dadam, P.: Enabling Adaptive Process-aware Information Systems
with ADEPT2. In: Cardoso, J., van der Aalst, W. (eds.) Handbook of Research
on Business Process Modeling. Information Science Reference, Hershey, New York
(March 2009)

Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information
Systems: Challenges, Methods, Technologies. Springer, Berlin-Heidelberg (2012)
Russo, A., Mecella, M., de Leoni, M.: ROME4EU - A service-oriented process-
aware information system for mobile devices. Software: Practice and Experience
42(10), 1275-1314 (2012)

Schobel, J., Pryss, R., Schickler, M., Reichert, M.: Towards Flexible Mobile Data
Collection in Healthcare. In: 29th TEEE Int’l Symp on Computer-Based Medical
Systems. IEEE Computer Society Press (June 2016)

Schobel, J., Pryss, R., Schickler, M., Ruf-Leuschner, M., Elbert, T., Reichert,
M.: End-User Programming of Mobile Services: Empowering Domain Experts to
Implement Mobile Data Collection Applications. In: IEEE 5th Int’l Conf on Mobile
Services. IEEE Computer Society Press (June 2016)

Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,
WS-BPEL, WS-Reliable Messaging and More. Prentice Hall PTR (2005)

Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer Science & Business Media (2012)

Zaplata, S., Hamann, K., Kottke, K., Lamersdorf, W.: Flexible Execution of
Distributed Business Processes Based on Process Instance Migration. Journal of
Systems Integration 1(3), 3-16 (2010)

	A Lightweight Process Engine for Enabling Advanced Mobile Applications

