

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften, Informatik und Psychologie

 An Approach for Modeling and Coordinating
 Process Interactions

 Vera Künzle, Sebastian Steinau,
 Kevin Andrews, and Manfred Reichert

Ulmer Informatik-Berichte
Nr. 2016-06

September 2016

An Approach for
Modeling and Coordinating Process Interactions

Vera Künzle, Sebastian Steinau, Kevin Andrews, and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Germany
{vera.kuenzle,sebastian.steinau,kevin.andrews,manfred.reichert}@uni-ulm.de

Abstract. In any enterprise, different entities collaborate to achieve common
business objectives. The processes used to reach these objectives have relations
and, therefore, depend on each other. Their proper coordination within a process-
aware information system requires coping with heterogeneous granularity of pro-
cesses, unclear process relations, and increased process model complexity due
to the integration of coordination constraints into process models. This paper
presents the concept of coordination processes, which constitute a means to han-
dle the interactions between a multitude of interdependent processes running
asynchronously to each other. Particularly, coordination processes leverage the
clear identification of process relations, a defined granularity for processes, and
the abstraction from details of the individual processes in order to provide a robust
framework, enabling proper coordination support for interdependent processes.

1 Motivation

Process-aware information systems (PAISs) support the modeling, execution and mon-
itoring of individual processes. As a particular challenge, work environments increas-
ingly focus on collaboration and interaction. Generally, business processes cannot be
executed entirely in isolation, but their execution depends either implicitly or explicitly
on the progress of related processes. In turn, the PAIS is required to be able to properly
enact and coordinate process instances of different type. A proper coordination includes
the challenge of coordinating multiple process instances of which the exact quantity is
unknown at runtime, which may have different kinds of complex relationships, and
which may be executed asynchronously to each other without sacrificing flexibility.

Existing approaches dealing with process coordination [2,6,15,18,21,20] have been
neglecting both the issues of process granularity and the explicit identification of pro-
cess relations. Heterogeneous process granularity impairs a proper coordination, e.g.,
certain process models may take a very abstract, high-level perspective, whereas others
are fine-grained and detailed. Additionally, if process relations are not clearly identified,
many coordination scenarios, including the coordination of transitively dependent pro-
cesses, cannot be supported. Finally, integrating coordination mechanisms into process
models increases model complexity and makes models harder to comprehend.

This paper introduces coordination processes, a generic concept for coordinating
the interactions of different processes. Coordination processes enforce a homogeneous
process granularity by aligning processes with objects, i.e., an individual process cor-
responds to a lifecycle process of an object describing its progress. Based on this object

alignment, relations between individual processes can be clearly identified and mapped
to semantic relationships. This allows for a well-defined and controlled process coordi-
nation, a simplified modeling of coordination constraints, and the definition of precise
operational semantics for enacting coordination processes. Additionally, semantic re-
lationships represent the foundation for a flexible execution of coordinated processes,
interfering only when necessary and at certain points in time. This implies that asyn-
chronous execution of processes becomes possible.

The concept of coordination processes can also be used to properly coordinate pro-
cesses modeled with any paradigm. Due to lack of space, the paper uses the object-
aware approach [11,12,13,10,14] for the explanations, a discussion of adapting other
process management approaches will be the subject of future publications. Note that
the concept of coordination processes also originates in object-aware process manage-
ment, where micro processes serve as lifecycle process. In summary, the contributions
of this paper include semantic relationships, which constitute a well-defined model for
describing the interactions between processes, and coordination processes, which is an
independent concept for process coordination that is not message- or rule-based, but
instead relies on the semantic relationships. Moreover, the loose coupling between co-
ordination processes and the interacting processes allows for easier maintenance of the
processes. The coordinated processes may be modeled with any paradigm, provided
the requirements of state-based view and data model are satisfied. Finally, coordination
processes are executable by design and have precise operational semantics.

The remainder of the paper is organized as follows. Related work is discussed in
Section 2. Section 3 introduces basic definitions and the state-based process abstrac-
tions. Process relations are captured in a data model, which is explained in Section 4. In
Section 5, coordination processes are presented together with an example to illustrate
coordination process modeling. In Section 6, the details of semantic relationships are
explained. Section 7 briefly discusses evaluation before concluding the paper in Section
8 with a summary and an outlook on future research.

2 Related Work

Regarding the activity-centric paradigm, several approaches enable a specific kind of
coordination. In [21], several workflow patterns for coordinating processes are de-
scribed. This includes patterns to handle multiple instances of activities, taking run-
time knowledge into account. The business process architecture approach [6] identifies
generic patterns to describe a coordination between processes. Additionally, [6] com-
prises an analysis of process architectures and identifies several anti-patterns.

BPEL4Chor [1] extends BPEL by adding coordination support for enabling process
choreographies. The BPEL4Chor extension incorporates no changes to BPEL itself,
which helps the integration between choreographies and orchestrations. iBPM [2,3] en-
hances BPMN to support coordination of processes by modeling process interactions.
iBPM defines a language that allows modeling interactions and includes formal execu-
tion semantics. Proclets [18] are lightweight processes with a focus on process interac-
tions as well. Proclets are based on Petri nets, which allows verifying the correctness
of the interactions. Interorganizational workflow support [17,19,22] and Business Pro-

2

cess Protocols [5,4] consider the coordination of business processes between different
organizational entities as well.

Common to all these approaches is the use of messages as a mechanism for coordi-
nation. While the exchange of messages allows for a detailed process coordination, all
message flows have to be identified, the contents of the messages defined, and the recip-
ients determined. This creates a great complexity when facing numerous processes that
need to be coordinated, and in many cases, it even impairs the flexible execution of the
involved processes. Except Proclets, the modeling of coordination aspects is integrated
into the respective process models, increasing their complexity and hence, aggravates
their maintainability. Changing a process model then requires additional efforts, since
changes may have an impact on other parts of the model, which then have to be adapted
as well. A clear separation of coordination mechanism on the one hand and process on
the other, therefore, could help to reduce the efforts required for changing the model.

Case handling [20] and artifact-centric process management [15] use the Guard-
Stage-Milestone (GSM) meta-model [9] for process modeling. Central to them is the
case/artifact, which holds all relevant information. It may further interact with other
cases or artifacts. However, GSM does not provide dedicated coordination mechanisms,
but incorporates a sophisticated expression framework, that, in principle, allows creat-
ing the needed coordination mechanisms with expressions. As a drawback, these ex-
pressions might become very complex and need to be explicitly integrated into the pro-
cess model. By contrast, in coordination processes, semantic relationships form a basic
model to describe process interactions, abstracting from the complexity by defining ba-
sic, but customizable, process interaction patterns between processes. In comparison to
a purely rule-based approach like GSM, this allows for a simpler and more streamlined
modeling of interactions. Coordination aspects of artifact-centric system have been dis-
cussed in [8,7].

3 State-based Process Abstraction

Usually, the fact that processes are modeled with different goals in mind, at different
levels of granularity, with different modeling philosophies, and with different modeling
elements, results in a heterogeneous set of process models. This heterogeneity poses
problems when it comes to the coordination of these processes.

Coordination processes provide two mechanisms for tackling these challenges. The
first mechanism is the establishment of one defined level of granularity, with which all
processes need to comply. In order to realize this defined level of granularity, processes
need to be aligned with object types. A formal definition of objects is given in Definition
1. In the following, object types are written with capital letters.

Definition 1. Object type
Let Identifiers be the domain of all valid identifiers. Let Ob jectTypes be the domain of
all definable object types. Then ob jectType=(name,AttributeTypes, lcProcessType)∈
Ob jectTypes is a design time representation of a business entity where

– name ∈ Identi f iers is a unique name.
– AttributeTypes is a set of attribute types.

3

– lcProcessType is a lifecycle process type, describing the progress of ob jectType.

Object alignment is accomplished by each individual process becoming a lifecycle pro-
cess of an object type. This alignment enforces the proper granularity of the processes
and further enables the proper identification of process relationships (cf. Section 4 for
details). A representative example for lifecycle processes can be found in object-aware
process management, where lifecycle process types are called micro process types and
object types have attributes (cf. [12] for formal definitions).

The second mechanism consists of coordination processes defining a higher-level
view on the processes, introducing a layer of abstraction between coordination and
lifecycle processes. With regard to process coordination, knowing the specific details
of each lifecycle process is, for the most part, not relevant. Sometimes it can even be
obstructive to the coordination of processes. The higher level view hides unnecessary
details and only leaves the relevant information for coordinating the processes. note that
this is similar to the notion of public process views as known from process choreogra-
phies [16].

In general, it must be possible to map each individual lifecycle process to a state-
based view. The state-based view abstracts from details of the lifecycle process and
acts as an interface on which the coordination process operates. It allows for a clearer
separation of coordination processes and lifecycle processes and an easier modeling of
coordination processes. The definition of state-based views is provided in Definition 2.

Definition 2. State-based view
A state-based view is a directed, connected graph with stateBasedView = (process,
StateTypeSet,StateTransitionSet) where

– process is the base process for the abstraction.
– StateTypeSet, |StateTypeSet|< ∞ is a partitioning of process into state types.
– StateTransitionSet ⊂ StateTypeSet×StateTypeSet, |StateTransitionSet|< ∞

contains all transitions defined between states.

The elements of the sets are defined as follows:

– state ∈ StateTypeSet represents a unit of progress within process with
• state.IncomingTrans⊂ StateTransitionSet is the set of incoming transitions.
• state.OutgoingTrans⊂ StateTransitionSet is the set of outgoing transitions.
• state.Name ∈ Identi f iers.

– ∃!startState ∈ StateTypeSet where |startSate.IncomingTrans|= 0 is the start state.
– EndStateSet ⊂ StateTypeSet is the set of end states where
∀endState ∈ EndStateSet : |endState.OutgoingTrans|= 0 holds.

– trans = (src, tgt) ∈ StateTransitionSet is a transition with src, tgt ∈ StateTypeSet.
– stateBasedView must be acyclic.

To obtain a state-based view, the course of execution of a process is partitioned into
states. The states are then connected by state transitions according to the order they
occur during execution. The state-based view is required to fulfill specific correctness
criteria, e.g. acyclicity as stated in Definition 2. In order to illustrate state-based views

4

and other concepts, this paper uses Example 1 as a running example. It represents a
simplified recruitment process from a human resource department.
Example 1. Simplified recruitment process
In the context of recruitment, applicants may apply for job offers. The overall process
goal is to determine who of the many applicants is suited best for the job. To evaluate
an application, reviews need to be performed. Depending on the concerned department,
the number of reviews may differ in order to reject the application or to proceed. Em-
ployees of the departments write the reviews and either reject the applicant or suggest
inviting him for an interview. In the meantime, more applications may have arrived for
which reviews are required, i.e., the evaluation of different applications may be done
in parallel. If the majority of reviews are in favor of the application, the applicant is
invited for an interview, after which he may be hired or rejected. In particular, when an
applicant is hired, all other applicants must be rejected.

Figure 1 shows the generation of a state-based view from the lifecycle process of
a Review object type from object-aware process management. The lifecycle process
is already defined in terms of states. Therefore, all superfluous modeling elements
are removed and respective state transitions are put in place. For processes of other
paradigms, individual solutions are required, which are outside the scope of this paper.

Initialized

Urgency Return Date

Pending

Proposal

Reject

Invite

Reason

Alternative Job

Appraisal

Invite Proposed

Finished

True

Reject Proposed

Finished

True

End

Initialized

Pending

Invite Proposed

Reject Proposed

End

State

O
ri

gi
n

al
St

at
e

-b
as

ed
 v

ie
w

Step Value Step

Transition

Fig. 1. Creating the state-based view of a Review lifecycle process

Furthermore, during the execution of a process it must be ensured that at any point
in time exactly one state is active. It is not permitted to have no active state or multiple
active states at the same time. Consequently, all outgoing state transitions in the state-
based view have an “exclusive OR” split semantics. For example, in Figure 1, states
Reject Proposed and InvitationProposed are mutually exclusive.

The exact manner in which a state-based view is generated out of a process model
is not specified. As long as the result fulfills the requirements (acyclicity, start and
end states, state activation), in principle, any process can be abstracted with a state-
based view for use with a coordination process. Consequently, the concept of a coor-
dination process can be applied to other process management approaches in the same
way. While coordination processes originated from object-aware process management

5

and are therefore tailored to the lifecycle processes of objects, process models in other
paradigms need to be adapted to fit the requirements.

4 Data Model

Coordination processes not only rely on the state-based view, but also on the seman-
tic relationships between processes. Semantic relationships constitute the core concept
in coordination processes. To use semantic relationships for coordination, the relations
between processes must be identified and explicitly modeled. In general, semantic re-
lationships can be derived from examining the relations between object types. Object
types and their relations are semantically captured in a data model:

Definition 3. Data model
A data model is a tuple dm = (name,OTypeSet,RTypeSet) representing a directed
graph where

– name ∈ Identi f iers is an identifier.
– OTypeSet ⊂ Ob jectTypes, |OTypeSet|< ∞ is a set of object types.
– RTypeSet ∈ OTypeSet ×OTypeSet ×N0×N0 ∪{∞}, |RTypeSet| < ∞ is a set of

relations with relationType = (source, target,min,max) ∈ RTypeSet where
• source ∈ OTypeSet is the source object type.
• target ∈ OTypeSet is the target object type.
• min ∈ N0 represents the minimum cardinality.
• max ∈ N0∪{∞} with max≥ min is the maximum cardinality.

– dm is acyclic.

Figure 2a shows the data model related to the running example. The model comprises
the four object types Job Offer, Application, Review, and Interview. Object types, life-
cycle process types and relation types are design time entities. At runtime, types can be
instantiated to obtain corresponding instances. For example, an Application type pro-
vides the template for creating Application instances. Several instances of a specific
type may exist at runtime.

#2

#1

#0

Data Level #2

Data Level #1

Data Level #0a b

Application

InterviewReview

Job Offer

InterviewReview

Application

Job Offer

Bottom Up Top Down

Transverse

Object Type

Relation Type

Fig. 2. Data model and semantic relationships

6

Relation types are displayed as directed edges and represent a 1:n relationship be-
tween target and source object type of the relation type. For example, a Job Offer in-
stance may have many related Application instances at runtime (cf. Figure 2). Each re-
lation type may have assigned cardinalities, restricting the number of object instances at
runtime, e.g., an Application instance must have at least three related Review instances,
but not more than seven. Relation types must not create cycles in the data model graph,
i.e., cycles must be dissolved to obtain an acyclic data model. The acyclicity of the data
model and the directed relations allow for the objects types to be arranged hierarchi-
cally (cf. Figure 2), which is required in order to allow for semantic relationships to
exist. The hierarchical organization partitions the data model into several data levels,
formally presented in Definition 4.

Definition 4. Data levels
Let dm = (name,OTypeSet,RTypeSet) be a data model.
Then function dLevel : OTypeSet→ N0 assigns a data level to each ot ∈ OTypeSet.

dLevel(ot) :=

0 @r ∈ RTypeSet : r.source = ot
1+max({dLevel(tgt)| otherwise
(ot, tgt,min,max) ∈ RTypeSet})

Object types without outgoing relation types are denoted as root object types and
are placed on data level #0. It is permissible to have more than one root object type. All
other object types are then placed on data levels corresponding to the maximum number
of relation types needed to reach a root object type. For example, Interview is placed
on Data Level #2 as the path to the root object type Job Offer consists of two relation
types. Path determines whether two object types are connected by relation types. Data
levels and path are the prerequisites for defining the terms higher-level and lower-level
object types, which describe the kind of relation between two object types.

Definition 5. Path and higher/lower-level object types
Let dm = (name,OTypeSet,RTypeSet) be a data model.
Then: Function path : OTypeSet ×OTypeSet → Bool determines whether a directed
path of relations between oti,ot j ∈ OTypeSet exists.

path(oti,ot j) :=

true ∃(oti,ot j,min,max) ∈ RTypeSet
path(otk,ot j) ∃(oti,otk,min,max) ∈ RTypeSet,oti 6= otk 6= ot j

f alse otherwise
With path, higher-level object types and lower-level object types can be defined as fol-
lows:

higherLevel : OTypeSet×OTypeSet→ Bool
higherLevel(oti,ot j) := dLevel(oti)< dLevel(ot j)∧ path(ot j,oti)

lowerLevel : OTypeSet×OTypeSet→ Bool
lowerLevel(oti,ot j) := dLevel(oti)> dLevel(ot j)∧ path(oti,ot j)

The definitions for lower-level and higher-level object types apply analogously also
to object instances. The concept of higher-level and lower-level are prerequisites for the
definition of the semantic relationship between two object types:

7

Definition 6. Semantic Relationships
Let dm = (name,OTypeSet,RTypeSet) be a data model and let oti,otk,ot j ∈OTypeSet
be object types. Then semantic relationships are defined as follows:

top−down : OTypeSet×OTypeSet→ Bool
top−down(oti,otj) := higherLevel(oti,ot j)

bottom−up : OTypeSet×OTypeSet→ Bool
bottom−up(oti,otj) : = lowerLevel(oti,ot j)

transverse : OTypeSet×OTypeSet→ Bool
transverse(oti,otj) := ∃otk : higherLevel(otk,oti)∧higherLevel(otk,ot j)

self : OTypeSet×OTypeSet→ Bool
self (oti,otj) := oti = ot j

The terms lower-level and higher-level describe the kind of relation between object
types in the data model. A semantic relationship is based on top of these relations and
is defined by the way these object types are connected in a coordination processes.

Examples of top-down, bottom-up and transverse relationships are depicted in Fig-
ure 2b. The colored edges in Figure 2b, representing the semantic relationships, are
depicted solely for illustration purposes, but are not part of the actual data model. Con-
sequently, they are not considered when determining the acyclicity of a data model. An
in-depth explanation of semantic relationships and their significance in process coor-
dination is provided in Sections 5 and 6. Note that a coordination process may only
coordinate object types having a top-down, bottom-up, transverse or self relationship.
It is not possible to asynchronously execute and coordinate object instances at runtime
without a semantic relationship.

5 Coordination Processes

Coordination processes are a generic means to coordinate processes by expressing co-
ordination constraints with the help of semantic relationships and enforcing them at
runtime. A coordination constraint is a statement describing a requirement in regard
to process coordination, e.g., an Application must have at least five positive Reviews
before the applicant may be hired. A coordination process is attached to a particular
object type. Object types with an attached coordination process are designated as co-
ordinating object types. It is not allowed to attach more than one coordination process
to an object type. Usually, a small data model with no more than five object types has
one coordination process, where the coordinating object is also a root object type. In
principle however, each object type in a data model may be a coordinating object type
to foster the separations of concerns within a large data model.

The fact that the data model is organized hierarchically suggests that a coordination
process has a defined area of responsibility in which it may coordinate all object types.
The area of responsibility is denoted as the scope of a coordination process. In analogy
to real-world organizational hierarchies, a coordination process may only coordinate
lower-level object types of the object type the coordination process is attached to. The
collection of lower-level object types includes the coordinating object type as well. For

8

example, a coordination process attached to the Application object type (cf. Figure 2)
is allowed to coordinate Reviews, Interviews and Applications, but is not allowed to
coordinate Job Offers. With regard to a coordination process coordinating a Job Offer
and other objects, the coordinating object type must be a higher-level object type of
Job Offer or the Job Offer object type itself.

5.1 Structure of Coordination Processes

Coordination Processes are represented as a directed graph that consists of steps, tran-
sitions and ports. Figure 3 shows the coordination process for the running example with
Job Offer as the coordinating object type. Steps are the vertices of the graph referring to
an object type as well as to a state of the object type, e.g. Job Offer and state Published.
For the sake of convenience, a step is addressed with referenced object type and state in
the form of ObjectType:State.

A transition is a directed edge connecting a source step with a target step. By con-
necting two steps with a transition, a semantic relationship between the referenced
object types is established, e.g. connecting Job Offer:Published with Application:Sent
constitutes a top-down relationship. note that the sequence in which the steps occur is
important for determining the type of semantic relationship. A formal definition can be
found in Definition 7.

Definition 7. Coordination process type
Let dm = (name,OTypeSet,RTypeSet) be a data model. A coordination process type
coProcessType = (coOb jectType,PortSet,CoStepTypeSet,CoTransTypeSet) is a di-
rected, connected graph where

– coOb jectType ∈ OTypeSet is the coordinating object type.
– PortSet is a set of port types with port = (coStepType, IncomingTransSet)where

• coStepType∈CoStepTypeSet is the coordination step type the port is attached
to.

• IncomingTransSet ⊂CoTransTypeSet contains all coordination transitions tar-
geting port

– CoStepTypeSet, |CoStepTypeSet| < ∞ is the set of coordination step types with
coStepType = (ob jectType,stateType,PortTypeSet) ∈CoStepTypeSet where

• ob jectType ∈ Ob jectTypeSet is an object type related to coOb jectType with
path(ob jectType,coOb jectType) = true∨ob jectType = coOb jectType.

• stateType is a state type from the state-based view of the lifecycle process of
ob jectType.

• PortTypeSet ⊂ PortSet, |PortTypeSet|< ∞ is the set of attached port types.

– CoTransTypeSet ⊂CoStepTypeSet×PortTypeSet, |CoTransTypeSet| < ∞ is the
set of coordination transition types coTransType = (source, targetPort) where

• source ∈CoStepTypeSet is the source coordination step type.
• targetPort ∈ PortSet is the target port.

– coProcessType is acyclic.

9

Jo
b

 O
ff

er

In
it

ia
liz

ed

Jo
b

 O
ff

er

P
ub

lis
h

ed

A
p

p
lic

at
io

n

In
it

ia
liz

ed

A
p

p
lic

at
io

n

Se
n

t

R
ev

ie
w

In
it

ia
liz

ed

Jo
b

 O
ff

er

C
lo

se
d

R
ev

ie
w

R
ej

ec
t

 P
ro

po
se

d

R
ev

ie
w

In
vi

te
 P

ro
po

se
d

Jo
b

 O
ff

er

N
o

t
O

cc
u

pi
ed

A
p

p
lic

at
io

n

R
ej

ec
te

d

In
te

rv
ie

w

In
it

ia
liz

ed
In

te
rv

ie
w

A
gr

ee
m

en
t

P
ro

po
se

d

In
te

rv
ie

w

R
ej

ec
t

P
ro

p
o

se
d

A
p

p
lic

at
io

n

A
cc

ep
te

d

Jo
b

 O
ff

er

O
cc

u
p

ie
d

St
ep

 T
yp

e
Tr

an
si

ti
o

n
 T

yp
e

P
o

rt
 T

yp
e

O
R

-s
em

an
ti

cs

A
N

D
-s

em
an

ti
cs

Fig. 3. Complete Coordination Process (Relationships are indicated with color)

10

For example, assume that a step referencing a Job Offer object type is connected to
a step referencing the Application object type. The source object type is Job Offer and
the target object type is Application, representing a top-down semantic relationship. Re-
versing the sequence of the steps changes the relationships to bottom-up. The respective
relationship is coordinated by a coordination component, which is attached to a transi-
tion in the graph (cf. Section 6 for details). The coordination components are usually
not depicted in a coordination process graph with the aim of keeping the coordination
process graph simple. However, macro transitions can be colored to clarify the semantic
relationship between source and target without consulting the data model.

During the execution of a process, the progress may not only depend on the fulfill-
ment of a single coordination constraint, but on the fulfillment of multiple coordination
constraints at the same time. Similarly, the process may continue when at least one co-
ordination constraint out of many is fulfilled. In order to integrate these parallel and
alternative execution paths within a coordination process, an additional modeling el-
ement denoted as port exists. A parallel execution path (AND semantics) exists when
more than one transition connects to the same port. Conversely, an alternative execution
path (OR semantics) exists when multiple transitions connect to different ports attached
to the same step. The coordination process in Figure 3 reflects this. Coordination pro-
cesses can be verified for correctness (e.g. one criterion is that states must appear in
the coordination process in the same sequence as in the lifecycle process), even when
multiple coordination processes exist in the data model. Coordination processes have
to fulfill several correctness criteria. The following selection gives an impression of the
challenges the verification of coordination processes has to address.

mutual waiting

Application
Checked

Review
Pending

Application
Sent

Review
Initialized

Appli-
cation

Initialized Sent Checked ...

Review Initialized Pending ...

Coodination
process

State-based
views of
coordinated
processes

Fig. 4. Example of mutual waiting

A coordination process must have exactly one start step and at least one end step.
Any end step must be reachable from the start step. Step that are neither start or end
step must also lie on a path from the start step to any end step. In short, the coordination
process graph must be weakly connected. In addition to being weakly connected, the

11

coordination process graph must be acyclic. If the graph contained a cycle, a loop of
semantic relationships would be created, which, in turn, implies a loop of coordination
constraints. Since the fulfillment of a coordination constraint depends on the fulfillment
of the preceding coordination constraints, the loop prevents all coordination constraints
from ever being fulfilled. At runtime, if the coordination process progresses to the cycle,
the process would be trapped in a permanent deadlock due to mutual waiting.

Another case of mutual waiting in a coordination process is depicted in Figure 4.
In order for the step Application:Sent to become active, the coordination process re-
quires that the step which references Review:Pending is active beforehand. This step
however depends transitively on the step Application:Checked. The lifecycle process
defines Checked as successor state of Sent. Accordingly, the step Application:Checked
can never become active since the activation of state Sent is prevented by the coordina-
tion process. The mutual waiting results in a deadlock at runtime.

Coodination
process

State-based
view of a
coordinated
process

Review
Invite

Proposed

Review
Reject

Proposed

...
...

Appli-
cation

Initialized Sent End

Reject
Proposed

Invite
Proposed

mutual exclusion

Fig. 5. Example of mutual exclusion

The second source of deadlocks in a coordination process is mutual exclusion. In
this case, the coordination process has a sequence of steps that references states of al-
ternative execution paths in the lifecycle process. An example of mutual exclusion is
presented in Figure 5 using the Review object type. The states Reject Proposed and
Invite Proposed can not become active at the same time, therefore the coordination pro-
cess stops at either step Review:Invite Proposed or step Review:Reject Proposed.

Both mutual waiting and mutual exclusion are design time defects and therefore can
be detected and resolved at design time. A solution to prevent both problems exists. All
steps that refer to the same object type and lie on the same path must refer to a successor
state of the state referenced in the previous step with the same object type. A successor
state of a reference state is a state that can be reached using a path originating from
the reference state in the respective lifecycle process graph. The elimination of mutual
waitings and exclusions however does not prevent deadlocks from occurring at runtime.

12

5.2 Coordination Processes at Runtime

At runtime, the object types specified in the data model are instantiated and connected
with relations. Overall, this leads to a complex process structure of object instances
evolving during runtime (cf. Figure 6 for an example). A process structure comprises
multiple object instances, their relations, and lifecycle processes. For the sake of sim-
plicity, the lifecycle processes are represented in their state-based views in Figure 6. In
general, a process structure may comprise hundreds or thousands of object instances
and many more relations.

Agreement
Proposed

Agreement
Proposed

Agreement
Proposed

Job Offer
A

Initialized Published Closed

Occupied

Not Occupied

Initialized Published Checked

Accepted

Rejected

Review
 D

Initialized Pending End

Reject
Proposed

Invite
Proposed

Interview
A

Initialized Planned Conducted

Reject
Proposed

Agreement
Proposed

Relations

State-based view of lifecycle processesObject Instances

Appli-
cation B

Fig. 6. Example of a complex process structure

As object instances are newly instantiated and others are deleted, the process struc-
ture grows and shrinks over time. In addition, relations between these object instances
are created and deleted. Finally, object instances may advance their lifecycle processes
to a new state. All these dynamic changes must be communicated to the involved coor-
dination processes and handled according to the defined coordination constraints.

The complexity of coordinating a multitude of interrelated objects with their life-
cycle processes is abstracted by the coordination process model. In particular, coordi-
nation processes are modeled in a flat and compact way, containing only a small num-
ber of modeling elements. This is possible due to the structured approach consisting

13

of data model, state-based view and well-defined semantic relationships. The complex
concepts, i.e. relationships and coordination components, can be inferred by examin-
ing the steps, ports and transitions in conjunction with the data model. This allows for
significantly simplified coordination process modeling without losing functionality or
flexibility.

A coordination process coordinates object instances by allowing or prohibiting the
activation of lifecycle process states at runtime. When a lifecycle process changes its
state, the coordination process is queried for permission. The step referencing the re-
spective process instance and state determines whether or not the state of the lifecycle
process may be activated. The step evaluates all attached ports, which, in turn, evaluate
the coordination components. Depending on the coordination component and the se-
mantics of the ports (AND/OR), one or more ports may become active. If at least one
port is active and, therefore, gives permission, the state of the lifecycle process becomes
activated. If no port gives permission, the state is set to pending and must wait until the
coordination process can fulfill the coordination constraints.

5.3 Modeling a Coordination Process

To illustrate the modeling of a coordination process and the realization of coordination
constraints, the steps involved for creating a part of the coordination process in Figure
3 will be discussed. The example uses the simplified recruitment process involving a
Job Offer, an Application and a Review object type. The data model for this example
corresponds to the one from Figure 2. The state-based views of the object types in-
volved are depicted in Figures 6. All used coordination constraints are arbitrary and
were specifically invented for the example coordination process.

Coordinating object type will be Job Offer. A coordinating process begins with its
start step, referring to the start state of the coordinating object. For a Job Offer, this start
state is Initialized (cf. Figure 3). Before an applicant may apply for the Job Offer, the
Job Offer must first be published. This constitutes a coordination constraint. To imple-
ment the constraint, a new step with reference to Job Offer and state Published is cre-
ated. The transition between Job Offer:Initialized and Job Offer:Published establishes a
self relationship.

Once the Job Offer lifecycle process reaches state Published, applicants may create
Applications and apply for the Job Offer. Therefore, a new step referring to object type
Application and state Initialized is introduced and connected to the step for Job Offer
with state Published (cf. Figure 3). The created relationship is categorized as top-down,
meaning that a Job Offer must have reached state Published before any Applications
can be created for the Job Offer. Next, the Application must be filled out and sent back
to the potential employer. In Figure 3, a new Step for an Application with state Sent is
shown, connected to the previous step Application:Initialized. Since it is the same object
in both steps, the relationship is a self relationship, which has no semantics besides
allowing an object’s lifecycle process to progress through its states normally.

For each Application sent to the employer, at least one Review must be conducted.
Therefore, a step referring to object Review and state Initalized is added to the coordina-
tion process after step Application:Sent (cf. Figure 3). Like Job Offer and Application,
Application and Review form a top-down relationship. In turn, the Review step with

14

state Initialized enables the activation of several other states. Primarily, an initialized
Review allows a personnel officer to evaluate the applicant. Thus, advancing the Review
to state Reject Proposed or Invitation Proposed becomes possible. Both relationships
are categorized as self relationships. When a Review becomes initialized, it allows the
Job Offer to be closed, i.e., no more applicants may apply. The relationship between
Review and Job Offer is categorized as bottom-up. The number of Reviews needed to
close the Job Offer can be specified by the process modeler when configuring the coor-
dination components.

Note that a coordination process does not unnecessarily impede the asynchronous
execution of the coordinated processes, e.g. a higher-level process may continue until it
needs to wait for the results of lower-level processes. The coordination is only enforced
at certain points in time, instead of accompanying all involved processes during their
entire execution. This, in turn, allows for a maximum of flexibility when coordinating
processes. While the modeling of this example is rather finely grained for the purpose
of the demonstration, it is also perfectly acceptable to reduce coordination constraints
and allow for a greater flexibility when executing individual processes.

6 Semantic Relationships

The relationships are determined by the connection of steps in the coordination process
and the object types they refer to. Figure 7 gives a complete overview over all semantic
relationships and the corresponding coordination components. For each semantic re-
lationship a coordination process establishes, a respective coordination component is
automatically created.

InterviewReview

Application

Job Offer

Bottom Up Top Down

Transverse

Top-Down

Bottom-Up

Transverse

Self

Process Context

Aggregation Component

Transverse Component

Identity Component

Data Model Coordination Process Relationship Coordination Component

Job Offer
Published

Application
Initialized

Review
Reject

Proposed

Application
Rejected

Review
Invite

Proposed

Interview
Initialized

Review
Initialized

Review
Pending

Fig. 7. Relationships and Coordination Components

A top-down relationship exists when the execution of lower-level objects depends
on the execution of a common higher-level object instance. For example, applicants
may only create an Application for a Job Offer if the Job Offer has been published by
its creator, i.e. state Published is currently active. For each top-down relationship of the
coordination process, the coordination process creates a Process Context Component
that coordinates this specific relationship.

15

Opposed to top-down relationships, a bottom-up relationship means that the execu-
tion of a higher-level object depends upon the execution of several lower-level objects.
As aforementioned, an Application may only be accepted or rejected if a sufficient
number of positive or negative Reviews exists (cf. Figure 1, states Reject Proposed and
Invitation Proposed). The respective coordination mechanism is the Aggregation Com-
ponent.

In a transverse relationship, objects depend on the execution of a set of other objects
in context of a common, higher-level object instance. In principle, it is the combination
of top-down and bottom-up relationships. According to the data model from Figure 2,
an Application is a higher-level object type to both Interview and Review, which have no
direct relation to each other. For example, an Interview may only be arranged if the re-
spective Application has received a sufficient number of favorable Reviews. The coordi-
nation process monitors the states of all Reviews related to the higher-level Application.
When enough Reviews reach state Invite Proposed, the component allows the creation
of an Interview object that belongs to the Application. Coordination processes use a
Transverse Component when a transverse relationship needs to be coordinated.

An Identity Component is used for coordinating a self relationship. Self relation-
ships are simple and represent the advancement of states in an object’s lifecycle process.
For example, a Job Offer must go from state Initialized to state Published so an appli-
cant can apply for the job. Therefore, a self relationship is used to obtain state Published
of the Job Offer, which then can be used with a top-down relationship to state Initialized
of an Application.

Coordination components are attached to the transitions of a coordination process.
As a result, coordination components have source and target objects which reside in
the transition’s source and target step. At runtime, for each higher-level object instance
that is referenced in the coordination process, a corresponding coordination component
is instantiated. The source and target objects of coordination component only comprise
those objects linked to the its higher-level object instance. Because of this, source ob-
jects and target objects only comprise a subset of objects referenced by the respective
source and target step of the transition. For example, Figure 6 shows a complex process
structure with two Job Offer instances.

With the establishment of a semantic relationship and the subsequent creation of
the coordination component, the role of coordination components in modeling coordi-
nation processes is to customize them in order to enable fine-grained control over the
respective semantic relationships. In the default configuration, a process context com-
ponent only becomes enabled when the source object’s corresponding state is active,
other states deactivate the process context, i.e., no further progress for the target life-
cycle processes is allowed. Since all lifecycle processes are executed asynchronously
to each other, the higher-level object instance may advance to a subsequent state. This
deactivates the coordination component so the target state of the lower-level object in-
stances can no longer be activated.

To keep the process context activated after the source object advances in states, the
process modeler can specify a set of states for the higher-level object for which the
process context component remains activated. For example, once an Application ad-
vances from state Sent to subsequent state Checked (cf. Figure 3), it may still receive

16

new Reviews. This behavior is enabled by adding state Checked to the state set of the
process context component between steps Application:Sent and Review:Initialized. Al-
ternatively, the process modeler may intentionally omit states from the set. For example,
state Closed is not added to the state set of the coordination component coordinating
Job Offer:Published and Application:Initialized (cf. Figure 3) to prevent the creation of
new Applications as soon as the Job Offer has been closed.

Aggregation and transverse components use coordination expressions to exert con-
trol over the underlying relationship. Aggregation and transverse Components permit
the activation of their target state when a certain number of source objects are in a
particular state. Accordingly, a coordination expression returns a boolean value to indi-
cate whether or not a subsequent state may be activated. For example, an Application
may only advance to state Accepted when at least three related Interviews are in state
Agreement Proposed (cf. Figure 3). Conversely, an Application must be rejected when
there are more than three Interviews in state Reject Proposed. The coordination expres-
sion representing this coordination constraint is in both cases #IN ≥ 3. Cardinalities
restrict the number of Interview instances at runtime so both coordination constraints
can not become true at the same time.

The function #IN counts the number of source objects of the coordination compo-
nent of which the state specified in the source step is currently activated. All count-
ing functions are context-sensitive. Hence coordination expressions are reusable, as the
context of evaluation (i.e. another coordination component) can be changed to obtain
different results. A complete list of counting functions required for the proper specifi-
cation of coordination expressions is presented in Definition 8. In addition, expressions
may consist of arithmetic and comparison operators, arithmetic and boolean constants,
and boolean operators.

Definition 8. Coordination Expression Counting Functions
Let CoordinationComponent be a coordination component with SourceOb jectType as
the type of the SourceOb jects. SourceOb jects is the set of objects in the source step of
CoordinationComponent. Let StateSet be the set of states of SourceOb jectType.

– #ALL : SourceOb jects→ N0
Determines the total number of source objects for the CoordinationComponent.

– #IN : SourceOb jects×StateSet→ N0
Determines the number of source objects of the CoordinationComponent where
State is currently active.

– #BEFORE : SourceOb jects×StateSet→ N0
Determines the number of source objects of the CoordinationComponent where
State has not yet been active.

– #AFT ER : SourceOb jects×StateSet→ N0
Determines the number of source objects of the CoordinationComponent where
State has been active in the past, but execution has progressed.

– SKIPPED : SourceOb jects×StateSet→ N0
Determines the number of source objects of the CoordinationComponent that have
progressed to a subsequent state, but State has not been activated during execution.

17

In case no custom coordination expression is specified, aggregation and transverse com-
ponents default to the expression #IN = #ALL, meaning the referenced state must be
active in all source instances.

Review

Initialized

Review

Initialized

Application

Sent

Completed

Application

Sent

Inactive

Inactive

Process Context

Process Context

Completed

Review

Initialized

Completed

Fig. 8. Runtime example of a process context

At runtime, coordination components monitor the states of the source instances for
changes and react appropriately by permitting or prohibiting the activation of the refer-
enced state in the target coordination step. Figure 8 gives an example of process contexts
at runtime. The process contexts resides between coordination step Application:Sent
and Review:Initialized (cf. Figure 3). The semantics of this top-down semantic rela-
tionship dictates that Reviews may only be created if an Application has reached state
Sent. Currently, two Applications are coordinated, each having a dedicated process con-
text. The bottom application already has reached state Sent, indicated by the marking
Completed at the bottom of the coordination step instance. Therefore, the process con-
text allowed the creation of Reviews, of which the application has three being in state
Initialized. The top Application is Inactive as it has not yet reached state Sent. The cor-
responding process context is also Inactive and does not permit the creation of Reviews
for this Application.

In general, semantic relationships provide a structured and consistent foundation
for coordinating processes. The complex process structure evolving at runtime can be
abstracted using the semantic relationships and is therefore easier to model. Each se-
mantic relationship is managed by a coordination component providing the technical
implementation for the semantic relationship. These are customizable, which allows
modeling almost any coordination constraint.

7 Evaluation

The concept of coordination processes not only comprises the modeling of process in-
teractions, but includes precise operational semantics as well. The operational seman-
tics define the runtime behavior of coordination processes. A business process manage-

18

ment system prototype based on the object-aware approach has been developed in the
Proteus1 project at Ulm University.

Fig. 9. Screenshot from a coordination process execution in the RDT

1 For more details on the prototype visit http://goo.gl/O1WwQS

19

 http://goo.gl/O1WwQS

The prototype comprises a tool for modeling data models with objects together
with their lifecycle processes and relations to other processes as well as a runtime envi-
ronment to enact the modeled processes. Figure 9 shows an execution of a coordination
processes in the Runtime Demonstration Tool (RDT) as described in this paper. The
RDT is the front-end to the runtime environment, which is able to asynchronously ex-
ecute both lifecycle and coordination processes with the required flexibility. It uses an
architecture for high scalability and parallel, asynchronous process execution.

Furthermore, coordination processes were successfully used to model different,
real-world processes from Ulm University’s administration as well as several processes
from human resource departments. Both comprised dozens of object types and multiple
coordination processes. The results showed that, in general, coordination processes are
able to represent coordination constraints adequately. While modeling of coordination
processes has a high learning curve due to different components, it is compensated by
the built-in executability of the models and a comparatively easy correctness verifica-
tion. However, the results also showed several opportunities for improvement, e.g., a
support for coordinating different variants of objects was desired.

8 Summary and Outlook

A coordination process is a concept for coordinating a collection of individual pro-
cesses. The basis for coordination processes is the abstraction of the individual pro-
cesses using a state-based view. Additionally, a data model is required to make rela-
tionships between processes transparent. The coordination process itself is specified in
a flat and comprehensive manner using steps, transitions and ports, abstracting from the
complexity of coordinating a multitude of interrelated processes. In particular, the co-
ordination processes build on the semantic relationships between processes and use the
coordination components Process Context, Aggregation Component, Transverse Com-
ponent and Identity Component to manage these semantic relationships.

In principle, coordination processes are capable of coordinating processes based on
other modeling paradigms, e.g., activity-centric. However, several challenges are still
under investigation. These include the search for a standardized way of redesigning
processes with heterogeneous granularity of other modeling paradigms and notations
to achieve object-alignment. Furthermore, several ways to define state-based view are
possible, each with different implications regarding the coordination constraints.

References

1. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for
Modeling Choreographies. In: IEEE International Conference on Web Services (ICWS
2007). pp. 296–303 (2007)

2. Decker, G., Barros, A.: Interaction Modeling Using BPMN. In: Business Process
Management Workshops: BPM 2007 International Workshops, BPI, BPD, CBP, ProHealth,
RefMod, semantics4ws, Brisbane, Australia, September 24, 2007, Revised Selected Papers.
pp. 208–219. Springer (2008)

3. Decker, G., Weske, M.: Interaction-centric modeling of process choreographies.
Information Systems 36(2), 292–312 (2011)

20

4. Desai, N., Chopra, A.K., Singh, M.P.: Business Process Adaptations via Protocols. In: 2006
IEEE International Conference on Services Computing (SCC’06). pp. 103–110 (2006)

5. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Interaction protocols as design
abstractions for business processes. IEEE Transactions on Software Engineering 31(12),
1015–1027 (2005)

6. Eid-Sabbagh, R.H., Dijkman, R., Weske, M.: Business Process Architecture: Use and
Correctness. In: Business Process Management: 10th International Conference, BPM 2012,
Tallinn, Estonia, September 3-6, 2012. Proceedings. pp. 65–81. Springer (2012)

7. Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.P.: Many-to-Many: Some
Observations on Interactions in Artifact Choreographies. In: Proceedings of the 3rd
Central-European Workshop on Services and their Composition, ZEUS 2011, Karlsruhe,
Germany, February 21–22, 2011. CEUR Workshop Proceedings, vol. 705, pp. 9–15.
CEUR-WS.org (2011)

8. Hull, R.: Data-Centricity and Services Interoperation. In: Service-Oriented Computing:
11th International Conference, ICSOC 2013, Berlin, Germany, December 2-5, 2013,
Proceedings. pp. 1–8. Springer (2013)

9. Hull, R., Damaggio, E., de Masellis, R., Fournier, F., Gupta, M., Heath,III, Fenno Terry,
Hobson, S., Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P.N., Vaculín, R.: Business
Artifacts with Guard-Stage-Milestone Lifecycles: Managing Artifact Interactions with
Conditions and Events. In: Proceedings of the 5th ACM International Conference on
Distributed Event-based System. pp. 51–62. DEBS ’11, ACM, New York, NY, USA (2011)

10. Künzle, V.: Object-Aware Process Management. Ph.D. thesis, University of Ulm (2013)
11. Künzle, V., Reichert, M.: Towards Object-aware Process Management Systems: Issues,

Challenges, Benefits. In: Proc. 10th Int’l Workshop on Business Process Modeling,
Development, and Support (BPMDS’09). pp. 197–210. Lecture Notes in Business
Information Processing, Springer (2009)

12. Künzle, V., Reichert, M.: PHILharmonicFlows: Towards a Framework for Object-aware
Process Management. Journal of Software Maintenance and Evolution: Research and
Practice 23(4), 205–244 (2011)

13. Künzle, V., Weber, B., Reichert, M.: Object-aware Business Processes: Fundamental
Requirements and their Support in Existing Approaches. International Journal of
Information System Modeling and Design (IJISMD) 2(2), 19–46 (2011)

14. Marrella, A., Mecella, M., Russo, A., Steinau, S., Andrews, K., Reichert, M.: A Survey on
Handling Data in Business Process Models (Discussion Paper). In: 23rd Italian Symposium
on Advanced Database Systems (SEBD) (2015)

15. Nigam, A., Caswell, N.S.: Business Artifacts: An Approach to Operational Specification.
IBM Systems Journal 42(3), 428–445 (2003)

16. Rinderle, S., Wombacher, A., Reichert, M.: Evolution of Process Choreographies in
DYCHOR. In: On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA,
and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, GADA, and
ODBASE 2006, Montpellier, France, October 29 - November 3, 2006. Proceedings, Part I.
pp. 273–290. Springer (2006)

17. van der Aalst, W.M.P.: Process-oriented architectures for electronic commerce and
interorganizational workflow. Information Systems 24(8), 639–671 (1999)

18. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Workflow Modeling using
Proclets. In: Cooperative Information Systems: 7th International Conference, CoopIS 2000
Eilat, Israel, September 6-8, 2000. Proceedings. pp. 198–209. Springer (2000)

19. van der Aalst, W.M.P., Weske, M.: The P2P Approach to Interorganizational Workflows. In:
Advanced Information Systems Engineering: 13th International Conference, CAiSE 2001
Interlaken, Switzerland, June 4–8, 2001 Proceedings. pp. 140–156. Springer (2001)

21

20. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm for
business process support. Data & Knowledge Engineering 53(2), 129–162 (2005)

21. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.P.: Workflow Patterns.
Distributed and Parallel Databases 14(1), 5–51 (2003)

22. Zhao, X., Liu, C., Yang, Y., Sadiq, W.: CorPN: Managing Instance Correspondence in
Collaborative Business Processes. Distributed and Parallel Databases 29(4), 309–332 (2011)

22

Ulmer Informatik-Berichte

ISSN 0939-5091

Herausgeber:

Universität Ulm

Fakultät für Ingenieurwissenschaften, Informatik und Psychologie

89069 Ulm

	UIB 2016-06 Text.pdf
	An Approach for Modeling and Coordinating Process Interactions

	UIB 2016-06 Text.pdf
	An Approach for Modeling and Coordinating Process Interactions

	UIB 2016-06 Text.pdf
	An Approach for Modeling and Coordinating Process Interactions

