
Balancing Flexibility and Security

in Adaptive Process Management Systems

Barbara Weber1, Manfred Reichert2, Werner Wild3, and Stefanie Rinderle4

1 Quality Engineering Research Group, University of Innsbruck, Austria
Barbara.Weber@uibk.ac.at

2 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

3 Evolution Consulting, Innsbruck, Austria
werner.wild@evolution.at

4 Dept. Databases and Information Systems, University of Ulm, Germany
rinderle@informatik.uni--ulm.de

Abstract. Process–aware information systems (PAIS) must provide suf-
ficient flexibility to their users to support a broad spectrum of applica-
tion scenarios. As a response to this need adaptive process management
systems (PMS) have emerged, supporting both ad-hoc deviations from
the predefined process schema and the quick adaptation of the PAIS to
business process changes. This newly gained runtime flexibility, however,
imposes challenging security issues as the PMS becomes more vulnerable
to misuse. Process changes must be restricted to authorized users, but
without nullifying the advantages of a flexible system by handling autho-
rizations in a too rigid way. This paper discusses requirements relevant
in this context and proposes a comprehensive access control (AC) model
with special focus on adaptive PMS. On the one hand, our approach
allows the compact definition of user dependent access rights restricting
process changes to authorized users only. On the other hand, the defini-
tion of process type dependent access rights is supported to only allow
for those change commands which are applicable within a particular pro-
cess context. Respective AC mechanisms will be key ingredients in future
adaptive PMS.

1 Introduction

In order to support a broad spectrum of applications, process-aware information
systems (PAIS) must provide sufficient flexibility at run-time [1,2]. First, PAIS
should be quickly adaptable to changes of the real-world processes (e.g., due to
business reengineering efforts) [3,4,5]. Second, during the execution of individual
process instances users must be able to flexibly deviate from the pre-modeled
process schema (e.g., by adding or skipping tasks). Such ad-hoc deviations may
become necessary to deal with exceptional situations [1,6].

In response to these needs adaptive process management systems (PMS) have
emerged during recent years. Examples include ADEPT [1], CBRFlow [7], ME-
TEOR [8] and WASA2 [9]. All these PMS aim at the flexible support of changes

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 59–76, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

60 B. Weber et al.

at the process type and/or the process instance level. This newly gained flex-
ibility, however, imposes challenging security issues as the PMS becomes more
vulnerable to misuse. For example, the uncontrolled addition of long-running
activities to an ongoing process instance may delay the execution of the whole
process. Appropriate access control (AC) mechanisms are thus even more impor-
tant for adaptive than for traditional PMS [10,11,12,13,14,15,16] to avoid such
misuse scenarios. Process changes must be restricted to authorized users only,
but without nullifying the advantages of a flexible system by handling autho-
rizations in a too rigid way.

Although there are several approaches for AC in traditional process manage-
ment systems (PMS), the special requirements of adaptive PMS have not been
addressed in a sufficient way so far. Existing approaches either assume that pro-
cess schemes are modeled only once and then remain unchanged (i.e., covering
access rights for the execution of tasks only) (e.g., [13,10]) or they only support
the definition of change rights at a very coarse-granular level [17]. This restricted
view, however, is not applicable to adaptive PMS, which require adequate ac-
cess rights for the different kinds of changes. In particular, access rights must be
simple to define, easy to maintain and fast to check.

In addition, it must be possible to enforce the execution of particular activ-
ities (e.g., due to legal requirements) and to ensure that only activities which
are applicable in a specific context can be inserted into a process instance. For
a drug procurement process in a hospital, for instance, the insertion of a patient
treatment step makes no sense and should thus not be allowed.

Defining process changes requires user experience and is error prone if not
supported by suitable tools. Therefore, adaptive PMS should assist the user
while performing changes by displaying only those change commands which are
applicable in the current context and for which the user holds the necessary
access rights.

In the past we developed detailed concepts for the dynamic modification of
process instances, for the evolution of process types and for the memorization and
the reuse of process instance changes. This work has been done in the ADEPT
and CBRFlow projects [1,7,18,19,20], security issues have not been considered
in detail so far. In this paper we introduce an advanced AC model which covers
the particular requirements of adaptive PMS. The paper is organized as follows:
Section 2 covers adaptive PMS and their characteristics. Section 3 describes
the requirements for an AC model, Section 4 extends the core RBAC model
to meet the specific requirements for adaptive PMS. Section 5 adds process
type dependent access rights to the extended RBAC model. Section 6 describes
practical issues and Section 7 discusses related work. The paper concludes with
a summary and an outlook in Section 8.

2 Adaptive PMS and Their Characteristics

This section describes background information on adaptive PMS as needed for
the further understanding of this paper.

Balancing Flexibility and Security in Adaptive PMS 61

Schema Version S:

A B

C

D
E F

a) Process Type Level:

C

ED
B

A

Process Instance Level:

Process Instance I1:

Activity Templates:

F

L
Y

Process Instance I2
(ad-hoc changed):

Process Instance I3
(ad-hoc changed):

…

Admit
patient

Inform patient

Prepare patient

Examine
patient

Deliver
report

Schema Version S:

Make
appointment

A B

C

D
E F

Lab
test

Schema Version S‘:

Admit
patient

A B L EC F
Make

appointment
Prepare
patient

Examine
patient

Deliver
report

L Lab
test

Process Type
Change

b) Process Type Level:

serialInsert(S, L, C, E)

deleteActivity(S, D)

Admit
patient

Inform patient

Prepare patient

Examine
patient

Deliver
report

Make
appointment

activated

completed

Fig. 1. Different Levels of Process Change (Clinical Example)

2.1 Basic Concepts

In a PMS, for each supported business process (e.g., booking a business trip or
handling a medical order) a process type T has to be defined. For a particular type
one or more process schemes (process templates) may exist reflecting different
schema versions of T . In Fig. 1 (b), for example, S and S′ correspond to different
schema versions of the same type. A process schema itself is represented by a
directed graph, which consists of a set of activities a1, . . . , an and the control
edges connecting them. Process schema version S from Fig. 1 (b) consists of six
activities; Activity Admit patient is followed by activity Make appointment
in the flow of control, whereas Prepare Patient and Inform Patient can be
processed in parallel. Each activity is based on a predefined activity template,
which is maintained and stored in a repository. In general, a particular activity
template can be reused within different process schemes.

Based on a schema S new process instances I1, . . . , Im can be created and
executed at runtime. In Fig. 1 (a), for process instance I1 activity Admit patient
has already been completed whereas activity Make appointment is currently
activated (i.e., it is offered to users in their worklists).

2.2 Process Change

Adaptive PMS are characterized by their ability to correctly and efficiently han-
dle process changes. In general, changes are triggered and performed at two levels
– the process type and the process instance level.

62 B. Weber et al.

Changes to a process type T may become necessary to cover the evolution
of real-world business processes [3,4,9]. Process engineers can accomplish a type
change by applying a set of change commands to the current schema version S
of type T . This results in the creation of a new schema version S′ of the same
type (cf. Fig. 1 a). Execution of future process instances is then based on S′. For
long-running processes it might be necessary to migrate already running process
instances to the new schema version S′ [18].

By contrast, ad-hoc changes of individual process instances are usually per-
formed by process participants (i.e., end users). Ad-hoc changes are necessary
to react to exceptions or unanticipated situations [1,7,8]. The effects of such
instance-specific changes are kept local, i.e., they do not affect other process in-
stances of the same type. In Fig. 1 (a) instance I2 has been individually modified
by dynamically deleting activity Deliver report. Thus the execution schema
of I2 deviates from the original process schema S of this instance.

In order to facilitate exception handling, adaptive PMS should allow for the
memorization and the reuse of ad-hoc deviations. For this, our approach applies
case-based reasoning techniques [19,21]. More precisely, changes of individual
process instances can be performed either by explicitly defining the change from
scratch or by reusing information about previous changes (which were success-
fully applied to other process instances in similar problem situation before).

In our approach both process type and process instance changes are based
on a complete set of change commands with well-defined semantics [1,22]. Table
1 presents selected high-level change commands provided in this context.

Table 1. A Selection of ADEPT Change Commands∗

Change Command Effects on Schema S
applied to Schema S

Additive Change Commands

serialInsert(S, X, A, B) insert activity X into schema S between
the two directly connected activities A and B

parallelInsert(S, X, A) insert activity X into schema S parallel to activity A

Subtractive Change Commands

deleteActivity(S, X) delete activity X from schema S

Order-Changing Commands

serialMove(S, X, A, B) move activity X from its current position in schema
S to the position between two directly connected ac-
tivities A and B

∗A detailed description of all change commands supported by ADEPT can be found in [18,22].

Balancing Flexibility and Security in Adaptive PMS 63

A B D
X

C E

Schema S‘:

Examine
patient

Make
appointm

ent

Ente
r

orde
r

Inform
patient

Make
appointm

ent

Schema S:

Process
Engineer

Create Process Type

Schema

A B C ED

In
st

an
tia

tio
n

Pro
ce

ss
Exe

cu
tio

n

Notify Process Engineer (frequent deviation)

Change Proce
ss

Typ
e Sch

ema

Process Instance I:

A B DC

Ad-hoc changed Process
Instance I:

Ad-hoc Change
of Process Instance

by Adding (a) or Reusing Cases (b)

Process
Participant

Process
Participant

Monitor

Case-Base

Fig. 2. Major Use Cases for an Adaptive PMS

2.3 Major Use Cases for an Adaptive PMS

In order to construct a comprehensive AC model for adaptive PMS we must focus
on the major use cases of such a system in detail [20]. An overview is given in Fig.
2. At buildtime an initial computerized representation of a company’s business
processes is created either by business process analysis or by applying process
mining techniques (i.e., by observing process and task executions) (1). At run-
time new process instances are created from these predefined process schemes
(2). In general, process instances are then executed according to the process type
schema they were derived from and activities are allocated to authorized process
participants to perform the respective tasks (3). However, when deviations from
the predefined schema become necessary at the process instance level (e.g., due
to exceptions), process participants must be able to deviate from it. They can
either specify a new ad-hoc deviation and document the reasons for the changes
in a case-base (4 a), or they can reuse a previously specified ad-hoc modification
from the case-base (4 b). The PMS monitors how often a particular schema
is instantiated and how frequently deviations occur. When a particular ad-hoc
modification is frequently reused, the process engineer is notified that a process
type change should be performed (5). The process engineer can then evolve the
process type schema, and, as far as possible, migrate running instances to the
new schema version (6). During run-time process instances can be monitored by
process participants (7). Finally, in addition to these use cases, all PMS must
support granting access rights.

64 B. Weber et al.

3 Requirements for an AC Model for Adaptive PMS

To our best knowledge most existing AC models for PMS [10,11,12,13,14,15,16]
ignore the problem of process change and therefore do not meet the specific
requirements posed by adaptive PMS (cf. Section 7). In this section specific
requirements for AC models in adaptive PMS are elaborated. All requirements
stem from real world case studies in the medical domain [23].
Requirement 1 (Support of user dependent and process type depen-
dent access rights). An AC model for adaptive PMS should support the def-
inition of both user dependent and process type dependent access rights in an
integrated way. While the former restrict access to authorized users in order to
avoid misuse (e.g., only users with role physician are authorized to insert the
X-ray activity), the latter are applied to only allow for change commands that
are useful within a particular context (e.g., activity vacation request must not
be inserted in medical treatment processes).
Requirement 2 (Completeness of the AC model). In order to adequately
support adaptive processes it is not sufficient to only provide access rights for
executing activities. In addition, all presented use cases (cf. Fig. 2) must be cov-
ered. Furthermore, the rights to change process types and process instances must
be granted separately, as, for example, a user who is allowed to change a specific
process instance usually is not authorized to change the process type schema as
well. As another example consider the introduction of a process instance change
by reusing information about a previously defined ad-hoc modification: autho-
rization for this use case does not necessarily imply that respective users are also
authorized to define a new ad-hoc change from scratch.
Requirement 3 (Fine-grained definition of access rights). In general, it
must be possible to specify access rights for individual change commands or
groups of change commands (e.g., a particular role is only allowed to insert
additional process activities, but not to delete existing ones). In any case, an AC
model for adaptive PMS must allow the definition of access rights for all change
commands and their parameterizations. For example, a physician is authorized
to insert additional activities. However, this authorization may be restricted to
medical treatment activities (e.g., X-ray, Computer Tomography) and selected
processes (e.g., patient examination).
Requirement 4 (Usability and maintainability of access rights). A sig-
nificant challenge is to balance flexibility and security in such a way that the
advantages provided by adaptive PMS are not nullified by a too rigid AC model.
Thus, access rights themselves should be simple to define and easy to maintain.
In order to support the easy and compact definition of access rights, objects
should be hierarchically composed and allow for the definition of access rights at
different levels of granularity. For instance, it might be reasonable to authorize
a particular role to perform process type changes for all process type schemes
supported by the PMS. However, in corporations with a large number of process
type schemes different users might be responsible for individual process type
schemes or for groups of process type schemes.

Balancing Flexibility and Security in Adaptive PMS 65

PrivilegeRoleUser

can-play holds

is-a implies

Fig. 3. Core Access Control Model

4 User Dependent Access Rights

An AC model for (adaptive) PMS must allow the system administrator to restrict
access to authorized users to avoid misuse. In Section 4.1 we first review basic
properties of the core RBAC model, in Section 4.2 and Section 4.3 we then derive
an extended role-based AC model to meet the specific requirements of adaptive
PMS.

4.1 Core AC Model

The RBAC model is frequently used to specify access rights in PMS [24,25,26].
Access rights are not directly linked to concrete users, but to the more abstract
concept of a role. Such roles group privileges (i.e., classes of access rights) and
are assigned to users based on their capabilities and competences. Physician,
nurse, and technician are examples for roles in a hospital. The role physician
may include the privileges to order a lab test or to perform a medical exami-
nation. Users possessing the same role are considered as being interchangeable,
i.e., all users holding a particular role qualify for the privileges associated with
that role. A user can hold several roles. In addition, roles can be hierarchically
organized, which allows to (transitively) propagate the privileges associated with
a particular role to the more specific roles. A head nurse, for instance, is a nurse
and therefore inherits all privileges of role nurse. Finally, privileges themselves
are organized hierarchically to foster inheritance of access rights. The privilege
to order restricted drugs (e.g., morphine) up to quantity 1000 implies the more
restricting privilege to order such drugs up to quantity 50. Formally, a RBAC
model [10] consists of a set of users U , a set of roles R, and a set of privileges P
as well as the relationships between elements of these sets (cf. Fig. 3).

In the following the entities and relationships from Fig. 3 are described in
more detail.

– A user u ∈ U represents an individual actor.
– A role r ∈ R denotes a grouping of privileges which can be assigned to one

or more users.
– A privilege p ∈ P represents a class of rights, e.g., to perform certain oper-

ations or to access certain data.
– can-play (u, r) states that user u holds role r.
– is-a (r1, r2), r1, r2 ∈ R states that role r1 specializes role r2 and thus inherits

all privileges from r2.

66 B. Weber et al.

– holds(r, p), r ∈ R, p ∈ P states that role r holds privilege p.
– implies(p1, p2), p1, p2 ∈ P states that privilege p1 includes privilege p2.

4.2 Extended Access Control Model

In this section we extend the core RBAC model by adding additional entities
and relationships to construct an adequate AC model for adaptive PMS, which
meets Requirements 1-4 of Section 3.

Operation. AC models for adaptive PMS must cover all use cases from
Fig. 2 (e.g., changing processes, executing process activities, monitoring process
instances, etc.) and be able to grant access rights to each of them separately. We
therefore add the entity operation to the core RBAC model introduced above.

As illustrated in Fig. 4 (a) we distinguish between seven major operations:
ChangeProcess, CreateSchema, ExecuteActivity, GrantPrivilege, InstantiateSch-
ema, MonitorProcessInstance and NotifyUser. The abstract operation Change-
Process is further divided into process type and process instance changes. Process
instance changes can further be split into two groups depending on whether in-
formation about a previously defined ad-hoc modification is reused or a new
change has to be defined from scratch.

Operations are hierarchically organized, so privileges for a particular opera-
tion are automatically extended to their decendents as well (include relationship
in Fig. 7). As illustrated in Fig. 4 (a), a user holding the privilege for abstract op-
eration ChangeProcess is authorized to perform changes at both the process type
and the process instance level. The latter can be handled either by adding new
or by reusing existing ad-hoc change cases. In contrast, the operation ReuseEx-
istingProcessInstanceChange only authorizes for process instance changes based
on the reuse of previously defined ad-hoc modifications, but not to define new
ad-hoc changes.

Change Command. Although the concept operation allows for separate access
rights for process type and process instance changes, it does not differentiate be-
tween change commands. However, this is indispensable for AC in adaptive PMS
as a user might be authorized to skip an activity, but not to perform structural
changes by inserting an additional activity. Therefore, we further extend our
model with the entity change command.

In adaptive PMS both process type and process instance changes can be
accomplished by applying a set of well–defined change commands (cf. Fig. 4
b)1. When applying the command serialInsert an additional activity is inserted
between two succeeding process activities. For skipping a particular activity, for
example, the command deleteActivity can be used. Using different kinds of change
commands requires different levels of user experience, which should be taken into
account when defining privileges for process change. For example, the deletion
of a particular process activity during runtime is always limited in scope and
1 For illustration we use the ADEPT change commands; however, the model is appli-

cable to other command sets as well.

Balancing Flexibility and Security in Adaptive PMS 67

All

a) Operations

b) Change Commands

All

ChangeProcess CreateSchema ExecuteActivity GrantPrivilege InstantiateSchema MonitorProcessInstance NotifyUser

ProcessTypeChange ProcessInstanceChange

DefineNewProcessInstanceChange ReuseExistingProcessInstanceChange

additiveCommandsubtractiveCommand orderChangingCommand

serialInsert parallelInsertdeleteActivity serialMove...

Fig. 4. Operations and Change Commands

can therefore easily be accomplished by end users (i.e., only a few parameters
have to be specified when defining the change). In contrast, the insertion of
an activity usually requires more comprehensive parameter specifications (e.g.,
parameters specifying the position of the newly inserted activity) and is therefore
more complex to handle.

In order to be able to define access rights at different levels of granularity
we allow for the hierarchical organization of change commands (specializes rela-
tionship in Fig. 7). As illustrated in Fig. 4 (b), the abstract change command
All includes all kinds of subtractive, additive and order changing commands. If
a user holds the right to perform this abstract change command he automati-
cally inherits the right to perform all change commands lower in the hierarchy
as well (e.g., serialInsert, deleteActivity). On the one hand this approach allows
us to define privileges in a very compact way. On the other hand we are able to
provide fine-grained specifications as well.

Object. So far we have only considered operations and different change com-
mands. However, we not only must be able to express that a certain role is
allowed to delete or add process activities, but also to state which object a par-
ticular operation or change command uses (e.g., the process instance that may
be monitored or the activity that may be added by an insert command), i.e., the
parameterization of operations and change commands has to be considered as
well. Therefore we introduce the entity object as another dimension in our AC
model (cf. Fig 5). For instance, while examining a patient a physician can insert
an additional activity X-ray (object).

Objects are hierarchically organized to achieve maintainable models (con-
tainsObject relationship in Fig. 7). As illustrated in Fig. 5 access rights can be

68 B. Weber et al.

All

Process Typ

Process Schema

Activity

1

*

1

*

Activity Group

0..*0..*

0..*0..*

Process Type GroupActivity Template

1

*

1

0..*

Activity Template Group

0..*0..*

Process Segment

1

*

1

*

0..* 0..*

Process Segment Group

1

*

1

*

1

*

1

*

Fig. 5. Object Hierarchy

defined, for instance, for the whole PMS (least detailed level) down to the gran-
ularity of single process types or activities (most detailed level). As illustrated
in Fig. 6 a particular role holds the privilege to perform the deleteActivity com-
mand for process type T1 (=object). Thus this role is authorized to delete all
activities which are part of process schemes related to T1, i.e., activities a11, a12,
a21 and a311.

Note that a particular operation may not be applicable to all kinds of ob-
jects. Table 2 summarizes which combinations of operations and objects are
applicable. For example, the ChangeProcess operation in combination with an
order-changing change command can be used with the following objects: process

Table 2. Granularity of Objects Depending on the Operation∗

Operation All T PTG S PS PSG A AG AT ATG

Change Process
- additive change X X
- subtractive change X X X X X X X X X X
- order-changing change X X X X X X X X
Create Schema X X
Execute Activity X X
Grant Privilege X X X X X X X X X X
Instantiate Schema X X X X
Monitor Process Instance X X X X X X
Notify User X X X X X X
∗All = Process Management System, T = Process Type Schema, PTG = Process Type Group,

S = Process Schema Version, PS = Process Segment, PSG = Process Segment Group,

A = Activity, AG = Activity Group, AT = Activity Template, AT = Activity Template Group.

Balancing Flexibility and Security in Adaptive PMS 69

management system (All), process type, process type group, process schema
version, process segment, process segment group, activity and activity group. In
contrast, for the ChangeProcess operation in combination with additive change
commands only activity templates or groups of activity templates can be used
as the object.

Subject. Finally, we introduce the entity subject to specify what is subject to
change. For example, when an additional lab test activity (object) is inserted
(change command), we must know the process schema version or the process
segment it will be added to, i.e., the subject for this insertion command must
be specified.

Like objects, subjects are organized in a hierarchy too (containsSubject rela-
tionship in Fig. 7). When specifying subjects only a sub-set of the elements from
Fig. 5 is required. Candidates for subjects are the whole process management
system, process types, groups of process types, process schema versions and pro-
cess segments; however, activities, groups of activities, activity templates and
groups of activity templates are not applicable.

As illustrated in Fig. 6, if a particular role has the privilege to perform pro-
cess instance changes (=operation) using the serialInsert command for activity
template at1 (=object) and subject T1, then this role is authorized to insert
activity template at1 into process instances based on process type schema T1.

Specifying a subject is only needed for additive change commands. For all
other operations no subject must be specified as the subject is automatically
known by the system, due to the containment relationships (cf. Fig. 5). When,
as illustrated in Fig. 6, the object for operation ExecuteActivity is activity a11,
then the subject is implicitly known to be S1, the process schema version activity
a11 is part of.

Privilege. As illustrated in Fig. 6 a privilege is defined by specifying an op-
eration, an object, a change command, and a subject. For example, privilege
(ProcessInstanceChange, at1, serialInsert, T1) states that activities derived from
activity template at1 can be added to any process instance created from process
type T1. Fig. 6 shows the field values of the selected privilege in dark grey. The
selected privilege automatically extends to the light grey boxes as well; for ex-
ample, in Fig. 6 the subject is T1, this extends the privilege to process schema
versions S1 and S2 too.

As indicated in Fig. 6 not all entities are mandatory in all situations. The
entities operation and object are always mandatory, while the entity change com-
mand is only mandatory when the ChangeProcess operation is selected. The
entity subject is only mandatory for additive change commands.

4.3 Extended Model - Overview

We added the additional entities operation OP , object O, change command C and
subject SUB as well as the relationships includes, containsObject, specializes
and containsSubject to the core RBAC model. In addition the entity privilege

70 B. Weber et al.

PMS

T1 T2 at1 at2

S1 S2 S3 S4

a11 a21 a311a12

Objects

Change Commands All

PMS

T1 T2

S1 S2 S3 S4

T1

T1

Subjects

Operations
All

Execute
Activity

Notify
User

Create
Schema

Instantiate
Schema

Monitor
Process
Instance

SubtractiveCommand AdditiveCommand

parallelInsertserialInsertDeleteActivity serialMove

Order ChangingCommand

Change
Process

Grant
Privilege

Privileges

Operation Object
Change

Command
Subject

ExecuteActivity a11 -

ProcessInstanceChange T1 deleteActivity

ProcessTypeChange PMS All -

ProcessInstanceChange at1 serialInsert T1

-

-

ProcessTypeChange ProcessInstanceChange

DefineNewProcessInstanceChange ReuseExistingProcessInstanceChange

Fig. 6. Extended Access Control Model - Example

P has been defined in a more detailed way. The meta-model of the extended AC
model is illustrated in Fig. 7.

– Object o ∈ O represents one of the following entities: the entire process man-
agement system, a process type, groups of process types, a process schema,
a process segment, groups of process segments, an activity, a group of activ-
ities, an activity template or a group of activity templates.

– Operation op ∈ OP represents a use case supported by the adaptive PMS
(e.g., ExecuteActivity, GrantPrivilege or ChangeProcess).

– Change Command c ∈ C represents a change command (e.g., deleteActivity
or serialInsert).

– Subject sub ∈ SUB represents what is subject to change, i.e., the entire
process management system, a process type, a group of process types, a
process schema, a process segment and a group of process segments.

– Privilege p ∈ P is a tuple(op, o, c, sub) representing the right to perform
a particular operation op with an object o using change command c on a
subject sub.

– includes(op1, op2), op1, op2 ∈ OP states that operation op1 includes op2.
Having a privilege for op1 thus includes the privileges for op2.

– containsObject(o1, o2), o1, o2 ∈ O states that object o1 includes object o2.

Balancing Flexibility and Security in Adaptive PMS 71

Privilege

ObjectChangeCommand

Operation

RoleUser

can-play holds

is-a implies

containsObjectspecializes

include

Subject

containsSubject

Fig. 7. Extended Access Control Model

– specializes(c1, c2), c1, c2 ∈ C states that change command c1 includes change
command c2.

– containsSubject(sub1, sub2), sub1, sub2 ∈ Sub states that subject sub1 in-
cludes subject sub2.

5 Process Type Dependent Constraints

An AC model for adaptive PMS must not only allow to restrict access to au-
thorized users. It must also enforce the execution of particular activities (e.g.,
a particular activity must not be deleted due to legal requirements) and ensure
that only semantically correct activities can be inserted in the given context
(e.g., no patient related activities must be inserted into a drug procurement
process).

Process type dependent access rights allow to specify which activities, activity
templates, which groups of activities and which groups of activity templates can
be inserted into, deleted from or moved within process instances based on a
particular process type.

Process type dependent access rights are defined independently of the in-
dividual users and roles performing the process instance change, thus only a
sub-set of the extended AC model in Fig. 7 is needed; the entities role and user
can be omitted. Like user dependent access rights, a privilege for process type de-
pendent access rights consists of the entities operation, object, change command
and subject.

Example 1. Privilege (ProcessInstanceChange, MedicalTreatmentStep, additive-
Command, GroupMedicalTreatmentProcess) says that any activity template of
group MedicalTreatmentStep (i.e., X-ray, Lab Test, Computer Tomography)
can be inserted into any medical treatment process by using an additive change
command.

72 B. Weber et al.

PMS SecurityService

(2) requestAuthorizedOperations(user)

listOfOperations

(4) requestAuthorizedObjects(user, operation, subject)

listOfObjects

(6) requestAuthorizedChangeCommands(user, subject, operation, object)

listOfChangeCommands

User Client

(1) login(user)

listOfOperations

(3) performOperation(operation, subject)

listOfObjects

(5) getValidChangeCommandsForActivity(object)

listOfChangeCommands

(7) performChangeCommand(changeCommand)

updateMenus(listOfOperations)

showSelectActivityDialog(listOfObjects)

showSelectChangeCommandDialog(listOfChangeCommands)

Fig. 8. PMS and Security Service Interactions (Process Instance Change)

6 Practical Issues

Our extended AC model is currently implemented as a separate Security Service
(SECS) which can be used independently of a specific PMS. To demonstrate the
interactions between a PMS and the SECS this section walks the reader through
a process instance change (cf. Fig. 8).
Dynamic Menu Configuration. When the user logs in to the PMS via his user
client (1) the PMS interacts with the SECS to request the list of operations the
user is authorized for (2) (Query: requestAuthorizedOperations(User)). Based on
the results of this query the menu of the user client is dynamically configured, i.e.,
only those operations are displayed in the user’s menu for which he is authorized.
Thus, the user is never presented a menu item he is not authorized for, which
prevents annoying ”not authorized” warnings.

Example 2. The physician John logs in to the PMS via his user client. The PMS
then dynamically configures the menu items based on the privileges which have
been assigned to the role physician and which comply with the process type
dependent access rights (cf. Fig. 9 a). John, for instance, is authorized to in-
sert activity templates of group MedicalTreatmentSteps (i.e., X-ray, Lab Test,
Computer Tomography) into process instances of medial treatment processes.

Perform Ad-hoc Changes. When an authorized user wants to deviate from
the predefined process schema at runtime he can select the respective menu item
to perform a process instance change in his user client (3).

Balancing Flexibility and Security in Adaptive PMS 73

Admit
patient

Inform patient

Prepare patient

Examine
patient

Deliver
report

Make
appointment

 Change Process Instance

OK Cancel

 Select Change Command

OK Cancel

Retrieved Change Commands:

(c)

(d)

 Search Activity / Activity Template

GO

X-ray

Lab Test

Computer Tomography

OK Cancel

Search for:

Retrieved Activities / Activity Templates:

(b)

X-ray

serialInsert

Operation

User dependent access rights

Change Command Object Subject
ProcessInstanceChange serialInsert MedicalTreatmtentSteps GroupMedicalTreatmentProcess

Role
Physician

Operation

Process type dependent access rights

Change Command Object Subject
ChangeProcess serialInsert MedicalTreatmtentSteps GroupMedicalTreatmentProcess

(a)

(e)

Fig. 9. Example Privileges (a) and User Interactions (b-e)

He then has to select the object for the change, e.g., the activity template
to be inserted into the process instance schema or the concrete activity to be
deleted or moved (cf. Fig. 9 b).

For insert operations the PMS requests the set of activity templates the user
is authorized to insert into process instances based on process schema version
S (4). It further requests the set of activities in process schema S the user is
authorized to delete or move and which comply with the process type depen-
dent access rights (Query: requestAuthorizedObjects(User, Subject, Operation)).
Completed activities are not listed, as already passed process graph regions can
no longer be modified. The user can then select one of the displayed activities
or activity templates (5).

Example 3. Assume that John decides to perform a new ad-hoc modification
(e.g., to insert a new activity based on template X-ray) for a process instance
created from process schema version S1 (cf. Fig. 9 b). He selects the respec-
tive operation in the menu bar of his user client, and the system then requests
the list of activity templates (requestAuthorizedObjects(John, S1, ProcessIn-
stanceChange)) he is authorized to add to this schema. In our example, the
SECS returns activity templates X-ray, Lab Test, and Computer Tomography.

The system then shows a graphical representation of process schema S (cf. Fig.
9 c) and suggests those change commands to the user which comply with both
his authorizations and the process type dependent access rights (6) (Query:
requestChangeCommands(User, Operation, Object, Subject)). The user can then
choose one of the displayed change commands for execution (7). When necessary,
the system requests any required parameters from the user (cf. Fig. 9 d).

Example 4. John selects activity X-ray. The PMS then displays S1, the pro-
cess schema on which the process instance to be modified was created from.

74 B. Weber et al.

After this, the PMS requests a list of change commands which are presented
to John (requestChangeCommands(John, ProcessInstanceChange, X-ray, S1)).
John then selects the serialInsert change command to insert the additional
X-ray activity. Furthermore, the system asks him where the X-ray activity
should be inserted and ensures that he does not insert it into already passed
process graph regions. John replies that the X-ray activity is to be performed
after activity Examine Patient and before activity Deliver Report
(cf. Fig. 9 e).

7 Related Work

There are several AC models for PMS discussed in literature [10,11,12,13,14,15,
16,17]. Most of them use RBAC models and support static as well as dynamic
constraints (e.g., [10,11,12,13,14]). However, they only provide limited support
for adaptive processes: either they only cover privileges for the execution of
tasks, but do not deal with privileges for process changes at all (e.g., [10,13]),
or specify change rights at a very coarse-grained level (e.g., not distinguishing
between change commands) [17].

W-RBAC [10] provides a specific AC model for workflow systems which
focuses on the definition of task execution rights and allows for the defini-
tion of static and dynamic constraints (e.g., separation of duties). Dynamic
constraints have not been the focus of this paper, but will be considered in
our overall approach as well, we plan to apply concepts provided by existing
approaches [10,11,12,13,14]. In order to deal with exceptional situations W-
RBAC allows authorized users to override constraints. However, as the defi-
nition of change rights is not supported, W-RBAC is not suited for adaptive
PMS.

Case-handling systems provide an alternative to adaptive PMS. FLOWER
[15], for example, allows defining change rights to some degree. For each process
and for each activity an execution role (for carrying out the activity or to start the
process), a redo role (to undo activities) and a skip role (to omit an activity) can
be defined. The handling of more complex change commands (e.g., the insertion
of new activities) is not addressed.

Domingos et al. [17] propose an AC model for adaptive workflows, which also
considers the evolution of access rights. Though their approach differentiates be-
tween process type and process instance change, it does not allow for fine-grained
definition of privileges at the level of individual change commands. Their focus is
on user dependent access rights, process dependent rights are not considered. As
no abstraction mechanisms (e.g., hierarchies) are used, the compact definition
of access rights is not possible.

An approach to control flexibility other than by AC is the Pockets of Flexibil-
ity model [27]. Flexibility is limited to certain predefined points in the workflow,
where the workflow can be dynamically extended at run-time.

Balancing Flexibility and Security in Adaptive PMS 75

8 Summary and Outlook

In this paper we presented an AC model which allows for the compact defini-
tion of access rights as needed in adaptive PMS. We support both the definition
of user dependent and process type dependent access rights (cf. Requirement
1). Our approach supports the use cases provided by an adaptive PMS (cf. Re-
quirement 2), and allows the specification of access rights for individual change
commands (cf. Requirement 3). If desired, access rights can be specified at an
abstract (i.e., coarse-grained) level by using the hierarchical organization of our
model. Fine-grained specification of access rights is supported as well, allowing
context-based assistance of users when performing a change. However, the more
detailed the respective specifications, the more costly their definition and mainte-
nance becomes. Based on our experience with processes from several application
domains, different granularities must be supported (cf. Requirement 4).

Currently we are working on the implementation of the Security Service and
its integration into the adaptive PMS ADEPT [1] and CBRFlow [7]. We further
plan a thorough evaluation of the AC model in real world settings, including
its performance and scalability. Next, dynamic constraints will be elaborated in
more detail and integrated into our AC model.

References

1. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

2. Jørgensen, H.D.: Interactive Process Models. PhD thesis, Norwegian University of
Science and Technology, Trondheim, Norway (2004)

3. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering, Special Issue on
Advances in Business Process Management 50 (2004) 9–34

4. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data and Knowledge
Engineering 24 (1998) 211–238

5. v.d. Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoret. Comp. Science 270 (2002) 125–203

6. Strong, D., Miller, S.: Exceptions and exception handling in computerized infor-
mation processes. ACM–TOIS 13 (1995) 206–233

7. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling adaptive workflow manage-
ment through conversational case-based reasoning. In: Proc. Eurpean Conf. on
Case–based Reasoning (ECCBR’04), Madrid (2004) 434–448

8. Luo, Z., Sheth, A., Kochut, K., Miller, J.: Exception handling in workflow systems.
Applied Intelligence 13 (2000) 125–147

9. Weske, M.: Workflow management systems: Formal foundation, conceptual design,
implementation aspects. University of Münster, Germany (2000) Habil Thesis.

10. Wainer, J., Barthelmess, P., Kumar, A.: W-RBAC - a workflow security model
incorporating controlled overriding of constraints. IJCIS 12 (2003) 455–485

11. Bertino, E., Ferrari, E., Alturi, V.: The specification and enforcement of autho-
rization constraints in wfms. ACM Trans. on Inf. and Sys. Sec. 2 (1999) 65–104

12. Botha, R., Eloff, J.: A framework for access control in workflow systems. Informa-
tion Management and Computer Security. 9 (2001) 126–133

76 B. Weber et al.

13. Casati, F., Castano, S., Fugini, M.: Managing workflow authorization constraints
through active database technology. Inf. Sys. Frontiers. 3 (2001) 319–338

14. Liu, D.R., Wu, M.Y., Lee, S.T.: Role-based authorization for workflow systems in
support of task-based separation of duty. The Journal of Systems and Software.
73 (2004) 375–387

15. van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for
business process support. Data and Knowledge Engineering. 53 (2005) 129–162

16. Atluri, V., Huang, W.K.: Enforcing mandatory and discretionary security in work-
flow management systems. Journal of Computer Security. 5 (1997) 303–339

17. Domingos, D., Rito-Silva, A., Veiga, P.: Authorization and access control in adap-
tive workflows. In: ESORICS 2003. (2003) 23–38

18. Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis,
University of Ulm (2004)

19. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating process learning and
process evolution - a semantics based approach. In: BPM 2005. (2005)

20. Weber, B., Reichert, M., Rinderle, S., Wild, W.: Towards a framework for the agile
mining of business processes. In: Proc. of Int’l BPI workshop. (2005)

21. Weber, B., Rinderle, S., Wild, W., Reichert, M.: CCBR–driven business process
evolution. In: ICCBR’05, Chicago (2005)

22. Reichert, M.: Dynamic Changes in Workflow-Management-Systems. PhD thesis,
University of Ulm, Computer Science Faculty (2000) (in German).

23. Konyen, I.: Organizational structures and business processes in hospitals. Master’s
thesis, University of Ulm, Computer Science Faculty (1996) (in German).

24. Ferraiolo, D., Kuhn, D.: Role based access control. In: 15th National Computer
Security Conference. (1992)

25. Sandhu, R.S., Coyne, E., Feinstein, H., Youman, C.: Role-based access control
models. IEEE Computer 29 (1996) 38–47

26. Ferraiolo, D.F., Chandramouli, R., Kuhn, D.R.: Role-Based Access Control. Artech
House, Incorporated (2003)

27. Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of flexibility in workflow specifications.
In: Proc. Int’l Entity–Relationship Conf. (ER’01), Yokohama (2001) 513–526

	Introduction
	Adaptive PMS and Their Characteristics
	Basic Concepts
	Process Change
	Major Use Cases for an Adaptive PMS

	Requirements for an AC Model for Adaptive PMS
	User Dependent Access Rights
	Core AC Model
	Extended Access Control Model
	Extended Model - Overview

	Process Type Dependent Constraints
	Practical Issues
	Related Work
	Summary and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

