

Universität Ulm | 89069 Ulm | Germany Fakultät für
 Ingenieurwissenschaften,
 Informatik und Psychologie
 Institut für Datenbanken
 und Informationssysteme
 Leiter: Prof. Dr. Manfred Reichert

Context-aware Process Management
for the Software Engineering Domain

Dissertation zur Erlangung des Doktorgrades Dr. rer. nat.
der Fakultät für Ingenieurwissenschaften, Informatik und Psychologie der Universität Ulm

Vorgelegt von:
Gregor Robert Grambow
geboren in Schwäbisch Hall

2016

Amtierende Dekanin: Professor Tina Seufert
Gutachter: Professor Manfred Reichert
 Professor Franz Schweiggert
 Professor Roy Oberhauser
Tag der Promotion: 13.05.2016

III

Preface

The results presented in this thesis are the outcome of my work as a research assistant at the Institute
of Databases and Information Systems of Ulm University between 2012-2015 with Prof. Dr. Manfred
Reichert, as well as at the Computer Science Department of Aalen University of Applied Sciences
between 2009-2012 working with Prof. Roy Oberhauser on the Q-ADVICE project (Quality
ADVisory Infrastructure for Collaborative Engineering), where we created the Context-aware
Software Engineering Environment Event-driven frameworK (CoSEEEK).

I am very grateful to my mentor Prof. Dr. Manfred Reichert, whom I thank for his helpful advice,
continuous support, and valuable feedback during the last years. He provided all the freedom needed
for my research, but at the same time was always there to support me.

In addition, I am deeply grateful to my mentor Prof. Roy Oberhauser. This thesis would not have been
possible without his initiative and extensive help and support, and I thank him for being a part of it. I
could go to him with any problem or worry. He was a motivation and inspiration to me: not only his
passion for science, but also his passion to really improve the situation for practitioners in software
engineering, as well as his creativity and innovative ideas.

Besides my mentors, I would like to thank my second proofreader Prof. Dr. Franz Schweiggert and the
members of my doctoral committee Prof. Dr. Peter Dadam, Prof. Dr. Helmuth Partsch, and Prof. Dr.
Uwe Schöning for providing feedback for my thesis.

My thanks extend to my colleagues and students from the Q-ADVICE project for their support and
help with the implementation of our concepts: Stefan Lorenz, Andreas Kleiner, Muhammer Tüfekci,
Andreas Nägeli, and Alexander Grünwald.

I would also like to thank my colleagues and friends from Ulm University. It was a great time at
DBIS, sharing so many different tasks with you.

Personally, I also want to thank Susanne for her help and continuous support in every situation. Her
care and support during most of my thesis time made this the best time of my life, despite my spending
so much time and attention on this project. She stood by me, and I am really looking forward to our
future together.

Last but not least, I would like to thank my parents Heiderose and Peter Grambow. They were always
there for me during the past decades, and always supported me with good advice in every situation.
They enabled my studies in Aalen, Karlsruhe, and Ulm. For all of these things, and many more, I am
deeply thankful.

V

Abstract

Historically, software development projects are challenged with problems concerning budgets,
deadlines and the quality of the produced software. Such problems have various causes like the high
number of unplanned activities and the operational dynamics present in this domain. Most activities
are knowledge-intensive and require collaboration of various actors. Additionally, the produced
software is intangible and therefore difficult to measure. Thus, software producers are often
insufficiently aware of the state of their source code, while suitable software quality measures are
often applied too late in the project lifecycle, if at all.

Software development processes are used by the majority of software companies to ensure the quality
and reproducibility of their development endeavors. Typically, these processes are abstractly defined
utilizing process models. However, they still need to be interpreted by individuals and be manually
executed, resulting in governance and compliance issues. The environment is sufficiently dynamic that
unforeseen situations can occur due to various events, leading to potential aberrations and process
governance issues. Furthermore, as process models are implemented manually without automation
support, they impose additional work for the executing humans. Their advantages often remain hidden
as aligning the planned process with reality is cumbersome.

In response to these problems, this thesis contributes the Context-aware Process Management (CPM)
framework. The latter enables holistic and automated support for software engineering projects and
their processes. In particular, it provides concepts for extending process management technology to
support software engineering process models in their entirety. Furthermore, CPM contributes an
approach to integrate the enactment of the process models better with the real-world process by
introducing a set of contextual extensions. Various events occurring in the course of the projects can
be utilized to improve process support and activities outside the realm of the process models can be
covered. That way, the continuously growing divide between the plan and reality that often occurs in
software engineering projects can be avoided. Finally, the CPM framework comprises facilities to
better connect the software engineering process with other important aspects and areas of software
engineering projects. This includes automated process-oriented support for software quality
management or software engineering knowledge management. The CPM framework has been
validated by a prototypical implementation, various sophisticated scenarios, and its practical
application at two software companies.

IX

Contents

Part I Problem Statement and Requirements .. 1

1. Introduction ... 3

1.1. Problem Statement ... 5

1.2. Contribution ... 6

1.3. Outline .. 7

2. Research Methodology .. 9

2.1. Research Questions .. 9

2.2. Information Systems Research ... 9

3. Background .. 13

3.1. The Software Engineering Process .. 13

3.2. Software Engineering Process Models .. 15

3.2.1. Classical Approaches .. 15
3.2.2. Agile Approaches ... 17

3.3. Summary .. 20

4. Requirement Analysis ... 21

4.1. Concrete Problems ... 21

4.2. Basic Requirements .. 28

4.3. Requirements Verification ... 29

4.4. Summary .. 31

Part II Solution .. 33

5. Foundations .. 35

5.1. Process Modeling ... 35

5.2. Basic Terminology and Premises ... 37

5.3. Basic Definitions .. 38

5.4. Correctness ... 40

5.5. Types of Workflows ... 41

Contents

X

6. A Framework for Context-aware Process Management in Software
Engineering .. 43

6.1. Requirements.. 43

6.2. Framework Components .. 45

6.3. Discussion .. 53

6.3.1. Computer-Aided Software Engineering ... 53
6.3.2. Process-centered Software Engineering Environments 54
6.3.3. Modern Development Environments .. 56
6.3.4. Other Contemporary Approaches ... 59
6.3.5. Related Work Summary .. 62

6.4. Summary .. 63

7. Contextual Extensions for Software Engineering Processes 65

7.1. Requirements.. 66

7.2. Contextual Software Engineering Process Extensions 69

7.3. Software Engineering Workflow Governance ... 73

7.3.1. Horizontal Governance ... 74
7.3.2. Vertical Governance ... 76

7.4. Extended Software Engineering Activity Modeling 78

7.5. Abstraction from Internal Workflow Logic ... 81

7.6. Automated Software Engineering Process Adaptation 86

7.7. Conceptual Framework .. 89

7.7.1. Basic Concepts .. 89
7.7.2. Consistency Checks .. 99
7.7.3. Algorithms for Marking Workflows ... 100
7.7.4. Basic Actions for Software Engineering Process Enactment 108

7.8. Discussion .. 110

7.8.1. Process Enactment Support .. 110
7.8.2. Dynamic Processes ... 110
7.8.3. Contextual Process Support / Integration ... 113
7.8.4. Related Work Summary .. 118

7.9. Summary .. 119

8. Extended Software Engineering Process Coverage 121

8.1. Requirements.. 122

8.2. Hybrid Workflow Approach .. 125

8.2.1. Different Activity Types of Software Engineering Workflows 125
8.2.2. Extrinsic Workflow Modeling and Enactment ... 126
8.2.3. Applying Situational Method Engineering ... 128

Contents

XI

8.2.4. Information Gathering .. 129
8.2.5. Declarative Workflow Modeling .. 130
8.2.6. Treatment of Different Workflow Types .. 141
8.2.7. Concrete Procedure for Extrinsic Workflow Enactment 142
8.2.8. Modeling Effort .. 146

8.3. Discussion .. 146

8.3.1. Declarative Process Models .. 147
8.3.2. Process Model Configuration ... 147

8.4. Summary .. 148

9. Automated Quality Management Integration in Software Engineering
Processes .. 149

9.1. Requirements.. 150

9.2. Quality Management Integration Approach .. 152

9.2.1. Solution Procedure .. 152
9.2.2. Context Detection ... 154
9.2.3. Quality Measure Processing ... 158
9.2.4. Quality Post-Processing .. 170
9.2.5. Conceptual Framework ... 171

9.3. Discussion .. 173

9.3.1. Metric Application .. 174
9.3.2. Measurement Tools .. 174
9.3.3. GQM support .. 174

9.4. Summary .. 175

10. Workflow Coordination in Software Engineering Processes 177

10.1. Requirements ... 178

10.2. Automatic Activity Coordination .. 179

10.2.1. Passive Coordination Support ... 179
10.2.2. Active Coordination Support .. 182

10.3. Discussion .. 186

10.4. Summary .. 187

11. Exception Handling in Software Engineering Processes 189

11.1. Requirements ... 190

11.2. Flexible Software Engineering Exception Handling 191

11.2.1. Abstract Approach .. 191
11.2.2. Conceptual Framework ... 193
11.2.3. Concrete Procedure ... 194

11.3. Discussion .. 196

Contents

XII

11.4. Summary .. 197

12. Knowledge Management Support in Software Engineering Processes 199

12.1. Requirements ... 199

12.2. Software Engineering Knowledge Management Approach 201

12.2.1. Basics for Enabling Software Engineering Knowledge Management 201
12.2.2. Software Engineering Knowledge Management Specifics 203
12.2.3. Process-centered Knowledge Support ... 204
12.2.4. Software Engineering Knowledge Provisioning Procedure 207

12.3. Discussion .. 210

12.4. Summary .. 211

Part III Evaluation .. 213

13. Technical Feasibility .. 215

13.1. Requirements ... 215

13.1.1. Functional Requirements .. 215
13.1.2. Technical Requirements .. 216

13.2. Extending an Existing Architecture ... 216

13.2.1. Design and Architecture Decisions ... 216
13.2.2. CPM Implementation .. 217

13.3. Software Engineering Process Enactment with CPM................................ 219

13.3.1. Technical Aspects ... 219
13.3.2. User Interfaces .. 220

13.4. Software Engineering Workflow Adaptation Aspects............................... 222

13.5. Declarative Software Engineering Workflow Generation 223

13.5.1. Technical Aspects ... 223
13.5.2. User Interfaces .. 228

13.6. Software Engineering Coordination Aspects ... 230

13.6.1. Technical Aspects ... 230
13.6.2. User Interfaces .. 231

13.7. Software Engineering Exception Handling Aspects 233

13.7.1. Technical Aspects ... 233
13.7.2. User Interfaces .. 233

13.8. Software Engineering Quality Management Aspects 234

13.9. Software Engineering Knowledge Management Support 235

13.10. Summary ... 238

14. Practical Application ... 239

Contents

XIII

14.1. Modeling the OpenUP Process .. 239

14.1.1. Mapping the Process Concepts ... 239
14.1.2. Process Model Enactment ... 240

14.2. Modeling the V-Model XT Process ... 242

14.2.1. Mapping the Process Concepts ... 242
14.2.2. Process Model Enactment ... 243

14.3. Modeling of the Scrum Process ... 245

14.3.1. Mapping of the Process Concepts ... 245
14.3.2. Process Model Enactment ... 246

14.4. Extended Process Coverage Scenario .. 247

14.4.1. Bug Fixing Use Case... 247
14.4.2. Further Use Cases ... 249

14.5. Automated Quality Management Scenario .. 250

14.5.1. Process .. 250
14.5.2. GQM Plan ... 251
14.5.3. Concrete Situation ... 252

14.6. Exception Handling Scenario .. 255

14.7. Knowledge Management Support Scenario .. 256

14.8. Workflow Coordination Scenario .. 258

14.9. Sample Application: Software Modernization .. 259

14.10. Lessons Learned from a Preliminary Industrial Application 261

14.11. Summary ... 264

15. Discussion ... 265

15.1. Enabling Comprehensive Software Engineering Process Support 265

15.2. Related Approaches ... 266

15.3. Problem Areas .. 268

15.4. Overall Comparison ... 270

15.5. Threats to Validity ... 271

15.6. Major Findings ... 273

15.7. Summary .. 274

Part IV Conclusion ... 275

16. Summary and Outlook .. 277

Bibliography .. 281

Acronyms ... 303

Contents

XIV

Part V Appendices .. 305

A. Ontology ... 307

A.1. Imperative Process Concepts ... 307

A.1.1. Template Concepts ... 307
A.1.2. Individual Concepts .. 310

A.2. Declarative Process Concepts .. 313

B. Conceptual Framework .. 317

B.1. Entity Concepts .. 317

B.1.1. Basic Concepts .. 317

B.2. Consistency Checks ... 323

B.2.1. Basic Concepts .. 323
B.2.2. Extrinsic Workflows ... 326
B.2.3. Quality Management ... 330

B.3. Algorithms.. 331

B.3.1. Basic Workflow Enactment .. 331
B.3.2. Extrinsic Workflow Generation .. 337

C. Basic Actions for Process Enactment .. 339

Part I

Problem Statement and
Requirements

1 Introduction

3

1. Introduction

Software Engineering (SE) is a discipline that implies special properties for process enactment. On
one hand, these are correlated with the special properties of the produced product, i.e., the software:
complexity, conformity, changeability, and invisibility [Broo87]. On the other, IT support for SE
processes is not mature yet, since SE implies a highly dynamic and creative process. Furthermore, the
impact of process management in SE has been underestimated for a long time [Wall07]. Over decades,
many SE process models as well as models for SE process improvement have been developed and
been introduced to practice. In other areas, like industrial production, such processes have been
automated and supported by process management technology [LeRo00]. Yet implementation and
automated enactment of processes is not prevalent in SE, mostly due to the dynamic nature of these
knowledge-intensive processes that contradict the rigid sequencing of process activities necessary for
an automated enactment.

SE processes are essentially knowledge-intensive, i.e., they depend on knowledge workers to a large
extend [KeHa02]. The highly intellectual SE process implies a high amount of communication.
Compared to industrial production processes, SE processes rely much more on humans and highly
collaborative team interactions. Note that each SE project constitutes a development project,
producing a unique outcome. For such projects, the rigidity of prescribed processes mostly does not
fit. Further, it was already stated that dynamic processes supporting collaboration as well as
communication can be beneficial [Shet97]. Usually, SE processes deal with the development of a new
product (i.e., the software), which is a knowledge-intensive task [RaTi99]. In this context, necessary
facts, much information and comprehensive knowledge are handled manually and implicitly by the
humans involved. Hence, automation is not feasible and SE processes are usually performed manually
in a documentation-centric way [RBTK05]. In turn, this often implies high manual efforts for humans
as they have to manage the process models. Moreover, actual process enactment largely depends on
humans. Many tasks and activities are not part of the process models. Especially on the operational
level, where activities like coding and testing are performed, only limited support for the software
engineers is available from SE process models. Thus, there is a growing gap between the specified
process and the one actually executed.

Another specialty of SE projects is the product developed. Software has special properties whose
combination differentiates it from many other products: complexity, conformity, changeability, and
invisibility [Broo87]. These properties make it difficult to be aware of the status of the software. In
many software producing companies, human tasks, requirements, and the realization of the
requirements are managed in some way. However, due to the often high number of humans working
concurrently on numerous source code artifacts, the quality of the source code can deteriorate
unnoticed. Thus, many projects struggle with bad source code quality [Jone10]. However, to be
enforced, software quality must be defined and measured [Kan02]. In many cases, resources are
wasted by neglecting software quality issues and respective software quality measures until the final
stages of a project [Hami88, SHK98]. Another issue of software quality comes with the lacking ability
of many companies to actually control, manage and support their knowledge-intensive and human-
centric processes [BDS+99, Ambl02, Wall07, Dust04, SBBK08]. Due to these issues, projects suffer
from bad software quality as well as exceeded budgets and deadlines having issues on both the process
and the product side. Altogether, it is desirable to integrate software quality assurance tightly and
smoothly with process management to enable the continuous monitoring of product quality.

Business Process Management and the introduction of Process-Aware Information Systems (PAIS)
has been a continuous trend in various business areas. In particular, the explicit governance of
activities by a PAIS enables improved repeatability of the process and can thus improve the quality of
the product [ReWe12, DAH05]. Domains in which PAIS have been successfully introduced include

1 Introduction

4

health care [LeRe07], automotive engineering [MHHR06, MRH08], finance [GoAk03] and
transportation [Bass05]. To be able to comprehensively cover all activities executed as well as
optimize the whole process executed in an organization, the business process lifecycle [GeTs98,
vdAa04, WRWR09] is roughly separated into several phases (cf. Figure 1-1): First the process is
defined, which implies a design process. Further, this phase might include the discovery of executed
processes through process mining [vdAa11, vdWe04, vWM04]. Following the design phase, the
process is implemented. In the subsequent enactment phase, the process is used to govern the activities
it was designed for. Data from this enactment phase is then used for the diagnosis phase, which can be
applied to optimize the process as well as to adapt it to environmental changes. With the results from
the diagnosis phase the cycle can be restarted.

Figure 1-1: Process lifecycle (adopted from [vdAa04])

To enable continuous support and guidance for a process, automated IT support is desirable. To
achieve the latter, processes can be implemented using PAIS [vdvH02]. Such systems provide support
for automated process enactment, automated task distribution to humans, coordination, and monitoring
of different process instances. That way, process enactment can be guided and process diagnosis be
supported, since the executed activities are explicitly governed. This makes the entire process
enactment more traceable and repeatable.

The described factors hamper successful process enactment in the SE domain. Many of the issues
discussed, however, are related to the dynamics of SE projects [BDS+99, Ambl02]. In fact, numerous
obstacles inhibit automated SE process management (SEPM) at the operational level. These include a
high number of dynamically executed small tasks like bug fixing, coding, developer tests, or
integration tests. Respective tasks may not even be covered on the more abstract planning levels where
the entire project, its process, and different phases are managed. Such activities also imply many
contextual dependencies, i.e., they rely on properties relating to the current situation, e.g., time
pressure in the projects or technology used. Another factor is the great number of involved artifacts,
e.g., documentation artifacts, specifications, or the source code itself. These artifacts often have many
relations with each other and are frequently changed by various persons. This involves a great amount
of tacit knowledge crucial to the projects that is only implicitly managed by these persons. In turn, this
puts high pressure on them: Because of the high dynamicity, the concurrent enactment of multiple
projects, the absence of clearly defined and stable requirements, and many other factors, much is left
to them. This constitutes a great burden as well as high efforts for software engineers. Due to the lack
of repeatability and guidance of these knowledge processes, it is rather likely that the knowledge
worker forgets important tasks or unintentionally introduces new problems to the source code.

1 Introduction

5

1.1. Problem Statement
As shown by many studies, SE projects have been suffering from problems with exceeded budgets,
missed schedules, and low product quality for a long time [NaRa68, Broo87, Glas98, Kruc04, Jone10].
Many of these problems are resulting from the adolescence of SE as a discipline and special properties
of this discipline having a great impact on SE projects. These properties (e.g., the intangible product or
the knowledge-intensive, human-centric SE process) are exhibited, in both the created product and in
the SE process. Based on this, three main topics introducing serious issues to SE can be observed:
First, the knowledge-intensive process puts much pressure on the involved humans. Second, the
intangible product makes it difficult to control the latter and might introduce severe quality issues.
Looking at these two problematic sides of SE projects, a third topic comes into mind: there exist tools
that support various SE aspects but no comprehensive and automatic process support, incorporating
humans and artifacts, is prevalent.

Note that we will use the term process and workflow with different meanings. Process will be referred
to as something rather abstract that is not implemented in software. Workflow will be referred to as
something more concrete and operational as well as something that is implemented using a software
tool and, therefore, as an automated facility to govern the flow of activities.

Manual process implementation. Process automation was mainly applied in areas in which
foreknown activity sequences exist, but not in scenarios requiring the enactment of a human-centric
and knowledge-intensive process [MBR15]. In SE, therefore, there exists not much experience with
process automation. Process models are available containing information important for the projects
[BWHW06, RiJa00, Mall09]. However, these remain rather abstract and prescriptive [BDS+99,
Ambl02]. Hence, manual implementation becomes necessary. Consequently, the involved persons are
responsible for enacting the SE process without automated governance or enforcement. This implies
shortcomings with respect to guidance, traceability, monitoring, and diagnosis of the activities
executed, as abstract process models mostly do not reach the actual executing persons [Wall07]. In
particular, they tend to fail in providing operational guidance. Since the quality of the software product
is depending on the quality of the SE process [Wall07], this affects product quality as well. The gap
between the abstract process models and the actual executed activities also prevents comprehensive
coverage of all activities in the SE process. Many activities are executed ad-hoc and cannot be traced.
However, if many are activities executed outside the SE process, knowledge about actual process
enactment cannot be established. In turn, this makes it difficult to enable reproducibility of processes
and projects or the process improvement measures applied.

Knowledge-intensive processes. The issue with lacking process automation is epitomized by the fact
that the process is both complex and knowledge-intensive. As stated, SE processes involve new
product development, which is a knowledge-intensive task [RaTi99]. Even if not dealing with product
development, SE processes are mostly knowledge-intensive [KeHa02]. There is a need for capturing
and sharing various types of information, including domain knowledge, knowledge about
technologies, or knowledge about national or local policies [LiRu02]. Supporting this with an
automated tool can be beneficial [TFB00]. Often, Wikis are used for SE knowledge management since
they can be easily created and information can be quickly accessed [SBBK08]. However, retrieving
contextually relevant information from Wikis is a difficult task [SBBK08]. Thus, knowledge
management as well as knowledge transfer is hampered. However, SE is essentially a collaborative
activity [JYW07, CoCh06]. Consequently, the other side of knowledge-intensive processes concerns
the collaborations of the various individuals working in these processes [MBR15, MuRe14]. The
different connections between humans, teams, tools, and artifacts are of crucial importance for SE
success [JYW07, SQTR07]. However, efficient communication and process-aware collaboration
remain a great challenge [Dust04], and, to a large extend, team work remains unpredictable and
unplannable [BSV07]. Moreover, collaborative work in SE is still not adequately supported by tooling
in SE [LeBo07].

1 Introduction

6

Product quality issues. The created product – the software – has specific properties making it
difficult to monitor and control its status. In turn, this complicates SE projects. Software Quality
Assurance (SQA) has proven to be essential for SE. In particular, it has been shown that SQA has
impact on project costs [Hami88, KKKM00, HuBo06, MSG13], which makes effective and efficient
SQA mandatory. Effective application of software measurement remains a big challenge for software
vendors [STT06]. Furthermore, software quality measures are often applied too late in the projects,
although it has been proven that their application in earlier stages could save time and money
[Hami88, SHK98]. Note that the application of quality measures is also problematic, since their
effectiveness as well as efficiency depend on various factors, like the applicability of the measure, the
project timing, worker competency, or correct execution of the measure [Hami88].

1.2. Contribution
This work originated from the Q-ADVICE (Quality ADVisory Infrastructure for Cooperative
Engineering) project, whose goal of this project was the creation of a concept as well as a prototypical
framework supporting the SE process. That concept as well as the framework shall enable the
automation of various supportive aspects enhancing the quality of the SE process as well as its
product. In Chapter 13, various aspects regarding the technical implementation of a prototype
framework are discussed. All chapters before that deal with the abstract approach that extends process
management technology to enable holistic support for SE projects taking into account the different
aforementioned problem areas. We call this approach CPM (Context-aware Process Management). Its
core contributions are aligned to the core problems identified:

 SE process model implementation support: CPM supports the implementation of entire SE
process models. It provides facilities to enable automated process enactment in SE projects. This
includes support for all process levels ranging from abstract processes to the concretely executed
workflows. Further, CPM provides facilities to integrate process enactment directly with the
project environment. Thus, a connection between the abstract process models and the concrete
activities on the operational level is established. Context information is automatically collected
and utilized for various purposes.

 Advanced SE process enactment: CPM also integrates advanced process enactment features to
support dynamic domains as SE. It features dynamic processes, i.e., predefined processes may be
dynamically adapted to match different situations. Furthermore, CPM enables context-sensitive
adaptations, i.e., automatically collected context data is utilized to adapt running processes to the
needs of the current situation. Further, CPM features facilities to model and execute dynamic
workflows that are usually not covered by SE process models. Thus, these workflows can be
integrated with standard process enactment, and, hence, can be guided, traced, and can profit from
other CPM functionalities. Finally, CPM incorporates advanced facilities for exception handling.
These take various types of context knowledge into account, as, for example, the states of
activities, artifacts, or the SE process. Furthermore, CPM enables flexibility and automation for
handling exceptions and is capable of not only automatically determining the right exception
handling, but also the right person and time point for applying the handling.

 Integration of processes with other areas of SE projects: CPM integrates process enactment
with other areas important for SE projects. One of these is quality assurance. This includes the
automatic detection of potential problems in source code artifacts as well as the management of
quality goals, proactive quality measures and reactive quality measures. Furthermore, quality
measures can be prioritized according to quality goals and be automatically and context-
sensitively distributed to the executing persons in alignment with their standard process activities.
Another important area is SE knowledge management. CPM enables automatic management of
collected SE knowledge utilizing machine-readable semantics. That way, the context-sensitive
selection of applicable knowledge for SE engineers becomes possible. Furthermore, that
knowledge can be automatically injected into the running process to support SE engineers in
various situations. Finally, CPM supports collaboration in SE projects. It features various types of
meta information that allow automatically recognizing coherences between different activities and
artifacts even if they are executed in different areas or departments of a project and by different

1 Introduction

7

persons. With this information, different types of automated coordination become possible
ranging from simple information distribution to fully automated creation and distribution of new
activities.

This work provides an evaluation of the developed concepts as well. By implementing a prototypical
framework, questions regarding the technical feasibility of the approach are dealt with. Furthermore,
detailed studies demonstrating the applicability of the approach were conducted and the framework
was applied in two practical settings.

1.3. Outline
This thesis is split into five parts:

Part I (Problem statement and requirements) provides the motivation of holistic process and
project support for SE. In Chapter 2 research question and research methodology are described.
Chapter 3 provides background information on the SE domain and SE processes, whereas Chapter 4
elicits basic requirements for a tool providing automated holistic support in this domain.

Part II (Solution) is devoted to the solution. It starts with Chapter 5 providing basic information
needed for understanding the work. In Chapter 6, the abstract solution approach is described. Then,
Chapter 7 discusses the contextual extensions to process management concepts being the basis for all
other components of the solution. Chapter 8 elaborates on the approach taken for modeling and
enacting dynamic workflows extrinsic to the SE process models. In turn, Chapter 9 discusses
automated contextual support for SE quality management. Chapter 10 gives insights into task
coordination and Chapter 11 deals with SE process exception handling. Finally, Chapter 12 describes
the automated contextual integration of knowledge management into the SE process.

Part III (Evaluation) is dedicated to the evaluation. Chapter 13 gives details on the technical
feasibility and the implementation of the approach. Chapter 14 shows the practical applicability of the
solution to a set of concrete scenarios. Finally, a discussion of related work and threats to validity is
provided in Chapter 15.

Part IV (Conclusion) concludes the thesis with a summary and an outlook.

2 Research Methodology

9

2. Research Methodology

This chapter presents the research questions addressed by this thesis as well as the research
methodology applied.

2.1. Research Questions
Chapter 1 presented a problem statement and distilled main problem areas backed up by literature
references: (1) the inadequate process support and implementation in SE; (2) the inadequate support of
humans and their interaction in these knowledge-intensive processes; and (3) the inadequate
integration of the product and its quality management into these processes. The first item corresponds
to the process itself while the other two items refer to the integration of the process and other
important aspects of the SE project. Thus, this thesis deals with three main research questions, the first
being the general leading theme of the thesis and the other two refining the first.

Research Question 1: Is it possible to support SE projects by not only documenting, but operationally
guiding and supporting their processes?

Research Question 2: Is it possible to operationalize and guide entire SE process models with
(existing) automated tools?

Research Question 3: Is it possible to connect SE process enactment comprehensively to the actual
course of the projects including artifacts and humans?

To answer these research questions the course of action is to analyze SE projects in practice as well as
to do a comprehensive literature study. Based on this, we will create more concrete requirements to be
fulfilled to answer the research questions.

2.2. Information Systems Research
In particular, this work deals with information systems supporting humans in SE. Therefore, this work
relies on a combination of two science disciplines applied for Information Systems (IS) research that
was postulated in [HMPR04, HeMa03]: design science and behavioral science [MaSm95]. In the
following, we will briefly explain this combination and its suitability for this work.

Information Systems research approaches following behavioral science seek to provide a better
understanding of the interplay of organizations, humans, and technologies that have a huge impact on
the performance of those organizations. Behavioral approaches, therefore, develop theories to explain
or predict organizational phenomena concerning the management, implementation, design, and
analysis of IS. Opposed to this, design science aims to create and evaluate concrete artifacts solving
the problems identified. These approaches are problem- and solution-oriented having their roots in
engineering and sciences of the artificial [Simo96]. As opposed to natural science, however, design
science approaches do not examine natural phenomena, but rather deal with those relating to and
created by humans [Simo96].

2 Research Methodology

10

Design plays a central role in these approaches and is to be understood as the goal-driven and
deliberate organization of resources for achieving these goals. The combination of these two
disciplines has been chosen in this thesis due to its applicability for complex and application-centric IS
problems. The latter often cannot be precisely specified (i.e., as mathematical model) and thus cannot
be optimally solved by one approach. Instead, they demand for more flexible descriptions and
solutions. As an example, [Simo96] presents the creation of a robust IS architecture and classifies
solutions to such problems as ‘satisfying’. This means that they may not be optimal, but well suited
and good enough for a certain class of problems.

In this work, the framework created in [HMPR04, HeMa03] is applied as shown in Figure 2-1:

Organizations

Orgasnization
Structures

Humans

Infrastructure

Artifacts

Research

Design

Development

Evaluation

Discovery

Verification

Design Science

Behavioral
Science

Knowledge Base

Process Management
Applications

Knowledge
Management
Applications

Software Engineering
Applications

Software Engineering
Process Models

Software Engineering
Best Practices

Applications

Domain Knowledge

Requirements

Research Goal

Application

Available
Knowledge

Acquired
Knowldege

Figure 2-1: Research framework

As the first step, concrete experiences and information were gathered from two software-producing
small- or medium-sized enterprises (SMEs). On one hand, this information comprises concrete
requirements and the research goals. On the other, it consists of information about the concrete
infrastructure of these organizations, including artifacts, humans and tools.

In the second step, a detailed literature study was conducted revealing information crucial for the SE
domain. This included information from various applications for purposes like knowledge
management or process management as well as SE domain knowledge (i.e., process models or best
practices).

Based on the information gathered and aggregated, a framework was designed and developed. To
ensure practical applicability, the evaluation not only included different case studies but also a
concrete application of the developed framework in two practical settings.

For combining design science and behavioral science in IS research, [HMPR04, HeMa03] postulated
seven guidelines that shall ensure the validity and effectiveness of that research (cf. Table 2-1). In the
following, the application of these seven guidelines to this work is briefly discussed. Guidelines 1 and
7 are strictly followed as all efforts of this work result in concepts, algorithms and methods published
in scientific papers. The relevance of the objectives was proven by sources from literature as well as
the information gathered from two industrial software companies. The evaluation recommended by
Guideline 3 is conducted through practical usage by two software companies. As such industrial
evaluation with only three small teams is relatively fuzzy and error-prone, a set of concrete case
studies has been created to evaluate the applicability of the different contributions of this thesis.
Further, this work has a set of concrete contributions (cf. Guideline 4) outlined in Section 1.2. The
research rigor (cf. Guideline 5) is facilitated by not only creating design artifacts, but also using these
artifacts to create a concrete applicable solution (software) that can be practically applied. The search

2 Research Methodology

11

process recommended in Guideline 6 was also followed. By the usage of concrete scenarios and a
practical application, solutions that may not be optimal but yet satisfying for the problem were found.

Table 2-1: Research guidelines (adopted from [HMPR04])
Guideline Description

G1: Design as an Artifact Design-science research must produce a viable artifact in the form of a
construct, model, method, or instantiation.

G2: Problem Relevance The objective of design-science research is to develop technology-based
solutions to important and relevant business problems.

G3: Design Evaluation The utility, quality, and efficacy of a design artifact must be rigorously
demonstrated via well-executed evaluation methods.

G4: Research Contributions
Effective design-science research must provide clear and verifiable
contributions in the areas of the design artifact, foundations, and/or
methodologies.

G5: Research Rigor Design-science research relies upon the application of rigorous methods in
both the construction and evaluation of the design artifact.

G6: Design as a Search
Process

The search for an effective artifact requires utilizing available means to reach
desired ends, while satisfying laws in the problem environment.

G7: Communication of Design-science research must be presented effectively both to technology-
oriented as well as management-oriented audiences. Research

3 Background

13

3. Background

This chapter provides background information on the characteristics of the SE process and SE process
models, respectively. Section 3.1 briefly discusses basic properties of SE process enactment. Section
3.2 then introduces prevalent SE process models as suggested in literature. We provide historical
background and then present models prevalent in contemporary SE projects.

3.1. The Software Engineering Process
[BrBe11] provides the following definition of a software process: "A software process is a framework
for carrying out the activities of a project in an organized and disciplined manner. It imposes structure
and helps to guide the many humans and activities in a coherent manner. A software project
progresses through different phases, each interrelated and bounded by time. A software process
expresses the interrelationship among the phases by defining their order and frequency, as well as
defining the deliverable of the project. ... Specific software processes are called software process
models."

As already stated, the SE process is highly dynamic. On one hand, this results from the properties of
the created product (i.e., the software). On the other, the creation of the product implies a highly
intellectual, creative process that, in turn, necessitates much communication. The latter is needed
across different abstraction levels (i.e., from the high level process of a project down to the operational
level where concrete activities are executed) as well as different project areas (e.g., ‘Quality
Management’ or ‘Software Implementation’). This section enumerates the various groups of persons
involved, tasks executed, and artifacts processed in order to explain communication channels as well
as the highly dynamic properties of an SE process.

Usually, SE involves various roles [BrBe11]. First of all, there are the software vendor and its
customer, who have to agree on the product to be delivered. As part of the software vendor, there exist
vertically and horizontally divided areas. Vertically, there are levels such as company and business
management, project management, and project staff. Horizontally, aligned from the first product idea
to the final product, different teams participate: the requirements analysts communicate with the
customer eliciting concrete requirements for the product to be developed. They represent the customer
towards the developers. The architects are responsible for the technical foundations as well as
architecture of the software and design decisions. In turn, the developers are in charge of the concrete
realization of the requirements based on the chosen architecture. A test team verifies the technical
functionality of the software, while the requirements analysts are in charge of the functional inspection
of the software. Other responsibilities are related to configuration management, problem and change
management, and administration. Furthermore, it is common that multiple companies collaborate to
create one product or that in one company many projects are executed concurrently. Figure 3-1 shows
a schematic description of a selection of different actors, artifacts, activities, and areas of an SE project
together with their relations.

3 Background

14

Software Vendor

Company Management

Project Management

Requirements Management

Elicit
RRReeeeqqqqqquuuuiiirrreeeemmmeeeennntttssss

Elicit
Requirements

Requirements
Spec.

Requirements
Spec.

Requirements
Engineer

Requirements
Engineer

Software Development

Create CodeCreate Code

Source CodeSource Code

Software
Deveellooopppeer
Software

Developer

Quality Management

Measuurrree
QQQQuuuuaaaallliiitttyyyyyy GGGGooooaaaalllssss

Measure
Quality Goals

QQQualliity
Assurance

Plan

Quality
Assurance

Plan

Quality
Enngggiinnneeeeeerr
Quality

Engineer

Test Management

Integration TestIntegration Test

Test
Documentation

Test
Documentation

TTestteeerrTester

PPPllaan ProjectPlan Project

PPPProjject
MManagemenntt

Plan

Project
Management

Plan

Project Management
PPlan ProjectPlan Project

PProjject
MManagement

Plan

Project
Management

Plan

Project
Manager
Project

Manager
Project

Manager
Project

Manager

Manage CCompany
SSSStttrrraaaattteeeeggggggyyyyyy

Manage Company
Strategy

CCompany
Strategy

Company
Strategy

CCooommmpppaaanny
MMMaaannnaager

Company
Manager

CC

MMMMM

tt M TMMytt tt yy MMM

MM ttttt

elollooopoopppe gginnnnenneeeeer eereerr

Customer

nnna
paaaaaa

C

mm

MMMM
mmmmmmm

PlPPPPPPP

Figure 3-1: Examples of SE entities

Besides the source code, the artifacts processed in a SE project include various plans and
specifications. In the following, a selection of artifacts are presented that have been standardized by
the Institute of Electrical and Electronics Engineers (IEEE). The software requirements specification
(SRS) [IEEE98a] covers the requirements of the software to be developed. The requirements can be
spilt into two parts: customer requirements (similar to the German 'Pflichtenheft') and development
requirements (similar to the German 'Lastenheft'). A software quality assurance plan (SQAP)
[IEEE02] covers all development, testing and training activities in the project. The software
configuration management plan (SCMP) [IEEE05], in turn, describes the necessary configuration
management activities. The software test documentation (STD) [IEEE07] contains the documents
needed for documenting the software tests. The software validation and verification plan (SVVP)
[IEEE04] manages how the validation and verification of the software shall be documented. The
design of the software is captured in the software design description (SDD) [IEEE09] and the
governance of the entire project is described in a software project management plan (SPMP)
[IEEE98b].

Usually, SE projects aim to create or extend software. In this context, various tasks need to be
accomplished and coordinated among different groups of persons implying different artifacts. A
project begins with the elicitation of its requirements. After their definition, the system architecture
must be chosen and built. In parallel, the solution concept needs to be developed, which is mostly done
in more than one step producing a preliminary concept first. The actual realization phase starts after
having determined all parameters. To be finally deployed the solution must first be tested and,
eventually, its different parts be integrated. The entire SE process is rather dynamic due to different
factors: The intangibility of the created product makes it difficult to preplan it comprehensively
implying a thing called ‘requirements creep’ [Jone96]. The latter describes the fact that in most SE
projects requirements are evolving and cannot be concretely defined upfront. Another negative effect
of the software’s properties is its aggravated measurability according to quality. To be able to improve

3 Background

15

the latter, quality goals must be defined and measured [Kan02]. However, many companies are
suffering severe problems in implementing effective measurement programs [STT06].

3.2. Software Engineering Process Models
Explicit SE process models have been developed and used for a long time in SE in order to enable
governance, guidance and support for the SE process. In addition, such SE process models shall
improve quality of the SE process as well as the produced product by enhancing repeatability and
avoiding uncoordinated ad-hoc activities. Furthermore, process models can be the basis for process
improvement since a process must be known to improve it. The following sub-sections give a brief
overview about common SE process models and approaches.

3.2.1. Classical Approaches
Classical approaches in process specification have existed for many decades. Compared to the more
recent agile approaches, they are based on a rather static and heavyweight process model.

Waterfall Model

The waterfall model [Royc70], which can be seen as the earliest structured system development
approach, was mentioned first in 1970. It describes a sequential SE process, which originates from the
manufacturing industries, and includes the phases depicted in Figure 3-2.

Requirements

Maintainance

Verification

Implementation

Design

Figure 3-2: The waterfall model

These phases are processed sequentially, assuming that a phase transition is only executed if the
current phase is finished. The process allows going back one step to the preceding phase, but not
further. The waterfall model has turned out to only poorly capture the properties of the SE process. In
particular, in SE it is usual that the requirements cannot be completely elicited before development
starts. As another disadvantage in SE, designs often cannot be translated into working products in a
straightforward way due to various limitations like, e.g., regarding technology.

Spiral Model

The spiral model combines elements of prototype-driven process methods with the classical SE
process of the waterfall model [Boeh88]. The former takes into account that it may be difficult to
know all system requirements upfront and thus proposes the development of system prototypes first.
Its primary focus is to manage and reduce the risks of the overall SE process. Figure 3-3 shows the
different phases of the process model.

3 Background

16

Figure 3-3: The spiral model (adopted from [Boeh88])

The process of the spiral model is represented as an expanding spiral corresponding to iterative
developments. The inner cycles represent early development stages with system analysis and
prototyping. In turn, the outer cycles represent the classic development cycle. Each cycle begins with
the activity of risk analysis to incrementally identify critical factors in the project. The model is
intended for big projects in risky areas and may imply too much management overhead for smaller
projects.

V-Model

The V-Model is named after the alignment of its activities in the process model: activities are aligned
like a ‘V’ as illustrated in Figure 3-4. The left side represents the elicitation of requirements and the
creation of various specifications, whereas the right side represents the verification and integration of
the developed system parts. The main objectives are the improvement of product quality and the
minimization of risks as well as the facilitated communication of stakeholders and cost reduction for
the whole project. The V-Model was initially developed for the German Federal Ministry of Defense
in 1986. It was refined later to the V-Model 97 incorporating new approaches like object orientation.
In 2005, it re-experienced a major refinement to the V-Model XT (eXtreme Tailoring) [IABG15]. The
focus of the new model was to be easily tailorable to various organizations. It further considered
stronger involvement of the customer, stronger modularization, and orientation towards incremental
approaches. As opposed to the models described before, the V-Model XT is a rather heavyweight
model, not only roughly describing different development phases, but also comprehensively covering
different project roles and groups as well as their communication (i.e., describing ‘Who’ has to do
‘What’ and ‘When’).

3 Background

17

Project
closed

Project
authorized

Project
defined

Requirements
defined

Project
announced

Offer
placed

Project
assigned

Iterations
planned

Project
inspected

Overall project
separated

Overall project
progress
reviewed

Project progress
reviewed

System
specified

System
designed

Detailed
design

finalized

Shippment
conducted

System
integrated

System
elements
realized

Figure 3-4: The V-Model XT (adopted from [IABG15])

As shown in Figure 3-4, the V-Model not only comprises development tasks, but project acquisition
and definition tasks as well. For concrete development tasks (starting with ‘System specified’ until
‘Shipment conducted’), multiple iterations may be applied. The activities to reach the milestones are
rather abstract and comprise a number of more fine grained sub-activities. To group the latter, so
called process modules are used. For example, process module ‘System Development’ comprises 49
activities (e.g., ‘Preparing overall system specification’) of which some are even specified as a
workflow. Furthermore, the mentioned process module comprises 73 so-called products (i.e. artifacts)
like ‘In-service documentation’ (includes all data needed by the customer to properly operate the
system). These products have relations to the various activities as well as to roles (e.g., ‘Requirements
Analyst’). Furthermore, they have complex mutual relations, which include the ‘Content-Related
Product Dependencies‘ describing content-wise relations in the products, and ‘Generative Product
Dependencies’ describing that one product is needed creating another. A key feature of the V-Model
XT (eXtreme Tailoring) is its capability to tailor it to the current project by adding or omitting certain
process modules even while the project is active.

3.2.2. Agile Approaches
Agile SE approaches [FoHi01] have emerged since classical approaches often fail to cover the
dynamic nature of the SE process. In particular, agile approaches put more emphasis on the humans
enacting the process as on the process itself. Responding to change is more favored than rigidly
implementing a process model. Consequently, small, self-organizing teams are installed. Furthermore,
the customer is more tightly integrated into the SE process in order to be able to quickly communicate
changing requirements. Another important aspect concerns the utilization of short cycles, which
should always produce a working product. Thus, the customer can already get familiar with the
product and requirements changes can be communicated earlier.

Scrum

Scrum [DeSt90, TaNo86, ScBe01] is rather a framework than a full process model. Thereby, many of
the decisions in the SE process are left up to the team. Scrum teams are self-organizing and cross-
functional, meaning they comprise members of different groups such as developers, requirements
analysts, or testers. The Scrum process defines three main roles: ‘Scrum Master’, ‘Product Owner’,
and ‘Scrum Team’. The ‘Scrum Master’ is a kind of team leader whose main responsibility is the
support of the ‘Scrum Team’ by removing impediments that prevent the team from completing its
tasks. In turn, the ‘Product Owner’ is something like a proxy for the customer of the project: He
analyzes business needs and defines the requirements for the ‘Scrum Team’. The latter is in charge of
realizing the functionalities of the software to be produced. Figure 3-5 illustrates the process model.

3 Background

18

Backlog Item

PrioritizeEstimate Realize ReviewPlan

Release Planning

Estimate Product
Backlog

Prioritize Product
Backlog

Sprint Planning
Meeting

Daily Scrum
Sprint Review

Meeting
Sprint Retrospective

Meeting

Product Backlog Sprint Backlog

Sprint Burndown Chart Task Board

Potentially Shippable Product

Release Burndown Chart

Sprint

Activity Artifact Scrum Team Scrum Master Product Owner

Figure 3-5: The Scrum process

As shown in Figure 3-5, the Scrum process features different artifacts called ‘Work Products’. These
can be separated into two categories: ‘Task Board’ and ‘Burndown Charts’ that list different activities
to be accomplished within a certain timeframe. The requirements (i.e., different functionalities of the
software) are represented by the ‘Product Backlog’, ‘Sprint Backlog’ and ‘Potentially Shippable
Product’. At the beginning of a project, which starts with the ‘Release Planning’ activity, the ‘Product
Backlog’ (including all desired functionalities) is specified and the number and length of sprints is
determined. After that, the backlog items are estimated by the team and prioritized by the ‘Product
Owner’. In the ‘Sprint Planning Meeting’, it is determined which items shall be realized in the current
sprint. These items are then moved to the ‘Sprint Backlog’. Within a sprint, all scheduled backlog
items are realized and everyday a short ‘Daily Scrum’ meeting is conducted for coordination purposes.
At the end of a sprint, the backlog items are reviewed with a presentation of the ‘Potentially Shippable
Product’ in the ‘Sprint Review Meeting’. Following the latter, there is an additional ‘Sprint
Retrospective Meeting’ to discuss the past sprint.

eXtreme Programming

eXtreme programming [Beck00a, Beck00b] targets at smaller teams and the programming tasks
constitute the main focus. As fundamental assumption, the customer does not know all requirements
prior to project start. Therefore, the entire process is organized incrementally and dynamically.
Requirements are described in terms of user stories which are a lean form of use cases focusing on the
user’s view of the system. Extreme programming describes an open, fluent process that relies heavily
on the participation of humans.

Some key practices are mentioned in the following: Programming is mostly done as pair programming
where two developers share one computer to develop the software. That way, knowledge transfer shall
be furthered and the error detection rate shall become high. Tasks are not distributed to humans, but to
the team, and then become dynamically distributed. Humans do not have strict responsibilities and
work is always shared. The dynamic process builds on permanent testing, integration and refactoring
of the code.

3 Background

19

Criticisms of extreme programming target at the low level of governance it provides, while relying
heavily on the participation of the involved humans, which presumes ideal developers and customers.
The process can be seen as too dynamic because it assumes continuous change. It has been proven that
changes of the requirements get more expensive in later project stages. Furthermore, in extreme
programming, it can be difficult to guarantee an exact amount of functionality at an exact time point.

Unified Process

The unified process [JBR99, Scot02] is an iterative SE process framework that is very popular and has
many derivates. As its two main characteristics, this process strongly focuses on the architecture of the
developed software and on addressing the risks in early project stages. The unified process knows four
project phases as depicted in Figure 3-6.

Inception Elaboration Construction Transition

Iteration

Increment

Project Plan

Iteration Plan

Work Item

Stakeholder
Focus

Team
Focus

Personal
Focus

Project
Lifecycle

Iteration
Lifecycle

Micro
Increment

Months

Weeks

Days

Phases

Figure 3-6: The Unified Process (OpenUP, adopted from [EcFo15])

The four phases (Inception, Elaboration, Construction and Transition) are separated into iterations. In
each phase, different amounts of work in the core disciplines are accomplished. These disciplines are
business modeling, requirements analysis, system analysis & design, implementation, testing,
deployment, configuration & change management, project management, and environmental tasks.

The unified process comprises several refinements with different focus. Probably, the most well-
known is the rational unified process (RUP) [Kruc99]. RUP is a sophisticated and heavyweight
variant, which governs activities in great detail. RUP contains over 30 roles and over 130 activities.
Thus, it can be used effectively only in teams of more than ten humans. Another refinement is the
Open Unified Process (OpenUP) [Ecfo15], which is part of the Eclipse process framework (EPF). All
these RUP variants aim to provide a simpler, open version of the process, while capturing all essential
characteristics of the unified process or RUP. OpenUP features three levels of granularity: At the
project level there are four phases (as defined by the Unified Process): Inception (roughly agree upon
the goals of the project), Elaboration (agree on the technical approach), Construction (realize main part
of the system), and Transition (make the system ready for its transition to customer). Within each of

3 Background

20

these phases, multiple iterations may take place. The iterations, in turn, comprise several more fine-
grained activities (e.g., ‘Develop Solution Increment’ for developing a new part of the software).
These activities may be specified in terms of workflows containing even more fine-grained activities
(like ‘Implement Solution’ or ‘Implement Developer Test’). The OpenUP process features different
kinds of guidance to support the project participants. Activities on the most concrete level are
supported by so called steps that roughly outline what has to be done to complete the activity.
Furthermore, the model features concrete checklists to be applicable at certain points.

3.3. Summary
This section provides a summary about the SE process extracted from the properties and criticisms of
the introduced process models. Due to the numerous efforts regarding explicit process models, it is
evident that they are essential for SE projects enhancing repeatability, traceability and, first of all,
quality of the process and thus of the product as well. Yet, it cannot be guaranteed that process models
are followed since they are mostly abstract and applied manually and documentation-centric.

The waterfall model and in the particular the criticism on it show that a rigid process is not the right
choice for mirroring the dynamic properties of the SE process. This results to a great extend from the
fact that all requirements can be known a priori only in very rare cases. The Spiral model, in turn,
tackles this issue as it provides an iterative process, which strongly targets at risk analysis and
prevention. Criticism on that model include that it is too heavyweight and not applicable to all kinds of
organizations. Finally, the V-Model XT incorporates far-reaching tailoring facilities to be applicable to
different organizations. It also puts a strong focus on risk management and communication support.
Yet it is still rather heavyweight and thus not suitable for small projects or teams.

Agile approaches were developed as answer to the heavyweight classical process models. Scrum, in
turn, puts a strong focus on humans and small self-organizing teams. eXtreme Programming is even
more targeted towards the individual. These approaches are lean, but criticism includes that there is
not enough governance and thus unpredictable results might be produced. The Unified Process is more
static focusing on the architecture. However, some refinements, including RUP, are considered too
heavyweight, same as the classical approaches.

All in all, comparing the criticism of the classical and the agile approaches, one can state that it is
difficult to provide appropriate process support for SE projects. On one hand, comprehensive process
models are often too static and require much cumbersome additional work imposed by the process
model. On the other, leaner and more dynamic process models often lack comprehensive support. In
particular, they considered to be chaotic and heavily relying on humans. Another fact we discussed
constitutes the diversity in SE process models. It is therefore not easy to select process support
matching the current company, organization and situation. None of the mentioned process models
seems to be applicable to all types of organizations. Altogether, it can be stated that striking a balance
can be beneficial, i.e., to provide process guidance without implying too much distractive additional
work. A tool providing automated assistance may aid in reaching that goal, taking cumbersome tasks
in heavyweight process models and supporting agile teams in the background.

4 Requirement Analysis

21

4. Requirement Analysis

This chapter deals with concrete problems and elicits basic requirements from the abstract problems
discussed in Chapter 1.

4.1. Concrete Problems
Basically, this work aims to support humans and to address the abstract problems discussed in the
preceding sections by a framework. In SE, various tools are prevalent supporting different aspects of
process implementation, knowledge management, or quality management. However, many problems
remain unsolved as mentioned by the various studies we reference in the relating chapters. To better
understand these problems and to support requirements elicitation, we split the three abstract problems
up to derive a greater set of more concrete problems that can be better connected to SE tool support.
As summary of these problem statements, we extract eight concrete problems relating to SE projects
and their process having a big impact on the quality of both the SE projects and the products created
by them (cf. Figure 4-1). The latter is separated vertically: On the left side, process specification
utilizing abstract process models is depicted. In the middle, the (automatically supported)
implementation of such process models is shown for concrete projects. Finally, the left side depicts the
SE process as it is really executed by humans creating and manipulating artifacts using SE tools.

We will further support these problem statements by concrete scenarios. The latter were created with
information from literature and especially with information gathered from two practical settings. For
confidentiality reasons the scenarios are abstracted and generalized. Further, they are centered around
a fictional company called ‘The Company’. Not all of the scenarios directly correlate with an abstract
problem identified in the Problem Statement. In particular, the first three problems (Automated
Process Governance, Context Integration, and Process Dynamicity) are of abstract nature playing a
role in most of the scenarios.

Lack of Automated Process Governance (Prob:AutoProc). One problem area concerns process
tracking and guidance, referred to as automated process governance in the following. If a project is to
be executed in an effective, efficient and repeatable manner, studies have shown that it should be
based on a defined process [GGK06]. Furthermore, process models may contain important information
about the projects [BWHW06, RiJa00, Mall09]. As discussed in Chapter 3, many SE process models
have been developed including Scrum [ScBe01], the Unified Process [JBR99], or the V-Model XT
[IABG15, RBTK05]. As a problem, typically, these models exist only on paper or web pages, i.e., they
are only used for process specification and documentation. In many cases, the process is rigid and
prescriptive, and it differs from the real dynamic work performed in a project [BDS+99, Ambl02].
Furthermore, the impact of the models on actors and concrete activities often remains low [Wall07].
Automated support for enacting such process models is desirable. There are numerous tools capable of
automated workflow governance. These tools strongly focus on the control-flow perspective meaning
they are capable of governing the sequencing of different activities and transferring different tasks to
the humans. In addition, they often provide limited means for integrating data objects and an
organizational model. However, they fail in covering the different aspects of process models like
guidelines or checklists, or dynamic features like the V-Model XT’s dynamic tailoring (cf. Chapter 2).
Consequently, the automatically assisted implementation of a whole process model with such tools
remains a challenge.

4 Requirement Analysis

22

Process Models

Process Specification
(Process Models)

Process Implementation
(Automatically Governed)

Process Execution
(Executed Process)

?
?

1

2

3

4

7

5

6

8

6

1
Problem Areas

Process
Governance 2 Context

Integration 3 Process
Dynamicity 4 Unplanned

Activities 6Process
Coordination 7Exception

Handling5 Quality
Management

Knowledge
Management8

Figure 4-1: SE project problems [GOR14]

Lack of Context Integration (Prob:ContInt). A second important problem area concerns contextual
integration: even if some automated process implementation and guidance is present in a project, this
does not necessarily mean that the specified and actually executed processes align. In reality, a myriad
of environmental variables affect process enactment [Schw97, MaVe03, BPNS07]. In SE, the latter
mostly deal with various actors using different tools (e.g., requirement management tools or IDEs) to
manipulate various artifacts being crucial for the process. In turn, these activities and tool interactions
are not directly captured in the process models since they are too fine-grained. Thus, a dichotomy
between the planned and the actually executed process may exist.

Process Dynamicity (Prob:ProcDyn). Reality has shown that project enactment not always happens
exactly as planned [BDS+99, RHD98]. A planned process is a good starting point. However, if the real
course of a project deviates from this plan, it will be a challenge to keep the plan in line with reality
[ReDa98]. Most contemporary PAIS still rely on rigidly predefined workflows and only feature rather
limited abilities to cope with such dynamic changes [Pevd06, ReWe12]. Thus, the planned and the
actually executed process diverge more and more, and the former becomes irrelevant over time.

In the following, we present a scenario relating to problems with process model implementation in SE
projects. The scenario does not deal with a concrete use case or situation, but rather with a specific
process model and issues relating to its automatically supported implementation. For this purpose, we
chose the OpenUP [EcFo15] for several reasons:

 Availability: OpenUP is a freely available derivate of the Unified Process. It requires no
licensing fees or other costs.

 Understandability: OpenUP is clearly structured and the Eclipse Foundation provides
comprehensive documentation free of charge.

 Comprehensiveness: OpenUP covers both abstract and operational process areas including
workflows ranging from abstract phases of a project to concrete developer workflows.

 Contextual relations: OpenUP specifies a rich set of entities that relate to real entities or persons
in an SE project like artifacts, tools and roles.

 Comprehensive human tasks: OpenUP features various different activities and tasks of different
granularities for humans.

 Comprehensive support features: OpenUP comprises a rich set of supportive artifacts like
checklists or guidelines.

4 Requirement Analysis

23

OpenUP is manually implemented. In particular, the whole process definition exists as web pages
[EcFo15]. When implementing OpenUP in an SE project, the involved persons must gather
information manually and apply it to the project. We will use OpenUP as scenario for illustrating the
following problems: the basic automated implementation of the whole model (cf. Prob:AutoProc), the
establishment of connections from this implementation to the ‘real world’ (cf. Prob:ContInt), and the
dynamic nature of SE process enactment (cf. Prob:ProcDyn). For the sake of illustration, Figure 4-2
shows five excerpts from the OpenUP website comprising a list of various activities, an operational
workflow specification, relations of artifacts and roles, a checklist, and fine-grained activity steps.

Figure 4-2: OpenUp excerpts (adopted from [EcFo15])

4 Requirement Analysis

24

These excerpts show that the OpenUP indeed comprises important and useful information to aid the
SE process. However, there is neither a tool implementing or supporting this process model nor a
strategy on how to achieve this with any tool in place. Thus, this information remains disconnected
from the real process enacted in the SE project. The information not only needs to be gathered
manually by humans, it is also not tailored to the concrete project or situation. It does feature detailed
information from abstract phases of a project to operation workflows. However, the latter, like the
‘Develop Solution Increment’ workflow, are rigidly predefined and not integrated with other tools or
the humans in the project. Thus, support for handling unforeseen situations and adapting process
enactment are also not in place.

Unplanned Activities (Prob:UnplanAct). The application of PAIS technology in dynamic and
evolving domains such as SE is difficult [JaCo93]. Reality often diverges from rigidly pre-defined
processes [McCo01, CNGM95] in that domain. In fact, process models cannot cover all workflows
actually executed in an SE project. Hence, we distinguish between intrinsic workflows being part of
the process and extrinsic workflows (cf. Chapter 8) being unforeseen in the latter. Such extrinsic
workflows can be executed based on specific situations, but can be also recurring common tasks (e.g.,
bug fixing or technology evaluation). These tasks rely heavily on the current situation, remain
unplanned and untraced, and may impact timely process enactment (cf. Example 4-1).

Example 4-1 (Ad-hoc activity):
Consider an ad-hoc activity as it was perceived during an interview conducted with a developer as part
of an industrial case study. During the interview, a requirements analyst came in, telling the developer
that he had to do a presentation for the customer soon. He had already received a current version of the
software. However, shortly before the presentation he found a new bug endangering the success of the
presentation. Hence, the developer quickly started to work on that issue, was able to fix it, and the
requirements analyst received the fix via USB stick. According to the developer, such ad-hoc activities
occur often, take up to half an hour, and remain untraced.

In the following, we will use the term process coverage to refer to the coverage of the actually
executed processes in an SE project the used SE process model can cover. The models feature a list of
standard SE processes. However, they do not cover a great number of activities executed in daily work
in an SE project. Thus, these activities remain unplanned and untraced and can even influence the
planned processes enactment. Due to these uncaptured activities the planned as well as the actually
executed process can move increasingly apart from each other. Furthermore, the planned process can
be delayed without exposing the reason for the delay. Finally, the unplanned activities are not guided,
supported or governed. They are executed completely manually without any process or knowledge
support. Example 4-2 deals with a concrete situation for such extrinsic workflows.

Example 4-2 (Process coverage shortcomings):
The Company uses a SE process model for standard development activities. However, there are
various issues in everyday work not covered by such a model. These include activities like bug fixing,
refactoring, technology swapping, or infrastructural issues. There have been efforts in The Company
to model workflows for these issues in order to provide the humans with automated support and
guidance. Since there are various kinds of issues with ambiguous and subjective delineation, however,
it is difficult and burdensome to universally and correctly model them in advance for acceptability and
practicality. Many activities may appear in multiple issues, but are not necessarily required, bloating
different SE issue workflows with many conditional activities if pre-modeled. Figure 4-3 shows such a
workflow for bug fixing that contains nearly 30 activities, many of them being conditionally executed
for accomplishing different tasks like testing or documentation. An example is provided by static
analysis activities that are eventually omitted for urgent cases. Furthermore, there are various
reviewing activities, having different parameters (like effectiveness or efficiency), where the choice
can be based on certain project parameters (e.g., risk or urgency). The same applies to different testing
activities. Moreover, it has to be determined whether a bug fix should be merged into various other
branches in the source control system.

4 Requirement Analysis

25

Peer
Review

Activit
y XOR-Gate

Code
Review

Code
Inspection

Walk
through

Implement
Solution

Document
in Change

log

Inform
User

Manual
Team

Analyze
Issue

Create CR
Branch

Reproduce
Error

Check
Dependencies

Design
Solution

Run
Regression

Test

Create
Regression

Tests
Run Unit

Test

Adapt
Unit
Test

GUI Test
Run

Static
Analysis

Inform
other
Team

Smoke
Test

Integration
Test

Feature
Test

Acceptance
Test

Validation to
Requirements

Integrate
and Build

Check for
other

Branches

Integrate
and Build

Create
Patches

Close
Issue

Unit test
needs

adaptation

Issue very
urgent?

Has high
complexity /
Criticality?

No test in
place

Has high
user impact?

Start Point End Point

Has high risk /
criticality?

Has high
complexity?

Has
dependencies?

Has high
complexity?

Has
dependencies?

Has high risk /
user impact?

Has high
user impact?

Has very high
user impact?

Has high
complexity?

Has high
complexity?

Not too
urgent?

Figure 4-3: Example of pre-modeled workflow for bug fixing

As many decisions in the workflow rely on properties of the situation, many activities could be
excluded prior to enactment as each situation requires another workflow that marks a subset of the
workflow shown in Figure 4-3. However, the situational information for making such decisions is not
always in place and gathering it would require additional efforts from humans. Another option,
modeling many smaller workflows for different situations is also problematic, as the matching
workflow for each situation would have to be determined manually. Additionally, that solution would
result in a large number of modeled workflows making the selection of them even more inefficient.
Finally, many of the activities and even whole fragments of the workflows would appear in multiple
workflows resulting is redundant modeling. Usually, such redundant model fragments are difficult to
maintain and might lead to diverging models over time [WRMR11].

Uncoordinated Collaboration (Prob:Collab). In a complex project, there are always persons, tools,
activities, and artifacts related to each other [JYW07, SQTR07]. This fact implies that an activity a
person executes to change an artifact can have an impact on other artifacts, which again has an impact
on the activities of other persons. As example of a relation consider architectural specifications and
relating source code artifacts. As some of these activities may be covered by the process, while others
are not, this can result in problematic artifact states if many related adaptations by different humans
are applied in an uncoordinated manner. As aforementioned, collaboration remains one of the biggest
challenges in SE projects [Dust04] and team work is still not adequately supported [LeBo07].

As the sizes of companies, departments and projects grow, communication between collaborating
humans and teams becomes increasingly challenging. Humans are often involved in multiple projects
in parallel, each of them having its own artifact base the humans work on. Hence, humans are often
switching between the projects and concurrently manipulate artifacts of these different projects. In
turn, this can lead to a myriad of different problems relating to the artifacts or tasks conducted.
Example 4-3 concretizes this.

Example 4-3 (Coordination shortcomings):
Being a growing small to medium sized enterprise (SME), The Company suffers from the inability to
satisfy increased coordination needs. Team sizes are growing and various projects are executed in
parallel. Humans often have to switch between different projects and within each project larger
numbers of humans are working on the same artifacts. Without additional coordination effort things
might be easily forgotten.

One concrete problem reported by developers is related to frequent project switches. A person doing
this in such a multi-team / multi-project environment must manually gather context information after a
switch in order to work effectively: Which assignment has to be processed for which project? What

4 Requirement Analysis

26

are potential milestones and deadlines? What is the state of the currently processed assignment? What
are upcoming activities to complete it?

Two other problems relate to cooperatively working on the same artifact base. As the first issue in this
situation, activities and accompanied changes to artifacts often remain unnoticed by other humans. For
example, if two teams (e.g. a development team and a test team) are working on the same source code
artifacts they might want to get informed about changes of them. Such information is often transferred
manually and is therefore prone to omissive errors.

The third problem directly relates to the artifacts and their relations: Artifact changes often imply
certain follow-up actions that are hitherto coordinated manually. Figure 4-4 depicts a scenario
detailing this: It deals with a source code artifact being part of an interface component: since the file
belongs to an interface component, the applied changes might not only affect the unit tests of the file,
but also other artifacts such as the architecture specification or integration tests. Usually, these
additional activities are neither covered by the SE process nor governed by any workflow; manual
coordination can lead to impacts being forgotten and result in inconsistencies, e.g., between the source
code and the tests or specifications. The fact that these activities belong to different project areas with
often also different responsible persons makes this even more difficult. Even if not forgotten, follow-
up actions could benefit from automated governance and support. Furthermore, it can be difficult to
determine which stakeholder should be informed about which change and when, especially
considering the dynamic and diverse nature of the artifact-to-stakeholder relationship and various
information needs.

Process
(Unified Process, VM-XT, ...)

Phase

Iteration

Source Code Architecture Spec.Integration Tests

contains Intrinsic
Workflow

affects

impacts impacts

needs
adaptation

Task

needs
adaptation

Task

Source Code
Modification

Test Adaptation
(Extrinsic Workflow)

Spec. Adaptation
(Extrinsic Workflow)

Activity AND-Gate Artifact

Figure 4-4: Artifact and implied activity relations

Process Exceptions (Prob:ProcExc). During project enactment, unforeseen and exceptional
situations occur as the SE process is not fully predictable [Schw97, BDS+99]. In turn, this poses a big
challenge to any framework seeking to provide holistic process support for such projects.
Contemporary workflow management technology has limited capabilities in this area, only dealing
with exceptions directly relating to activities [ReWe12, RAH06]. In practice, process exceptions are
often not that simple and also not easily detectable. Further, they may relate to processed artifacts even
without the person working on these artifacts noticing them. Finally, to select an exception handling
suitable for both the situation and person is challenging.

4 Requirement Analysis

27

Complex exceptions are not related to the malfunction of a single tool or program, but to the
prescribed process or other more complex coherences in an SE project. Such exceptions can relate to
activities being part of the prescribed process or to others being extrinsic to the latter. They may also
relate to artifacts processed in the course of the project, even if all activities seem to be executed as
intended. Such exceptions are difficult to detect and handle even if The Company uses a PAIS
providing process implementation support. In the following, two concrete examples (Example 4-4 and
Example 4-5) are provided to illustrate this.

Example 4-4 (Exception handling shortcomings):
The Company uses an SE process model. However, there is no tool in place to govern, support or
enforce the executed process. Consider the following situation: A developer creates new code as
intended as part of a project: Assume that it is prescribed by the process of that project that he shall
create and execute a unit test for this code. As the process is neither enforced nor supported, however,
he can intentionally or unintentionally omit these activities. If such things happen, often a growing
portion of the code remains untested. This, in turn, endangers reliability of the code base.

A second scenario deals with a known bug in a source code artifact that is, for example, reported by a
customer, tracked in a bug tracking software. The bug is then assigned to a developer who shall fix it.
When applying a bug fix to the source code file, the removal of the defect might unintentionally
introduce other problems to that file. For example, source code complexity might increase if multiple
humans applied “quick and dirty” fixes. Thus, the understandability and maintainability of that file
might drop dramatically and raise the probability of further defects.

Non-optimal Quality Management (Prob:QualMan). Another problem affecting many SE projects
concerns the quality of the software produced [Jone10]. Hence, quality assurance is a crucial factor for
any SE project. However, in many SE projects, quality assurance is understood as applying some bug
fixes at the end of the project when time allows for this. Studies have shown that this is ineffective and
quality measures should be applied systematically during SE project enactment [Hami88, SHK98]. In
particular, this requires proactive as well as reactive quality measures. The challenge is to effectively
and efficiently integrate the application of these quality measures with the SE process. Concrete issues
include the following: quality management is often considered a ‘nice to have’ discipline creating no
additional value. Very often it is difficult to integrate quality management activities with the course of
the standard SE process. Furthermore, quality management is often only executed in a reactive fashion
applying fixes for known bugs. No quality goals are defined that could be proactively supported to
prevent the occurrence of bugs. Example 4-5 illustrates such a situation.

Example 4-5 (Quality management shortcomings):
The Company, being a growing SME, starts with various efforts to support reproducibility of project
enactment as well as product quality with process management and quality management. As
aforementioned, a process model for the SE process is used. Furthermore, as the number of bugs
reported by customers shall decrease, quality management tools are applied. This includes bug
trackers and static code analysis tools. However, both quality and process management are not well
governed or supported. Quality goals are not defined for projects and thus, no proactive quality
management can be applied. There is no real awareness of the execution of planned development
activities. Thus, it is difficult to integrate quality management activities into the standard SE process.
Static code analysis is only used at the end of projects and due to the time pressure often present in
that situations, many detected problems still remain unsolved.

Unutilized Knowledge (Prob:Knowl). The creation and modification of software is a complex and
knowledge-intensive task [RaTi99] and software is an intangible asset. It involves knowledge from
different sources, all of which are crucial for the success of the task [LiRu02]. This includes
information on the process, the coding style and other specifics of the company, the used framework
or area (frontend or backend development), and so forth. Companies often neglect this fact and do not
implement proper knowledge management. Even if some knowledge store is implemented, knowledge

4 Requirement Analysis

28

retrieval and effective knowledge usage remain an issue [SBBK08]. This often leaves software
engineers without all required knowledge and thus makes their work ineffective and error prone.

As mentioned in Chapter 1, wikis are often used to let project participants store specific knowledge.
They make recoding of information easy, but management and retrieval of the latter often constitutes a
challenge. This is aggravated by the fact that knowledge related to SE is usually context-dependent
meaning that it must match the properties of the situation and the involved person. As scenario for
illustrating knowledge management shortcomings a situation comprising different information needs
in The Company is presented in Example 4-6.

Example 4-6 (Knowledge management shortcomings):
As a growing SME, The Company frequently hires new developers. The latter get training at the
beginning to ensure that they can work effectively as early as possible. However, they still might not
have a great share of the concrete information relating to projects, tools or the process. For example,
this might include information about the coding style applied in The Company. Also, specific process-
related information might be recorded somewhere, but the new developer might not know exactly
when and where to acquire that information. Another example are technical specifics about the project
he starts to work in as, for example, how source control management is applied including information
about different development branches and the commit procedure. Lacking all that information, there is
a high probability that the developer will cause many issues when he starts working.

4.2. Basic Requirements
This section gives an overview on the high level requirements for a tool providing automated support
for the SE process. We elicit these requirements based on two foundations: First, we refer to the
problems discussed in Chapter 1, including their support by literature. Second, we refer to our
observations from practice as indicated by the scenarios in this section. As aforementioned, the basic
requirements listed in the following will be detailed with sub-requirements in the relating chapters of
this work.

 Requirement Automated Process (R:AutoProc): The most basic requirement to a tool enabling
holistic SE project support is to provide SE process support. Related problems have been
discussed in Prob:AutoProc. This includes the automatic implementation and enactment of
processes in the tool.

 Requirement Context Integration (R:ContInt): As elucidated in the problem statement (cf.
Prob:ContInt), there is a myriad of contextual information in the project having a significant
impact on process enactment. For example, context information plays an important role for
collaboration, quality management, or exception handling. Therefore, a tool aiming at holistic
SE project support must have facilities to integrate process enactment with context data.

 Requirement Dynamic Process (R:DynProc): SE projects are dynamic as already shown in the
problem statement (cf. Prob:DynProc) and confirmed by the scenarios in this chapter (e.g.
relating exception handling or quality management). Therefore, a tool supporting these projects
must be capable of coping with dynamically changing situations and aligning the process with
their properties.

 Requirement Process Coverage (R:ProcCoverage): SE process models cover many workflows.
However, as shown (cf. Prob:UnplanAct), they disregard many activities and processes
executed dynamically as part of everyday work. When aiming at true holistic support for SE
projects, a tool must include these workflows and activities as well.

 Requirement Coordination (R:Coord): SE projects comprise numerous different areas, actors,
and artifacts. Projects are executed in parallel and multiple persons work on the same artifact
base. Activities, roles and artifacts have relations to each other and collaboration is not easy to
maintain. This can lead to various issues as discussed (cf. Prob:Collab). A tool providing
holistic SE project support must be aware of such connections and be capable of managing
coordination and collaboration in such a project.

4 Requirement Analysis

29

 Requirement Exception Handling (R:Exc): In an SE project, many unforeseen problematic
situations might occur (cf. Prob:ProcExc). Newly created problems might not directly show up
and be obscured from their creator. A tool aiming at SE project support should have facilities to
detect such complex exceptions and automatically assist humans in handling them.

 Requirement Quality Management (R:Qual): Quality management is a crucial as well as an
underestimated part of SE projects. This has been agreed upon in literature (cf. Prob:QualMan)
and our practical observations confirmed this, as well. The intangibility of the produced asset
(the code) makes it difficult to even be aware of its state. Furthermore, if quality problems are
detected, counter measures must be executed in alignment with the process. If a tool shall
provide holistic support for SE projects, it must be capable of supporting these complex tasks.

 Requirement Knowledge Management (R:Know): As SE projects are knowledge-intensive
undertakings with a multitude of different complex information, the latter is not easy to manage.
This is confirmed by literature (cf. Prob:Knowl) and practice (cf. the scenario in this chapter). A
tool aiming at holistic SE project support must enable the collection, management and
dissemination of that knowledge in a process-centered and context-sensitive manner.

4.3. Requirements Verification
We have conducted a comprehensive literature study comprising many aspects of SE projects. One
reason for this was to support the elicitation of requirements for a framework providing
comprehensive support for SE projects. However, the study also included a myriad of tools and
approaches aiming at the support of different aspects of SE projects. In this section we discuss how the
results of this study can be used to verify the requirements we have elicited.

We have examined approaches of different areas that relate to the topics identified as important for
this thesis. An important area are Software Engineering Environments (SEEs). These are tools aiming
at comprehensibly supporting SE projects. In this area, we have examined various CASE (Computer-
Aided Software Engineering) tools (e.g., [EKS93]), Process-Centered Software Engineering
Environments (PCSEEs, e.g., [BFGL94, CLH95, BEM94, Barg92b]), modern SE Environments (e.g.,
[dZR+04, JYW07, HaLa10, WEB+09, dFOT10]), and other contemporary SE approaches (e.g.,
[BWHK12, PVPB12, GTS10, CAG12]). For a thorough discussion we refer to Chapter 6.

Another important area are processes and their automated enactment. In this area, we have examined
WfMS/PAIS (e.g., [Cumb07, Inta15, vdtH05]), process configuration approaches (e.g., [RSS10,
Gott09, HBR10, LDH09]), artifact-centric process approaches (e.g., [BHS09, KüRe11a]), process
adaptation approaches (e.g., [Wesk01, SMO00, WRWR09, MTS08]), semantic process annotation
approaches (e.g., [Mich15, PDB+08, AFKK07, BGM07, ABB+07]), declarative process approaches
(e.g., [Pesi08]), and approaches for contextual process integration (e.g., [LSH+06, DGD07]). Besides
that we also took into account context modeling approaches like [KMK+03, FaCl04, GPZ04] (see
Chapters 7 and 8 for details). In the context of dynamic processes, we have also reviewed approaches
for process exception handling (e.g., [MGR04]). Such approaches are discussed in more detail in
Chapter 11.

We have also examined various approaches from other areas identified as important for SE projects.
These are knowledge management approaches (e.g., [BjDi08, Liao03, BWT04]) and collaboration and
coordination approaches (e.g., [LeBo07, BSV07, Dust04]). For a more thorough discussion we refer to
Chapters 10 and 12. Furthermore, we examined different approaches for SE quality management.
These included approaches for software metric application (e.g., [OfJe97, GKMK02]), software
measurement tools (e.g., [ScJe06, LiZh05]), and approaches for the Goal-Question-Metric (GQM)
technique (e.g., [FaWu09, STS05, HuFa05]). For more information on these see Chapter 9.

4 Requirement Analysis

30

Relevance and Completeness

The various approaches examined show the relevance of the elicited requirements for SE projects
relating to various application cases. The need for tool support for SE processes (R:AutoProc) is
confirmed by the various SEE approaches. Automated process support in general is the target of
countless PAIS and WfMS approaches. The importance for contextual integration (R:ContInt) is
discussed by various SEEs as well. According to them, such information comprises artifacts, various
types of knowledge, or persons and their interaction.

As many approaches confirm, processes also need to be handled dynamically (R:DynProc). On one
hand, various SEEs cover this topic and provide capabilities to change running processes. On the
other, there exist a myriad of approaches for configuring or changing processes. Such approaches even
offer the capability to automatically change running processes. This is often used for handling
exceptions occurring during process enactment. This also confirms that process exception handling
(R:Exc) is a relevant topic for a tool that automates processes. In addition to that, much attention has
been paid to unstructured processes that are not pre-planned as part of a process model. Constraint-
based and declarative process approaches deal primarily with such processes. This confirms the
importance of capabilities of a tool to also cover such processes (R:ProcCoverage).

A crucial factor for any SE projects is quality management (R:Qual). This is confirmed not only by
approaches explicitly dealing with this topic, but also by many SEE approaches that take into account
source code artifacts and aim at supporting and improving their management. The same applies for
collaboration and coordination support (R:Coord). Many specific approaches stress the importance of
this topic for SE. In addition to this, various SEEs also integrate facilities to support this. Another
important area for SE projects is knowledge management (R:Know). This is confirmed both by
various dedicated approaches as well as the integration of knowledge management capabilities in
many SEEs.

The goal of our approach cannot be to solve each and every problem in SE. Therefore, the
requirements also cannot be considered as complete for SE. However, we can show that the selected
requirement areas cover important aspects also mentioned in a myriad of other approaches and that
those approaches do not discuss or cover important areas that we have omitted. SEEs have existed for
multiple decades now and each of them covers different areas and capabilities. However, topics that
repeatedly occur are the following: processes, with a strong focus on dynamicity as well as people and
collaboration aspects. Furthermore, they deal with various entities that can be considered as context to
the tools and processes, as, e.g., artifacts and people. Furthermore, they deal with different kinds of
knowledge that is crucial to SE projects. To the best of our knowledge, these SEEs do not cover other
core aspects that we have omitted in our discussion. Contemporary SE approaches, however, show
two trends gaining momentum: cloud-based SE and global SE, which both correspond to each other.
We have decided to put this not to focus in this work as it can be considered primarily as a technical
aspect. Our requirement areas are more focused on content-related issues of SE projects.

Relatedness and Generalization

The various approaches we have reviewed not only show that our requirements are relevant for SE
projects, they can also serve as indicator that they are related to each other and that their combination
is essential for successful SE projects. Again, SEEs serve best as comparative approaches as they
share the same goal as our approach. These approaches often have a strong focus on the SE processes
and they connect it with various other areas. None of them combines all of them but multiple
approaches respectively combine it with contextual data, collaboration support, knowledge
management, and quality management relating the SE artifacts. For a fine grained discussion of the
different features of different approaches see Chapter 15.

In the first place, our approach is targeted at SE projects. This means neither the approach nor its
requirements can be automatically seen as generally applicable for all domains. However, SE is a vast
field and not necessarily a distinct domain. Software is developed in various domains like the

4 Requirement Analysis

31

automotive or the healthcare sectors. Furthermore, in SE slightly different approaches to project and
process management are utilized. Some projects apply huge and heavyweight process models with
hundreds of controlled artifacts. Others apply lightweight and agile approaches that prescribe hardly
anything and mostly rely on people. The various approaches and tools we have reviewed also show
this diversity. They are applied in various domains like the automotive or the healthcare sectors or are
applied in projects regulated by state authorities. Furthermore, they involve all the different
approaches to project and process management that are prevalent in SE (e.g., Scrum or V-Model XT).
Therefore, we assume that the requirements we elicited are applicable for the vast majority of SE
projects regardless of their domain or process approach. Furthermore, in the evaluation of this thesis,
we will show the application of our approach to slightly different process approaches for SE and also
to a process of the software modernization domain.

4.4. Summary
This chapter elicited eight basic requirements for a tool that aims to provide holistic project and
process support for SE projects (cf. Table 4-1). These requirements are aligned with the abstract
problems discussed in Section 1.1. To further illustrate the requirements and demonstrate their
practical relevance, a set of concrete scenarios was presented, which will be taken into account for
validating the developed approach (cf. Chapter 13).

Table 4-1: High level requirements

Requirement Area Requirement ID Description Detailing
Chapter

Basic functionality Requirement R:AutoProc Automated process enactment / implementation 6
Basic functionality Requirement R:ContInt Contextual integration of process enactment 7
Basic functionality Requirement R:DynProc Dynamic process enactment 7
Extended
functionality Requirement R:ProcCoverage Extended process coverage 8

Extended
functionality Requirement R:Coord Task coordination 10

Extended
functionality Requirement R:Exc Process exception handling 11

Specific
functionality Requirement R:Qual Quality management integration 9

Specific
functionality Requirement R:Know Knowledge management integration 12

The requirements are categorized as follows: Basic functionality requirements cover the basic facilities
a tool must provide to holistically support the SE process. They do not refer to functionalities
providing additional value to humans. However, they are crucial and constitute the basis for the other
functionalities. Extended functionality requirements cover functionalities that enable general
automatic and contextual support for humans in various areas of a project. The third area refers to
specific functionality requirements and is targeted to specific areas of SE projects. Note that not all
possible areas of an SE project are covered in this work as this would go beyond the scope of this
thesis. Rather, the focus is on two areas of knowledge and quality management as these have been
proven important parts of each SE project.

Part IV

Conclusion

16 Summary and Outlook

277

16. Summary and Outlook

SE projects are complex, long-running, and knowledge-intensive, depending on a myriad of different
factors that are not easily controllable. Furthermore, the developed product, i.e., the software,
constitutes an intangible asset whose quality state cannot be measured easily. This places pressure on
the knowledge workers in SE projects. Many aspects of the projects, their process, and the produced
product are implicitly managed and prone to forgetfulness or other errors.

Due to these various issues, SE projects have always been problematic. From the beginning of SE until
today many projects have exceeded their budgets and schedules, delivered low-quality erroneous
software, or even failed completely. To make projects more repeatable as well as to support their
execution, SE process models have been developed. This started in the 1970s with classical models
such as the Waterfall Model [Royc70] or the Spiral Model [Boeh88]. However, these SE models often
were too rigid and could not mirror the dynamic SE project execution in reality. More recently, the
agile trend took account of this property and agile processes like Scrum [ScBe01] have been
popularized. These developments have improved the situation, but still many projects struggle with
time, resources and software quality.

A remaining problem concerns the operational support for the projects, their processes, and, first and
foremost, the involved software engineers. Projects and their processes are often planned up-front and
their execution does not match this plan, resulting in an ever-growing gap between plan and reality.
Software engineers utilize a large set of SE tools supporting different tasks like IDEs, source control
management systems, or bug trackers. However, the complexity of SE projects keeps growing; e.g.,
the sizes of projects keep growing, the different tools are often rather complicated, and their number
grows as well. Moreover, holistic SE support is missing. Tools may comprehensively support a
specific task, but are not connected well to the other tools. Much is still left to the software engineers
without providing any guidance to them. Although their collaboration is crucial, it has not been
properly supported or governed yet. Crucial project knowledge remains only in the heads of the
humans, and is not properly stored, managed and disseminated among the project participants.

This work presents a holistic approach to support both SE projects and, especially, SE processes. In
the following we will briefly summarize the core contributions of this thesis:

Automated process support: The CPM framework provides an infrastructure for comprehensive SE
project and SE process support. It unites different state-of-the-art technologies encapsulated in
loosely-coupled components. The set of components comprises, among others, dedicated components
for process enactment, context integration, or knowledge management. Thus, it not only enables the
modeling and enactment of workflows, but also the extension of the workflows with a myriad of
additional data sets that support the implementation of entire SE process models. As SE process
enactment is known to be complex and dynamic, the CPM framework comprises additional basic
components, enabling the simple definition and execution of configurable automatisms to support
humans in recurring standard situations. It further enables CPM to cope with various dynamic
situations whose exact configuration and course might not be estimated a priori.

Context integration: The execution of an SE project and SE process depend on various contextual
factors, like the properties of the executing humans or the states of involved artifacts. The CPM
framework integrates different facilities to deal with such information. First, it features a set of sensors
that can be integrated into various SE tools to automatically gather information. Second it enables the
automatic processing of such information to derive meaningful information from the numerous events
happening in an SE project. Third, by an extended process specification, it enables the direct and tight
integration of process enactment with the context of the project.

16 Summary and Outlook

278

Process dynamicity: SE project execution is rather dynamic and mostly differs to what was planned.
Therefore, the CPM framework incorporates dynamic processes. Thus, the different workflows
executed in the context of an SE process can be dynamically changed during run-time to adhere to
changing situations. However, as the projects comprise many different areas and the set of influential
context factors is high, it can be challenging for a human to apply a process adaptation on account of
this data. To support this, the CPM framework not only enables manual process adaptations, but also
automated and context-aware ones.

Extrinsic process coverage: Process models cover a substantial portion of the work done in an SE
project. However, many workflows cannot be covered by them for various reasons. Such workflows
are characterized by three main properties. First, they cannot be completely foreseen. Second, they are
rather dynamic. Third, they depend on their context even more than the ones belonging to the SE
process models. Therefore, the CPM framework incorporates a declarative and dynamic way of
modeling such workflows that allows directly integrating contextual influences. Furthermore, it
enables a uniform way of enacting them similarly to imperative workflows.

Quality assurance integration: Quality assurance is a crucial part of any SE project. However, many
projects struggle with bad source code quality. Therefore, the CPM framework integrates facilities to
automatically measure the source code quality and to distribute software quality measures to the
software engineers in case of quality problems. This comprises a monitoring of the human activities to
be able to find the right point in the process for inserting a software quality measure as well as a
dynamic tailoring of the latter to select the right measure for the right human and situation. Finally, the
CPM framework automatically assesses the applied measures to optimize the measure distribution
over time.

Collaboration and coordination: The collaboration of the involved knowledge workers constitutes a
crucial part of any SE project. This collaboration might get complicated and error-prone in large
projects. Therefore, the CPM framework integrates facilities to support such collaboration in two
ways. First, it fosters automated information distribution, informing one human about important
changes to their environment as, for example, the status of the activities of their colleagues. Second, it
is capable of automatically initiating follow-up activities for certain changes in a project impacting
other humans.

Process exception handling: In an SE project many things do not work exactly as planned. Many
exceptions might occur relating to the process, its activities, the involved humans, or the processed
artifacts. The CPM framework uses its contextual infrastructure to detect as many of these complex
exceptions as possible. Furthermore, it is capable of automatically determining an exception handling
procedure and distributing it to the appropriate human to apply it.

Knowledge provisioning: SE projects largely depend on the knowledge of the humans involved
possess. However, the management and distribution of such knowledge remains a challenge. The CPM
framework fosters gathering, storing, and managing of such knowledge. Furthermore, due to its
process- and context-related capabilities, it is capable of automatically distributing knowledge to
project participants that matches their current situation and problems.

The CPM framework delivers a set of functions we believe to be unique. It unites various areas like
dynamic process management, human assistance, and quality management. In these areas, however,
there exist specific approaches as well. For example, [HMMR14] focuses on supporting the human by
providing process visualizations and additional information. Others support enactment of parts of
processes for specific humans based on process views [KoRe13]. The knowledge worker is supported
by various approaches as well. Examples include flexible checklist support [MuRe14] or mobility
support of knowledge workers by approaches like [PMR14]. Another area is quality management for
processes with approaches like [LoRe15]. All of these approaches have their strengths and go beyond
the capabilities of the CPM framework in a specific area. The main strength of the latter is, however,

16 Summary and Outlook

279

is the comprehensive, applicable and usable integration of a large set of different areas to better
support humans in SE projects.

The CPM framework presented in this work solves many problems of SE projects as it provides
holistic SE project and SE process support. However, there exist various options for further improving
and extending the approach. In the following we will highlight some of the most important ways, the
CPM framework might be extended.

We have already discussed and created a set of extensions and additions to the CPM framework not
directly being part of this work. One of these extensions is related to the modeling of the contextually
extended processes. In the CPM framework, humans model the workflows directly in the WfMS and
the different extensions in a web GUI. Such modeling would be simplified if humans had modeled the
complete process in one tool and notation. To enable this, we have already created a preliminary
approach for a SE workflow language comprising all necessary properties and can then be
automatically transformed into the workflows of a WfMS and the additional contextual extensions
applied in the CPM framework. For further reading on this topic, we refer to [GOR11a].

In SE, the assessment of processes and their improvement is a crucial topic as well. Process
assessment and improvement approaches like ISO 15504 (SPICE) and CMMI (for more information
regarding these two, see [Wall07]) have therefore received much attention. Thus, an integration of
such approaches into an approach for SE project and SE process support is desirable. We have already
created such an extension of the CPM framework enabling the semi-automatic assessment of an
executed SE process with models like CMMI or SPICE (see [GOR12e, GOR13]).

Another interesting option will be the application of the CPM framework in other domains as standard
SE projects. In the future, with a set of specific other sensors, an application in other knowledge-
intensive domains becomes possible. We have already started to investigate such options. As we did
not have the resources to develop a completely new set of sensors, we investigated a type of project
that can rely on the sensors we already have. In [GOR14] we have discussed the application of the
CPM framework in the context of specific software modernization projects.

The preliminary evaluation showed that our concepts have great potential for really supporting SE
projects. Regarding the industrial application, however, a larger scale industrial evaluation remains as
a future task. To enable the latter, we will need to add various features. For being usable in large scale
productive projects, a consistent privacy approach will be necessary. Furthermore, some of the applied
technologies will have to be adapted to ensure performance and scalability in larger industrial
environments.

281

Bibliography

[ABB+07] Alazeib, A., Balogh, A., Bauer, M., Bouras, A., Friesen, A., Gouvas, P., Mentzas, G.,
Pace, A.: Towards semantically-assisted design of collaborative business processes in
EAI scenarios. Proc 5th IEEE Int'l Conf on Industrial Informatics, pp. 779-784, 2007.

[Abde88] Abdel-Hamid, T.K.: The economics of software quality assurance: A simulation-based
case study. MIS Quarterly, 12(3): 395-411, 1988.

[ACF97] Ambriola, V., Conradi, R., Fuggetta, A.: Assessing process-centered software
engineering environments. ACM Transactions on Software Engineering and
Methodology, 6(3): 283-328, 1997.

[ADOV02] Arbaoui, S., Derniame, J.-C., Oquendo, F., Verjus, H.: A comparative review of
process-centered software engineering environments. Annals of Software Engineering,
14(1-4): 311-340, 2002.

[AFdK11] Aleixo, F.A., Freire, M.A., dos Santos, W.C., Kulesza, U.: Automating the variability
management, customization and deployment of software processes: A model-driven
approach. Enterprise Information Systems. Springer, pp. 372-387, 2011.

[AFKK07] Abramowicz, W., Filipowska, A., Kaczmarek, M., Kaczmarek, T.: Semantically
enhanced business process modelling notation. Proc Workshop on Semantic Business
Process and Product Lifecycle Management, pp. 88-91, 2007.

[AHM+08] Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix, J., Pugh, W.: Using static
analysis to find bugs. IEEE Software, 25(5): 22-29, 2008.

[Ambl02] Ambler, S.: Agile modeling: effective practices for extreme programming and the
unified process. John Wiley & Sons, 2002.

[Aon97] AONIX: Software through Pictures/Object Modeling Technique: Creating OMT
Models. Aonix, Inc., 1997.

[ATW+14] Ayora, C., Torres, V., Weber, B., Reichert, M., Pelechano, V.: VIVACE: A
framework for the systematic evaluation of variability support in process-aware
information systems. Information and Software Technology, 57, pp. 248-276, 2014.

[BaDa02] Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on Software Engineering 28(1): 4-17, 2002.

[Barg92a] Barghouti, N.S.: Concurrency control in rule-based software development
environments. PhD Thesis, Department of Computer Science, Columbia University,
1992.

[Barg92b] Barghouti, N.S.: Supporting cooperation in the Marvel process-centered SDE. Proc 5th
ACM SIGSOFT Symposium on Software Development Environments, pp. 21-31,
1992.

[Bass05] Bassil, S.: Workflow technology for complex socio-technical systems. PhD Thesis,
University of Montreal, 2005.

[BCCG07] Bendraou, R., Combemale, B., Crégut, X., Gervais, M.P.: Definition of an executable
SPEM 2.0. Proc 14th Asia-Pacific Software Engineering Conf, pp. 390-397, 2007.

[BCJ10] Bruneliere, H., Cabot, J., Jouault, F.: Combining model-driven engineering and cloud
computing. Proc 4th Workshop on Modeling, Design, and Analysis for the Service,
2010.

[BCL+01] Basili, V., Costa, P., Lindvall, M., Mendonca, M., Seaman, C., Tesoriero, R.,
Zelkowitz, M.: An experience management system for a software engineering research
organization. Proc 26th Annual NASA Software Engineering Workshop, pp. 29-35,
2001.

Bibliography

282

[BCM+07] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.: The
description logic handbook: theory, implementation, and applications. Cambridge
Univ Pr, 2007.

[BDS+99] Beedle, M., Devos, M., Sharon, Y., Schwaber, K., Sutherland, J.: SCRUM: An
extension pattern language for hyperproductive software development. Pattern
Languages of Program Design 4: 637-651, 1999.

[BDZ10] Begel, A., DeLine, R., Zimmermann, T.: Social media for software engineering. Proc
FSE/SDP Workshop on Future of Software Engineering Research, pp. 33-38, 2010.

[Beck00a] Beck, K.: Extreme Programming: Die revolutionäre Methode für Softwareentwicklung
in kleinen Teams. Addison-Wesley, 2000.

[Beck00b] Beck, K.: Extreme programming explained: embrace change. Addison-Wesley
Professional, 2000.

[Beck03] Beck, K.: Test-driven development: by example. Addison-Wesley Professional, 2003.
[BEK+06] Brockmans, S., Ehrig, M., Koschmider, K., Oberweis, A., Studer, R.: Semantic

alignment of business processes. Proc 18th Int'l Conf on Enterprise Information
Systems, pp. 191-196, 2006.

[BeKl99] Beckstein, C., Klausner, L.: A planning framework for workflow management. Proc
Workshop on Intelligent Workflow and Process Management, 1999.

[BEM94] Belkhatir, N., Estublier, J., Melo, W.: The ADELE-TEMPO experience: an
environment to support process modeling and enaction. Software Process Modelling
and Technology. Research Studies Press Ltd., pp. 187-222, 1994.

[BFGL94] Bandinelli, S., Fuggetta, A., Ghezzi, C., Lavazza, L.: SPADE: an environment for
software process analysis, design, and enactment. Software Process Modelling and
Technology. Research Studies Press Ltd., pp. 223-247, 1994.

[BGM07] Bouras, A., Gouvas, P., Mentzas, G.: Enio: An enterprise application integration
ontology. 18th Int'l Conf on Database and Expert Systems Applications, pp. 419-423,
2007.

[BGMT89] Boudier, G., Gallo, F., Minot, R., Thomas, I.: An overview of PCTE and PCTE+. 3rd
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, pp. 248-257, 1989.

[BHS09] Bhattacharya, K., Hull, R., Su, J.: A data-centric design methodology for business
processes. Handbook of Research on Business Process Management. IGI Global, pp.
503–531, 2009.

[BiCa04] Biegel, G., Cahill, V.: A framework for developing mobile, context-aware
applications. Proc 2nd IEEE Conf on Pervasive Computing and Communication, pp.
361-365, 2004.

[BiKa08] Bibeault, B., Kats, Y.: jQuery in Action. Dreamtech Press, 2008.
[BjDi08] Bjornson, F.O., Dingsoyr, T.: Knowledge management in software engineering: A

systematic review of studied concepts, findings and research methods used.
Information and Software Technology, 50(11): 1055-1068, 2008.

[BLWR12] Barba, I., Lanz, A., Weber, B., Reichert, M., del Valle, C.: Optimized time
management for declarative workflows. Proc Business Process Modeling,
Development, and Support Working Conf, pp. 195-210, 2012.

[Boeh88] Boehm, B.W.: A spiral model of software development and enhancement. Computer,
21(5): 61-72, 1988.

[BPEL07] BPEL. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf, 2007. Visited:
December 2015.

[BPNS07] Bern, A., Pasi, A., Nikula, U., Smolander, K.: Contextual factors affecting the
software development process–an initial view. 2nd AIS SIGSAND European
Symposium on Systems Analysis and Design, pp. 1-8, 2007.

Bibliography

283

[BPR99] Bellifemine, F., Poggi, A., Rimassa, G.: JADE–A FIPA-compliant agent framework.
Proc 4th Intl. Conf and Exhibition on The Practical Application of Intelligent Agents
and Multi-Agents, pp. 97-108, 1999.

[BrBe11] Braude, E.J., Bernstein, M.E.: Software engineering: modern approaches. J. Wiley &
Sons, 2010.

[BRK+06] Bassil, S., Rinderle, S., Keller, R., Kropf, P., Reichert, M.: Preserving the context of
interrupted business process activities. Enterprise Information Systems VII. Springer,
pp. 149-156, 2006.

[BrNi98] O'Brien, P.D., Nicol, R.C.: FIPA—towards a standard for software agents. BT
Technology J, 16(3): 51-59, 1998.

[Broe96] Brockers, A., Differding, C., Threin, G.: The role of software process modeling in
planning industrial measurement programs. Proc Int'l Metrics Symposium, pp. 31-40,
1996.

[Broo87] Brooks, F.P., Jr.: No silver bullet: essence and accidents of software engineering.
Computer, 20(4): 10-19, 1987.

[Brow09] Browne, P.: JBoss Drools Business Rules. Packt Publishing, 2009.
[BSV07] Blackburn, T., Swatman, P., Vernik, R.: Cognitive dust: A framework that builds from

CSCW concepts to provide situated support for small group work. Computer
Supported Cooperative Work in Design III. Springer, pp. 1-12, 2007.

[BWHK12] Blankenship, E., Woodward, M., Holliday, G., Keller, B.: Professional team
foundation server 2012. John Wiley & Sons, 2012.

[BWHW06] Biffl, S., Winkler, D., Höhn, R., Wetzel, H.: Software process improvement in europe:
potential of the new V-modell XT and research issues. Software Process:
Improvement and Practice, 11(3): 229-238, 2006.

[BWT04] Barros, M.O., Werner, C.M.L., Travassos, G.H.: Supporting risks in software project
management. J Systems and Software, 70(1-2): 21-35, 2004.

[CAG12] Cordeiro, J., Antunes, B., Gomes, P.: Context-based recommendation to support
problem solving in software development. Proc 3rd Int'l Workshop on
Recommendation Systems for Software Engineering, pp. 85-89, 2012.

[CALO94] Coleman, D., Ash, D., Lowther, B., Oman, P.: Using metrics to evaluate software
system maintainability. IEEE Computer, 27(8): 44-49, 1994.

[Case85] Case, A.F.: Computer-aided software engineering (CASE): technology for improving
software development productivity. ACM SIGMIS Database, 17(1): 35-43, 1985.

[CBD+94] Canals, G., Boudjlida, N., Derniame, J.C., Godart, C., Lonchamp, J.: ALF: a
framework for building process-centred software engineering environments. Software
Process Modelling and Technology. Research Studies Press Ltd., Taunton, UK, pp.
153–185, 1994.

[CCI04] Cook, C., Churcher, N., Irwin, W.: Towards synchronous collaborative software
engineering. Proc 11th Asia-Pacific Software Engineering Conf, pp. 230-239, 2004.

[CCPP99] Casati, F., Ceri, S., Paraboschi, S., Pozzi, G.: Specification and implementation of
exceptions in workflow management systems. ACM Transactions on Database
Systems, 24(3):405-451, 1999.

[CDL+04] Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R., Vetere, G.: DL-Lite:
practical reasoning for rich DLs. Proc Intl Workshop on Description Logics, pp. 92,
2004.

[CED10] Carmel, E., Espinosa, J.A., Dubinsky, Y.: "Follow the sun" workflow in global
software development. J of Management Information Systems, 27(1):17-38, 2010.

[ChCh13] Chawla, M.K., Chhabra, I.: Capturing OO Software metrics to attain quality
attributes–a case study. Int J of Scientific & Engineering Research, 4(6): 359-363,
2013.

[ChKe94] Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6): 476-493, 1994.

Bibliography

284

[CHL+94] Conradi, R., Hagaseth, M., Larsen, J.O., Nguyen, M., Munch, B., Westby, P., Zhu, W.,
Jaccheri, M., Liu, C.: Object-oriented and cooperative process modelling in EPOS. In:
Software Process Modelling and Technology. Research Studies Press Ltd., Taunton,
UK, pp. 9–32, 1994.

[CHW03] Chen, T., Far, B.H., Wang, Y.: Development of an intelligent agent-based GQM
software measurement system. Proc 12th Asian Test Symposium, pp. 188-197, 2003.

[CKd07] Cirilo, E., Kulesza, U., de Lucena, C.J.P.: GenArch-a model-based product derivation
tool. Proc Brazilian Symposium on Software Components, Architectures and Reuse,
pp. 31-46, 2007.

[CLH95] Conradi, R., Liu, C., Hagaseth, M.: Planning support for cooperating transactions in
EPOS. Information Systems, 20(4): 317-336, 1995.

[CMMI10] CMMI Product Team: CMMI for Development, Version 1.3. Technical Report,
Carnegie Mellon Software Engineering Institute Pittsburgh, 2010.

[CNGM95] Cugola, G., Di Nitto, E., Ghezzi, C., Mantione, M.: How to deal with deviations
during process model enactment. Proc 17th Int'l Conf on Software Engineering, pp.
265-273, 1995.

[CNW89] Chen, M., Nunamaker Jr, J.F., Weber, E.S.: Computer-aided software engineering:
present status and future directions. ACM SIGMIS Database, 20(1): 7-13, 1989.

[Cobe15] Cobertura. Website: http://cobertura.github.io/cobertura/. Visited: December 2015
[CoCh06] Cook, C., Churcher, N.: Constructing real-time collaborative software engineering

tools using CAISE, an architecture for supporting tool development. Proc 29th
Australasian Computer Science Conf, pp. 267-276, 2006.

[CoGa09] Combi, C., Gambini, M.: Flaws in the flow: The weakness of unstructured business
process modeling languages dealing with data. Proc On the Move to Meaningful
Internet Systems: OTM 2009, pp. 42-59, 2009.

[Cole92] Coleman, D.: Assessing maintainability. Proc Software Engineering Productivity
Conf, pp. 525-532, 1992.

[Cope05] Copeland, T.: PMD applied. Centennial Books, 2005.
[CPPM12] Christidis, K., Paraskevopoulos, F., Panagiotou, D., Mentzas, G.: Combining activity

metrics and contribution topics for software recommendations. Proc 3rd Int'l
Workshop on Recommendation Systems for Software Engineering, pp. 43-46, 2012.

[CrMu03] Crubézy, M., Musen, M.A.: Ontologies in support of problem solving. Handbook on
ontologies, pp. 321–341, 2003.

[CSS09] Coman, I.D., Sillitti, A., Succi, G.: A case-study on using an automated in-process
software engineering measurement and analysis system in an industrial environment.
Proc Int'l Conf on Software Engineering, pp. 89-99, 2009.

[CuGh1998] Cugola, G., Ghezzi, C.: Software processes: a retrospective and a path to the future.
Software Process: Improvement and Practice, 4(3): 101-123, 1998.

[Cumb07] Cumberlidge, M.: Business process management with JBoss JBPM: a practical guide
for business analysts; Develop Business Process Models for Implementation in a
Business Process Management Sytem, Packt Publishing, 2007.

[DAH05] Dumas, M., van der Aalst, W.M., ter Hofstede, A.H.: Process-aware information
systems: bridging people and software through process technology. John Wiley &
Sons, 2005.

[DaRe09] Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development
for robust and flexible process support. Computer Science - Research & Development,
23(2): 81-97, Springer 2009.

[Dask92] Daskalantonakis, M.K.: A practical view of software measurement and
implementation experiences within Motorola. Proc IEEE Transactions on Software
Engineering, 18(11): 998-1010, 1992.

Bibliography

285

[dBBG10] da Silva, M.A.A., Bendraou, R., Blanc, X., Gervais, M.-P.: Early deviation detection
in modeling activities of mde processes. In: Model Driven Engineering Languages and
Systems. Springer, pp. 303-317, 2010.

[deLe09] de Leoni, M.: Adaptive process management in highly dynamic and pervasive
scenarios. Proc 4th European Young Researchers Workshop on Service Oriented
Computing, pp. 83–97, 2009.

[Denn12] Denninger, O.: Recommending relevant code artifacts for change requests using
multiple predictors. Proc 3rd Int'l Workshop on Recommendation Systems for
Software Engineering, pp. 78-79, 2012.

[DeSt90] DeGrace, P., Stahl, L.H.: Wicked problems, righteous solutions: a catalogue of
modern software engineering paradigms. Yourdon Press, 1990.

[dFOT10] de Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Fine-grained management of
software artefacts: the ADAMS system. Software: Practice and Experience, 40(11):
1007-1034, 2010.

[DGD07] Dietze, S., Gugliotta, A., Domingue, J.: A semantic web services-based infrastructure
for context-adaptive process support. Proc IEEE Int'l Conf on Web Services, pp. 537-
543, 2007.

[DHM+96] Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P., Zbyslaw, A.: Freeflow:
mediating between representation and action in workflow systems. Proc ACM Conf on
Computer Supported Cooperative Work, pp. 190-198, 1996.

[Dijk72] Dijkstra, E.W.: Notes on structured programming. Structured programming. Academic
Press Ltd., pp. 1-82, 1972.

[dKM97] de Panfilis, S., Kitchenham, B., Morfuni, N.: Experiences introducing a measurement
program. Information and Software Technology, 39(11): 745-754, 1997.

[dLPF06] de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The web service modeling language
wsml: an overview. The Semantic Web: Research and Applications, pp. 590-604,
2006.

[DoDu07] Dorn, C., Dustdar, S.: Sharing hierarchical context for mobile web services.
Distributed and Parallel Databases, 21(1): 85-111, 2007.

[DRGC06] Debnath, N., Riesco, D., Cota, M.P., Perez-Schofield, J.B.G., Uva, D.: Supporting the
SPEM with a UML extended workflow metamodel. Proc IEEE Conf on Computer
Systems and Applications, pp. 1151-1154, 2006.

[DRK00] Dadam, P., Reichert, M., Kuhn, K.: Clinical workflows—the killer application for
process-oriented information systems? Proc Int’l Conf on Business Information
Systems, pp. 36–59, Springer 2000.

[DRR+10] Dadam, P., Reichert, M., Rinderle-Ma, S., Lanz, A., Pryss, R., Predeschly, M., Kolb,
J., Ly, L.T., Jurisch, M., Kreher, U.: From ADEPT to AristaFlow BPM suite: a
research vision has become reality. Proc Business Process Management Workshops,
pp. 529-531, 2010.

[DSW06] Davies, J., Studer, R., Warren, P.: Semantic web technologies: trends and research in
ontology-based systems, Vol. 3. John Wiley & Sons, 2006.

[Dust04] Dustdar, S.: Caramba—a process-aware collaboration system supporting ad hoc and
collaborative processes in virtual teams. Distributed and Parallel Databases, 15(1): 45-
66, 2004.

[DZG10] Döhring, M., Zimmermann, B., Godehardt, E.: Extended workflow flexibility using
rule-based adaptation patterns with eventing semantics. LNI P-175, pp. 216–226,
2010.

[dZR+04] de Oliveira, K.M., Zlot, F., Rocha, A.R., Travassos, G.H., Galotta, C., de Menezes,
C.S.: Domain-oriented software development environment. J of Systems and
Software, 72(2): 145-161, 2004.

[EcFo15] Eclipse Foundation: OpenUP. http://epf.eclipse.org/wikis/openup/. Visited: December
2015

Bibliography

286

[EHK84] Estublier, J., Ghoul, S., Krakowiak, S.: Preliminary experience with a configuration
control system for modular programs. ACM SIGPLAN Notices, 19(5): 149-156, 1984.

[EKR95] Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
Proc ACM Conf on Organizational Computing Systems, pp. 10-21, 1995.

[EKS93] Emmerich, W., Kroha, P., Schäfer, W.: Object-oriented database management systems
for construction of CASE environments. Database and Expert System Applications,
pp. 631-642, 1993.

[ELU10] Eberle, H., Leymann, F., Unger, T.: Transactional process fragments-recovery
strategies for flexible workflows with process fragments. Proc IEEE Asia-Pacific
Services Computing Conf, pp. 250-257, 2010.

[EMMA15] EMMA. Website: http://www.emma.sourceforge.net. Visited: December 2015
[Espe15] Esper. Website: http://www.espertech.com/products/esper.php. Visited: December

2015
[EvVe09] Eveleens, J., Verhoef, C.: Quantifying IT forecast quality. Science of Computer

Programming, 74(11-12): 934-988, 2009.
[FaCl04] Fahy, P., Clarke, S.: CASS–a middleware for mobile context-aware applications. Proc

Workshop on Context-awareness, 2004.
[FaWu09] FanJiang, Y.Y., Wu, C.H.: Towards a multi-agents architecture for GQM

measurement system. Proc 9th Int’l Conf on Hybrid Intelligent Systems, pp. 277-280,
2009.

[Fell13] Fellmann, M.: Semantic process engineering Konzeption und Realisierung eines
Werkzeugs zur Semantischen Prozessmodellierung. PhD Thesis, University of
Osnabrück, 2013.

[FFM+10] Friedrich, G., Fugini, M., Mussi, E., Pernici, B., Tagni, G.: Exception handling for
repair in service-based processes. IEEE Transactions on Software Engineering, 36(2):
198-215, 2010.

[FIRR15] Fdhila, W., Indiono, C., Rinderle-Ma, S., Reichert, M.: Dealing with change in process
choreographies: Design and implementation of propagation algorithms. Information
Systems, 49: 1-24, 2015.

[FMZ06] Feng, Y., Mingshu, L., Zhigang, W.: Spem2xpdl: Towards SPEM model enactment.
Proc Int’l Conf on Software Engineering Research and Practice, 2006.

[FoHi01] Fowler, M., Highsmith, J.: The agile manifesto. Software Development, 9(8): 28-35,
2001.

[Fox92] Fox, M.: The tove project towards a common-sense model of the enterprise. Industrial
and Engineering Applications of Artificial Intelligence and Expert Systems, pp. 25-34,
1992.

[FrGr97] Franklin, S., Graesser, A.: Is it an agent, or just a program?: a taxonomy for
autonomous agents. Intelligent Agents III Agent Theories, Architectures, and
Languages, pp. 21-35, 1997.

[Frie03] Friedman-Hill, E.: JESS in Action. Manning Greenwich, CT, 2003.
[Fros07] Frost, R.: Jazz and the eclipse way of collaboration. Software, IEEE, 24(6): 114-117,

2007.
[Fugg93] Fuggetta, A.: A classification of CASE technology. Computer, 26(12): 25-38, 1993.
[FUSI15] European Project FUSION. http://www.fusionweb.org/FUSION/home.asp. Visited:

December 2015
[GAF00] Grüninger, M., Atefi, K., Fox, M.S.: Ontologies to support process integration in

enterprise engineering. Computational & Mathematical Organization Theory, 6(4):
381-394, 2000.

[GAJL08] Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., La Rosa, M.:
Configurable workflow models. Int'l J Cooperative Information Systems, 17(2): 177–
221, 2008.

Bibliography

287

[Gali04] Galin, D.: Software quality assurance: from theory to implementation. Addison-
Wesley, 2004.

[GDD06] Gasevic, D., Djuric, D., Devedzic, V.: Model driven architecture and ontology
development. Springer-Verlag, 2006.

[GeFi92] Genesereth, M.R., Fikes, R.E., Computer Science Department, S.U.: Knowledge
interchange format-version 3.0: reference manual. Technical Report, Department of
Computer Science, Stanford University, 1992.

[GeLa81] Genrich, H.J., Lautenbach, K.: System modelling with high-level Petri nets.
Theoretical Computer Science, 13(1): 109-135, 1981.

[Gele85] Gelernter, D.: Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1): 80-112, 1985.

[GeTs98] Georgakopoulos, D., Tsalgatidou, A.: Technology and tools for comprehensive
business process lifecycle management. Workflow Management Systems and
Interoperability, pp. 356-395, 1998.

[GGK06] Gibson, D.L., Goldenson, D.R., Kost, K.: Performance results of CMMI-based process
improvement. Technical Report, Software Engineering Institute, Carnegie-Mellon
University, Pittsburgh, 2006.

[GHM98] Grundy, J.C., Hosking, J.G., Mugridge, W.B.: Coordinating distributed software
development projects with integrated process modelling and enactment environments.
Proc IEEE 21st Int'l Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 39-44, 1998.

[GHS95] Georgakopoulos, D., Hornick, M., Sheth, A.: An overview of workflow management:
From process modeling to workflow automation infrastructure. Distributed and
parallel databases, 3(2): 119-153, 1995.

[GKKL12] Grundy, J., Kaefer, G., Keong, J., Liu, A.: Guest editors' introduction: software
engineering for the cloud. Software, IEEE, 29(2): 26-29, 2012.

[GKMK02] Gopal, A., Krishnan, M.S., Mukhopadhyay, T., Goldenson, D.R.: Measurement
programs in software development: Determinants of success. IEEE Transactions on
Software Engineering, 28(9): 863-875, 2002.

[Glas98] Glass, R.L.: Software runaways: monumental software disasters. Prentice Hall, 1997.
[GoAk03] Gordijn, J., Akkermans, J.: Value-based requirements engineering: Exploring

innovative e-commerce ideas. Requirements engineering, 8(2): 114-134, 2003.
[GOR10a] Grambow, G., Oberhauser, R., Reichert, M.: Semantic workflow adaption in support

of workflow diversity. Proc 4th Int'l Conf on Advances in Semantic Processing, pp.
158-165, 2010.

[GOR10b] Grambow, G., Oberhauser, R., Reichert, M.: Employing semantically driven
adaptation for amalgamating software quality assurance with process management.
Proc 2nd Int’l Conf on Adaptive and Self-adaptive Systems and Applications, pp. 58-
67, 2010.

[GOR11a] Grambow, G., Oberhauser, R., Reichert, M.: Towards a workflow language for
software engineering. Proc 10th IASTED Conf on Software Engineering, pp. 130-137,
2011.

[GOR11b] Grambow, G., Oberhauser, R., Reichert, M.: Semantically-driven workflow generation
using declarative modeling for processes in software engineering. Proc 4th Int'l
Workshop on Evolutionary Business Processes, pp. 164-173, 2011.

[GOR11c] Grambow, G., Oberhauser, R., Reichert, M.: Towards automatic process-aware
coordination in collaborative software engineering. Proc 6th Int'l Conf on Software
and Data Technologies, pp. 5-14, 2011.

[GOR11d] Grambow, G., Oberhauser, R., Reichert, M.: Contextual injection of quality measures
into software engineering processes. Int'l J on Advances in Software, 4(1 & 2): 76-99,
2011.

Bibliography

288

[GOR11e] Grambow, G., Oberhauser, R., Reichert, M.: Event-driven exception handling for
software engineering processes. Proc 5th Int'l Workshop on event-driven Business
Process Management, LNBIP 99, pp. 414-426, 2011.

[GOR11f] Grambow, G., Oberhauser, R., Reichert, M.: Towards dynamic knowledge support in
software engineering processes Proc 6th Int'l Workshop on Applications of Semantic
Technologies, LNI 192, pp. 149, 2011.

[GOR12a] Grambow, G., Oberhauser, R., Reichert, M.: Enabling automatic process-aware
collaboration support in software engineering projects. Selected Papers of the
ICSOFT'11 Conf, CCIS 303, pp. 73-89, 2012.

[GOR12b] Grambow, G., Oberhauser, R., Reichert, M.: Contextual generation of declarative
workflows and their application to software engineering processes. Int'l J on Advances
in Intelligent Systems, 4(3 & 4):158-179, 2012.

[GOR12c] Grambow, G., Oberhauser, R., Reichert, M.: User-centric abstraction of workflow
logic applied to software engineering processes. Proc 1st Workshop on Human-
Centric Process-Aware Information Systems, LNBIP 112, pp. 307-321, 2012.

[GOR12d] Grambow, G., Oberhauser, R., Reichert, M.: Knowledge provisioning: a context-
sensitive process-oriented approach applied to software engineering environments.
Proc 7th Int'l Conf on Software and Data Technologies, pp. 506-515, 2012.

[GOR12e] Grambow, G., Oberhauser, R., Reichert, M.: Towards automated process assessment
in software engineering. Proc 7th Int’l Conf on Software Engineering Advances, pp.
289-295, 2012.

[GOR13] Grambow, G., Oberhauser, R., Reichert, M.: Automated software engineering process
assessment: supporting diverse models using an ontology. Int'l J on Advances in
Software, 6(1 & 2): 213 - 224, 2013.

[GOR14] Grambow, G., Oberhauser, R., Reichert, M.: Providing automated holistic process and
knowledge assistance during software modernization. Uncovering Essential Software
Artifacts through Business Process Archaeology. IGI Global, pp. 20-63, 2014.

[GOR16] Grambow, G., Oberhauser, R., Reichert, M.: Context-aware and process-centric
knowledge provisioning - an example from the software development domain.
Innovations in Knowledge Management. Springer, pp. 179-209, 2016.

[Gott09] Gottschalk, F.: Configurable process models. Ph.D. Thesis. Eindhoven University of
Technology, 2009.

[GPZ04] Gu, T., Pung, H.K.: A middleware for building context-aware mobile services. Proc
IEEE Vehicular Technology Conf, pp. 2656-2660, 2004.

[GrOb10] Grambow, G., Oberhauser, R.: Towards automated context-aware selection of
software quality measures. Proc 5th Intl. Conf on Software Engineering Advances, pp.
347-352, 2010.

[Gruh02] Gruhn, V.: Process-centered software engineering environments, a brief history and
future challenges. Annals of Software Engineering, 14(1): 363-382, 2002.

[GTS10] Grammel, L., Treude, C., Storey, M.-A.: Mashup environments in software
engineering. Proc 1st Workshop on Web 2.0 for Software Engineering, pp. 24-25,
2010.

[GuAl10] Guha, R., Al-Dabass, D.: Impact of web 2.0 and cloud computing platform on
software engineering. Proc Int'l Symposium on Electronic System Design, pp. 213-
218, 2010.

[HaLa09] Hattori, L., Lanza, M.: An environment for synchronous software development. ICSE-
Companion 2009, pp. 223-226, 2009.

[HaLa10] Hattori, L., Lanza, M.: Syde: A tool for collaborative software development. Proc
32nd Int'l Conf on Software Engineering, pp. 235-238, 2010.

[Hall10] Hallerbach, A.: Management von Prozessvarianten. PhD Thesis. University of Ulm,
2010.

Bibliography

289

[Hami88] Abdel-Hamid, T.K.: The economics of software quality assurance: A simulation-based
case study. MIS Quarterly, 12(3): 395-411, 1988.

[HBR08a] Hallerbach, A., Bauer, T., Reichert, M.: Context-based configuration of process
variants. Proc 3rd Int’l Workshop on Technologies for Context-Aware Business
Process Management, pp. 31-40, 2008.

[HBR08b] Hallerbach, A., Bauer, T., Reichert, M.: Managing Process Variants in the Process
Lifecycle. Proc. 10th Int'l Conf on Enterprise Information Systems, pp. 154-161, 2008.

[HBR10] Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process
models: the Provop approach. J of Software Maintenance and Evolution: Research and
Practice, 22(6 & 7): 519-546, 2010.

[HBZ+14] Haisjackl, C., Barba, I., Zugal, S., Soffer, P., Hadar, I., Reichert, M., Pinggera, J.,
Weber, B.: Understanding declare models: strategies, pitfalls, empirical results.
Software & Systems Modeling, pp. 1-28, 2014.

[HeMa03] Hevner, A.R., March, S.T.: The information systems research cycle. Computer,
36(11): 111-113, 2003.

[HKR11] Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of semantic web technologies.
CRC Press, 2011.

[HLD+05] Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business
process management: A vision towards using semantic web services for business
process management. Proc IEEE Int'l Conf on e-Business Engineering, pp. 535-540,
2005.

[HMMR14] Hipp, M., Mutschler, B., Michelberger, B., Reichert, M.: Navigating in process model
repositories and enterprise process information. Proc IEEE Eighth Int'l Conf on
Research Challenges in Information Science, pp. 1-12, 2014.

[HMPR04] Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Quarterly, 28(1): 75-105, 2004.

[HMR12] Hipp, M., Mutschler, B., Reichert, M.: Navigating in complex business processes.
Proc Database and Expert Systems Applications, pp. 466-480, 2012.

[Holl93] Hollingsworth, D.: Workflow management coalition: The workflow reference model,
1993.

[HPN08] Hill, J., Pezzini, M., Natis, Y.: Findings: confusion remains regarding BPM
terminologies. Gartner Research, 501(G00155817), 2008.

[HuBo06] Huang, L.G., Boehm, B.: How much software quality investment is enough: A value-
based approach. IEEE Software, 23(5): 88-95, 2006.

[HuFa05] Huang, J., Far, B.H.: Intelligent software measurement system (ISMS). Proc Canadian
Conf on Electrical and Computer Engineering, pp. 1033-1036, 2005.

[IABG15] IABG: Das V-Modell. Release 2.0 http://www.v-modell.iabg.de/, 2015. Visited:
December 2015

[IBM08] IBM Jazz, 2008. Website: http://www.jazz.net. Visited: December 2015
[IEEE02] IEEE standard for software quality assurance plans, IEEE Std 730-2002, 2002.
[IEEE04] IEEE Standard for software verification and validation, IEEE Std 1012-2004, 2004.
[IEEE05] IEEE standard for software configuration management plans, IEEE Std 828-2005

2005.
[IEEE07] IEEE standard for software and system test documentation, IEEE Std P829-2007,

2007.
[IEEE09] IEEE standard for information technology - systems design - software design

descriptions, IEEE Std 1016-2009, 2009.
[IEEE98a] IEEE recommended practice for software requirements specifications, IEEE Std 830-

1998, 1998.
[IEEE98b] IEEE standard for software project management plans, IEEE Std 1058-1998, 1998.
[Inta15] Intalio BPMS, www.intalio.com. Visited: December 2015

Bibliography

290

[JaCo93] Jaccheri, M.L., Conradi, R.: Techniques for process model evolution in EPOS. IEEE
Transactions on Software Engineering, 19(12): 1145-1156, 1993.

[JaSo04] Jang, M., Sohn, J.-C.: Bossam: An extended rule engine for OWL inferencing. Rules
and Rule Markup Languages for the Semantic Web. Springer, pp. 128-138, 2004.

[JBR99] Jacobson, I., Booch, G., Rumbaugh, J.: The unified software development process.
Addison-Wesley, 1999.

[Jhaw15] Jhawk. Website: http://www.virtualmachinery.com/jhawkprod.htm. Visisted: April
2015

[John07] Johnson, P.M.: Requirement and design trade-offs in Hackystat: An in-process
software engineering measurement and analysis system. Proc 1st Int'l Symposium on
Empirical Software Engineering and Measurement, pp. 81-90, 2007

[Jone10] Jones, C.: Get software quality right. Dr Dobb's Journal, 2010.
[Jone96] Jones, C.: Strategies for managing requirements creep. Computer, 29(6): 92-94, 1996.
[JPSW94] Junkermann, G., Peuschel, B., Schäfer, W., Wolf, S.: MERLIN: Supporting

cooperation in software development through a knowledge-based environment.
Software Process Modeling and Technology. Research Studies Press, pp. 103–129,
1994.

[JYW07] Jiang, T., Ying, J., Wu, M.: CASDE: An environment for collaborative software
development. In: Computer Supported Cooperative Work in Design III, pp. 367-376,
2007.

[JYWF06] Jiang, T., Ying, J., Wu, M., Fang, M.: An architecture of process-centered context-
aware software development environment. Proc 10th Int'l Conf on Computer
Supported Cooperative Work in Design, pp. 1-5, 2006.

[Kan02] Kan, S.H.: Metrics and models in software quality engineering. Pearson Education
India, 2003.

[KeHa02] Kess, P., Haapasalo, H.: Knowledge creation through a project review process in
software production. Int'l J of Production Economics, 80(1): 49-55, 2002.

[KeMu06] Kersten, M., Murphy, G.C.: Using task context to improve programmer productivity.
Proc 14th ACM SIGSOFT Int'l Symposium on Foundations of Software Engineering,
pp. 1-11, 2006.

[KHB00] Kiepuszewski, B., ter Hofstede, A., Bussler, C.: On structured workflow modelling.
Proc 12th Conf on Advanced Information Systems Engineering, pp. 431-445, 2000.

[KHKRS08] Hitzler, P., Krötzsch, M., Rudolph, S.: York Sure: Semantic Web - Grundlagen.
Springer, 2008.

[Kind06] Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. Data &
Knowledge Engineering, 56(1): 23-40, 2006.

[KKKM00] Krishnan, M.S., Kriebel, C.H., Kekre, S., Mukhopadhyay, T.: An empirical analysis of
productivity and quality in software products. Management Science, pp. 745-759,
2000.

[KKL+04] Kloppmann, M., Konig, D., Leymann, F., Pfau, G., Roller, D.: Business process
choreography in WebSphere: Combining the power of BPEL and J2EE. IBM Systems
J, 43(2): 270-296, 2004.

[KMK+03] Korpipaa, P., Mantyjarvi, J., Kela, J., Keranen, H., Malm, E.J.: Managing context
information in mobile devices. IEEE Pervasive Computing, 2(3): 42-51, 2003.

[KNS92] Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozessmodellierung auf der
Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Veröffentlichungen des
Instituts für Wirtschaftsinformatik, 89, pp. 1992.

[Kolo92] Kolodner, J.L.: An introduction to case-based reasoning. Artificial Intelligence
Review, 6(1): 3-34, 1992.

[KoOb05] Koschmider, A., Oberweis, A.: Ontology based business process description. Proc
CAiSE´05 Workshops, pp. 321-333, 2005.

Bibliography

291

[KoRe13] Kolb, J., Reichert, M.: A flexible approach for abstracting and personalizing large
business process models. ACM SIGAPP Applied Computing Review, 13(1): 6-18,
2013.

[Kreh14] Kreher, U.: Konzepte, Architektur und Implementierung adaptiver
Prozessmanagementsysteme. PhD thesis. University of Ulm, 2014.

[KRFR13] Knuplesch, D., Reichert, M., Fdhila, W., Rinderle-Ma, S.: On enabling compliance of
cross-organizational business processes. Proc Business Process Management 2013, pp.
146-154, 2013.

[KRL+13] Knuplesch, D., Reichert, M., Ly, L.T., Kumar, A., Rinderle-Ma, S.: Visual modeling
of business process compliance rules with the support of multiple perspectives. Proc
Int'l Conf Conceptual Modeling, pp. 106-120, 2013.

[KRM+12] Knuplesch, D., Reichert, M., Mangler, J., Rinderle-Ma, S., Fdhila, W.: Towards
compliance of cross-organizational processes and their changes. Proc Business Process
Management Workshops, pp. 649-661, 2013.

[Kruc04] Kruchten, P.: The rational unified process: an introduction. Addison-Wesley
Professional, 2004.

[Kruc99] Kruchten, P.: Der Rational Unified Process. Eine Einführung. Addison-Wesley, 1999.
[KuJe04] Kurniawati, F., Jeffery, R.: The long-term effects of an EPG/ER in a small software

organisation. Proc Australian Software Engineering Conf, pp. 128-136, 2004.
[Künz13] Künzle, V.: Object-aware process management. PhD Thesis. University of Ulm, 2013.
[KüRe11a] Künzle, V., Reichert, M.: PHILharmonicFlows: towards a framework for object aware

process management. J of Software Maintenance and Evolution: Research and
Practice, 23(4): 205-244, 2011.

[KüRe11b] Künzle, V., Reichert, M.: Striving for Object-aware Process Support: How existing
approaches fit together. Proc 1st Int’l Symposium on Data-driven Process Discovery
and Analysis, pp. 169-188, 2011.

[KüRe11c] Künzle, V., Reichert, M.: A Modeling paradigm for integrating processes and data at
the micro level. Proc 12th Int'l Working Conf on Business Process Modeling,
Development and Support, LNBIP 81, pp. 201-215, 2011.

[KVL+08] Karastoyanova, D., Van Lessen, T., Leymann, F., Ma, Z., Nitzsche, J., Wetzstein, B.,
Bhiri, S., Hauswirth, M., Zaremba, M.: A reference architecture for semantic business
process management systems. Proc Multikonferenz Wirtschaftsinformatik, pp. 1727-
1738, 2008.

[KVV06] Krötzsch, M., Vrandecic, D., Völkel, M.: Semantic mediawiki. Proc Int'l Semantic
Web Conf, pp. 935-942, 2006.

[KWR11] Künzle, V., Weber, B., Reichert, M.: Object-aware business processes: fundamental
requirements and their support in existing approaches. Int'l J of Information System
Modeling and Design, 2(2):19-46, 2011.

[Lava00] Lavazza, L.: Providing automated support for the GQM measurement process. IEEE
Software, 17(3): 56-62, 2000.

[LavBa05] Lavazza, L., Barresi, G.: Automated support for process-aware definition and
execution of measurement plans. Proc 27th Int’l Conf on Software Engineering, pp.
234-243, 2005.

[LBW07] Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling business contexture and behavior using
business artifacts. Adv. Inform. Syst. Eng. 4495, pp. 324–339, 2007.

[LDH09] La Rosa, M., L.R., Dumas, M., ter Hofstede, A.H.M.: Modelling business process
variability for design-time configuration. Handbook of Research on Business Process
Modeling. Idea Group Inc, pp. 204-228, 2009.

[LDTM11] La Rosa, M., Dumas, M., Ter Hofstede, A.H.M., Mendling, J.: Configurable multi-
perspective business process models. Information Systems, 36(2): 313-340, 2011.

Bibliography

292

[LeBo07] Lewandowski, A., Bourguin, G.: Enhancing support for collaboration in software
development environments. Computer Supported Cooperative Work in Design III, pp.
160-169, 2007.

[LeFr07] Lemcke, J., Friesen, A.: Composing web-service-like abstract state machines (ASMs).
Proc IEEE Congress on Services, 2007.

[LEPV10] Lanubile, F., Ebert, C., Prikladnicki, R., Vizcaíno, A.: Collaboration tools for global
software engineering. Software, IEEE, 27(2): 52-55, 2010.

[LeRe07] Lenz, R., Reichert, M.: IT support for healthcare processes-premises, challenges,
perspectives. Data & Knowledge Engineering, 61(1): 39-58, 2007.

[LeRo00] Leymann, F., Roller, D.: Production workflow: concepts and techniques. Prentice
Hall, 2000.

[Liao03] Liao, S.: Knowledge management technologies and applications--literature review
from 1995 to 2002. Expert systems with applications, 25(2): 155-164, 2003.

[LiCo93] Liu, C., Conradi, R.: Automatic replanning of task networks for process model
evolution in EPOS. Proc European Software Engineering Conf, pp. 434-450, 1993.

[LiRu02] Lindvall, M., Rus, I.: Knowledge management in software engineering. IEEE
Software, 19(3): 26-38, 2002.

[LiSt05] Lin, Y., Strasunskas, D.: Ontology-based semantic annotation of process templates for
reuse. Proc 10th Int'l Workshop on Exploring Modeling Methods for Systems Analysis
and Design, pp. 593-604, 2005.

[LiZh05] Li, Z., Zhou, Y.: PR-Miner: automatically extracting implicit programming rules and
detecting violations in large software code. ACM SIGSOFT Software Engineering
Notes 30: 306-315, 2005.

[LKRD10] Lanz, A., Kreher, U., Reichert, M., Dadam, P.: Enabling process support for advanced
applications with the aristaFlow BPM suite. Proc. Int'l Conf. on Business Process
Management Demonstration Track, 2010.

[Lofi05] Lofi, C.: cGQM - Ein zielorientierter Ansatz für kontinuierliche, automatisierte
Messzyklen. Proc 4th National Conf on Software Measurement and Metrics, 2005.

[LoRe13] Lohrmann, M., Reichert, M.: Understanding business process quality. In: Business
Process Management - Theory and Applications. Studies in Computational
Intelligence (444), pp. 41-73, Springer, 2013.

[LoRe15] Lohrmann, M., Reichert, M.: Effective application of process improvement patterns to
business processes. Software & Systems Modeling, 2015.

[LoRo93] Lott, C.M., Rombach, H.D.: Measurement-based guidance of software projects using
explicit project plans. Information and Software Technology, 35(6-7): 407-419, 1993.

[LPCR13] Lanz, A., Posenato, R., Combi, C., Reichert, M.: Controllability of time-aware
processes at run time. Proc. Int'l Conference on Cooperative Information Systems, pp.
39-56, 2013.

[LPCR15] Lanz, A., Posenato, R., Combi, C., Reichert, M.: Simple temporal networks with
partially shrinkable uncertainty. Proc. Int'l Conf on Agents and Artificial Intelligence,
pp. 10 - 12, 2015.

[LPR12] Lenz, R., Peleg, M., Reichert, M.: Healthcare process support: achievements,
challenges, current research. Int'l J of Knowledge-Based Organizations, 2(4), 2012.

[LRD10a] Ly, L.T., Rinderle-Ma, S., Dadam, P.: Design and verification of instantiable
compliance rule graphs in process-aware information systems. Proc Int'l Conf on
Advanced Information Systems Engineering, pp. 9-23, 2010.

[LRD10b] Lanz, A., Reichert, M., Dadam, P.: Making business process implementations flexible
and robust: error handling in the AristaFlow BPM suite. Proc CAiSE'10 Forum,
LNBIP 72, pp. 174-189, 2010.

[LRKD11] Ly, L.T., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitoring business process
compliance using compliance rule graphs. Proc Int'l Conf on Cooperative Information
Systems, pp. 82-99, 2011.

Bibliography

293

[LRW08] Li, C., Reichert, M., Wombacher, A.: On measuring process model similarity based on
high-level change operations. Proc Int'l Conf Conceptual Modeling, pp. 248-264,
2008.

[LRW09] Li, C., Reichert, M., Wombacher, A.: Discovering reference models by mining process
variants using a heuristic approach. Proc Business Process Management, pp. 344-362,
2009.

[LRW10] Li, C., Reichert, M., Wombacher, A.: The MinAdept clustering approach for
discovering reference process models out of process variants. Int'l J of Cooperative
Information Systems, 19(3 & 4): 159-203, 2010.

[LRW11] Li, C., Reichert, M., Wombacher, A.: Mining business process variants: challenges,
scenarios, algorithms. Data & Knowledge Engineering, 70(5): 409-434, 2011.

[LSH+06] Lin, Y., Strasunskas, D., Hakkarainen, S., Krogstie, J., Solvberg, A.: Semantic
annotation framework to manage semantic heterogeneity of process models. Advanced
Information Systems Engineering, pp. 433-446, 2006.

[LSKM00] Luo, Z., Sheth, A., Kochut, K., Miller, J.: Exception handling in workflow systems.
Applied Intelligence, 13(2): 125-147, 2000.

[LTXF04] Liang, L., Tang, Y., Xiao, W., Feng, Z.: The literature review of cooperative software
engineering. Proc 8th Int'l Conf on Computer Supported Cooperative Work in Design,
2004., 1, pp. 648-652, 2004.

[Luck01] Luckham, D.C.: The power of events: an introduction to complex event processing in
distributed enterprise systems. Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA, 2001.

[LWR14] Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information
systems. Requirements engineering, 19(2): 113-141, 2014.

[Ly13] Ly, L.T.: SeaFlows–a compliance checking framework for supporting the process
lifecycle. PhD Thesis, University of Ulm, 2013.

[Mall09] Mall, R.: Fundamentals of software engineering. PHI Learning Pvt. Ltd., 2009.
[MaRa12] Matinnejad, R., Ramsin, R.: An analytical review of process-centered software

engineering environments. Proc IEEE 19th Int'l Conf and Workshops on Engineering
of Computer Based Systems, pp. 64-73, 2012.

[MaSa13] Mahmood, Z., Saeed, S.: Software engineering frameworks for the cloud computing
paradigm. Springer, 2013.

[MaSm95] March, S.T., Smith, G.F.: Design and natural science research on information
technology. Decision Support Systems, 15(4): 251-266, 1995.

[MaVe03] MacCormack, A., Verganti, R.: Managing the sources of uncertainty: matching
process and context in software development. J of Product Innovation Management,
20(3): 217-232, 2003.

[MBG+02] Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Oltramari, R.,
Schneider, L., Horrocks, I.: Wonderweb deliverable d17. The Wonderweb Library of
Foundational Ontologies and the Dolce Ontology. 2002.

[MBR15] Mundbrod, N., Beuter, F., Reichert, M.: Supporting knowledge-intensive processes
through integrated task lifecycle support. Proc. 19th IEEE Int'l Enterprise Distributed
Object Computing Conf, pp. 19-28, 2015.

[McBr02] McBride, B.: Jena: A semantic web toolkit. IEEE Internet Computing, 6(6): 55-59,
2002.

[McCa76] McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineering,
pp. 308-320, 1976.

[McCo01] McConnell, S.: The nine deadly sins of project planning. IEEE Software, 18(5): 5-7,
2001.

[McVa04] McGuinness, D.L., van Harmelen, F.: OWL web ontology language overview. W3C
recommendation, 2004.

Bibliography

294

[MDA08] Mendling, J., van Dongen, B.F., van der Aalst, W.M.P.: Getting rid of OR-joins and
multiple start events in business process models. Enterprise Information Systems, 2(4):
403-419, 2008.

[MdMR09] Maciel, R.S.P., da Silva, B.C., Magalhães, P.F., Rosa, N.S.: An integrated approach
for model driven process modeling and enactment. Proc 13th Brazilian Symposium on
Software Engineering, pp. 104-114, 2009.

[Meie09] Meier, W.: eXist: an open source native XML database. Web, Web-Services, and
Database Systems, pp. 169-183, 2009.

[Mend08] Mendling, J.: Metrics for process models: empirical foundations of verification, error
prediction, and guidelines for correctness. Springer-Verlag New York Inc, 2008.

[MGDM10] Moha, N., Guéhéneuc, Y.G., Duchien, L., Le Meur, A.F.: DECOR: A method for the
specification and detection of code and design smells. IEEE Transactions on Software
Engineering, pp. 20-36, 2009.

[MGR04] Müller, R., Greiner, U., Rahm, E.: Agentwork: a workflow system supporting rule-
based workflow adaptation. Data Knowlage Engineering, 51(2): 223-256, 2004.

[MHHR06] Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release management
processes in the automotive industry. Proc 4th Int'l Conf on Business Process
Management, pp. 368-377, 2006.

[Mich15] Michelberger, B.: Process-oriented information logistics: Aligning process
information with business processes. PhD Thesis. Ulm University, 2015.

[Micr15] MicroTOOL in-Step. Website: http://www.microtool.de/instep/en/index.asp. Visisted:
April 2015

[MMS14] Marrella, A., Mecella, M., Sardina, S.: SmartPM: an adaptive process management
system through situation calculus, IndiGolog, and classical planning. Proc. Int'l Conf
on Principles of Knowledge Representation and Reasoning, pp. 1-10, 2014.

[MNA10] Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding the occurrence of
errors in process models based on metrics. Proc On the Move to Meaningful Internet
Systems, pp. 113-130, 2010.

[MoAm94] Montangero, C., Ambriola, V.: Oikos: constructing process-centred SDEs. Software
Process Modelling and Technology. Research Studies Press Ltd., pp. 131-151, 1994.

[MOMO08] MOMOCS Project, Deliverable D3.1b "Methodology Specification", 2008.
[Mont10] Montali, M.: Specification and verification of declarative open interaction models.

Springer, 2010.
[Morg02] Morgan, T.: Business rules and information systems: aligning IT with business goals.

Addison-Wesley Professional, 2002.
[Mori99] Morisio, M.: Measurement processes are software too. J of Systems and Software,

49(1): 17-31, 1999.
[MPA+10] Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:

Declarative specification and verification of service choreographiess. ACM
Transactions on the Web, 4(1):1-62, 2010.

[MRH08] Müller, D., Reichert, M., Herbst, J.: A new paradigm for the enactment and dynamic
adaptation of data-driven process structures. Proc Int'l Conf Advanced Information
Systems Engineering, pp. 48-63, 2008.

[MRv10] Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling
guidelines (7pmg). Information and Software Technology, 52(2): 127-136, 2010.

[MSG13] Manchanda, D., Singh, A., Garg, N.: An insight upon the effect of quality assurance
on the cost of software development. Int'l J of Computer Applications, 80, pp. 4-10,
2013.

[MTB07] Minor, M., Tartakovski, A., Bergmann, R.: Representation and structure-based
similarity assessment for agile workflows. Case-Based Reasoning Research and
Development, pp. 224-238, 2007.

Bibliography

295

[MTM+07] Meier, J., Taylor, J., Mackman, A., Bansode, P., Jones, K.: Team development with
Microsoft Visual Studio team foundation server: patterns & practices. Microsoft Press,
2007.

[MTS08] Minor, M., Tartakovski, A., Schmalen, D.: Agile workflow technology and case-based
change reuse for long-term processes. Int'l J of Intelligent Information Technologies,
4(1): 80-98, 2008.

[Müll02] Müller, R.: Event-oriented dynamic adaptation of workflows: model, architecture and
implementation. PhD Thesis. University of Leipzig, 2002.

[MuRe14] Mundbrod, N., Reichert, M.: Process-aware task management support for knowledge-
intensive business processes: findings, challenges, requirements. Proc IEEE 18th Int'l
Enterprise Distributed Object Computing Conf Workshops and Demonstrations, pp.
116-125, 2014.

[MWA+07] Ma, Z., Wetzstein, B., Anicic, D., Heymans, S., Leymann, F.: Semantic business
process repository. Proc Workshop on Semantic Business Process and Product
Lifecycle Management, pp. 92–100, 2007.

[NaRa68] Naur, P., Randell, B.: Software Engineering: Report on a conference sponsored by the
NATO SCIENCE COMMITTEE. Scientific Affairs Division, NATO, 1968.

[NaSt07] Namiri, K., Stojanovic, N.: A model-driven approach for internal controls compliance
in business processes. Proc Workshop on Semantic Business Process and Product
Lifecycle Management, pp. 40, 2007.

[NCF+03] Noy, N.F., Crubézy, M., Fergerson, R.W., Knublauch, H., Tu, S.W., Vendetti, J.,
Musen, M.A.: Protege-2000: an open-source ontology-development and knowledge-
acquisition environment. Proc AMIA Annual Symposium, 953, pp. 953, 2003.

[Nejm98] Nejmeh, B.A.: NPATH: a measure of execution path complexity and its applications.
Communications of the ACM, 31(2): 188-200, 1988.

[NSIH02] Nemati, H.R., Steiger, D.M., Iyer, L.S., Herschel, R.T.: Knowledge warehouse: an
architectural integration of knowledge management, decision support, artificial
intelligence and data warehousing. Decision Support Systems, 33(2): 143-161, 2002.

[NUS05] Nystrom, N.A., Urbanic, J., Savinell, C.: Understanding productivity through non-
intrusive instrumentation and statistical learning. Proc 2nd Workshop on Productivity
and Performance in High-End Computing, 2005.

[NWV07] Nitzsche, J., Wutke, D., Van Lessen, T.: An ontology for executable business
processes. Proc Workshop on Semantic Business Process and Product Lifecycle
Management, 2007.

[OASI07] Web Services Business Process Execution Language (WSBPEL) TC. Web services
business process execution language version 2.0 committee specification.
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpelv2.0-CS01.pdf, January 2007

[Ober10] Oberhauser, R.: Leveraging semantic web computing for context-aware software
engineering environments. Semantic Web. In-Tech, Vienna, Austria, pp. 157-179,
2010.

[ObSc07] Oberhauser, R., Schmidt, R.: Towards a holistic integration of software lifecycle
processes using the semantic web. Proc 2nd Int'l Conf on Software and Data
Technologies, pp. 137-144, 2007.

[OEGQ07] Olague, H.M., Etzkorn, L.H., Gholston, S., Quattlebaum, S.: Empirical validation of
three software metrics suites to predict fault-proneness of object-oriented classes
developed using highly iterative or agile software development processes. IEEE
Transactions on Software Engineering, pp. 402-419, 2007.

[OfJe97] Offen, R.J., Jeffery, R.: Establishing software measurement programs. IEEE Software,
14(2): 45-53, 1997.

[OHA91] Oman, P., Hagemeister, J., Ash, D.: A definition and taxonomy for software
maintainability. Technical Report, Software Engineering Test Laboratory, University
of Idaho, 1991.

Bibliography

296

[OMG08] Object Management Group: Software & systems process engineering meta-model
specification 2.0, 2008.

[OMG11a] OMG: Business Process Modeling Notation (BPMN) Version 2. 2011.
[OMG11b] OMG: Unified modeling language (UML) Version 2.4. 2011.
[OSGI15] OSGi-Alliance: OSGi-The dynamic module system for java. http://www.osgi.org.

Visited: December 2015.
[OYS04] Ohira, M., Yokomori, R., Sakai, M., Matsumoto, K., Inoue, K., Torii, K.: Empirical

project monitor: a tool for mining multiple project data. Proc Int'l Workshop on
Mining Software Repositories, 2004.

[PaLa06] Paradauskas, B., Laurikaitis, A.: Business knowledge extraction from legacy
information systems. Information Technology and Control, 35(3): 214-221, 2006.

[Part10] Partsch, H.A.: Requirements Engineering systematisch. Springer, 2010.
[Pato99] Paton, N.W.: Active rules in database systems. Springer Verlag, 1999.
[PDA08] Pedrinaci, C., Domingue, J., Alves de Medeiros, A.: A core ontology for business

process analysis. In: The Semantic Web: Research and Applications, pp. 49-64, 2008.
[PDB+08] Pedrinaci, C., Domingue, J., Brelage, C., Van Lessen, T., Karastoyanova, D.,

Leymann, F.: Semantic business process management: Scaling up the management of
business processes. Proc IEEE Int'l Conf on Semantic Computing, pp. 546-553, 2008.

[Pesi08] Pesic, M.: Constraint-based workflow management systems: shifting control to users.
Technische Universiteit Eindhoven, 2008.

[Peter81] Peterson, J.L.: Petri net theory and the modeling of systems. Prentice Hall PTR, 1981.
[Pevd06] Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business

processes management. Proc Business Process Management Workshops, pp. 169-180,
2006.

[PMR14] Pryss, R., Musiol, S., Reichert, M.: Integrating mobile tasks with business processes: a
self-healing approach. In: Handbook of Research on Architectural Trends in Service-
Driven Computing, pp. 103–135, 2014.

[PNL02] Pease, A., Niles, I., Li, J.: The suggested upper merged ontology: a large ontology for
the semantic web and its applications. Proc AAAI Workshop on Ontologies and the
Semantic Web, 28, 2002.

[PrSe06] Prud, E., Seaborne, A.: SPARQL query language for RDF. W3C WD 4, 2006.
[PSA07] Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for loosely-

structured processes. Proc 11th IEEE Int'l Enterprise Distributed Object Computing
Conf, pp. 287-298, 2007.

[PSSA07] Pesic, M., Schonenberg, M., Sidorova, N., van der Aalst, W.M.P.: Constraint-based
workflow models: change made easy. Proc 15th Int'l Conf on Cooperative Information
Systems, pp. 77-94, 2007.

[PTR+10] Pietschmann, S., Tietz, V., Reimann, J., Liebing, C., Pohle, M., Meißner, K.: A
metamodel for context-aware component-based mashup applications. Proc 12th Int'l
Conf on Information Integration and Web-based Applications & Services, pp. 413-
420, 2010.

[PVPB12] Portillo-Rodríguez, J., Vizcaíno, A., Piattini, M., Beecham, S.: Tools used in global
software engineering: a systematic mapping review. Information and Software
Technology, 54(7): 663-685, 2012.

[PWZ+11] Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative
versus declarative process modeling languages: an empirical investigation. Proc 2nd
Int'l Workshop on Empirical Research in Business Process Management, pp. 383-394,
2011.

[RAH06] Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Exception handling patterns
in process-aware information systems. Proc 23rd Int'l Conf on Advanced Information
Systems Engineering, pp. 288-302, 2006.

Bibliography

297

[RaTi99] Ramesh, B., Tiwana, A.: Supporting collaborative process knowledge management in
new product development teams. Decision Support Systems, 27(1-2): 213-235, 1999.

[RBH07] Ralyté, J., Brinkkemper, S., Henderson-Sellers, B.: Situational method engineering:
fundamentals and experiences. Springer, 2007.

[RBTK05] Rausch, A., Bartelt, C., Ternité, T., Kuhrmann, M.: The V-Modell XT applied–model-
driven and document-centric development. Proc 3rd World Congress for Software
Quality, pp. 131-138, 2005.

[RCBM10] Richardson, I., Casey, V., Burton, J., McCaffery, F.: Global software engineering: a
software process approach. Proc Collaborative Software Engineering, pp. 35-56, 2010.

[RDB03] Reichert, M., Dadam, P., Bauer, T.: Dealing with forward and backward jumps in
workflow management systems. Software and Systems Modeling, 2(1): 37-58, 2003.

[RDR+09] Reichert, M., Dadam, P., Rinderle-Ma, S., Jurisch, M., Kreher, U., Göser, K.:
Architecural principles and components of adaptive process management technology.
LNI P-151. pp. 81-97, 2009.

[RDRL09] Reichert, M., Dadam, P., Rinderle-Ma, S., Lanz, A., Pryss, R., Predeschly, M., Kolb,
J., Ly, L.T., Jurisch, M., Kreher, U.: Enabling poka-yoke workflows with the
aristaflow BPM suite. Proc Int'l Conf. on Business Process Management
Demonstration Track, 2009.

[ReDa09] Reichert, M., Dadam, P.: Enabling adaptive process-aware information systems with
ADEPT2. Handbook of Research on Business Process Modeling, pp. 173-203, 2009.

[ReDa98] Reichert, M., Dadam, P.: ADEPTflex—supporting dynamic changes of workflows
without losing control. J of Intelligent Information Systems, 10(2): 93-129, 1998.

[Reic00] Reichert, M.: Dynamische Ablaufänderungen in Workflow-Management-Systemen.
PhD Thesis, University of Ulm, 2000.

[ReMe08] Reijers, H., Mendling, J.: Modularity in process models: review and effects. Proc Int'l
Conf on Business Process Management, pp. 20-35, 2008.

[ReRi06] Reichert, M., Rinderle, S.: On design principles for realizing adaptive service flows
with BPEL. Proc Workshop Methoden, Konzepte und Technologien für die
Entwicklung von dienstbasierten Informationssystemen, pp. 133–146, 2006.

[ReRo98] Reisig, W., Rozenberg, G.: Lectures on Petri nets I: Basic models. Springer Berlin
Heidelberg, 1998.

[ReWe12] Reichert, M., Weber, B.: Enabling flexibility in process-aware information systems –
challenges, methods, technologies. Springer, 2012.

[ReWe13] Reichert, M., Weber, B.: Process change patterns: recent research, use cases, research
directions. Seminal Contributions to Information Systems Engineering. Springer, pp.
397-404, 2013.

[RHB15] Reichert, M., Hallerbach, A., Bauer, T.: Lifecycle management of business process
variants. Handbook on Business Process Management 1. Springer, pp. 251-278, 2015.

[RHD98] Reichert, M., Hensinger, C., Dadam, P.: Supporting adaptive workflows in advanced
application environments. Proc EDBT Workshop on Workflow Management Systems,
pp. 100-109, 1998.

[RHEA04a] Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow
resource patterns. Technical Report, Eindhoven Univ. of Technology, 2004.

[RHEA04b] Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow data
patterns. Proc 24th Int'l Conf on Conceptual Modeling, pp. 353–368, 2004.

[RHM06] Russell, N., ter Hofstede, A.H.M., Mulyar, N.: Workflow controlflow patterns: a
revised view. Technical Report, BPM Center, 2006.

[RiJa00] Rising, L., Janoff, N.S.: The Scrum software development process for small teams.
IEEE Software, 17(4): 26-32, 2000.

Bibliography

298

[RKL+05] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A.,
Feier, C., Bussler, C., Fensel, D.: Web service modeling ontology. Applied Ontology,
1(1): 77-106, 2005.

[RLS07] La Rosa, M., Lux, J., Seidel, S., Dumas, M., ter Hofstede, A.H.M.: Questionnaire-
driven configuration of reference process models. Proc 19th Int'l Conf on Advanced
Information Systems Engineering, pp. 424-438, 2007.

[RoAa05] Rosemann, M., van der Aalst, W.M.P.: A configurable reference modelling language.
Information Systems, 32(1): 1-23, 2005.

[Royc70] Royce, W.W.: Managing the development of large software systems. Proc IEEE
WESCON, pp. 1-9, 1970.

[RRD03] Reichert, M., Rinderle, S., Dadam, P.: Adept workflow management system. Proc
Business Process Management. Springer, pp. 370-379, 2003.

[RRD09] Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information
systems. Transactions on Petri Nets and Other Models of Concurrency II, pp. 115-135,
2009.

[RRKD05] Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management with
ADEPT2. Proc 21st Int'l Conf on Data Engineering, pp. 1113-1114, 2005.

[RSS09] Reinhartz-Berger, I., Soffer, P., Sturm, A.: Organisational reference models:
supporting an adequate design of local business processes. Int. J. Business Process
Integration and Management, 4(2): 134–149, 2009.

[RSS10] Reinhartz-Berger, I., Soffer, P., Sturm, A.: Extending the adaptability of reference
models. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 40(5): 1045–
1056, 2010.

[Rudo08] Rudolph, G.: Some guidelines for deciding whether to use a rules engine.
http://herzberg.ca.sandia.gov/guidelines.shtml, 2008. Visited: December 2015

[RWZ10] Robillard, M., Walker, R., Zimmermann, T.: Recommendation systems for software
engineering. IEEE Software, 27(4): 80-86, 2010.

[SBBK08] Schaffert, S., Bry, F., Baumeister, J., Kiesel, M.: Semantic wikis. IEEE Software,
25(4): 8-11, 2008.

[ScBe01] Schwaber, K., Beedle, M.: Agile software development with Scrum, Vol. 18. Prentice
Hall, 2001.

[Sche01] Scheer, A.-W.: ARIS-Modellierungsmethoden, Metamodelle, Anwendungen.
Springer, 2001.

[Schw97] Schwaber, K.: Scrum development process. In: Business Object Design and
Implementation. Springer, pp. 117-134, 1997.

[ScJe06] Schlesinger, F., Jekutsch, S.: ElectroCodeoGram: An environment for studying
programming. TeamEthno-online, 2, pp. 30-31, 2006.

[Scot02] Scott, K.: The unified process explained. Addison-Wesley Professional, 2002.
[SGWB12] Schneider, K., Gartner, S., Wehrmaker, T., Brugge, B.: Recommendations as learning:

from discrepancies to software improvement. Proc 3rd Int'l Workshop on
Recommendation Systems for Software Engineering, pp. 31-32, 2012.

[Shet97] Sheth, A.: From contemporary workflow process automation to adaptive and dynamic
work activity coordination and collaboration. Siggroup Bulletin, 18(3): 24-27, 1997.

[SHK98] Slaughter, S.A., Harter, D.E., Krishnan, M.S.: Evaluating the cost of software quality.
Communications of the ACM, 41(8): 67-73, 1998.

[SHT06] Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature diagrams: a survey and a formal
semantics. Requirements Engineering, pp. 136–145, 2006.

[SiLu12] Silva, E.A.N.d., Lucrédio, D.: Software engineering for the cloud: a research roadmap.
Proc 26th Brazilian Symposium on Software Engineering, pp. 71-80, 2012.

[Simo96] Simon, H.A.: The sciences of the artificial. MIT press, 1996.

Bibliography

299

[SMH08] Shearer, R., Motik, B., Horrocks, I.: Hermit: A highly-efficient owl reasoner. Proc 5th
Intl Workshop on OWL: Experiences and Directions, pp. 26-27, 2008.

[SMO00] Sadiq, S., Marjanovic, O., Orlowska, M.: Managing change and time in dynamic
workflow processes. Int. J Coop Inf Systems 9(1&2): 93–116, 2000.

[Sodh91] Sodhi, J.: Software engineering: methods, management, and CASE tools. McGraw-
Hill, 1991.

[SPG+07] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
reasoner. Web Semantics: Science, Services and Agents on the World Wide Web,
5(2): 51-53, 2007.

[Spin05] Spinellis, D.: Tool writing: a forgotten art? (software tools). IEEE Software, 22(4): 9-
11, 2005.

[SQTR07] de Souza, C.R., Quirk, S., Trainer, E., Redmiles, D.F.: Supporting collaborative
software development through the visualization of socio-technical dependencies. Proc
2007 Int'l ACM Conf on Supporting Group Work, pp. 147-156, 2007.

[SSO01] Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of flexibility in workflow specification.
Proc Conceptual Modeling, pp. 513-526, 2001.

[SST05] Seyyedi, M., Shams, F., Teshnehlab, M.: A new method for measuring software
processes within software capability maturity model based on the fuzzy multi-agent
measurements. Proc World Academy Of Science, Engineering and Technology Vol. 4,
pp. 257-262, 2005.

[Stan11] Stanierowski, M.: Evaluierung des kollaborativen Lifecycle-Managements mit der
IBM Jazz-Plattform, Vol. 1. epubli, 2011.

[STDC10] Storey, M.-A., Treude, C., van Deursen, A., Cheng, L.-T.: The impact of social media
on software engineering practices and tools. Proc FSE/SDP Workshop on Future of
Software Eengineering Research, pp. 359-364, 2010.

[STS05] Seyyedi, M.A., Teshnehlab, M., Shams, F.: Measuring software processes
performance based on the fuzzy multi agent measurements. Proc Intl Conf on
Information Technology: Coding and Computing - Volume II, pp. 410-415, 2005.

[STT06] Soini, J., Tenhunen, V., Tukiainen, M.: Current practices of measuring quality in
Finnish software engineering industry. Software Process Improvement, pp. 100-110,
2006.

[SUPE09] European Project SUPER - Semantics utilised for process management within and
between enterprises. http://cordis.europa.eu/ist/kct/super_synopsis.htm /, 2009.
Visited: December 2015

[SWGF10] Šmite, D., Wohlin, C., Gorschek, T., Feldt, R.: Empirical evidence in global software
engineering: a systematic review. Empirical Software Engineering, 15(1): 91-118,
2010.

[TaNo86] Takeuchi, H., Nonaka, I.: The new new product development game. Harvard Business
Review, 64(1): 137-146, 1986.

[TFB00] Teigland, R., Fey, C.F., Birkinshaw, J.: Knowledge dissemination in global R&D
operations: an empirical study of multinationals in the high technology electronics
industry. Management International Review, pp. 49-77, 2000.

[ThFe06a] Thomas, O., Fellmann, M.: Semantic event-driven process chains. Proc Workshop on
Semantics for Business Process Management, 2006.

[ThFe06b] Thomas, O., Fellmann, M.: Semantische Ereignisgesteuerte Prozessketten. Integration,
Informationslogistik und Architektur: DW2006, pp. 205-224, 2006.

[TsHo06] Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description.
Automated Reasoning, LNCS 4130, pp. 292-297, 2006.

[UKMZ98] Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. The
Knowledge Engineering Review, 13(1): 31-89, 1998.

[UsGr96] Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications.
Knowledge engineering review, 11(2), pp. 93-136, 1996.

Bibliography

300

[vBCR02] van Solingen, R., Basili, V., Caldiera, G., Rombach, H.D.: Goal question metric (gqm)
approach. Encyclopedia of Software Engineering, pp. 578-583, 2002.

[VBG12] Valetto, G., Blincoe, K., Goggins, S.P.: Actionable identification of emergent teams in
software development virtual organizations. Proc 3rd Int'l Workshop on
Recommendation Systems for Software Engineering, pp. 11-15, 2012.

[vdAa04] van der Aalst, W.M.P.: Business process management: a personal view. Business
Process Management J, 10(2): 248-253, 2004.

[vdAa11] van der Aalst, W.M.P.: Process mining: discovery, conformance and enhancement of
business processes. Springer, 2011.

[vdAa98] van der Aalst, W.M.P.: The application of petri nets to workflow management. J of
Circuits, Systems, and Computers, 8(1): 21-66, 1998.

[vdBa02] van der Aalst, W.M.P., Basten, T.: Inheritance of workflows: an approach to tackling
problems related to change. Theoretical Computer Science, 270(1-2): 125-203, 2002.

[vdHe09] van den Heuvel, W.-J.: Aligning modern business processes and legacy systems: a
component-based perspective. The MIT Press, 2009.

[VdS03] Villela, K., de Oliveira, K.M., Santos, G., Rocha, A.R., Travassos, G.H.: Cordis-FBC:
an enterprise-oriented software development environment. Proc Wissensmanagement,
pp. 91-96, 2003.

[vdtH05] van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow language.
Information Systems, 30(4): 245-275, 2005.

[vdvH02] van der Aalst, W.M.P., van Hee, K.M.: Workflow management: models, methods, and
systems. The MIT press, 2004.

[vdWe04] van der Aalst, W.M.P., Weijters, A.J.M.M.: Process mining: a research agenda,
Computers in Industry, 53(3): 231-244, 2004.

[Visa94] Visaggio, G.: Process improvement through data reuse. IEEE Software, 11(4): 76-85,
1994.

[vtKB03] van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases, 14(1): 5-51, 2003.

[vtW03] van der Aalst, W., ter Hofstede, A., Weske, M.: Business process management: a
survey. Business Process Management, LNCS 2678, pp. 1019-1031, 2003.

[VVK08] Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Proc 6th Int'l
Conf on Business Process Management, pp. 100-115, 2008.

[VVK09] Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data &
Knowledge Engineering, 68(9): 793-818, 2009.

[vWM04] van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining:
discovering process models from event logs. IEEE Transactions on Knowledge and
Data Engineering, 16(9): 1128-1142, 2004.

[Wall07] Wallmüller, E.: SPI-Software Process Improvement mit CMMI und ISO 15504.
Hanser Verlag, 2007.

[Wass90] Wasserman, A.: Tool integration in software engineering environments. Software
Engineering Environments, pp. 137-149, 1990.

[WBB04] Wainer, J., Bezerra, F., Barthelmess, P.: Tucupi: A flexible workflow system based on
overridable constraints. Proc 2004 ACM Symposium on Applied Computing, pp. 498-
502, 2004.

[WEB+09] Weber, S., Emrich, A., Broschart, J., Ras, E., Ünalan, Ö.: Supporting software
development teams with a semantic process-and artifactoriented collaboration
environment. Proc Software Engineering (Workshops), pp. 243-254, 2009.

[Wesk00] Weske, M.: Workflow management systems: Formal foundation, conceptual design,
implementation aspects. Habil Thesis, University of Munster, 2000.

[Wesk01] Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. Proc Hawaii Int’l Conf on System Sciences, 2001.

Bibliography

301

[WMF+07] Wetzstein, B., Ma, Z., Filipowska, A., Kaczmarek, M., Bhiri, S., Losada, S., Lopez-
Cobo, J.M., Cicurel, L.: Semantic business process management: A lifecycle based
requirements analysis. Proc Workshop on Semantic Business Process and Product
Lifecycle Management, pp. 1613-1673, 2007.

[WPZW10] Weber, B., Pinggera, J., Zugal, S., Wild, W.: Alaska simulator toolset for conducting
controlled experiments on process flexibility. Proc CAiSE'10 Forum, LNBIP 72, pp.
205-221, 2011.

[WRMR11] Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process model
repositories. Computers in Industry, 62(5): 467-486, 2011.

[WRR08] Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features-enhancing flexibility in process-aware information systems. Data &
Knowledge Engineering, 66(3): 438-466, 2008.

[WRW05] Weber, B., Rinderle, S., Wild, W., Reichert, M.: CCBR–driven business process
evolution. Proc Int'l Conf on Cased based Reasoning, pp. 610-624, 2005.

[WRWR09] Weber, B., Reichert, M., Wild, W., Rinderle-Ma, S.: Providing integrated life cycle
support in process-aware information systems. Int'l J of Cooperative Information
Systems, 18(1): 115-165, 2009.

[WSR09] Weber, B., Sadiq, S., Reichert, M.: Beyond rigidity–dynamic process lifecycle
support. Computer Science-Research and Development, 23(2): 47-65, 2009.

[WTA+08] Weber, S., Thomas, L., Armbrust, O., Ras, E., Rech, J., Uenalan, Ö., Wessner, M.,
Linnenfelser, M., Decker, B.: A software organization platform (SOP). Proc 10th
Workshop on Learning Software Organizations, Rome, Italy, 2008.

[WWB04] Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling adaptive workflow management
through conversational case-based reasoning. Proc European Conf on Case-Based
Reasoning, pp. 89-101, 2004.

[WWW04a] World Wide Web Consortium, OWL web ontology language semantics and abstract
syntax, 2004.

[WWW04b] World Wide Web Consortium, Resource description framework (RDF) Concepts and
Abstract Syntax, 2004

[WWW04c] World Wide Web Consortium, 2004. SWRL: A semantic web rule language
combining OWL and RuleML. W3C Member Submission

[WZP+14] Weber, B., Zeitelhofer, S., Pinggera, J., Torres, V., Reichert, M.: How advanced
change patterns impact the process of process modeling. Proc BPMDS 14, pp. 17-32,
2014.

[Yau11] Yau, S.S., An, H.G.: Software engineering meets services and cloud computing. IEEE
Computer, 44(10): 47-53, 2011.

[YaWe06] Yang, Q., Li, J.J., Weiss, D.: A survey of coverage based testing tools. Proc Intl.
Workshop on Automation of Software Testing, pp. 99-103, 2006.

[Your03] Yourdon, E.: Death march. Prentice Hall PTR, 2004.
[ZaLe03] Zamli, K.Z., Lee, P.A.: Modeling and enacting software processes using VRPML.

Proc 10th Asia-Pacific Software Engineering Conf, pp. 243-252, 2003.
[ZCL05] Zhao, X., Chan, K., Li, M.: Applying agent technology to software process modeling

and process-centered software engineering environment. Proc ACM Symposium on
Applied Computing, pp. 1529-1533, 2005.

[ZdR02] Zlot, F., de Oliveira, K.M., Rocha, A.R.: Modeling task knowledge to support
software development. Proc 14th Int'l Conf on Software Engineering and Knowledge
Engineering, pp. 35-42, 2002.

[ZIK05] Zamli, K.Z., Isa, N.A.M., Khamis, N.: The design and implementation of the VRPML
support environments. Malaysian J of Computer Science, 18(1): 57-69, 2005

[ZPW11a] Zugal, S., Pinggera, J., Weber, B.: Creating declarative process models using test
driven modeling suite. Proc CAiSE Forum, pp. 1-8, 2011.

Bibliography

302

[ZPW11b] Zugal, S., Pinggera, J., Weber, B.: The impact of testcases on the maintainability of
declarative process models. Proc Int'l Working Conf on Enterprise, Business-Process
and Information Systems Modeling, LNBIP 81, pp. 163-177, 2011.

[ZPW12] Zugal, S., Pinggera, J., Weber, B.: Toward enhanced life-cycle support for declarative
processes. J of Software: Evolution and Process, 24(3): 285-302, 2012.

[ZSH+15] Zugal, S., Soffer, P., Haisjackl, C., Pinggera, J., Reichert, M., Weber, B.: Investigating
expressiveness and understandability of hierarchy in declarative business process
models. Software & Systems Modeling, 14(3): 1081-1103, 2015.

[zuRe08] zur Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical
use of the business process modeling notation. Proc Int'l Conf on Advanced
Information Systems Engineering, pp. 465-479, 2008.

Acronyms

303

Acronyms
ALM Application Lifecycle Management
API Application Programming Interface
BPMN Business Process Modeling Notation
CASE Computer-Aided Software Engineering
CEP Complex Event Processing
CPM Context-aware Process Management
ECA Event Condition Action
GI Guidance Item
GKPI Goal Key Performance Indicator
GQM Goal Question Metric
GUI Graphical User Interface
IDE Integrated Development Environment
IS Information System
KPI Key Performance Indicator
MDA Model-Driven Architecture
MDE Modell-Driven Engineering
MVC Model-View-Controller
OWL Web Ontology Language
PAIS Process-Aware Information System
PCSEE Process-Centered Software Engineering Environment
SEE Software Engineering Environment
QKPI Question Key Performance Indicator
SME Small and Medium-sized Enterprise
SPEM Software & Systems Process Engineering Metamodel specification
SQA Software Quality Assurance
WfMS Workflow Management System

Part V

Appendices

A Ontology

307

A. Ontology

The ontology has been modeled and accessed only using the Protégé ontology editor. In the following,
we will be present a small set of exemplary concepts of the ontology as modeled in OWL XML. Some
of the properties have been renamed due to the fact that names in an OWL ontology are unique and
one such property as e.g. ‘workUnitContTempl’ should not be used to connect a work unit container
template to a project template and to a work unit template but rather two distinct properties are
required here, in this case, ‘workUnitContTempl’, and ‘containingWUCT’.

A.1. Imperative Process Concepts
This section presents the discussed concepts for the imperative processes.

A.1.1. Template Concepts
This section presents the template concepts. First, Figure A-1 gives an overview of them (barely
readable and just as visual overview) directly from the Protégé ontology editor. After that, for an
exemplary concept, the XML definition from the ontology is shown (cf. Listing A-1). Keep in mind
that the properties of the concepts are not directly part of the concepts. However, the restrictions on a
selection of properties can be seen.

A Ontology

308

Figure A-1: Imperative template concepts in ontology

A Ontology

309

Listing A-1 (Work unit template)

 <owl:Class rdf:ID="WorkUnitTemplate">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="workflowUserInfo"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="assignActTempl"/>
 </owl:onProperty>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:ID="repeatable"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:ID="omittable"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Class rdf:about="TemplateConcepts"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="extensionPointTemplSet"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:ID="actTempl"/>
 </owl:onProperty>
 <owl:cardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="containingWUCT"/>

A Ontology

310

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="primRoleTempl"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

A.1.2. Individual Concepts
This section presents an excerpt of the individual concepts discussed (cf. Listing A-2), preceded by a
(barely readable) visual overview of the concepts and their connections in Figure A-2.

A Ontology

311

Figure A-2: Imperative individual concepts in ontology

A Ontology

312

Listing A-2 (Work unit)

 <owl:Class rdf:about="WorkUnit">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="assignAct"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="basisWUT"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="WUfutureExec"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:ID="singleExec"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:ID="actInst"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:ID="finalized"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="WUprimRole"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>

A Ontology

313

 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="WUpastExec"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="workUnitCont"/>
 </owl:onProperty>
 <owl:cardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:ID="WUstate"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Class rdf:about="IndividualConcepts"/>
 </rdfs:subClassOf>
 </owl:Class>

A.2. Declarative Process Concepts
This section presents an excerpt of the concepts related to the declarative modeling approach from
Chapter 8 (cf. Listing A-3 and Listing A-4) preceded again by a visual overview in Figure A-3. The
building block template shows only one restriction because the cardinality restrictions on properties
‘info’ and ‘problem’ are realized in its super concept, the declarative modeling element. The
declarative container template, in turn, is a sub concept of the declarative modeling element and the
work unit container template.

A Ontology

314

Figure A-3: Declarative concepts in ontology

A Ontology

315

Listing A-3 (Building block template)

 <owl:Class rdf:about="BuildingBlockTemplate">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="containedIn"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="DeclarativeModelingElement"/>
 </owl:Class>

Listing A-4 (Declarative container template)

 <owl:Class rdf:about="#DeclarativeContainerTemplate">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#DeclarativeModelingElement"/>
 <owl:Class rdf:about="#WorkUnitContainerTemplate"/>
 </owl:intersectionOf>
 </owl:Class>
 <owl:Restriction>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#containedBBset"/>
 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 <rdfs:subClassOf rdf:resource="WorkUnitContainerTemplate"/>
 <rdfs:subClassOf rdf:resource="DeclarativeModelingElement"/>
 </owl:Class>

B Conceptual Framework

317

B. Conceptual Framework

In this appendix, we discuss the concepts of the CPM framework and provide exemplary formal
definitions. The appendix is separated into different sections to improve readability. First, different
concepts for entities are shown followed by concepts for consistency checks and algorithms.

B.1. Entity Concepts
In this section, concepts for various CPM entities are discussed. For the sake of brevity we only show
a selection of interesting concepts.

B.1.1. Basic Concepts
This section deals with the basic concepts of the CPM framework. We only show a selection of the
definitions of these concepts. However, for completeness, Table B-1 gives an overview about all of
these basic concepts. Extensions for topics like quality management are not included here.

Table B-1: Basic concepts overview
Concept Description Concept Description
Identifiers All valid identifiers over a given

alphabet. All concepts have a name
ε Identifiers

Types All definable object types. All
concepts have a distinct type ε Types

TemplateConcepts All template concepts in the
framework used for defining
workflow structures.

IndividualConcepts All individual concepts in the
framework used for individual
enactments of processes defined by
the template concepts.

WFTemplates All workflow templates within a
WfMS.

WFInstances All workflow instances within a WfMS.

ActivityTemplates All activities within workflow
templates in a WfMS.

ActivityInstances All activities within workflow instances
in a WfMS.

AreaTempls All area templates. A set of area
templates can be used to define
abstract categories (or disciplines)
for projects like, e.g.,
‘Implementation’ or ‘Testing’.

Areas All definable areas used to categorize
activities and artifacts in concrete
projects as applied in many
processes (e.g., the disciplines of the
OpenUP process).

ProjectTempls All project definitions within the
framework, which have (among
other properties) a defined type and
a defined process (that is defined
by work unit container template).
The process depends on the type of
project. Project templates also have
defined area templates.

Projects All concrete projects in the
framework.

WorkUnitContTempls All definable work unit container
templates.

WorkUnitConts All definable work unit containers.

WorkUnitTempls All definable work unit templates. WorkUnits All definable work units.

WorkUnitContTemplDeps All definable work unit container
template dependencies.

WorkUnitContDeps All definable work unit container
dependencies.

WorkUnitTemplDeps All definable work unit template
dependencies.

WorkUnitDeps All definable work unit dependencies.

B Conceptual Framework

318

MilestoneTempls All definable Milestone Templates,
which can be used to define
abstract milestones of a process
and are attached to a certain work
unit template.

Milestones All definable work milestones used to
model the milestones of a concrete
project and store information about
their achievement.

AssignTempls All definable assignment templates. Assigns All definable assignments.

AssignActTempls All definable assignment activity
templates.

AssignActs All definable assignment activities.

AtomicTaskTempls All definable atomic task templates. AtomicTasks All definable atomic tasks.

ToolTempls All definable tool templates, which
can be used to define tools types as
e.g., IDE within the framework.

Tools All definable tools used to capture
concrete tools used in concrete
projects.

ProjCompTempls All definable project component
templates, which are used to model
a hierarchy of artifacts within the
framework.

ProjComps All definable project components
capturing the structure of concrete
artifact instances used in projects.

ArtifactTempls All definable artifact templates,
which are sub-concepts to the
project component templates for
defining the artifacts within the
hierarchy.

Artifacts All definable artifacts, which are sub-
concepts to the project components
for capturing the artifacts within the
hierarchy.

SectionTempls All definable section templates,
which are sub-concepts to the
project component templates for
defining the structure of the
hierarchy.

Sections All definable sections, which are sub-
concepts to the project components
for structuring the hierarchy.

RoleTempls All definable role templates, which
can be used to define roles as e.g.,
'Quality Manager' within the
framework.

Roles All definable roles used to concretely
connect humans with their tasks,
responsibilities, or artifacts.

EventTempls All definable event templates, which
can be used to pre-define certain
events within the framework,
including a relation to the tool that
triggered them, as e.g., the check-in
of a certain source code artifact
with a source control framework.

Events All definable events used to capture
concrete events and their data
occurring in projects.

ProblemTemplates All definable problem templates that
can be used to pre-define certain
problems that might occur relating
to certain events, e.g., the fact that
the complexity of a source code
artifact becomes too high due to
code changes by different humans.

Problems All definable problems capturing
concrete problems and their data
occurring in projects.

ExtensionPointTempls All definable extension point
templates.

ExtensionPoints All definable extension points.

ExtensionTempls All definable extension templates. Extensions All definable extensions.

WorkUserInfos All definable workflow user
information.

WorkflowVars All definable workflow variables.

DecAlternatives All definable decision alternatives. Resources All human resources within the
framework comprising humans and
teams of humans. Teams consist of
one or more humans and have a
leader which is also a human.

VarValues All definable workflow variable
values.

Persons All humans within the framework.

VarTempls All definable workflow variable
templates.

 Teams All human teams within the
framework.

 SkillLevels All definable skill levels humans can
possess.

Two properties shared by all concepts are type and name. The former denotes the type of concept, like
work unit container, whereas the latter is a unique identifier for each concept. As both are common for
all concepts, they are not further mentioned in the definitions.

B Conceptual Framework

319

Work Unit Dependency

As discussed in Chapter 7, we have added a new dependency between different workflows to the one
already existent in WfMS. The template concept for this new dependency is defined in Definition B.1:

Definition B.1 (Work Unit Template Dependency)
A work unit template dependency is a tuple workUnitTemplDep = (type, name, source, target, async,
behavior) where

- source WorkUnitTempls is the source depending on target.
- target WorkUnitTempls is the target the source depends on
- async BOOLEAN indicates whether the dependency is asynchronous or synchronous.
- behavior {firstShot, lastShot} indicates when the dependency is satisfied.

WorkUnitTemplDeps describes the set of all definable work unit template dependencies.

The work unit template dependency connects a work unit template (source) with a work unit template
(target). When a work unit, which is based on the source template, comes to enactment, the work unit
container containing the source work unit will be created (if it is not already in place). If the async
property is set to FALSE, the termination of the source will depend on the termination of the target.
As the target is a work unit in that case, it might be executed more than once in a LOOP. Therefore,
the behavior property governs whether the source terminates with the first or last termination of the
target.

Both dependencies have a related stateful individual concept capturing one individual enactment of the
workflows defined by the templates. The work unit dependency (cf. Definition B.2) allows for storing
the information whether its target has been executed using the property finalized. As the target is a
work unit it might have multiple iterations. Therefore, this dependency has two properties, one
indicating that the target has been executed (executed), the other indicating that the final execution of
the target has happened (finalized).

Definition B.2 (Work Unit Dependency)
A work unit dependency is a tuple workUnitDep = (type, name, source, target, async, behavior,
executed, finalized, basis) where

- source WorkUnits is the source depending on target.
- target WorkUnits is the target of the dependency the source depends on
- async BOOLEAN indicates whether the dependency is asynchronous or synchronous.
- behavior {firstShot, lastShot} indicates when the dependency is satisfied
- executed BOOLEAN indicates if the target has been executed at least once
- finalized BOOLEAN indicates if the target has been executed for the last time
- basis WorkUnitTemplDeps is the template that workUnitDep is based on

WorkUnitDeps describes the set of all definable work unit dependencies.

Human Activity Management

The human activity concepts (assignment, assignment activity, atomic task) require a particular set of
runtime properties; therefore, we have added individual concepts for them. In the following we show
Definition B.3 for the assignment.

Definition B.3 (Assignment)
An assignment is a tuple assign = (type, name, responsible, assignActSet, workUnitCont, basis, state,
guidanceSet, plannedStart, plannedEnd, actualStart, actualEnd, area, contentInfo) where

- responsible Resources is the resource that is responsible for assign.
- assignActSet is a finite set of human activities with assignAct AssignActs that are crucial to

complete the assignment.
- workUnitCont WorkUnitConts is the work unit container assign is attributed to.
- basis AssignTempls is the assignment template assign is based on.

B Conceptual Framework

320

- state {Inactive, Active, Finished} is the state of assign.
- guidanceSet is a finite set of guidances(cf. Chapter 12) used to support assig.
- plannedStart DATETIME is the planned start time for assign.
- plannedEnd DATETIME is the planned end time for assign.
- actualStart DATETIME NULL is the actual start time for assign or undefined.
- actualEnd DATETIME NULL is the actual end time for assign or undefined.
- area Areas defines the concrete area assign is attributed to.
- contentInfo STRING contains information for the human on assign.

Assigns describes the set of all definable assignments.

In order to keep track of its planned and actual execution, the assignment has four properties storing its
planned and actual start and end times. In addition, it contains information on the assignment useful
for the human processing it (contentInfo) and relations to guidances (cf. Chapter 12) for further
support. Finally, it has a finite set of states whose transitions are depicted in Figure B-1.

Inactive Active Finished

Work Unit
Container
Creation

Assignment Activity
Start, Switch to

Assignment
Work Unit
Container
Finished

Switch to other
Assignment

State

Final
State

State
Transition

Figure B-1: Assignment states

When a work unit container is created, its related assignment is created with state ‘Inactive’ as well. It
then enters state ‘Active’ when one of its assignment activities is started by the human. If he switches
to another assignment, it becomes inactive again until he switches back to it. The assignment enters its
final state ‘Finished’ when its work unit container is finished. The assignment activities that are part of
the assignment have similar properties as well as a finite set of states. The transitions between the
states are depicted in Figure B-2.

Created Inactive Active Finished

Work Unit
Start

Assignment Activity
Start, Switch to

Assignment
User Finishes
Assignment

Activity

Switch to other
Assignment

Assignment
Creation

State Final
State

State
Transition

Figure B-2: Assignment activity states

When an assignment is created, the related assignment activities get created, having state ‘Created’.
When the work unit related to the assignment activity starts, the activity is available for the human,
therefore it enters state ‘Inactive’. When the human starts processing it, it becomes ‘Active’. If he
switches to another assignment it becomes ‘Inactive’ again until he switches back. When he finally
completes it, it enters final state ‘Finished’.

The assignment activity is the planned human activity with the finest granularity in the CPM
framework. However, it has connections to the more fine-grained activities, the atomic tasks. As
opposed to the other activity concepts, the atomic task has no properties for planned times, but an
actual start and end. However, atomic tasks are fine-grained and our experiences in real projects have
shown that while processing an activity, a human frequently switches between the different tasks.
Therefore, not only the absolute start and end times are recorded, but the overall duration

B Conceptual Framework

321

(taskDuration) as well. The atomic task also has a set of states whose transitions are depicted in Figure
B-3.

Inactive Active

Finished

Assignment
Activity
Creation

Detect Atomic Task,
Select Atomic Task

Assignment
Activity
Finish

Detect Other Task,
Select Other Task

Assignment
Activity
Finish

State

Final
State

State
Transition

Figure B-3: Atomic task states

When an assignment activity is created, the corresponding atomic tasks (as defined by the template
concepts) are also created and enter state ‘Inactive’. A task enters state ‘Active’ when the CPM
framework detects its enactment or the human explicitly selects it. It becomes inactive again when
another task is selected in the same way. From both states, there is a transition to final state ‘Finished’
in case the human finishes the corresponding assignment activity.

Artifact Management

Artifacts being part of the SE process as well as their mutual connections cannot be modeled properly
within a WfMS using the data elements being part of the workflows. To add facilities to model artifact
structures, we consider the concept of the project component template (cf. Definition B.4).

Definition B.4 (Project Component Template)
A project component template is a tuple projCompTempl = (type, name, reference, subCompSet,
superCompSet, roleTemplSet, responsibleRoleTempl, reqCompTemplSet, stateSet,
relatedCompTemplSet, areaTempl, compTemplType) where

- reference STRING NULL is a reference to the template of a real artifact (e.g.,
Specification) or undefined.

- subCompTemplSet is a finite set of project component templates that are subordinate to
projCompTmpl with projCompTempl ProjCompTempls.

- superCompTemplSet is a finite set of project component templates with projCompTempl
ProjCompTempls that the projCompTempl is subordinate to.

- roleTemplSet is a finite set of role templates with roleTempl RoleTempls used to define one
or multiple human roles according to projCompTempl.

- responsibleRoleTempl RoleTempls defines the main role template according to
projCompTempl.

- reqCompTemplSet is a finite set of project component templates that projCompTempl requires
with reqCompTempl ProjCompTempls.

- stateSet is a finite set of STRINGS used to define the possible states for projCompTempl.
- relatedCompTemplSet is a finite set of project component templates that has a content-related

relation to projCompTempl with projCompTempl ProjCompTempls.
- areaTempl AreaTempls is the area template projCompTempl is associated to.
- compTemplType STRING is concretization of the type of projCompTempl.

The project component template is an abstract concept that generalizes more concrete sub concepts.
Therefore, ProjCompTempls is defined as follows:
ProjCompTempls ≔ ArtifactTempls SectionTempls. ArtifactTempls and SectionTempls are disjoint
subsets of ProjCompTempls that are defined by:

B Conceptual Framework

322

- artifactTempl ArtifactTempls is a project component template for which the following
applies:
artifactTempl.reference ≠ NULL ⋀ artifactTempl.subCompTemplSet = Ø.

- sectionTempl SectionTempls is a project component template for which the following
applies:
sectionTempl.subCompTemplSet ≠ Ø ⋀ sectionTempl.reference = NULL.

The project component template has a set of basic properties starting with a reference to the real entity
it models (reference). In addition, it enables the definition of a set of role templates (roleTemplSet) and
one role template responsible for the project component (responsibleRoleTempl). That way, a CPM
framework can determine which human to inform (e.g., when there is a problem with an artifact). It
further allows for content-related categorization by referring to an area template (areaTempl) and type
(compTemplType). The latter might be for example ‘PDF file’ or ‘Java artifact’. Based on this type,
the CPM framework can issue activities matching the project component (cf. Chapter 10). As opposed
to the other concepts, the project component template allows defining a set of states the project
components based on it may have during execution. This option has been introduced since many
different types of artifacts in projects with a myriad of different states exist. Note that these states are
not controlled by the CPM framework, but must be set by humans during enactment.

Another feature of the project component template is the possibility to add various relations to other
project component templates. Such relations can be used to model various dependencies of artifacts as
required by SE process models like the OpenUP [EcFo15]. On one hand, this enables a hierarchy of
project component templates with the properties subCompTemplSet and superCompTemplSet. On the
other, content-related connections can be established using the relatedCompTemplSet. Finally, the
property reqCompTemplSet allows one project component template to require the presence of others.

Dynamic Processes

The concepts for defining dynamic events and reactions to them are discussed in this section. The
most important concepts are, in this context, the extension point and the extension (cf. Chapter 7). For
both of these, we present the template concepts in Definition B.5.

Definition B.5 (Extension Point Template)
An extension point template models templates for extension points to the work unit in a project. It is
represented as a tuple extensionPointTempl = (type, name, extensionType, extensionSubType,
abstractionLevel, parallelInsertion) where

- extensionType ExtensionTempls marks the type of extension template applicable to
extensionPointTempl.

- extensionSubType STRING marks the sub-type of extension template applicable to
extensionPointTempl.

- abstractionLevel STRING is the level of abstraction of extension templates applicable to
this point.

- parallelInstertion BOOLEAN marks whether the extension template shall be inserted in
parallel to the work unit template the former is attached to or sequentially after it.

ExtensionPointTempls describes the set of all definable extension point templates.

The extension point template features content- and process-related information: the type of extension
can be specified using the two properties (extensionType, extensionSubType). Further, there is property
abstractionLevel, which defines the abstraction level of the workflow in the entire process (e.g.,
operational development workflow vs. a workflow representing a phase of the process) to distinguish
which extensions can be feasible. The extension point template corresponds to a marking of a change
to a potentially running workflow instance. As discussed in Chapter 7 we apply a simple insertion into
the workflow instance (i.e., Pattern AP1 from [WRR08]). For this pattern, three options for insertion
exist: serial insert, parallel insert and conditional insert. The third option is redundant, as the added
activity would be contemporarily inserted into the workflow instance matching the properties of the

B Conceptual Framework

323

situation. In such a case, no further condition is necessary. To distinguish between option one and two,
the property parallelInstertion is applied.

To classify the extensions made to the process, we further introduce the concept of the extension
template in (cf. Definition B.6).

Definition B.6 (Extension Template)
An extension template models templates for extensions to process enactment. It is represented as a
tuple extensionTempl = (type, name, assignmentTempl, extensionPointTemplSet, extensionSubType,
abstractionLevel, skillLevelSet) where

- assignmentTempl AssignTempls defines the concrete human assignment that marks the
content of the extension based on extensionTempl.

- extensionPointTemplSet is the set of extension point templates, to which extensionTempl is
applicable with extensionPointTempl ExtensionPointTempls.

- extensionSubType STRING marks the sub-type of extension applicable to
extensionPointTempl.

- abstractionLevel STRING is the level of abstraction for which extensionTempl is
applicable.

- skillLevelSet is a finite set of skill levels, one of which a human executing the extension shall
possess with skillLevel SikllLevels.

The extension template corresponds to an abstract concept that generalizes more concrete sub
concepts. Therefore, ExtensionTempls is defined as follows:
ExtensionTempls ≔ FollwowActTempls MeasureTempls ExcHandTempls. FollwowActTempls is
the set of all definable Follow-up Activity Templates (used for activity coordination and detailed in
Chapter 10), MeasureTempls is the set of all definable Quality Measure Templates (used for software
quality management and detailed in Chapter 9), and ExcHandTempls is the set of all definable
Exception Handling Templates (used for exception handling and detailed in Chapter 11). These three
are disjoint subsets of ExtensionTempls.

The extension template features, same as the extension point template, a sub-type (extensionSubType)
and abstraction level (abstractionLevel). Furthermore, it features a set of extension point templates for
which it is applicable (extensionPointTemplSet) and a relation to an assignment template
(assignmentTempl) that captures the human activity to be used to extend the process. In addition, it can
also be specified, what skill level the human executing the extension should have (skillLevelSet). For
more information on these properties and a detailed discussion of their application for integrating
software quality measures into the process, we refer to Chapter 9.

The extension of a process can become necessary in many cases. We have discussed different cases
for that in Chapter 4: task coordination (requirement R:Coord), process exception handling
(requirement R:Exc), and software quality management (requirement R:Qual). In alignment with these
cases and requirements, we have introduced three concrete sub-types of the abstract extension concept.
These have been discussed in detail in the Chapters 9, 10, and 11.

B.2. Consistency Checks
This section discusses the consistency checks and conditions we created for the CPM concepts. It is
split up regarding the different areas the CPM framework covers. These checks are extensible and do
not claim to be complete. They are a starting point influenced partly by sources from literature and
experiences from practical settings.

B.2.1. Basic Concepts
This section discusses consistency checks for the basic concepts applied for extending workflows.

B Conceptual Framework

324

Template and Individual Concepts

This check deals with the relation of template and individual concepts. Both concept sets share similar
properties and the former set is used to pre-define the relations between concepts of the latter one.
Therefore, individual concepts must not ignore these definitions. Figure B-4 illustrates a concrete case
prohibited with this check. In this case, atomic task template ‘Coding’ is connected to the tool
template ‘IDE’. However, a concrete individual has a connection to the static code analysis tool PMD
instead.

Coding
A

Coding

PMD

IDE Static
Analysis

Individual
Concept

Template
Concept

Property
Connection

Problem

basedOn

someProperty

someProperty

basedOn

Figure B-4: Consistency check: template properties

Work Unit Containers

For the work unit containers we apply consistency checks for various problems. Figure B-5 illustrates
cases where properties of work unit containers have been set erroneously. Case a) deals with a work
unit container without any work unit. In turn, case b) shows a work unit container requiring another
one not contained in the same project. Such a container is out of control of the current project and
hence does not contribute any results to it. Cases c) and d) concern work units that read or write
project components not read or written by its container. The CPM framework’s definition implies that
such components are exchanged with the container and distributed to its work units. Therefore, cases
c) and d) should be prevented. In case e), a work unit container is defined to have no workflow
instance but still has a connection to one. This collides with the definition of the ‘noWorkflow’
property and the workflow instance is redundant.

WU1

requires

WU1 WU1 WU1

PC1 PC2 PC3

WU1 WU1 WU1

PC1 PC2 PC3

WU1 WU1 WU1 A1 A2 A3

‚noWorkflow‘

Work Unit Work Unit Container / Workflow

Property Connection

Executed Problem

Project Project
Component

Activity

a) b) c)

d) e)

WUC1

WUC1

WUC1

WUC1

WUC1

WUC2

WUC2

P1 P2

Semantic Connection Link

Guidance

Input / Output

Figure B-5: Consistency check: work unit containers

B Conceptual Framework

325

Work Units

The definition of work units might contain certain erroneously set properties. Figure B-6 illustrates an
undesired case for it. It concerns the usage of the work unit: It should be connected to a human-centric
activity (assignment activity) or to a sub work unit container or work unit. If none of them is applied,
the work unit will terminate right after its activation and would thus be useless.

AA1

WU1 WU1 WU1

WUC1

WU1 WU1 WU1

WUC2

WWWWWWWWWW

a)

Work Unit

Work Unit
Container

Property
Connection

Problem

Guidance

Assignment
ActivityworkUnit

Dependency

Figure B-6: Consistency check: work units

Dependencies

The dependencies between work units and containers may imply erroneously specified properties
interfering with correct execution. Figure B-7 illustrates three undesired cases. Cases a) and b) show
different examples of circular dependencies with work unit dependencies (a) and work unit container
dependencies. Such cases might produce deadlocks and should thus be prevented. A special case for
the work unit dependency is shown in case c): If such a dependency is set to a work unit that is
omittable, the dependency will not be satisfied if the work unit is be omitted. Therefore, we also
prevent the setting of such dependency.

WU1 WU2

WUC1

WU1 WU2

WUC2

WU1 WU2

WUC3

WU1 WU2

WUC4

WU1 WU2

WUC1

WU1 WU2

WUC2

WU1 WU2

WUC3

WU1 WU2

WUC4

WU1 WU2

WUC1

WU1 WU2

WUC2

WUT2

a)

b) c)

omittableWork Unit Work Unit Template Property Connection ProblemDependency Work Unit Container

Figure B-7: Consistency check: dependencies

Variables

The variables used for governing the execution trace of the workflow instances are modeled in the
context management component. This includes our concept for abstraction of internal workflow logic
(cf. Chapter 7). The involved concepts might also imply erroneously set properties interfering with
correct execution. Figure B-8 illustrates various cases for that. The connection to the variables in the
WfMS can only be established if all variables are correctly mapped. Therefore, incorrect naming (case
a) or incomplete mapping (case b) should be prevented. As the CPM framework does not monitor the
correctness of all read and write operations on the variables and we have want to enable a standard
trace for each executed workflow instance, each work unit container template must supply initial
values for all variable templates (violated in case c). Similarly, each modeled human decision must
have at least one decision alternative, otherwise the human might not make the decision (violated in

B Conceptual Framework

326

case d). For each of these decisions, a standard alternative may be defined to unburden the human
from the decision. To prevent ambiguities, for each decision, there must be exactly one standard
alternative (violated in case e). The decision alternatives are modeled as abstraction of the workflow
variables. Therefore, each alternative must set at least one of the variables (violated in case f).
Otherwise, the alternative will have no effect at all.

A1 A3A2

Activity

Work Unit Container
Template

Work Unit
Template

Concept
Relation

A1 A2 A3

Workflow
Template

WUI1

UDA1 UDA2VV1

Var1

Workflow
Variable Value

Workflow Variable
Template

User Decision
Alternative

Workflow User
Information

Workflow
Variable

Problem

VarA

A1 A3A2 A1 A2 A3

Var1Var1 Var2

A1 A3A2

Var1 Var2

A1 A3A2

WUI2 WUI1

UDA1 UDA2

A1 A3A2

WUI2

UDA3 UDA4
STD=true STD=true STD=false STD=false

WUI1

UDA1 UDA2

A1 A3A2

VV1 VV2

a) b)

c) d) e)

f)

Figure B-8: Consistency check: variables

B.2.2. Extrinsic Workflows
This section discusses modeling conditions and checks for the concepts realizing extrinsic workflows
for SE issue processing.

Modeling Conditions

This section presents the modeling conditions enforcing properties on the building blocks that enable
the creation of block-structured workflows from them.

Condition C1: Each workflow shall not have multiple start or end points. This promotes simple and
understandable models as suggested in [MRv10]. Such a start or end point can by a single building
block template or multiple building block templates that are connected in parallel.
Condition C2: Each activity shall have at least one connection to other activities. This condition
ensures that workflows are buildable, as a workflow cannot be built from unconnected activities since
it cannot be determined when to execute this activity. The exception from this condition are containers
with only one contained activity. The latter shall have no connection to other activities as they are
outside the container.
Condition C3: No cyclic sequencing shall be specified, as this is error-prone: It might be impossible
to determine start and end point of a cyclic workflow. Furthermore, if a cycle were integrated in a
workflow, there will be no clear exit condition for that cycle making execution nondeterministic. If
activities are to be executed more than once, this shall be specified using the loop template.
Condition C4: The activity structure shall be simple. An activity shall have only one successor and
one predecessor. If multiple successors are needed, one can be defined as successor and the other shall
be specified as parallel to that successor. This limitation is introduced to support simplicity and
understandability of the models. Furthermore, the specification of multiple successors of an activity
without specifying how they should be executed (in parallel? conditional?) results in nondeterministic
models. However, complex workflow modeling is enabled in a defined way using the specialized
building block templates.
Condition C5: A building block template shall not be sequentially connected to another building
block template to which it is also connected in parallel. Such a connection is inconsistent, specifying
that it should be executed after (before) and parallel to the other building block template at the same
time.

B Conceptual Framework

327

Condition C6: The different specialized building block template concepts (sequence template,
parallel template, loop template, and conditional template) enable hierarchical specification of
declarative workflows. The constraints utilized to structure the building block templates (hasSuccessor
and hasParallel) shall be defined in a way that does not violate this hierarchical specification as this
would make the structure more complicated and may even introduce inconsistencies. This implies that
a building block template is not contained in two different other building block templates and that it
has no connections to other building block templates that are not contained in the same building block
template. Figure B-9 shows inconsistently specified examples. The inconsistent loop template shows a
constraint (between activity 3 and 4) that violates hierarchical specification. Generation of a block-
structured workflow is not possible, as the system would generate LOOP nodes around the activities 2
and 3, and activity 3 would have a connection with activity 4 that violates the block structure.

Activity BuildingBlocks Successor Constraint Parallel Constraint

653

Sequence
Parallel

Loop

51

Inconsistent Loop

2

4
3

Inconsistent Parallel

2 3

Inconsistent Sequence

4

Inconsistent Conditional

Conditional

Figure B-9: Inconsistent concept examples

Condition C7: A loop template shall only contain one building block template. This can be a simple
activity or any other building block template, enabling the looping of any structures. This constraint
prohibits inconsistent specification as shown with the inconsistent loop template in Figure B-9. That
specification lacks a connection between activity 2 and 3. Simple modeling is again supported by
defining that the loop template is for repetitive execution of a contained activity or a structure that is
represented by another building block template.
Condition C8: A parallel template shall contain at least two building blocks. This condition is
introduced to support simple and readable process models. A parallel template with only one
contained building block template does not endanger workflow correctness. However, it would add
unnecessary AND-splits and joins to the workflow.
Condition C9: A parallel template shall contain only building blocks that are connected in parallel.
This constraint again supports simple hierarchical modeling, prohibiting confusing and error-prone
structures as shown by the inconsistent parallel template shown in Figure B-9.
Condition C10: A sequence template shall contain at least two building blocks. This condition avoids
specification of unnecessary building block templates, since a sequence template containing only one
activity is similar to only specifying that contained activity without the sequence template.
Condition C11: A sequence template shall contain only sequentially connected building blocks. As
with Condition C9, this condition supports a clear definition of the building block templates. A
structure as shown by the inconsistent sequence template in Figure B-9 is thus prohibited as it also
contains the parallel activities 3 and 4. On the other hand, it also has no specified connection between
the parallel activities 3 and 4 and the sequential activities 5 and 6.
Condition C12: A sequence template shall contain a clear start and end point. This condition avoids
cyclic dependencies of the activities in the sequence template.
Condition C13: A conditional template shall only contain unconnected activities or building block
templates. This condition is applied because there will be only one or none of the contained building
block templates selected for execution, and connections between them would thus produce
inconsistencies.
Condition C14: A conditional template shall contain a minimal number of activities / building block
templates: If the conditional template is defined as optional, it must contain at least one activity, else it
would only add complexity to a workflow generating XOR-splits and joins with no contained
activities as shown in Figure B-9. If the conditional template is not defined as optional, it must contain

B Conceptual Framework

328

at least two activities since it would otherwise produce an inconsistent XOR pattern in the workflow
containing only one branch.

Besides the sequencing constraints that are always only checked locally for the container or current
building block template, there are also the existence constraints. These are in place for checking the
soundness of a subset of activities that has been chosen due to contextual properties and are checked
recursively for one container. However, to prevent modeling of containers that are inconsistent or
foster inconsistent activity subsets, two conditions regarding the existence constraints are added to the
build time checks:

Condition C15: One activity shall not both require and mutually exclude the same activity.
Condition C16: If an activity requires another activity, the latter must also be part of that container. If
this is not the case, every activity subset containing the first activity will necessarily be inconsistent.
An additional constraint for the mutual exclusion constraint is not needed, as it is possible to integrate
two mutually exclusive activities in the candidate set of one container. All activity subsets not
containing both of them will then be consistent.

In the following, we describe a mapping of these conditions to concrete checks applied on the different
concepts. These checks have been implemented as exemplarily shown in Chapter 13 for the sequence
template.

The conditions for the sequence template realize the following subset of the aforementioned modeling
conditions (cf. Figure B-10): hierarchically separated modeling (cf. C6) is checked (cf. case c). The
other checks deal with the conditions that directly apply to the sequence template: The correct number
of contained building block templates (cf. C10) is enforced (cf. case b) and the correct connections
between these (cf. C11) is governed (cf. case a). Finally, the presence of a single start and end point
within the sequence template (cf. case d and e) is enforced (cf. C12).

Activity BuildingBlocks Successor Constraint Parallel Constraint

653

Sequence

4

3

Sequence

65

Sequence

5
3

Sequence

6
4

1
3

Sequence

2
4

Problem

a)

e)d)

c)b)

Figure B-10: Consistency check: sequence template

Similar checks are applied for the parallel template (cf. Figure B-11). Again, hierarchically separated
modeling (cf. C6) is enforced (cf. case c). In addition, the correct connections between contained
building block templates (cf. C9), and their correct number (cf. C8) is also checked (cf. case a and b).

B Conceptual Framework

329

Activity

BuildingBlocks

Successor Constraint

Parallel ConstraintParallel

2 3

Parallel
2 3

4

Parallel

Problem

a) c)b)

Figure B-11: Consistency check: parallel template

The checks applied to the loop template also implement C6, enforcing hierarchically separated
modeling (cf. Figure B-12 case b). In addition the correct number of contained building block
templates (cf. C7) is also checked (cf. case a).

Activity

BuildingBlocks

Successor Constraint

Parallel ConstraintLoop

2

3

Loop

43 Problem

a) b)

Figure B-12: Consistency check: loop template

Regarding the conditional template, no separate check is required for implementing hierarchically
separated modeling. A conditional template shall only contain unconnected building block templates
(cf. C13 and Figure B-13 case b). The correct number of contained building block templates (cf. C14)
is also checked (cf. case a).

Activity

BuildingBlocks

Successor Constraint

Parallel Constraint

2

Conditional

Optional=false

Conditional

2 3 Problem
OOOO ttti

a) b)

Figure B-13: Consistency check: conditional template

Concerning the declarative container template, the presence of a single start or end point (cf. C1) is
checked (cf. Figure B-14 case a and b). As defined in C1, both start and end point may contain
multiple building block templates if they are connected in parallel. The presence of an unconnected
building block template within a declarative work unit container is prohibited as well. This will only
be permitted if the container contains exactly one building block template. In that case, the building
block template will have to be unconnected (cf. C2 and Figure B-14 case c). Another check prohibits
cyclic dependencies between contained building block templates (cf. C3 and case d). Furthermore, a
consistent container must only contain consistent building block templates (cf. case e). Two other
checks deal with the existence constraint. It is ensured that no building block template in a container
requires and excludes the same activity (cf. C15 and case f). Finally, no building block template in a
container shall require another building block template that is not part of the container or one of its
contained building block templates (cf. C16 and case g).

B Conceptual Framework

330

Activity Building Blocks

Successor Constraint Parallel Constraint

65

Container

4 3

Container

65

Container

Container

1 2

Container

1 2

Conditional

Container

Inconsistent Concept

Mutex Constraint Requires Constraint

Container

1 2 65

Container

Problem

a) + b) d)c)

f)e) g)

Figure B-14: Consistency check: declarative container template

B.2.3. Quality Management
This section discusses the realization of the agent structure utilized in Chapter 9 for automatic
software quality measure prioritizing. The agent structure must be capable of both realizing the
bidding process for the proactive measures and the voting process for the reactive measures. The
bidding process shall favor agents whose goals are not in a good state. If this is the case, an agent takes
place in the bidding process. If this applies for none of them, all can take place. If an agent wins one
round, it may place one of his proactive measures in the list from which, at a later time point, measures
for application will be selected. The voting process is different. Here, different agents vote on all
measures in the reactive measure list that are attributed to their goal. That way, measures supporting
multiple goals will have a higher probability to come to execution.

To be able to realize these two prioritizing processes, the agent structure is defined as depicted in
Figure B-15. The AGQM agent is responsible for managing the multi-agent system component. It
instantiates the other agents and determines whether a reactive or proactive measure will be proposed.
For each defined goal, a goal agent is instantiated. In the proactive section, the goal agents
communicate with the session agent to realize the bidding process. Thereby, the session agent takes
the role of the “buyer” and thus selects the proactive measure from the goal agent with the highest bid.
Each goal agent places bids according to its strategy. Initially, we have included three basic strategies.
The strategies ‘offensive’, ‘balanced’ and ‘defensive’ influence the starting bid of the agents as well as
win-or-lose adaptation based on the last bidding session. If insufficient points are left for the intended
bid, the agent bids all points it has left. If an agent has no points left, it cannot place bids anymore until
all agents have no points left, whereupon all points are reset to their initial value. Each agent has a list
of proactive measures it could offer. Goals known to be at risk due to GKPI deviation are elevated to
participation status in the bidding. If no report containing GKPI violations is received, all agents
participate.

B Conceptual Framework

331

Management

Proactive
Section

Reactive
Section

AGQM Agent

Vote AgentSession Agent

Goal Agents

Bids Votes

Figure B-15: Agent structure

The reactive section is realized by the vote agent. Each time a report is received, the vote agent creates
a weighted list of reactive measures using the report. To elicit the weight of each measure, the vote
agent communicates with the goal agents. For each measure, a goal agent evaluates whether that
measure is associated to its goal via the aforementioned connection of measures, metrics, KPIs, and
goals. In each voting process, a goal agent distributes all of its points (initially allocated at the
beginning of the iteration) uniformly to all measures in the current report that are associated to its goal.
If multiple agents vote on one measure, the points are aggregated. If no report has been received yet,
the voting process cannot be conducted. In that case, a proactive session is substituted. That way, the
multi-agent system component creates a new ordered list of measures that mirror the predefined
importance of the project’s quality goals.

B.3. Algorithms
This Chapter includes a set of additional algorithms not discussed in the main chapter of this work.

B.3.1. Basic Workflow Enactment
This section deals with algorithms needed for contextually extended workflow enactment as discussed
in Chapter 7.

Activity Marking

This section shows algorithms for marking omittable and repeatable activities.

Omittable Activities. Activities in a workflow can be omitted due to the XOR pattern. In that case,
there are points in the execution when it is clear that the execution of the respective activity will not
happen in this instance of the workflow. These points correspond to the execution of other activities
called terminator activities as described in Chapter 7. Algorithm B-1 is used to mark omittable
activities and establish connections between an omittable activity and its terminator activity.

Algorithm B-1: markOmittable (Pseudo Code for marking omittable activities)

Require: Decomposed Workflow list P {Blocks, Activities}, List targetBranch, List
activitiesToConnect
 1: for all elements in targetBranch do
 2: if not activitiesToConnect.empty()
 3: connectNodes(element, activitiesToConnect, ‘omittable’)
 4: end if
 5: if element blocks

B Conceptual Framework

332

 6: List childConnectActivities ← activitiesToConnect
 7: if element xors
 8: for all element.branches do
 9: if not branch.isEmpty()
10: List newTerminatorActivities ← Ø
11: getTerminatorActivities(P, branch, newTerminatorActivities, false, true)
12: markOmittable(P, branch, childConnectActivities newTerminatorActivities)
13: end if
14: end for
15: else
16: for all element.branches do
17: markOmittable(P, branch, childConnectActivities)
18: end for
19: end if
20: end if
21: end for

The algorithm is explained in the following and graphically illustrated in Example B-1. The algorithm
takes the decomposed workflow list discussed in Chapter 7 as input as well as a decomposed
workflow list representing the point in the workflow where this execution of the algorithm should
operate on. For the initial execution on a workflow, this will be the whole workflow. It also expects a
list of activities, whose execution triggers the deactivation of a particular activity that is empty at the
beginning (called terminator activities). The algorithm iterates through the workflow list and when
there are terminator activities (activitiesToConnect) it marks the current activities as omittable and
connects it bidirectionally with its terminator activities (Line 3) (cf. connectNodes() and the activities
1-5 in the example). This is needed for each activity when a workflow is executed later on. However,
the algorithm also adds the markings to the blocks. These markings will be used to facilitate the
making of activities that are inserted into the workflow when it is already running (cf. Algorithm B-2).
If the algorithm encounters a block, a new list is created (Line 5 and 6). This new list is used for new
terminator activities of the encountered block and other blocks within it. This is done since the lists are
passed as call-by-reference so that each level of the recursion has its own list that can also be used for
further levels of the recursion but does not change the lists of upper levels of the recursion. That way,
in Line 6 only the values in the list are copied (cf. e.g. in recursion Rec1 in the example). This is done
because activities can be deactivated by multiple other activities. Consider e.g., multiple nested XOR
patterns: An activity within an inner XOR pattern can be deactivated by activities of other branches of
each of that XOR patterns. If a XOR block is encountered, the next step is the determination of the
terminator activities for the current branch of that XOR pattern (Line 10 and 11) (cf. the initial call and
the Rec2 recursion in the example). This is done by the algorithm getTerminatorActivities already
described in Chapter 7. The algorithm is then called recursively for the current branch with the current
childConnectActivities list and the new terminator activities for the current branch (Line 12). The
same happens if another pattern as XOR is encountered (Line 16-20) (in that case without new
terminator activities).

Example B-1 (markOmittable Steps):
For this example, the workflow used for Example 7-15 in Chapter 7 has been slightly adapted to
contain two nested XORs to better demonstrate the XOR handling. Therefore, Figure B-16 and Figure
B-17 show the adapted workflow and the concrete steps executed, both indicating the different
recursion levels.

B Conceptual Framework

333

Activity

AND-Gate

XOR-Gate

Process
Start

Process
End

3 4

1

2

5

Rec1

Rec2.1

Rec2

Rec1.1

Rec1.2

InitCall

Rec2.2

Figure B-16: markOmittable workflow

Since no activities follow the XOR1 pattern, the termination of the whole workflow is taken as
terminator activity for all comprised activities. For activity 4, also the succeeding activity 5 is added.

InitCall
(Workflow L, targetBranch L,
List activitiesToConnect AT)

Rec1(L, L1, childConn+termActs)

Rec1.1(L, L1.1, childConn1)

Rec1.2(L, L1.2, childConn1)

Rec2(L, L2, childConn+termActs)

element = XOR1

Call Actions childConn

childConn = activitiesToConnect []

termActs = new List()

termActs

termActs = getTA(L,L1,termActs,false,true)

[]
[L]

[]
[]

element = AND1
[L]

childConn1 = activitiesToConnect

element = 1
connectNodes(1, L)

element = 2
connectNodes(2, L)

element = 3
connectNodes(3, L)

Rec2.1(L, L2.1, childConn2)

element = XOR2

element = 4

childConn2 = activitiesToConnect [L]
termActs = new List()
termActs = getTA(L,L2.1,termActs,false,true)

[]
[5]

[L]
[L]

connectNodes(4, [L, 5])

element = 5
connectNodes(5, L) ---

Rec2.2(L, L2.2, childConn2)

termActs = new List()
termActs = getTA(L,L2,termActs,false,true)

[]
[L]

[]
[]

termActs = new List()
termActs = getTA(L,L2.2,termActs,false,true)

[]
[5]

[L]
[L]

--- ---

Figure B-17: markOmittable steps

Repeatable Activities. Due to the LOOP pattern, activities specified in a process model can be
repeatable and can occur more than once in its execution. Therefore, they have to be marked so that
the context management component is aware of this fact an can create new instances of the relating
concepts when an activity is repeated. When activities are repeatable it may also be of interest to know
when another execution of these can no more happen for a given workflow instance. This is a
somehow similar case to the omittable activities and the XOR pattern: At certain points in the
execution, it is clear that the respective looped activity will not be executed another time. This point is

B Conceptual Framework

334

the execution of the first activity after the LOOP. In the case of multiple nested LOOP patterns this
applies to the outer LOOP pattern. Due to the similarity to the markOmittable Algorithm we refrain
from separately discussing the markRepeatable algorithm.

Adaptation Markings. As discussed in Chapter 7, newly inserted activities are analyzed and marked
by a separate algorithm instead of re-running all initial marking algorithms. This involves different
cases. First, there are different markings: the ‘repeatable’ marking, the ‘omittable’ marking, the list of
activities an activity terminates, and the list of activities that are terminated by the activity. The first
three markings apply for all activities of one branch while the last one, indicating an activity as a
terminator activity, only applies for the first activity in a branch or the first activity in a branch after a
XOR or LOOP pattern. Different situations require that the algorithm adopts the marking in different
ways. These situations are explained in the following and illustrated in Figure B-18, starting with the
generic case and showing the more specific cases afterwards (where this is a refinement, i.e., the
generic cases also apply to the more specific cases):

1. Inserted into a list, not as first element (i.e., the list represents the workflow instance or a
branch of a pattern): In this case, only the markings (repeatable, omittable, and the connection
to the terminator activities) have to be adopted from any other activity in the branch. It is
assumed that in this case, the list in which the activity has been inserted cannot have been
empty before because it can only be the entire workflow instance, a branch of an AND pattern,
or a LOOP pattern. None of these would make sense without any contained activities.

2. Inserted as first element into a list (representing the workflow instance or a branch of a
pattern): Being the first element in the list, the insert activity can be the terminator activity for
other activities. As it is assumed (as in case 1) that the list was not empty before, the
connections to activities that are terminated by the current activity can be acquired from the
former first activity in the list, which is now the second activity. This activity might also be a
pattern containing multiple activities. However, for this algorithm this does not matter as the
marking that have been previously applied to the workflow lists treat patterns (blocks) from
the outside like simple activities and apply the same markings to them.

3. Inserted into a list after a LOOP pattern in the same branch (i.e., the list represents the
workflow instance or a branch of a pattern): The activities in the LOOP pattern are repeatable
and need terminator activities to indicate that they will not be repeated again. Therefore, the
LOOP and all containing activities have to get the inserted activity be added as a terminator
activity. Taking a naive approach, one might assume simply taking the markings from the
successor of the inserted activity suffices. However, it is possible that it is not a successor in
the workflow instance.

4. Inserted into a list after a XOR pattern in the same branch (i.e., the list represents the
workflow instance or a branch of a pattern): In principle, this is the same case as the previous
one. However, XOR patterns have one special property: If they have an empty branch it is
possible that no activity of the XOR pattern comes to execution. This, in turn, implies that the
newly inserted activity must also be added to the activities of a XOR or LOOP pattern directly
before the XOR pattern that is the predecessor of the inserted activity.

5. Inserted into a list that represents the empty branch of a XOR pattern: In this case, no activity
is in place in the list to adopt the markings from. Therefore, the markings can be adopted from
an activity in another branch and mutual terminator activity markings have to be established
between the branches.

B Conceptual Framework

335

41 2 3 5

43 51

1 2 3

2 31

2

1

3

Markings(s)
can be

used for...
Activity XOR-

Gate
Process

Start
Process

End

Terminator
Activity

for...
repeatable

Case 1

Case 2

Case 3

Case 4

Case 5

Inserted
Activity

Figure B-18: Marking cases for inserted activities

In the following, Algorithm B-2 is presented that applies the markings for a newly inserted activity:

Algorithm B-2: markInsertedActivity (Pseudo Code for marking newly inserted activities)

Require: List targetBranch, Activity target, Block surroundingPattern
 1: if not targetBranch.size == 1
 2: Element element ← targetBranch.getPreviousElement(target)
 3: if element == NULL
 4: element ← targetBranch.getNextEelement(target)
 6: end if
 7: adoptMarkings(target, element)
 8: end if
 9: if targetBranch.firstElement == target
10: if not targetBranch.size == 1
11: connectTerminatorActivity(target,targetBranch.getNextElement(target))
12: end if

B Conceptual Framework

336

13: if surroundingPattern == XOR and targetBranch.size == 1
14: Boolean outerMarkings ← false
15: for all surroundingPattern.branches do
16: if not branch == targetBranch
17: if not outerMarkings
18: adoptMarkings(target, branch.getFirstActivity)
19: outerMarkings ← true
20: end if
21: target.omittableTerminators.add(branch.getFirstActivity)
22: branch.getFirstActivity.terminatesActivity.add(target)
23: for all branch.activities do
24: activity.omittableTerminators.add(target)
25: target.terminatesActivity.add(activity)
26: end for
27: end if
28: end for
29: end if
30: else
31: Element prevEl = targetBranch.getPreviousElement(target)
32: while not prevEl == null
33: if prevEl == (LOOP or XOR)
34: addAsTerminatorActivity(prevEl , target)
35: if prevEl == XOR and containsEmptyBranch(prevEl)
36: prevEl ← targetBranch.getPreviousElement(prevEl)
37: else
38: prevEl ← NULL
39: end if
40: else
41: prevEl ← NULL
42: end if
43: end while
44: end if

Algorithm B-2 takes as input a newly inserted activity, its branch, and the pattern surrounding that
branch. First, the algorithm deals with case 1, which is the simplest case: In Line 1-8 it inherits the
markings (repeatable, omittable, and potential terminator activities) from another activity in the same
branch. This is only done if the new activity is not the only one in the branch, which might be the case
if the surrounding pattern is a XOR pattern. Case 2 is dealt with in Lines 9 - 12: if the new activity is
the first in the target branch, the list of activities it terminates is taken from the former first activity in
the branch that is now the second one. The next case processed involves insertion within the empty
branch of a XOR pattern (case 5). In this case, all markings are adopted from the first activity of
another branch (Lines 13-20). This is done to establish connections to the other activities that are
outside of the XOR pattern because the first activity of each branch of a XOR pattern has equivalent
relations to activities that are outside of the XOR pattern. The mutual marking of the activities of the
different branches in the XOR pattern are then applied in Lines 21-26: First, the first activity of each
branch is added to the terminator activities of the newly inserted one. The latter is then added to the
terminator activities of all activities in the other branches in the XOR. The final part of the algorithm
(Lines 30-44) deals with cases 3 and 4. It takes the predecessor of the inserted activity and, if it is a
LOOP or XOR, it adds the new activity to its terminator activities. In case of an XOR, this action is
repeated. The function used to add the terminator activity (in this case addAsTerminatorActivity()) also
applies the marking recursively to all activities contained in the LOOP / XOR.

Computational Complexity of the Algorithms

To conclude this section regarding algorithms, we will elaborate briefly on their computational
complexity. For most of them, however, this is not a critical issue as they are applied during build
time. Furthermore, their complexity depends on the elements in the modeled workflows and the

B Conceptual Framework

337

number of these elements is recommended to be kept rather small for various reasons. For example,
[MRv10] recommends to keep the number of nodes in a workflow below 50. Our practical experiences
show that it is very uncommon that a huge number of workflows or workflows with a huge number of
elements are created in a modeling session. Also, only one of the algorithms (markInsertedActivity) is
to be executed during runtime and this might impact operational performance. Therefore, we have put
emphasis on a low complexity for this algorithm. In Table B-2 the complexity of the different
algorithms is shown.

Table B-2: Complexity of the Algorithms
Algorithm Complexity
decomposeWorkflow O(#nodes in workflow)
markOmittable O(#elements in list x #XORs.branches)
markRepeatable O(#elements in list x #LOOPS)
getTerminatorActivities O(#elements in list x #element.branches)
markInsertedActivity O(#surroundingPattern.branches x #branch.activities +#preceding LOOPS or XORS)

The algorithm ‘decomposeWorkflow’ directly depends on the number of nodes in the analyzed
workflow. The other three build time algorithms depend on the number of elements in the output list
of the first workflow, as well as on the number of branches of the workflow patterns. However, as the
build time algorithms are executed in a row or respectively call each other, an overall computational
complexity for analyzing one modeled workflow can be expressed as follows:

O(#nodes + (#elements in list x #XORs.branches) x (#elements in list x #element.branches) +
(#elements in list x #XORs.branches) x (#elements in list x #element.branches))
= O(#nodes + (#elements in list)² x #XORs.branches x #element.branches + (#elements in list)² x
#LOOPS x #element.branches)
= O(#nodes + (#XORs.branches + #LOOP) x (#elements in list)² x #element.branches)

Having the properties of the workflows just discussed in mind, this complexity seems quite adequate
and should not hamper modeling. Nevertheless, we have managed to realize ‘markInsertedActivity’
with a much smaller complexity, as it is to be executed during runtime for every activity inserted into
a potentially running workflow instance. For brevity, we omit a separate discussion of the algorithms
for extrinsic workflow generation as they operate on similar structures. Furthermore, extrinsic
workflows are mostly smaller than intrinsic ones as they are enacted.

B.3.2. Extrinsic Workflow Generation
This section presents algorithms related to the generation of workflows from the declarative
specification we have introduced in Chapter 8.

The algorithm BBtreatment() is utilized to convert building blocks into parts of an executable
workflow. The conversion is abstracted (from the creation of context and process management
concepts) using simple functions as, e.g., insertNode() for the insertion of one activity into a
workflow.

Algorithm B-3: BBtreatment
(Pseudo Code for inserting building blocks into workflow)

Require: Building Block BB, Work Unit Container skeleton, Arc marker
Return: String errorCode
 1: String errorCode ← empty String
 2: if BB Activities
 3: insertNode(BB, skeleton, marker)
 4: else if BB Sequences
 5: errorCode ← sequenceTreatment(BB, skeleton, marker)

B Conceptual Framework

338

 6: else if BB Parallels
 7: errorCode ← parallelTreatment(BB, skeleton, marker)
 8: else if BB Loops
 9: errorCode ← loopTreatment(BB, skeleton, marker)
10: else if BB Conditionals
11: errorCode ← conditionalTreatment(BB, skeleton, marker)
12: end if
13: return errorCode

The algorithm expects a building block as well as the workflow skeleton to be extended including a
position marker as input. If that building block is a simple activity, it is inserted into the workflow. If it
is of another type, the insertion is handled by specialized algorithms. One of these,
parallelTreatment() is exemplarily discussed in Algorithm B-4.

Algorithm B-4: parallelTreatment
(Pseudo Code for inserting a parallel into a workflow)

Require: Building Block BB, Work Unit Container skeleton, Arc marker
Return: String errorCode
 1: String errorCode ← empty String
 2: if BB.parallelBBset is empty
 3: return “emptyParallel”
 4: else if BB.parallelBBset.size < 2
 5: errorCode ← BBtreatment(parBB, skeleton, marker)
 6: else
 7: AndSplit split ← insertParSplit(marker, skeleton)
 8: List branches ← new List()
 9: for all BB.parallelBBset do
10: insertBranch(split, marker)
11: errorCode ← BBtreatment(parBB, skeleton, marker)
12: branches.add(marker)
13: end for
14: insertParJoin (marker, split, skeleton, branches)
15: end if
16: return errorCode

parallelTreatment inserts no pattern if no building block is contained in the parallel. If it contains only
one building block, no pattern is needed either but only the building block is inserted. If multiple
building blocks are contained, each is added in a separate branch of an AND pattern.

For brevity, we will refrain from discussing the computational complexity also for the extrinsic
workflow generation. As stated in Chapter 8, the modeled workflows can contain many activities.
However, for the workflow generation algorithms, the number of activities that are really in place for a
specific situation is important. Usually, this is a rather small subset of the modeled activities.

C Basic Actions for Process Enactment

339

C. Basic Actions for Process Enactment

This appendix discusses concrete actions to be performed in order to enact processes with the CPM
framework.

Create Project

When a project and its process realized by a structure of workflows have been created with the
template concepts, that structure can be used for concrete project executions. Therefore, a concrete
project including its process must be created in the CPM framework. The action for this is shown in
the following. Note that we assume that a project only has one defined process. This is an abstraction
that may not hold for all projects, however, multiple processes for one project can be added with low
effort within the CPM framework.

This action is applied to create a new project with its associated work unit container.
Preconditions: -
Input: project template ∧ roles, project components, and tools required by the assigned work unit
container template.
Actions:

 Create project concept.
 Create contained areas as defined in template
 Apply: Create Work Unit Container

Output: project with work unit container in state ‘Created’.

The ‘Create Project’ action implies the creation of its associated process that is captured by one basic
work unit container (and its potential sub work unit containers). The latter is created by the following
action ‘Create work unit container.

Create Work Unit Container

This action is applied to create a new work unit container from a work unit container template. As
opposed to WfMS where workflow instances are directly started from their templates, the containers
in the CPM framework are created without starting them (or the relating WfMS workflow instances).
Thus, a workflow structure for the complete process of a project can be created without having to start
each of the future workflow instances.
Preconditions: -
Input: work unit container template ∧ values for roles, project components, and tools
Actions:

 Create work units as defined in template and assign to work unit container.
 Create assignment as defined in template and assign to work unit container.
 Create assignment activities as defined in template and assign to assignment.
 Create atomic tasks as defined in template and assign to assignment activities.
 Assign concrete tools to atomic tasks as defined in template.
 Set process variables as defined in the template.
 Assign concrete humans for the container roles.
 Assign concrete inputs/outputs for container (including structure of project components as

defined in super/subCompsSet properties).

C Basic Actions for Process Enactment

340

 Assign main human with main role also to the assignment. Distribute the humans filling the
roles of the container to the work units. Add responsible party of each work unit to the relating
assignment activity.

 For all defined dependencies defined by the template for work units, apply the action ‘Create
work unit container’ to create the containers (and work units) that are the targets of the
dependencies and then connect them via the ‘Add work unit to work unit dependency’ and
‘Add work unit to container dependency’ actions.

Output: work unit container in state ‘Created’.

After a concrete work unit container has been created, it remains in the state created and also does not
automatically initiate the start of its relating workflow instance. This has the advantage that for a
project, its whole process can be prepared with a workflow structure without having to start one or
more of the involved work unit containers or workflow instances. When all concepts and information
is in place, a work unit container can be explicitly started including the creation / start of its relating
workflow instance. To start a project, its top-level container thus has to be started. The action to
execute such a start is shown in the following.

Start Work Unit Container

This action is applied to start a work unit container.
Preconditions: work unit container must be in status ‘Created’.
Input: work unit container
Actions:

 Instantiate a new workflow instance from a workflow template that is connected to the
template of the current work unit container.

 Connect the workflow instance and the work unit container.
 Set work unit container status to ‘Started’.

Output: work unit container in state ‘Started’.

When a container and its associated workflow instance is running, its progress is governed by the
work units that are the mappings of the activities in the workflow instance. With these, connections to
sub containers or human tasks (assignment activities) are managed as discussed in Chapter 7. Thus a
sound management of their states and especially their termination is crucial as the workflow instance
can only continue when one or more active work units terminate. Therefore, the action for checking if
a work unit may terminate is explicitly defined in the following.

Check Work Unit Termination

This action is applied to check if a work unit can terminate.
Preconditions: work unit must be in state ‘Started’.
Input: work unit
Actions:

 Check if associated assignment activity is finished.
 Check if required guidance has been used, i.e. guidance in ‘guidanceSet’ (of related

assignment activities or project components or, if it is the final work unit of the assignment,
also the assignment) are satisfied.

 Check dependencies of work unit are satisfied, i.e. if they are ‘finalized’ (or, in case of a work
unit dependency with ‘oneShot’ behavior ‘executed’).

Output: work unit in state ‘Started or ‘Finished’.

As discussed in this chapter, the CPM concept applies multiple instances of the concepts relating to a
looped activity in the WfMS. That means, if a WfMS activity is executed repeatedly due to a loop, the
relating work unit and related concepts are already finished. So a new work unit instance has to be
created, supplied with the values for markings and human activities from the prior work unit instance,

C Basic Actions for Process Enactment

341

and has to be linked with the latter as well as with other containers and work units the prior work unit
instance had dependency connections to. This is managed explicitly by the following action.

Create new Work Unit Instance

This action is applied to create a new instance of a work unit if the relating workflow activity is
executed multiple times in a loop.
Preconditions: work unit must be in state ‘Finished’ and relating WfMS activity comes to execution
again.
Input: work unit
Actions:

 Create new work unit and relating activity concepts and adopt values from the prior work unit.
 If the work unit is defined for single execution by the singleExec property only create the

work unit without any other concepts and start it. That way, the new instance will terminate
immediately like a ‘blind activity’ that will have no effect on the container and be invisible to
the human.

 Check if work unit has a dependency. If yes, create the same dependencies for the new work
unit. If the target container (or the container containing the target work unit) has a planned
successor iteration (via the futureExec property), take that container as the target and link it
with the new work unit. If there is no future iteration, create a new container with the values in
place and link it with the new work unit.

 Check for a dependency who had the prior work unit instance as a target. If there are one or
more of these having the lastShot behavior, link the dependency to the new work unit
instance.

 Start the work unit.
Output: new work unit in state ‘Started’.

As discussed many times in this work, SE process enactment is rather dynamic and thus changes to the
workflow structure of a project might often be necessary. For example, a new workflow instance /
work unit container may have to be added due to a changed or new customer requirement that needs to
be realized. Such a new container has to be integrated into the workflow structure by adding new
dependencies between that new container and a container that is part of the workflow structure.
Therefore, in the following, concrete actions for adding such dependencies are shown starting with the
dependency of a work unit to another container.

Add Work Unit to Container Dependency

This action is applied to create a new dependency between a source work unit and a target work unit
container.
Preconditions: Source work unit and target work unit container must be in state ‘Created’ or ‘Started’.
Input: source work unit ∧ target work unit container
Actions:

 Create dependency.
Output: newly connected work unit and container as illustrated in Figure C-1.

A1 A3A2

A

B1 B3B2

B

A1 A3A2

A

B1 B3B2

B

Figure C-1: Add work unit to container dependency

C Basic Actions for Process Enactment

342

The addition of a dependency from a work unit to another work unit in another container is also
possible as shown in the following.

Add Work Unit to Work Unit Dependency
This action is applied to create a new dependency between a source work unit and a target work unit.
Preconditions: source and target work units in state ‘Created’ or ‘Started’.
Input: source work unit ∧ target work unit ∧ definition of behavior of new dependency
Actions:

 Create dependency.
Output: newly connected work units as illustrated in Figure C-2.

A1 A3A2

A

B1 B3B2

B

A1 A3A2

A

B1 B3B2

B

Figure C-2: Add work unit to work unit dependency

Changes to the workflow structure of a project may not only imply adding new requirements and
additional workflow instances. It is also possible that, for example, a requirement can be canceled
because its realization turns out to be unfeasible or too expensive. In such a case one or more
containers might have to be excluded from the workflow structure. This implies removing
dependencies between containers and / or work units. The actions for this are shown in the following
starting with the removing of a dependency to a container.

Remove Container Dependency

This action is applied to remove mutual dependencies between work units in a source work unit
container and a target work unit container.
Preconditions: source and target in state ‘Created’ or ‘Started’.
Input: source work unit container ∧ target work unit container
Actions:

 For all dependencies of work units in the source container to work units in the target container
where the source and target work units are in state ‘created’ or ‘running’, apply: Remove
work unit dependency.

Output: -.

Same as for a container, a work unit can also have a dependency to another work unit that also might
need to be removed. The relating action is shown in the following.

Remove Work Unit Dependency

This action is applied to remove a dependency between a source work unit and a target work unit or a
container.
Preconditions: source and target in state ‘Created’ or ‘Started’.
Input: source work unit ∧ (target work unit container ∨ target work unit)
Actions:

 Delete dependency
 For the source work unit apply: Check Work Unit Termination.

Output: -.

C Basic Actions for Process Enactment

343

Another frequent change we have perceived in the projects of our industry partners is the moving of an
activity / requirement / workflow instance from one point in the process to another. This happens in
iterative development, when an activity is to be executed within one iteration but cannot be finished
therein. Iteration deadlines are mostly firm and thus the activity (and its workflow instance) is
transferred to another iteration. To facilitate this, the following action shows the moving of
dependencies.

Move Work Unit Dependency

This action is applied to move a dependency between an old source work unit and a target work unit or
a container to a new source work unit.
Preconditions: old and new source and target in state ‘Created’ or ‘Started’.
Input: old source work unit ∧ new source work unit ∧ (target work unit container ∨ target work unit)
Actions:

 If target is a work unit apply for new source and target: Add Work Unit to Work Unit
Dependency, else apply Add Work Unit to Container Dependency.

 If target is a work unit apply for old source and target: Remove Work Unit Dependency, else
apply Remove Container Dependency.

Output: newly connected concepts as illustrated in Figure C-3 (upper half for container dependency
and lower half for work unit dependency).

A1 A3A2

A

B1 B3B2

B

C1 C3C2

C

A1 A3A2

A

B1 B3B2

B

A1 A3A2

A

B1 B3B2

B

C1 C3C2

C

A1 A3A2

A

B1 B3B2

B

Figure C-3: Move work unit dependency

One thing that also happens frequently in projects is the situation that activities must be handed over
from one human to another. The cause for this might be for example the unavailability of one human
or that an activity has been assigned to a whole team and the team leader then passes it on to a
concrete human best suitable for the activity. For such cases, we have applied two different actions for
distributing human activities. The first one, shown in the following, deals with the distribution of one
concrete assignment activity from one human to another.

Distribute Activity

This action is applied to change the executing human of an assignment activity.
Preconditions: assignment activity must be in status ‘Created’, ‘Active’, or ‘Inactive’.
Input: assignment activity ∧ human
Actions:

 Remove executing human.
 Set new human as executor.

Output: assignment activity with new executor.

C Basic Actions for Process Enactment

344

Another specific case is the distribution of a more complex activity, an assignment, from one human to
another. In this case, the assignment might already be started and all comprised assignment activities
must still be transferred to the new executor as shown in the following.

Distribute Assignment

This action is applied to change the executing human of an assignment and all of his related
assignment activities belonging to that assignment.
Preconditions: assignment in state ‘Active’ or ‘Inactive’.
Input: assignment ∧ old executor ∧ new executor
Actions:

 Remove executing human of assignment.
 Set new executor as executor of assignment.
 For all assignment activities having the old executor and that are in state ‘created’ or ‘running’

apply Distribute activity with the new executor.
Output: assignment with new executor.

