

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften, Informatik und Psychologie

Rule-based Monitoring Framework for Business
Process Compliance

Ping Gong, David Knuplesch,
 and Manfred Reichert

Ulmer Informatik-Berichte
Nr. 2016-03

März 2016

Rule-based Monitoring Framework for Business
Process Compliance

Ping Gong1?, David Knuplesch2, and Manfred Reichert2

1 Department of Computer Science
Fujian Normal University

Fuzhou 350007, P. R. China
tnfair@126.com

2 Institute of Databases and Information Systems,
Ulm University, Germany

{david.knuplesch,manfred.reichert}@uni-ulm.de

Abstract. Business processes compliance monitoring can be viewed as the task
of detecting and reacting to the compliance of running business processes with
compliance rules, which are the semantic constraints originated from norms,
standards, and laws, etc. Normally, compliance rules not only refer to normal
process perspectives, like control flow, data flow, and time, but also perspec-
tives of data aggregation as well as their mixtures. Such characteristics as well
as potentially high number of concurrently running process instances, post chal-
lenges for processes compliance monitoring from the aspects of specification and
monitoring efficiency. In this work, we address these challenges by proposing a
compliance monitoring framework (bpCMon), which includes an event-based
compliance language (ECL) and event reaction system (ERS). More specifi-
cally, ECL is a formal language enabling specifying compliance rules of multi-
perspective. ERS is a powerful rule-based system enriched with events indexing
structure, and fully supports the monitoring for compliance rules in ECL. Ex-
periments on a real life datasets indicate the applicability of bpCMon; and the
comparisons with three related works over benchmarks demonstrate the effi-
ciency of bpCMon.

Keywords: Business process compliance monitoring, runtime verification

1 Introduction

Business process compliance (BPC) essentially means that business processes are ex-
ecuted in conformance with prescribed and agreed sets of compliance rules [1]. BPC
can be ensured and verified at different phases of process life cycle, e.g., a priori at
design time or a posteriori based on logs of completed processes. However, in realistic
setting, the deviation of actual running from the process definition and the potential
implicitness of process definition, highlight the necessary of compliance monitoring for
BPC.

Compliance monitoring is the task of detecting and reacting to the compliance vi-
olations of running business processes based on the monitoring mechanism, which is
generated from prescribed compliance rule. Lion’s share of compliance monitoring re-
search has been focusing on compliance rule language and monitoring mechanism. As

? The work was finished during the author visited Ulm univeristy.

2 Ping Gong, David Knuplesch, and Manfred Reichert

Running Examples

Fraud Prevention: Following compliance rules address the prevention of frauds in the
banking domain and source from [10, 14]:
B1. Every executed transferring transaction of customer, who has within the last 30
days been involved in a suspicious transaction (transferring with amount greater than
10,000e), must be reported suspicious within 2 days.
B2. The sum of withdraws of each user over the last 30 days does not exceed the limit
of 10,000e.
B3. For each user, the number of withdrawing peaks over the last 30 days does not
exceed a threshold of 5, where a peak is a value at least twice the average over some
time window(30 days).

BPIC 2011: The Business Process Intelligence 2011 Contest (BPIC 2011) logs3 are real

life datasets stemmed from a Dutch hospital and are provided in XES format [22]. In [20],

16 rules referring to various process perspectives were mined from these logs by using De-

clare Miner tool. Out of these 16 rules, following R9 and R11 are listed as examples:

R9. If “administratief tarief -eerste pol” occurs in a trace, it is always preceded by “ver-

volgconsult poliklinisch” and it occurs at most 1030 days before “administratief tarief

-eerste pol”.

R11. If “natrium vlamfortometrisch” occurs in a trace and the condition “(Age≥71 &&

Treatment code ≥ 803&& Diagnosis Treatment Combination ID≤ 394,725) ‖ (Treatment

code==703 ‖ Treatment code ==803))” holds, then “natrium valmfotometrisch” is not

followed eventually by “calcium”.

opposed to a priori compliance checking, compliance monitoring does not require to ex-
plore the whole state space of process model, and also enable handling the running data
of process in real-time manner. These characteristics make compliance monitoring to
be promising techniques which enable providing business practitioners with meaningful
and timely insights into their running processes.

Usually, the compliance requirements are sourced from norms, guidelines, and stan-
dards. Additinal effort is needed to refine them operable through relevance methods,
e.g., semantic parameterization [3]. In this work, the term of compliance rule refers to
the constraints which are yielded after compliance requirement refinement. Normally,
compliance rules refer to different process perspectives, including activity, control flow,
data flow, time, and resource as well as data aggregation. These perspectives are not
simply co-existed, but related each orther to associate with single activity or correlated
among activities. This characteristic poses further requirements for compliance moni-
toring:

More dedicated language is needed. Existing compliance languages [4–9] are
designed base on the notions of activity and control flow. However, regarding to above
mentioned characteristic, more dedicated constructs of compliance language are needed
to specify the structure of activity as well as the correlations among activities. Taking
R11 as an example, besides the control flow between two involved activities, the first
activity also includes complicated data constraints, which implies the need for proper

Rule-based Monitoring Framework for Business Process Compliance 3

CRM
System

Web
Services

…

ECL

ECL

Peoples

BPM
system

Compliance rules Compliance Monitors

events

Inner view
ERS monitor

Rule
System

Working
Structure

#g()
#w()
#d()
…

ERS monitor

translate

bpCMon

ERS monitor

Fig. 1. The applying environment for bpCMon and the inner strucutre of ERS monitor

construct to describe desired activity. Also considering B1, in addition to the apparent
control flow and time constraints among transferring and report, there also exist two
data correlations among these activities, i.e., one transferring is correlated by the same
user to another suspicious transferring happened before, and also such transferring is
correlated to report by given attribute, e.g., transactionID. Note that, without spec-
ifying these correlations, the complance rules would not be correctly specified, which
would further result in false reports during compliance monitoring. Furthermore, B2
and B3, referring to the aggregations of withdraw amount over time periods, e.g., sum,
max, and average, highlight the need for additional constructs to support data aggre-
gation.

Powerful and efficient monitoring mechanism is required, to cope with com-
plex compliance rules and potentially high volume of running process instances. Exist-
ing monitoring techniques, e.g., temporal logic based [12–14], event calculus based [15],
state-machine/marking based [16, 8, 9], rule sytem based [21], etc, have their own pros
and cons. Considering the potential power and extensibility of underlying formalisms,
as stated in [21], rule system based techniques have the potential of by the uniform
formalism enabling to support compliance rules of full perspectives, especially data ag-
gregation. However, as implied in the experiments [21], current rule-based systems, e.g.,
LOGFIRE [21], Drools [18], etc, are not efficient enough since lack of effective indexing
structure as in MOP, which is known as fastest monitor for parametric properties, but
has limited support for data-aware properties [39]. Thereby, to make rule system based
technique really applicable in the compliance monitoring, besides the powerful reaction
rules, effective indexing structure is needed to support efficiently manuplating running
data during compliance monitoring.

To address these requirements, in this work we propose a business processes compli-
ance monitoring framework (bpCMon), as Fig. 1, which includes event-based compliance
language (ECL) and event reaction system for compliance monitoring (ERS).

4 Ping Gong, David Knuplesch, and Manfred Reichert

The ECL is a formal compliance language, which is designed based on the central
notions of event and event-relation pattern, and enables specifying data constraints,
correlations among events, and aggregation. The event in ECL is an abstraction over
a set of interesting event instances, and its defintion includes sets of constraints. For
example, the withdraw event, defined as (1,′ withdraw ′, [amount > 10, 000]), describes
all withdraw instances with the amount greater than 10,000 (e), where 1 is the unique
identifier of withdraw event. Note that, the difference exists between event and event
instance in this work. The event-relation pattern, also the atomic formula in ECL, is
originated from typical temporal orders as in classical temporal logic (e.g., LTL), but
includes and highlines in pattern form the correlations among events. As for the corre-
lation, it is specified by the involved events and their correlating condition. Considering
before pattern, before([0, 10d), ta, tr, econ), given two events ta and tr, it means,“when
tr instance happens, then correlated ta instance must have happened before within 10
days”, where econ is the correlating condition for ta and tr. Note that, the involved
events, tr and ta, play distinct roles within the correlation, i.e., the trigger for the
relation and the target needed to happen. Currently, ECL supports 6 event-relation
patterns: before, after , when, beforeSince, and afterUntil and aggregate...with, where
aggregate...with is introduced to enable ECL to specify data aggregation. Based on
these event-relation patterns, by using logic connectives, ECL is capable of specifying
complex compliance rules.

To efficiently monitor compliance rules in ECL, we introduce event reaction sys-
tem (ERS). Essentially, ERS is a rule system attached with a working structure, which
is the working memory of ERS and characterized by tree-like indexing structure. At
first glance, ERS seems to be similar to RETE algorithm [17] based rule systems like
Drools [18] and Jess [19]. However, ERS is a light-weight rule system, which differs
from these systems not only in the aspect of rule form, but also in the structure of
working memory. Within the ERS working memory, there is one essential component,
instances indexed structure (IIS), which stores event instance as fact, and also makes
use of tree-like indexing to speed up the assessing of desired instances. The reaction
rule of ERS is defined based on dedicated operations, which operate upon the working
structure. By these operations, ERS is able to provide meaningful feedback for vio-
lated compliance rules. Moreover, by introducing B-tree variant, the data aggregating
operators is implemented effciently in ERS.

To investigate the applicability of bpCMon, we evaluted bpCMon in several ways.
First, we discussed the fulfillment of bpCMon to meet the compliance monitoring func-
tionalities (CMF) proposed in [20]. Second we showed that ECL is able to cover most
compliance patterns [20][6] in order to evaluate the expressive of ECL. Furthermore, a
real life logs from Dutch academic hospital, which stems from the Business Processes
Intelligence Contest 2011 and consisted of 1143 traces and 150291 events, was applied
as case study for the bpCMon. The logs is run by bpCMon monitor to analysis its
compliance with 16 rules, which are mined from the logs. After seconds run, bpCMon
monitor discovered 10 rules out of 16 are incompliant, and also reported 4937 violations
in total and their root causes as well.

To evaluate the efficiency of bpCMon, the benchmark from [21] is adopted to com-
pare with three related works: MOP, known as the fastest monitor for parametric
property in runtime verification community, Drools, the state-of-art rule-based infer-
ence engine, and the MonPoly which is a powerful facility supporting monitoring the
metric linear temporal logic(MLTL) as well as its aggregation extension. The second

Rule-based Monitoring Framework for Business Process Compliance 5

test case is generated based on [10] and used to compare bpCMon to the MonPoly. The
comparing data demonstrate that, thanks to the indexing structure and statistic tree,
the bpCMon monitor is efficient no matter for compliance rules with or without data
aggregation.

Regarding to the contributions made in this work, they consist of three aspects:

– ECL: an event based compliance language and has rich expressive ability.

– ERS: a rules system with events indexing working structure for efficient monitoring.

– bpCMon: a business process compliance monitoring framework which is imple-
mented in Java and also evaluated through real life logs and others test cases.

The remainder of this paper is structured as follows: section 2 is devoted to define the
ECL as well as its extension to the data aggregation; section 3 is for definition of ERS,
including rule system and working structure; section 4 is the translating from ECL to
ERS and also includes translation soundness assurance theorem; The implementation of
bpCMon is included in section 5; and the evaluation of bpCMon is presented in section
6 which includes the language and monitor evaluations; And then, section 7 is the
comparing related works concerning with the facts which are not included in [20][21],
and also includes the discussion concerning with the specific relations between the
bpCMon and existed works; the last section is the conclusion and future work.

2 Event-pattern based Compliance Language(ECL)

As mentioned above, the ECL is designed based on the notions of event-pattern and
events relation pattern. event-pattern is an abstraction over a set of interested event
instances, which correspond to the events in BPM system or messages in SOA-enabled
processes system. events relation pattern describes frequently occurred relation among
events. In this section, event pattern and the ECL will be defined firstly and then the
ECL will be extended to include aggregation.

2.1 Event pattern

Before the formal definition, some notations are needed:
Let VAR be the variables set; VALUE be the values domain, including all the basic data
type, and ENAME ⊆ VALUE is the event names set.

Definition 1. Event pattern e is 4-ary tuple (id, ename, attrscstr, ts), where id is the
unique identifier for e, ename ∈ ENAME is the name of e, ts is the timestamp of e, and
attrscstr is attributes constraints defined as :

attrscstr ::= [items]

items ::= item | items , item
item ::= attr | constr

constr ::= attr ∼ c | attr1 ∼ attr2 | ! constr1 | constr1&&constr2,

where attr ∈ VAR, c ∈ VALUE, and ∼ ∈ { =, 6=, <, ≤, >, ≥ }

6 Ping Gong, David Knuplesch, and Manfred Reichert

From the definition, the event pattern is a structure which consists of three compulsory
attributes, id , ename, and ts, and a set of attributes patterns which are used for events
matching. Normally, ts attribute is just a placeholder requiring the time stamp needed
for each matched instance. Usually, it is ignored in the event patterns definitions if there
is not time constraint for the event pattern. Considering the event pattern of money
withdrawing with the amount greater than 1000, e = (1,′ withdraw′, [amount > 1000]),
where event pattern e contains, 1 as id, ‘withdraw’ as its name, and attribute amount
with related constraint. Note that, for the attribute values or constants, they will be
enclosed by ′ ′ if their values are string. During the business processes executing, there
are two special types of events, start and end , which represent respectively the starting
and end for the process instance execution.

For item, attrscstr, and e as defined above, let attr() be the attributes variables
getting function and defined as:

– attr(item) = {attr}, if attr is the attribute variable of item;
– attr(attrscstr) =

⋃
item∈attrscstr attr(item).

– attr(e) = {id, ename, ts} ∪ attr(attrscstrT) ⊆ VAR is the attributes set for e ;

We use e.attr to denote the attribute attr of e, and notation EVENT to denote all the
events patterns, and also ATTR to denote all the attributes occurred in the events in
EVENT.

The event instance is occurred instaneously and carrying relevant information.
Hence, the instance inst is defined as a partial mapping ATTR⇁ VALUE, with {ename, ts} ⊆
attr(inst), where attr(inst) = { attr | inst(attr) 6=⊥, for attr ∈ ATTR }. Let INS de-
note event instances set, then the trace τ is a finite sequence in SEQ(INS)4. Then we
have event matching definition.

Definition 2. For event e ∈ EVENT and instance inst ∈ INS, e is matched by inst,
denoted as inst �em e, iff the followings are hold:

– attr(e) ⊆ attr(inst);
– e.ename=inst(ename);
– inst �c constr 5, for each constr in e.

In the definition, the first condition assures that the instance should have enough
information and the others requires the instance should satisfy all the constraints in
the event.

For given even pattern e, the other event related to e, denoted as ors(e), is also an
event and e is the base of ors(e). In syntax, it defined as: ors(e) ∈ EVENT satisfying
that, ors(e).id 6= e.id and attr(ors(e)) = attr(e). Semantically inst �em ors(e) iff
inst 2em e. The other event of e is used to refer to all instances unmatched to e and is
necessary in dealing with the case of “ something should no happened”.

2.2 Definition of ECL

The event-pattern based compliance language(ECL) is a kind of pattern based logic
language. Syntactically, the ECL has a more abstract signature than classical logic’s ,

4 SEQ represents the mapping to get the set of all the finite sequences from related set.
5 The notation �c means the semantical explanation as in classical propositional logic.

Rule-based Monitoring Framework for Business Process Compliance 7

e.g., liner temporal logic, which is built on the signature including variables, functions,
and predicates. However, the signature of ECL includes event patterns and events
relation patterns, which are of higher level. For the relation patterns, the ECL so far
includes five types relation patterns. Their atomic forms as well as intuitive semantics
are listed as follows:

– before-type: when event e is occurred, then event e′ with condition econ must be
happened before e with time constraint tc, denoted as before(tc, e′, e, econ);

– after -type: when event e is occurred, then event e′ with condition econ must be
happened after e with time constraint tc, denoted as after(tc, e, e′, econ);

– when-type: when event e is occurred, then data constraint constr must be satisfied,
denoted as constr when e;

– beforeSince-type: when event e is occurred, then event e2 must be happened before
e with time constraint tc, and since e2 before e , event e1 must always be happened,
and meanwhile condition econmust be satisfied, denoted as beforeSince(tc, e2, e1, e, econ);

– afterUntil -type: when event e is occurred, then event e2 must be happened after e
with time constraint tc, and event e1 must always be happened after e until e2, and
meanwhile condition econmust be satisfied, denoted as afterUntil(tc, e2, e1, e, econ);

Note that, within each relation pattern, it may include, the trigger , for activating
formula, the target , as a fact needed to be assessed by the trigger, the correlation econ
for target and trigger, and time interval as time constraint.

Normally, the time-point semantics for instances/messages is adopted, which means
that these instances are ordered based on linar time point with some time scale, e.g.,
day, second, or millisecond, etc, but it is possible for more than one instances occurred
for the same time point. In this work, we assume that all the instances are fully ordered
by some order, e.g., the arriving order of messages in the inBound queue of ESB,
which means for each point there is only one instance occurred. To this end, in the
definition of ECL as Listing 1.1, single event is defined as the trigger for event matching
formula(EMF) emf , and the target part is recursively extended with EMF-formula.

Listing 1.1. The definition of ECL

ecl ::= [event]+ [tmf]+

tmf ::= always emf | exists emf
| ! tmf | tmf1 && tmf2

emf ::= f | ! emf | emf1 & emf2

f ::= e | ors(e) | constr when f
| before(tc, f, e, econ)

| after(tc, e, f, econ)

| beforeSince(tc, f2, f1, e, econ)

| afterUntil(tc, e, f1, f2, econ)

econ ::= e1.attr1 = e2.attr2 | econ1 && econ2

tc ::= [t, right)

right ::= t [d | h | m | s]

8 Ping Gong, David Knuplesch, and Manfred Reichert

From the synax definition, the structure of ECL is consisted of two parts, events part
and rules part. Events part is for event patterns definitions which form the events
alphabet for ECL formula, whereas within the rules part, rules are specified in trace
matching formula tmf , which concerns with the properties of traces; TMF-formula tmf
is defined by extending event matching formula emf from event point scope to the trace
scope by always or exists qualifiers as well as negation and conjunction operators.
Semantically, TMF-formula tmf corresponds to a set of traces which satisfy tmf ; EMF-
formula emf is built on a set of atomic formulas, which correspond to the event relations
patterns as listed above, but with the structurally recursive extending which enable
ECL to describe more complicate rules, e.g., chain pattern [6] as listed in the evaluation
section. Semantically, EMF-formula emf is a set of event points/instances which satisfy
emf within a given trace.

Note that, in ECL definition, two negations ! are placed both in TMF and EMF for
the clearity, although one of them can be deleted since the axiom of ! always(emf) =
exists (!emf). Also, for the conjunction operators for EMF-formula and TMF-formula,
′&′ plays the role of connecting two emf operands with the same trigger point and
hence requires two operands should have the same trigger, whereas, ′&&′ has not such
restriction. Furthermore, as classic formal logic, the disjunction“|” and implication“→”
can be introduced for EMF formula based on negation and conjunction operators as
usual way; so does the “||” and “=>” for TMF-formula.

Correlating condition econ is used to correlate target and trigger instances. In this
work, econ is defined as equal-based conjunction and also it can be extended if needed.
For the time constraint, similar to [14], the time interval [t , right) form is adopted
where the left t is a integer and right is another integer followed by a time measurement
from day to millisecond, for instance, [2, 31d). Note that, usually, the time interval is
used to represent a time period before given time point and when representing some
time period after given time point, then the contrary of time interval is needed. Let
tc = [t1, t2◦), where ◦ represent the time measurement, then the contrary of tc is tc
defined as [t′2, t

′
1◦), where t′2 = −(t2 − 1) and t′1 = −(t1 − 1).

Example 1. From [14]: every executed transaction of a customer c, who has within
the last 30 days been involved in a suspicious transaction(with amount greater than
10000), must be reported suspicious within 2 days.

//events part
e1 = (1, ’transfer’, [customer, amount, tId]) ;
e2 = (2, ’transfer’, [customer, amount > 10000]) ;
e3 = (3, ’report’, [customer, tId]) ;
// policy part
rule1 = always(before([0,31d),e2,e1,e1.customer=e2.customer)

-> after([0,3d),e1,e3,
e1.customer=e3.customer && e1.tId=e3.tId))

Within the ECL formula, events in different positions play different roles, e.g.,
triggering , deciding , or both, for the compliant monitoring. Here, the triggering is
played by the trigger event in the formula as mentioned above; whereas, deciding event
represents, when such event instance arrived, it is the time to make the decision regard-
ing to the satisfiability of its activated formula. For example, within the formula of rule1
in the above example, for its sub-formula, before([0, 31d), e2, e1, · · ·), e1 is its triggering
event as well as deciding event, and for another sub-formula, after([0, 3d), e1, e3, · · ·),
e1 is its trigger and e3 is its deciding event.

Rule-based Monitoring Framework for Business Process Compliance 9

For a given EMF-formula emf , it is overlapped if it is a before-type or beforeSince-
type formula and meanwhile one of its sub-formula is of after -type or afterUntil -type.
The overlapped is the relation between triggering and deciding events of given formula
and its sub-formula. For instance, the overlapped formula emf :

before(, after(, e1, e2,), e,),

event e is its trigger and also deciding event which requires desired e1 instance must
occur before, but for its sub-formula, after(, e1, e2,), e1 is the trigger and e2 is the
deciding event which decides whether desired e1 instance is occurred. The point, which
overlapped targets at, is that e2 instance could be occurred after e instance for all valid
traces of this formula. Then during monitoring, when event e instance was occurred,
it would be impossible for the monitor to make decision about whether desired e1

instance was occurred before or not, if meanwhile e2 instance was not occurred yet
but might occurred after e instance. For the overlapped formula, the monitor would
have to delay to make its decision when deciding instance occurred. However, for the
after-type formula, even if there is a before-type sub-formula inside, it still belongs
to non-overlapped, since the deciding instances of its sub-formula are not allowed to
occur after its deciding instances.

Definition 3. For event matching formula f, the triggering events set, deciding events
set of f , denoted as tr(f) and de(f), are defined recursively based on formula type as
follows:

– tr(f) = de(f) = {e}, if f = e, or f = constr when e.
– tr(f) = de(f) = {ors(e)}, if f = ors(e).
– tr(f) = tr(f ′), and de(f) = de(f ′), if f= constr whenf ′.
– tr(f) = de(f) = {e}, if f = before(tc, f1, e, econ) or beforeSince(tc, f1, f2,
e, econ), and f is non-overlapped.

– tr(f) = {e} and de(f) = de(f1)∪{e}, if f = before(tc, f1, e, econ), or beforeSince(tc, f1, f2, e, econ)
and f is overlapped.

– tr(f) = {e}, and de(f) = de(f2), if f = after(tc, e, f2, econ) or afterUntil

(tc, e, f1, f2, econ).
– tr(f) = tr(f1) and de(f) = de(f1), if f = ! f1 and f1 6= e and f1 6= ors(e).
– tr(f) = tr(f1) ∪ tr(f2) and de(f) = de(f1) ∪ de(f2), if f = f1& f2.

Within EMF-formula, there are two special atomic formulas, i.e.,e and ors(e), since
their unsatisfiable are not triggered by themselves but others, for instance, for e, the
trigger for its unsat is not e instance but other instance. Then for f , the set of triggering
events for its unsatisfiable is, denoted as tr un(f), defined as

tr un(f) =

{
ors(tr(f)), if f=e or ors(e);
tr(f), o.w.

Based on tr() and de(), a restriction for EMF formula f is made as:

if f = f1 op f2, then tr(f1) = tr(f2),

where op ∈ { |, &, → }. Note that, the intuition behind the restriction is that, two
EMFs should have the same triggering event as connecting points before they was
connected each other by relevant operators.

An EMF formula is well -formed , if it satisfies the restriction. Note that, for each
well formed EMF formula f , there is only one triggering event for such formula, i.e.,
|tr(f)| = 1. In the following, only well-formed EMF formula is considered.

10 Ping Gong, David Knuplesch, and Manfred Reichert

2.3 Extending ECL for aggregation

For the compliance rules with data aggregation, e.g., “the sum of withdraws of each
user over the last 30 days does not exceed the limit of e10,000”, the data aggregation
includes these elements:

– aggregation operator is the statistic function over related data, e.g., sum in the
example;

– target data/events is the data set over which the aggregation operator is applied,
e.g., withdrawing events of last 30 days in the example;

– grouping attributes are the attributes of involved data/events by which the group-
ing data are gotten from the data set, e.g., the user in the example;

– aggregating attributes are also the attributes of related data set and the aggregation
value for each group is gotten by applying operator over the selected data based
on aggregating attributes from the grouping data, e.g., the amount attribute of
withdraw in the example;

– aggregating constraint is the condition which should be satisfied by each aggrega-
tion value for each group, e,g., does not exceed e10,000.

Then, the example can be specified with aggregate with pattern as follow:

aggregate(sum([0, 31d), e, e.user , e.amount ,) to s) with s <= 10, 000.

where event e could be (′withdraw ′, [user , amount]) and it is the trigger for the for-
mula. Structurally, from the inside, the aggregation value of aggregating expression,
sum([0, 31d), e, e.user , e.amount ,), is assigned to the aggregating variable s, and then
the aggregating expression is encapsulated by aggregate and with, where aggregate

can include more than one aggregate expressions and with is followed by the constraints
for the inside aggregating expressions.

Intuitively, the aggregating formula, aggregate aggexp with aggcon, can be un-
derstood as “ when the trigger of aggexp occurred, the aggregating values of aggexp
within the aggregate must satisfy the condition of aggcon”. Listing 1.2 is the definition
for ECL aggregating formula, which belongs to the sub-formula of EMF.

Listing 1.2. Aggregating formula for ECL

f ::= aggregate(aggexp) with aggcon

aggexp ::= aggop(tc, emf, g attrs, a attrs, aggcon) to aggvar

| aggexp1, aggexp2

g attrs, a attrs ::= < [attr]+ >

aggcon ::= aggvar ∼ attr | aggvar ∼ c | aggvar1 ∼ aggvar2

| ! aggcon | aggcon1 && aggcon2

aggop ::= sum | count | avg | min | max

Within the aggregating expression aggexp, it can be single expression as well as expres-
sions sequence. For single example, it includes the aggregation elements as described

Rule-based Monitoring Framework for Business Process Compliance 11

above, where: g attrs, a attrs ∈ SEQ(ATTR) are the attributes sequences for the group-
ing and aggregating; EMF-formula emf specifies the desired properties for the trigger
event, of which the target data set is created from the matched instance; aggvar is a
variable name in syntax but semantically it is a mapping from group values to aggre-
gating values.

For aggregating expression aggexp, it is well -formed if (1) g attrs and a attrs are
disjointed; (2) (g attrs ∪ a attrs) ⊆ attr(e), where e = tr(emf). In addition, the
trigger and deciding event for aggexp are defined as the same to tr(emf). Then for
the aggregating formula, it is well -formed , if (1) each of its aggregating expression is
well -formed ; (2) each of its aggregating expressions has the same trigger; (3) each of
its aggregating expressions has the same grouping attributes.

Example 2. From [10]: for each user, the number of withdrawing peaks over the last
30 days does not exceed a threshold of 5, where a peak is a value at least twice the
average over some time window(30 days).

//events part
e1 = (’withdraw’, [user, amount]) ;
// policy part
policy = always (aggregate(

avg ([0,31d), e1, <e1.user>, <e1.amount>, _) to ave,
cnt ([0,31d), e1, <e1.user>, <e1.amount>,

e1.amount >= 2 * ave) to c
) with c < 5)

In the example, two aggregating expressions are included in the aggregate and these two
expressions have the same time interval, grouping and aggregating attributes. Within
the aggregating constraint of cnt expression, the aggregating variable ave of avg ex-
pression is referred to compare with the value of regular attribute. Semantically, the
comparing is finished by comparing each withdrawing amounts with the average value
for the same user, through one user to another. In fact, such nest structure not only
complicates the implementation but also results in expensive running costs which shall
be seen from evaluation section.

2.4 Formal Semantics for ECL

In this section, the semantics of ECL will be defined based on the trace.

Notation: Let INS denote event instances set, then trace τ is a finite sequence in
SEQ(INS). For trace τ , τ(i) denotes (i + 1)-th instance in the trace for integer i ≥ 0;
|τ | is the length of trace; trace τ is well -formed , if it satisfies, τ(i).ts ≤ τ(j).ts, for
each two non-negative integers i and j with i < j. It means there is a full order over
well-formed trace based on the time stamp attribute, denoted as �. τ≤i denotes the
sub trace of τ with the index of its instance not greater than i. We use TRACE to denote
all the well-formed traces of the discourse.

For two traces τ1 and τ2, τ1 is a sub-trace of τ2, denoted as τ1 v τ2, iff, (1) τ1 ⊆ τ2;
(2) for instances ins1 , ins2 ∈ τ1, if ins1 � ins2 in τ1, then also ins1 � ins2 in τ2.

τt〈ins〉 denotes the trace after appending ins to the its tail; τ\(i) denotes the trace
after deleting first (i + 1) instances from τ , where i > 0; τ\{ins} denotes the trace

12 Ping Gong, David Knuplesch, and Manfred Reichert

after deleting the first instance ins nearest to the tail; For time interval tc = [t1, t2◦],
the bound of tc is non-negative integer b = t2 −◦ t16.

τ]b 〈ins〉 denotes bounded appending ins to τ , and formally defined as, (τ t
〈ins〉)\(k), where k is maximal number of {j| ins.ts −◦ τ(j).ts > b}, i.e., all the out-
of-date instances w.r.t. new added ins;

τ ⇑b 〈ins〉 denotes bounded updating τ by ins and defined as τ\(k), where k is
maximal number of (τ t 〈ins〉)\(k). Note that, both operators need to update the τ
by new instance, but with the difference regrading to whether the new ins needs to be
added.

For instance ins and its attributes attrs ⊆ attr(ins), ins ⇁〈attrs〉 denotes the value
restriction from ins with respect to attrs;

τ �〈attrs〉 denote the value restrictions set satisfying that, for each value d̄ in the
set, there exists at least one instance ins ∈ τ with d̄ = ins|〈attrs〉.

For instances set Ins and attributes set attrs, Ins|〈attrs〉 is a multi-set mt with
VALUE〈attrs〉 ⇁ N, where VALUE〈attrs〉 represents the value restrictions domain for at-
tributes sequence 〈attrs〉.

The event valuation υe is a binding of EVENT ⇁ INS; event e is satisfied by υe,
denoted as υe �em e, iff e is matched by υe(e). For valuation υe, event e, and its
instance ins, notation υe[e 7→ ins] denotes the updated from υe by e and ins, and []
denotes empty valuation. For two valuation υ1, υ2, υ1 is a sub-binding of υ2, denoted
as υ1 v υ2, if var(υ1) ⊆ var(υ2) and υ1(x) = υ2(x) ;

Based on event matching notion, following we provide semantics for two event
operators ors, representing others, and clone, as follows:

Definition 4. For event e, event set E, and event valuation υe, ors(e), ors(E), and
clone(e) are events in EVENT, where clone(e).id 6= e.id.
υe �em ors(e), iff υe 2em e; υe �em ors(E), iff υe 2em e′, for each e′ ∈ E.
υe �em clone(e), iff υe �em e.

Note that, ors operator could be considered as some way of events abstraction, and
the use of operator clone is to distinguish one from another among the copies of same
event, which will be useful in the creating correlating relations. In fact, based on the
event matching semantics, it is possible to define other composite events patterns if
necessary.

Definition 5. For events correlating constraint econ, and event valuation υe, the re-
lation υe �ec econ is defined as follows :

– υe �ec e1.attr1 = e2.attr2 ⇐⇒ υe �em e1, υe �em e2, and υe(e1)(attr1) =
υe(e2)(attr2).

– υe �ec econ1 && econ2 ⇐⇒ υe �ec econ1 and υe �ec econ2.

For time interval [t1, t2◦), where t1, t2 are non-negative integers with t1 < t2, and
◦ ∈ {d, h,m, s}, [t1, t2◦) is satisfied by the instances sequence 〈ins1, ins2〉 formed by
two instances ins1 and ins2, denoted as 〈ins1, ins2〉 �t [t1, t2◦), iff, t1 ≤ ins2(ts) −◦
ins1(ts) < t2 .

Semantics for ECL Formula

6 −◦ is the regular operator but calculated based on ◦ scale, hereafter, the notation would
be ignored.

Rule-based Monitoring Framework for Business Process Compliance 13

Definition 6. For event matching formula f, trace τ , and integer i ≥ 0, the relation
τ(i) � f is defined recursively as follows, where e′ = tr(f1) and e′′ = tr(f2):

– τ(i) � e iff [e 7→ τ(i)] �em e.
– τ(i) � ors(e) iff τ(i) 2 e.
– τ(i) � constr when f1 iff if τ(i) � f1 and τ(i) � e′, then [e′ 7→ τ(i)] �c constr.
– τ(i) � before(tc, f1, e, econ) iff if τ(i) � e, then there exists non-negative

integer j < i, s.t., τ(j) � f1, τ(j) � e′, 〈ins1, ins2〉 �t tc, and [e′ 7→ τ(j), e 7→
τ(i)] �ec econ.

– τ(i) � after(tc, e, f1, econ) iff if τ(i) � e, then there exists a non-negative
integer j > i, s.t., τ(j) � f , τ(j) � e′, 〈ins1, ins2〉 �t tc, and [e 7→ τ(i), e′ 7→
τ(j)] �ec econ.

– τ(i) � beforeSince(tc, f1, f2, e, econ) iff if τ(i) � e, then there exists a
non-negative integer j < i, s.t., for every integer j < k < i, τ(j) � f1, τ(j) � e′,
τ(k) � f2, τ(k) � e′′, 〈ins1, ins2〉 �t tc, and [e′ 7→ τ(j), e′′ 7→ τ(k), e 7→ τ(i)] �ec
econ.

– τ(i) � afterUntil(tc, e, f1, f2, econ) iff if τ(i) � e, then there exists a non-
negative integer j > i, s.t., for every integer i < k < j, τ(j) � f2, τ(j) � e′′,
τ(k) � f1, τ(k) � e′, 〈ins1, ins2〉 �t tc, and [e 7→ τ(i), e′ 7→ τ(k), e′′ 7→ τ(j)] �ec
econ.

– τ(i) � ! f1 iff τ(i) 2 f1.
– τ(i) � f1 & f2 iff τ(i) � f1 and τ(i) � f2.

For the TMF formula, its semantics is defined over trace as follows.

Definition 7. For TMF-formula f, f1, f2, EMF-formula emf, and trace τ , the relation
τ � f is defined based on two types of f :
(1) τ � always emf iff for every i ≥ 0, τ(i) � emf .
(2) τ � exists emf iff there exists i ≥ 0, τ(i) � emf .
(3) τ � ! f , iff τ 2 f .
(4) τ � f1 && f2 iff τ � f1 and τ � f2.

Semantics for Aggregation
The semantics of aggregation refers to sliding window model with respect to time

interval.
For trace τ ∈ TRACE and time interval tc, the sliding window model with time inter-

val tc within τ up to i, denoted as Mτ≤i
(tc), is the sub-trace of τ≤i with 〈ins, τ(i)〉 �t tc

for each its instance ins.
For EMF-formula f , Mτ≤i(tc, f) is a sub-trace of Mτ≤i

(tc) with its instance satis-
fying ins � f and ins �em e, where e ∈ tr(f). Formally, it is defined as follows:

Mτ≤i(tc, f) =

Mτ≤i−1

(tc, f)]b 〈τ(i)〉, if τ(i) � f
and ins �em e with e = tr(f);

Mτ≤i−1
(tc, f) ⇑b 〈τ(i)〉, o.w.

(1)

, for i ≥ 0, and Mτ≤−1
(tc, f) = ∅.

Aggregating variable: for aggregating variable aggvar , formally, aggvar is a 3-ary
(aname, event , g attrs), where aname, event , and g attrs are the name, involved event,
and grouping attributes of aggvar . Aggregating variable is well -formed , if aggvar .g attrs ⊆
attr(aggvar .event). Semantically, it corresponds to the partial mapping of VALUE⇁ Q,

14 Ping Gong, David Knuplesch, and Manfred Reichert

which assign a statistic value (e.g., sum, average,etc.) to grouping value in VALUE. We
use agVAR and agVALUE to denote all the aggregating variables and all aggregating val-
ues respectively, meanwhile, agOPS to the aggregation operators set {sum, avg, cnt, min, max},
where ω is used to refer the aggregation operator.

Definition 8. For instances sequence θ, two attributes sets g attrs and a attrs, and
aggregating operator ω, the aggregating map λag : SEQ(INS)×SEQ(ATTR)×SEQ(ATTR)×
agOPS→ (VALUE→ Q) is defined as:

λag(θ, g attrs, a attrs, ω) = χ, (2)

where

– Dom(χ) = θ �〈g attrs〉;
– χ(d̄) = ω(Insd̄|〈a attrs〉), for each d̄ ∈ Dom(χ);

– Insd̄ = {ins | d̄ = ins|〈g attrs〉, ins ∈ θ}

Within the definition, for the instances sequences, the first equation is to group in-
stances based on grouping attributes g attrs; the second one is do the aggregation over
grouped instances set for given grouping value d̄; the last one is define related instances
group for given grouping value.

aggregating valuation υag is a binding of agVAR⇁ agVALUE. then the satisfiable for
aggregating constraints could be provided as follow:

Definition 9. For aggregating constraint aggcon, event e, attribute attr, event valu-
ation υe, and aggregating valuation υag, aggcon is satisfied by valuations υe and υag,
denoted as (υe, υag) �ag aggcon, is defined as follows:

– (υe, υag) �ag aggvar ∼ e.attr, iff, υag(aggvar)(d̄) ∼ υe(e)(attr) for each d̄ ∈
Dom(υag(aggvar)).

– (υe, υag) �ag aggvar ∼ c, iff, υag(aggvar)(d̄) ∼ c for each d̄ ∈ Dom(υag(aggvar)).

– (υe, υag) �ag aggvar1 ∼ aggvar2, iff, aggvar1.g attrs = aggvar2.g attrs, Dom(υag(aggvar1)) =
Dom(υag(aggvar2)), and υag(aggvar1)(d̄) ∼ υag(aggvar2)(d̄) for each d̄ ∈ Dom(υag(aggvar1)).

– (υe, υag) �ag !aggcon, aggcon1 && aggvar2, can be defined in standard way.

Then the semantics of aggregating expression can be defined as:

Definition 10. For aggregating expression aggexp, trace τ , and two aggregating valu-
ations υag and υ′ag, the relation (τ(i), υag, υ

′
ag) � aggexp is defined as follows:

(τ(i), υag, υ
′
ag) � aggop(f, g attrs, a attrs, aggcon)to aggvar, iff, τ(i) � f , ([e 7→

τ(i)], υag) �ag aggcon, and ῡag = υag[aggvar 7→ av], where e ∈ tr(f) and av =
λag(Mτ≤i

(tc, f), g attrs, a attrs, aggop).

Definition 11. For aggregation event matching formula f and trace τ , τ(i) � f is
defined as follows:

τ(i) � aggregate(aggexp1, aggexp2) with aggcon, iff, there exist two aggregating
valuations υag and υ′ag, s.t., (τ(i), [], υag) � aggexp1, (τ(i), υag, υ

′
ag) � aggexp2, and

([e 7→ τ(i)], υ′ag) �ag aggcon, where e ∈ tr(f).

Rule-based Monitoring Framework for Business Process Compliance 15

3 Events indexed reaction system(ERS)

To monitor the full featured ECL, it is necessary to have a uniform and powerful
analysis theory. In this section, Events Indexed Reaction System(ERS) is proposed,
which in fact is the rules system plus working structure. More specifically, ERS is a
2-ary(rs,ws), where:
(1)rs is the rules system with reaction rules, where reaction is sequence of operations
over working structure;
(2) rs is the working structure in charge of organizing instances for their efficiently
storing, consuming, and assessing.

Different to the net form of working memory in RETE algorithm [17] or other rule
engine, ERS working structure is of tree structure including indexing, bounded queue,
and also statistics tree for aggregation computing.

3.1 The rules system of ERS

To define the definition of rules system, let notations of ATTR, ECON, TC, agOPS, agVAR ⊆
VAR, CONSTR, and agCON, to denote the events attributes set, events correlating con-
straints set, time constraints set, aggregating operators set, aggregating variables set,
constraints set, and aggregating constraints, respectively; and notation agVALUE ⊆
VALUE × VALUE is for aggregating values set; finally, notation BOOL ⊆ VALUE denotes
boolean set, and VIOD is a special symbol denoting the fact of without returning in
operation definitions.

Definition 12. The rules system rs of ERS is a 3-ary (E ,OPS ,R), where:
(1) E is the events set with E ⊆ EVENT;
(2) OPS is the operations set, where each operation is of one of following types:

– delete-operation #d: {0, 1} × EVENT× EVENT −→ VIOD ;
– get-operation #g: {0, 1} × EVENT× EVENT× TC −→ SEQ(INS);
– write-operation #w: {0, 1} × EVENT× EVENT −→ VIOD;
– failure/success-operation #fail, #succ: N× EVENT× EVENT× EVENT −→ VIOD;
– next-operation #next: −→ VIOD;
– existence-operation #ge: {0, 1} × EVENT× EVENT× TC −→ BOOL;
– empty-operation #empty: {0, 1} × EVENT× EVENT −→ BOOL;
– evaluation-operation #eval: CONSTR −→ BOOL;
– time-comparing-operation #tcm: EVENT× EVENT −→ {−1, 0, 1};
– aggop-operation #ω:
{0, 1} × EVENT× SEQ(ATTR)× SEQ(ATTR)× agCON× agVAR −→ agVALUE;
where ω ∈ {sum, avg, cnt, min, max};

– aggregate-operation #ag: SEQ(agOPS)× agCON −→ BOOL.

(3)R is the rules set and each rule r ∈ R is of the form r : lhs→ rhs, where lhs is the
event from E and rhs is defined as follows:

rhs ::= c reaction

c reaction ::= ops | c reaction ; ops

ops ::= op | op · ops | cond ? ops1 : ops2

op ::= #d | #g | #w | #fail | #succ | #ω

cond ::= #ag | #empty | #ge | #tcm ∼ 0 | #eval

| ! cond | cond1 && cond2

16 Ping Gong, David Knuplesch, and Manfred Reichert

In the definition, event set E is the alphabet for the operation as well as the right
hand of rule. For each operations in OPS , most of them share common features: {0, 1},
representing the related structure on which operations take effect on, i.e., beforeIIS or
afterIIS instances indexed structure which is the main storing mechanism of working
structure; pair of events EVENT×EVENT with the first one representing target event and
the second for trigger event.

For events e, ta, tr ∈ EVENT, integer i ∈ {0, 1}, and integer t ∈ N, the intuitive
semantics of each operations are briefed listed as follows:

– #d(i, ta, tr) : delete all the correlated ta instances from the related value structure
of i instances indexed structure, when tr instance was occurred;

– #g(i, ta, tr, tc) : get all the correlated ta instances within time interval tc from
the related value structure of i instances indexed structure, when tr instance was
occurred;

– #w(i, ta, tr) : write the matched ta instances as a new fact into the related value
structure of i instances indexed structure for the future occurrence of tr instance;

– #fail/succ(t, ta, e, tr) : create a new t-type failure/success information and add it
into the related container of working structure, when tr instance was occurred;

– #next() : terminate current operations executing and go to the next operations if
there is, otherwise read the next instance;

– #ge(i, ta, tr, tc) : check whether there exists correlated ta instances within time
interval tc in the related value structure of i instances indexed structure, when tr
instance was occurred;

– #empty(i, ta, tr) : check whether it is empty for the value structures determined
by ta and tr in i instances indexed structure.

– #eval(constr) : check whether the constr is satisfiable in current moment.
– #tcm(ta, tr) : comparing the time values of current matched ta instance and tr

instance. if ta instance is occurred after tr instance, then return 1; else if their time
is equal, then return 0; otherwise return -1;

– ω(i, e, g attrs, a attrs, aggcon, aggvar): aggregate the values, with g attrs as group-
ing attributes and a attrs as aggregating attributes, for all the currently matched
e instances which also satisfy aggcon constraints, and use aggvar to refer to such
aggregating values.

– #ag(agops, aggcon): sequentially execute aggregation operators as specified in agops,
and then evaluate the aggcon by the aggregating values.

For each rule in rs, it is of the form, event → c reaction. Semantically, it means,
when the trigger event is matched, then reaction c reaction is invoked and started to
execute the operations as specified in c reaction. The rule system rs is deterministic if
there do not exist any two rules in R with same right hand, and ERS is deterministic
if its rule system is deterministic. In this work, only deterministic rule system is con-
sidered.

For the rule right hand, c reaction, it could be operations expression ops as well as
the compositional reaction, which composites ops with sequential operator “;”. For the
ops, it could be simple operation, conditional operations, or their connection by the
chain operator “·”. Note that, the sequential operator is different to chain operators.
The sequential operator is used in the merging of rule systems by connecting related
reactions to form composite reactions, and during the running, each of these reactions
would be executed sequentially; whereas, chain operators is used to chain operations

Rule-based Monitoring Framework for Business Process Compliance 17

into composite operation and when rule triggered, these operations might not be ex-
ecuted all, since if the final operation, #succ/fail , or next operation is included, the
followed operations would not be executed.

Comparing to classic rule form, e.g., event-condition → action [21], ERS rule has
distinct characteristics:(1) the left hand is only one event as rule trigger , by which find-
ing triggered rule would be speeded up; (2) the conditional operation adopts the form
of concise conditional expression, “? : ”, which could speed up conditions evaluation
by avoiding repeated conditions evaluation; (3) two distinct connecting operators are
used with different purposes.

Example 3. For TMF-formula always (after(, e6, e7, e6.caseID = e7.caseID)), then
its rules system can be specified as follows:

ERS :
%% wrting e6 instance into the related value structure of e6 for e7
e6 -> #w(1,e6,e7)

%% if there is related e6 instance in the structure for e7 instance,
%% delete all such e6 instances and create success insances of type2
%% for such e6 instances and e7 instance; otherwise, read the next.
e7 -> #ge(1, e6, e7) ? #d(1,e6,e7).#succ(2,e6,e7):#next()

%% when end event occurred, if the structure of e6 for e7 is
%% not empty, then create violation instances of type 3 for
%% each such e6 instance; otherwise, read the next.
end -> !#empty(1,e6,e7) ? #fail(3,e6,e7):#next()

3.2 Instances Indexed Structure(IIS)

From the above, it should be implied that, the value structure, as the mechanism for
storing instances, is the essential part for explaining and understanding operations
executions. Furthermore, to efficiently assess the stored instances, the value structure
needs to be equiped with indexing structure. In this work, we term the instances value
structure with indexing as instances indexed structure(IIS) and its skeleton structure
is a tree as Fig. 2, which is of four layers and with storing mechanism as leaf nodes.

Definition 13. Instances Indexed Structure iis is a 4-ary (Target, Trigger, VS, δ),
where :

– Target, Trigger ⊆ EVENT are events sets ;
– VS is the value structure set, and value structure vs is defined as

vs=(corr, b, θ),

where:
• corr ∈ SEQ(ATTR) is correlating attributes;
• b ∈ N ∪ {∞} is the bound of storing mechanism;
• θ : VTuple→ SEQ(INS) is a partial one to one mapping assigning to vtuple with

instances storing mechanism.
– δ : Target→ (Trigger→VS) is a mapping assign an value structure to target and

trigger.

18 Ping Gong, David Knuplesch, and Manfred Reichert

IIS

6 taID

… 7 trID

instance_1

… <01> vtuple

Storing : bounded/unbounded
Queue for event instances

Correlating VTuples

….

instance_n

Target Events

Trigger Events

queue_6_7_01

…

vs : (corr, b, 𝜃)

…

….

…

…

….

…

Fig. 2. Instances indexed structure

Within the IIS, the basis element is value structure, where: corr ∈ SEQ(ATTR) is the
correlating sequence and its value is a tuple represented as vtuple. Notation VTuple ⊆
VALUE denotes all the value of vtuple. By the vtuple and mapping θ, the target in-
stances are classified and stored in relevance place. As depicted with dashed rectangle
in Fig.2, value structure (corr , b, θ) semantically corresponds to a set of the pair of
vtuple and storing mechanism. Note that, in this work the storing mechanism is the
bounded/unbounded queue. For the correlated target and trigger events, the mapping
δ not only decides the queue for target instances, but also defines the indexing, i.e.,
corr , for storing and assessing target instances. Specifically, storing target instance is
done by first selecting relevance queue though its vtuple and θ; on the other hand,
assessing target instance is also finished by first finding relevance queue based on the
vtuple of trigger instance. To this end, it is clear that, corr plays the indexing role for
trigger instance finding target one.

As depicted in Fig.2, the queue finding is exactly like finding a path from the top to
the related leaf. Structurally, the IIS in fact is determined by the set of correlating tuples,
i.e.,(target , trigger , corr , b), which corresponds set of paths from target and trigger to
queue. For instance in the figure, the path from root, node 6, node 7, < 01 >, to
queue 6 7 01 corresponds to correlating tuple (e6 , e7 , caseID , b), which means, fo each
e7 instances, if their caseID is < 01 >, then the storing and assesing for related e6

instances are operated over queue 6 7 01.
Intuitively, the IIS is built based on following two frequently and basis operations

during monitoring:

– GET: when trigger instance arrived, it needs to assess the target instance (or fact)
occurred before with correlating condition and also might under time bound .

– WRITE: when a target instance arrived, it needs to be saved for behind trigger
instances to assess it with correlating condition and also might under time bound .

However, as for WRITE, after target instances stored, there are two subcases with
subtle differences regarding to whether the stored instance requires the desired trigger

Rule-based Monitoring Framework for Business Process Compliance 19

to be occurred after. Then, IIS is divided into two types: beforeIIS , wherein the stored
target instance does not require some trigger instance must occur after, and afterIIS ,
where each stored target instance requires desired trigger instance must occur after. For
example, for the operation #w(1 , e6 , e7), it writes occurred e6 instance into afterIIS,
and for each stored e6 instance, it requires desired e7 to be occurred; on the contrary,
if changed 1 to 0 in the operation, e6 instance is stored in beforeIIS for e7 since e7

instance requires desired e6 instance needed to occur before.

Definition 14. For an indexed events reaction system, its working structure ws is a
4-ary (beforeIIS, afterIIS, fCon,sCon), where:

– beforeIIS and afterIIS are instances indexed structures;
– fCon ∈ SET(Failure) is the failures container, where the failures domain Failure ⊆
N× INS× INS× INS.

– sCon ∈ SET(Success) is the success container, where the success domain Success ⊆
N× INS× INS× INS.

In the definition, working structure includes not only two types IIS, but also failure
and success containers. For convenience, we use ws(0) and ws(1) to denote beforeIIS
and afterIIS of ws. Currently, 8 types of failures and successes are considered, which
corresponds to the current set of events relation patterns in ECL. They are created
respectively by #fail and #succ operators as listed in Table 1, where: type-1 is the
basis; type-2 and type-3 are for before and after order; type-4 is for beforeSince and
afterUntil ; type-5 and type-6 are for aggregation and when respectively; type-7 and
type-8 are for emf-composition and exists-tmf formula. For instance, the expression
#succ(1, , , e1) would create a type-1 success instance for e1 instance happened, and
then add it into sCon container. Note that, the success and failure instances, created
by #succ and #fail , contain useful debugging information, especially for the failure.

Table 1. The success&failure models

No Success Failure

1
#succ(1, , , e1) : #fail(1, , e1, e2): e1 should happen
e1 instance happened but e2 instance happened

2
#succ(2, , e1, e2): #fail(2, , e1, e2):
e1 instance happened before e2 instance no e1 happened before e2 instance

3
#succ(3, , e1, e2): #fail(3, , e1, e2):
e2 instance happened after e1 instance no e2 happened after e1 instance

4
#succ(4, e0, e1, e2): e1 always #fail(4, e0, e1, e2): e1 instance happened
happens after e0 instance and before e2 instance after e0 instance and before e2 instance

5
#succ(5, , , e1): the aggcon #fail(5, , , e1): the aggcon
is satisfied for e1 instance occurring. is unsatisfied for e1 instance occurring.

6
#succ(6, , , e1): when-constr #fail(6, , , e1): when-constr
is satisfied for e1 instance occurring. is unsatisfied for e1 instance occurring.

7
#succ(7, , , e1): emf-composition #fail(7, , , e1): emf-composition
is satisfied for e1 instance occurring. is unsatisfied for e1 instance occurring.

8
#succ(8, , , e1):exists-tmf #fail(8, , , e1): exists-tmf
is satisfied for e1 instance occurring. is unsatisfied for e1 instance occurring.

Within the ERS, reaction rules and working structure are closed related since the
assessing and storing operations are executed based on the working structure. For
instance, when e2 instance occurred, to execute the operation #g(0, e1, e2,) , finding
the queue, which stores e1 instances, is needed to be done first in such way: get the

20 Ping Gong, David Knuplesch, and Manfred Reichert

value structure (corr , b) by δ(e1)(e2) from beforeIIS; and then get the related queue by
θ(vtuple), where vtuple is the correlating value of corr from e2 instance. Such relation
is depicted as the coverable property of working structure for rule system as follow:

Definition 15. For working structure ws and rules system rs, ws is coverable for rs,
iff for each op ∈ OPS, if the i, ta, and tr are the iis symbol, target, and trigger of op
respectively, then δ(ta)(tr) 6=⊥, where δ is the mapping of ws(i).

Based on the coverable notion, then for ERS ers = (rs,ws), it is well -formed , iff ws is
coverable for rs. In this work, only well-formed ERS is considered.

3.3 Operational semantics of ERS

In this section, the operational semantics of ERS will be defined in SOS-style. In fact,
the core of semantics is how to interpret the rule in the system, i.e., how to activate
the rule and react on the read. Regarding to such reaction, it is essentially the state
change of working structure of ERS, i.e., the working structure is the abstract state of
ERS.

Definition 16. For event reaction system ERS ers and working structure ws, the con-
figuration of ERS is a 2-ary 〈S, υe〉, where S = (Siis, SfCon, SsCon), Siis : {0, 1} ×
EVENT× EVENT× VTuple⇁ SEQ(INS) is the state of ws representing the instantaneous
contents of queues in the indexed instances structures in ws, SfCon represents the con-
tent of fContainer at state S, and υe is an events valuation.

For simplicity, the subscript of Siis will be ignored when the context is clear. For
instance sequence queue ∈ SEQ(INS), we use size(queue) to denote the size of queue.
For working structure ws, its state S, two events ta and tr, attributes sequence corr ,
and event instance ins, we introduce some operators for easy exhibition:

– vs-getting operator: vs(i, ta, tr) = ws(i).δ(ta)(tr);
– queue-selecting-for-getting operator: Sqg(S, 0, ta, tr, ins) = queue, where queue =
S(i, ta, tr, d̄) is a bounded queue with bound of vs.bound , where d̄ = ins|vs.corr,
vs = vs(i, ta, tr) and tr is matched by ins;

– queue-selecting-for-writing operator: Sqw(S, i, ta, ins, tr) = queue, where queue =
S(i, ta, tr, d̄) is a bounded queue with bound of vs.bound , where d̄ = ins|vs.corr,
vs = vs(i, ta, tr) and ta is matched by ins;

– queues-getting operator: SQ(S, i, ta, tr)={q | ∃d̄ ∈ VTuple, q = S(i, ta, tr, d̄), size(q) >
0, and vs = vs(i, ta, tr)};

– queues-updating operator: UPQ(S, i, ta, tr, ins) is a queue set, SQ(S, i, ta, tr) in S, up-
dated by ins, where tr is matched by ins. Formally, for each q ∈ UPQ(S, i, ta, tr, ins),
let SQ = SQ(S, i, ta, tr), then q is defined based on cases:

q =

 q′]b 〈ins〉, if ∃q′ ∈ SQ, q′ = Sqg(S, i, ta, tr, ins);
〈ins〉, if Sqg(S, i, ta, tr, ins) =⊥;
q′ ⇑b 〈ins〉, for all other q′ ∈ SQ.

(3)

– new failure/success operators:
newf: N× EVENT× EVENT× EVENT× (EVENT→ INS) −→ SET(Failure).
news: N× EVENT× EVENT× EVENT× (EVENT→ INS) −→ SET(Success).

Rule-based Monitoring Framework for Business Process Compliance 21

Based on the configuration of ERS, its dynamics is defined by the reaction of its rules
system on working structure as follows.

Definition 17. For event reaction system ERS ers, trace τ , and rule r: lhs → rhs,
rule r can make ers transit from S to S′ for the instance τ(i), denoted as S ` lhs →
rhs ⇒τ(i) S′, iff, τ(i) �em lhs and for valuation υe = [lhs 7→ 〈τ(i)〉], it is satisfied
for 〈S, υe〉 ` rhs ⇒ 〈S′, υ′e〉, where the relation 〈S, υe〉 ` rhs ⇒ 〈S′, υ′e〉 is defined
recursively based on the structure of rhs as follows:

1. (Basic Operators) if rhs is the basic operator, then

– (Get) rhs= #g(j, e1, e2, tc), j ∈ {0, 1}, then for each ins ∈ υe(e2),

(GET0)
ins �em e2; 〈ins′, ins〉 �t tc

〈S, υe〉 ` #g(0, e1, e2, tc)⇒ 〈S, υe[e1 7→ 〈ins〉]〉
, where ins′ ∈ queue and queue = Sqg(S, j, e1, e2, υe(e2)).

(GET1)
ins �em e2; 〈ins′, ins〉 �t tc for each ins′ ∈ ins
〈S, υe〉 ` #g(1, e1, e2, tc)⇒ 〈S, υe[e1 7→ ins]〉

, where ins � queue and queue = Sqg(S, j, e1, e2, υe(e2)).
– (Delete) rhs= #d(j, e1, e2, tc), then,

(DELETE)
〈S, υe〉 ` #g(j, e1, e2, tc)⇒ 〈S, υe[e1 7→ ins]〉

〈S, υe〉 ` rhs⇒ 〈S′, υe[e1 7→ ins]〉
, where Sq(S, j, e1, υe(e2)) = Sq(S

′, j, e1, υe(e2))\ins.
– (Write) rhs= #w(j, e1, e2), then for each ins ∈ υe(e1),

(WRITE)
ins �em e1

〈S, υe〉 ` rhs⇒ 〈S′, υe〉
, where let queue = Sqw(S, j, e1, υe(e1), e2), then

Sqw(S
′, j, e1, υe(e1), e2) =

{
queue]b 〈ins〉, if queue 6=⊥;
〈υe(e1)〉, o.w.

(4)

– (Next) rhs= #next(), then 〈S, υe〉 ` rhs⇒ 〈S, υe〉.
– (Failure/Success) rhs= #fail(k, e, e1, e2) or #succ(k, e, e1, e2), then for each
ins ∈ υe(e2):

(FAIL/SUCC)
ins �em e2

〈S, υe〉 ` rhs⇒ 〈S′, υe〉
,

where S′.fCon = S.fCon∪newf(k, e, e1, ins, υe) for failure operator, and S′.sCon =
S.sCon ∪ newf(k, e, e1, ins, υe) for success operator;

2. (OPSChain) rhs= op · ops, then

– if op 6= #next, #fail, or #succ, then

(OPSChain1)
〈S, υe〉 ` op⇒ 〈S′, υ′e〉; 〈S′, υ′e〉 ` ops⇒ 〈S′′, υ′′e 〉

〈S, υe〉 ` rhs⇒ 〈S′′, υ′′e 〉
,

– if op = #next, #fail, or #succ, then

(OPSChain2)
〈S, υe〉 ` op⇒ 〈S′, υe〉
〈S, υe〉 ` rhs⇒ 〈S′, υe〉

,

3. (Cond ops) if rhs = cond ? ops1 : ops2 is the conditional operations, then

(IF− TRUE)
〈S, υe〉 ` cond⇒c true; 〈S, υe〉 ` ops1 ⇒ 〈S′, υ′e〉

〈S, υe〉 ` rhs⇒ 〈S′, υ′e〉
,

22 Ping Gong, David Knuplesch, and Manfred Reichert

(IF− FALSE)
〈S, υe〉 ` cond⇒c false; 〈S, υe〉 ` ops2 ⇒ 〈S′, υ′e〉

〈S, υe〉 ` rhs⇒ 〈S, υe〉
,

4. (OPSEQ) rhs = c reaction ; ops, then

(OPSEQ)
〈S, υe〉 ` c reaction⇒ 〈S′, υ′e〉; 〈S′, υe〉 ` rhs2 ⇒ 〈S′′, υ′′e 〉

〈S, υe〉 ` rhs⇒ 〈S′′, υ′′e 〉
,

Following is the definition of conditional expressions valuation.

Definition 18. For ERS configuration 〈S, υe〉 and conditional expression cond, the
valuation cond under configuration, 〈S, υe〉 ` cond⇒c, is defined as follows:

– (Get-Ex) if cond = #ge(j, e1, e2, tc), then

(GETEX− True)
〈S, υe〉 ` #g(j, e1, e2, tc)⇒ 〈S, υ′e〉; υ′e(e1) 6=⊥

〈S, υe〉 ` cond⇒c true
;

(GETEX− False)
〈S, υe〉 ` #g(j, e1, e2, tc) ; 〈S, υ′e〉; υ′e(e1) =⊥

〈S, υe〉 ` cond⇒c false
;

– (Empty) if cond = #empty(j, e1, e2), then

(EMPTY− True)
queue = Sq(S, j, e1, υe(e2)); size(queue) = 0

〈S, υe〉 ` cond⇒c true
;

(EMPTY− False)
queue = Sq(S, j, e1, υe(e2)), size(queue) > 0

〈S, υe〉 ` cond⇒c false
;

– (TCM) if cond = #tcm(e1, e2) ∼ 0, then

(TCM− True)
υe �em e1, υe �em e2, υe(e1).ts ∼ υe(e2).ts

〈S, υe〉 ` cond⇒c true

(TCM− FALSE)
υe �em e1, υe �em e2, υe(e1).ts � υe(e2).ts

〈S, υe〉 ` cond⇒c false
;

– (EVAL) if cond = #eval(constr), then for ins ∈ υe(e),

(EVAL− True)
ins �em e, ins �c constr
〈S, υe〉 ` cond⇒c true

(EVAL− FALSE)
ins �em e, ins 2c constr
〈S, υe〉 ` cond⇒c false

, where e is the involved event in the constr.

Following is devoted to define the evaluations of aggregating operators and aggregating
expression. To distinguish event and aggvar valuations, ERS configuration is extended
to 〈S, υe, υag〉;

For given state S, event ta, and instance ins, similar to Equation 2, the aggregating
mapping for ERS is defined as

λ̄ag(S, ta, ins, a attrs, ω) = χ̄, (5)

where

Rule-based Monitoring Framework for Business Process Compliance 23

– Dom(χ̄) =
⋃
q∈SQ

{q �vs.corr};
– χ(d̄) = ω(q|〈a attrs〉), where d̄ = q �vs.corr and q ∈ SQ;
– SQ = UPQ(S, 0, ta, tr, ins), where tr = ta.

Comparting to the aggregating mapping λ in Equation 2 where all the related instances
are scattered in the trace, λ̄ is basically the same except dealing with the related
instances in working structure which are classified and stored in the queue based on
correlating values(or called grouping values in λ case). Also, note that, aggregating
computing only takes place over beforeIIS.

Definition 19. For ERS configuration 〈S, υe, υag〉 and aggregating operator
#ω(0, e1, g attrs, a attrs, aggvar), the valuation of aggregating operator under config-
uration, denoted as
〈S, υe, υag〉`#ω(0, e1, g attrs, a attrs, aggvar) ⇒ υag[aggvar 7→ av], is defined as fol-
lows:
(AGGOP)

ins �em e1; ([e1 7→ ins], υag) �ag aggcon; av = λ̄(S, e1, ins, a attrs, ω)

〈S, υe, υag〉 ` #ω(e1, g attrs, a attrs, aggcon, aggvar)⇒ υag[aggvar 7→ av]

, where ins ∈ υee1.

Definition 20. For ERS configuration 〈S, υe, υag〉 and aggregation operator
#ag(aggops, aggcon), where aggops = aggop; aggops′, the valuation of aggregation ex-
pression is defined as follows:

(AGGCOND− TRUE)
〈S, υe, υag〉 ` aggop⇒ υ′ag; 〈S, υe, υ′ag〉 ` aggops′ ⇒ υ′′ag; ([e1 7→ ins], υ′′ag) �ag aggcon

〈S, υe, υag〉 ` #ag(aggops, aggcon)⇒c true
;

(AGGCOND− FALSE)
〈S, υe, υag〉 ` aggop⇒ υ′ag; 〈S, υe, υ′ag〉 ` aggops′ ⇒ υ′′ag; ([e1 7→ ins], υ′′ag) 2ag aggcon

〈S, υe, υag〉 ` #ag(aggops, aggcon)⇒c false
;

For ERS, its configuration is the basis notion for its execution semantics.

Definition 21. For events indexed reaction system ers and working structure ws, the
configuration of ers is a 2-ary 〈S, υe〉, where S = (Siis, SfCon, SsCon), Siis : {0, 1} ×
EVENT× EVENT× VTuple⇁ SEQ(INS) is the state of ws representing the instantaneous
contents of queues in the indexed instances structures in ws, SfCon/SsCon represents
the content of failure/success container at state S, and υe : EVENT ⇁ SEQ(INS) is the
events valuation at state S.

For given ERS ers, the initial configuration cg0 is a configuration with the initial
state S0 and intial event valuation υe0 , where υe0(e) =⊥ for each event e and S0(i, ta, tr, vt) =⊥,
for each i ∈ {0, 1}, ta, tr ∈ EVENT and vt ∈ VTuple, S0.fCon = ∅, and S0.sCon = ∅;
its violated configurations are the configurations with the violated state, which is the
state S with size(S.fCon) > 0; its partially compliant configurations are with the
states satisfying size(S.sCon) > 0 or size(S.fCon) = 0 .

Definition 22. For given ERS ers, its initial configuration cg0, and trace τ :

24 Ping Gong, David Knuplesch, and Manfred Reichert

– (fully compliant) τ is fully compliant with respect to ers up to n, denoted as τ≤n `f
ers, iff, there exists an executing sequence cg0τ(0)cg1τ(1)cg2, · · · , τ(n − 1)cgn
satisfying:
• for each 0 ≤ i ≤ n, if there exists a rule r, such that, if τ(i) �em r.lhs, then
cgi ` r.rhs⇒ cgi+1; otherwise cgi = cgi+1;

• for each 0 ≤ i ≤ n, cgi is not a violated configuration.
– (partially compliant) τ is partially compliant with ers up to n, denoted as τ≤n `p
ers, iff, it satisfies the conditions of fully compliant, except for (2), cgn is partially
compliant.

– τ is fully(partially) compliant with respect to ers, denoted as τ `f ers (τ `p ers),
iff, τ≤n `f ers (τ≤n `p ers) and n = |τ |.

From the definition, it is known that, the violated/compliant of the trace is decided
by the failure/success container. For better shaping the compliant situation of the
trace, it is capable for ers to introduce some relevance metric, e.g., compliance ratio
size(S.sCon)/(size(S.sCon) + size(S.fCon)), however, it is not the target issues of
this work and we leave it as future work.

4 Translating from ECL to ERS

In this section, the translation from ECL formula to ERS is determined by two map-
pings: ‖·‖ : EMF → ERS and ‖·‖tmf : TMF → ERS. However, no matter which types of
formula, constructing working structure is essential for their translating.

4.1 Construct working structure

As mentioned above, the structure of IIS is determined by the its correlating tuples and
so is working structure, where the correlating tuple should be extended to include iis
symbol i as (i, target , trigger , corr , b), where i = 0 or 1. In the following, constructing
set of correlating tuples is presented first from given ECL formula, and then the working
structure is created from the correlating tuples.

For event e1, e2 ∈ EVENT and constraint econ ∈ ECON, the correlating sequence for
e1 and e2 in econ, denoted as corr(e1, e2, econ), is a sequence of the attributes of e1

and e2 which occur in the econ. For example, let econ be

e1.user = e2.user && e1.tID = e2.tID

, then corr(e1, e2, econ) =< user , tID >. Furthermore, if econ is empty, then corr(e1, e2,) =<
attrs >, where attrs = attr(e1) ∩ attr(e2). Here, we assume that the correlated at-
tributes would have the same name if two events were correlated. For event e ∈ EVENT,
its clone, clone(e), is a new event same to e except its unique identity: clone(e) ∈
EVENT and clone(e).id 6= e.id. Semantically, for instance ins ∈ INS, ins �em clone(e)
iff ins �em e. The use of clone() operator is in keeping the independency of queues
with the same target.

Then following definition is presented for creating correlating tuples from the event
matching formula. For the conciseness of exhibition, two frequently used tuples are
presented in advance. For correlating constraint econ, events e, e1, and tc = [t1, t2◦),
let two correlating tuples t′, t′′ be:

Rule-based Monitoring Framework for Business Process Compliance 25

t′ = (0, e1, e, corr(e, e1, econ), b),
t′′ = (1, e, e1, corr(e, e1, econ), b),

where b = t2 − t1 and e, e1 will be specified in the following definition.

Definition 23. For given EMF-formula f , the correlating tuples set of f, denoted as
crt(f), is defined recursively as follows, where e = tr(f):

– if f = e or ors(e), then crt(f) = ∅ ;
– if f = constr when(f1), then crt(f) = crt(f1) ;
– if f = before(tc, f1, e, econ), then crt(f) = crt(f1) ∪ T , where

T =

{
{t′}, if f is not over-lapped;
{t′} ∪ {t′′}, o.w.

(6)

,where e1 = tr(f1);
– if f = after(tc, e, f1, econ), then crt(f) = crt(f1) ∪ {t′′}, where e1 = tr(f1).
– if f = beforeSince(tc, f2, f1, e, econ), then

crt(f) = crt(before(tc, f2, e, econ)) ∪ {t′} (7)

, where e1 = tr un(f1);
– if f = afterUntil(tc, e, f1, f2, econ), then crt(f) = crt(after(tc, e, f2, econ)) ∪
{t′} ∪ {t′′},where e1 = tr un(f1);

– if f is an aggregation formula, let f = aggregate(aggexp1, aggexp2)with aggcon,
and

aggexp1= ω1(tc1, f1, g attrs1, a attrs1, aggcon1) to aggvar1,
aggexp2= ω2(tc2, f2, g attrs2, a attrs2, aggcon2) to aggvar2,

then crt(f) = crt(f1 & f2) ∪ {t1, t2}, where

t1 = (0, ea1 , e
′, g attrs1, b1),

t2 = (0, ea2 , e
′, g attrs2, b2)

(8)

, where e′ = tr(f1), bi the bound of tci, and eai is new event with eai = clone(e′)
for i ∈ {1, 2}.

– if f = ! f1, then crt(f) = crt(f1).
– if f = f1 op f2, then crt(f) = crt(f1) ∪ crt(f2) ∪ {t}, where

t = (1, e, ef , attrs,) (9)

,where ef is a new event with ef = clone(e), attrs = attr(e), and op ∈ {&, |,→ }
.

In the definition, creating correlating tuple means that, a new indexed queue will be
added into working structure to store target instances for the correlated trigger. For
the base cases, e or ors(e), it is not necessary to store any instances. For the before-
type formula, as specified in Eq.(6), if f is not overlapped, then f1 is its before-type
subformula and if f1 was satisfied then the target of f , also the trigger and the only
decider of f1, needed to be stored for the trigger of f , which is exactly covered by t′;
otherwise, whether the desired target of f , also the trigger of f1, was occurred or not
would be decided by the decider of f1 which possibly occurs before or after the trigger

26 Ping Gong, David Knuplesch, and Manfred Reichert

of f , then both t′ and t′′ are needed to cover these two cases. For the beforeSince-type
formula, the Eq.(7) describes, the correlating tuples of f include the tuples from its
before-type formula and also the new tuple t′ which corresponds to the unmatched
instances w.r.t. trigger of f1. For the aggregation-type fomrula, with two aggexp as in
the definition, the crt(f) should firstly include crt(f1&f2) to enable the generated
working structure to cover the rule systems for f1 and f2. In addition, for supporting
the aggregating operators ω1 and ω2, t1 and t2 are needed to describe the independent
queues for storing the triggers of f1 and f2 respectively, where the grouping attributes
are used as correlating sequences as specified in Eq.(8). For the compositional EMF-
formula, besides including the correlating sequences set for its subformulas, the crt(f)
also contains the new tuple t as Eq.(9), which characterizes an independent queue in
afterIIS for storing the trigger of f and also for communicating the satisfiable situations
for the subformulas.

Based on the correlating tuples, the working structure for event matching formula
can be constructed as follows.

Definition 24. For correlating tuples set crt, the working structure from crt, denoted
as ws(crt), is constructed as:

– (fContainers/sContainters) sCon=fCon=∅ .
– (beforeIIS/afterIIS) for the IIS of ws(crt), where i ∈ {0, 1}:
• (Target) Target = {e | for each t = (i, e, e′, corr, b) ∈ crt}.
• (Trigger) Trigger = {e′ | for each t = (i, e, e′, corr, b) ∈ crt}.
• (VStructure) VS = {(corr, b,) | for each t = (i, e, e′, corr, b) ∈ crt)}, where

‘ ’ represents the empty mapping for θ.
• (δ) δ(e)(e′) = (corr, b,), if there exists a tuple (i, e, e′, corr, b) ∈ crt}.

Furthermore, for two working structure ws1 and ws2, then the merging of ws1 and
ws2, denoted as ws1]ws ws2, is ws = (beforeIIS , afterIIS , fCon, sCon) where:

– fCon = ws1 .fCon and fCon = ws1 .fCon.
– (IIS) let iis ∈ {beforeIIS , afterIIS} and it is created as follows(i ∈ {0, 1}):
• Target = iis1 .Target ∪ iis2 .Target.
• Trigger = iis1 .Trigger ∪ iis2 .Trigger.
• VS = iis1 .VS ∪ iis2 .VS.
• δ(e)(e′) = (corr, b), if (corr, b) = iis1.δ(e)(e

′) or (corr, b) = iis2.δ(e)(e
′) for

each e ∈ iis.Target and e′ ∈ iis.Trigger.

For given EMF-formula f , its working structure ws(crt(f)) will be abbreviated as ws(f)
for simplicity. Then based on above definitions, the working structure for TMF-formula
could be created as following definition.

Definition 25. For given TMF-formula f, its working structure, denoted as wstmf(f),
is constructed based on the types of f as follows:

– wstmf(f) = ws(f1), if f = always(f1).
– wstmf(f) = ws(f1)]ws ws({t}), if f = exists(f1), where

t = (1, e1, end, corr(e1, end,), 1) (10)

, and e1 = tr(f1).

Rule-based Monitoring Framework for Business Process Compliance 27

– wstmf(f) = ws(f1), if f =!f1.
– wstmf(f) = ws(f1)]ws ws(f2), if f = f1 op f2, where op ∈ { &&, ‖ }.

In the definition, correlating tuple t as Eq.(10) is used to specify the related queue
for storing the trigger instances which will be assessed to check whether f1 was satisfied
before the end of trace.

Note that, in the above when adding new correlating tuple, there might be the case
of two correlating tuples intersecting with each other, which corresponds to two tuples
t1 and t2 ,

t1 = (i, e11, e12, < attr1 >, b1)
t2 = (i, e21, e22, < attr2 >, b2),

with e11 = e21 and e12 = e22. For such intersecting case, there would result in sharing
memory for different rules in the rule system, however, if there exists some conflicted
actions from different reactions over such sharing memory, e.g., writing and deleting
operators, then different execution orders of these actions would result in inconsistency
outcomes. For such issue, it would be solvable by extending current δ mapping and/or
using clone operator to replicate the target event.

0

e16

 e14

(caseID, _,_) Value Structures

Target Events

Trigger Events

WS

1

e14

e16 end

IIS symbols

(caseID, _,_) (caseID, _,_)

Fig. 3. The working structure for formula f in Eq.(11).

Example 4. Considering the TMF-formula

f1 = always(afterUntil(, e14, ors(e16), end,
e14.caseID = ors(e16).caseID &&
e14.caseID = end.caseID))

(11)

, where events defintions are presented in following evaluation section, it specifies that
for each running instances, after each e14 instances, e16 instances are not allowed to
occur. Its working structure is depicted as Fig. 3, where leaf nodes in left dashed part
are created based on the Def.23 for afterUntil -type formula, and the right dashed part
follows the defintion for after -type formula. Note that, in the tree, one path from root
to the leaf node corresponds to one correlating tuple, and for the leaf node (caseID , ,),
caseID is the correlating attribute and the first “ ” represents no boundness for the
queue.

28 Ping Gong, David Knuplesch, and Manfred Reichert

4.2 Translating to ERS

In this section, the rules system for the ECL formula will be presented recursively based
on the structure of formula.

Before diving into the translation, some operator over rules are needed. For rules
set R, a rule r, an event e, events set E, operations ops, and operation op, op1, the
needed rule operators are defined as follows:

– (rule selection) R † (e): select from R the rule with e as its left hand.

R † (e) =

{
r, if ∃ r ∈ R, s.t., r.lhs = e,
∅, o.w.

– (rule deleting) R\r(e): delete from R the rule with e as its left hand.

R\r(e) =

{
R\{r}, if ∃ r ∈ R, s.t., r.lhs = e,
∅, o.w.

– (rules merging in chain) R]c (r): add rule r into set R, if there was the other rule
r′ in R sharing the same left hand of r, then right hand of r was chained to right
hand of r′.

R]c (r) =

(R\{r′}) ∪ {r′′}, if r′ = R † (r.lhs),

where r′′.lhs = r′.lhs and
r′′.rhs = r′.rhs · r.rhs

R ∪ {r}, o.w.
– (rules merging in sequence) R]s {r}: add rule r into set R, if there was the other

rule r′ in R sharing the same left hand of r, then right hand of r was sequentially
appended to right hand of r′.

R]s {r} =

(R\{r′}) ∪ {r′′}, if r′ = R † (r.lhs),

where r′′.lhs = r′.lhs and
r′′.rhs = r′.rhs ; r.rhs

R ∪ {r}, o.w.
– (rule renaming) R[e : op1 � ops]: replace in R with ops for all the op1 occurred

in the right hand of e rule. Also, it is possibly extended to the events set case
R[E : op1 � ops].

– (operation deleting) R\o{op}: delete operation op occurred in rules of R.
R\o{op} = R[E : op� #next], where E = { r.lhs | r.rhs ∩ op 6= ∅, r ∈ R}.

– (rule concreting for ors) R ⇓c E: for all the rules in R with ors event as left hand,
replace the left hand of these rules for each events from E which are not the base
for the ors event.
R ⇓c E = {r | r.lhs ∈ E\{e} and r.rhs = r′.rhs, for each r′ ∈ R with r′.lhs =
ors(e)}.

Note that, for rules concerting operator, if there was no rules in R with ors event as
left hand, then the result would be empty set.

Based on above rule operators, the translating for given EMF formula is presented
in the following.

Definition 26. For given events set E and event matching formula f, the mapping
‖ ‖ : EMF → ERS is the translation from EMF formula to ERS, where the working
structure of ‖f‖ is ws(f) and the rules system (E,OPS , R) with the rules set R = (R′]c
(R′ ⇓c E))\{ors}, where R′ is constructed recursively. Let e1 ∈ tr(f1), e2 ∈ tr(f2),
and e′ ∈ tr un(f1), then:

Rule-based Monitoring Framework for Business Process Compliance 29

– if f = e, then

R′ = { e→ #succ(1, , , e), ors(e)→ #fail(1, , e, ors(e))}.

– if f = ors(e), then

R′ = { e→ #fail(1, , ors(e), e), ors(e)→ #succ(1, , , ors(e))}.

– if f = constr whenf1, then

R′ = (‖f1‖.R)\o{#fail}[de(f1) : #succ� ops)];
ops = #eval(constr)?#succ(6, , , e1) : #fail(6, , , e1).

– if f = before(tc, f1, e, econ), then

R′ = R+]c R∗,

where R+ and R∗ are defined based on following cases and time interval tc is the
contrary of tc:
• f is non-overlapped,

R+ = {e→ #ge(0, e1, e, tc)?#succ(2, , e1, e) : #fail(2, , e1, e)}
R∗ = (‖f1‖.R)[de(f1) : #succ� #w(0, e1, e))]\o{#fail};

(12)

• f is overlapped,

R+ = { e→ #ge(0, e1, e, tc)?#succ(2, , e1, e) : #w(1, e, e1),
end→!#empty(1, e, e1)?fail(2, , e1, e) }

R∗ = (‖f1‖.R)[de(f1) : #succ� ops]\o{#fail};
ops = #ge(1, e, e1, tc)?#d(1, e, e1) ·#succ(2, , e1, e) : #w(0, e1, e)

(13)

– if f = after(tc, e, f1, econ), then

R′ = R+]c R∗,

,where

R+ = { e→ #w(1, e, e1),
end→!#empty(1, e, e1)?#fail(3, , e, e1) }

R∗ = (‖f1‖.R)[de(f1) : #succ� ops)\o{#fail}.
ops = #ge(1, e, e1, tc)?#d(1, e, e1) ·#succ(3, , e, e1).

– if f = beforeSince(tc, f2, f1, e, econ) and f1 is non-overlapped, then

R′ = R+]c (R∗\o{#succ})

, where

R+ = (‖before(tc, f2, e, econ)‖.R)[e : #succ� ops];
R∗ = (‖f1‖.R)[e′ : #fail � #w(0, e′, e)]
ops = con ? #fail(4, e2, e

′, e) : #succ(4, e2, e1, e)
con = #ge(0, e′, e, tc)&&#tcm(e′, e2) > 0

– if f = afterUntil(tc, e, f1, f2, econ) and f1 is non-overlapped, then

R′ = R̄]c R+]c (R∗\o{#succ})

30 Ping Gong, David Knuplesch, and Manfred Reichert

, where

R+ = { e→ #w(1, e, e′)}
R∗ = (‖f1‖.R)[e′ : #fail � ops1]
R̄ = (‖after(tc, e, f2, econ)‖.R)[de(f2) : #succ� ops2]

ops1 = #ge(1, e, e′, tc)?#d(1, e, e′) ·#w(0, e′, e)
ops2 = #ge(0, e′, e, tc) ? #fail(4, e, e′, e2) : #succ(4, e, e1, e2)

(14)

– if f =!f1, then

R′ = ‖f1‖.R[de(f1) : #succ� #fail,#fail � #succ].

– if f = f1 & f2, then

R′ = R∗1]c R∗2

, where

R∗1 = (‖f1‖)[de(f1) : #succ� ops]
R∗2 = (‖f2‖)[de(f2) : #succ� ops]
ops = #ge(1, ef , e,)?#d(1, ef , e) ·#succ(7, , , e) : #w(1, ef , e).

– if f = f1 | f2, then

R′ = R+]c R∗1]c R∗2

, where
R+ = { e→ #w(1, ef , e)

end→ !#empty(1, ef , e)?#fail(7, , , e)}
R∗1 = (‖f1‖)\o{#fail}[de(f1) : #succ� ops]
R∗2 = (‖f2‖)\o{#fail}[de(f2) : #succ� ops]
ops = #ge(1, ef , e,)?#d(1, ef , e) ·#succ(7, , , e)

(15)

From above definition, it shall be seen that, the integral part of translation is creating
rule system, which should follow the semantics of ECL formula. Basically, for given
formula f , creating its rule system is to specify, how to decide at decisional time points
the compliant/violation state of the rule system, after instances of triggers from tr(f)
and tr un(f) occur, where decisional time points refer to the arrivals of its deciders
instances.

For before-type formula f , the translation is devided into two cases based on whether
f is of overlapped or not. If f is not overlapped, then f1 would be non-overlapped before
subformula of f , which means the decider of f1, also its trigger, is requried to occur
before e. Thereby, as specified by e rule in R+ of Eq.(12), at time point of e instance
arriving, it is decidable for e regarding to the compliant/violation of f by checking
whether desired e1 instance was occurred before. However, if f is overlapped, its rule
system is more complicated, since the decider e can not make full decision when the
decider instance of f1 occurs after certain e instance. Thereby, as specified in Eq.(13),
e rule copes with the case of desired e1 instance as occurred before, end rule is to the
case of no desired e1 instances occurred, and operations ops in rules of f1 deciders deal
with the case of desired e1 instance occurred but decided at time points of f1 deciders,
whose instances might occur after certain e instance. For afterUntil formula, firstly,
the trigger e instance should be writted into the afterIIS to require desired outcomes

Rule-based Monitoring Framework for Business Process Compliance 31

happened after. R̄ is used to decide whether e instance is followed by desired e2 at time
points of f2 deciders arriving. If the desired e2 occurred for e instance, operations ops2

would decide for such instance the compliant/violation of f , by checking whether after
the e instance there is e′ instance occurrence, which is corresponding to violation of f1

and determined by R∗. For the disjunction of two EMF formulas, one of rule systems
for these formulas needs to be in compliant state for trigger instances. Thereby, as
specified in Eq.(15): firstly, the trigger e instance is written into afterIIS to require
one of rule systems for subformulas to be compliant; then two R∗ devote to decide
the compliant situation for each subformulas, and if one of them is compliant, the rule
system for the disjunction is compliant and otherwise, end rule would be triggered later
to invoke the fail operation.

Following definition is the translation for aggregation formula.

Definition 27. For aggregation formula f = aggregate(aggexp1, aggexp2)
with aggcon and let

aggexp1 = ω1(f1, g attrs1, a attrs1, aggcon1) to aggvar1,
aggexp2 = ω2(f2, g attrs2, a attrs2, aggcon2) to aggvar2,

where f1 and f2 are of non-overlapped before type formulas, then the translation ‖ ‖ :
EMF → ERS for aggregation formula f is ‖f‖, where ws(f) is its working structure
and its the rules system is (E,OPS,R) with

E = ‖f1‖.E ∪ ‖f2‖.E,
R = (‖f1 &f2 ‖.R)[e : #succ� c ops]\o{#fail}

, where e = tr(f1) and

c ops = w ops ·#ag(op1.op2, aggcon) ? #succ(5, , , e) : #fail(5, , , e)
w ops = #w(0, ea1 , e) ·#w(0, ea2 , e)
op1 = #ω1(0, ea1 , g attrs1, a attrs1, aggcon1, aggvar1)
op2 = #ω2(0, ea2 , g attrs2, a attrs2, aggcon2, aggvar2)

(16)

From the definition, it shall be seen that, before invoking aggregation operations, rule
system for the conjunction of f1 and f2 should be in compliant state which is decided by
e instance, i.e. the trigger and also decider for f1 and f2; then as specified in Eq.(16), the
instance is written sequentially into two queues and also two aggregation operations
are invoked to do the aggregation over related data queues; finally, the success/fail
operation is invoked based on the aggcon result evaluated by aggregation data.

Based on the translation for EMF formula, following is devoted to the TMF formula.

Definition 28. For given events set E and TMF f, the mapping ‖·‖tmf : TMF → ERS
is the translation from TMF formula to ERS, where the working structure of ‖f‖tmf
is wstmf(f) and its rules system is (E,OPS , R). Let e1 ∈ tr(f1), e2 ∈ tr(f2), and
e′ ∈ tr un(f1)), then its rule set R is constructed as follows:

– if f = alwaysf1, then R = ‖f1‖.R;
– if f = existsf1, then

R = R∗]c R+,

where

32 Ping Gong, David Knuplesch, and Manfred Reichert

R∗ = (‖f1‖.R)[de(f1) : #succ� #w(0, e1, end)]\o{#fail}
R+ = { end→ #ge(1, e1, end,) ? #succ(8, , , e1) : #fail(8, , , e1)}

– if f =!exists(f1), then R = ‖always(!f1)‖tmf .R;
– if f =!always(f1), then R = ‖exists(!f1)‖tmf .R ;
– if f = f1&&f2, then R = ‖f1‖tmf .R]s ‖f2‖tmf .R ;
– if f = exists(f1) ‖ exists(f2), then

R = R∗1]s R∗2
, where

R∗1 = (‖exists(f1)‖tmf .R)[end : #fail � ops]
R∗2 = (‖exists(f2)‖tmf .R)\r{end}
ops = (‖exists(f2)‖tmf .R) † {end}.

(17)

For the always-type formula, its rule system is the same to the rule system of its
EMF counterpart, whereas, end rule is freqently used in the rule system for exists-type
formula, since the eventuality of exists. For the disjunction of two exists formulas,
as specified in Eq.(17), R∗1 catchs that, if rule system for first exists formula is in
compliant, so is the whole rule system, otherwise, the result of whole rule sytem is
determined by the rule system of second exists formula.

Example 5. Considering following two formulas,

f2 = always(afterUntil(, e15, ors(e16), end,
e15.caseID = ors(e16).caseID &&
e15.caseID = end.caseID))

f11 = f1 && f2

(18)

, where f11 is ECL formula for rule R11 presented in use case and f1 is the formula in
Eq.(11), then following Def.28, ‖f11‖tmf is the merging of ‖f1‖tmf and ‖f2‖tmf , which
are generated respectively as Eq.(14) in the Def.26. And the rules set of ‖f11‖tmf is
presented as follows:

ERS :

e14 -> #w(1, e14, e16) . #w(1, e14, end)
e15 -> #w(1, e15, e16) . #w(1, e15, end)
e16 -> (#ge(1, e15, e16) ? #d(1, e15, e16). #w(0, e16, e15))

; (#ge(1, e14, e16) ? #d(1, e14, e16). #w(0, e16, e14))

end -> (#ge(1, e15, end) ? (!#ge(0, e16, e15) ?
#succ(4, e15, ors(e16), end) : #failure(4, e15, e16, end)))

; (#ge(1, e14, end) ? (!#ge(0, e16, e14) ?
#succ(4, e14, ors(e16), end) : #failure(4, e14, e16, end)))

For formula f11, its triggers include e14 and e15, and end is its only decider. When e14

instance occurs, it is written as a fact into two places: one is for e16 and the other is
for end . When e16 instance occurs, rule system will access e14 to check whether related
e14 instance has already occurred or not. If occurred, e16 instance will be saved. And
then, when end instance arrives, rule system will check the existances of e14 instance
and related e16 instance. Then based on the checking result, the compliant/violation
of rule system can be determined through success and fail operation respectively. For
e15, the operation process is similar.

Rule-based Monitoring Framework for Business Process Compliance 33

4.3 The soundness of translation

Now, it is the time to consider the soundness of the above translation. As known from
above, the working structure plays essentially fundamental roles in the interpretation
and execution of ERS. Then it is necessary to make sure firstly the coverable relation
between working structure and rules system.

Lemma 1. For given TMF-formula f, the rule system of ‖f‖tmf is covered by the
working structure wstmf(f).

The proof can be completed by comparing the definitions for creating working structure
and rule systems based on the type of formula.

Semantically, TMF formula is to specify the properties of running trace, while the
EMF formula is for the properties of certain time-point. Based on Lemma 1, following
lemma is presented for the relation between EMF formula and its corresponded rule
system generated by ‖ ‖. Also, without loss of generality, we assume that each running
traces are ended with end instance.

Lemma 2. Let ‖·‖ : EMF → ERS be the translating mapping, then for EMF formula
f and trace τ , and integer i > 0, the follows hold:
(1) if τ(i) 2 f , then:

– τ≤i 0f ‖f‖, if f is non-overlapped before-type formula.

– τ 0f ‖f‖, o.w.

(2) ifτ 0f ‖f‖, then τ(i) 2 f for some i < |τ |.

Proof. proof for statement(1) by the induction on formula structure.

– (base)f = e. if τ(i) 2 f , then τ(i) does not match e, then within the rule system of
‖f‖, the rule for ors(e) would be triggered and make ‖f‖ transit to violated state,
then τ≤i 0f ‖f‖. It also true for f = ors(e) by similar proof.

– f = constr whenf1. if τ(i) 2 f , then by the semantics of when-type formula,
τ(i) � f1, τ(i) � e′, and [e′ 7→ τ(i)] 2c constr. Then τ `p ‖f1‖ and then based on
the rules system of ‖f‖, τ 0f ‖f‖.

– f = before(tc, f1, e, econ). if τ(i) 2 f , then τ(i) � e, and let

Trig = { τ(j) | 〈τ(j), τ(i)〉 �t tc, and [e′ 7→ τj , e 7→ τi] �ec econ}, (19)

, where e′ = tr(f1), then for each τ(j) ∈ Trig, τ(j) 2 f1. Following, we should
prove that, for all such τ(j), it can lead ‖f1‖ to viloated state based on the type
of f1.

• f1 is non-overlapped before-type formula. By induction, τ≤j 0f ‖f1‖. Suppose
that, τj does not lead ‖f1‖ to the violated state. Then, since τj � e′, then it
would fire and make the ‖f1‖ reach the success state, based on the rules in
‖f1‖. It means, there would be desired event instances occurred before. Hence,
τ(j) � f1. It is a contradiction. Then all such τ(j) would lead ‖f1‖ to violated
states. Following the rules of ‖f‖, it can be inferred that, the τ≤i could lead
‖f‖ to violated state. Then τ≤i 0f ‖f‖.

34 Ping Gong, David Knuplesch, and Manfred Reichert

• f1 is an after-type formula. By induction, τ 0 f1 is true. Suppose that, there
exists one τ(j) ∈ Trig which does not lead ‖f1‖ to the violated state. Since
τ(j) � e′, then based on rules in R+ for after type formula, τ(j) would be
stored and when end instance occurred, the τ(j) would already be deleted by
the related rules in R∗. It means that, after τ(j), there would be would be some
desired instance occurred and then for such τ(j) τ(j) � f1. It is a contraction.
Then for each such τ(j), there do not exist desired instances occurred after.
Based on rules of ‖f‖, τ would lead ‖f‖ to violated state, i.e., τ 0f ‖f‖.

• f1 is an overlapped before-type formula. By induction, τ 0 f1 is true. Similar
to above cases, it is true that, for each τ(j) ∈ Trig there is a sub-trace τ ′ with
τ(j) ∈ τ ′ which leads ‖f1‖ to violated state. Considering the rules of ‖f‖, it can
be inferred that, the sub-trace after combing event e’s instance would violate
‖f‖, i.e., τ 0f ‖f‖.

– f = after(tc, e, f1, econ). if τ(i) 2 f , then τ(i) � e, and let

Resp = { τ(j) | 〈τ(i), τ(j)〉 �t tc, and [e′ 7→ τj , e 7→ τi] �ec econ} (20)

, then for all τ(j) ∈ Resp, τ(j) 2 f1 and then τ(j) � e′. By induction, τ(j) 0f f1 is
true. From the fact of τ(j) � e′, then τ(j) fire ‖f1‖ and then sub-trace τ≥j would
lead it to violated state, otherwise there would be a contradiction as shown above.
Based on rules of ‖f‖, then sub-trace τ≥i would violate ‖f‖.

– Case 4. f = beforeSince(tc, f2, f1, e, econ). if τ(i) 2 f , then τ(i) � e, and let

Trig = { τ(j) | 〈τ(j), τ(i)〉 �t tc, and τ(j) � f2}.

Then, for all the τ(j) ∈ Trig, there exists at least one t(k) with j < k < i and
[e′ 7→ τ(j), ē 7→ τ(k), e 7→ τ(i)] �ec econ, but τ(k) 2 f1.
• if Trig = ∅. Then for all τ(j) with 〈τ(j), τ(i)〉 �t tc, τ(j) 2 f2 would be true.

then by induction, τ≤j 0 f2. From Case 2, τ≤i 0 before(tc, f2, e, econ
′), where

econ′ is the part of econ only related to e′ and e. Then based on the rules of
‖f‖, τ≤i 0 ‖f‖.

• if Trig 6= ∅. By the induction on τ(k) 2 f1, τ≤k 0 ‖f1‖, then based on the rules
of ‖f‖. the writing operator would be executed and then following the rule of
r(e) in ‖f‖, the condition would be true and then the violated state is reached,
then τ≤i 0 ‖f‖.

– Case 5. f = afterUntil(tc, ef1, f2, e, econ). if τ(i) 2 f , then τ(i) � e, and let

Resp = { τ(j) | 〈τ(i), τ(j)〉 �t tc, and τ(j) � f2}.

Then, for all the τ(j) ∈ Resp, there exists at least one t(k) with i < k < j and
[e′ 7→ τ(j), ē 7→ τ(k), e 7→ τ(i)] �ec econ, but τ(k) 2 f1.
• if Resp = ∅. Then for all τ(j) with 〈τ(j), τ(i)〉 �t tc, τ(j) 2 f2 would be true.

then by induction, τ≤j 0 f2. From Case 3, τ≤i 0 after(tc, e, f2, econ
′), where

econ′ is the part of econ only related to e′ and e. Then based on the rules of
‖f‖, τ≥i 0 ‖f‖.

• if Resp 6= ∅. By the induction on τ(k) 2 f1, τ≥i 0 ‖f1‖, then based on the rules
of ‖f‖. the deleting and writing operator would both be executed and then
following the rule of r(e′) in ‖f2‖, the condition would be false and then the
violated state is reached, then τ≥i 0f ‖f‖.

– Case 6. f =!f1. if τ(i) 2 f , then τ(i) � f1, then τ `p f1. And then τ 0f !f1.

Rule-based Monitoring Framework for Business Process Compliance 35

– Case 7 f = f1&&f2. if τ(i) 2 f , then τ(i) 2 f1 or τ(i) 2 f1. Then by induction,
τ(i) 0f f1 or τ(i) 0f f1. No matter which cases, based on rules of ‖f‖, it is correct
for τ 0f ‖f‖.

Proof for statement(2) by induction on formula structure. If τ 0f ‖f‖, based on the
rule system for ‖f‖:

– (base) f = e. There exists integer i < |τ |, τ(i) ` trun(f). Then τ(i) 2 f . Similar
proof for f = ors(e).

– (when) f = constr when f1. Then there exist integer i and trace τ ′, s.t., τ(i) � e1,
τ(i) ∈ τ ′, τ ′ `f ‖f1‖, and τ(i) 2 f1. Based on statement(1), τ(i) � f1. Thereby,
following the semantics of when formula, then τ(i) 2 f .

– (before) f = before(tc, f1, e, econ). Then there would be integer i < ‖τ‖, s.t., τ(i)
makes ‖f‖ transit to violated state. For each τ(j) ∈ Trig as Eq.19, we should prove
τ(j) 2 f1 by types of f .

• f is non-overlapped formula. Then f1 would be of before type. Based on the
rule for event e in ‖f‖, it can be inferred that, for each τ(j) ∈ Trig, there
exist partial trace of τ , τ ′, such that, τ(j) ∈ τ ′, τ(j) � e′, and τ ′ 0f f1. Then
by induction, τ(i) 2 f1. Then for τ(i), each τ(j) ∈ Trig satisfies τ(j) 2 f1,
thereby, τ(i) 2 f .
• f1 is after type formula. Based on the rule for end event, there would at least

exist one e instance, say τ(i), which does not have desired instance in Trig.
Then for each τ(j) ∈ Trig, based on the rules of ‖f1‖, there exists τ partial
trace τ ′, s.t., τ(j) � e′, τ(j) ∈ τ ′, and τ ′ 0f f1, then by induction, τ(j) 2 f1.
Then τ(i) 2 f .

• f1 is overlapped before formula. similar to after type.

– (after)f = after(tc, e, f1, econ). Then from the rule for end event, it is inferred
that, there exists integer i ≤ |τ |, s.t., τ(i) � e, and also the set Resp as Eq.20,
such that, for each τ(j) ∈ Resp, it can not trigger ‖f1‖ to transit to the success
state in τ . If Resp = ∅, then for τ(i), it does not have desired τ(j) for f1. By the
semantics of after type formula, τ(i) 2 f . On the other hand, if Resp 6= ∅, then
for each τ(j) ∈ Resp, there would exist τ ’s partial sub-trace τ ′, s.t., τ(j) ∈ τ ′ and
τ ′ 0f f1. By induction, it can be inferred that, τ(j) 2 f1. Also by the semantics of
formula, τ(i) 2 f .

– (beforeSince)f = beforeSince(tc, f2, f1, e, econ), where f1 is non-overlapped before
emf formula and let f ′ = before(tc, f2, e, econ

′). Since τ 0 f . Then the fail oper-
ation would be invoked to execute at least one time. Based on rule system of ‖f‖,
it could be known, there are two places enable invoking fail operations.

• Case 1. fail in ‖f ′‖. Then τ `f ‖f ′‖. By the induction, there exists τ(i), s.t.,
τ(i) 2 f ′. Then τ(i) 2 f .
• Case 2. fail in ops operations. Then it infers that, there exists event e instance
τ(i) triggering ‖f ′‖ to success state, and also event e′ instance τ(k) with k < i
which triggers ‖f1‖ transit to violated state. Then for τ(i), since it makes ‖f ′‖
transit to success state, it means, there exists τ partial sub-trace τ ′ and τ ′ `f f ′.
By statement 1, then there exists event e2 instance τ(j) with τ(j) � f ′ and also
j < k from the con condition in rule system. Furthermore, for τ(k), there would
exist τ ′′s partial sub-trace τ ′′, such that, τ ′′ 0 f1. By induction, τ(k) 2 f1 is
true. Combing all these, τ(i) 2 f is true.

36 Ping Gong, David Knuplesch, and Manfred Reichert

– (afterUnitl) f = afterUnitl(tc, e, f1, f2, econ). where f1 is non-overlapped after
emf formula and let f ′ = after(tc, e, f2, econ

′). Since τ 0 f . Then the fail oper-
ation would be invoked to execute at least one time. Similar to sinceBefore, it is
also true that, there exists integer i < |τ |, s.t., τ(i) 2 f .

– (!)f =!f1.if τ 0f ‖f‖, then based on the rule system of ‖f‖, by exchanging the
succ and fail operations in rule system of ‖f1‖, it infers that, there would exists τ ’s
partial sub-trace τ ′, s.t., τ ′ ` ‖ff1‖. Then by statement 1, there would be integer
i < |τ ′|, such that τ ′(i) � f1. Then τ ′(i) 2 f in τ ′. Thereby τ ′(i) 2 f in trace τ is
true since τ ′ is the partial sub trace of τ .

– (&) f = f1&f2. If τ 0f f , then based on the rule system of ‖f‖, there would exist
tau’s partial sub-trace τ ′, such that, event e instance, say τ(i), with τ(i) ∈ τ ′ and
for τ(i), τ ′ 0f f1 or τ ′ 0f f2. Let τ ′ 0f f1, then by induction, τ(i) 2 f1. Then
τ(i) 2 f is true.

– (||) f = f1||f2. If τ 0f f , then also based on rule system of ‖f‖, there exists event
ef instance τ(i), the clone of e, which triggers the fail operation. Then there would
exist τ partial sub-trace τ ′, s.t., τ(i) ∈ τ ′, τ ′ 0f ‖f1‖ and τ ′ 0f ‖f2‖. By the
induction on τ ′, τ(i) 2 f1 and τ(i) 2 f2 would both be true. Then τ(i) 2 f for τ ,
since τ ′ is the partial sub trace of τ .

– (aggregation)f = aggregate(aggexp1, aggexp2) with aggcon. If τ 0f ‖f‖, then
from the rule system, there exists event e instance τ(i) and τ ’s partial sub-trace τ ′,
s.t., τ(i) ∈ τ ′ and τ ′ `f ‖f1&f2‖ for τ(i), which infers τ(i) � f1 and τ(i) � f2. Then
after τ(i) was written into the working structure and two aggregating operations
were executed, there would be aggregating valuation υag, such that, υag 2ag aggcon.
Then combing these, it infers that, τ(i) 2 f .

Within the lemma, statement(1) specifies the soundness for rule system and its EMF
formula. For non-overlapped before formula, its violation could be timely reported by
the rule system; however for overlapped formula, it would be delayed to end time point
for the violation report, if there is not time constraint for the future. Furthermore,
statement(2) assures the completeness for EMF formula and its rule system. I

Based on Lemma 2, it is assured for the relation between TMF formula and its
corresponded rule system generated by ‖ ‖tmf by following theorem.

Theorem 1. Let ‖·‖tmf : TMF → ERS be the translating mapping, then for TMF -
formula f and trace τ , it holds that

(1) if f is of always type, then τ � f iff τ `f ‖f‖;
(2) if f is of exists type, then τ � f iff τ `p ‖f‖.

Proof. By induction on the TMF formula structure.

– for always-type formula.
• (base) f = alwaysf1, where f1 is EMF formula.

(=>) if τ � f , then for each integer 0 ≤ i < |τ |, τ(i) � f1. Then by Lemma 2,
τ `f ‖f1‖. Based on the definition for creating ‖f‖tmf , it is true for ‖f‖tmf =
‖f1‖, then τ `f ‖f1‖tmf .
(<=) if τ `f ‖f‖tmf , then τ `f ‖f1‖. By Lemma 2, then for each integer
i < |τ |, τ(i) � f1. Then τ � f is true.

• (&&) f = f1&&f2, where f1, f2 are the always-type formula.
By the induction, it is true for that, τ � fi iff τ `f ‖fi‖tmf for i ∈ {1, 2}.
Then if τ � f , then τ `f ‖f1‖tmf and τ `f ‖f2‖tmf . Then based on the

Rule-based Monitoring Framework for Business Process Compliance 37

assumption of no intersecting between ws(f1) and ws(f2), it is true for ‖f‖tmf =
‖f1‖tmf]r ‖f2‖tmf . Thereby, it is true,τ � f iff τ `f ‖f‖tmf .

• (!) f =!exists(f1),
if τ � f , then based on the definition, for each integer 0 ≤ i < |τ |, τ(i) �!f1, then
τ � always(!f1). Then based on above prove, it is true for that, τ � always(!f1)
iff τ `f ‖always(!f1)‖emf .

– for exists-type formula.
• (base)f = existsf1.

(=>) for trace τ , if τ � f , then there exists integer i < |τ |, s.t., τ(i) � f1,
then based on Lemma 2, τ `p ‖f1‖. It means that, there is at least one time
of #succ is invoked. Based on the rule specified in R∗ and R+ of ‖f‖tmf , the
succ(8, , , e1) operation would be invoked and executed, which means τ could
lead ‖f‖tmf to partial compliant state, i.e., τ `p ‖f‖tmf .
(<=) if τ `p ‖f‖tmf , then from the rule system, τ `p ‖f1‖tmf . then there exists
i, s.t., τ(i) � f1. Then obviously, τ � f .

• (||)f = exists(f1)||exists(f2).
(=>) if τ � f , then by the definition, τ � exists(f1) or τ � exists(f2). By
the induction, τ `p ‖(fi)‖tmf , for i ∈ {1, 2}. If τ `p ‖(f1)‖tmf , Then by the
rules in R∗1 of ‖f‖tmf , τ `p ‖(f)‖tmf . Else if τ `p ‖(f2)‖tmf , then based on
the rule for end in R∗1 of ‖f‖tmf , when end instance occurred, if ops operation
would be invoked, then based on the reactions of ‖f2‖tmf , it would be true for
τ `p ‖f‖tmf .

• (&&) f = f1&&f2, where f1, f2 are the exists-type formula.
By the induction, it is true for that, τ � fi iff τ `f ‖fi‖tmf for i ∈ {1, 2}.
Then if τ � f , then τ `p ‖f1‖tmf and τ `p ‖f2‖tmf . Then based on the
assumption of no intersecting between ws(f1) and ws(f2), it is true for ‖f‖tmf =
‖f1‖tmf]r ‖f2‖tmf . Thereby, it is true,τ � f iff τ `p ‖f‖tmf .

• (!) f =!always(f1),
if τ � f , then based on the definition, for there exists an integer 0 ≤ i < |τ |,
τ(i) �!f1, then τ � exists(!f1). Then based on above prove, it is true for that,
τ � exists(!f1) iff τ `p ‖exists(!f1)‖emf .

Note that, to make the theorem conciseness, always type is used to refers to always
formulas and their composition by connectives, as well as the negation of exists formula;
exists type is similar and include the negation of always formula. In the theorem,
statement(1) assures the soundness and completeness for always type formula and its
rule system from the translation; and statement(2) presents such relations for exists
type formula and its rules system based on partial compliant sense.

5 Implementation

The bpCMon was implemented in Java. Here, the structure of bpCMon-monitor is
presented as well as basic monitoring procedure. Also, two algorithms are introduced
for the aggregation: reuse-based and statistic B+tree based.

5.1 The implementation of bpCMon-monitor

The basic structure of bpCMon-monitor consists of three parts, working interface,
working structure, and rules system:

38 Ping Gong, David Knuplesch, and Manfred Reichert

– working interface: acts as data reader, in charge of reading, filtering and match-
ing the outside data into the inner system. It is implemented as Java interface
WorkingInterface, including the essential methods:
• Instance next(): read the instance from the data source;
• Event matchToEvent(Instance inst): match the instance to event;
• void init() and void close(): initialize and close the working interface.

– working structure: it is implemented as Java class, which include two IIS and con-
tainers as well as methods to deal with container. For the IIS, it is also implemented
as Java class including an essential map and the methods for operations:
• deltaMap : Map < Integer, Map < Integer, ValueStructure >>: corresponds

to the δ in IIS definition.
• void add(Instance inst, Integer trID): add the instance into the right place

of value structure by vtuple and related event ids;
• Instance get(Integer taID, Instance trigger, Constraint constr, TimeConstraint tc):

get desired taID instance for trigger.
• List < Instance > getAll(Integer taID, Instance trigger,
Constraint constr, TimeConstraint tc): get all the desired taID instances
for trigger.

• void delete(Integer taID, Instance trigger, Constraint
constr, TimeConstraint tc): delete the desired taID instance for trigger.

• boolean isEmpty(Integer taID, Instance trigger): check whether the queue
of taID for trigger is empty or not.

• void aggregate(String op, Instance trigger, AttrSEQ group,
AttrSEQ aggre, Constraint aggcon, String aggVar, Assigment assign): add
trigger into the related queue and then do the op aggregation over all the aggre
values for each group, and finally save the new value referred by aggvar in the
assignment for further using, where Assignment is a class corresponding to
events evaluation in ERS configuration.

– rules system: it is also implemented as Java class including methods for manipu-
lating rules:
• Reactions getReaction(Integer trID): get the reaction for trID, where Reactions

is a interface including method void doReaction(
WorkingStructure ws, Assignment assign) to execute the reaction.

• void replace(Integer trID, int sign, Operation op): replace the final op-
erator, i.e., #succ/#fail in the reaction of trID with op, where final operator
is specified by sign;

• RuleMap rulesJoin(RuleMap other): merging two rule systems, wherein the
sequential operator is used to connect reactions with the same trigger.

Obviously, the real implementation is far complicate than the above. But it is enough
for presenting following basic monitoring procedure of bpCMon-monitor.

Listing 1.3. Basic monitoring procedure

1 PROCEDURE ers_monitoring(ers, workingInterface)
2 Input: ers, workingInterface
3 begin
4 var inst, event, assign;
5 var reaction ;
6 while (true) {

Rule-based Monitoring Framework for Business Process Compliance 39

7 inst = workingInterface.next() ;
8 event = workingInerface.matchToEvent(inst) ;
9 if (read == null) continue ;

10 reaction = ers.rs.getReaction(event) ;
11 if (rhs != null) {
12 assign = new Assignment() ;
13 assign.add(inst) ;
14 reaction.doReaction(ers.workingStructure, assign) ;
15 if (!ers.workingStructure.fCon.isEmpty()) {
16 workingStructure.responseF() ;
17 }
18 if (!ers.workingStructure.sCon.isEmpty()) {
19 workingStructure.responseS() ;
20 }
21 }
22 if (event == endOfRunning) break ;
23 }
24
25 end

As described in the Listing 1.3, bpCMon-monitor do the reactions for each matched
instance until the event of end running is read. For each time of reaction, an assignment
is created and also added the just matched instance for further use. The main use of
assignment is temporally storing the intermediate results generated from operation
executions, e.g. #ge operation, during each time of reaction. After the reaction, in line
15-19, ers monitor responses the compliance situations by checking two containers in
the working structure. Note that, if the bpCMon monitor was used to analysis the logs,
the codes of line 15-19 would be moved out of while-body, that means, the compliance
result would be delayed to be reported for the convenience and also time efficiency.

5.2 The implementation for aggregation

To implement the aggregation for bpCMon, one core issue needs to be considered, how
to efficiently get the statistics over time-bounded queue. Note that, the target instances
have already been grouped into related queues based on the their grouping values. The
prominent property of time-bounded queue is dynamics, as new data would be added
as well as out-of-date data be deleted. As for such issue, the straightforward algorithm
is intuitive and of linear cost with the number of data in the queue, but it is still
too expensive since there might exist tons of rounds for computing the statistics in
aggregation monitoring. Therefore, two different methods are proposed to address the
issue: reusing-based and tree-based.

reusing-based . The method makes use of the fact: the data would stay in the queue
until it was out of date and during its stay, it would continually contribute to the statis-
tics for each rounds. Based on the fact, to get current statistic value, it is not necessary
to recompute statistics over the queue but update previous value by considering only
the data to be out of date and just new added. The method is abstractly presented
as Listing 1.4, where: for the first if, line13-15, the trigger is checked whether it is
relevant for the statistics of current queue, if it is, the previous statistic value stValue
would be updated by this new added instance; otherwise, the trigger would be just
used to evaluate whether the existed data is out of date or not; the while part is used

40 Ping Gong, David Knuplesch, and Manfred Reichert

to update the stValue for the old data. Comparing to recompute the stValue for each
time, reusing based one would be more efficient.

Listing 1.4. Reusing-based aggregating computing

1 PROCEDURE aggregate_reusing()
2 Input: op , // aggregation operator
3 trigger, // new added instance
4 group, // grouping attributes
5 aggre, // aggregating attributes
6 aggcon, // constraint for data selecting
7 stValue. // previous statistics value
8
9 Output: stValue

10 begin
11 var inst, value, it;
12
13 if (queue.isRelated(group, trigger) && aggcon.valueOf(trigger)) {
14 value = inst.getValue(aggre) ;
15 updateByNew(op, stValue, value) ;
16 }
17 inst = queue.getLast() ;
18 while (queue.isOutOfDate(inst, trigger)) {
19 if (aggcon.valueOf(inst)) {
20 value = inst.getValue(aggre) ;
21 aggop.updateByOld(op, stValue, value);
22 }
23 queue.removeLast() ;
24 inst = queue.getLast() ;
25 }
26 return stValue ;
27 end

However, the precondition for using reusing-based algorithm is that, the relation
between the instances and the constraint aggcon is unchanged , which means, for the in-
stance in the queue, if it satisfied aggcon in current round, then it would keep satisfying
the constraint until it was out of date. For example, the constraint, e1.amount ≥ 1000,
is of such sort. However, such precondition is not always true. Taking the constraint
e1.amount ≥ 2 ∗ av as example, where av is the average amount for given period, con-
sidering that, now a new instance with big amount is added into the queue, obviously
the av would become greater, then in the queue some instances, which used to satisfy
the constraint, would not be able to satisfy it again. Such changeability would be pos-
sibly occurred if the constraint aggcon includes aggregating variables. For such case,
the reusing-based method would not suitable.

tree-based . To address above changeability, we link the queue with a variant of
B+tree, named as statistics annotated B+tree, abbreviated as st-tree. The node type
of st-tree is defined as listing 1.5.

Listing 1.5. node type of st-tree

1 Node
2 {
3 keys: K[] ; // keys in the node

Rule-based Monitoring Framework for Business Process Compliance 41

4 left: Node ; // left sibling
5 right : Node ; // right sibling
6 parent : Node ; // parent of node
7 statistics : V ; // statistics value
8 keyAmount : int ; // the amount of keys
9 size : int ; // size of node

10 }
11 InnerNode extends Node
12 {
13 children : Node[] ; // the children of the node
14 }
15 LeafNode extends Node
16 {
17 values : V[] ; // the occurring numbers for keys
18 }

where, K is aggregating values domain for the instances in the queue; V is the st-value
domain. Within the queue, all the aggregating values of the instances are orderly stored
as key in the leaf nodes of the st-tree as well as their occurring numbers as values since
aggregating values might equal for different instances. For the inner node, it stores the
ordered keys which act as the index for searching the key in the leaf, and also includes
statistics value for all the keys stored its descendant leaves. When new instance is
added, its aggregating value is obtained and then as new key inserted into tree. During
the traverse for finding the right place to insert, the st-values of traversed node are
updated by this new key. On the other hand, when out of date instance is to be deleted
from the queue, the aggregating value as key needs also to be deleted from the tree.
Similar to insert key, the st-values for all traversed nodes are also updated by the key.
Besides, the overflow and underflow of nodes need to be deal with for keys adding and
deleting. The basic operators of st-tree are listed as follows:

– insert(key): when new instance is added into the queue. the value of aggregating
property of new instance, as key, is insert into the linked st-tree. Then the method
traverses the tree from root to leaf through ordered nodes, meanwhile, updates the
statistics of each traversed nodes by key, and then inserts the key to right position
of right leaf node and also updates the occurring value of this key.

– delete(key): when some instance in the queue is to be deleted since out of date,
the key w.r.t the instance should also be deleted at same time. The method first
traverse the tree to find the right leaf node, meanwhile, updates the statistics of
each traversed nodes by key, and then deletes the key in the leaf node and reduce
the occurring value of key.

– dealwithOverflow(node): after key is inserted, the size of the node might be equal
to SIZE, then the method will split the node to two nodes and add the mid key up
to the parent as standardly processing in B+tree. However, for st-tree, the statistics
of splitted node should also be updated and splitted.

– dealwithUnderflow(node): after key is deleted, the size of the node might be less
than the half of SIZE, then the method will borrow to the node a key and child
from its sibling, if one of its sibling has enough keys, i.e., greater than the half of
SIZE. If the node surrounds with poor siblings, the method would merge the node
with one of its sibling. During borrowing or merging, the statistics of related nodes
should also be updated.

42 Ping Gong, David Knuplesch, and Manfred Reichert

Note that, for given number of instances in queue n, the time complexity of all above
methods are O(log n). Then by these methods, the contents of queue and the linked
st-tree are synchronized with reasonable cost.

Based on the st-tree, computing the st-value for desired instances in the queue, is
referred to selecting and combing st-values from related nodes in the tree. Here, we
assume that, the aggregating constraint can be specified as key interval form, [k1, k2),
similar to time interval. The tree-based aggregating algorithm is presented as List 1.6,
which consists of two steps: (1) the recursive step, line 17, is to compute the st-value
for the keys with greater than k1; (2) the for part, line 18-25, is to computing the
st-value for inner nodes with keys less than k2. For the base case of the algorithm, it
is corresponding to the leaf node of tree and the st-value is obtained based on the keys
with greater than k1 as well as their occurring number, i.e., statisticsUpdateForLeaf ()
in the algorithm. Note that, it is the only place for computing st-value from the keys
and also the time cost for such computing is a constant with greater than the size
of node. For the inner nodes, the computing is updating current st-value by its child
value, which does not need to compute but just get.

Listing 1.6. st-tree based aggregating computing

1 PROCEDURE aggregate_tree(node, [k1, k2))
2 Input: node, // get the stValue for the node
3 [k1, k2). // key interval
4 Output: stValue.
5 begin
6 var stValue=0, value, index;
7
8 if (node.getNodeType() == Node.LEAFNODE) {
9 for (int i=0; i<node.keyAmount; i++) {

10 if (node.getKey(i)>=k1 && node.getKey(i)< k2)
11 statisticsUpdateForLeaf(stValue,
12 node.getValue(i), node.getKey(i)) ;
13 }
14 } else {
15 for (index=0; index<node.keyAmount; index++)
16 if (node.getKey(index)>= k1) break ;
17 stValue = aggregate_tree(node.getChild(index), [k1,k2)) ;
18 for (int i=index+1; i<node.keyAmount+1; i++) {
19 if (node.getKey(i) >= k2){
20 break ;
21 } else {
22 value = node.getChild(i).getStatsitics() ;
23 statisticsUpdateForInner(stValue, value) ;
24 }
25 }
26 }
27 return stValue ;
28 end

Therefore, the process for the computing can be described briefly as: based on the key
interval, traverse from root to the desired leaf node, and then in the leaf node, compute
the initial st-value from desired keys and their occurring number; then recursively
update current st-value by the child nodes and return updated st-value to parent node

Rule-based Monitoring Framework for Business Process Compliance 43

until root node is reached. Hence, the cost for computing st-value is determined by
2× h× size × update, where h is the height of tree, size is the size of node, and update
is the cost for given values updating. Let the number of instances in the queue is n, then
the time complexity for aggregating computing by tree-based algorithm is O(log n).

6 Evaluations

The functionals of bpCMon framework will be firstly evaluated by 10 CMFs [20] which
are the qualitative and suggestive requirements for the compliance monitoring frame-
work. And then, to evaluate the expressiveness of language, ECL is used to specify
various perspectives of compliance rule patterns. For the applicability of bpCMon, the
real hospital logs is adopted and analysed by bpCMon. To evaluate the performance
of bpCMon monitor, it is compared with three other facilities over the benchmark
from [21]. Finally, bpCMon monitor is also evaluated for its aggregation functional by
the synthesized test case7. Note that, if without specifying, the tests are performed on
Luna version of Eclipse IDE with jdk-1.8.0 40 in laptop with win7 64-bit OS, Intel(R)
i5 CPU 2.4G, and 8G RAM.

6.1 The functionals of bpCMon

The compliance monitoring functionals(CMFs) are the suggestive requirements for the
compliance monitor framework, and they are divided into three categories: modeling
requirements, execution requirements, and user requirements. Regarding to these re-
quirements, the situation of bpCMon is presented as follows:

– CMF 1. constraints referring to time. It requires that the modeling language of
monitoring framework should support qualitative and quantitative temporal orders.
In bpCMon, ECL satisfies such requirement thanks to the events relation patterns
and time interval defined in ECL.

– CMF 2. constraints referring to data. In this CMF, the data is distinguished into
unary data conditions and extended conditions, where unary data conditions refers
to constraints involving just one data object and extended conditions relating mul-
tiple data objects at same time. In ECL, there are several places embodying its
capability for supporting the unary/extended data conditions, i.e., event constraints
in event definition, events correlating constraints, and aggregating constraints.

– CMF 3. constraints referring to resources. Although resources constraints could be
considered as a special case of data constraints, this prospective is still promoted
as an independent standard since its important and prevailed in BPM. It requires
that the modeling language should associate resources(e.g., agent, role, organi-
zation)with activities, events or something. Also, ECL supports this requirement
thanks to its data capability.

– CMF 4. supporting non-atomic activites. The non-atomic activity here means the
activity has time duration. Basically, to support such activities, there are two ways,
explicit or implicit, wherein, the explicit way makes use of atomic life-cycles events
of activities, e.g., start, ready, suspended, aborted, and completed events of activity;

7 The testing data, including logs, benchmarks, and rules specifying, are available at:
https://github.com/PingFair/bpCMon

44 Ping Gong, David Knuplesch, and Manfred Reichert

while implicit one associate activities with their time duration. Obviously, this CMF
can be implemented in explicit way in bpCMon.

– CMF 5. supporting lifecycles activites. This CMF requires that the monitor frame-
work should has correlating mechanism to link multi atomic events to one same
activity. Also, this requirement can be supported by events correlation constraints
in ECL.

– CMF 6. supporting multiple-instances constraints. It requires that the framework
should support the case of multiple activations for compliance rules in one trace. In
bpCMon, for each ECL formula, once its trigger was occurred, it would be activated
immediately.

– CMF 7. reactively detect and manage violations. For bpCMon monitor, it is de-
signed in reactive way and also capable of continuous monitoring even violation
occurred.

– CMF 8. pro-actively detect and manage violations. Comparing to CMF 7, this
CMF requires totally different monitoring mechanism. Obviously, bpCMon now
only support CMF 7.

– CMF 9 and 10. ablity for root cause of violation and quantifying compliance. In
bpCMon, once the success/violation was occurred, its information, including root
causes for the results, would be created based on success/failure table and then
stored in the related containers. Thereby, the way is paved for further root cause
analysis and quantifying the compliance situation.

Table 2. Compliance patterns in ECL

Categories Patterns ECL description

Occurrence

Existence of A exists A
Absence of A !exists A

Limit A to N
always(before(, · · · , before(, A,A,), · · · , A)→
afterUntil(, A, ors(A), end,))

A requires B exists A→ exists B
A coexists B (exists A→ exists B)&&(exists B → exists A)
A mutex B (exists A→!exists B)&&(exists B →!exists A)
Choose A or B exists A || exists B

Order

A followed by B after(, A,B,)
A precedes B before(, B,A,)
A block B afterUntil(, A, ors(B), end,)
A block B until C afterUntil(, A, ors(B), C,)

(A1,· · · , An) chainLeadsTo (B1,· · · , Bm)
before(, (· · · before(, A1, A2,) · · ·), An,)→
after(, An, after(, B1, (· · · after(, Bm−1, Bm,) · · ·),),)

(A1,· · · , An) chainPrecedes (B1,· · · , Bm)
after(, B1, (· · · (after(, Bm−1, Bm,) · · ·),))→
before(, (· · · before(, A1, A2,) · · · , An), B1,))

Resource
P PerformedBy r P.role = rwhen P
P SegregatedFrom Q (P.role 6= Q.role)when(before(, Q, P,) | after(, P,Q,))
P BondedWit Q (P.role = Q.role)when(before(, Q, P,) | after(, P,Q,))

Time
P leasTo Q within k after([0, k), P,Q,)
P leadsTo Q AtleastAfter k after([k,∞), P,Q,)
P precedes Q AtleastAfter k before([k,∞), P,Q,)

In addition, to evaluate the expressiveness of ECL, in Table2, we use ECL to specify the
compliance patterns which cover most part of patterns list proposed in [20][23] except
some advanced but rare occurred patterns. Note that, from the definition of ECL, its
expressive capability is far beyond the expressing of above patterns, since other pow-
erful properties has not yet used, e.g., event constraints, event correlating, aggregating

Rule-based Monitoring Framework for Business Process Compliance 45

operators, and the nesting of operators, and also the events relations patterns set is
extensible if needed.

6.2 Running on BPIC 2011 logs

To evaluate the applicability of bpCMon, as mentioned before, the test case is adopted
which includes the real hospital logs as well as 16 compliance rules of various perspec-
tives. Following is the fragment of ECL specification for R11:

//events part

e14 = (14, ’natrium vlamfotometrisch’,
[caseID, ’Age’>=71, ’Treatment code’>=803,
’Diagnosis Treatment Combination ID’<=394725]) ;

e15 = (15,’natrium vlamfotometrisch’,
[caseID, ’Treatment code’=803 || =703]) ;

e16 = (16, ’calcium’, [caseID]) ;
// policy part
R11 = R11_1 && R11_2 ;
R11_1 = always(afterUntil(_, e14 ,ors(e16), endOfCase,

e14.caseID=ors(e16).caseID
&& e14.caseID =endOfCase.caseID));

R11_2 = always(afterUntil(_, e15 ,ors(e16), endOfCase,
e15.caseID=ors(e16).caseID
&& e15.caseID =endOfCase.caseID));

Where, R11 is specified as the composition of two formula R11 1 and R11 2 by TMF
operator &&. Note that, the “caseID” in the above in fact is “concept : name”, the
trace-scope identity property of traces in the logs. endOfCase is the event representing
the end of one trace.

To read the data from the logs, a class XESWorkingInterface, which implements
the interface WorkingInterface, is developed based on the OpenXES libary8. The
XESWorkingInterface is in charge of generating interested event instances by parsing,
selecting, and merging related event scope and trace-scope attributes values. These
instances also include instances of endOfCase and endOfLogs for the end of trace and
logs.

After the rules are specified in ECL formula, based on the type of formula, relevant
translator creates the ERS for each formula and then these ERS are merged into one
by merging operators for working structure and rules system, since among them there
is no intersecting issues, i.e., intersecting of different working structures. Note that,
although it seems that the intersecting is different to the conflictness among policies,
there might exist some relation between them and we leave it as future work.

The evaluation is consists of two phrases: at first phrase, running the ERS monitor
over the logs 100 times, where for each running, the whole ERS monitor is regenerated
by merging each formula’s ERS in randomly order; at second phrase, running the ERS
monitor for another five times with fixed order of merging. In the first phrase test,
the compliance results as well as #viloation are the same for 100 times running, which
exactly prove the fact of independent for the working structures of these formulas. From

8 http://code.deckfour.org/xes/

46 Ping Gong, David Knuplesch, and Manfred Reichert

Table 3, it is known that, among 16 rules, the logs is compliant with five rules, R4, R7,
R13, R15, R16, and for other rules, there are various violations. For the violation, the
ERS monitor provides useful feedbacks as following two samples:
BEFORE-VIOLATE-TYPE for policy 1: no event 5 is happened before event instance(caseid=00000388,

eID= 1, name= administratief tarief - eerste pol, pId= null, at=01:00:00 09/05/2005) in given time with

given condition !

AFTER-VIOLATE-TYPE for policy 3: no event 13 is happened after event instance(caseid=00000830, eID=

4, name= aanname laboratoriumonderzoek, at=00:00:00 03/03/2008) in given time with given condition !

For the running cost, it mainly consists of two parts: for ERS monitor running and
for OpenXES caching all the event instances. From Table 4, the number of involved
event patterns is 21 and the total of violations is 4937, and for the running cost, ERS
is of practical efficient. Note that, the symbol “/” in the table is used to delimit the
cost for ERS monitor (at the front) and OpenXES file caching (at the behind).

As for the performances of ERS monitor, the event features and reaction rules
length would be the main influencing factors. Event features here refer to the event
structure property and the sub-event relation among events. If the event consists of
complex attributes constraints or there exist couples of events with sub-event relation,
then the cost of event matching as well as reaction would be increased. In this test
case, there are three pairs of events with sub-event relation. As for the memory cost
of ERS monitor, it might be related to the working manner of OpenXES: loading all
the data from logs file into the memory and then the data available for use. After data
loaded, there is the overhead of memory for ERS ranged from 8% to 20%.

Table 3. Violations for incom-
pliant rules

rule #violation
R1 805
R2 1
R3 30
R5 593
R6 1833
R8 1
R9 798
R11 8
R12 45
R14 823

Table 4. Performance of bpCMon monitor for the
BPIC2011 hospital logs

rules #event #viol. time(sec) memory(mb)

R1-R16 21 4937

5.39/5.49 378.3/350.20
4.936/5.492 326.8/294.59
5.143/5.406 377.53/335.19
5.361/5.648 293.69/240.18
5.370/5.471 383.51/328.45

6.3 The efficiency of bpCMon-Monitor

In this subsection, the efficiency of bpCMon monitor will be evaluated by two test
cases: one is adopted from [21], wherein, the compliance rules and logs are concerning
with resources granting and releasing for the tasks of planetary rover; the other is from
banking setting and created based on [10].

TestCase1. (Release) A resource granted to a task should eventually be released
by that task ;
(NoRelease) A resource can only be released by a task, if it has been granted to that
task, and not yet released;

Rule-based Monitoring Framework for Business Process Compliance 47

(NoGrant) As long as a resource is granted to a task, it can not be granted, neither
to that task nor to any other task.

Within these rules, there are mainly two events, grant(s, t , r) and release(s, t , r),
which represent “task t is granted/released resource r at timestamp s” respectively. The
testing logs is created exactly following the same procedure in [21]. The logs creating is
controlled by three parameters (G, L, R): the head and tail part are the grant instances
with the same number controlled by G, and the middle part is consisted of L groups
of R pairs of release and grant instances. Furthermore, the created logs has instances
number determined by 2×(G + L× R) and also satisfies that, if G ≥ R, the logs would
be compliant, otherwise, the violation number is determined by 2× (R −G).

0 4 8 1 2 1 6
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

tim
e(s

ec
)

l e n g t h (m)

 D r o o l s
 b p C M o n
 M o p

Fig. 4. The time costs for Drools, MOP, and bpCMon running over TestCase 1.

To compare bpCMon monitor, three related works 9 are adopted: the first is MOP,
which is known as fastest monitor for Java programs in runtime verification community,
and the second is Drools, which is the state-of-art rule-based inference engine, and the
last one is MonPoly, which supports monitoring the metric linar temporal logic and the
aggregation extension as well. The comparing is separated into two groups since their
different running requirements: (MOP, Drools, bpCMon) and (MonPoly, bpCMon).

For the first group, the comparing is performed over six logs with instances number
ranged from 1 millon to 16 millon. Before starting the comparison, for MOP, the
monitor should be generated by running rv -monitor over the .rvm file which specifies
above rules as a finite state machine; for Drools, a kie-session should be gotten first from
the .drl file which describe the above rules as drools rules; and for bpCMon, the monitor
is generated from the ECL specification of above rules. After these preparations, for
each logs, each subject sequently runs three times over the logs by reacting on the
event instance one by one through the related logs reader, meanwhile, for each running
the maximal memory is recorded as well as its spent time. Note that, the time costs
for logs reader initializing and closing are excluded from the spent time. The running
data are listed in Table 5 and also the spent time comparing w.r.t. the length of logs
is depicted as Figure4.

9 MOP with version 4.0.0, Drools with 6.3.0, and MonPoly with 1.1.6.

48 Ping Gong, David Knuplesch, and Manfred Reichert

Table 5. The performances of Drools, MOP, and bpCMon for running over TestCase 1.

NO 1 2 3 4 5 6

Type (5k, 5k, 100) (30, 100k, 10) (1, 1m, 1) (2, 1m, 2) (5, 1m, 5) (10, 1m, 8)
Length 1,010,000 2,000,060 2,000,002 4,000,004 10,000,010 16,000,020

Drools
(time sec)

10.492 16.845 17.081 33.226 85.285 145.201
10.18 17.451 17.27 33.406 87.521 149.49
10.274 18.271 17.06 34.69 86.578 152.249

MOP
(time sec)

4.07 5.137 4.977 8.91 20.718 31.173
4.093 5.299 4.77 8.95 19.858 31.85
4.341 5.308 4.84 8.714 19.676 32.467

bpCMon
(time sec)

4.916 6.919 7.641 13.851 30.607 47.947
5.014 7.679 7.944 13.482 30.948 47.877
5.205 7.802 7.976 13.52 31.167 48.611

Drools
(memory MB)

132.13 678.95 741.02 864.35 1155.7 1435.5
420.53 740.88 629.25 800.52 1135.6 1420.9
396.28 723.38 583.11 746.60 1097.8 1464.5

MOP
(memory MB)

310.47 274.84 402.77 169.14 529.39 620.6
392.52 425.8 441.25 194.50 542.9 617.0
456.14 531.67 482.47 274.94 555.3 604.3

bpCMon
(memory MB)

284.12 215.81 355.42 297.74 483.94 575.32
419.67 406.07 503.31 517.47 515.07 612.8
467.07 557.74 576.52 534.9 500.2 623.6

For the second group, five logs are used with lengths ranged from 1 million to 8
millon. The testing is conducted over the same laptop but on its VMware workstation
with Fedora Linux 20 setting maximal memory to 3.8G, and bpCMon runs on the
Eclipse of Mars version 4.5.0 with JDK1.8. The comparing is performed similarly to
the first group, except the recorded running time including additional costs for file
intializing and closing. The running data are listed as Table 6 and their time costs are
drawed as Figure 5.

From Tables 5, 6 and Figures 4, 5, it shall be seen that, in this test case, both
of the MOP and bpCMon outperform the Drools; the bpCMon peforms better than
the MonPoly based on the consumed time and memories; and also the bpCMon is
comparable to MOP, although there is some unstable in the memory consuption 10

might because of the garbage collecting of JVM.

Drools has its strength in finding fireable rules among large numbers of rules by
using of net-based working memory. However, in monitoring setting, the solution for
the issue, i.e., how to quickly find some target when some trigger occurs, is one of
essential factors influencing the efficiency of monitor. For MOP, the solution is by
parameterized indexing and the target is related state machinethe for the trigger; and
for the bpCMon, thanks to the working structure which speeds up finding the stored
target by the indexing relation between trigger and target. For the Drools, although
there are also indexes in different types of node memories, additional time and memory
might be needed because of its manner for dealing with the matched event instance:
every matched instance needs to be stored firstly in related Alpha memory and then
processing its influence on other related nodes. Considering the release rule, when
a release instance occurs, to check whether there is related grant instance occurred
before, it would be enough to simply check the state of related state machines for
MOP and the related queue for bpCMon by parameters of release instance. However,
in Drools, the release instance would be stored first and then deleted after processed,

10 In the testing, the VisualVM 1.3.8 plugin is used to monitor and measure the memory
consuming: https://visualvm.java.net/.

Rule-based Monitoring Framework for Business Process Compliance 49

which might undermine the efficiency no matter in time or memory consuming. For the
MonPoly, its analysis is based on formula rewritting rules and its running performance
is very sensitive to the time points range, however, it is unclear whether there are some
indexing structures for organizing related data or memory optimizing techniques.

Table 6. The performances of MonPoly and bpCMon for running over TestCase 1.

NO 1 2 3 4 5

Type (5k, 5k, 100) (1, 1m, 1) (2, 1m, 2) (2, 1m, 3) (2, 1m, 4)
Length 1,010,000 2,000,002 4,000,004 6,000,004 8,000,004

MonPoly
(time sec)

9.245 14.936 29.723 44.481 58.644
8.865 14.557 28.828 43.541 58.540
8.898 14.285 28.490 44.481 58.458

bpCMon
(time sec)

5.308 8.084 15.426 21.744 27.778
5.234 8.014 15.394 21.349 27.716
4.945 7.759 14.713 21.744 27.338

MonPoly
(memory MB)

433.072 442.260 826.980 904.480 1568.368

bpCMon
(memory MB)

301.470 200.508 300.423 311.377 283.947
303.764 266.052 303.355 321.671 302.657
317.462 290.365 321.767 324.052 330.859

For the bpCMon, it is the indexing based working structure which enables bpCMon
attain time efficiency; and for saving the memory consuption, each storing queues in
bpCMon just keep the reference to the matched instance object, which is designed based
on the fact: for each occurred instance as a fact, it can be assessed but unchangable.
Although in the test case, MOP is more efficient then bpCMon, however, it can not yet
support the compliance rules with metric time and data aggregation, e.g., the following
test case 2.

0 2 4 6 8
0

2 0

4 0

6 0

tim
e(S

ec
)

l e n g t h (M)

 M o n P o l y
 b p C M o n

Fig. 5. The time costs for MonPoly and
bpCMon running over TestCase 1.

0 1 2 3 4 5 6
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

Tim
e(s

ec
)

L e n g t h (M)

 M o n P o l y
 b p C M o n

Fig. 6. The time costs for MonPoly and
bpCMon running over TestCase 2.

TestCase2. For each user, the number of peaks over the last 30 days does not
exceed a threshold of 5, where a peak is a value at least twice the average over some
time window(here 30 days).

The test logs is generated based on parameters, #U , the number of user, #EP ,
the number of events for each user per time point, and #R, the time point range. The

50 Ping Gong, David Knuplesch, and Manfred Reichert

syntheising process is similar to [10]: setting #U to 100, #EP to 5, and #R from 800
to 10000, then in each time point, for each user generate 5 withdraw event instances of
the form: (ts,′ withdraw ′, userID , amount), where ts is the time stamp for the instance,
userID orderly selected from [1, 100], and amount is set as a constant11, and then,
write all of these instances into the given file with their generated order. Note that, the
time window(30 days) in the test case is set as 30 seconds. In this way, 7 test logs are
generated with the length ranged from 400 thousand to 5 million.

The testing consists of 7 groups and within each group, the MonPoly and bpCMon
run sequencely for the same logs. For each running, the monitors react on the instances
parsed by relevant reader from the logs, and during the running the spent time was
recorded and also the result was checked. For each group testing, the MonPloy does
not response counter-example and also bpCMon reports compliant results. Their spent
times are drawed as Figure 6. From the figure, it shall be seen that, such compliance
rule is of expensive time consuming for both monitors, and their performances are not
distinct too much for the logs with length within 1 million, but after that, since the
st+tree structure, bpCMon monitor attains minor better scalability than the MonPoly
which has the additional time overhead from 15% to 21% as the logs lengths increased
from 2 to 5 million.

7 Related works

Basically, no matter what kind of monitoring, it includes the contents of three aspects:
the subject to be monitored, the objective for monitoring, and the technique used by
monitoring for making decision. Compliance monitoring aims at understanding the
relation between behaviors of business processes and compliance rules. Currently, there
is a plethora of related works addressing similar objectives but with different subjects.

7.1 Business processes compliance monitoring

The works in this category share the same objective and subject with this work, but
with different compliance languages of various epxressive and monitoring mechanisms.

The work [24] proposed a metamodel REALEM for specifying compliance rules.
The metamodel includes three parts: types model, three compliance rule patterns, and
meta information. Based on events model and events correlating, the compliance rules
are translated into executable rules on IBM infrastructures. As for the three patterns,
e.g., x AtLeast(c) Before y , they are in fact corresponding to before and after patterns
in ECL. In work [12], the graphic language Declare is used as compliance/processes
constraints specification language. After translated the Declare to LTL, the monitor
is created based on colored automata. The weakness of this work is the limitation
of Declare which only supports control-flow perspective. In work [15], Declare is ex-
tended to support metric time and life-cycle for activity element and also provided
with monitoring semantics based on event calculus formalism. Although the formal-
ism is powerful, the extended Declare still supports less for the data perspective. In

11 Such setting would make the logs compliant with the rule, which enables MonPoly and
bpCMon compare the efficiency; Otherwise, if set the amount randomly, it would be unrea-
sonable for the comparing, since their different ways to response the violation, i.e., MonPoly
prints all the violations and bpCMon stores them in the container.

Rule-based Monitoring Framework for Business Process Compliance 51

work [13], it proposed the Linear Dynamics Logic(LDL), which the integration of LTL
and regular expression, as well as its monitoring semantics. The LDL enable to spec-
ify the compensation for some condition occurring. However, it is still theoretic work
and without evaluation performance data. Works of [8][9] proposed compliance graph
languages CRG and eCRG , where eCRG extended from CRG to support data and re-
source perspectives. For the monitoring algorithm, both works adopted marking based
approach, which is a natural way for the graph language to describe the state of com-
pliance rule. In addition, by graph marking, it is also possible to provide root causes
for the violations. However, currently eCRG can not support data aggregation and also
lack of performance data.

7.2 Business process execution monitoring

Although the works in category share the same subject with our work, they have
different objectives as well as the used techniques. Process execution monitoring is close
related to business activity monitoring(BAM), it typically includes filtering, correlating,
aggregating, and reporting the data related to some PKIs [2] by proper CEP engine [25];

Work [26] proposes an approach which beak the activities into event trails and then
translate compliance rules into CEP rules based on these event trails. By using the
CEP engine, the compliance can be checked and responded. But it is not clear what
kind of compliance rule this method can address. Furthermore, their extending work [7]
proposes a model-driven method, which includes an Domain-specific Language based
on control-flow occurrence patterns, and also the translations from DSLs to the codes
used by specific CEP engine. The drawbacks are the limited expressive of DSLs and
the relative limited abilities of CEP to support stateful compliance monitoring.

The work [27] consider the compliance between business process execution with
process profile by using CEP. Three basic casual constraints are considered, strict order,
exclusive, and interleving, and further translated into CEP queries. By filtering and
aggregating events, the violations are reported. Work [28] considers the business process
monitoring issue, where the events are related to activity life-cycle and business process
is enriched with process event monitoring points. By process models decomposition
technique, the process model is transformed into CEP queries. Work [29]propose a
framework, named as aPro, which is by evaluating the KPI metrics to understand the
business and compliance situations. To evaluate such KPIs, related measure points
should be defined first and annotated into the process models. During the processes
execution, the related measures data are collected and correlated, and analysis by
using of CEP technique. Based on such measures, the regular KPIs and aggregating
KPIs are evaluated and then the goals fulfillments are valuated. The key challenges
for such methods are how to define relevent KPIs and their related measuring points.
Furthermore, it is unclear about how to support temporal compliance rules.

7.3 Services-based system monitoring

The subject of this kind of monitoring is Services-based system and its first class citizen
is the messages among services. Comparing to this work, this kind of monitorings have
similar objective and also overlapped monitoring mechanisms.

The objective of the monitoring in [30] is to understand the relation between the
interactions specified in BPEL and the policies by proposing instance monitor and

52 Ping Gong, David Knuplesch, and Manfred Reichert

class monitor. The policy language is message-based and devised based on PastLTL,
and also enables to specify properties of counting based aggregation and staying based
time. However, this language still not powerful enough for supporting after-type and
metric time policies. Also, the monitor has no root-cause analysis for the violations.
Work [31] proposed the method for detecting semantically-upgraded complex events
by making use of semantic ontology during the execution of semantic web services
composition. However, the objective of this work is different to processes compliance
monitoring.

The work [32] proposed a multi-level monitoring framework, named as SERMON, to
address the compliance of service agents behaviours with their commitment protocols
which are specified with Communicative Act extended Object Constraint Language.
The work is the extension of their prior work on requirement monitoring REQMON [33]
and the facility used for monitoring is rule based engine Jess.

To enforce the data-aware message contracts for the web services, the work [34] pro-
posed an specification language LTL-FO+, extending from LTL by introducing based
on quantifier and XPath an new construct to quantify the data inside the message. The
monitoring algorithm for LTL-FO+ formula is designed based on a finite state machine
variant, called watcher, which is created on the fly to avoid the huge state space and
the state transition is based on formula structure. Regrading to the data-aware con-
tracts, the ECL is also enable to cope with based on event attributes as well as events
correlating, furthermore, ECL also support data aggregation which is out of scope of
LTL-FO+.

7.4 Runtime verification

The program is the main subject of runtime verification, but it has similar objective
and monitoring mechanisms with process compliance monitoring.

The Java-MaC [35] is a prototype implementation of the monitoring and checking
architecture for Java programs. From the specification view, it consists of two levels
languages, PEDL, for low level event definition and as well as high level events defini-
tions based on low level ones; MEDL is used to describe the property based on high
level events. From such two specifications, the filter, event regnizer, and checker can be
created automatically. The filter is probed into java codes and send related messages
to regnizer to import high level events for checking.

The work [36] compared three typical monitoring approaches regarding to finite
state properties, i.e., object-based, state-based, and symbol based, to investigate their
relative strengths and weaknesses. By experiments, the object-based has little over-
head for multi state changes in property comparing to the other, however, suffers much
overhead when the loops within properties. The other two seems exactly converse to
the object-based. The work [37] extends the parametric trace slicing method to over-
come the weakness of dealing with the operating data and universal of parameters,
by proposing the quantified event automata. However, although automata is powerful,
lots of works are still needed for specification language and evaluations.

The work [21] implements a rule system based runtime engine, i.e., LOGFIRE, by
remifying RETE algorithm. The refimications include introducing the double-indexing
among related nodes for speeding up tokens’ matching. However, once some fact in the
node was updated, each related nodes as well as the indexing mappings would need to
be updated synchronizedly. It thereby might be the factor of undermining the efficiency.

Rule-based Monitoring Framework for Business Process Compliance 53

In this paper, the tree-like indexing structure is more simple, flexible, and independent.
For each fact in value structure, after used, it can be deleted without any influences on
others. Besides, from the specification aspect, the supports in [21] for high level, e.g.,
temporal order, is still limited to two basic patterns.

7.5 Discussions

From the views of the specification language and monitoring mechanism, the relations
with closely existed works need to be further clarified to promote the distinct features
as well as behind designing principles for the bpCMon.

(1) the relation between MLTL/LTL and ECL.
From the expressive aspect, except aggregating part, ECL formula could be de-

scribed in MLTL/LTL. However, ECL is more abstract than MLTL/LTL, and is specif-
ically designed for compliance monitoring based on the signature including events and
event-relation patterns. Within the ECL formula, it includes the monitoring featured
elements: trigger , decider , and events correlating , which are essential and also prop-
erly organized for creating ERS and efficient monitoring afterwards. These points are
not easy to be attained by directly using MLTL/LTL. Besides, MLTL/LTL does not
directly support specifying the compliance rule of data aggregation.

(2) the distinct features of ERS
ERS is a light-weight rules engine and designed specifically for reactive monitoring.

Its distinct features come from two aspects: the rule form and working structure. For the
rule form ,as mentioned before, the rules of ERS are of the form, trigger → c reaction.
Comparing to classic rule form, e.g., event-condition → action [21], the characters of
ERS rule form could speed up finding fireable rules and condition evaluation, and also
avoid the issue about fact staying around [21] for generic rule engine, e.g., Drools.
For the working structure, it is a tree like structure distributed and equipped with
indexing structure for each independent storing, which is different to the net like and
node sharing structure of RETE-based rules system. Such working memory has its
strength for the case of numbers of rules overlapped their left hands. However, for the
monitoring, as indicated in the experiment, ERS working structure is more efficient.

(3) dealing with memory consuming for ERS
In fact, in bpCMon, time interval plays an important role in reducing memory

consuming through the bounded data queue. More specifically, once the instance is out
of date comparing the new added one, it would be deleted from the queue. Besides that,
the principle, ”abandon it after it used”, is adopted to apply to each reaction. i.e., for
each instances in the afterIIS structures, after it was assessed and used, it would be
deleted at once from the queue. In addition, as mentioned before, each storing queues
in bpCMon just keep the reference, instead of the clones , of the matched instance
object, which can also effectively save the memory consumption. Furthermore, from
the programming technique view, garbage collecting and using weak reference object
instead of strong reference object, are also some future options for further reducing
memory like [37].

8 Conclusion and future works

To target at specifying complex compliance rules as well as their monitoring, this
work presents the business processes compliance monitoring framework, bpCMon. It

54 Ping Gong, David Knuplesch, and Manfred Reichert

mainly consists of: an event-pattern based compliance language(ECL) for specifying
compliance rules, and events indexed reaction system (ERS) as engine for compliance
monitoring. The ECL is devised based on event-pattern and events relation patterns,
and also featured with aggregating operators; ERS is a powerful rule based system and
designed based on events indexing structure. Experiments on a real life hospital logs
over 16 compliance rules indicate the applicability of bpCMon; and the comparisons
with two known related works, the MOP and Drools, over the benchmark demonstrate
the efficiency of bpCMon; and furthermore the data aggregation functionals of bpCMon
is also evaluated by test case.

As for the future works, from the practical view, a friendly interface is needed to
support users specifying and managing their compliance rules; from the theoretical
view, it is also important to further devise the methods to resolve the rules conflict
issue and the intersecting of working structures as well as their possible relations. In
fact, such solutions would be the basis for targeting at the scalable issue of the bpCMon
when considering huge number of rules. Finally, further evaluations are also needed for
the soundness of the bpCMon.

References

1. Sadiq, S.: A roadmap for research in business process compliance. In: W. Abramowicz, L.
Maciaszek, K. Wecel (Eds.) BIS 2011 Workshps, LNBIP 97, pp. 1-4 (2011)

2. Rademakers, T.: Activiti in action. Manning publications(2012)
3. Breaux, T.D., Antn, A. I., and Doyle, J.: Semantic parameterization:a process for modeling

domain descriptions. ACM Transations oon Software Enginnering and Methodology, Vol.
18, No.2 (2008)

4. Pesic M. and Van der Aalst W.M.P.: A declarative approach for flexible business processes
management. In: J. Eder, S. Dustdar et al.(Eds.): BPM 2006 Workshops, LNCS 4103,
pp.169-180 (2006)

5. Awad A., Weidlich M., and Weske M.: Visually specifying compliance rules and explaining
their violations for business processes. J. Visual Languages and Computing. 22(2011), pp.
30–55 (2011)

6. Elgammal A., Turetken O., van den Heuvel W.: Formalizing and appling compliance pat-
terns for business process compliance. Software & Systems Modeling, pp 1-28 (2014)

7. Mulo, E., Zdun, U., and Dustdar, S.: Damain-specific language for event-based compliance
monitoring in process-driven SOAs. In: SOCA (2013) 7: 59-73 (2013)

8. Ly L.T., Rinderle-Ma S., Knuplesch D., and Dadam P.: Monitoring business process com-
pliance using compliance rule graphs, In: R. Meersman, T.Dillon, and P. Herrero(Eds.):
OTM 2011, Part I, LNCS 7044, pp. 82-99 (2011)

9. Knuplesch D., Reichert M., and Kumar A.: Visually monitoring multiple perspectives of
business process compliance. In: Hamid, R. M. N., Jan, R., and Matthias, W.(Eds.), BPM
2015. LNCS 9253, pp. 263-279 (2015)

10. Basin D., Klaedtke F., Mller S, etc.: Monitoring of temporal first order properties with
aggregations. In: proceeding of RV 2013, LNCS 8174, pp. 40-58 (2013)

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns property specifications for finite-state
verification. In: ICSE 99, Los Angeles CA, ACM, pp. 411-420 (1999)

12. Maggi F.M., Montali M., Westergaard M., Van der Aalst W.M.P.: Monitoring busi-
ness constraints with linear temporal logic: An approach based on colored automata. In:
S.Rinderle-Ma, F. Toumani, and K. Wolf(Eds.) BPM 2011, LNCS 6896, pp. 132–147 (2011)

13. Giacomo G., Masellis R.D., Grasso M., Maggi M.F., and Montali M.: Monitoring business
metaconstraints based on LTL and LDL for finite traces. In: Shazia W. S., Pnina S., Hagen
V.(Eds.) BPM 2014. pp. 1–17 (2014)

Rule-based Monitoring Framework for Business Process Compliance 55

14. Basin D., Klaedtke F., Mller S., and Zlinescu E.: Monitoring metric first-order temporal
properties. In: Journal of ACM, 62(2), pp:1-38 (2015)

15. Montali M., Maggi M.F., Chesani F., Mello P., and Van der Aalst W.M.P.: Monitoring
business constraints with the event calculus. ACM Transactions on Embedded Computing
Systems, Vol.9, No. 4, 1-29 (2010)

16. Chen F., Jin D., Meredith P.O.N., and Rou G.: Efficient formalism-independent monitor-
ing of parametric properties. In: ASE 2009, IEEE press, pp. 383-394 (2009)

17. Charles L. Forgy.: Rete: a fast algorithm for the many pattern/many object pattern match
problem. In: Artificial Intelligence 19(1982), pp. 17-37 (1982)

18. Drools:http://docs.jboss.org/drools/release/6.3.0.Final/
drools-docs/html_single/index.html (2015)

19. Friedman-Hill E.: Jess in action: Rule based systems in Java. Manning publications. (2003)
20. Ly L.T., Maggi F.M., Montali M., Rinderle-Ma S., van der Aalst W.M.P.: Compliance

monitoring in business processes: functionalities, application, and tool-support. Information
Systems. 54, 209–234 (2015)

21. Havelund K.: Rule-based runtime verification revisited. In: Journal of Software Tools
Technology Transfer, 17:143-170 (2015)

22. Gnther C.W., and Werbeek E.: XES standard definition. In http://www.
xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf, March 28,
version 2.0 (2014)

23. Turetken O., Elgammal, A., and van den Heuvel W.J.: Capturing compliance require-
ments: a pattern-based approach. IEEE Software, IEEE Computer Society (2012)

24. Giblin, C., Muller, S., Pfitzmann, B.: From regulatory policies to event monitoring rules:
towards model-driven compliance automation. Technical report RZ3662, IBM Research.
(2006)

25. Esper: http://www.espertech.com/index.php (2015)
26. Mulo, E., Zdun, U., and Dustdar, S.: Monitoring web service event trails for business

compliance. In: IEEE International Conference on Service-oriented Computing and Appli-
cations(SOCA), IEEE, 2009.

27. Weidlich M., Ziekow H., Mendling J., Günther O., Weske M., and Desai N.: Event-
based monitoring of process execution violations. In: S. Rinderle-Ma, F. Toumani, and
K. Wolf(Eds.) BPM 2011, LNCS 6896, pp.182-198 (2011)

28. Backmann, M., Baumgrass, A., and Herzberg, N.: Model-driven event query generation
for business process monitoring. In: A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops,
LNCS 8377, pp.406-418 (2014)

29. Koetter, F., and Kochanowski, M.: A model-driven approach for event-based business pro-
cess monitoring. In: Information Systems and e-Business Managmement, Springer-Verlag,
vol 13, issue 1, pp. 5-36 (2015)

30. Barbon, F., Traverso, P., Pistore, M., and Trainotti, M.: Run-time monitoring of in-
stances and classes of web service compositions. In: IEEE Inernational Conference on Web
Services(ICWS’06), IEEE computer society. (2006)

31. Vaculin, R., and Sycara, K.: Specifying and monitoring composite events for semantic web
services. In: Fifth European Conference on Web Services. (2007)

32. Robinson W.N., and Purao S.: Monitoring service systems from a language-action per-
pective. In: IEEE transactions on services computing, Vol. 4, No, 1. pp. 17-30 (2011)

33. Robison W.N.: A requirements monitoring framework for enterprise systems.In: Require-
ments Engineering, 11:17-41 (2006).

34. Hall S., and Villemaire R.: Runtime enforcement of web service message contracts with
data. In: IEEE transations on services computing, vol 5, vol 2. pp. 192-206 (2012)

35. Kim M., Kannan S., Lee I., and Sokolsky O.: Java-Mac: a run-time assurance approach
for java programs. In: Formal Methods in System Design. 24(2), pp 129-155 (2004)

36. Purandare R., Dwyer M.B., and Elbaum S.: Monitoring finite state properties: algorithmic
approaches and their relative strengths. In: S. Khurshid and K. Sen (Eds.): RV 2011, LNCS
7186, pp. 381-395 (2012)

56 Ping Gong, David Knuplesch, and Manfred Reichert

37. Luo Q., Zhang Y., Lee C., Jin D., Rou G., et al.: RV-Monitor: efficient parametric runtime
verification with simultaneous properties. In: B. Bonakdarpour and S.A. Smolka(Eds.): RV
2014, LNCS 8734, pp. 285-300 (2014)

38. Havelund K., and Joshi R.: Experience with rule-based anaysis of spacecraft logs. In: C.
Artho and P.C.Ölveczky(Eds.): FTSCS 2014, CCIS 476, pp. 1–16 (2015)

39. Barringer H., Falcone Y., Havelund K., etc.: Quantified event automata: towards expres-
sive and efficent runtime monitors. In: D. Giannakopoulou, and D. Méry(Eds.): FM 2012,
LNCS 7436, pp. 68-84 (2012)

40. Datar M., Gionis A., Indyk P., and Motwani R.: Maintaining stream statistics over sliding
windows. In: SIAM J. COMPUT. 31(6), pp. 1794-1813 (2002)

41. Basin, D., Klaedtke, F. and Zlinescu E.: Greedily computing associative aggregations on
sliding windows. In: Information Processing Letters, elsvier, 115(2), pp. 186-192 (2015)

Ulmer Informatik-Berichte
ISSN 0939-5091

Herausgeber:
Universität Ulm
Fakultät für Ingenieurwissenschaften, Informatik und Psychologie
89069 Ulm

	UIB 2016-03_Umschlag-vorne
	TR_bpCMon_v_0.2
	UIB 2016-03_Umschlag-back

