
 Journal of Ubiquitous Systems & Pervasive Networks
Volume 9 No. 1 (2017) pp. 13-21

* Corresponding author. Tel.: +49 731 5024136
Fax: +49 731 5024134; E-mail: ruediger.pryss@uni-ulm.de
© 2011 International Association for Sharing Knowledge and Sustainability.
DOI: 10.5383/JUSPN.03.01.000

13

The AREA Framework for Location-Based Smart Mobile Augmented
Reality Applications

Rüdiger Pryss*, Philip Geiger, Marc Schickler, Johannes Schobel, Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Ulm, Germany, 89081

Abstract

During the last years, the computational capabilities of smart mobile devices have been continuously improved by
hardware vendors, raising new opportunities for mobile application engineers. Mobile augmented reality can be
considered as one demanding scenario demonstrating that smart mobile applications are becoming more and more
mature. In the AREA (Augmented Reality Engine Application) project, we developed a powerful kernel that enables
location-based, mobile augmented reality applications. On top of this kernel, mobile application developers can realize
sophisticated individual applications. The AREA kernel, in turn, allows for both robustness and high performance. In
addition, it provides a flexible architecture that fosters the development of individual location-based mobile augmented
reality applications. As a particular feature, the kernel allows for the handling of points of interests (POI) clusters.
Altogether, advanced concepts are required to realize a location-based mobile augmented reality kernel that are
presented in this paper. Furthermore, results of an experiment are presented in which the AREA kernel was compared to
other location-based mobile augmented reality applications. To demonstrate the applicability of the kernel, we apply it in
the context of various mobile applications. As a lesson learned, sophisticated mobile augmented reality applications can
be efficiently run on present mobile operating systems and be effectively realized by engineers using the AREA
framework. We consider mobile augmented reality as a killer application for mobile computational capabilities as well
as the proper support of mobile users in everyday life.

Keywords: Mobile Augmented Reality, Location-based Algorithms, Mobile Application Engineering, Augmented Reality

1. Introduction

The proliferation of smart mobile devices on one hand
and their continuously improving computational capabilities on
the other have enabled new kinds of mobile applications [3].
So-called millennials, people born after 1980, pose demanding
requirements with respect to the use of mobile technology in
everyday life. Amongst others, they want to be assisted by
mobile technology during their leisure time. For example,
when walking around in Rome with its numerous ancient
spots, the smart mobile device shall provide related
information about these spots in an intuitive and efficient way.
In such a scenario, location-based mobile augmented reality is
useful. For example, if a user is located in front of the St.
Peter's Basilica, holding his smart mobile device towards the
Basilica with its camera switched on, the camera view shall
provide additional information (e.g., worship times).

The AREA (Augmented Reality Engine Application)
kernel we developed supports such scenarios More precisely,
AREA is able to detect predefined points of interest (POIs)

within the camera view of a smart mobile device, to position
them correctly, and to provide relevant information on the
detected POIs. This additional information, in turn, may be
accessed interactively by mobile users. For this purpose, they
touch on the detected POIs and related information is then
displayed. Three technical issues were crucial regarding the
development of AREA. First, POIs must be correctly displayed
even if the device is held obliquely. Depending on the attitude
of the device, the POIs may have to be rotated with a certain
angle and moved relatively to the rotation. Second, displaying
POIs correctly to the user must be accomplished efficiently. To
be more precise, even if multiple POIs are detected, the kernel
shall enable their display without any delay. Third, the POI
concept shall be integrated with common mobile operating
systems (i.e., iOS, Android, and Windows Phone). To tackle
these challenges, the LocationView concept was developed.
Additionally, an architecture was designed, which shall enable
the quick development of location-based mobile augmented
applications on top of the kernel [1,2,11].

The AREA project started five years ago. Already one
year after releasing its first kernel version (AREA Version 1),
AREA was integrated with various mobile applications. In the

Pryss et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2017) 13 -21

14

context of respective development projects, three fundamental
issues, not properly covered by the first version of the AREA
kernel, emerged. First, the heterogeneous characteristics of the
various mobile operating systems need to be taken into account
more explicitly. Second, a potentially large number of POIs
need to be handled more efficiently. Third, additional features
demanded by mobile users are required. These insights, in turn,
resulted in the development of AREA’s second kernel version
(i.e. AREA Version 2). Table 1 summarizes the evolution of
AREA from its first to its second version.

Table 1. AREA Versions
AREA Version 1

(AREA)
AREA Version 2

(AREAv2)

Android App √ √

iOS App √ √

Windows App √ under construction

Multithreaded1 √ √

POI Algorithm1 LocationView RenderingPipeline

Clustering
Algorithm1

- √

POI Coordinate
System1

GPS
GPS; ECEF; ENU;

Virtual3D

Position Changes
Smartphones1

SensorFusion
(Compass,

Accelerometer)

SensorFusion
(Compass, Gyroscope,

Accelerometer)

Architecture1 Version 1 Version 2

Sensor Management
Android

Own Approach Own Approach

Sensor Management
iOS

Own Approach Built-in OS functions

Sensor Management
Windows

Own Approach Built-in OS functions

ENU=East-North-Up Coordinate System, ECEF=Earth-Centered
Earth-Fixed Coordinate System, GPS=Global Positioning System,

1= all mobile OS

The heterogeneous characteristics of the mobile operating
systems as well as performance issues with many POIs are
addressed by the development of a new kernel and architecture
called AREA Version 2 (AREAv2) (cf. Table 1, AREAv2).
Moreover, AREAv2 provides three new features. The first one
deals with so-called POI clusters. If a huge number of POIs
causes many overlaps on the camera view, it is difficult for
users to precisely interact with single POIs inside such cluster.
In order to precisely select a single POIs inside a cluster, a new
feature was developed. The second feature we developed
connects POIs through lines in order to visualize tracks. For
example, such a track may be used as the cycle path a user
wants to perform in a certain area. The third feature highlights
areas (e.g., football fields). From a technical perspective, the
added features are demanding if they shall be supported in the
same manner on different mobile operating systems.

This work presents fundamental concepts developed in
the context of AREA Version 2 (AREAv2). Section 2
discusses related work. Section 3 presents the architecture of
AREAv2. In Section 4, the coordinate system used by
AREAv2 is introduced, while Sections 5 and 6 present the
algorithms for POI and cluster handling. Conducted
performance tests with AREAv2 are presented in Section 7,
while Section 8 illustrates the use of AREAv2 in practical
scenarios. Section 9 concludes the paper.

2. Related Work

Previous research related to the development of a location-
based augmented reality application in non-mobile
environments is described in [4]. In turn, [5] uses smart mobile
devices for developing an augmented reality system. The
augmented reality application described in [6] allows sharing
media data and other information in a real-world environment
and enables users to interact with this data through augmented
reality. However, none of these approaches share insights
regarding the development of location-based augmented reality
on smart mobile devices as AREAv2 does. Only little work
exists, which deals with the engineering of mobile augmented
reality systems in general. As an exception, [7] validates
existing augmented reality browsers. Moreover, [8] discusses
various types of location-based augmented reality scenarios.
More precisely, issues that have to be particularly considered
for a specific scenario are discussed in more detail. However,
engineering issues of mobile applications are not considered.
In [9], an authoring tool for mobile augmented reality
applications, which is based on marker detection, is proposed.
In turn, [12] presents an approach for indoor location-based
mobile augmented reality. Furthermore, [13] gives an overview
of various aspects of mobile augmented reality for indoor
scenarios. Another scenario for mobile augmented reality is
presented in [17]. The authors use mobile augmented reality
for image retrieval. However, [9, 12, 13, 17] do not address
engineering aspects of location-based mobile applications. In
[10], an approach supporting pedestrians with location-based
mobile augmented reality is presented. Finally, [14] deals with
a client and server framework enabling location-based
applications. Altogether, neither software vendors nor research
projects provide insights regarding the engineering of a
location-based mobile augmented reality kernel.

3. Architecture

The AREAv2 architecture, which significantly enhances the
architecture of the first kernel version [1, 2, 11], is depicted in
Fig. 1. The architecture comprises nine major components (cf.
Fig. 1). The Model component manages POIs, POI categories
(e.g., all POIs that represent restaurants), POI clusters, POI
tracks (e.g., cycle paths), and POI areas (e.g., football fields).
Developers may use this component to integrate application-
specific POI categories as well as to change the visualization
of the provided POI features. The Places API component, in
turn, allows displaying POIs provided by Google or other
remote APIs. Note that this component was integrated to be
able to test the kernel with large numbers of POIs or POI
clusters more easily. As AREAv2 shall also work without
online connection, the used POIs are locally stored on the
smart mobile device. The local database, however, may be
synchronized with a remote database. Due to lack of space, the
components for storing POIs locally and synchronizing them
with a remote database are excluded here and, hence, are not
depicted in Fig. 1. The Math component, in turn, provides
functions for calculations in the coordinate systems used.
Compared to AREA, AREAv2 uses a novel sensor fusion
approach that provides a more precise positioning of POIs
through the Sensor component. In this context, four sensors are
considered on all supported mobile operating systems, i.e.,
gyroscope, compass, accelerometer, and GPS (cf. Fig. 1). The
Location component provides algorithms for handling the
different coordinate systems. Their results, combined with the
ones of the Sensor component, are used by the Main
component. The latter provides algorithms that enable the
handling of the POI-related features.

Pryss et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2017) 13 -21

15

Fig. 1. AREAv2 Architecture

Furthermore, the View component enables required visu-
alizations, i.e., visualizations of POIs, POI labels, POI clusters,
POI tracks, POI areas, a POI radar, and a POI radius. The radar
can be used to check whether POIs, which are currently not
displayed on the screen of the smart mobile device, can be
accessed when pointing with the smart mobile device towards
another direction. The radius, in turn, can be used to specify
the maximum distance the mobile user may have to the POIs
that shall be displayed. By calculating the distance between the
device and the POIs based on the coordinate system, AREAv2
can determine the POIs located inside the chosen radius and,
hence, the POIs to be displayed on the screen. Finally, the
Settings component realizes functions enabling users to
customize AREAv2 features (cf. Fig. 1).

4. Coordinate System

AREAv2 is based on a coordinate system that differs from the
one used in the first kernel version, which was solely based on
GPS coordinates. More precisely, in AREA, the GPS
coordinates of mobile users were calculated by using the GPS
sensor of their smart mobile devices, whereas the GPS coordi-
nates of the POIs were retrieved from the local database. Based
on the comparison of mobile user and POI coordinates as well
as proper calculations (e.g., to determine whether the device is
held obliquely), the POIs can be correctly displayed in the
camera view of the smart mobile device. The core idea of
AREAv2, in turn, is based on five aspects necessitating the use
of another coordinate system. First, a virtual 3D world is used
to relate the user's position to the one of the POIs. Second, the
user is located at the origin of this world. Third, instead of the

physical camera, a virtual 3D camera is used that operates with
the created virtual 3D world. Therefore, the virtual camera is
placed at the origin of this world. Fourth, the sensor charac-
teristics of the supported mobile operating systems need to be
properly covered in order to enable the virtual 3D world.
Regarding iOS, sensor data of the gyroscope as well as the
accelerometer are used, whereas for Android sensor data of the
gyroscope, accelerometer and compass of the mobile device
are used to position the virtual 3D camera correctly. Fifth, the
physical camera of the mobile device is adjusted to the virtual
3D camera by analyzing sensor data. In order to realize the 3D
world of AREAv2, a complex coordinate system, which
consists of three sub-systems, is required. The first sub-system
uses GPS, ECEF (Earth-Centered, Earth-Fixed), and ENU
(East, North, Up) coordinates.1 The second one, in turn, relies
on a virtual 3D space with the user being located at the origin.
Finally, the third sub-system uses a virtual 3D camera located
at the origin of the 3D world. Note that the first sub-system
(with GPS, ECEF, and ENU coordinates) constitutes a
prerequisite (cf. Fig. 2) for transforming sensor data of the
smart mobile device into data that can be used for the virtual
3D world.

As illustrated in Fig. 2, the user is located at the ECEF
origin (0, 0, 0). The POIs, in turn, are located on the surface of
the earth, again using ECEF coordinates. To use this metaphor
for the virtual 3D world, two additional transformations
became necessary. As a smart mobile device can only sense
GPS coordinates, first of all, the GPS coordinates of the user
and the POIs need to be transformed into ECEF coordinates.
Second, as a user cannot be physically located at the origin of
the earth, ECEF coordinates need to be transformed into ENU
coordinates. The latter, in turn, allow for the described

1 See https://en.wikipedia.org/wiki/ECEF and https://en.wikipedia.org/wiki/East_north_up

Pryss et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2017) 13 -21

16

metaphor of the virtual 3D world. More precisely, ENU
coordinates are transformed into coordinates for the virtual 3D
world through a transformation of axes. Finally, the distance
between a user and the POI based on ENU coordinates must be
calculated. The three algorithms accomplishing the required
conversions can be found in [11].

Fig. 2. ECEF and ENU Coordinate Systems

5. Points of Interest Algorithm

Although AREAv2 uses a virtual 3D world for displaying
POIs, the direction in which a user holds his smart mobile
device must be properly determined. For example, if the smart
mobile device is held obliquely, the POI needs to be correctly
positioned within the virtual 3D world. As the algorithm to
correctly position POIs (the POI algorithm) requires
calculations from other algorithms, Fig. 3 illustrates the
dependencies to them. Note that Algorithm 2 constitutes the
POI algorithm. It establishes the coordinate system on one
hand and is the base for the clustering algorithm on the other.
In general, Algorithm 2 depends on three Algorithms presented
in [11]. On Android, Algorithm 2 additionally depends on
Algorithm 1. Algorithm 2 uses the following inputs: First, the
list of POIs poiList (i.e., the ENU coordinates), locally stored
on the smart mobile device, is used. Each time a user changes
the position of his smart mobile device, all POI ENU
coordinates are recalculated.

Fig. 3. Algorithm Dependencies

Second, a rotation matrix rotationMatrix RM is used that
manages relevant sensor data. Regarding iOS, for example, the
data of the gyroscope and accelerometer are used, whereas on
Android the data of the gyroscope and accelerometer, plus
additional compass data, are utilized. More precisely, in order
to obtain the attitude of the mobile device relative to true north
as a rotation matrix, we utilize the CMMotionManager API
provided by Apple iOS. Regarding Android, however, we were
unable to retrieve any reliable data when using the Android
standard API. Hence, we decided to develop a more reliable
sensor fusion algorithm to obtain a similar rotation matrix like
on iOS (cf. Algorithm 1). Algorithm 1 accomplishes this task:
First, the Android gyroscope provides inappropriate (i.e.,
inaccurate) values. As a consequence, when using (a) the
values of the gyroscope for a user that (b) frequently changes
the position of his Android smart mobile device, the POIs on
the screen of his smart mobile device oscillate badly. To obtain
better user experience, we smooth the gyroscope values by
using the SLERP algorithm [16] (cf. Algorithm 1, Line 28).
Second, the rotation vector provided by the Android mobile OS
is very precise on one hand, but it is prone to (1) frequent
position changes, (2) slow position changes, and (3) magnetic
interference sources on the other. Therefore, we use the
gyroscope instead of the rotation vector to calculate
rotationMatrix RM as the gyroscope provides more appropriate
values (cf. Algorithm 1, Lines 9-13).

Algorithm 2: Rendering pipeline with redraw up to 60 times per second

Data: poiList, rotationMatrix RM, cameraView CM
1 begin

2 P ← CM ·RM ; / * Multiply camera matrix with r o t a t i o n matrix t o r e t r i e v e ro t a t ed camera p ro j ec t i on
mat r ix . * /

foreach poi ∈ poiList do3

4 / ; Ԧ← [poi.ENU.E, poi.ENU.N, poi.ENU.U, 1]ݒ * Create homogeneous vec to r out o f the POI’s ENU coo rd ina t e .
* /

5 Ԧݒ / ; Ԧ·Pݒ ← * Mul t ip l i ca t ion o f vec to r with p ro j ec t ion matrix t o p ro j ec t t h e p o s i t i o n o f t he POI onto
the camera view f rus tum. * /

/ * Normalize vec to r components t o 0 . . . 1 * /

/ * Normalize vec to r components t o 0 . . . 1 * /
z ← Ԧ.zݔ
if ݔԦ.z < −1 then

trans f ormAndMovePOI(poi, x,y);
poi.visible = true;

/ * POI i s loca ted i n f r o n t of t he camera. * /
/ * Pos i t i on POI on the screen o f t he use r and make i t v i s i b l e . * /

end

else

poi.visible = f alse
end

6

7

8

9

10

11

12

13

14

15

16 end

17 end

x← (.Ԧݔ) ݔ 0.5 * (1.0 + (ݓ.Ԧݔ /

y← (.Ԧݔ) ݕ 0.5 * (1.0 + (ݓ.Ԧݔ /

Pryss et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2017) 13 -21

17

In turn, the gyroscope poses the so-called DRIFT effect2
over time. To cope with the latter effect, every 10 seconds the
rotation vector is set as the new reference position (cf.
Algorithm 1, Lines 14-38). Within these 10 seconds, we check
whether the gyroscope and the rotation vector differ too much.
In the latter case, we increase a counter. Based on a threshold
that is compared to the counter, we either use the gyroscope or
the rotation vector for the rotationMatrix RM. On Android,
this approach for displaying POIs results in similar user
experiences compared to iOS. Third, the rotationMatrix RM is
used to adjust the virtual camera managed with the matrix
cameraView CM. This matrix, in turn, is used to decide which
POIs are actually displayed on the camera view. Based on the
poiList, the rotationMatrix RM, and the cameraView CM,
Algorithm 2 works as follows3: A view called areaview is
created and shown to the user. Next, each POI in poiList is
created as a separate view. These POI views are then placed on
the areaview and are initially marked as invisible. In the
following, they will be only displayed if Algorithm 2 indicates
that they shall be visible (cf. Algorithm 2, Lines 9-15). Note
that the entire view structure is pre-calculated and will not be
changed afterwards by Algorithm 2. The latter makes POIs
visible or invisible taking the position changes of the user into
account. The position, in turn, is determined through the
rotation matrix rotationMatrix RM (cf. Algorithm 2, Lines 2-
8). Changes in rotationMatrix RM are evaluated up to 60 times
per second. Hence, the pre-calculation of the view structure
with respect to performance is indispensable.

6. Cluster Algorithm
Algorithm 3 presents the calculation how POI clusters are
handled. The algorithm utilizes parameters thHor and thVer to
identify POI clusters contained in poiList. These two
parameters, in turn, are defined by the mobile users themselves
and are applied as follows: all POIs being inside an area
spanned by thHor on the horizontal and thVer on the vertical
course (i.e., in the ENU coordinate system) are considered as
POIs belonging to the same cluster. Figs. 4 and 5 illustrate how
cluster handling looks like from the perspective of the mobile
user. More precisely, in both figures the screens marked
deactivated show POIs without using Algorithm 3.
Consequently, the POIs are difficult to select for mobile users.
In turn, the screens marked activated in Figs. 4 and 5 show
Algorithm 3 in practice; i.e., a cluster was detected and the
POIs are arranged more conveniently to the mobile user.

 Fig. 4. Cluster Algorithm on Android OS

2 http://sensorwiki.org/doku.php/sensors/gyroscope
3 Note that parts of the algorithm concept can be related to perspective transformation and
clipping in the context of rendering pipeline in 3D computer graphics.

Algorithm 3: Handling Clusters

Data: poiList: List of surrounding pois of the user;
thHor: Horizontal threshold; thVer: Vertical threshold
Result: clusteredPoisList: List of clusters and single POIs

1 begin
clusteredPoisList ← [];
while poiList not empty do

re f Poi ← poiList[0]; poisToCluster ← []; poisToCluster.append(ref Poi);
foreach poi ∈ poiList do

if re f Poi * poi then
∆h ← 0
if re f Poi.hCourse ≤ poi.hCourse then

else

∆h ← re f Poi.hCourse− poi.hCourse;

∆h ← poi.hCourse − re f Poi.hCourse;
end
if ∆h ≤ −180 then

else

∆h ← (∆h + 360) mod 360;

∆h ← |∆h|;
end
∆v ← |re f Poi.vCourse− poi.vCourse|;
if ∆h ≤ thHor AND ∆v ≤ thVer then

poisToCluster.append(poi);
end

end

end

if poisToCluster not empty then
clusterPoi ← Cluster(re f Poi);
foreach poi ∈ poisToCluster do

if poi ≠ re fPoi then

clusterPoi.addToCluster(poi); poiList.remove(poi);
end

end

clusteredPoiList.append(clusterPoi);
else

clusteredPoiList.append(re f Poi); poiList.remove(re f Poi);
end

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35
end

36 end

Fig. 5. Cluster Algorithm on iOS

7. Experimental Results
In order to evaluate various performance indicators of
AREAv2 and to compare them with the ones of competitive
location-based mobile augmented reality applications, we
conducted an experiment obeying the following steps:

(1) Determine performance indicators for both the
Android and the iOS version of AREAv2: CPU
usage, memory usage, and battery consumption.

(2) Compare the performance indicators with the ones of
well-known smart mobile applications providing
location-based mobile augmented reality as well.

(3) Define an experiment setting for using the smart
mobile devices in two different scenarios: (a)
Holding the smart mobile device without performing
any position change; (b) Continuously moving the
smart mobile device.

Pryss et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2017) 13 -21

18

Concerning (1), we use an Apple iPhone 5c (iOS Version
9.3.5) for the AREAv2 iOS version and a Google Nexus 5
(Android Version 6.0.1) for the AREAv2 Android version.
Concerning (2), in turn, we compared AREAv2 with the smart
mobile applications depicted in Table 2.

As further shown in Table 2, we also determined the
aforementioned performance indicators for the camera as well
as the main menu of the two smart mobile devices. Camera
means that solely the camera function of the smart mobile
device was started without using a particular smart mobile
application. Main menu, in turn, means that the main menu of
AREAv2 was opened without using the augmented function.
These two measurements were accomplished to enable a better
comparison of the three performance indicators.

Table 2. Experimental Mobile Applications

iPhone 5c Nexus 5

Static (a) Moving (b) Static (a) Moving (b)

AREAv2 x x x x

Yelp [15] x x - -

Wikitude [18] x x x x

Augmented3D [19] x x x x

Camera x o x o

Main Menu x o x o

"x": performed, "o": not performed, "-": not available

Concerning (3), the following experimental setting was
established: for the static Scenario (a), a vice was used (cf. Fig.
6) to simulate a user holding the smart mobile device without
any position change.

Fig. 6. Simulation of Static Scenario (a)

For simulating a user continuously moving his smart
mobile device (Scenario (b)), we used a ventilator (cf. Fig. 7).

Fig. 7. Simulation of Moving Scenario (b)

For properly measuring the above mentioned three
performance indicators, we used the SystemPanel App [20] for
Android and the Instruments Framework [21] for iOS.

Based on this overall setting, each application was
evaluated using the same experiment procedure:

1. The smart mobile device was set to factory defaults.
2. The smart mobile application and the monitoring app

were downloaded.
3. All other mobile applications that may be manually

closed by a user (i.e., except the background
processes) were terminated.

4. The battery was loaded to 100%.
5. The smart mobile device was mounted to the vice or

ventilator.
6. The two mobile applications (i.e., test and

monitoring application) were started.
7. The experiment was conducted over a period of 30

minutes.

Table 3 shows the results of the experiment. For each
tested application, the average value of a performance indicator
during the 30-minutes experiment is shown. Note that the three
applications AREAv2, Wikitude and Yelp provide the same
location-based mobile augmented reality functions, whereas
Augmented3D uses 3D models in the augmented view (i.e., the
camera view). The latter application was evaluated to obtain
insights into location-based mobile augmented reality
applications in comparison to object-based mobile augmented
reality applications.

Experimental results indicate that AREAv2 shows a better
performance than the tested commercial location-based mobile
augmented reality applications Wikitude and Yelp as well as
Augmented3D. Only for the static iOS scenario, AREAv2
shows a higher CPU usage compared to the commercial
applications. We currently conduct further tests to evaluate this
issue in more detail. Regarding the RAM performance
indicator, AREAv2 performs best in all scenarios. Regarding
the CPU indicator, in turn, AREAv2 only shows weaker results
for the iOS static scenario and the iOS moving scenario (when
comparing it with Yelp). Concerning battery consumption,
AREAv2 performs worse than the other mobile augmented
reality applications. To address the latter aspect, we currently
work on AREAv3. As shown in Table 3, we have implemented
a first version of AREAv3 on Android. First results indicate
that AREAv3 performs better than AREAv2 as well as all
other mobile augmented reality applications with respect to the
overall battery consumption.

Table 3. Experiment Results

Device Scenario Application CPU RAM Battery

iPhone 5c Static (a) AREAv2 90,73% 67,00% 36,00%

Wikitude 61,22% 79,00% 24,00%

Yelp 72,97% 78,00% 18,00%

Augment3D 89,66% 77,00% 14,00%

Camera 30,36% 81,00% 13,00%

Main Menu 14,34% 53,00% 0,00%4

iPhone 5c Moving (b) AREAv2 84,87% 68,00% 25,00%

Wikitude 85,56% 73,00% 26,00%

Yelp 64,65% 80,00% 29,00%

Augment3D 70,98% 81,00% 16,00%

4 Reported by the Instruments Framework [21] to 0,00%

Pryss et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2017) 13 -21

19

Camera 30,36% 81,00% 13,00%

Main Menu 14,34% 53,00% 0,00%5

Nexus 5 Static (a) AREAv2 67,20% 46,00% 34,00%

AREAv3 41,52% 40,00% 19,00%

Wikitude 67,44% 48,00% 32,00%

Augment3D 70,28% 50,00% 25,00%

Camera 22,37% 49,00% 14,00%

Main Menu 8,91% 41,00% 6,00%

Nexus 5 Moving (b) AREAv2 59,22% 50,00% 34,00%

AREAv3 49,72% 73,00% 23,00%

Wikitude 64,93% 48,00% 30,00%

Augment3D 70,45% 48,00% 33,00%

Camera 22,37% 49,00% 14,00%

Main Menu 8,91% 41,00% 6,00%

5 Reported by the Instruments Framework [21] to 0,00%

8. AREAv2 in Practice
Table 4 summarizes examples of mobile applications that were
developed with the AREAv2 framework. As can be seen,
AREAv2 has been applied in various scenarios of everyday life
(cf. Table 4). Considering the high number of mobile
applications implemented with AREAv2, the practical
applicability of the latter could be demonstrated. The numbers
of POIs considered by the respective mobile applications vary
among the scenarios, but in all scenarios AREAv2 revealed
same performance experience.

Table 4. AREAv2 in Practice
Apps
using AREAv2

Cate-
gory

iOS Android #POIs
Cluster
Handl.

Abfallinfo
HOK

I √ √ 190 √

Altenahr C √ √ 964 √

Bad Waldsee C √ √ 624 √

Bühlerzell C √ √ 306 √

Gaildorf C √ √ 457 √

Goldpartner F √ √ 205 √

Algorithm 1: Determine 3D-Rotation Matrix on Android

Data: ݎԦ, ݃Ԧ , R
1 begin

/ * Ԧݎ Rotat ionVector: Rotat ion o f t he smart mobile device with angle θ t o t he t h r e e axes :
x∗sin(θ/2), y∗sin(θ/2), z∗sin(θ/2).

/ * Ԧ݃	 GyroscopeVector: Vector with r o t a t i o n o f t he smart mobile device t o t he t h r ee axes i n rad/s
/ * Mg : Matrix r ep re sen t a t i on o f t he gyroscope v e c t o r , qg : Quaternion o f the gyroscope vec to r
/ * Mr : Matrix r ep re sen t a t i on o f t he Rotat ionVector , t : timestamp
/ * qr Quaternion o f t he Rota t ionVector , R : Smart mobile device r o t a t i o n provided by t he 3D r o t a t i o n matr ix

* /
* /
* /
* /
* /

Mg ← 0, qg ← 0	 ,t ← 0, f ← 0
while 1do

Mr ← MatrixFromVector(ݎԦ)
qr ← QuaternionFromVector(ݎԦ)
if first run then

Mg ← Mr , qg ← qr , t ← now()
end
∆t ← now() −t

/ * Ca lcu la te t he angular speed o f t he gyroscope * /
s2 ← sin s1 , s3 ← cos s1

∆qg ← (s2 ∗ĝ x , s2 ∗ĝ y , s2 ∗ĝ z , s3) ; / * Create a quaternion from t he angular r o t a t i o n o f t he gyroscope * /

2

3

4

5

6

7

8

9

10

11

12

13 qg ← ∆qg ∗qg , d ← qg ·qr

/ * Time t h resho ld not reached * /
14 if t < εt then

* /
15

/ * Di rec t ions o f gyroscope and r o t a t i o n vec to r d i f f e r t o s t rong . . .
if d < εd then

* // * . . . b u t they d id not d i f f e r o f ten enough ye t
if f < εf then

f ← f + 1 ; / * Increase f a i l counter * /
∆Mg ← MatrixFromVector(∆qg)
R ← ∆Mg ∗Mg ; / * Set 3D Rotat ion Matrix according t o gyroscope * /

end
else

f ← 0 ; / * Reset f a i l counter * /
qg ← qr , Mr ←Mg

R ← Mr ; / * Set 3D Rotat ion Matrix accordingly t o r o t a t i o n vec tor * /
end

end
else

ଓԦ ← S LERP(qg,qr) ;
R ← MatrixFromVector(ଓԦ) ;
Mg ← R;

/ * Ca lcu la te t he i n t e r p o l a t ed o r i e n t a t i o n with SLERP algori thm [16] * /

/ * Assign t he 3D r o t a t i o n Matrix * /
/ * Set gyroscope matr ix accordingly * /

end
end
else

f ← 0 ;
qg ← qr ;

/ * Reset f a i l counter * /
/ * Align gyroscope with r o t a t i o n vec to r * /

Mg ←Mr

R ← Mr ; / * Assign 3D r o t a t i o n matrix * /
end

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39 end
40 end

s1 ← (Ԧ݃	* ∆t) ∕ 2

Pryss et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2017) 13 -21

20

Hinterzarten C √ √ 297 √

Liveguide
Muswiese

E √ √ 97 √

Mühlenbecker
Land

C √ √ 496 √

Liveguide
Gaildorf

E √ √ 44 √

Rechberghausen C √ √ 331 √

Riedlingen C √ √ 781 √

Renningen C √ √ 1048 √

9. Summary and Outlook
This paper gave insights into the development of a powerful
augmented reality kernel for smart mobile devices. In turn, this
kernel serves as the core of an engineering framework for
mobile augmented reality applications. We discussed
complexity issues emerging in this context, showing that the
development of mobile augmented reality applications
constitutes a challenging endeavor. As a particular lesson, we
learned that fundamental components of the kernel needed to
be evolved over time in order to keep pace with the frequently
changing requirements of mobile operating systems. In
addition, novel functions like POI cluster handling were
presented. In general, the development of mobile applications
is demanding when considering the peculiarities of the
different mobile operating systems. To cope with this
heterogeneity, AREAv2 is based on a modular architecture.
We further showed that sophisticated business applications can
be realized on top of AREAv2. Furthermore, experimental
results demonstrated that AREAv2 had shown a good
performance compared to competitive location-based mobile
augmented reality applications.

Altogether, mobile augmented reality enables scenarios
demonstrating that mobile applications are becoming
increasingly mature. However, suitable concepts are needed to
enable comprehensive and efficient mobile assistance in
everyday life.

References

[1] Schickler, M., Pryss, R., Schobel, J., Reichert, M.. An
engine enabling location-based mobile augmented reality
applications. In: 10th Int’l Conf on Web Information
Systems and Technologies (Revised Selected Papers); no.
226 in LNBIP. Springer; 2015, p. 363–378.

[2] Geiger, P., Schickler, M., Pryss, R., Schobel, J., Reichert,
M.. Location-based mobile augmented reality
applications: Challenges, examples, lessons learned. In:
10th Int’l Conf on Web Information Systems and
Technologies. 2014, p. 383–394.

[3] Jabeur, N., Haddad, H., Boulkrouche, B.. Cyber-Physical
Spatial Decision Support System for Road Traffic
Management. International Journal of Ubiquitous Systems
and Pervasive Networks; 2016; 7(2) :1–7.

[4] Kooper, R., MacIntyre, B.. Browsing the real-world wide
web: Maintaining awareness of virtual information in an
ar information space. Int’l Journal of Human-Computer
Interaction 2003;16(3):425–446.

[5] Kähäri, M., Murphy, D.. Mara: Sensor based augmented
reality system for mobile imaging device. In: 5th IEEE
and ACM Int’l Symp on Mixed and Augmented Reality;
vol. 13. 2006.

[6] Lee, R., Kitayama, D., Kwon, Y., Sumiya, K..
Interoperable augmented web browsing for exploring
virtual media in real space. In: Proc of the 2nd Int’l
Workshop on Location and the Web. ACM; 2009, p. 7.

[7] Grubert, J., Langlotz, T., Grasset, R.. Augmented reality
browser survey. Technical Report; Graz University of
Technology; 2011.

[8] Kim, W., Kerle, N., Gerke, M.. Mobile augmented reality
in support of building damage and safety assessment.
Natural Hazards and Earth System Sciences
2016;16(1):287.

[9] Yang, Y., Shim, J., Chae, S., Han, T.. Mobile augmented
reality authoring tool. In: 10th IEEE Int’l Conf on
Semantic Computing. IEEE; 2016, p. 358–361.

[10] Chung, J., Pagnini, F., Langer, E.. Mindful navigation for
pedestrians: Improving engagement with augmented
reality. Technology in Society 2016;45:29–33.

[11] Pryss, R., Geiger, P., Schickler, M., Schobel, J., &
Reichert, M. (2016). Advanced Algorithms for Location-
Based Smart Mobile Augmented Reality Applications.
Procedia Computer Science, 94, 97-104.

[12] Paucher, R., & Turk, M. (2010). Location-based
augmented reality on mobile phones. In 2010 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition-Workshops (pp. 9-16). IEEE.

[13] Reitmayr, G., & Schmalstieg, D. (2003). Location based
applications for mobile augmented reality. In Proceedings
of the Fourth Australasian user interface conference on
User interfaces 2003-Volume 18 (pp. 65-73). Australian
Computer Society, Inc.

[14] Capece, N., Agatiello, R., & Erra, U. (2016, July). A
client-server framework for the design of geo-location
based augmented reality applications. In Information
Visualisation (IV), 2016 20th International Conference
(pp. 130-135). IEEE.

[15] Yelp. https://www.yelp.com/mobile. [Online; accessed on
06-January-2017]

[16] Shoemake, K. (1985, July). Animating rotation with
quaternion curves. In ACM SIGGRAPH computer
graphics (Vol. 19, No. 3, pp. 245-254). ACM.

[17] Lee, Y. H., & Rhee, S. B. (2015). Efficient Photo Image
Retrieval System Based on Combination of Smart Sensing
and Visual Descriptor. Intelligent Automation & Soft
Computing, 21(1), 39-50.

[18] Wikitude. http://www.wikitude.com/. [Online; accessed
on 30-April-2017]

[19] Augment3D. Google Android Store Mobile Application:
https://play.google.com/store/apps/details?id=com.ar.aug
ment&hl=de; Apple iOS Store Mobile Application:
https://itunes.apple.com/de/app/augment-3d-augmented-
reality/id506463171?mt=8. [Online; accessed on 30-April-
2017]

[20] SystemPanel Smart Mobile Android Store Application:
https://play.google.com/store/apps/details?id=nextapp.syst
empanel.r1&hl=de. [Online; accessed 30-April-2017]

[21] Instruments performance-analysis and testing tool.
https://developer.apple.com/library/content/documentation
/DeveloperTools/Conceptual/InstrumentsUserGuide/
[Online; accessed on 30-April-2017]

