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Abstract—The identification of subpopulations with particu-
lar characteristics with respect to a disease is important for
personalized diagnostics and therapy design. For some diseases,
the outcome is described by more than one target variable. An
example is tinnitus: the perceived loudness of the phantom signal
and the level of distress caused by it are both relevant targets
for diagnosis and therapy. In this work, we study the potential of
multi-target classification for the identification of those screening
variables, which separate best among the different subpopula-
tions of patients, paying particular attention to subpopulations
with discordant value combinations of loudness and distress.
We analyse the screening data of 1344 tinnitus patients from
the University Hospital Regensburg, including questions from 7
questionnaires, and report on the performance of our workflow
in target separation and in ranking the questionnaires’ variables
on their discriminative power.

Index Terms—multi-target classification on skewed data; tin-
nitus handicap; tinnitus loudness; medical mining

I. INTRODUCTION

During patient screening, physicians use agreed-upon ques-
tionnaires and medical tests to capture symptoms and assess-
ments that associate with the outcome. The results of this
screening process are then used for diagnostics and person-
alized therapy design. There are diseases that pose particular
challenges to this process, especially those with comorbidities
or with unclear physiopathological mechansisms: extensive
assessments are needed for diagnostics, and a complex out-
come, consisting of more than one target variables, must be
considered for therapy design. In this study, we propose a
mining workflow for multi-target classification and for the
characterization of assessments with respect to their predictive
power towards an outcome consisting of multiple targets. We
report on our results on screening data of tinnitus patients,
studying the combination of tinnitus loudness and handicap
as multi-targeted outcome.

Tinnitus is a medical condition characterized by the phan-
tom perception of sound in one or both ears. In [1], Baguley
et al. report a prevalence of 10-15%. The recent review of
Elgoyen et al. highlights the large patient heterogeneity as
one of the major reasons for inconsistent results in studies
on tinnitus [2]. An example of heterogeneity concerns the

interplay between loudness of the tinnitus signal and handicap
caused by tinnitus: in their study [3], Hiller and Goebel
show that ”loudness and annoyance are discrepant” in some
cases, since there are patients whose everyday life is obscured
although loudness is low, while other patients do not feel
disturbed although their tinnitus signal is loud. Understanding
what characterizes patients with such a discordant combination
of loudness and handicap is important for personalized therapy
design, but also to gain insights in the pathophysiological
mechanisms of tinnitus.

Tinnitus loudness refers to the the subjective loudness of
the tinnitus perception, as rated by the patient. The Tinnitus
Sample Case History Questionnaire (TSCHQ) [4] contains an
explicit question on the scale of tinnitus loudness, as well as
further questions on the nature of the perceived signal. The
assessment of tinnitus handicap is the subject of the Tinnitus
Impairment Questionnaire (TBF12) [5] (12 questions), but
questionnaires associated with mental well-being are also
of relevance. They include the Major Depression Inventory
(MDI) [6] and the World Health Organization Quality of
Life (WHOQOL) questionnaire [7]. In this study, we use the
tinnitus loudness question (Q11) of TSCHQ [4] as one target
variable, ”TLoudness”, and the aggregate value of the 25
questions in the Tinnitus Handicap Inventory (THI) [8] as
second target variable ”THandicap”.

Our approach is a mining workflow with several steps. To
learn models for the two targets of tinnitus loudness and
handicap we use multi-target classification, preceded by a
target discretization task and an oversampling task to account
for infrequent combinations of loudness and handicap values.
To assess the importance of specific questions/assessments for
target separation, our approach encompasses a task of variable
ranking, whereby we generate several models and count the
occurrences of a variable in a model.

The paper is organized as follows. In section II we give a
short overview of related research. In section III we describe
the data used in our analysis. In section IV we present our
approach and report on the experimental results in section V.
We close the paper with a summary and some open questions
in section VI.



II. STATE OF THE ART

The screening protocols for the diagnosis of a disease
encompass questionnaires and clinical examinations. There are
several questionnaires for tinnitus diagnostics, including the
Tinnitus Sample Case History Questionnaire (TSCHQ) [4],
the Tinnitus Handicap Inventory (THI) [8] and the Tinnitus
Questionnaire (TQ) [9]. Questionnaires differ in purpose: for
example, THI focusses on assessing the handicap caused by
tinnitus, while TSCHQ records anamnesis, medication and
loudness as well. There is overlap among the questionnaires,
but also inside a questionnaire. For example, more than one
of the TQ questions addresses the effects of tinnitus on sleep.
Agreement or disagreement among answers to strongly corre-
lated questions can shed insights on how a patient experiences
the disease. Hence, we do not skip questions before learning,
but identify questions that contribute to class separation in a
learned model.

Class separation with respect to more than one classifi-
cation variable is studied by ”multi-target” (or multi-output)
classification algorithms. Early algorithms include [10]–[12].
Random forests [13] have been shown to be promising for
multi-target classification, to the effect that more elaborate
algorithms emerged over the years. A recent overview can
be found in [14].

The use of ensembles implies that the contribution of each
variable to class separation becomes less clear. This is further
exacerbated in random forests, since each tree is learned on
a different subset of the original feature space. In [13], [15],
Leo Breiman already investigates this problem and proposes
measures that quantify the importance of a variable for class
separation. In [16], Louppe et al provide an elaborate quantifi-
cation of variable importance. They concentrate on Breiman’s
”Mean Decrease Impurity” (MDI) but their estimations gener-
alize for further impurity measures. The main emphasis of [16]
is in providing a reliable estimation of variable importance,
i.e. as the number of randomized trees goes towards infinity.
Moreover, they provide estimates both for fully grown trees,
i.e. after the end of the learning phase, and for trees grown to
depth q ≤ p, where p is a tree’s full depth. In our work, we
use a much simpler computation of variable importance within
a finite set of random trees, without generalization guarantees.
To perform this simplification, we restrict model induction so
that all randomized trees are learned on the complete feature
space instead of learning each tree in a subspace.

Advances on variable ranking also include methods that
assess the relevance of variables before model learning, aiming
to prune non-predictive variables and to identify correlated
ones. A recent example can be found in [17]. The a priori
exclusion of screening assessments that are known to be
overlapping or correlated is not desirable in our example, since
we want to identify those among the correlated questions that
contribute mostly to separation. Hence, our workflow encom-
passes the task of variable ranking after learning, whereby
we perform ranking on the variables learned by a number of
multi-target classifiers.

III. MATERIALS

We use a sample of 1344 tinnitus patients from the Uni-
versity Hospital Regensburg and consider exclusively the
assessments of the first screening. The screening encom-
passes answers to several questionnaires, including the Tin-
nitus Handicap Inventory (THI) [8], which is a 25-items-
questionnaire and is the most widely used instrument for
measuring the tinnitus-associated handicap in the daily life
of the patient. The Tinnitus Questionnaire (TQ) [9] is another
questionnaire containing 52 items; it is frequently used for
tinnitus research in Germany. The Tinnitus Sample Case His-
tory Questionnaire (TSCHQ) [4] is an assessment instrument
with 35 questionnaire items to record demographic variables
and clinical characteristics. The Tinnitus Impairment Ques-
tionnaire (TBF12) [5] is a short questionnaire to measure
the tinnitus-related distress; it contains 12 items. The small
Tinnitus Severity (TS) questionnaire consists of 6 items, used
to measure different aspects of the tinnitus-related distress on a
numeric rating scale. The Major Depression Inventory (MDI)
[6] is a standard instrument to assess depressive symptoms; it
contains 12 items. The World Health Organization Quality of
Life (WHOQOL) is an internationally validated questionnaire
to measure the quality of life; it encompasses 26 items [7]. In
addition to the questionnaires, an Audiological Examination
was also performed to assess the hearing ability of the patients
with an audiogram.

The outcome is described by two variables. We derive them
by discretizing the TSCHQ variable loudnessdescription-
text screen and the THI variable THI totalscore screen.
The former variable is a measure for the subjective loud-
ness of the tinnitus perception, as rated by the patient. It
ranges between 1 and 100 in steps of 5 units. The variable
THI totalscore screen is the aggregate value of the 25
questions in the Tinnitus Handicap Inventory (THI) question-
naire and ranges between 0 and 100. Values closer to 100
indicate higher loudness, resp. handicap. We split each value
range into two bins, the bin ”LOW” containing the values
in [0,50), the bin ”HIGH” containing the higher values in
[50,100]. The resulting discrete variables TLoudness and
THandicap are binary. Of the four combinations total, two
are discordant, namely low loudness with high handicap (also
denoted as L H+ hereafter) and high loudness with low
handicap (denoted as L+H ).

From this dataset we removed all patients, for whom one or
both of the target variables had no value. As next filtering step,
we projected away following variables: variables with evident
logical errors, variables with undiscretized dates, variables
with missing values for more than 5% of the patients. Patients
with missing values in one of the retained variables were also
removed, as final filtering step. The remaining dataset consists
of 629 patients described by 97 variables. The distribution of
the targets is depicted on Table I.

IV. OUR APPROACH

Our approach for multi-target classification builds upon
following model of the learning problem.



TABLE I
DISTRIBUTION OF THE TARGET VARIABLES IN THE PATIENTS SAMPLE

TLoudness : LOW TLoudness : HIGH
THandicap : LOW 69 239
THandicap : HIGH 20 301

Let T = {T1, . . . , Tm} be the set of targets and let
LTi = {Ci,1, . . . , Ci,li} be the set of class labels for the
target Ti. Let Pm be the set of all combinations of labels
from the m targets. Further, let s = {s1, . . . , sm} ∈ Pm be a
combination of labels from the targets, i.e. si ∈ LTi

for each
i = 1 . . .m. We define as learning focus (or simply focus)
the set S ⊆ Pm of label combinations that are of particular
interest for the application. For the tinnitus application, S
consists of the two discordant combinations of TLoudness
and THandicap, namely L H+ and L+H . On Table I we
see that L H+ is infrequent (20 patients), while L+H is
frequent (239 patients).

Our first objective is to build a set of models that separate
well both with respect to Pm and with respect to the focus S.
Our second objective is to derive from these models a set of
variables with high contribution to the classification of those
instances, whose labels are in the focus S.

A. Outline of our mining workflow

Our approach towards the two objectives of classification
and identification of predictive variables encompasses follow-
ing tasks:

1) Bin construction for the target combinations and over-
sampling

2) Multi-target classification
3) Assessment of model quality
4) Assessment of a variable’s importance
5) Construction of ”good” models and variable ranking

over those models
The first task encompasses partitioning of the training sample
into bins, where each bin covers one combination of values
of the target variables. Since some bins may be substantially
smaller than others (cf. data distribution among the four
combinations in Table I), we perform oversampling to derive
equisized bins.

In the following, we describe the subsequent tasks of our
workflow.

B. Multi-target classification core

For class separation we use random forests (RF), as pro-
posed in [13]. For a training set D over a feature space F , this
algorithm induces multiple CART-based decision trees [18],
whereby each tree is learned on |D| instances, randomly drawn
with replacement from D. RF considers a random choice of
variables from F when inducing each tree. In our approach,
however, we force RF to consider the whole of F during tree
induction, so that all variables in F are considered with equal
prior probability during variable ranking.

We consider two RF-based algorithms for multi-target clas-
sification. The first one is a scikit-learn implementation [19] of
a multi-target classification algorithm on the basis of random
trees1, proposed in [14]. This algorithm, denoted as MTRF

hereafter, builds a single classification model for the m target
variables, namely an ensemble of random trees. The second
algorithm is an RF-based variant on the ”Label Powerset”
algorithm proposed in [20], denoted as LPRF hereafter. This
algorithm learns one target variable, the values of which are
the combinations of values of the m target variables in Pm.

C. Quantification of model quality

To ensure that our mining workflow produces models that
separate well across all targets, we distinguish between global
quality and focus quality of a model. The global quality
of model M is an m-dimensional vector qglobal(M), the
ith element of which is the accuracy value achieved by M
for the ith target. The focus quality is the m-dimensional
vector qfocus(M) encompassing the recall values for the
combinations in the focus S, i.e. the number of hits for the
focus combinations to the number of instances in the focus; the
ith element of this vector represents the recall value achieved
by M for the ith target. Although we define the quality
vectors on the basis of accuracy, resp. recall, any other quality
function, e.g. the F-measure, could be used instead.

Since the instances belonging to classes in S may make
only a small portion of the population, we consider two user-
defined thresholds, τglobal and τfocus. A model is ”good” if
each element of its global quality vector exceeds τglobal and
each element of its focus quality vector is higher than τfocus.

D. Assessing a variable’s importance

To assess the importance of a variable for the separation
among the classes in Pm and in the focus S, our mining work-
flow generates a series of models G. Informally, a variable is
deemed to be important, if it is used by many models in G.
Since a model is a consists of trees, a variable that is used to
split the root node or another node close to the root has more
influence on class separation than a variable that is used in a
split close to the leaf nodes. Hence, our scoring function for
a variable’s importance takes into account the position of a
variable in each tree that used this variable for splitting.

Let s ∈ S be a combination of target variable values from
the focus S, let M ∈ G be a model and T ∈ M be a tree
induced as part of M . We denote as f(s, T ) the set of those
nodes in T , which contain a split that involves s, i.e. a split that
separates the instances belonging to s from those belonging
to other target combinations. We identify the variables used in
the splits of the nodes in f(s, T ) and compute for each of them
v its importance for s over all T ∈M . To do so, we combine
two scoring functions, avF (v, s,G) and avH(v, s,G), defined
as follows.

1scikit-learn 0.17 RF implementation http://scikit-learn.org/stable/modules/
ensemble.html#random-forests, accessed on Feb. 10, 2017.



For a variable v, we define its average frequency with
respect to s in the set of models G as:

avF (v, s,G) =

∑
M∈G

∑
T∈M

∑
x∈f(s,T ) split(x, v)∑

M∈G

∑
T∈M 1

(1)

where split(x, v) acquires the value 1 if node x is split on v
and zero otherwise. Larger values are better.

For a variable v, we define the average height (tree layer)
in which it appears as:

avH(v, s,G) =

∑
M∈G

∑
T∈M

∑
x∈f(s,T ) split(x, v) · l(x, T )∑

M∈G

∑
T∈M

∑
x∈f(s,T ) split(x, v)

(2)
where l(x, T ) refers to the position/layer of the tree, where x
is located, divided by the total height of the tree T . The root
of the tree is at the layer 1, a leaf at a layer equal to the tree
height. The closer the node x is to the root of T , the more
important is the variable on which x is split. Hence, smaller
values of avH() are better.

On the basis of those two functions, we define the impor-
tance of a variable v in a set of models G towards a set of
focus combinations s as:

importance(v, s,G) = avF (v, s,G)–w ∗ avH(v, s,G) (3)

where the contribution of frequently used variables is penal-
ized if the location of these variables is close to the leaves
of the trees in the models of G. The weight w regulates the
influence of avH(). In our work, we have set w = 0.5.

This function allows us to either extract all variables with
higher importance scores than a threshold, or to select the
variables with the top-N scores. In section V we choose the
second option and return the top N = 10 variables for the
focus combinations L H+ und L+H .

E. Variable ranking for a choice of models

To identify the variables that have the highest contribution
to class separation, we stepwise generate a number of models.
However, instead of considering models of arbitrary quality,
we discard models, the quality of which is below threshold,
and continue the model generation until a user-defined number
n of good models is reached. They constitute the set of models
G input to the importance function.

To create this G for each of the two classification algorithms
MTRF and LPRF, we perform a sequence of runs. In each run, we
place the instances into two bins, whereby we oversample the
minority classes, according to the first step of our workflow.
We first use the one bin for learning and the other one for
evaluation, and then switch the bins. Hence, each run outputs
two models, the quality of which is evaluated against the two
quality thresholds. To increase diversity among the runs, we
shuffle the instances, i.e. we assign the instances to two bins
randomly without replacement. We continue generating pairs
of models until the user-defined number of ”good” models n
is reached.

V. EXPERIMENTS

A. Experimental design

We evaluate our approach on the sample described in
section III, i.e. for two target variables. We set the fo-
cus on the combinations of LOW TLoudness and HIGH
THandicap, denoted as L H+and of HIGH TLoudness
and LOW THandicap, denoted as L+H .

For LPRF, we set the threshold for global quality τgq to 0.8
and the quality threshold for the (two) focus combinations of
targets τfq also to 0.8. For MTRF, we set the corresponding
values to 0.88, since it turned out, that models created by
MTRF predict better and we only want to create the very best
possible models. We set the number of models with quality
higher than the thresholds to n = 20.

B. Results

The performance values over the n = 20 models are
depicted on Table II. The second column shows the number
of models induced, until 20 models with quality above the
thresholds were created.

TABLE II
GLOBAL QUALITY AND FOCUS QUALITY, AVERAGED OVER THE SELECTED

20 MODELS FOR EACH ALGORITHM

Number Global quality Focus Quality
of models avg (variance) avg (variance)

MTRF 20 of 142 0.9060 (0.0005) 0.9323 (0.0005)
LPRF 20 of 112 0.8190 (0.0003) 0.8524 (0.0021)

For each of the combinations L H+ and L+H , we sorted
the variables used by LPRF on importance and similarly for
MTRF . To select and compare these sets, we have set the
performance threshold for MTRF higher than for LPRF. On
Table III, we depict the top-10 variables for L H+, which
is the least frequent combination in our data (20 patients,
cf. Table I). On Table IV, we similarly show the top-10
variables for L+H , which is rather frequent in our data (239
patients). Variables considered important by both algorithms
are represented in row Both, while variables found important
by only one algorithm are represented in separate rows MTRF

and LPRF. Qi represents the ith question of the respective
questionnaire.

TABLE III
THE TOP-10 IMPORTANT VARIABLES FOR THE COMBINATION L H+

Top-10 important variables for L H+
Both 8 THI:{Q10, Q12, Q13, Q16, Q17}, TQ:{Q7, Q10, Q15}

MTRF 2 THI:{Q1, Q23}
LPRF 2 THI:Q21, TQ:Q39

C. Discussion

Our workflow shows very good accuracies for MTRF and
LPRF. LPRF induced less models than MTRF in order to build the
n = 20 good models, but this may be attributed to the higher
thresholds we used for MTRF. The higher quality of MTRF is



TABLE IV
THE TOP-10 IMPORTANT VARIABLES FOR THE COMBINATION L+H

Top-10 important variables for L+H
Both 7 THI:{Q10, Q12, Q13, Q16, Q17}, TQ:{Q7, Q15}

MTRF 3 THI:{Q1, Q15, Q25}
LPRF 3 THI:{Q7, Q14, Q21}

not completely unexpected, as it learns all targets separately,
while LPRF learns combinations. This should be evaluated in
more detail though, by usage of e.g. confidence intervals on
the achieved accuracies. The similarity of both approaches is
underlined by the agreement about the variables characterizing
each of the focus combinations.

The top-10 important variables for the two focus combina-
tions L H+ (infrequent) and L+H (frequent) come mostly
from the Tinnitus Handicap Inventory (THI). This is not
surprising, since THandicap is derived from the aggregate
score of THI. It is more of interest to check which questions
are among the top-10: they refer to frustration (Q10), pleasures
and responsibilities (Q11, resp. Q12), stress in social relations
(Q17), rather than to difficulties in hearing people (THI:Q2),
anger (Q3) or confusion (Q4).

Despite the correlation of the target THandicap with
THI, there are four highly discriminative questions from the
Tinnitus Questionnaire (TQ) among the top-10 in L H+ (cf.
Table III), though not in L+H . TQ contains 52 questions,
which are formulated as statements. For example, Q15 states
that the tinnitus signal is loud most of the times; the patients
answer with ”Agree”, ”Disagree” and ”Partially”. The ques-
tions overlap: Q7 states that the tinnitus signal is rather faint.
Q10 states that the tinnitus sound is unpleasant, while Q39
is on feeling depressed. The occurrence of these questions
in Table III indicates that the answers of the patients are very
discriminative for L H+, while the other patients answer these
four questions in a way that does not allow to distinguish
between L+H and the remaining two classes.

As in THI, the TQ questions present in Table III are on
feeling annoyed or distressed. Questions on feeling angry,
having difficulties to hear others etc, are not adequately
discriminative to reach the top-10 positions. This indicates that
the patients experience handicap in very different forms, no
form being highly prevalent.

There are some constraints in these results. MTRF and LPRF

are conceptually similar algorithms, so the variability of their
findings is not large. Moreover, there has been no correction
for oversampling: this affects the reliability of the global/focus
quality computations, and thus the choice of the n models for
subpopulation characterization. Further, the algorithms learned
only over 50% of the data, thus the overall model quality
may have been lower than possible. Finally, the ranking of
the variables has not been tested statistically. Nonetheless,
the lists of the top-10 variables are in agreement with expert
insight on which questionnaire questions are informative for
the combination of tinnitus loudness and handicap.

VI. CONCLUSION

We presented a mining workflow for multi-target classi-
fication and identification of discriminative variables during
patient screening, and we have reported our preliminary results
on the classification of screening records of tinnitus patients.
Our results for two target variables indicate that the approach
can build good models and identify discriminative variables
that agree with expert insight. Since the screening involves a
very large number of questions from semantically overlapping
questionnaires, the identification of discriminative questions
can help the physicians focus on specific answers for diagnosis
and therapy design.

Our first steps of future work are on the alleviation of
some of the identified shortcomings, namely correction for
oversampling, induction of random trees on subsets of the
feature space (subspaces) and usage of the variable ranking
estimates of [16], enhancement of the variable ranking mech-
anism for global quality vs focus quality with appropriate
statistical testing, and experiments with more than two target
variables.
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