
Context-Based Prevention and Handling of Exceptions
for Human-Centric Mobile Services

Rüdiger Pryss and Manfred Reichert
Institute of Databases and Information Systems, Ulm University, Germany

{ruediger.pryss, manfred.reichert}@uni-ulm.de

Abstract—Using smart mobile devices to support human-
centric services is a frequent demand in business scenarios. As
a particular challenge, tasks performed in a paper-driven way
shall be digitally transformed with the use of mobile devices.
With the goal to enable business applications supporting
human-centric mobile services in mind, we developed a frame-
work that extends existing process management technology
with mobile activities running on smart mobile devices. Note
that when considering the frequently changing conditions of
mobile environments, the prevention and the proper handling
of exceptions (e.g., lost connections) become crucial. The
developed framework, therefore, aims to prevent exceptions
and to provide a sophisticated exception handling service not
supported by existing process management technology so far.

Keywords-mobile service, mobile process, exception handling

I. INTRODUCTION

Using process management technology in the context
of business scenarios is a fundamental trend in enterprise
computing [1]. However, approaches integrating smart mo-
bile devices with process management technology are rather
premature. To remedy this drawback, we developed a frame-
work that enables support for mobile activities. The latter
constitute process activities, i.e., single process steps, to be
executed on mobile devices. The developed framework, in
turn, uses a mobile context to tackle the challenges raised
by the use of mobile devices (e.g., connection losses).
To elaborate fundamental requirements for a framework
enabling human-centric mobile services, we analyzed a
multitude of real-world scenarios and other works [2]. Based
on insights gained from the various scenarios, we were able
to elicit fundamental requirements for human-centric mobile
services. This work focuses on the two important require-
ments how to prevent and handle exceptions. The paper is
organized as follows. Section II introduces human-centric
mobile services. In Section III, the mobile context is defined,
whereas Section IV presents the exception handling service.
Finally, Section V discusses related work and Section VI
concludes the paper with a summary and outlook.

II. HUMAN-CENTRIC MOBILE SERVICES

First of all, we develop our framework to enable human-
centric mobile services in a process context. Thereby, a
process management system assigns and manages (i.e., starts

and stops) process activities based on a given process schema
[1]. In this context, two basic types of activities need to be
distinguished: the ones automatically executed (e.g., Web
Service calls) on one hand and activities performed by users
on the other. The latter are denoted as human activities.
Based on this, we denote context-aware human activities
running on smart mobile devices and being controlled by
a process management system as human-centric mobile
services. In this context, a match-making model [3] becomes
necessary that determines which human-centric mobile ser-
vice will be assigned to which mobile user. For this purpose,
we developed a process meta-model that considers mobile
activities explicitly (cf. Fig. 1 1©). The meta-model, in turn,
is based on an extensive literature review (e.g., [2], [4]) and
denoted as mobile process meta-model. From a technical per-
spective, the execution of mobile activities mainly requires
a sophisticated worklist management. Therefore, all entities
in our mobile process meta-model concerned with worklist
management are marked accordingly (cf. Fig. 1). As can be
seen, many interdependencies must be tackled to enable the
required worklist management for mobile activities.

In the context of worklist management, two algorithms
were developed (cf. Fig. 1 1©, 2©) that are responsible for the
match-making model. These algorithms are the basis for our
exception handling service. The first algorithm manages
user assignments and the execution of mobile activities
(cf. Fig. 1 1©) with the goal to prevent exceptions. It is
denoted as Selection Algorithm. The second algorithm, the
Ranking Algorithm, handles exceptions (e.g., smart mobile
device crashes) during the execution of mobile activities (cf.
Fig. 1 2©). To enable a proper exception handling, and as a
prerequisite for the worklist management, a complex state
model of mobile activities became necessary (cf. Fig. 1 4©).

Since worklist management plays an important role for the
exception handling service, we conceive the basic technical
aspects behind the management of worklists [5]. To properly
assign mobile activities to mobile users, a process client
must be provided, which needs to be deployed to the
users’ mobile devices. In turn, the communication between
the process client and the process management system
requires protocols and the worklist management. The latter
is fundamental to determine which mobile user actually
performs a mobile activity as more than one user may be

Figure 1: Mobile Process Meta-Model

qualified for it. For this purpose, worklists are managed for
all mobile users on their process clients, which are centrally
synchronized by the process management system. More
precisely, all mobile activities a user qualifies for are added
to his ActivitiesAtHand list (cf. Fig. 1 5©). These activities
can then be claimed by the user. In the latter case, the
mobile activity is added to the MyActivities list (cf. Fig. 1 5©)
and removed from the ActivitiesAtHand list. In addition,
for all other users whose ActivitiesAtHand list contains this
mobile activity, the latter will be removed. Finally, if the
user declines a mobile activity, it is solely removed from
this particular ActivitiesAtHand user list.

III. MOBILE CONTEXT

The handling of mobile activities is governed by a mobile
context to enhance worklist management. We learned from
the scenarios we analyzed that users base their decision
whether or not they actually execute a mobile activity on
recurrent patterns. For example, if a mobile activity is
often performed at the same location, users keep that in
mind when making this decision. Accordingly, a location
pattern can be derived. Based on these insights as well as
a comprehensive literature study (e.g., [2], [4]), for each
identified pattern we elaborated an appropriate value (called
parameter). These values are used to assign mobile users
to mobile activities, to prevent exceptions, and to handle
exceptions (cf. Table I). Consider Table I. Note that Column
T indicates whether a parameter is of type symbolic or
measured. From the considered application scenarios we
revealed that such differentiation is useful. Symbolic pa-
rameters are used in related work to define parameters on
an abstract level [6]. For example, regarding the location
of a mobile activity, the symbolic parameter emergency
room might be used. Symbolic parameters are considered

CPM Description T UA EP EH

Category I: Smart Mobile Device (SMD)

SMDBS Battery Status M
√ √ √

SMDFF Form Factor S
√ √ √

SMDNT Network Type M
√ √ √

SMDGC Geometric Coordinate M
√ √ √

Category II: Mobile Activity (MA)

MASC Symbolic Coordinate(s) S
√ √ √

MAGC Geometric Coordinate M
√ √ √

MALR Location Range S
√ √ √

MABS Battery Status M
√ √ √

MAU Urgency Value S
√ √ √

MAOFF Offline Mode S
√ √ √

MAFF Form Factor S
√ √ √

MARF Response Frequency S
√ √ √

MAUT User Threshold S
√ √ √

Category III: Process (P)

PIST Instant Shutdown Threshold S
√ √ √

Category III IV: Mobile User (MU)

MUSC Symbolic Coordinate(s) S
√ √ √

MUIS Instant Shutdowns S
√ √ √

T=Type⇒ M=Measured, S=Symbolic, UA=User Assignment, EP=Exception Prevention
EH=Exception Handling,

√
=holds, CPM=Context Parameter

Table I: Mobile Context Parameters

as they can already be evaluated before starting a process.
For example, if a symbolic parameter emergency room is
assigned to a mobile activity, it can be further determined
how many mobile users hold value emergency room as
their symbolic parameter. Conversely, measured parameters
are automatically determined by the process management
system after starting a process instance. For example, if a
mobile activity shall be executed, the battery status of all
mobile users will be gathered. A detailed discussion of all
parameters can be found in [5].

Regarding the use of the identified parameters, we do
not claim that they cover all relevant patterns, i.e., they
rather reflect empirical insights we gathered from the an-
alyzed scenarios. Future analyses might reveal additional
parameters or invalidate existing ones. Furthermore, the
efficacy of parameters must be evaluated. Therefore, we are
currently running a case study with the goal to measure
efficacy in more detail. However, in the context of worklist
management enhancement, their use has been promising in
all practical scenarios. In particular, domain experts were
able to determine useful parameter values.

IV. EXCEPTION PREVENTION AND HANDLING

Our exception handling is based on two measures (cf.
Table II). As the first measure, the selection algorithm
presented in [5] assigns mobile activities only to those
users who less likely cause an exception. For example,
the selection algorithm evaluates whether or not a mobile
user is closely located to a mobile activity. The assignment
based on a close location revealed quicker execution times
and hence less errors. Second, if errors occur, the ranking
algorithm determines appropriate mobile users to handle
an exception. Note that many existing approaches do not
generally consider exception prevention/handling for human

Selection Algorithm Ranking Algorithm AT ET ExT

Exception
Prevention

Selection algorithm [5] deter-
mines those mobile users to
perform a mobile activity that
less likely cause an exception.

X
√ √

X

Exception
Handling

X Ranking algorithm evaluates re-
source status and exception be-
havior of all qualified mo-
bile users and determines based
on the evaluation those mobile
users that are appropriate targets
for handling an exception.

X X
√

AT=Assignment Time, ET=Execution Time, ExT=Exception Time,
√

=holds, X=not holds

Table II: Prevention and Handling of Exceptions

activities in a process context. Although WS-BPEL 2.0
extensions like BPEL4People and WS-HumanTask [7], [8]
focus on human activities, they solely address exception
handling through mechanisms on an abstract level. Our
approach deals with this drawback and handles exceptions in
a new way. Thereby, we mainly focus on mobile activities.
More precisely, we developed the delegation mechanism.
The delegation constitutes the primary exception handling
concept for mobile activities. As scenarios exist in which a
delegation cannot be performed, additionally, we perform a
skip or backup of mobile activities as follow-up strategy.
To decide whether a skip or backup will be performed,
the mobile context is evaluated. Note that a backup means
transferring the execution from the mobile device executing
the mobile activity to a stationary system. Further note
that two activity states were added to the presented mobile
process meta-model (i.e., States Delegated and Backed Up;
cf. Fig. 2) to realize the overall exception handling service.

This work focuses on the delegation concept. Based on
the mobile context, a delegation identifies appropriate mobile
users being able to perform the mobile activity (as alternative
to the mobile user who caused the exception). The process
management system then considers these users as possible
targets for handling the exception. If no such user can be
identified based on the mobile context, the mobile activity
will be either skipped or its execution will be migrated to
a stationary system. For realizing the delegation concept,
four delegation aspects (DA1-DA4) have to be covered (cf.
Table III). Regarding DA1, parameter response frequency is
evaluated. It determines the frequency with which the mobile
device of a particular user must report its online status to the
process management system. If the smart mobile device does
not obey this reporting frequency, an exception handling will
be triggered.

Regarding DA2, the Ranking Algorithm was developed
to determine appropriate mobile users for a delegation.
Based on the mobile context, it determines all mobile users
being an appropriate target for the delegation. In addition,
it determines a rank, again based on the mobile context,
for all appropriate users. Then, the process management
system solely considers the user ranked highest with respect

Not_
Activated

Not_
Activated

ActivatedActivated

SelectedSelected

StartedStarted

SuspendedSuspended CommittedCommittedCommitted

Compen-
sated

Compen-
sated

Compen-
sated

Waiting Running ArchivedTerminated

Skipped

CompletedCompleted

Skipped
Failed

Aborted

Skipped
Failed

Aborted

Skipped
Failed

Aborted

SkippedSkipped

FailedFailed

DelegatedDelegated

Backup
Up

Backup
Up

Skipped is possible from

{Not_Activated, Activated, Selected}

Normal

Delegation

Backup

Skip

Switch to Stationary System

StartedStarted

Start Exception Handling
(e.g., as response to a
connection loss of the
smart mobile device)

Abstract Perspective on
Exception Handling Process States

 Changes to worklist management
 with respect to mobile activities

Concrete Perspective on
Exception Handling Process States

DelegatedDelegated TerminatedTerminated

Backed
Up

Backed
Up

State TransitionState

Changes for exception handling are red coloured

1

2

Figure 2: Exception Handling State Model

to a delegation. If the user does not accept the request, all
other users will be subsequently requested in descending
rank order until one of them accepts the request or all users
will have declined it. In this context, tracking the number of
delegations, required in the context of a mobile user, is useful
for determining the rank value of a user. To manage the num-
ber of delegations, we use parameter MUDB (Mobile User
Delegation Behavior; cf. Table IV). In addition, parameter
MURB can be used to manage the resource behavior (cf.
Table IV). More precisely, with MURB we evaluate how
users behave with respect to the resources of their mobile
devices when executing mobile activities. The rank value for
mobile users is determined through Algorithm 1, which is
triggered when delegating a mobile activity. First, all mobile
users are ranked according to their resource and delegation
behavior (cf. Lines 4, 8, and 12). Second, the location of a
user is considered through the location values (cf. Table IV).
Best case, the user is inside the location range of the mobile
activity (cf. Line 4), i.e., the user gets the highest possible
rank. Those users only matching the symbolic coordinates
(cf. Line 8) are still ranked high, but not as good as in

Delegation Aspect (DA) Description Requires

DA1 What kinds of exceptions trigger a delegation? Evaluation of mobile context.

DA2 Which mobile users are appropriate delegation targets? Evaluation of mobile context.

DA3 What changes must be applied to the assignment protocol? Evaluation of assignment
protocol.

DA4 Do we have to distinguish different practical delegation variants? Evaluation of mobile context.

Table III: Delegation Aspects

Algorithm 1: Ranking Algorithm

Data: Relevant context parameters
aMU(n): Set of all qualified mobile users of mobile activity n
For all users in aMU their current parameters MUR , MUDB , MURB
The location values LV1-LV3

Result: coMU(n): Ranked list of mobile users being an appropriate delegation target
1 begin
2 coMU(n) ←− ∅; /* initialize rank list */

/* Determine MUR for all mobile users in aMU */

3 foreach mobile user mu ∈ aMU(n) do
/* Evaluate geometric coordinates */

4 if (0 < nLR(mu) ≤ 1) then
5 MUR(mu) ←−

LV 1 + MUDB(mu) + MURB(mu) + MUIS(mu);
6 coMU(n) ←− coMU(n) ∪ {mu};
7 end

/* Evaluate symbolic coordinates if needed */

8 else if (MASC (n) = MUSC (mu)) then
9 MUR(mu) ←−

LV 2 + MUDB(mu) + MURB(mu) + MUIS(mu);
10 coMU(n) ←− coMU(n) ∪ {mu};
11 end

/* All other cases with no location match if needed */

12 else
13 MUR(mu) ←−

LV 3 + MUDB(mu) + MURB(mu) + MUIS(mu);
14 coMU(n) ←− coMU(n) ∪ {mu};
15 end
16 end

/* Call method to sort coMU(n) based on MUR in ascending order */

17 end

the best case. All other users get lower ranks (cf. Line 12).
After calculating the rank list coMU(n) of mobile users,
the worklist of the user ranked highest in coMU(n) (i.e.,
the first list entry) is updated by adding the mobile activity
to the DelegationRequests list. As soon as this list is updated
on the smart mobile device, the user gets informed about the
delegation request. If the user declines it, the delegation is
requested from the next user in coMU(n). This may be
repeated until all users have decided about the request. If all
users decline, the respective mobile activity will be skipped
or the backup be performed (cf. Fig. 2).

Regarding DA3, the protocol coordinating the interactions
between the mobile process client and the process manage-
ment system is presented (cf. Fig. 3). The delegation concept
presented in this work is realized by the mobile activity
handler. Therefore, we realized a mobile process client con-
sisting of a worklist client and an execution client to manage
the entire communication between the mobile process client
and a process management system. Thereby, the worklist

Relevant Context Parameters

MUCL stores offline times during the execution of a mobile activity (CL: Connection Losses).
MULBC counts how often a mobile user claimed an activity though his device had an inappropriate battery
status, i.e., SMDBL < MABS (LBC: Low Battery Counter).
MURB stores resource behavior of a mobile user based on MACL , MALBC (RB: Resource
Behavior).
MUDB stores the delegation behavior of a mobile user. It is determined by the number of activities a user
has claimed in relation to the # of activities that must be delegated for this user (DB: Delegation behavior).
MUR stores the rank of a mobile user determined by the Ranking Algorithm (R: Rank).
LV 1−LV 3 store location values used by the Ranking Algorithm (LV: Location Value; LV 1 < LV 2 <
LV 3).

Applied Calculations

nLR(MU)=
{

MAGC−SMDGC (MU)

MALR
(1) MURB =

{
MUCL + MULBC (2)

MUDB =

{
#Activities from MU delegated

#Activities started by MU
(3)

Table IV: Parameters for Ranking Algorithm

Figure 3: Delegation Protocol

client manages the worklist, whereas the execution client
manages the communication between the worklist client, an
invoked mobile application, and the process management
system. The invoked mobile applications, in turn, actually
perform the mobile activity (e.g., invoking Mobile Microsoft
Excel). Based on this, the delegation protocol was realized.
It governs the interactions between the mobile process client
and the process management system in case of a delegation.
The protocol steps are depicted in Fig. 3. Thereby, steps
within the In-Delegation box are crucial for handling the
steps performed after a delegation

Two scenarios must be basically distinguished. First,
the smart mobile device might no longer work after the
occurrence of the exception. Second, it might still work,
but no longer be connected to the process management
system. In the first case, all steps shown for the mobile
process client are not performed. In the second case, all
shown steps are performed. After starting the delegation, the
process management system performs the following steps.
First, it withdraws the mobile activity running on the smart
mobile device by updating its status (cf. Steps 10’-11’; (cf.
Fig. 3 7©)). Second, after updating the status it determines
whether the smart mobile device has reconnected in case
the connection loss was only a short-term problem (cf. Step
12’). Third, depending on the result of Step 12’, it may
start the delegation, i.e., Algorithm 1 will be invoked. The
mobile process client, in turn, applies the following steps.
First, the running activity is stopped and the data created
is locally cached (cf. Steps 10-13). Second, after the smart
mobile device reconnects to the process management system,
it requests the status of the delegation (cf. Step 14) and sends
its cached data to the process management system.

Two additional scenarios need to be distinguished (cf. Fig.
3 6©) after a reconnection. First, if a delegation has not been
accomplished yet, the reconnecting smart mobile device gets

the activity execution back. Second, if the delegation is
still running, the cached data is transferred to the smart
mobile device currently performing the delegation. This way
it can be ensured that no data is lost. In addition, a feature
was realized that enables recipients to manually decide
whether or not to use cached data before it will be actually
transferred. Furthermore, we identified the protocol points
at which the mobile context parameters shall be exchanged
between the mobile process client and the process manage-
ment system. Fig. 3 2©, 4© depicts protocol points at which
the process management system requests parameter values
from the mobile process client, whereas Fig. 3 1©, 3©, 5©
depicts protocol points at which the mobile process client
sends parameter values to the process management system.

Regarding DA4, we distinguish two delegation types based
on urgency parameter MAU . If this parameter is set to true,
the final mobile user in rank list coMU(n), who gets the
delegation request, cannot decline it. This ensures that a
delegation is certainly performed if MAU is set to true. Note
that if for a delegation the result of Algorithm 1 corresponds
to coMU(n) = ∅, the mobile context is again evaluated to
decide whether a skip or backup will be performed.

Finally, although many aspects are covered by the delega-
tion service to handle exceptions (including the assignment
concept to prevent exceptions [5]), more research questions
must be addressed. First, the exception handling service must
be practically evaluated with respect to system performance
and user acceptance. In this context, also psychological
aspects must be addressed. Second, the concept must be
technically evaluated towards a multitude of existing pro-
cess management systems. Third, the protocol between the
mobile process client and the process management system
must be evaluated in more detail. Finally, with respect to
practical demands, constraints of mobile activities (e.g., two
mobile activities must be performed by the same mobile
user) should be addressed. To conclude, more aspects have
to be addressed for a feasible technical solution that can be
easily used in everyday practice.

V. RELATED WORK

In general, the dynamic assignment of mobile activi-
ties has proven its usefulness [2]. Interestingly, only few
approaches deal with exception prevention and exception
handling in the context of human-centric mobile services.
In general, there are only a few approaches dealing with the
support of mobile activities [2], [4], [9] as we do. The use
of a mobile context for executing mobile activities as well
as for handling exceptions has been also less considered
so far [2], [10]. Recent related works address exception
handling in the context of mobile services [3]. However,
they do not particularly focus on human-centric mobile
services. Finally, commercial process management systems
supporting the integration of mobile activities do also not
provide an exception handling concept [11].

VI. SUMMARY AND OUTLOOK

We introduced an approach that uses a context model
for preventing and handling exceptions in the context of
human-centric mobile services. We showed that the latter
can be realized as mobile activities integrated with process
management technology. We further showed that a mobile
context is a proper basis to cope with exceptions for mobile
activities. The components developed in this context were
elaborated in cases studies as well as a comprehensive
literature study. First results indicate that the developed
approach for preventing and handling exceptions is useful
for the support of human-centric mobile services. Currently,
we run a case study that evaluates the efficacy of the used pa-
rameters and the proposed exception handling techniques in
more detail. Altogether, the presented approach constitutes
a major step towards the widespread use of human-centric
mobile services in a variety of application domains.

REFERENCES

[1] M. Reichert and B. Weber, Enabling Flexibility in Process-
Aware Information Systems: Challenges, Methods, Technolo-
gies. Springer, 2012.

[2] G. Hackmann et al., “Mobiwork: mobile workflow for
manets,” Technical Report, Washington University in St.
Louis, Report Number: WUCSE-2006-18, 2006.

[3] N. Chen et al., “Goal-Driven Service Composition in Mobile
and Pervasive Computing,” IEEE Transactions on Services
Computing, no. 99, pp. 1–1, 2016.

[4] S. Zaplata et al., “Flexible Execution of Distributed Business
Processes Based on Process Instance Migration,” Journal of
Systems Integration, vol. 1, no. 3, pp. 3–16, 2010.

[5] R. Pryss et al., “Context-Based Assignment and Execution of
Human-Centric Mobile Services,” in IEEE 5th Int’l Conf on
Mobile Services. IEEE, 2016.

[6] C. Becker and F. Dürr, “On Location Models for Ubiquitous
Computing,” Personal Ubiquitous Computing, vol. 9, no. 1,
pp. 20–31, 2005.

[7] M. Kloppmann et al., “WS-BPEL Extension for People–
BPEL4People,” IBM and SAP White Paper, vol. 183, p. 184,
2005.

[8] N. Russell and W. van der Aalst, “Work Distribution and
Resource Management in BPEL4People: Capabilities and Op-
portunities,” in Advanced Information Systems Engineering.
Springer, 2008, pp. 94–108.

[9] C. Kunze et al., “Mobile Processes: Enhancing Cooperation
in Distributed Mobile Environments,” Journal of Computers,
vol. 2, no. 1, pp. 1–11, 2007.

[10] N. Cardozo and S. Clarke, “Language design for developing
smart adaptive services,” in 1st Int’l WS on Smart Cities
Conference. IEEE, 2015, pp. 1–2.

[11] “IBM Mobile Business Process Management,”
http://www.redbooks.ibm.com/abstracts/sg248240.html?Open,
2014, [Online; accessed 10-May-2017].

