
Configurable and Executable Task Structures

Supporting Knowledge-intensive Processes

Nicolas Mundbrod and Manfred Reichert

Institute of Databases and Information Systems

Ulm University, Germany

{nicolas.mundbrod,manfred.reichert}@uni-ulm.de

http://www.uni-ulm.de/dbis

Abstract. The operational support of knowledge-intensive processes

(KiPs) constitutes a big challenge. As KiPs tend to be unpredictable and

emergent, KiP execution is driven by knowledge workers utilizing their

skills, experiences, and expertise. For coordination and synchronization,

knowledge workers rely on simple task lists (e.g., to-do lists or checklists).

Though these means are intuitive and prevalent, their current implementa-

tions are ineffective as well as error-prone: tasks are neither made explicit

nor synchronized nor personalized. Furthermore, media disruptions fre-

quently occur and no task lifecycle support is provided. Consequently,

the effort knowledge workers invest in task management is not preserved

for future KiPs. This work presents the proCollab approach, focusing on

the generic concept of task trees. The latter enable to constitute digital

task lists of any kind and to establish a task management lifecycle in the

context of KiPs. Further, a configuration approach for reusable task lists

(i.e., templates) is included to support knowledge workers in configuring

task lists at both design and run time. proCollab is implemented as a

proof-of-concept prototype and validated along a real-world use case from

the healthcare domain. Overall, proCollab improves coordination and

synchronization among knowledge workers, prevents media disruptions,

and enables the reuse valuable coordination knowledge.

Keywords: task management, knowledge-intensive processes, knowledge

workers, task lists, to-do lists, checklists

1 Introduction

Residing in highly sensitive key business areas, such as research, engineering,

or service management, knowledge-intensive processes (KiPs) have become the

centerpiece for creating value in many companies in recent years [2,8]. Driving

KiPs, knowledge workers make use of their distinguished skills, experiences, and

expertise to cope with emerging tasks. Thus, the systematic and sustainable

support of KiPs constitutes a prerequisite for achieving business goals. At the

same time, a more sophisticated KiP support still poses one of the biggest

challenges companies face today [3].

2 Nicolas Mundbrod and Manfred Reichert

KiPs can be characterized as non-predictable, emergent, goal-oriented, and

knowledge-creating processes [8] whose elements (e.g., activities, artifacts, or

resources) cannot be foreseen a priori. KiPs have not been fully supported by

contemporary process-aware information systems at the operative level so far.

Instead, knowledge workers, who aim to achieve common process goals, often

rely on simple, paper-based task lists (e.g., to-do lists, checklists) to define

and coordinate the various activities of a KiP (cf. Fig. 1) [1]. Though paper-

based task lists are intuitive and prevalent on one hand, they are error-prone and

ineffective on the other. Tasks are often managed based on paper, are not explicitly

represented as coordination artifacts, and are spread over different localities [12].

Thus, knowledge workers suffer from media disruptions as well as the lack of a

synchronized task lifecycle support. Due to this lack, knowledge workers cannot

make use of existing artifacts (e.g., task lists) when facing comparable situations,

i.e. in the context of other KiPs. If knowledge workers could reuse best practice

task lists and combine them on demand, redundant efforts would be significantly

reduced. Likely, in turn, work quality and productivity would be increased.

Methodology Phase C Methodology Phase B Methodology Phase D
Milestone 400
Milestone 401

...

...
...Milestone 402

Milestone 865
Milestone 866
Milestone 867

...
Milestone 710
Milestone 711

...

Milestone 712Quality
Gate B

Quality
Gate A

Quality
Gate C

Quality
Gate D

Goal
......

We have to perform
further tests!

Then we need to
involve Melinda and
Daniel!

To-do lists James
Janice

Daniel

Melinda

Steve
Checklists

Task Sheets

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

George

Testing
Application

What is Melinda
doing at the
moment?

Have we sticked to
the design guidelines?ID

62 Component Design Janice, James
63 Quality Assurance
...

Task Responsible

Steve

Planning Milestone 712

ID
62 Component Design Janice, James
63 Quality Assurance
...

Task Responsible

Steve

Planning Milestone 712

ID
62 Component Design Janice, James
63 Quality Assurance
...

Task Responsible

Steve

Planning Milestone 712

C
he

ck
in

gPlanning

Fig. 1. Knowledge Workers Collaborating to Achieve a Goal (Automotive Domain)

In this work, we present fundamental aspects of the proCollab1 approach,

which aims at the systematic and sustainable support of KiPs. As tasks constitute

the key entities for knowledge workers when it comes to coordination n the context

of a particular KiP, but also across KiPs, proCollab provides the foundation

for process- and lifecycle-based task management. In particular, it aims to

empower knowledge workers to coordinate their activities among each other

more effectively. To make use of best practices as well as knowledge gained

in previous KiPs, proCollab encompasses the process-aware provision of task

list templates, which knowledge workers may instantiate on demand. To foster

the reuse of task list templates and to provide support for large sets of task

list templates, a context-aware approach for configuring task list templates is

included. This enables knowledge workers to easily configure task lists either at

design or run time. Based on the proCollab approach, KiPs can be operationally

supported through digital, synchronized and configurable task lists. Thereby, one

can improve coordination and synchronization among knowledge workers, prevent

media disruptions, and reuse valuable (process) knowledge. Finally, the feasibility

of establishing an integrated task management lifecycle is demonstrated by a

1 Process-aware Support for Collaborative Knowledge Workers

Configurable and Executable Task Structures 3

proof-of-concept prototype. Further, the configuration approach is evaluated by

applying it to a real-world healthcare scenario.

The remainder of this paper is organized as follows: Section 2 presents

fundamentals and discusses key requirements. Section 3 then introduces the

proCollab approach, whereas Section 4 deals with generic task lists enabling

the modeling of templates and instances of different types of task lists, e.g.,

to-do lists or checklists. Section 4 further sketches key operations on task tree

structures. Referring to these operations, Section 5 describes a flexible approach

for configuring task lists, which allows knowledge workers to easily compose

pre-specified task list templates. Section 6 evaluates the approach and Section 7

discusses related work. Finally, Section 8 concludes the paper and gives an outlook

on future work.

2 Fundamentals and Requirements

To establish a common understanding of KiPs, this paper uses the notion of

knowledge-intensive processes as introduced in [15]:

“Knowledge-intensive processes are processes whose conduct and execution are heav-

ily dependent on knowledge workers performing various interconnected knowledge-

intensive decision making tasks. KiPs are genuinely knowledge, information and

data-centric and require substantial flexibility at design- and run-time.”

A detailed discussion of different KiP notions and definitions is provided in [2].

To draw attention on the challenges of a systematic KiP support and to facilitate

the ensuing discussion of key requirements, we reuse an application scenario from

prior work [9, 14]:

Example 1. In development projects for electrical and electronic (E/E) car

components, the involved knowledge workers aim at developing an E/E

car component before a fixed release date. Hundreds of professionals (e.g.,

engineers) are involved in these projects for up to several years. To ensure

effective E/E development, the knowledge workers follow a development

methodology with sub-goals, e.g., quality gates or milestones. Each devel-

opment phase, in turn, may comprise sub-phases, as well as concurrent

development processes. Hence, the knowledge workers need to frequently

communicate and synchronize with each other. To ensure compliance with

regulations (e.g., ISO 26262), to foster the quality of engineering processes,

and to track the engineering progress, a central project checklist with hun-

dreds of check items is initially set up and continuously managed by one

or more quality assurance officers. Usually, the currently relevant check

items are regularly discussed during interview with the project members.

Additionally, pro-active task lists (e.g., to-do lists and task sheets) are dy-

namically used by the knowledge workers to manage personal tasks as well

as to coordinate with each other in smaller, more specialized teams.

The presented scenario constitutes a typical example of how knowledge

workers follow a methodology to cooperatively achieve a common goal as well

4 Nicolas Mundbrod and Manfred Reichert

as to cope with the emergent and unpredictable nature of KiPs [8]. In general,

respective methodologies, which are customized to a specific domain (e.g., the

V model), can be abstracted by the Plan-Do-Study-Act (PDSA) cycle [8, 9]

(cf. Fig. 2). We want to emphasize that collaborating knowledge workers, who

follow a methodology designed for KiPs, iteratively stride through the stages of

planning work, performing work, studying work results, and optimizing plans. In

particular, the planning and studying stages are utilized by knowledge workers to

establish efficient coordination as well as to assure KiP quality and effectiveness.

System Design

Proactive Task Lists

Retrospective Task Lists
Requirements Engineering

Quality Assurance

System Integration

Mechanical, Electrical, and Information Engineering

......

Quality GateQuality Gate Quality Gate

KiPPlan

Do

Study

Act

KiPPlan

Do

Study

Act

KiPPlan

Do

Study

Act

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Fig. 2. PDSA-based Methodology present in Application Scenario

In the planning and studying stages, knowledge workers rely on different

types of task lists as their key artifacts in use. In this context, proactive task lists,

e.g., to-do lists, are used to dynamically plan and coordinate the various tasks

emerging in the context of a KiP, whereas retrospective task lists, e.g., checklists,

are used for quality assurance. Furthermore, both types of task lists increase

work awareness [4], i.e, the awareness of who is doing what in the considered

KiP. In prior work [12], we could observe that checklists, in practice, are not

changed frequently for the sake of quality assurance, whereas to-do lists, task

sheets, and similar artifacts require frequent updates, especially, the insertion

of new tasks or entire sub-lists. However, in all considered application scenarios,

neither checklists nor to-do lists have been supported by a KiP-aware system in

an integrated, synchronized, and lifecycle-oriented manner.

To support KiPs, like the one presented in Example 1, various challenges

and requirements need to be addressed. In order to design an approach that

systematically supports KiPs, we conducted several case studies primarily in

healthcare (e.g., ward rounds and patient treatment) and in the automotive

domain (e.g., E/E engineering) [6,8, 12, 14]. In these studies, we derived a set of

key requirements [9]. In this paper, we focus on the key requirements for enabling

configurable and executable task lists to properly support KiPs:

Meta Model (R1): A generic and expressive approach supporting KiPs

must rely on a sound meta model that specifically allows for the representation

of task lists of various types. Knowledge workers rely on task lists as key entities

for planning, evaluating, and performing their work. Due to the emergent nature

of KiPs, knowledge workers may continuously change task lists. For this use case,

the meta model should provide change operations with a well-defined semantics

that allow modifying a sound task list, ensuring soundness afterwards as well.

To further increase the knowledge workers’ efficiency and convenience, a set of

high-level change operations (e.g., to swap tasks) relying on the low-level ones, are

required. Finally, the trade-off between expressiveness and comprehensibility of

Configurable and Executable Task Structures 5

the meta model has to be well balanced to enable knowledge workers to seamlessly

work with task lists.

Lifecycle Support (R2): In the context of a particular KiP, but also

across KiPs, knowledge workers may want to use similar task lists when facing

similar situations. For example, the engineering of an E/E car component requires

checking functional safeness in a standardized way. To enable full lifecycle support

of KiPs, therefore, the meta model needs to be enriched with an integrated and

consistent support of task list templates and instances (cf. Fig. 3 a). Thereby,

the introduction of task list templates allows establishing reusable artifacts of

semantically connected tasks. As an example consider a checklist template with

items for evaluating the functional safety of car components (cf. Example 1).

During KiP execution, knowledge workers may choose a task list template,

matching the given goal, needs and application context, and create a corresponding

instance. To cope with the emergent nature of KiPs, in-progress task list instances

may be further enhanced on demand by knowledge workers, e.g., by selecting

and instantiating task list templates as subordinated task list instances. Finally,

a lifecycle-based meta model relying on templates and instances provides the

necessary foundation for evolving templates over time [7].

Task List Templates

a) b)

Truck

Telematics
E/E Dev.

NavigationHeadUnit

Car

Adapted
Task List Instances

Generic Task List Level 1: Generic Task List
Complete EE development

Level 2: Task Lists for BUs
Task lists for specific business units

Level 3: Task Lists for Centers
Task lists for specific business units

Level 4: Task Lists for Projects
Task lists for specific projects

...

...

...

Task A
Task B
Task C

Task D
Task C.1

Task A
Task B
Task C

Task D
Task C.1

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

ConfigurationInstantiation

Optimization
(through analysis

of instances)

Configuration

Configuration

Fig. 3. Instantiation of Task List Templates and Multi-level Configuration

Configuration Support (R3): To facilitate the creation of task list tem-

plates, which may be reused in different contexts, as well as to decrease the efforts

required to build up a task list, configuration support is needed. In particular,

knowledge workers should be allows to configure a template in a way meeting the

demands of the given application context. For example, the creation of new task

list instances (e.g., checklists) may be performed by composing reusable task list

templates. Additionally, configuration support necessitates the ability to remove

and update existing tasks in a task list template before instantiating the latter.

Generally, task list templates should be designed in a reusable and modular way

to enable multi-level configurations (cf. Fig. 3 b). This includes the use of a generic

template and the stepwise (i.e. level-based) integration of more fine-grained (i.e.

specialized) task list templates to finally create the overall task list template

matching the present requirements. Based on this principle, the efforts needed

for creating a specific task list variant can be minimized significantly.

6 Nicolas Mundbrod and Manfred Reichert

3 The proCollab Approach

The proCollab approach has been developed in the scope of a long-term research

project to enable full lifecycle support for KiPs. In [8], we discussed the overall

proCollab research vision, whereas [9] presented key challenges and requirements

to be addressed by any KiP supporting approach. In turn, [7] introduced the

key proCollab components focusing on an approach for optimizing and evolving

task list templates based on the mining of existing task lists. This paper, in turn,

focuses on the interplay of the key components of the proCollab meta model, its

generic task trees and, in particular, an approach for configuring task lists.

To design the proCollab meta model, we specifically considered that knowledge

workers repetitively perform the stages of planning work, performing work, study-

ing work results, and optimizing plans (cf. Section 2). During these KiP stages,

knowledge workers use widely established, task-based artifacts, e.g., checklists or

to-do lists. Overall, proCollab relies on the key components of processes, task trees,

and tasks to establish a framework with conceptual entities for representing KiPs

as well as task-based artifacts used by knowledge workers during KiP execution

(cf. Requirement R1). Moreover, to provide a lifecycle-based task management in

the context of KiPs (cf. Requirement R2), processes and task trees are refined to

process templates and process instances as well as task tree templates (with task

templates) and task tree instances (with task instances) respectively (cf. Figure 4).

Task Tree
Templates

with
Task Templates

0-n

0-1

0-1

0-n

0-n

1-n 1-n

1-n 1-n

0-n 0-n

0-n 0-n

0-n 0-n
0-n

Subordinated
Process Templates

Subordinated
Process Instances

Process
Templates

B

Sub-Task Tree
Templates with
Task Templates2

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task TreeTask Tree

Root

1 B

Root

A B

A1 A2 B1 B2

Task TreeTask Tree
Root

A B

A1 A2 Root

B1 B2

Task Tree Instances
with Task Instances

Process
Instances

Sub-Task Tree
Instances with
Task Instances

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task TreeTask Tree

Root

B1 B2

Root

A B

A1 A2 B1 B2

Task TreeTask Tree
Root

A B

A1 A2 Root

B1 B2

Instantiation

Optimization

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Fig. 4. Overview of the proCollab approach

Process templates and task tree templates shall enable knowledge workers

to accelerate planning and coordination of their tasks based on best practices

and standards. Before starting KiP execution, knowledge workers may retrieve a

process template fitting best to their goals. Every process template may have

an arbitrary number of subordinated process templates and feature various

properties, conditions (e.g., a relative due date), and linked resources. Most

importantly, every process template may be linked to an arbitrary number

of task tree templates. A task tree template, in turn, contains task templates

and, optionally, subordinated task tree templates. In particular, it reflects best

practices for planning (to-do list) or quality assurance (checklist) in the context

of KiPs. Hence, a task tree template refers to one or several goals addressed by

the definition of a process template. For example, a standardized checklist for

Configurable and Executable Task Structures 7

ensuring functional safety based on ISO26262 can be well deposited as a task

tree template in proCollab.

At run time, knowledge workers may collaborate in the context of specific

process instances. A process instance may represent a running project, a case,

or another type of collaboration. Moreover, it has properties like start date,

duration, goals, and resources (e.g., documents). A process instance may further

refer to subordinated process instances enabling knowledge workers to focus

on specialized sub-goals. It is also noteworthy that every process instance may

comprise multiple task tree instances (with corresponding task instances). In turn,

a task tree instance constitutes the generic representation of common task-based

artifacts in use (e.g., a to-do list). For example, an automotive E/E engineering

project with to-do lists for planning and checklists for quality assurance can be

properly supported by a corresponding proCollab process instance with its linked

task tree instances (of type “to-do list” and “checklist”). In general, knowledge

workers may create a process instance based on a pre-specified process template

or may start even without any pre-specified template. If a process template gets

instantiated, all linked task tree templates are automatically instantiated as

well. The generated task tree instances are then linked to the process instance.

Furthermore, knowledge workers may instantiate further task tree templates

or add blank task tree instances to process instances on demand. Based on

this flexible approach, the initial setup for the support of planning in a KiP

becomes easier for knowledge workers. Finally, template concurrently promote

best practice for coordination and existing process knowledge.

In practice, knowledge workers are collaborating in projects or cases as specific

types of KiPs [8]. To support a wide range of application scenarios, proCollab

incorporates type- and domain-specific specializations enabling domain- and

KiP-specific customization of the generic proCollab components. For example,

a proCollab process may be easily adapted to a specific automotive project

regarding E/E engineering (cf. Fig. 5).

Name: E/E Car Component Development Project

2 Years A�er Start
...
Due Date:
Goal: E/E Car Component Sa�sfying Specifica�on

Subordinated Process Templates

Requirements
Engineering

System
Design

...

Linked Resources

Specifica�on
Templates

...

Design
Guidelines

Quality Assurance

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist Templates
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Planning

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

To-do List Templates
To-do A

To-do A1
To-do A2

To-do B
To-do B1
To-do B2

Subordinated Process Templates

Requirements
Engineering

System
Design

...

Linked Resources

...

Specifica�ons Designs

Status: Running

Name: Development Project for Airbag Control Unit ACU-5891 V14

15 October 2016
...
Due Date:
Goal: ACU-5891 V14 Sa�sfying Specifica�on CCS-8641

Quality Assurance

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist Instances
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Planning

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

To-do List Instances
To-do A

To-do A1
To-do A2

To-do B
To-do B1
To-do B2

Subordinated Process Templates

Requirements
Engineering

System
Design

...

Linked Resources

...

Specifica�ons Designs

Status: Running

Name: Development Project for Airbag Control Unit ACU-5891 V14

15 October 2016
...
Due Date:
Goal: ACU-5891 V14 Sa�sfying Specifica�on CCS-8641

Quality Assurance

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist Instances
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Planning

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

To-do List Instances
To-do A

To-do A1
To-do A2

To-do B
To-do B1
To-do B2

Subordinated Process Templates

Requirements
Engineering

System
Design

...

Linked Resources

...

Specifica�ons Designs

Status: Running

Name: Development Project for Airbag Control Unit ACU-5891 V14

15 October 2016
...
Due Date:
Goal: ACU-5891 V14 Sa�sfying Specifica�on CCS-8641

Quality Assurance

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist Instances
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Planning

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

To-do List Instances
To-do A

To-do A1
To-do A2

To-do B
To-do B1
To-do B2

Subordinated Process Templates

Requirements
Engineering

System
Design

...

Linked Resources

...

Specifica�ons Designs

Status: Running

Name: Development Project for Airbag Control Unit ACU-5891 V14

15 October 2016
...
Due Date:
Goal: ACU-5891 V14 Sa�sfying Specifica�on CCS-8641

Quality Assurance

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist Instances
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Planning

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

To-do List Instances
To-do A

To-do A1
To-do A2

To-do B
To-do B1
To-do B2

a) Process Templates of Specializa�on Type Project Instantiation b) Process Instances of Specializa�on Type Project

Fig. 5. Visualization of Process Templates and Instances from the Automotive Domain

Moreover, proCollab task trees may be used as a basis for supporting checklists

or to-do lists at the operative level. Depending on the chosen specializations,

proCollab processes (e.g., projects) and task trees (e.g., to-do lists) may feature

additional properties, conditions, constraints, or assignments. To realize respective

specializations, in turn, proCollab employs specialization types enhancing the

8 Nicolas Mundbrod and Manfred Reichert

generic data structures of processes and task trees. For example, if a task tree

template is linked to the specialization type “to-do list”, it will be interpreted as

a “to-do list template” with corresponding properties and an appropriate user

interface representations (cf. Fig. 5). To ensure that certain specialization types

are used coherently together, the specialization types can be interlinked. For

example, the specialization types “to-do list” and “to-do item” may be interlinked

and, hence, task trees of the type “to-do list” may only contain tasks of type

“to-do item” (and none of the type “check item”).

4 Task Trees

Enabling KiP support through process-related task lists and providing a solid

meta model for representing the latter (cf. Requirement R1), proCollab employs

the generic structure of task trees. In turn, a task tree includes tasks as well as

subordinated task trees (cf. Fig. 6). The recommended order, in which tasks shall

be processed, is specified through the hierarchical and ordering edges of a task

tree. To be more precise, the pre-order traversal of any task tree directly provides

its recommended sequence of tasks. To enable flexibility, however, knowledge

workers may deviate from the recommended order, e.g., allowing them to deal

with the current situation during KiP execution. Based on task lists relying

on task trees, knowledge workers may iteratively refine coarse-grained tasks by

defining more fine-grained sub-tasks. Thus, a particular task may refer to a set

of subordinated tasks, which need to be completed to finish the task itself.

To-Do List
Specializa�on Type

Temporal Perspec�ve:
prospective

Edi�ng Order:
non-restrictive

State Model:
to-do list state model

Task Specializa�on Type:
to-do item type

...

Checklist
Specializa�on Type

Temporal Perspec�ve:
retrospective

Edi�ng Order:
restrictive

State Model:
checklist state model

Task Specializa�on Type:
check item type

...

To-do List
To-do A

To-do A1
To-do A2

To-do B
To-do B1
To-do B2

To-do C
To-do C1
To-do C2

==

Task Tree #1

Ta
sk

 T
re

e
#2

Root

A B C

A1 A2 C1 C2Root

B1 B2

Checklist
Check item A

Check item A1
Check item A2

Check item B
Check item B1
Check item B2

Check item C
Check item C1
Check item C2

+ +

Fig. 6. Exemplary To-do List and Checklist and their Task Tree Representation

Every task tree exposes a root node with several ordered child nodes (cf.

Fig. 6). The child nodes, in turn, themselves may comprise ordered child nodes.

Except the root node, every task tree node either corresponds to a specific task

or an embedded task tree (nesting). The root node does not correspond to a task,

but may store task list properties (e.g., title, description, or purpose).

Using the conceptual model of a task tree yields several advantages. Task

trees constitute an intuitive representation of common task lists. In particular,

their generic and executable structure makes it possible to provide a powerful

basis for both task list templates and instances as well as any concrete type of

task lists, e.g., to-do lists or checklists. Furthermore, the data structure of a task

tree provides a sound and common basis for defining required task tree operations

(cf. Section 2). When using task lists, knowledge workers may add, update or

Configurable and Executable Task Structures 9

remove tasks and subordinated task trees on demand. Hence, a task tree is

manipulable through a set of low-level operations including the insertion, update,

and removal of task tree nodes as well as an operation to filter node attributes.

Note that the filter operation is useful to limit the number of attributes displayed

to knowledge workers. Moreover, if the filter is applied to a task tree node with

child nodes, the filtering is hierarchically applied. Due to lack of space, we omit

a formalization of the sketched operations. Fig. 7 illustrates the application of

low-level operations to a task tree resulting in a new task tree version.

To add a task tree node to a task tree or to remove one, the respective parental

node and the desired positions are required as parameters of the respective

operations. As depicted in Fig 7, a particular task tree may be inserted several

times, which allows for the reuse of task trees in different contexts. Note that

this option is useful for task tree templates. For example, a particular task tree

template with several tasks assuring quality may be embedded and reused at

different spots of a parental task tree template. Consequently, a particular task

tree may have several parental task trees due to its use in different application

contexts. The interconnected task trees then constitute a graph of task tree nodes.

Especially when inserting a subordinated task tree into an existing one, this must

be carefully considered to avoid recursive nesting.

1) removeTaskTreeNode(C1, C, 0)
2) removeTaskTreeNode(C2, C, 0)
3) updateTaskTreeNode(B, name=B*)
4) insertTaskTreeNode(Task Tree #2, C, 0)

Low-level Operations
applied to Task Tree #1:

Ta
sk

 T
re

e
#2

Task Tree #1
Root

A B C

A1 A2 C1 C2Root

B1 B2

Ta
sk

 T
re

e
#2

Task Tree #1
Root

A B* C

A1 A2 Root

B1 B2

Ta
sk

 T
re

e
#2

Root

B1 B2

Fig. 7. Exemplary Low-level Operations Applied to a Task Tree

To ease the management of task structures, a set of high-level task tree

operations is provided by proCollab. Knowledge workers may move, copy, split

or merge task tree nodes. Further, they may filter out nodes that match certain

properties. Thereby, the high-level operations are mapped to one or several

low-level task tree operations. For example, splitting a task tree node involves

the insertion of task tree nodes as well as the removal of the node to be split.

Fig. 8 depicts the application of high-level operations on an exemplary task tree.

Relying on the conceptual model of task trees, all presented operations may

be applied on both task tree templates and task tree instances no matter how

they are refined by any specialization type. However, every task tree template

solely consists of task templates and, optionally, subordinated task tree templates.

Furthermore, every task tree template features additional template-specific prop-

erties, e.g., a specific state model. Analogously, task tree instances solely comprise

task instances and subordinated task tree instances. Further, they may feature

instance-specific properties and a dedicated state model, too. Based on this

generic concept, proCollab supports the sound and integrated management of

templates and instances of arbitrary task lists. In particular, knowledge workers

10 Nicolas Mundbrod and Manfred Reichert

may compose, configure, and instantiate arbitrary task tree templates when

starting and executing proCollab process instances.

1) moveTaskTreeNode(A2, Root, 3)
2) copyTaskTreeNode(A1, A, 1, name=A1*)
3) splitTaskTreenNode(A1, {A1.1, A1.2})
4) mergeTaskTreeNodes({C1, C2}, name=C3)

High-level Operations
applied to Task Tree #1:

5) filterTaskTreeNode(Root, name!=B1)

Ta
sk

 T
re

e
#2

Task Tree #1
Root

A B C

A1 A2 C1 C2Root

B1 B2

Ta
sk

 T
re

e
#2

Task Tree #1
Root

A B C

A1.1 A1* C3A1.2

A2

Root

B2

Fig. 8. Exemplary High-level Operations Applied to a Task Tree

5 Configurable Task Trees

To enable knowledge workers to efficiently configure task list templates in ac-

cordance to the given application context (cf. Requirement R3) or even to the

given level of expertise involved knowledge workers expose, proCollab allows for

the configuration of task tree templates. In this context, the sketched task tree

operations provide the basis for a multi-level configuration of task tree templates.

Furthermore, the operations enable both the combination of best practice task

tree templates (e.g., inserting checklists for quality assurance) as well as the

customization of task tree templates in accordance to knowledge workers’ needs

(e.g., filtering out non-relevant task templates).

To properly support the configuration of task tree templates, contextual

situations, under which a task tree template might be instantiated, need to

be explicitly defined. These contextual situations, in turn, may be utilized to

define which operations shall be applied in which order to a task tree template

during the configuration. To properly specify contextual situations, proCollab

introduces configuration parameters each of which has a name, a pre-defined

data type (boolean, String, etc.), and a value domain. Subsequently, contextual

situations are defined by a name and a condition expressed in first-order logic

relying on the set of pre-defined configuration parameters. Fig. 9 illustrates

exemplary configuration parameters and contextual situations in the scope of

the automotive use case (cf. Example 1) and, especially, functional safeness

requirements (ISO26262) regarding E/E car component engineering.

Based on the defined contextual situations, one may provide one or more

configuration specifications for a task tree template. A configuration specification

contains a map data structure that allows assigning a sequence of task tree

operations (applied on the respective task tree template) to every contextual

situation. Fig. 10 depicts examples of task tree configuration specifications for task

trees of the checklist specialization type. If a configured task tree template shall

be instantiated, the currently active contextual situations need to be determined

first. Accordingly, each defined configuration parameter obtains a value matching

the defined data type.

The conditions of the contextual situations are then evaluated—a contextual

situation will be considered as being active if its condition is fulfilled. Finally,

Configurable and Executable Task Structures 11

exposure (e)

severity (s)
...

Con�guration Parameters: Contextual Situations:

controllability (c) {C1, C2, C3}

{E1, E2, E3, E4}

{S0, S1, S2, S3}

Name Type

ENUM

ENUM

ENUM

Domain

Safety Relevance Level D c==C3 && e==E4 && s==S3
(c==C2 && e==E4 && s==S3) || ...
(c==C1 && e==E4 && s==S3) || ...

Safety Relevance Level C
Safety Relevance Level B

Name Condition

Fig. 9. Exemplary Configuration Parameters and Contextual Situations

the configuration specifications are processed in the pre-defined order. For every

active contextual situation, the defined sequence of operations is applied to the

task tree template. As soon as the configuration process is successfully completed,

the task tree template is finally instantiated, i.e., a new task tree instance is

created as the final result of the configuration.

Configura�on Specifica�on of Checklist #1

1) On Safety Relevance Level D
 1) insert(Checklist AA#1, Task A, 0)
 2) remove(Task D, Checklist #1 ,3)
2) On Safety Relevance Level C
 ...

Task A
Checklist #1

Task B
Task C
Task D

Checklist Templates
with Configura�on Specifica�ons

Configured
Checklist Template

Values of Configura�on Parameters:

controllability (c) = C3
exposure (e) = E4
severity (s) = S3

Ac�ve Contextual Situa�on:

Safety Relevance Level D

Inactive Contextual Situations:

Safety Relevance Level A
Safety Relevance Level B
Safety Relevance Level C

Task D1
Checklist DD#1

Task D2
Task D3
Task D4

Task C1
Checklist CC#1

Task C2
Task C3
Task C4

Task B1
Checklist BB#1

Task B2
Task B3
Task B4

Task A1
Checklist AA#1

Task A2
Task A3
Task A4

Task A
Checklist #1

Task B
Task C

Task A1
Task A3=+Configura�on Specifica�on of Checklist AA#1

1) On Safety Relevance Level D
 1) remove(Task A2, Checklist AA#1 ,1)
 2) remove(Task A4, Checklist AA#1 ,3)
2) On Safety Relevance Level C
 ...
...

Configura�on Specifica�on of Checklist AA#1

1) On Safety Relevance Level D
 1) remove(Task A2, Checklist AA#1 ,1)
 2) remove(Task A4, Checklist AA#1 ,3)
2) On Safety Relevance Level C
 ...
...

Configura�on Specifica�on of Checklist AA#1

1) On Safety Relevance Level D
 1) remove(Task A2, Checklist AA#1 ,1)
 2) remove(Task A4, Checklist AA#1 ,3)
2) On Safety Relevance Level C
 ...
...

Fig. 10. Example of Multi-level Configuration Specifications for Checklists

Note that the application of task tree operations is not commutative. As a

result, the order of the operations has to be carefully designed. For example, if

a task tree node A1 is inserted below an existing node A, the number of child

nodes of A is consequently increased by one. Hence, one must consider this new

fact for subsequent operations (e.g., more insert operations) accordingly. As a

further consequence, sophisticated user interfaces are required to ensure the

sound creation of configuration specifications at design time.

6 Evaluation

A mature proof-of-concept implementation is required to conduct empirical

studies based on the proCollab approach. To prepare such studies and to validate

the technical feasibility, we developed a sophisticated proof-of-concept prototype

including the key concepts presented in this work. The prototype is realized with

Java EE 7 and relies on a multi-layer architecture (cf. Fig. 11 a) based on the

Model–View–Controller design pattern. The application logic layer represents the

core of the prototype realizing the key services of the proCollab approach and

its key components. The RESTful interface enables web and mobile applications

to communicate with the services. In particular, this includes the synchronized

presentation of the proCollab components across connected clients. Hence, the

12 Nicolas Mundbrod and Manfred Reichert

user interface of the web application (cf. Fig. 11 b) enables knowledge workers to

collaboratively manage their projects or cases (i.e., proCollab processes) including

task trees in the shape of to-do lists and checklists.

a) b)

Mobile Applica�onsWeb Applica�on

REST API

Task Tree Services
(Instances)

Pr
es

en
ta
�o

n

Database Management Systems

Java Persistence API

Process Services
(Instances)

Process Template
Repository

Task Tree Template
Repository

noitacinu
m

moC
ecnetsisreP

User and Role
Management

Data Management

Ap
pl

ic
a�

on

Java Content Repository

Fig. 11. Architecture and Screenshot of the proCollab Prototype

To validate the conceptual model of executable and configurable task struc-

tures, we applied proCollab to the SURPASS checklist2 [16], which was designed

for establishing a surgical patient safety system. The checklist is supposed to

accompany a patient, who will get a surgery, during each step of the surgi-

cal pathway (cf. Fig. 12). In general, the checklist contains seven key parts

(A0, A1, . . . , E), connected to the different stages of the pathway, and two

additional parts dealing with the transfer of patients (T1, T2). The SURPASS

checklist features three main variants: one for clinical surgeries, one for outpatient

surgeries, and one for emergency surgeries. The variants mainly differ from each

other in terms of contained parts (e.g., the emergency variant omits A0) and in

the number of corresponding tasks. For example, in the context of part A of the

outpatient variant, a surgeon has to process five check items, whereas in part A

of the emergency variant, he has to process eleven items (three being identical).

Pre-
admission Ward Holding OR Recovery/

ICU Ward Home

A0
Pre-admission

A1
Preparation in OR

A
Ward

B
Time out

C
Postoperative
instructions

D
Transfer to ward

E
Discharge

T1
Transfer

T2
Transfer

Fig. 12. SURPASS Checklist Parts in relation to Surgical Pathway

Altogether, the variants of the checklists could be well supported by the pro-

Collab tree template configuration approach. For this purpose, we first identified

the common parts shared by all variants (e.g., A1, T1) and added them to a basic

task tree template of the checklist specialization type. Then, we modelled the

individual components of the SURPASS checklist variants as separated check-

list templates and included them based on the contextual situations “clinical

2 http://www.surpass-checklist.nl/

Configurable and Executable Task Structures 13

environment”, “outpatient environment”, and “case of emergency”. To illustrate

the entire configuration process and the proper instantiation of the configurable

SURPASS checklist template in detail, we refer to a created screencast3.

7 Related Work

The roots of KiP support can be found in Computer Supported Cooperative Work

in general and in groupware in particular [4]. The fields more closely related to

proCollab are Business Process Management (BPM) and Adaptive Case Manage-

ment (ACM) [5]. Originated from BPM research, ACM targets at the systematic

support of KiPs based on the principles of case management and cases. In this

context, the Case Management Model and Notation (CMMN) was developed as

modeling notation to create, deploy, and interchange case-based specifications

for supporting KiPs [10]. As CMMN does not provide a dedicated representation

for task trees and relies on various specialized case elements, proCollab does not

implement CMMN. However, its components process and task may be related to

the CMMN elements case and task. Another approach comparable to proCollab

is Cognoscenti [13], which allows modeling and using projects with goal lists

and corresponding goals. In this context, goals are comparable to tasks, but the

approach lacks an integrated support of templates and, especially, the generic

task tree meta model. [11] introduced a notation for task models to specify a wide

range of temporal relationships among tasks. The notation, which also employs

a tree-based approach, focuses on the relationship between tasks and discusses

the implications of temporal relationships among tasks regarding their execution.

However, operations on task trees, integrated lifecycle support and configurations

of task trees are not discussed in [11].

8 Conclusion

Tasks and task lists constitute the key objects for knowledge workers when it comes

to KiP coordination. Consequently, the proCollab approach aims at systematic

and sustainable KiP support based on integrated task management. This paper

focused on the generic representation of task-based artifacts, i.e., checklists and

to-do lists, through corresponding task structures. Based on the latter, KiPs can

be supported through digital, synchronized, and configurable task lists. To make

use of best practices and knowledge gained in similar KiPs, proCollab enables

the process-aware provision of task list templates to allow knowledge workers

to instantiate these templates on demand. To provide a context-aware support

for large sets of task list templates, a corresponding configuration approach was

presented to enable knowledge workers to configure task list templates on demand.

Finally, the feasibility of the approach was demonstrated by a proof-of-concept

prototype and its application to a use case from the healthcare domain.

3 http://er2017.procollab.de

14 Nicolas Mundbrod and Manfred Reichert

In future work, we will extend the proCollab approach and evaluate it in

further case studies. Furthermore, the formal foundation of the proCollab meta

model as well as constraints between proCollab components will be subject to

future publications. Finally, we will consider the evolution of task tree templates

and instances over time.

References

1. Bellotti, V., Dalal, B., Good, N., Flynn, P., Bobrow, D.G., Ducheneaut, N.: What

a To-Do: Studies of Task Management Towards the Design of a Personal Task List

Manager. In: Proc. CHI ’04. pp. 735–742 (2004)

2. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-Intensive Processes: Characteris-

tics, Requirements and Analysis of Contemporary Approaches. J on Data Semantics

4(1), 29–57 (2014)

3. Drucker, P.F.: Knowledge-Worker Productivity: The Biggest Challenge. IEEE

Engineering Management Review 34(2), 29 (2006)

4. Gutwin, C., Greenberg, S.: A Descriptive Framework of Workspace Awareness for

Real-Time Groupware. CSCW 11(3), 411–446 (2002)

5. Hauder, M., Pigat, S., Matthes, F.: Research Challenges in Adaptive Case Manage-

ment: A Literature Review. In: Proc. EDOCW’14. pp. 98–107 (2014)

6. Lenz, R., Reichert, M.: IT support for healthcare processes – premises, challenges,

perspectives. Data & Knowledge Engineering 61(1), 39–58 (2007)

7. Mundbrod, N., Beuter, F., Reichert, M.: Supporting Knowledge-Intensive Processes

through Integrated Task Lifecycle Support. In: Proc. EDOC 2015. pp. 19–28 (2015)

8. Mundbrod, N., Kolb, J., Reichert, M.: Towards a System Support of Collaborative

Knowledge Work. In: BPM 2012 Workshops. LNBIP 132 (2013)

9. Mundbrod, N., Reichert, M.: Process-Aware Task Management Support for

Knowledge-Intensive Business Processes: Findings, Challenges, Requirements. In:

Proc. EDOCW’14. pp. 116–125 (Sept 2014)

10. OMG: Case Management Modeling and Notation (CMMN) 1.1 (2016), http://www.

omg.org/spec/CMMN/1.1/

11. Paternò, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A diagrammatic notation

for specifying task models. INTERACT’97 pp. 362–369 (1997)

12. Pryss, R., Mundbrod, N., Langer, D., Reichert, M.: Supporting medical ward rounds

through mobile task and process management. Inf Sys and e-Business Management

13(1), 107–146 (2015)

13. Swenson, K.D.: Demo: Cognoscenti Open Source Software for Experimentation

on Adaptive Case Management Approaches. In: Proc. EDOCW’14. pp. 402–405

(2014)

14. Tiedeken, J., Reichert, M., Herbst, J.: On the Integration of Electrical/Electronic

Product Data in the Automotive Domain. Datenbank Spektrum 13(3), 189–199

(2013)

15. Vaculin, R., Hull, R., Heath, T., Cochran, C., Nigam, A., Sukaviriya, P.: Declarative

business artifact centric modeling of decision and knowledge intensive business

processes. In: Proc. EDOC’11. pp. 151–160 (2011)

16. de Vries, E.N., Hollmann, M.W., Smorenburg, S.M., Gouma, D.J., Boermeester,

M.A.: Development and validation of the SURgical PAtient Safety System (SUR-

PASS) checklist. Quality & safety in health care 18(2), 121–126 (2009)

	Configurable and Executable Task Structures Supporting Knowledge-intensive Processes

