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Abstract—In enterprises, different business processes col-
laborate to achieve a common business goal. The processes
involved in such a collaboration are connected to each other in
one-to-one, one-to-many, and many-to-many relationships. The
complex interdependencies between these processes require
proper process coordination. Current approaches addressing
process coordination rely on message exchanges between the
interacting processes with focus on syntax, while neglecting the
semantics of these message exchanges between multiple pro-
cesses. This paper introduces semantic relationships, a concept
that provides the means to model process coordination based
on message semantics, resulting in a high level of abstraction
and thus facilitating process coordination. Semantic relation-
ships incorporate the support for one-to-many and many-to-
many process relations and affect process execution solely if
required, allowing for concurrent and asynchronous process
execution.

Index Terms—Business Process, Business Process Coordina-
tion, Semantic Relationships, Object-aware Process

1. Introduction

Process-aware information systems (PAIS) support the
modeling, execution and monitoring of individual business
processes. In a general business setting, many different
(sub)processes collaborate to achieve a business goal. Es-
pecially when creating a complex product or delivering
a service, many different processes may be involved in
achieving the business goal. In general, the processes may
have numerous complex interdependencies, e.g., requiring
that a process may only start after every dependent process
has been completed. Additionally, at runtime, multiple in-
stances of a process, each progressing differently, need to be
considered and handled properly and consistently. For this,
modeling a correct coordination of processes and enforcing
it at runtime is crucial for achieving the business goal.

Ideally, in a PAIS, the supported processes run con-
currently and asynchronously where possible. Occasionally,
however, the progress of an individual process may depend
either explicitly or implicitly upon the progress of other pro-
cesses. The required communication between the processes
is denoted as a process interaction [1]. In order to comply
with these dependencies, interacting processes must be co-
ordinated. Thereby, any coordination effort should affect the

concurrent execution of the processes as little as possible.
Many current coordination approaches, however, only con-
sider the coordination between two individual processes, ne-
glecting one-to-many or many-to-many relationships. These
relationships prove especially challenging at runtime, as the
number of processes and the interdependencies may change
or evolve dynamically (cf. Fig. 1).

In the predominant activity-centric process support
paradigm, message exchanges between processes are used
for coordination purposes (e.g., [2], [3]). As this paradigm
is imperative in nature, messages are modeled with a focus
on syntax. Message exchanges (i.e., process interactions),
therefore, do not consider primarily the semantics of the
exchanged messages. A thorough analysis of a significant
number of process models as well as informal process
descriptions revealed that message semantics can be clas-
sified based on the intended purpose of the messages. More
precisely, five distinguishable patterns were observed that
define the fundamental semantics of a message and, hence,
define the respective process interactions as well. Based on
these findings and taking additional requirements for process
coordination into account, a basic concept for process coor-
dination, denoted as semantic relationships, was developed.

Semantic relationships constitute a high-level concept
that allows specifying coordination constraints for concur-
rently running processes based on five patterns. Semantic
relationships can be configured in various ways to represent
complex dependencies between processes. The benefits of
this approach comprise reduced modeling efforts and im-
proved process model maintenance by separating coordina-
tion modeling from the actual process models. Note that this
allows for asynchronous process execution as well. Semantic
relationships originated in the object-aware process manage-
ment approach [4], [1], [S]. This paper expands upon pre-
vious work by introducing additional semantic relationships
and clarifying the benefits of this coordination concept. It
generalizes semantic relationships to achieve independence
from the object-aware process model. In principle, semantic
relationships can be used to coordinate processes modeled
in any paradigm.

The remainder of the paper is organized as follows.
Section 2 discusses challenges and requirements related to
process coordination. Section 3 introduces the concept of
semantic relationships. The particular challenge of asyn-
chronously executing processes is explained in Section 4.
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Figure 1. Processes and their dependencies at runtime

Section 5 presents evaluation results. Section 6 discusses
related work before concluding the paper with a summary
and an outlook in Section 7.

2. Problem Statement and Requirements

For illustration purposes, a process from the medical
domain is used as a running example. The process is a
simplified diagnosis and treatment process at a hospital.

Example 1 (Simplified diagnosis and treatment process).
First, the patient needs to be admitted to the hospital. In
this context, he must provide his name, address, symptoms,
and a medical history listing allergies as well as previous
diagnoses and treatments. Afterwards, the patient is sent to
a physician for examination. She examines the patient and
consults his medical history to determine potential causes
of the observed symptoms. The physician may order tests at
the hospital lab that checks for the presence of suspected
diseases. She may further perform any other kinds of tests.
Each test is conducted in a separate process. If a cause
has been identified, a final diagnosis can be made and
the patient advances to treatment. The physician starts the
specific treatment process that administers the treatment
according to the identified cause, e.g., giving antibiotics in
case of a bacterial infection. After his recovery, the patient
is discharged and leaves the hospital.

While it might not be immediately apparent from the

simplified running example, process coordination constitutes
a complex and delicate endeavor with many intricate aspects
that require careful considerations. In general terms, process
coordination requires the specification and enforcement of
coordination constraints.

Definition 1 (Coordination Constraint).

A coordination constraint is a formal or informal state-
ment describing one or more conditions or dependencies
that exists between processes.

As an example of a coordination constraint, a treatment
process may only be started if the patient has tested positive
for the disease. As another example, a payout from an in-
surance claim may only be granted if the insured has a valid
policy covering the damages and the damage assessment by
an expert approves the claim. In this case, a treatment, test,
expert assessment, or payment to the insured are consid-
ered to be separate processes. In order to implement such
coordination constraints the processes need to interact.

Messages are widely used for information exchange in
any kind of computer system. PAISs are no exception and,
consequently, they rely on messages to coordinate processes
and to exchange information between them; e.g., BPMN
uses message flows for this purpose as well. However,
BPMN presumes an imperative modeling style, and mes-
sages are mostly modeled regarding syntax. The purpose
behind a message is left ambiguous and must often be
inferred from context. While this might not be a problem
for a process modeler, subject matter experts, who have to



Figure 2. Abstract examples of arrangements

understand and correctly interpret the process model, might
require significant effort. Therefore, it is highly desired that
methods help to understand the semantics of the process co-
ordination. Therefore, the following requirement is defined:

Requirement 1 (Semantic Indications).
The coordination concept must indicate the semantics of
the expressed coordination constraints.

In reasonably large business settings, processes may
be dependent on another process. Processes having a con-
nection are called related (have a relation), e.g., “test”
and “treatment” processes are related. In this context, it
is crucial to distinguish between process type and process
instance. For example, process type A may have A;,A45..4,,
as corresponding process instances. Subsequently, the term
process is used when something applies to both type and
instances. Moreover, two or more related process instances
are said to be in an arrangement (cf. Fig. 2), e.g., one order
may require several shipments.

Definition 2 (Arrangement).

An arrangement is a collection of process instances that
have possibly different types and are connected by relations
between the process instances. The number of process in-
stances of each type and their relations in an arrangement
are fixed.

Changing an arrangement by, for example, adding or
deleting a process or creating a new relation results in a new
arrangement, i.e., an arrangement may be evolving. More-
over, the same process instance may be involved in different
arrangements, e.g., process instance B; in Figure 2 is part of
arrangements R and S. In general, coordination constraints
may describe processes in an arrangement comprising one-
to-one, one-to-many, or many-to-many relationships. This
requires careful management of process relations to know
which processes are connected and which are dependent on
which other processes, i.e., knowledge of their arrangement
is required.

However, the exact number of related process instances
participating in an arrangement might not be known at
design time, but only becomes known at runtime. To fur-
ther complicate matters, at runtime, the number of process
instances can often not be fixed either, as instances may be
created or deleted dynamically. Additionally, the relations of

dependent process instances may change dynamically. For
example, an applicant for a job offer related to the position
of “Software Architect” may fit better to the position of
“Test Engineer”. Accordingly, the application is handed
over, i.e., the application process is then related to the job
offer process “Test Engineer” instead of the job offer process
“Software Architect”. In general, such an overall process
structure is continuously evolving (cf. [6], Fig. 1).

Definition 3 (Process Structure).
A process structure constitutes an arrangement that com-
prises all interrelated process instances.

The evolving process structure affects the coordination
constraints of both job offers, i.e., constraints might no
longer be satisfied or now become satisfied. Furthermore,
it is possible that processes do not have a direct relation,
but still have transitive interdependencies. These must be
taken into account and the processes need to be coordinated
properly (cf. Requirement 2).

Requirement 2 (Relation Cardinality).

The coordination concept must handle, possibly tran-
sitive, one-to-one, one-to-many, and many-to-many process
relations, allowing for dynamic changes to the arrangements
at runtime as well.

In imperative process models, each eventuality of the
process must be explicitly modeled. An example of an even-
tuality is a decision that changes the outcome of a process.
In general, related processes depend on such eventualities
and, therefore, require a notification message to coordinate
accordingly. Additionally, for executable process models, it
must be ensured that sender and recipient both understand
each other, i.e., the message format must be exactly spec-
ified and logic on each side to handle the message must
be provided. For large processes with many eventualities,
this might cause an enormous modeling effort. To reduce
this effort, coordination modeling should abstract from the
modeling of individual messages. Instead it should provide
generic, high-level modeling constructs for specifying co-
ordination constraints. The message exchanges required to
actually implement these constructs should then be derived
automatically and implicitly. In consequence, the message
exchanges thereby may be hidden and are of no concern
to the modeler. This generic specification is presented in
Requirement 3:

Requirement 3 (Generic Specification).

The coordination concept must provide generic high-
level constructs for specifying coordination constraints. Nec-
essary message exchanges should be implicit.

In a modern PAIS, processes may run concurrently
to each other. With regard to process coordination, this
concurrency should be affected as little as possible: i.e.,
waiting times due to unfulfilled dependencies should be kept
minimal. In other words, process coordination should only
occur at certain points in time during process execution,
particularly if being indispensable for reaching the busi-
ness goal. In general, an asynchronous process execution is



desired. For example, a physician may examine a patient
and take a blood sample. This sample is then given to
the laboratory for analysis. In a synchronous coordination,
the physician must wait for the lab results before she may
continue with the examination. In an asynchronous setting,
instead of waiting for the lab results, the physician continues
with examining the patient. The lab results will then simply
arrive at a future point in time. If the lab analysis is finished
after the patient examination, the physician must wait for
the lab results after completing the examination before she
may proceed with treating the patient. Asynchronous process
execution is significantly complicated due to the fact that
processes may be dynamically added or removed at runtime.
Newly emerging processes need to become aware of the
status of their related processes to properly evaluate their
coordination constraints. The same applies to the existing
processes, which need to reevaluate their coordination con-
straints when a new process emerges.

Requirement 4 (Asynchronous Concurrency).

The coordination concept must allow for asynchronous
and concurrent process execution. Coordination should af-
fect process execution only when necessary.

In summary, any concept for coordinating processes
should provide a generic, abstract way of specifying coor-
dination constraints that allows for asynchronous execution
and handles the necessary message exchanges automatically.
Section 3 presents the concept of semantic relationships,
which we consider as the foundation for a coordination
approach fulfilling the four stated requirements.

3. The Concept of Semantic Relationships

In order to derive a concept for process coordination sat-
isfying Requirements 1—4, existing graphical process models
were analyzed with respect to the semantics of the process
interactions. The BPMN process models with five message
exchanges on average were created by the IT department of
Ulm University. Hence, process interactions were modeled
in terms of message exchanges. Additionally, the analysis
included processes described informally in prose to include
coordination scenarios that cannot be expressed graphically
yet. The analysis revealed that with regard to the semantics
of the process interactions as well as the associated coordi-
nation constraints, the interactions can be classified into five
different categories. Accordingly, the semantic relationships
reflecting these categories are denoted as fop-down, bottom-
up, transverse, self, and self-transverse. In particular, the five
semantic relationships refer to the support of one-to-many
relations between processes. Many-to-many relations may
be expressed as several one-to-many relations, which then
can be coordinated using semantic relationships (cf. Req-2).

Coordination constraints are represented using semantic
relationships. Several, possibly different, semantic relation-
ships might be required to adequately represent a coordi-
nation constraint. Consequently, a semantic relationship is
required to have a logical value, i.e., true or false, at runtime.
The logical value, in turn, indicates whether a semantic
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Figure 3. Schematic example of a top-down semantic relationship

relationship is satisfied or unsatisfied at a specific point in
time during process execution . The semantic relationships
involved in the representation of a coordination constraint
may be combined with boolean operators to calculate the
overall logical value of the coordination constraint. Based
on this logical value, certain actions (e.g., continuing with
process execution) are either allowed or prohibited.

Before specifying the various semantic relationships,
two definitions must be provided. The terms lower-level and
higher-level refer to the fact that the one-to-many relations
are directed (i.e., represented by a directed edge, opposed
to, e.g., relations in entity-relationship-diagrams). Many-to-
many relationships may be broken down to several one-
to-many relations. In turn, the direction of the relations
induces a hierarchy between processes. A process A is
denoted as higher-level process in respect to a reference
process B if there is a directed relation from B to A. Anal-
ogously, there may be many source processes C; denoted as
lower-level processes in respect to a reference process D.
This terminology applies with transitive relations as well.
Though strictly speaking not being necessary for semantic
relationships themselves, the hierarchy between processes
provides advantages for the automated determination of
semantic relationships between processes and the technical
implementation of semantic relationships. In the following,
the five types of semantic relationships are presented in
detail.

3.1. Top-down Semantic Relationship

A top-down semantic relationship exists if the execution
of (possibly several) lower-level processes depends upon
the execution status of a common higher-level process.
Schematically, this is depicted in Figure 3, where process in-
stances B1--B3 depend on Ay, i.e., process instance A; must
reach a particular processing state before process instances
B;--Bs may start/resume their execution. For example, the
patient examination takes place after admitting the patient.
Only after admission, a physician may order specific tests
(test processes are instantiated) at the lab or perform any
other examination required. If the patient has not been ad-
mitted yet, the physician must not perform any examinations
(which is also not possible for practical reasons).

A top-down semantic relationship provides only the es-
sential semantics to represent coordination constraints. To be
able to properly represent coordination constraints, semantic
relationships can be customized through configuration. For
top-down relationships, the predominant question is when



the semantic relationship is no longer satisfied. In the ex-
ample, after examining the patient and determining a final
diagnosis, the physician proceeds with treating the cause of
the illness. Further examinations are then no longer useful.
Consequently, it must not be allowed to order additional
tests. A top-down relationship, therefore, includes means to
specify at which point the semantic relationship is satisfied
for the first time and when it will no longer be satisfied.

3.2. Bottom-up Semantic Relationship

As opposed to top-down semantic relationships, a
bottom-up semantic relationship is defined by one higher-
level process being dependent on the execution status of
one or more lower-level processes. Regarding the running
example, lower-level processes include the fest processes
the physician ordered during the examination of the patient.
Before a final diagnosis can be made, each lower-level
process must complete and deliver a result (see Figure 4).
Each of the process instances Bi-Bs must reach a certain
point in its enactment before higher-level process instance
A; may resume.

Regarding configuration options, bottom-up relation-
ships are more complicated than top-down relationships. To
configure a bottom-up relationship, information on the set
of lower-level processes is required. In the running example,
the different tests ordered by the physician produce a result,
i.e., the patient either has a specific disease or not. A
coordination constraint of the running example states that
all tests have to complete before the higher-level process
may proceed to the final diagnosis. Obviously, it might make
more sense to proceed if a test has produced a positive result,
i.e., the patient suffers from the disease.

/ ottom-Up Relationship

Figure 4. Schematic example of a bottom-up semantic relationship

In the running example, it is assumed that the patient
has no other diseases, therefore all other tests are irrelevant
and the physician may make the diagnosis. In general terms,
a bottom-up relationship is satisfied once a subset of lower-
level processes meets a condition. The size of the subset and
the condition are specified by a coordination constraint.

To specify such a condition, a bottom-up relationship
needs an expression framework. The framework must be
able to access process data, e.g., to determine which ac-
tivities have been executed or which values certain data
elements posess. This information can then be combined
with comparison operators, boolean operators, and other
functions to create an expression representing the desired
condition. The expression framework determines the extent
to which complicated coordination constraints can be rep-
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Figure 5. Schematic example of a transverse semantic relationship

resented. Depending on the coordination constraint, expres-
sions might become overly complex, to the point where they
are no longer easy to understand. The concepts presented in
Section 5 can be used to alleviate the problem by providing
abstractions that simplify the specification of the conditions.

3.3. Transverse Semantic Relationship

Transverse semantic relationships coordinate two sets
of processes of different type in the context of a common
higher-level process. In particular, the execution progress of
processes in one set depends on the execution status of pro-
cesses from the other set (cf. Fig. 5). The process instance
Cy depends on process instances from set { By, Bo}. How-
ever, Cq has no direct or transitive relation with By or Bs.
Instead, By and By are related indirectly to C'; as they are
lower-level processes of process instance A;. The common
higher-level process of the processes from the two sets of
the transverse semantic relationship is denoted as common
ancestor, which is A7 in this case. Note that each transverse
semantic relationship has exactly one common ancestor. A
common ancestor and the other involved processes may be
related transitively.

In the running example, fest and treatment processes
have a transverse relationship. A treatment process may only
start if the corresponding fest process is completed and the
result is positive, i.e., the patient suffers from the specific
disease. A treatment process may also depend on several fest
processes, i.e., if the tests have a chance of producing false
positives or false negatives. As a consequence, the same type
of test must be performed multiple times until a reasonable
level of confidence in respect to the result is achieved.

A transverse semantic relationship requires an expres-
sion framework in order to specify a condition. The frame-
work and the condition serve the same purpose as in the
context of bottom-up semantic relationships. Further, the
framework does not require additional functionality specific
to transverse semantic relationships. In the running example,
a coordination constraint states that at least one test process
must have a positive result before a corresponding treatment
process may be started. This corresponds to a transverse
semantic relationship with an expression representing the
“at least one test with a positive result” condition.

Additionally, transverse semantic relationships allow for
the specification of a common ancestor. The common an-



cestor significantly influences the transverse relationship as
well as the representation of the coordination constraint. In
the running example, the diagnosis and treatment process is
the common ancestor in the transverse relationship between
test process and treatment process. As example, assume that
a hospital process is added as a higher-level process of the
diagnosis and treatment process, i.e., the hospital process
has a one-to-many relation with the diagnosis and treatment
process.

If the modeler chooses to change the common ancestor
from the diagnosis and treatment process to the hospital
process, it alters the meaning of the transverse relationship,
provided the condition of having one positive test for a
disease to start treatment remains the same. The sets of the
transverse relationship now contain all test and treatment
processes of the entire hospital. Due to the context change,
in turn, fest and treatment processes cannot be easily associ-
ated with a specific patient. As a consequence, for example,
it would be allowed to treat a patient for the flu if any other
patient was tested positive for it. The choice of context for
a semantic relationship, i.e., the common ancestor, should
be carefully considered to avoid undesired effects in process
coordination.

3.4. Self / Self-Transverse Semantic Relationship

A self semantic relationship constitutes the simplest se-
mantic relationship, which describes a dependency between
two parts of the same process, e.g., patient examination
requires the completion of patient admission. Normally, this
semantic relationship is captured implicitly in the process
models, e.g., in activity-centric models, the self semantic
relationship is expressed through control flow. As a result,
the self semantic relationship possesses no configuration
options. However, a process might also depend on other
processes of the same type, as opposed to depending on
parts of itself (self relationship) or processes of different
type (top-down, bottom-up, or transverse relationships). As
example assume that there are test processes being mutually
exclusive. This can be the case if the testing requires the
patient to be injected with a substance. Other substances
used in other tests might be incompatible due to various
reasons, e.g., blood clotting causing thrombosis. Therefore,
if one test has been performed, other tests must not be
performed anymore.

Self-transverse semantic relationships, in turn, are pro-
vided to express such coordination constraints. A self-
transverse semantic relationship expresses a constraint be-
tween processes of the same type, whereas a transverse
semantic relationships expresses a constraint between pro-
cesses of different types. In general, a self-transverse re-
lationship corresponds to a choice or m-out-of-n pattern.
The sets of processes are defined analogously to transverse
semantic relationships. Additionally, they provide the same
configuration options as transverse relationships, i.e., an ex-
pression framework for specifying conditions and the choice
of a common ancestor. Schematically, a self-transverse se-
mantic relationship is depicted in Figure 6, where process
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Figure 6. Schematic example of a self-transverse semantic relationship

instance A; serves a common ancestor to process instances
B and Bs in a self-transverse relationship.

All semantic relationships are closely linked to relations
between processes. On one hand, creating a semantic rela-
tionship establishes a relation between processes as well. On
the other, it is feasible to automatically derive a semantic
relationship from the relation between two types of pro-
cesses. Note that this provides a significant advantage when
modeling process coordination with semantic relationships,
as it reduces modeling efforts in case the relations between
processes are known. Another benefit of semantic relation-
ships for a process modeler is the focus on the business goal
itself and less on the way how to achieve the goal, which
fosters a more declarative modeling style. Regarding the
requirements elaborated in Section 2, the presented semantic
relationships fulfill Requirements 1-3. In Section 4, state-
based abstractions are presented, which additionally allow
fulfilling Requirement 4.

4. State-based View and Asynchronous Process
Execution

According to Requirement 4, coordination should only
take place at specific points in time. Between its points of
coordination, in turn, a process should run asynchronously
to other processes. Though, in principle, an asynchronous
process execution is already possible with semantic rela-
tionships, the currently used notation is unable to display
those parts of a process that can be asynchronously ex-
ecuted in respect to other processes. Figures 3-6 depicts
a single activity as the point of coordination, whereas the
coordination is actually possible in regard to several activi-
ties. For example, during patient examination, the physician
may perform several activities herself. However, instead of
ordering a test at the lab (i.e., start a new test process) only
after one specific activity, she may order a test after each
of these activities. Furthermore, the notation incorporates
semantic relationships into the existing process models,
which may prove disadvantageous, i.e., require increased
modeling efforts when changing the models later. In order
to tackle this challenge, we developed state-based views.

State-based views provide a simplified view on a process
by abstracting from (i.e., hiding away) unnecessary details.
Visible from the outside are only the states of the process,
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Figure 7. State-based views of the processes in the example

which, therefore, must convey all the necessary informa-
tion. Regarding the running example, parts “Admission”,
“Examination”, “Diagnosis”, “Treatment” and “Discharge”
(cf. Example 1) constitute possible states. States represent
logical groupings of process elements, like, for example,
activities in activity-centric processes. Additionally, states
represent results of a process, i.e., when making decisions,
the process enters one of several mutually exclusive states.
For example, the test processes in the running example either
have a “positive” or a “negative result”. Figure 7 reflects the
state-based views of the processes from Example 1.

The partitioning of process models into states is, in
principle, arbitrary. Hence, there may be more than one
possibility for a reasonable partitioning. However, states
must be chosen with regard to the coordination of the
processes, as states are the only visible information for
other processes. Furthermore, the intrinsic logical grouping
of underlying process elements, (e.g., activities) should not
be neglected. For semantic relationships, states provide an
easy-to-access interface for the processes. More precisely,
top-down, bottom-up, transverse, self, and self-transverse
semantic relationships can define process dependencies as
well as coordination constraints based on the states of
the processes. At runtime, states are either active, non-
active or have been active at one point in time before.
Regarding the running example, a coordination constraint
for the running example states that a physician may order
tests only during patient examination. In terms of states and
semantic relationships, this represents a top-down semantic
relationship between the diagnosis and treatment process
and the fest process. If state “examination” of the diagnosis
and treatment process becomes active, the semantic relation-

ship allows fest processes to be started, i.e., state “disease
selection” of the fest process may become active as well.

Concerning Requirement 4, states provide the means to
coordinate processes at specific points in time and only
if necessary. A blocked execution caused by unsatisfied
coordination constraints may only occur when transitioning
from one state to another. Within a state, in turn, a pro-
cess is executed asynchronously to other processes without
interference from the coordination. Furthermore, depending
on the presence and status of coordination constraints for
specific states at runtime, asynchronous execution is possi-
ble over multiple states as well. For example, states “Test
Preparation”, “Analysis”, “Positive Result Notification”, and
“Negative Result Notification” of the test process are not
subject to coordination constraints. The activities within
these states can be executed asynchronously to the activities
within the “Patient Examination” state. (cf. Figure 7).

Figure 8. Asynchronous Execution with Dependency: Process A cannot
activate state S, state T is inactive



The asynchronous execution poses challenges to the
correct coordination of dependent processes, which are il-
lustrated in the following.

Example 2. Suppose there are two processes A and B
running concurrently and asynchronously to each other.
Process A has state S4, which has a semantic relationship
with process B with state Tz; i.e., A must wait for T
to become active before its state S5 can become active as
well. As both processes are executed asynchronously and
concurrently, either process A or B may reach its respective
state faster. In case process A is faster (cf. Fig. 8), upon
reaching state S4, a query to T is issued for its status;
T'p returns status “Inactive”. Consequently, state S4 must
wait for state T's to become active. As soon as 1’z becomes
active, state S is notified and activated. If T’z is already
active (cf. Fig. 9), the query returns “Active” for the status of
Tp and state S4 may immediately activate. In case process
B is faster (cf. Fig. 9), state Tz may be already active when
A reaches state S 4. If T’z has notified process A of its status
and A stored the notification, subsequently S4 can activate
immediately.

A semantic relationship can solve this challenge by pro-
viding a mutual publish-subscribe between both processes.
The actual message exchanges are completely hidden. State-
based views offer additional benefits for semantic relation-
ships. The abstraction provided by them fosters the process
modeling of semantic relationships, as the process modeler
must not concern himself with details of the coordinated
processes. State-based views provide a clear and simple
foundation for specifying semantic relationships, and, thus,
for reducing the complexity of the modeling.

iProcess A
|

Completed Inactive

Completed Inactive

Figure 9. Asynchronous Execution with Dependency: Process A can acti-
vate state S, state T is active

With the state-based abstraction, it becomes possible
to create coordination models with semantic relationships
that exist separately from the coordinated processes. As
advantage, existing models need not be changed, as the
state-based view can be realized “on top” of existing process
models. This allows modeling semantic relationships in two
phases:

1) The normal modeling phase, without any concerns
for coordination.

2) The coordination is brought into play and modeled
around the existing process models in a separate
model.

It is expected that this clear separations of concerns makes
initial model creation easier and also fosters process model
maintenance.

5. Evaluation

Semantic relationships were derived by analyzing a set
of process models. As a first evaluation, semantic relation-
ships were applied to a subset of the same process models
from the initial analysis to check whether semantic relation-
ships can be applied. The subset consisted of administration
processes from Ulm University modeled in terms of BPMN.
The processes were chosen due to their high quality and
their high number of process interactions, i.e., message
exchanges between BPMN pools. In total, the 18 process
models comprised 92 message exchanges. We were able
to fully replace the message exchanges with appropriate
semantic relationships, providing evidence that they can
be applied to existing process models. However, as in the
context of BPMN process interactions correspond to one-to-
one relations between processes, meaningfulness is limited.
The evaluation cannot show the benefits for one-to-many or
many-to-many process relationships. For several processes,
a redesign of specific parts would foster the interaction
modeling based on semantic relationships.

In addition to the application to the BPMN models, we
specified several real-world processes from the insurance,
human resource, and university domains. In particular, the
modeled processes included a damage claim process from an
insurance company, a job application process, and a process
from an HR software managing absence from work for
employees. All process models included coordination con-
straints with one-to-many relations between processes, €.g.,
the damage claim may require multiple expert assessments
of the damages.

The processes were modeled using the object-aware
process modeling approach [4], [1], which provides process
coordination support based on semantic relationships and
state-based abstraction. The PHILharmonicFlows prototype
[7] comprises a modeling tool with which the processes
were modeled. For all process models, the coordination con-
straints specified by the process descriptions could be faith-
fully reproduced in the model using the presented semantic
relationships, with two exceptions. In this particular cases,
the expression framework did not provide the necessary
functionality for specifying the appropriate condition for a
bottom-up relationship. Although the coordination constraint
could not be reproduced, it is not a conceptional problem
of semantic relationships, but one of the expressiveness of
the used framework.
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Figure 10. Insurance Claim Coordination Process

For example, the insurance claim model' uses 14 dif-
ferent process types with multiple one-to-many relations.
Figure 10 shows a coordination process (also known as a
macro process, cf. [1]). The coordination process shows pro-
cess types and their states connected by semantic relation-
ships. The coordination required 18 semantic relationships
in total (self relationships are not counted due to triviality).
Since modeling object-aware processes produces executable
process models that can be executed using the PHILhar-
monicFlows Runtime Tool [8], test cases were designed to
which the process models were subjected. Special focus
was put on the proper coordination of processes in one-
to-many arragements. The test cases could be successfully
executed, satisfying the coordination constraints set by the
process specification despite efforts to break them. Overall,
the conducted evaluations proved the feasibility of using
semantic relationships in process coordination. However,
the understandability and practicability in modeling must
be thoroughly evaluated in future user studies.

6. Related Work

Regarding the activity-centric paradigm, several ap-
proaches enable a specific kind of coordination. In [9],
[10], multiple instance workflow patterns for coordinating
processes are described. The business process architecture
approach [11], [12] identifies generic patterns to describe
a coordination between processes. Moreover, BPEL4Chor
[13] extends BPEL by adding coordination support in the
form of process choreographies. iBPM [2], [14] enhances
BPMN to support coordination of processes by modeling
process interactions.

Common to all these approaches is the use of messages
as a mechanism for coordination. While the exchange of
messages allows for a fine-grained process coordination,
all message flows have to be identified, the contents of
the messages be defined, and the message recipients be
determined. This introduces an enormous complexity when
facing multiple processes that need to be coordinated. In
many cases, it impairs the flexible execution of the processes
involved. Except Proclets, the modeling of coordination
aspects is integrated with the actual process models, adding
complexity to the process models. Changing a process model

1. The full process model is available at https://goo.gl/GuA79T

then requires additional efforts, as changes may have a sub-
stantial effect on other parts of the model, which have to be
adapted as well. Strictly separating coordination mechanism
on one hand and the processes on the other, therefore, could
help to reduce the effort required for evolving the model.
Additionally, none of the approaches fully supports Require-
ments 1-4, i.e., Semantic Indications, Relation Cardinality,
Generic Specification, and Asynchronous Concurrency.

Proclets [3], [15] are lightweight processes with focus
on process interactions as well. They interact via messages
called Performatives. Proclets allow specifying the cardi-
nality for a message multicast, i.e., the number of Proclets
that receive a performative. However, this number is fixed at
design time, so Requirement 2 is only partially fulfilled. In
contrast, Proclets are capable of asynchronous and concur-
rent execution. The other requirements are not considered
by the Proclet approach.

Case handling [16], [17], [18] and artifact-centric
process management [19] use the Guard-Stage-Milestone
(GSM) meta-model [20], [21] for process modeling. Central
to these approaches is the case/artifact, which holds all
process-relevant information. It may further interact with
other cases or artifacts. However, GSM does not provide
dedicated coordination mechanisms, but incorporates a so-
phisticated expression framework, that, in principle, allows
creating the needed coordination mechanisms with expres-
sions. As a drawback, these expressions might become
very complex and explicitly need to be integrated into the
process model. Therefore, model verification [22], [23], [24]
constitutes an important aspect of artifact-centric process
management. Further, [25] recognizes the need for sup-
porting many-to-many relationships in artifact-centric chore-
ographies. Also, the challenge of dynamically emerging and
disappearing processes at runtime is acknowledged (cf. Reg-
2). However, Requirements Semantic Indications, Generic
Specification, and Asynchronous Concurrency (cf. Req-1,
Req-3, Req-4) are not addressed.

The coordination of large process structures with focus
on the engineering domain is considered in [6], [26]. The
COREPRO approach explicitly considers process relations
with one-to-many cardinality and dynamic changes at run-
time (cf. Req-2), but transitive relations are not consid-
ered. In comparison to COREPRO, semantic relationships
correspond, in principle, to external state transitions of a
Lifecycle Coordination Model. However, the external state



transitions do not take the semantics of the respective
process interaction into account. In particular, transverse
relationships between processes are not supported.

7. Summary and Outlook

Semantic relationships enable process coordination
based on semantic criteria. The semantic relationships top-
down, bottom-up, transverse, self, and self-transverse cover
standard interaction patterns providing a basis for coordi-
nating processes. To also represent more demanding coor-
dination constraints, the basic semantic relationships may be
configured. In particular, they are capable of handling a large
number of process instances in various arrangements. Ad-
ditionally, semantic relationships are able to accommodate
dynamic changes to the overall process structure at runtime.

State-based abstractions (i.e., views) allow for asyn-
chronous process execution and also provide a clear in-
terface for the processes, which eases the configuration of
a semantic relationship. Furthermore, the abstraction of a
process with a state-based view, in principle, allows for
the coordination of processes modeled in any paradigm or
process modeling language with semantic relationships.

Future work will investigate the benefits of process co-
ordination with semantic relationships. Several experiments
and user studies are planned to evaluate practicability and
understandability. Finally, a technical implementation of
process coordination using the concept of semantic relation-
ships will be presented.
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