
Demonstrating Flexible Support for

Knowledge-Intensive Processes with proCollab

Nicolas Mundbrod and Manfred Reichert

Institute of Databases and Information Systems

Ulm University, Germany

{nicolas.mundbrod,manfred.reichert}@uni-ulm.de

http://www.uni-ulm.de/dbis

Abstract. Knowledge-intensive processes (KiPs) are driven by knowl-

edge workers utilizing their skills, experiences, and expertise. As these

processes are emergent and unpredictable, their support constitutes a

big challenge. For coordinating and synchronizing the various tasks of

a KiPs, knowledge workers still rely on simple task lists like, e.g., to-do

list or checklists. Though task lists are intuitive, their current implemen-

tations are very ineffective: tasks are neither made explicit nor are they

personalized or synchronized. In addition, no task management lifecycle

support is provided and media disruptions frequently occur. This tool

demonstration presents the proCollab framework supporting a wide range

of KiPs (e.g., projects and cases) through integrated, lifecycle-based task

management. In particular, proCollab task trees support the provision of

task list templates and to constitute digital task lists of any kind. For

customization, it further allows integrating domain-specific methodologies

as well as configuring task lists at design and run time. Overall, the pro-

Collab framework shall improve coordination among knowledge workers,

increase work awareness, and record valuable coordination efforts.

Keywords: knowledge-intensive processes, task management, task list,

checklist, to-do list, knowledge worker

1 Introduction

Residing in sensitive key business areas, such as research, healthcare, or engi-

neering, knowledge-intensive processes (KiPs) have become the centerpiece for

creating value in many companies [3]. While driving KiPs, knowledge workers uti-

lize their skills, experiences, and expertise to cope with sophisticated tasks. Thus,

the systematic and sustainable support of KiPs constitutes a prerequisite for

achieving business goals. KiP support, however, still poses a big challenge. KiPs

can be characterized as non-predictable, emergent, goal-oriented, and knowledge-
creating processes [1,3]. Consequently, KiPs have not been fully supported by

contemporary process-aware information systems so far. Instead, knowledge

workers still rely on simple task lists (e.g., to-do lists, checklists) to coordinate

their work [6]. But these instruments are error-prone and ineffective. Moreover,

http://www.uni-ulm.de/dbis


2 Nicolas Mundbrod and Manfred Reichert

knowledge workers suffer from media disruptions and a lack of lifecycle-based

task management preventing them from reusing existing artifacts (e.g., task lists)

in similar KiPs [4].

The proCollab1 framework aims at the systematic and sustainable support of

KiPs. As tasks constitute the key objects regarding planning and quality assurance

for knowledge workers, proCollab provides process- and lifecycle-based task

management [3], empowering knowledge workers to collaborate more effectively.

To make use of best practices and knowledge gained in the context of comparable

KiPs, proCollab provides process and task list templates, which knowledge workers

may instantiate on demand. To foster the reuse of these templates, a context-

aware approach for configuring task list templates is included as well. Knowledge

workers may then easily configure task lists either at design or run time. To

increase work awareness in addition, proCollab encompasses a flexible state

management concept. The latter may be customized to optimally align KiPs,

task lists, and tasks with domain-specific requirements. Finally, the proCollab

framework aims to improve coordination among knowledge workers, prevent

media disruptions, and record valuable coordination efforts and knowledge.

2 proCollab and its Significance to the BPM field

To enable a generic, but customizable support for KiPs, the proCollab framework

relies on processes, task trees, and tasks as the conceptual pillars for representing a

wide range of KiPs as well as task-based artifacts used by knowledge workers. To

establish and provide lifecycle-based task management support in the context of

KiPs [2], processes are refined to process templates and process instances, whereas
task trees are refined to task tree templates (with task templates) and task tree
instances (with task instances) respectively. Figure 1 illustrates the relationship

and interplay of those components.

Task Tree
Templates

with 
Task Templates

0-n

0-1

0-1

0-n

0-n

1-n 1-n

1-n 1-n

0-n 0-n

0-n 0-n

0-n 0-n
0-n

Subordinated
Process Templates

Subordinated
Process Instances

Process
Templates

B

Sub-Task Tree
Templates with
Task Templates2

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task TreeTask Tree

Root

1 B

Root

A B

A1 A2 B1 B2

Task TreeTask Tree
Root

A B

A1 A2 Root

B1 B2

Task Tree Instances
with Task Instances

Process
Instances

Sub-Task Tree
Instances with
Task Instances

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task TreeTask Tree

Root

B1 B2

Root

A B

A1 A2 B1 B2

Task TreeTask Tree
Root

A B

A1 A2 Root

B1 B2

Instantiation

Optimization

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Fig. 1. Overview of proCollab Components

Process templates and task tree templates enable knowledge workers to ac-

celerate planning of their tasks based on best practices. Every process template

may have several subordinated process templates and feature various properties,

1 Process-aware Support for Collaborative Knowledge Workers



The proCollab Demonstrator 3

conditions, and linked resources. Every process template may be linked to an

arbitrary number of task tree templates. A task tree template, in turn, contains

task templates and, optionally, subordinated task tree templates. Thereby, it

reflects best practices for planning (to-do list) or quality assurance (checklist)

in the context of KiPs. For example, process template for clinical surgeries may

contain a task tree template for ensuring patient safety during surgeries.

At run time, knowledge workers collaborate in the context of process instances.
A process instance may represent a running project, a case, or any kind of knowl-
edge worker collaboration. Moreover, it has properties like a goals and it features

resources (e.g., documents). A process instance may have subordinated process

instances to let knowledge workers focus on specialized sub-goals. Every process

instance may comprise multiple task tree instances with corresponding task in-
stances. A task tree instance constitutes the generic representation of common

task-based artifacts (e.g., a to-do list) in use. For example, an automotive engi-

neering project with to-do lists for planning and checklists for quality assurance

can be supported by a respective proCollab process instance with corresponding

task tree instances (of type “to-do list” and “checklist”) (cf. Figure 2).

Name: E/E Car Component Development Project

2 Years A�er Start
...
Due Date:
Goal: E/E Car Component Sa�sfying Specifica�on

Subordinated Process Templates

Requirements
Engineering

System
Design

...

Linked Resources

Specifica�on
Templates

...

Design 
Guidelines

Quality Assurance

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist Templates
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Planning

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

To-do List Templates
To-do A

To-do A1
To-do A2

To-do B
To-do B1
To-do B2

Subordinated Process Templates

Requirements
Engineering

System
Design

...

Linked Resources

...

Specifica�ons Designs

Status: Running

Name: Development Project for Airbag Control Unit ACU-5891 V14

15 October 2016
...
Due Date:
Goal: ACU-5891 V14 Sa�sfying Specifica�on CCS-8641

Quality Assurance

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist Instances
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Planning

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

To-do List Instances
To-do A

To-do A1
To-do A2

To-do B
To-do B1
To-do B2

Subordinated Process Templates

Requirements
Engineering

System
Design

...

Linked Resources

...

Specifica�ons Designs

Status: Running

Name: Development Project for Airbag Control Unit ACU-5891 V14

15 October 2016
...
Due Date:
Goal: ACU-5891 V14 Sa�sfying Specifica�on CCS-8641

Quality Assurance

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist Instances
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Planning

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

To-do List Instances
To-do A

To-do A1
To-do A2

To-do B
To-do B1
To-do B2

Subordinated Process Templates

Requirements
Engineering

System
Design

...

Linked Resources

...

Specifica�ons Designs

Status: Running

Name: Development Project for Airbag Control Unit ACU-5891 V14

15 October 2016
...
Due Date:
Goal: ACU-5891 V14 Sa�sfying Specifica�on CCS-8641

Quality Assurance

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist Instances
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Planning

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

To-do List Instances
To-do A

To-do A1
To-do A2

To-do B
To-do B1
To-do B2

Subordinated Process Templates

Requirements
Engineering

System
Design

...

Linked Resources

...

Specifica�ons Designs

Status: Running

Name: Development Project for Airbag Control Unit ACU-5891 V14

15 October 2016
...
Due Date:
Goal: ACU-5891 V14 Sa�sfying Specifica�on CCS-8641

Quality Assurance

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Checklist Instances
Check Item A

Check Item A1
Check Item A2

Check Item B
Check Item B1
Check Item B2

Planning

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

Task List
Task A

Task A1
Task A2

Task B
Task B1
Task B2

To-do List Instances
To-do A

To-do A1
To-do A2

To-do B
To-do B1
To-do B2

a) Process Templates of Specializa�on Type Project Instantiation b) Process Instances of Specializa�on Type Project

Fig. 2. Visualization of Process Templates and Instances from the Automotive Domain

In general, knowledge workers may create a process instance based on a

process template or starting without any template at all. If a process template is

instantiated, the linked task tree templates are instantiated, too. Further, the

created task tree instances are linked to the corresponding process instance. In

the context of a particular process instance, knowledge workers may instantiate

further task tree templates or add “blank” task tree instances on demand.

To support a wide range of application scenarios, proCollab employs spe-
cialization types enhancing the generic data structures of processes and task

trees. Depending on the chosen specializations, processes (e.g., projects) and task
trees (e.g., to-do lists) may feature additional properties (e.g., states), conditions,

constraints, or assignments. For example, a proCollab process may be adapted to

a specific automotive project (cf. Fig. 2). If a task tree instance is linked to the

specialization type to-do list, it will be interpreted as a to-do list instance with

corresponding user interface representations and properties. To ensure a coherent

use of specialization types, the latter may be linked to each other. For example,

the specialization types to-do list and to-do item are interlinked and, hence, task

trees of type to-do list may only contain tasks of type to-do item. To further



4 Nicolas Mundbrod and Manfred Reichert

increase domain-specific support, proCollab employs a generic state management

for its stateful key components. This enables us to integrate domain-specific

methodologies as well as to manage different types of proCollab components in

a controlled manner. Additionally, proCollab provides a configuration concept

for task tree templates. The latter enables the efficient configuration of task list

templates in accordance to the given application context. Due to a lack of space,

both the state management and the configuration concept are presented in the

screencast of this demonstration in more detail (cf. Section 3).

Concerning the significance of proCollab to the BPM field, the design of a

systematic KiP support still constitutes a big challenge. While predictable business

processes can be well supported by process-aware information systems based on

pre-specified process models (doing-by-design), unpredictable and emergent KiPs

require a degree of flexibility traditional systems are not able to provide due to the

limitations of model-driven approaches. In turn, the proCollab framework relies

on the design-by-doing approach necessitating different concepts and functions

to support a wide-range of KiPs in a generic, but still domain-specific way.

In comparison to declarative process execution systems like Declare or DCR

Graphs [7] and approaches based on CMMN [5], proCollab focuses on the stateful

and flexible task (list) management support for KiPs and knowledge workers. In

particular, knowledge workers themselves shall drive proCollab processes and, as

a consequence, the management of tasks and task lists, too.

3 The proCollab Tool and its Maturity

To prepare empirical studies and to evaluate the technical feasibility of the

proCollab framework, we developed the proCollab tool. The latter is realized

with Java EE 7 and relies on a MVC-based architecture (cf. Fig. 3). In particular,

the application logic layer represents the core of the tool realizing the key services

of the proCollab framework. The REST-based interface enables web and mobile

applications to communicate with these key services. Finally, the web application

based on AngularJS provides state-of-the art user interfaces (cf. Fig. 3) to the

knowledge workers interacting with the proCollab tool.

The current version of the proCollab tool enables knowledge workers to

manage the proCollab key components, i.e., they may manage KiPs in the

shape of common projects or cases (i.e., proCollab processes) including task

trees embodied as, e.g., to-do lists or checklists. Moreover, knowledge workers

may configure task tree templates or instantiate process/task tree templates

on demand (see screencast). Furthermore, the proCollab tool allows integrating

domain-specific state models for templates and instances of processes, task trees,

and tasks. In turn, the assignment of users to tasks, the integration of process

resources (e.g., documents, structured data), and the synchronization of tasks and

processes are currently in development to be integrated in the web application.

Based on its architecture and the technologies in use, the proCollab tool can scale

up well and even be deployed in cloud-based environments to serve a significant

amount of knowledge workers concurrently.



The proCollab Demonstrator 5

a) b)

Mobile Applica�onsWeb Applica�on

REST API

Task Tree Services 
(Instances)

Pr
es

en
ta
�o

n

 

Database Management Systems

Java Persistence API

Process Services
(Instances)

Process Template 
Repository

Task Tree Template 
Repository

noitacinu
m

moC
ecnetsisreP

User and Role 
Management

Data Management

Ap
pl

ic
a�

on

Java Content Repository

Fig. 3. Architecture and Screenshot of the proCollab Tool

Finally, we prepared a screencast available on bpm2017demo.procollab.de to

demonstrate proCollab. The screencast illustrates the key aspects of the proCollab

framework using the scenarios of developing a website and conducting a surgery.

4 Conclusion

This demo presented the proCollab framework and its proof-of-concept tool. The

latter is implemented as a scalable, cloud-ready, and web-based application plat-

form. This allows users to collaborate in the scope of KiPs and to simultaneously

manage proCollab key components to receive optimal KiP support. Based on the

tool, user experiments will be conducted to systematically analyze whether KiPs

can be successfully evolved when using the proCollab framework. Overall, we

believe that the proCollab framework will improve coordination among knowledge

workers, increase work awareness, and record valuable coordination efforts.

References

1. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-Intensive Processes: Characteristics,

Requirements and Analysis of Contemporary Approaches. J on Data Semantics 4(1),

29–57 (2014)
2. Mundbrod, N., Beuter, F., Reichert, M.: Supporting Knowledge-Intensive Processes

through Integrated Task Lifecycle Support. In: Proc. EDOC 2015. pp. 19–28 (2015)
3. Mundbrod, N., Kolb, J., Reichert, M.: Towards a System Support of Collaborative

Knowledge Work. In: BPM 2012 Workshops. LNBIP 132 (2013)
4. Mundbrod, N., Reichert, M.: Process-Aware Task Management Support for

Knowledge-Intensive Business Processes: Findings, Challenges, Requirements. In:

Proc. EDOCW’14. pp. 116–125 (2014)
5. Object Management Group: Case management modeling and notation (cmmn) 1.1

(2016), http://www.omg.org/spec/CMMN/1.1/

6. Pryss, R., Mundbrod, N., Langer, D., Reichert, M.: Supporting medical ward rounds

through mobile task and process management. Inf Sys and e-Business Management

13(1), 107–146 (2015)
7. Reijers, H.A., Slaats, T., Stahl, C.: Declarative Modeling—An Academic Dream or

the Future for BPM? In: Proc. BPM 2013, pp. 307–322. Springer (2013)

bpm2017demo.procollab.de
http://www.omg.org/spec/CMMN/1.1/

	Demonstrating Flexible Support for Knowledge-Intensive Processes with proCollab

