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Abstract

For the digitized enterprise the proper handling of the temporal aspects of its business
processes is vital. Delivery times, appointments and deadlines must be met, processing
times and durations be monitored, and optimization objectives shall be pursued. However,
contemporary Process-Aware Information Systems (PAISs)—the go-to solution for the
computer-aided support of business processes—still lack a sophisticated support of the
time perspective. Hence, there is a high demand for a more profound support of temporal
aspects in PAISs. Accordingly, both the specification and the operational support of
temporal aspects constitute fundamental challenges for the further development and
dissemination of PAISs. The aim of this thesis is to propose a framework for supporting
the time perspective of business processes in PAISs. As PAISs enable the design, execution
and evolution of business processes, the designated framework must support these three
fundamental phases of the process life cycle.

The ATAPIS framework proposed by this thesis essentially comprises three major com-
ponents.

First, a universal and comprehensive set of time patterns is provided. Respective time
patterns represent temporal concepts commonly found in business processes and are based
on empirical evidence. In particular, they provide a universal and comprehensive set of
notions for describing temporal aspects in business processes. Moreover, a precise formal
semantics for each of the time patterns is provided based on an in-depth analysis of a large
set of real-world use cases. Respective formal semantics enable the proper integration
of the time patterns into PAISs. In turn, the latter will allow for the specification of
time-aware process schemas.

Second, a generic framework for implementing the time patterns based on their formal
semantics is developed. The framework and its techniques enable the verification of
time-aware process schemas regarding their temporal consistency, i. e., their ability to be
successfully executed without violating any of their temporal constraints. Subsequently,
the framework is extended to consider advanced aspects like the contingent nature of
activity durations and alternative execution paths as well. Moreover, an algorithm as
well as techniques for executing and monitoring time-aware process instances in PAISs
is provided. Based on the presented concepts, it becomes possible to ensure that a
time-aware process instance may be executed without violating any of its temporal
constraints.
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Third, a set of change operations for dynamically modifying time-aware process instances
during run time is suggested. Respective change operations ensure that a modified time-
aware process instance remains temporally consistent after the respective modification.
Moreover, to reduce the complexity involved when applying multiple change operations a
sophisticated approximation-based technique is presented. Overall, the developed change
operations allow providing the flexibility required by business processes in practice.

Altogether, the ATAPIS framework provides fundamental concepts, techniques and
algorithms for integrating the time perspective into PAISs. As beauty of this framework
the specification, execution and evolution of business processes is supported by an
integrated approach.
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Kurzfassung

Im Zeitalter der Digitalisierung ist für Unternehmen der richtige Umgang mit den
zeitlichen Aspekten ihrer Geschäftsprozesse zweifellos von großer Wichtigkeit. Lieferzeiten,
Termine und Fristen müssen eingehalten, Durchlaufzeiten und Dauern überwacht und
wirtschaftliche Ziele innerhalb einer gewünschten Zeit verfolgt werden. Dennoch fehlt es
modernen Prozessorientierten Informationssystemen (POIS) – der bevorzugten Lösung
für computergestützte Geschäftsprozesse – bisher an einer umfassenden Berücksichtigung
der Zeitperspektive. Daraus resultiert bei vielen Unternehmen eine hohe Nachfrage
nach einer tiefgreifenden Unterstützung zeitlicher Aspekte durch POIS. Grundsätzlich
stellen sowohl die Spezifikation als auch die operative Unterstützung zeitlicher Aspekte
grundlegende Herausforderungen für die weitere Entwicklung und Verbreitung von POIS
dar. Das Ziel dieser Dissertation ist es, ein geeignetes Rahmenwerk zur umfassenden
Unterstützung der Zeitperspektive von Geschäftsprozessen in POIS zu entwickeln. Da
POIS die Modellierung, Ausführung und Evolution von Geschäftsprozessen ermöglichen,
soll das zu realisierende Rahmenwerk ebenfalls diese drei Phasen des Prozesslebenszyklus
unterstützen.

Das im Rahmen dieser Dissertation vorgeschlagene ATAPIS-Framework besteht im
Wesentlichen aus drei Komponenten:

Erstens wird eine umfassenden Menge universeller „Time Pattern“(engl. Zeit Muster)
vorgestellt. Die Time Pattern beruhen auf empirischen Untersuchungen und repräsentieren
zeitliche Konzepte, welche häufig in Geschäftsprozessen vorkommen. Insbesondere stellen
sie eine universelle und umfassende Menge an Konzepten für die Beschreibung der
zeitlichen Aspekte von Geschäftsprozessen dar. Darüber hinaus wird eine präzise formale
Semantik für jedes der Time Pattern definiert, welche auf einer eingehenden Analyse
einer großen Menge realer Anwendungsfälle basiert. Die formale Semantik ermöglicht
insbesondere die tiefergehende Integration der Time Pattern in POIS und damit die
Spezifikation von zeitbehafteten Prozessschemata.

Zweitens wird ein generisches Rahmenwerk für die Umsetzung der Time Pattern auf der
Grundlage ihrer formalen Semantik entwickelt. Das Rahmenwerk und seine Techniken
ermöglichen die Überprüfung zeitbehafteter Prozessschemata hinsichtlich ihrer zeitlichen
Konsistenz, das heißt hinsichtlich der Möglichkeit hiervon abgleitete Prozessinstanzen
erfolgreich und ohne Verletzung einer ihrer zeitlichen Bedingungen auszuführen. An-
schließend wird das Rahmenwerk um erweiterte Aspekte, etwa die unkontrollierbare Natur
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der Dauern von Aktivitäten und die Berücksichtigung alternativer Ausführungspfade,
erweitert. Darüber hinaus werden ein Algorithmus und entsprechende Techniken für
die Ausführung und Überwachung zeitbehafteter Prozessinstanzen in POIS entwickelt.
Basierend auf den vorgestellten Konzepten lässt sich sicherstellen, dass eine zeitbehaftete
Prozessinstanz ohne Verletzung einer ihrer zeitlichen Bedingungen ausgeführt werden
kann.

Drittens wird eine Reihe von wohldefinierten Operationen für die dynamische Änderung
zeitbehafteter Prozessinstanzen zur Laufzeit bereitgestellt. Die Änderungsoperationen
stellen sicher, dass eine modifizierte zeitbehaftete Prozessinstanz auch nach ihrer Än-
derung zeitlich konsistent bleibt. Zur Reduzierung der Komplexität bei der typischen
Anwendung mehrerer Änderungsoperationen wird eine approximative Technik präsentiert.
Die Änderungsoperationen erlauben es uns, die für Geschäftsprozesse in der Praxis
erforderliche Flexibilität zu realisieren.

Insgesamt stellt das in dieser Arbeit vorgestellte ATAPIS-Framework grundlegende
Konzepte, Technologien und Algorithmen für die Integration der Zeitperspektive in POIS
zur Verfügung. Der Vorteil des vorgestellten Ansatzes besteht darin, dass die Spezifikation,
Durchführung und Evolution von Geschäftsprozessen durch einen integrierten Ansatz
unterstützt werden kann. Die Ergebnisse der Arbeit ermöglichen damit die tiefgreifende
Integration der Zeitperspektive in heutige und zukünftige POIS.
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1
Introduction

In today’s fast-paced business world, companies crave for an effective and efficient control
over their business processes in order to stay competitive in their market [8, 93, 123]. Business

ProcessAs a consequence, IT support for analyzing, modeling, executing, monitoring, and
evolving business processes is becoming increasingly important [90, 102]. In this context,
Process-Aware Information Systems (PAIS) offer promising perspectives by enabling Process-Aware

Information
Systemcompanies to model their business processes in terms of process schemas as well as to
Process
Schema

create, execute and monitor process instances based on such schemas in a controlled and

Process
Instance

efficient manner [123, 169]. Accordingly, a PAIS separates process logic from application
code by means of explicit process schemas. Usually, the latter correspond to a graphical
and abstracted representation of a real-world business process.

Recently, process modeling, i. e., the practice of documenting business processes by pro-
cess schemas, was ranked among the top usage scenarios for conceptual modeling in
companies [36]. When modeling a business process it needs to be viewed from a number
of different perspectives [61, 123, 157]. The control-flow perspective describes the ordering Control-Flow

Perspectiveof the activities (i. e., process steps) of a business process as well as related execution
constraints and decisions. In turn, the operational perspective relates activities to the
application services (e. g., user forms or web services) to be invoked when executing
the respective activity. Moreover, the data perspective connects activities and related
application services with required data. The resource perspective provides a link between
process elements (e. g., activities) and the given organizational structure, e. g., by associ-
ating process activities with user roles or other organizational entities. Finally, the time Time

Perspectiveperspective characterizes business processes along their temporal properties (e. g., activity
durations) as well as the temporal constraints to be obeyed during process instance
execution (e. g., deadlines).
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1 Introduction

Although time constitutes a crucial factor in modern business life and the proper handling
of temporal constraints is vital in many application domains (e. g., healthcare, engineer-Temporal

Constraints ing) [33, 82], contemporary PAISs lack a comprehensive support of the time perspective of
business processes. In a business context, where even small delays might cause significant
problems, this constitutes a severe limitation for companies as it is crucial for them to
know the temporal properties of their business processes and to monitor the adherence
of the respective temporal constraints.

Recently, the proper support of the time perspective has been identified as a key challenge
for future PAIS technologies [27, 33, 45, 80, 101]. In this context a wide variety of
temporal concepts like deadlines, minimum or maximum durations, maximum time lags,
and schedules need to be supported by the PAIS during process execution. Although
there exists considerable work with respect to specific time-support features for PAISs,
there is no comprehensive understanding of the time perspective of business processes as
a whole [82]. In particular, it becomes necessary to understand what kind of information
about the time perspective of a business process is actually required to provide proper
support. Only then it becomes possible to comprehensively model business processes in
terms of time-aware process schemas, which may then be executed and monitored by aTime-Aware

Process time-aware PAIS in a robust way.

As a prerequisite for a robust and error-free process execution in PAISs respective process
schemas need to be sound [123, 171]. Informally, soundness can be described as the
combination of three basic characteristics of a process schema: (i) the option to complete,
(ii) proper completion, and (iii) absence of dead activities [123]. Regarding time-aware
process schemas, the option to complete particularly requires that the consistency ofTemporal

Consistency the temporal constraints can be ensured [11, 29, 44]. The latter refers to the ability
of executing a process schema without violating any of its temporal constraints. This
is particularly challenging as temporal inconsistencies may be caused due to complex
interactions among the temporal constraints. As a consequence, a precise understanding of
temporal constraints is indispensable to be able to detect and analyze such interactions.

As another challenge PAISs need to be flexible in order to cope with unforeseen events
during run time [123, 144, 160]. To meet this demand, adaptive PAISs have beenAdaptive PAIS
developed. In particular, they allow for dynamic adaptations of process instances during
run time [5, 32, 123, 168]. Obviously, this run-time flexibility must be provided for
time-aware processes as well [123, 143]. In particular, process flexibility even becomes
more challenging if temporal constraints need to be obeyed by the process, as time can
neither be slowed down nor stopped. Moreover, as process execution does not always stick
to the plan, for example, it is common practice that deadlines have to be re-scheduled or
processes have to be dynamically adapted in order to successfully and timely complete a
process instance.
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1.1 Problem Statement

Execution
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• Business process analysis
• Process modeling
• Process configuration
• Process implementation

• Create multiple process instances
• Process execution
• Process monitoring

• Dynamic adaptation of
  process instances
• Process schema evolution

Figure 1.1: The process life cycle

1.1 Problem Statement

So far, time support has been rather limited in contemporary PAISs. As proper support
of the time perspective is a fundamental prerequisite for the widespread use and further
maturation of PAISs [27, 45, 101, 123], it needs to become an integral part of the entire
process life cycle (cf. Figure 1.1). In the context of this thesis, the life cycle of a process Process Life

Cycleis abstracted to three phases: Analysis & Design, Enactment, and Dynamic Adaptation
& Evolution [123].

During the Analysis & Design phase the real-world business process is analyzed and a Analysis &
Design Phaseprocess schema capturing its various perspectives is created [123]. To be able to automate

the respective business process by a PAIS, at design time it needs to be modeled as Design Time
completely and comprehensively as possible [14]. In turn, this requires high expressiveness
of the used process modeling language [158]. As aforementioned, however, time support is
limited in contemporary PAISs. In particular, current process modeling languages do not
allow for the comprehensive modeling of the time perspective of business processes [77, 82].
Example 1.1 illustrates the diversity and complexity of the temporal aspects required for
fully capturing business processes and their time perspective (adopted from [82]):

Example 1.1 (Patient Treatment Process)
Consider the simplified patient treatment process depicted in Fig. 1.2. First, a doctor
orders a medical procedure for his patient. Then, the responsible nurse makes an
appointment with the department (e.g., radiology) the procedure shall take place at.
Before the actual treatment takes place, the patient needs to be informed about the
procedure and be prepared for it. Moreover, shortly before starting the treatment, a
specific preparation is required. After the treatment, the responsible doctor writes a
short report if requested. Finally, aftercare is provided and the doctor responsible for
the treatment creates a final medical report, which is then added to the patient record.
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1 Introduction

instruct
procedure

make
appointment

inform
patient

prepare
patient

perform
after-care

   ~+

create
report

perform
treatment

prepare
treatment

create short
report

Time lag between the two activities
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Activity may not take
more than 1 h

ap-
point-
ment

Appointment made by activity
make appointment must be obeyed

Execute according to the treatment plan
given by perform treatment

Time lag between the two activities 
must be at most 1 week

treat-
ment
plan

Activity

Data element

Parallel-Split/Join Exclusive-Split/JoinName

Ad-hoc SubprocessName
   ~+

Start-Event End-Event Control Flow

Data Flowdata

Figure 1.2: Simplified treatment process (adopted from [82])

When considering the time perspective of this rather simple process, a number of temporal
constraints can be observed:

1. The appointment of the treatment, which is determined during the execution of
activity make appointment, needs to be observed during process enactment.

2. The patient needs to be prepared exactly 1 day before the actual treatment takes
place. Moreover, the preparation of the patient may only be accomplished during
the opening hours of the anesthesia department, i. e., from Monday till Friday
between 8 am and 4 pm.

3. Due to a tight schedule to be obeyed for the treatment room, preparation of the
treatment must not take more than 1 hour ; otherwise, subsequent treatments will
be delayed.

4. Activity create report needs to be completed no later than 1 week after completing
activity perform treatment.

5. During the execution of activity perform aftercare, different drugs are given to the
patient according to the treatment plan defined by activity perform treatment. Such
a treatment plan may state, for example, that drug A shall be administered every
day at 8 am, 1 pm, and 6 pm, and drug B every two hours except if drug A is
administered within the same hour.

To support the implementation of this process and its time perspective, a variety of
temporal concepts (e. g., appointments, time lags between activities, durations) need to
be covered by the PAIS and, hence, be expressible with the process modeling language
used. Existing process modeling languages, however, only provide rudimentary support
for the time perspective [82].
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1.1 Problem Statement

To properly address this gap, it needs to be determined which kinds of temporal concepts
are required to fully cover the time perspective of business processes in a time-aware
process schema. In this context, it is crucial to consider the relationship of the time
perspective with other relevant process perspectives. For example, the appointment made
by activity make appointment and later used for the treatment will generally be stored as
process data, linking the time and data perspectives.

After capturing a business process in a time-aware process schema, the correctness
and robustness of the latter needs to be verified in order to ensure a robust and error-
free execution of corresponding process instances at run time. Regarding time-aware Run Time
processes this necessitates the temporal consistency of the process schema, i. e., the ability
to successfully execute corresponding instances without violating any of their temporal
constraints. Compared to other process perspectives, however, verifying the consistency
of the time perspective is significantly more complicated as the interactions among the
various temporal constraints of a time-aware process schema might result in complex
interdependencies and hidden effects as shown by Example 1.2.

Example 1.2 (Interactions between Temporal Constraints)
Reconsider the process schema from Figure 1.2 and related temporal aspects as discussed
in the context of Example 1.1. First, note that the preparation of the patient needs to be
done exactly one day before the treatment. Moreover, the date of the treatment is fixed by
the appointment made during activity make appointment. Hence, the preparation needs to
be scheduled in accordance with the appointment for the treatment; i. e., the date when
the preparation takes places is determined by this appointment as well. At the same time,
the preparation of the patient may only be done from Monday till Friday between 8 am
and 4 pm. Consequently, the treatment may only be scheduled from Tuesday to Saturday
as otherwise one of the temporal constraints cannot be satisfied. In turn, the latter has
to be taken into account when making the appointment for the treatment during activity
make appointment.

Note that complex interactions among different temporal constraints might lead to
scenarios in which it is impossible to satisfy all temporal constraints of a time-aware
process schema at the same time. However, such scenarios need to be detected and
prevented to enable a robust and error-free execution of corresponding process instances.
To be able to analyze such interactions and to detect inconsistencies, a formal semantics
of the temporal concepts used for specifying the time perspective of a process schema is
required. Moreover, such a formal semantics contributes to avoid ambiguities regarding
the use of these temporal concepts. So far, such semantics has been given only implicitly
as part of formalisms used to detect possible inconsistencies [11, 27, 45, 175] (cf. [86]
for a comparison), but no comprehensive and explicit description of a formal semantics
exists in literature. Moreover, respective formalisms only support a limited subset of the
temporal concepts required for modeling business processes [82].
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1 Introduction

Upon completion of the Design & Analysis phase, the resulting time-aware process
schema can be deployed to the execution environment of the PAIS. During the EnactmentEnactment

Phase phase multiple process instances corresponding to a particular process schema may
then be created and executed. At this point it is important to note that verifying the
temporal consistency of a process schema solely at design time is neither sufficient nor
fully possible [82]. In particular, during run time the actual activity durations of executed
activities become known and decisions regarding the execution of the process instance
(i. e., the execution paths to be taken) are made. In general, not all temporal constraints
are fully known at design time. For example, the value of the appointment made for the
treatment in the context of Example 1.1 only becomes known during run time, as it is
specific for each process instance. Hence, for time-aware process instances it is necessary
to continuously monitor and update their temporal constraints and to regularly re-verify
temporal consistency [82]. The latter is particularly important to be able to detect or
predict critical situations during run time (e. g., excessive delays). Moreover, it should
be possible to predict execution times of future activities in order to provide PAIS users
with sufficient information to make well informed decisions regarding the process instance
at hand as well as the other process instances concurrently executed by the PAIS.

Despite all coordination efforts, process instances might run into difficulties as process
execution does not always stick to the plan. Moreover, unforeseen events might occur
during run time requiring a process instance to deviate from its predefined course of action.
Consequently, process execution needs to be flexible to cope with such events [123]. In
particular, it should be possible to dynamically adapt process instances during run time
(e. g., to add, delete or move process activities) to appropriately react to such incidents.
As business processes will evolve over time, additionally, it might become necessary to
propagate respective changes to the corresponding process schema in order to ensure that
the real-world process and the corresponding process instances remain aligned [123, 124].
Particularly in the context of long running processes, this necessitates the migration of
already running process instances to the new process schema version. Generally, both
dynamic adaptations of process instances [119] as well as process schema evolution [127]
are considered to be part of the Dynamic Adaptation & Evolution phase. In this context,Dynamic

Adaptation &
Evolution
Phase

it is crucial to guarantee for a robust execution of the changed process instances in order
to ensure their successful completion. Regarding time-aware processes this particularly
includes the temporal consistency of the process instance. Thus, it must be possible to
ensure that a dynamically modified process instance remains temporally consistent.

1.2 Research Contribution

This thesis aims to provide fundamental concepts and techniques for the development
of Adaptive Time- and Process-Aware Information Systems (ATAPIS). To foster timeAdaptive Time-

and
Process-Aware
Information
Systems

support in PAISs it contributes generic concepts, techniques and algorithms for modeling
time-aware process schemas, for verifying their temporal consistency, and for executing
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1.2 Research Contribution

as well as dynamically modifying corresponding process instances. The main research
contributions of the thesis can be summarized as follows:

1. A well-founded set of time patterns representing temporal concepts commonly
found in business processes is presented. Respective time patterns are based on
empirical evidence gained from a comprehensive analysis of business processes and
related work on time support in PAISs. The time patterns provide a universal and
comprehensive set of notions for describing temporal aspects of business processes
and for eliciting fundamental requirements. Moreover, they provide a profound
foundation for analyzing and comparing PAISs with respect to their ability to deal
with temporal aspects of business processes.

2. A precise formal semantics for each of the time patterns is provided. Respective
semantics are based on an in-depth analysis of a large set of industrial and scientific
use cases. To foster the use of the time patterns in a wide range of application
scenarios, their semantics are defined independent of a specific process modeling
language (e. g., BPMN) or process modeling paradigm (e. g., declarative vs. imper-
ative). At the same time, the formal semantics of the time patterns closely consider
the relationship of the time perspective with other process perspectives, including
the control flow and data perspectives. The definition of their formal semantics
will foster the integration of the time patterns into PAISs, significantly broadening
the application scope of the latter.

3. A generic framework for implementing the time patterns is proposed. This frame-
work allows verifying the temporal consistency of time-aware process schemas based
on the defined pattern semantics. Subsequently, the framework is extended to
consider advanced aspects, including the contingent nature of activity durations as
well as the challenges faced when considering alternative execution paths.

4. A theoretical framework as well as an algorithm for ensuring the temporal con-
sistency of time-aware process instances during run time are presented. The
corresponding concepts specifically consider the facts that (a) activity durations
are contingent and the actual duration of an activity instance only becomes known
after its completion; (b) certain temporal constraints (e. g., appointments) might
not be known at design time, but can solely be determined at run time; and
(c) execution decisions made during run time may have significant impact on the
temporal properties of the remainder of the process instance.

5. A set of change operations are presented, which are able to dynamically modify a
time-aware process instance while preserving its temporal consistency. Moreover,
we provide a detailed analysis of the effects respective change operations may have
on the temporal constraints of the process schema. Based on this, a technique for
approximating the resulting temporal properties of a modified process instance
is proposed. In particular, this technique can be used to significantly reduce the
complexity of the calculations required when applying multiple change operations
at the same time. The latter is particularly advantageous in the context of process
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Figure 1.3: Outline

schema evolution, where possibly hundreds or thousands of process instances may
have to be migrated to a new process schema version.

Altogether, the results presented in this thesis aim at the profound integration of the time
perspective into contemporary PAISs. In the context of the ATAPIS1 project, moreover,
a comprehensive prototype has been developed demonstrating the practical feasibility as
well as applicability of the main concepts of this thesis.

1.3 Outline

Figure 1.3 summarizes the outline of this cumulative thesis and classifies each part along
the process life cycle. The thesis consist of three main parts.

Part I motivates the need for properly supporting the time perspective of business
processes in PAISs (Chapter 1) and provides relevant background notions in Chapter 2.

1Adaptive Time- and Process-Aware Information System; visit: http://dbis.info/atapis
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Part II summarizes the scientific contribution achieved by this thesis. In particular,
this cumulative dissertation consists of five main publications denoted as (LWR10) [77],
(LWR14) [82], (LR14) [71], (LPCR13) [79], and (LRW16) [86] complemented by several
technical reports [70, 72, 73, 80] providing additional details. Each publication has had
significant impact on the state-of-the-art in PAISs and has been published in renowned
journals or peer-reviewed conferences.

Chapter 3, and in particular Section 3.1, introduce the time patterns. The latter where
originally introduced in (LWR10) and later extended and described more in-depth in
(LWR14). They form the foundation for comprehensively representing and modeling
temporal aspects of business processes. Section 3.2 discusses the formal semantics of the
time patterns originally elaborated and presented in (LRW16).

Chapter 4 deals with the management of time-aware processes in PAISs. First, Section 4.1
presents the ATAPIS framework for verifying the temporal consistency of time-aware
processes as discussed in (LRW16). In turn, Section 4.2 extends the ATAPIS framework to
properly deal with the contingent nature of activity durations. Furthermore, it considers
alternative execution paths more closely (cf. LPCR13). Finally, Section 4.3 considers the
execution of time-aware process instances in PAISs as discussed in (LPCR13) as well as
(LRW16).

Chapter 5 deals with the dynamic modification of time-aware process instances. Par-
ticularly, the time-aware change operations, which were first discussed in (LR14), are
presented and an approach for improving the support of dynamic changes of time-aware
processes is considered.

Part III and Chapter 6 conclude the thesis. Section 6.1 summarizes its contribution.
Moreover, Section 6.2 discusses other publications the author of the thesis co-authored
and which are related to time and processes. Finally, Section 6.3 closes with an outlook
on various aspects related to time support in PAISs that might be addressed by future
research.
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2
Process-Aware Information Systems

This chapter summarizes basic concepts and notions needed for understanding this
thesis.

The thesis deals with business processes and Process-Aware Information Systems (PAISs).
A business process can be defined as a set of connected business activities which collectively Business

Processrealize a particular business goal [169] (e. g., patient treatment, car repair, claim handling).
Process-Aware Information Systems, in turn, constitute a special kind of Enterprise Process-Aware

Information
SystemInformation Systems (EIS) enabling the computer-aided support of business processes [42,

123]. Compared to other kinds of EISs, a PAIS is characterized by the separation of
process logic from application code—providing an additional architectural layer to the
EIS. To this end, at design time the process logic is explicitly specified in terms of a
process schema. Respective process schemas may then be deployed to the execution
environment of the PAIS. At run time, a PAIS may create multiple process instances
based on a process schema and execute them according to the defined logic. Moreover,
PAISs enable the integration of application services, data, users and other resources.
Usually, the core of a PAIS is build by a process management system, which provides
required services for process modeling, execution, monitoring, and user interactions.

2.1 Process Schema

For each business process to be supported by a PAIS, a process schema has to be specified Process
Schemabased on the constructs provided by a process modeling language. In particular, a process

schema describes the flow of work of a particular business process. This is achieved by
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2 Process-Aware Information Systems

specifying the flow of business artifacts (e. g., activities, events) within the process as
well as the data flow between them.

In general, process schemas may be specified using different formalisms (e. g., graph-based,
constraints-based, or based on logic formulas). So far, graph-based process modeling
languages have gained a broad acceptance in literature and commercial tools. Following
this, the thesis presumes that a process schema corresponds to a directed graph, which
comprises a set of nodes and a set of control edges between them (cf. Figure 2.1). Nodes
may represent activities, process events and control connectors. In turn, control edgesControl Edge
specify precedence relations between nodes as well as loop-backward relations.

This thesis uses BPMN (Business Process Modeling and Notation) [110] for visualizing
and describing processes (cf. Figure 2.1). Due to its standardization [110], BPMN has
gained wide acceptance in science and industry. Note that, even though we use BPMN
for illustration purpose, the described concepts are not language-specific, i. e., they can be
integrated in any process modeling language supporting the basic concepts discussed in
the following. Moreover, we use additional symbols not being part of BPMN to illustrate
temporal constraints.

Activities may either be atomic or complex. An atomic activity is usually associatedActivity
with an application service and corresponds to a human task—requiring user interaction—
or an automated task. In turn, a complex activity refers to a subprocess. The latter
allows for the hierarchical decomposition of processes. In the context of this thesis, we
consider complex activities as self-contained (i. e., there is no direct relationship between
a subprocess and the respective parent process), and, therefore, in most cases do not
explicitly differentiate between atomic and complex activities.

A process event represents something happening during process execution, which is notProcess Event
bound to an activity (e. g., receipt of a message). Note that, as the term event is very
general and may describe many things in a process, we differentiate two types of events.
While a process event is explicitly specified in the process schema (cf. Figure 2.1), other
events are implicitly triggered during process execution (e. g., start/end event of an
activity instance; cf. Section 2.2)

Control connectors are used to express splits and joins in the control flow of a process. InControl
Connector the context of this thesis, we specifically consider the following control flow patterns [158]:

sequence, parallel split (AND-split), synchronization (AND-join), exclusive choice (XOR-
split), simple merge (XOR-join), and structured loops. Note that these patterns constitute
the core of any process modeling language and cover most processes found in practice [109].
Moreover, note that the presented concepts are not limited to these patterns. However,
we do not explicitly consider the other patterns to keep respective discussions compact.

To simplify the analysis of process schemas we further assume that the start and end
nodes of a structured loop are distinct from normal XOR-split and XOR-join nodes; i. e.,
there is an explicit loop construct in the process modeling language.1 To graphically

1Note that this does not apply to BPMN causing additional complexity when analyzing processes.
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Figure 2.1: Core concepts of a process modeling language

distinguish between loop-blocks and XOR we use the exclusive gateway symbol with
an “X” to represent an XOR-split/-join and the symbol without an “X” to represent
loop-start and loop-end nodes. Finally, we assume that loops are well-nested, i. e., they
may be nested, but must not overlap.

The thesis uses the notion of activity set to refer to a subset of the activities of a process
schema. The elements of an activity set do not have to comply with any structural
requirement. When referring to specific regions of a process schema, in turn, we use the
notion of process fragment. To be more precise, a process fragment refers to a sub-graph
of a process schema with single entry and single exit node (also denoted as single-entry,
single-exit region; i. e., SESE-region).

In addition to the described control flow elements, a process schema may contain
process-relevant data objects as well as data edges linking activities with data objects (cf.
Figure 2.1). More precisely, a data edge either represents a read or write access of the
referenced activity to the referred data object.

Example 2.1 (Process Schema)
Fig. 2.1 shows a process schema consisting of five activities, one process event and four
control connectors: Activity A1 is succeeded by process event e2, which, in turn, is
succeeded by the parallel execution of either activity A6 or A7, and activities A9 and
A10. Activities A1 to A9 are atomic, whereas A10 constitutes a complex activity; i. e., a
sub-process with its own process schema. The region of the process schema containing
activities A6 and A7 together with the depicted control connectors (i. e., the XOR-split
e5 and XOR-join e8) constitutes an example of a process fragment (i. e., a SESE-region).
Finally, any non-empty subset of activities A1, . . . , A10 constitutes an activity set.
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Figure 2.2: Execution paths of Figure 2.1

If a process schema contains one or more XOR-splits or loops, not all process instances
perform exactly the same set of activities. The concept of execution path allows identifyingExecution Path
which activities and control connectors are performed during the execution of a process
instance. In particular, an execution path of a process schema denotes a connected
maximal subgraph of the process schema—containing its Start- and End-nodes—, in
which all XOR-split connectors have exactly one branch and each loop block has a fixed
number of repetitions. Each execution path represents one possible execution of the
respective process schema.

Example 2.2 (Execution Path)
Consider the process schema from Figure 2.1. The schema comprises two execution paths
as depicted in Figure 2.2, i. e., one execution path where e2 is followed by the execution
of A6 in parallel with A9 and A10 (i. e., for XOR-split e5 the upper path is selected), and
another execution path where e2 is followed by the execution of A7 in parallel with A9
and A10 (i. e., the lower path is chosen).

A fundamental prerequisite for the successful execution of a process schema is its correct-
ness. First of all, a process schema must be syntactically correct, i. e., it must match theSyntactical

Correctness grammar rules defined by the respective process modeling language. However, syntacti-
cal correctness is not sufficient to guarantee correct executability of process instances.
Another fundamental property to ensure correct executability is the soundness of theSoundness
process schema. Informally, soundness can be described as the combination of three basic
characteristics of a process schema [123, 171]:

(i) Option to complete: Once started, a corresponding process instance must always beOption to
Complete able to complete.

(ii) Proper completion: When a process instance completes, there must not be anyProper
Completion activated or still running activity.

(iii) Absence of dead activities: There must be no dead activities that may never becomeAbsence of
Dead Activities enabled.
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Figure 2.3: Process schema soundness – Anti-Patterns

The option to complete guarantees that every process instance is able to successfully
complete. Moreover, proper completion ensures that once a process instance signals its
termination, there are no activities which are left still running. Note that the latter might
result in an undefined behavior. Finally, absence of dead activities ensures that there
are no unreachable parts in the process schema, which, in turn, generally indicates an
error in the process schema. Example 2.3 illustrates these three properties along different
anti-patterns [123].

Example 2.3 (Process schema soundness – Anti-Patterns)
Figure 2.3 (a) shows a process schema exhibiting a deadlock. In particular, for the
XOR-split e2 only one of the outgoing branches is selected. However, AND-split e4
will wait for the completion of both incoming branches. This, in turn, means that an
instance of the process schema will never be able to complete (i. e., it violates the option
to complete property).

Figure 2.3 (b) shows a process schema violating the proper completion property. In
particular, if after the completion of activity A2, at the following XOR-split e3, the
upper path is chosen, the process instance might reach the Process-End event (and thus
complete), while activity A4 is still active (i. e., running).

Finally, the process schema depicted in Figure 2.3 (c) contains a dead activity as the
branch condition “x < 0 and x > 1” of the upper branch always evaluates to false.
Generally, this indicates an error in the process model as such behavior is undesirable.

Different frameworks and tools have been developed for checking soundness of a process
schema [116, 150, 155], for example, based on techniques like reachability analysis and
model checking. Finally, different correctness criteria for the data perspective have been
defined as well (e. g., no missing data, no lost updates) [123, 150, 153].

2.2 Process Execution

A process schema describes the workflow of a business process. To enable process
execution by a PAIS, most process modeling languages provide an operational semantics
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Figure 2.4: Activity life cycle and relevant events

that defines how a process schema shall be processed during execution (for BPMN see
[110]).

For each business process to be executed a process instances is created by the PAIS andProcess
Instance executed according to its predefined process schema [169]. At run time, the nodes of a

process instance are processed and executed according to the order defined by the control
flow of the corresponding process schema and its underlying operational semantics. In
this context, activity instances represent an execution of single process step (i. e., anActivity

Instance activity) of a particular process instance.

We assume that activity instances are executed according to the activity life cycle depicted
in Fig. 2.4 [123]. When a process instance is started, all its activities are in state Not
Activated. As soon as an activity may be executed, its state switches to Activated.
When a user starts an activated activity instance, its state switches to Running. As
soon as the user finishes work, the state of the activity instance switches to Completed.
Finally, state Skipped is assigned to non-executed activities (e. g., activities of an outgoing
path of an XOR-split not selected during run-time).

When an activity instance is started, the data values provided by associated data objects
through a read access are consumed. In turn, when completing an activity instance, data
objects linked to the activity through a write access are provided.

During the execution of a process instance, different events are triggered. For example,Event
when creating a new process instance, a corresponding start event is generated. Upon its
completion, in turn, an end event is generated. Moreover, each node belonging to the
process generates a start/end event when starting/completing it (cf. Figure 2.4). Finally,
events may be triggered by external sources as well (e. g., receipt of a message). We use
the notion of event as general term for something happening during process execution.

Generally, a process instance is associated with an execution history capturing all eventsExection
History that occurred during its execution so far (e. g., all activities and gateways executed).

Such an execution history is also referred to as execution trace. Note that by “replaying”Execution
Trace the execution trace on the respective process schema the current execution state of the

process instance can be reconstructed.

Example 2.4 illustrates these concepts.
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Example 2.4 (Process Instance)
Figure 2.5 depicts a running process instance of the process schema from Figure 2.1. One
activity (i. e., A1) was executed previously. Moreover, event e2 occurred and XOR-split
e5 was evaluated. Activity A6 is currently Running. This implies that the lower branch
of XOR-split e5 was deselected and activity A7 marked as “Skipped”. Finally, activity
A9 is in state Activated.

Informally, the execution trace of this process instance comprises the following events:

• Start event e0 of the process instance.
• Start and completion events eA1S/eA1E of activity A1.
• Event e2.
• Execution of AND-split gateway e4 and XOR-split gateway e5.
• Start event eA6S of activity A6.

Finally, the thesis uses the notion of process instance set to refer to a set of process
instances executed by a PAIS. These process instances, in turn, may either be enacted
based on the same process schema, but may also run on different process schemas.

2.3 Process Flexibility

PAISs need to be flexible to properly deal with exceptions, changes in the environment,
and evolving business processes. Generally, process flexibility may be achieved in three
different ways [123]: (a) through pre-specified flexibility (i. e., flexibility-by-design), (b) by
allowing for loosely specified process schemas, which may be refined during run time,
and (c) through structural process changes. Whilst flexibility-by-design is usually easy
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to accomplish (e. g., by using an exclusive choice), loosely specified process schemas and
flexibility-through-changes require special support by the PAIS. Note that this thesis
focuses on flexibility-by-design and flexibility-through-change, but most of the presented
concepts may be applied in the context of loosely specified processes as well (e. g., consider
[6]).

Generally, structural process changes may be applied on both the process schema and
process instance level [123]. In particular, as business processes evolve over time, it
becomes necessary to also evolve respective process schemas, in order to keep the process
schema aligned with the real world. This is denoted as process schema evolution. SuchProcess

Evolution schema evolution additionally necessitates the propagation of respective changes to
already running process instances (e. g., in the context of long running processes).

In turn, structural process changes of single process instances are usually performed to
deal with exceptions or unanticipated changes in the environment [167]. The effects of
such dynamic process changes are usually instance-specific and do not affect other processDynamic

Process
Change instances concurrently being executed [167]. Hence, they result in an instance-specific

process schema.

Regarding dynamic changes and process evolution an important aspect concerns the
behavioral and structural soundness of the modified process instance and the corre-
sponding (instance-specific) process schema. Structural soundness of a modified process
schema may be verified based on general correctness notions of process schemas (cf.
Section 2.1) [122]. In turn, a widespread correctness notion for behavioral soundness is
state compliance [18, 130]. Informally, a process instance I based on process schema S isState

Compliance state compliant with modified process schema S′ derived from S, if the current execution
trace σ of I (cf. Definition 3.1) is reproducible on S′ [123]. In, [133] the notion of state
compliance is extended to be applicable in the context of loops as well. Moreover, state
compliance can be used to decide whether a particular change may be correctly applied
to a process instance in its current state as illustrated by Example 2.5.

Example 2.5 (Process Flexibility)
Figure 2.6 depicts three process instances I1, I2 and I3 to which different changes shall
be applied.

Instance I1 shall be dynamically modified by deleting activity A7 and inserting activity
X after XOR-join e8. This is possible as activity A7 has been skipped and the part of the
process where X shall be inserted has not been executed yet.

In turn, I2 shall be dynamically changed by inserting activity Y between activities A9
and A10. Again this is possible, although activity A10 is already in state Activated.
However, in this case the state of the instance has to be adapted after the change. In
particular, activity A10 switches to state Not Activated and, in return, Y immediately
becomes Activated. This can be also seen when replaying the respective execution trace
from original instance I2 on the instance-specific process schema of modified instance I ′2.
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Figure 2.6: Dynamic process instance changes

Finally, for instance I3, Z shall be inserted between activity A1 and process event e2.
However, this is not possible as the process instance has already progressed too far. This
can be seen when trying to replay the corresponding execution trace on the modified
process schema. In particular, the trace cannot be replayed as the newly inserted activity
can not be marked as Running or Completed.
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3
Patterns for Time-Aware Processes

Time is what we want most, but
what we use worst.

(William Penn, 1644–1718)

3.1 Time Patterns for Process-Aware Information Systems

The content of this section was first published as follows:
(LWR10) A. Lanz, B. Weber, and M. Reichert. Workflow time patterns for

process-aware information systems. In Enterprise, Business-Process
and Information Systems Modeling — Proceedings of the 11th Inter-
national Workshop, BPMDS 2010, and 15th International Conference,
EMMSAD 2010, held at CAiSE 2010, volume 50 of Lecture Notes in
Business Information Processing, pages 94–107. Springer, June 2010.
doi: 10.1007/978-3-642-13051-9_9

A significantly extended version of this work was published as follows:
(LWR14) A. Lanz, B. Weber, and M. Reichert. Time patterns for process-aware

information systems. Requirements Engineering, 19(2):113–141, 2014.
doi: 10.1007/s00766-012-0162-3

The original articles are added to Appendices A.1 and A.5, respectively.

Preliminary results as well as additional details on selected aspects have been published
in a technical report as well [73].
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3 Patterns for Time-Aware Processes

3.1.1 Problem Description

As motivated in Chapter 1, both the specification and operational support of temporal
constraints constitute fundamental challenges for any PAIS. To support the design and
implementation of time-aware processes, a variety of temporal concepts (e. g., deadlines,
minimum and maximum time lags, durations, and schedules) need to be supported by the
PAIS. Therefore, respective concepts need to be supported by the used process modeling
language and execution environment.

To discuss some of the challenges emerging in this context we consider Example 3.1.

Example 3.1 (Patient Treatment Process - Revisited)
Let us revisit the simplified treatment process as described in Example 1.1. The process
is shown in Figure 3.1, which also depicts the temporal constraints introduced by
Example 1.1.

First, consider the appointment for the treatment. For its proper support, it must be
possible to attach a respective temporal constraint, which refers to the date provided
by activity make appointment, to activity perform treatment. Usually, an appointment
is considered to be the earliest start date of an activity. In turn, deadlines are used to
refer to the latest end date of an activity. Note that both concepts (i. e., appointment
and deadline) are similar and may thus be considered as different variants of the same
temporal constraint. In general, a temporal constraint correlating with a fixed date may
refer to the start or end of an activity, and may restrict the earliest or latest start/end
of the activity. Finally, note that an appointment or deadline may change during the
execution of a process instance. For example, in certain treatment scenarios it might
become necessary to enable the performer of activity inform patient to postpone the
treatment (i. e., change its appointment); e. g., due to a bad physical shape of the patient.

Second, consider the temporal constraint between activities prepare patient and perform
treatment. It states that the time lag between these two activities shall be exactly 1
day. Again, one must consider whether such a time lag refers to the start or end of the
respective activities. Moreover, such a constraint may restrict the minimum time lag
(e. g., at least 1 day), the maximum time lag (e. g., at most 1 day), or both (e. g., between
1 and 2 days; exactly 1 day).

Third, the constraint that the preparation of the patient may only be accomplished during
the opening hours of the anesthesia department corresponds to some kind of timetable
or schedule, restricting the execution of this activity. In general, such schedules may be
described by simple expressions based on a calendar (e. g., Mo–Fr, 8 am to 4 pm). Again
they may either refer to the start or end of the activity (or both).

Finally, it is common practice that activities have assigned maximum duration limits (cf.
activity prepare treatment), e. g., to avoid delays for subsequent activities or comply with
business regulations. Moreover, minimum durations are frequently required for planning
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Figure 3.1: Simplified treatment process with temporal constraints1 (LWR14)

purposes. Note that durations are not only relevant for activities, but for sets of activities
and entire processes as well.

As can be seen from Example 3.1, a variety of temporal concepts need to be supported
by a PAIS to enable the implementation and operational support of time-aware processes.
Although there exists considerable work regarding the support of time-aware processes
in PAIS, there is no comprehensive framework considering the specification of the time
perspective in its entirety. To tackle similar challenges with respect to other process
perspectives, a number of workflow patterns [134, 137–139, 141, 152, 158, 167] were
introduced. Workflow patterns provide a means for analyzing the expressiveness of
process modeling languages and tools regarding their support of these perspectives.
Additionally, workflow patterns can be used for eliciting and analyzing requirements
described by formal process specifications.

3.1.2 Scientific Contribution

To tackle the discussed challenges, this part of the thesis presents 10 time patterns
representing temporal constraints commonly occurring in the context of time-aware
processes. The time patterns where first introduced in (LWR10). In turn, (LWR14)
extends this work providing an in-depth description of all time patterns. Moreover,
a systematic literature review as well as an evaluation are conducted to assess the
completeness and usefulness of the proposed time patterns.

To ground the time patterns on a solid basis, a design science approach [53, 54] is adopted
for identifying and evaluating related patterns (cf. Figure 3.2). Selection criteria for the
time patterns are “patterns covering temporal aspects relevant for the modeling and
control of business processes and activities respectively” (LWR14), i. e., the identified
time patterns focus on the relationship between the time and control-flow perspective of

1Note that we use an extension of BPMN to visualize time constraints in process schemas.

27



3 Patterns for Time-Aware Processes

Create Inital
Candidate List

Use Case
Analysis Re�ne

Systematic Literature
Review

„Field Testing“

Empirical
Validation

Candidate
List

Selection
Criteria

Validation

Evaluation

Use
Cases

Other
Academic

Approaches

Google
+ Related

Work

* Planned, but 
   not required

*

Figure 3.2: Research methodology applied in (LWR14)

processes, but do not specifically consider other perspectives like the resource and data
perspectives.

To identify the time patterns, first of all, a list of candidate patterns is created based
on the knowledge and experience of the (LWR14) authors in the field. Then, a large
set of industrial cases, process schemas and process documentation consisting of more
than 270 individual processes is analyzed to refine and extend the pattern candidate list
as well as to provide empirical evidence for each of the time patterns (cf. (LWR14) for
details). Finally, to keep the number of different patterns manageable, design choices areDesign Choices
introduced to characterize pattern variants; i. e., design choices enable the parametrizationPattern Vari-

ant of the time patterns and allow consolidating similar concepts into one pattern (e. g.,
appointment and deadline).

Time Patterns

This research resulted in the 10 Time Patterns depicted in Table 3.1, which can beTime Pattern
divided into categories based on their semantics. Each of the time patterns constitutes a
solution for representing and realizing commonly occurring temporal aspects in PAISs.
In (LWR14), these patterns are systematically described in detail, including synonyms,
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Category I: Durations and Time Lags
TP1 Time Lags between Activities
TP2 Durations
TP3 Time Lags between Events
Category II: Restricting Execution Times
TP4 Fixed Date Elements
TP5 Schedule Restricted Elements
TP6 Time-based Restrictions
TP7 Validity Period
Category III: Variability
TP8 Time-dependent Variability
Category II: Recurrent Process Elements
TP9 Cyclic Elements
TP10 Periodicity

Table 3.1: Process time pattern catalogue (LWR14)

description, design choices, solution, context, examples from the data sources, and related
patterns.

The three time patterns grouped in Category I: Durations and Time Lags provide support
for expressing durations of and time lags between process elements. In detail, time pattern
TP1: Time Lags between Activities allows defining time lags between two activities. Such Time Lags

between
Activitiesa time lag may express a minimum or maximum temporal distance or a temporal interval

between the two activities. Moreover, it may represent a start-to-start, start-to-end,
end-to-start, or end-to-end relationship between respective activities. Note that time
lags may not only be required between directly succeeding activities, but also between
arbitrary activities presuming that these may be executed conjointly the the context of a
particular process instance.

Using time pattern TP2: Durations the duration of process elements of arbitrary granu- Durations
larity can be specified as well as restricted, i. e., TP2 may be used to specify the duration
of a single activity or process as well as the duration of a set of activities or set of process
instances. Moreover, a duration may correspond to a minimum duration, a maximum
duration, or both (i. e., an interval).

Finally, time pattern TP3: Time Lags between Arbitrary Events enables the specification Time Lags
between
Arbitrary
Events

of a time lag between two arbitrary discrete events. The latter may be related to the
execution of activities, but may also be triggered by an external source not controllable by
the PAIS (e. g., receiving a message or events occurring in the physical world). This pays
special attention to the fact that not everything that may happen during the execution of
a process instance can be attributed to a specific activity. Accordingly, TP3 constitutes a
generalization of TP1. However, its use cases and semantics are quite different, motivating
the introduction of a discrete pattern.
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Category II: Restricting Execution Times comprises four time patterns, which allow
specifying constraints regarding possible execution times of single activities or processes.
In particular, TP4: Fixed Date Elements allows specifying deadlines and fixed executionFixed Date

Elements dates, i. e., TP4 allows specifying that a particular activity or process instance must be
started or completed before or after a particular date. In this context it is important to
note that the corresponding date is specific to a process instance, i. e., it only becomes
known during run time or when creating the respective process instance.

Time pattern TP5: Schedule Restricted Elements is required to express temporal aspectsSchedule
Restricted
Elements like opening hours or working times. In particular, it allows restricting the start and

completion of an activity or process by a schedule. Such a schedule consists of a (possibly
infinite) set of time slots during which the activity/process may be started or completed.

Pattern TP6: Time-based Restrictions allows restricting the number of times an activity,Time-based
Restrictions set of activities, process, or set of process instances may be executed within a given

time frame. A particular variant of this pattern is a time-based mutual exclusion, i. e.,
two activities may be executed in arbitrary order, but cannot be executed at the same
time or within a particular period of time of each other (e. g., because they require the
same non-shareable resource). Regarding TP6, in a later work it was discovered that the
initially specified design choices had to be extended by a new design choice indicating
how the execution time of an activity and a given time frame (e. g., the execution time
of another activity) shall be compared in order to fully capture the semantics of this
pattern (cf. LRW16).

Time pattern TP7: Validity Period is similar to TP4, i. e., it allows expressing that anValidity Period
activity or process must not be started or completed before or after a particular date.
As opposed to TP4, he particular date is not specific to a process instance, i. e., it is
the same for all instances of the considered process schema. For example, this might be
required to restrict the remaining life time of an obsolete process implementation and to
schedule the rollout of the new schema version.

Pattern Category III: Variability consists of a single pattern, i. e., TP8: Time-dependentTime-
dependent
Variability Variability. TP8 allows specifying varying control flow depending on temporal aspects.

That is, depending on temporal aspects, like the execution time of an activity or the
time lag between two activities, different control flow paths may be chosen. Amongst
others, this allows choosing an alternative path if no response to a message is received
within a certain time frame.

Category IV: Recurrent Process Elements comprises two patterns required for expressing
temporal constraints in connection with recurrent activities or process fragments (i. e.,
loops). Particularly, pattern TP9: Cyclic Elements enables us to define time lags betweenCyclic

Elements activities contained within a loop structure. As opposed to TP1, TP9 defines a time lag
across different loop iterations, i. e., the source and target activity of the time lag belong
to different iterations of the same loop. Note that TP9 may not only restrict the time lag
between activities of two directly succeeding loop iterations, but also between activities
belonging to two arbitrary iterations. Similar to TP1, pattern TP9 may represent a
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minimum time lag, maximum time lag, or interval. It further may describe a start-to-start,
start-to-end, end-to-start, or end-to-end relationship between the two activities. Finally,
it is noteworthy that the source and target of a cyclic element may actually refer to the
same activity, creating a time lag between two subsequent instances of this activity.

Pattern TP10: Periodicity allows specifying periodically recurring sets of activities Periodicity
according to an explicitly defined periodicity rule. The latter describes the recurrence
schema of the respective activity (e. g., every Monday and Wednesday at 11:30) as well
as a particular exit condition. For example, this pattern is common in the healthcare
domain. As opposed to TP9, pattern TP10 emphasizes possible execution dates of
recurrent activities, but not the time lag between them. Moreover, periodicity rules may
involve more than two activities. Note that during run time, a Periodicity can be realized
by the combined use of patterns TP1-6, TP8 and TP9. Since respective periodicity
rules generally become known only during run time, however, no pre-specification of a
corresponding process fragment is possible. Therefore, Periodicity as an additional layer
of abstraction is required to describe respective processes in a suitable way.

Altogether, more than 100 different variants of the time patterns were identified, which
then were consolidated in a set of 10 representative time patterns. Respective time
patterns allow us to systematically elicit and analyze the requirements described by
process specifications. Moreover, they enable us to analyze and compare the expressiveness
of process modeling languages and tools regarding their support of time-aware processes.
Revisiting Example 3.1, for example, we can now classify the temporal constraints
encountered based on the time patterns:

Example 3.2 (Treatment Process Revisited)
Observing the temporal constraints discussed in Example 1.1 (cf. Fig. 3.1), it can be
recapped that the appointment for perform treatment constitutes a Fixed Date Element
(TP4) restricting the earliest start date of the respective activity. Furthermore, its value
will be set during run time by activity make appointment. Restricting activity prepare
patient to be performed exactly 1 day before perform treatment is a Time Lag between
two Activities from the start of prepare patient to the start of perform treatment (TP1).
The constraint regarding the execution time of prepare patient, in turn, represents a
Schedule Restricted Element (TP5) and the one concerning prepare treatment a maximum
Duration (TP2). Finally, the treatment plan for perform aftercare constitutes a Periodicity
(TP10); to be more precise, it constitutes the underlying periodicity rule of the periodicity
represented by activity perform aftercare.

Systematic Literature Review

To further assess the relevance and completeness of the identified time patterns as well as
to evaluate any possible bias caused by the data sources, a systematic literature review [63] Systematic

Literature
Review
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Research Group Patterns
TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10

Bettini et al. (e.g., [11, 12]) X X X X
Combi et al. (e.g., [24, 27]) X X X X X X X X X
Eder et al. (e.g., [43, 45]) X X X X
Li et al. (e.g., [91, 92]) X X X
Mans et al. (e.g., [98, 99]) X X X X X
Marjanovic et al. (e.g., [100, 101]) X X X
Müller et al. (e.g., [103, 104]) X X
Sadiq et al. (e.g., [142, 143]) X X X X
Zhuge et al. (e.g., [174, 175]) X X X X

Table 3.2: Consolidated results of the systematic literature review (LWR14)

of the primary studies dealing with temporal constraints in business process management
was conducted. To the best of our knowledge this has been the first time a systematic
effort was made to identify, review, and synthesize the literature on this topic.

The main search term was “temporal constraints business process”, but synonyms like
“time”, “restriction”, and “workflow” and any combinations thereof where considered
as well. The search strategy identified 1,000 papers of which—after a manual filtering
process—73 were identified as primary papers relevant in the context of this work. Having
identified relevant publications, each paper is systematically checked for the temporal
constraints mentioned.

As the most important result, the analysis does not reveal any temporal constraint
relevant for the control-flow perspective, which is not covered by the described time
patterns. Albeit, the analysis reveals additional temporal constraints that might be
relevant for other process perspectives (e. g., validity periods for process data). However,
these are out of scope of this thesis.

Consolidated results of the analysis are presented in Table 3.2. In particular, the table
only shows the results of the most active groups, where the results taken from the
publications of the same group are aggregated in a single row. The analysis shows that all
identified time patterns can be found in literature as well. It further shows that certain
patterns received more attention in the past than others. Finally, Table 3.2 shows that
the time patterns provide the most complete framework regarding temporal constraints
in PAIS.

Evaluating Existing Approaches

In a final step, existing approaches and tools were evaluated regarding their support of
the time patterns. The evaluation not only considers process management systems and
languages, but also includes calendar systems and project management tools, in which
temporal constraints play an important role. The evaluation reveals that current support
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for the time patterns is rather limited and that none of the evaluated systems provides a
holistic and integrated support of time-aware processes (see (LWR14) for details).

3.1.3 Evaluation and Related Work

Patterns were first used by Alexander et al. [1] in the 1970s to describe best practices
and solutions to recurring problems in architectural design. Alexander defines a pattern
to be a reusable solution to a commonly occurring problem. Moreover, the authors note
that “[. . .] each pattern represents our current best guess as to what arrangement [. . .]
will work to solve the problem presented. The empirical questions center on the problem—
does it occur and is it felt in the way we have described it?—and the solution—does
the arrangement we propose in fact resolve the problem?” [1]. While the time patterns
mainly focus on describing the problem, they also present a first step towards developing
a solution.

Patterns also have a long-standing tradition in Computer Science and Software Engineer-
ing. For example, Gamma et al. [50] describe 23 design patterns for software engineering
that represent tried and tested solutions to commonly occurring problems. Moreover,
Buschmann et al. [15–17], Schmidt et al. [147], and Kircher and Jain [62] describe patterns
for software architectures and design.

In the field of business process management, workflow patterns have been introduced for
different process perspectives to facilitate the comparison of PAIS-enabling technology
and to provide a common terminology for existing solutions [137]. Existing workflow
patterns, for example, cover process perspectives like control flow [158], data flow [139],
resources [140], activities [152], and exceptions [141]. Moreover, patterns for describing
control flow changes [167], user interface generation [66], and service interactions [7] were
introduced. Respective patterns provide a means for analyzing the expressiveness of
process modeling languages and may be used for eliciting and analyzing requirements
described by formal process specifications. The introduction of the workflow patterns
has had a significant impact on PAIS design as well as on the evaluation of PAISs and
process languages [151].

(LWR10) and (LR14) follow in this wake by describing 10 patterns regarding the process
time perspective. They extend existing workflow patterns by describing time-related
concepts commonly found in business processes and providing a reference system for
them. In particular, no such framework for systematically evaluating PAIS with respect
to their ability to deal with the time perspective or for eliciting time-related requirements
established by process specifications existed in the past.

Most academic approaches dealing with the time perspective of PAISs focus on specific
time support features like escalation management [159], scheduling support [6, 25], process
monitoring [146], process mining of temporal aspects [161], and verification of temporal
constraints [11, 27, 29, 45, 175] (cf. Section 3.2.3 for a more detailed discussion). For
example, Combi et al. [27, 29] provide a conceptual model for temporal workflows (i. e.,
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time-aware process schemas), by extending the most common process modeling elements
with additional attributes for representing temporal properties (i. e., Activity Durations;
TP2). Moreover, the authors provide modeling elements for specifying relative temporal
constraints (i. e., Time Lags between Activities; TP1) and absolute constraints (i. e.,
Fixed Date Elements and Schedule Restricted Elements; TP4 and TP5). Based on this
model, [27, 29] proposes a technique for checking the temporal consistency of time-aware
process schemas. In turn, Eder et al. [45] use Timed Workflow Graphs—an extension of
the Critical Path Method (CPM) [149]—to represent temporal properties of activities
(i. e., Activity Durations and Fixed Date Elements; TP2 and TP4) and their control flow
relations (i. e., Time Lags between Activities; TP1). Based on Timed Workflow Graphs
the authors present an approach for calculating activity deadlines in a way such that all
temporal constraints are satisfied and the overall process deadline can be met. Marjanovic
et al. [100, 101] define a conceptual model for temporal constraints on process schemas.
They consider time patterns Time Lags between Activities (TP1), activity and process
Durations (TP2), and Fixed Date Elements (TP4). Finally, a set of rules for verifying
time-aware process schemas is presented.

Overall, the systematic literature review (cf. Table 3.2) has revealed that the time patterns
introduced by (LWR14) have been considered in literature before. However, it has further
revealed that they provide the most complete framework regarding time support in PAIS.
Moreover, related works do not provide a systematic elicitation and elaboration of the
requirements for supporting the temporal perspective in PAIS. In particular, in all these
works the considered temporal constraints are simply presented as a matter of fact, i. e.,
there exists no systematic analysis of real-world business processes regarding their actual
requirements with respect to the time perspective.

Allen’s interval algebra [2] defines the 13 possible relations between two time intervals
(e. g., t during s). Allen uses these relationships to propose a system for reasoning about
temporal intervals in a hierarchical manner using constraint propagation techniques.

Following their initial publication, the time patterns have already been picked up by
several other research groups in different context. For example, Sanchez et al. [145]
propose an extended catalog of time patterns. When having a closer look on this work,
however, it turns out that they merely propose to consider different variants of the time
patterns presented in (LWR14) as separate patterns. In particular, they state that “[the]
catalog of Lanz et al. considers such decompositions simple design choices; however,
we believe that they have such an important impact that the constraints ‘Deadline
Limit: Lower, Static’ and ‘Deadline Limit: Excluded, Dynamic’ should be considered
two different patterns” [145]. We do not fully agree with this conclusion. Moreover, from
our understanding the two mentioned pattern variants already constitute two different
patterns (i. e., Fixed Date Element vs. Time-based Restrictions). Though only three of the
time patterns proposed by Sanchez et al. are discussed in detail, they seem to be similar to
the ones we presented in (LWR14) earlier. Nevertheless, the paper provides an interesting
view on the time patterns. In turn, Barba et al. [6] applies the time pattern in the
context of scheduling support for declarative workflows. Döhring and Zimmermann [40]
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apply the time patterns in combination with workflow adaptation patterns. In [22], Time
Stream Petri Net (TSPN) representations are proposed for selected time patterns to
demonstrate that TSPN constitutes a suitable formalism for supporting the life cycle
of processes with temporal constraints. Finally, Lenhard et al. [88, 89] developed a
framework for evaluating the degree of support a language provides for different kinds
of patterns (including the time patterns). Altogether these works reconfirm that the
proposed time patterns are highly relevant in practice.

3.1.4 Discussion and Outlook

In (LWR10) and (LWR14) a10 time patterns are introduced, each of them representing
temporal aspects commonly occurring in practice and, hence, being required for the
comprehensive support of time-aware processes in PAISs. The analysis of a large set
of data sources as well as the systematic literature review conducted have confirmed
that the proposed time patterns are relevant in practice and commonly required in
various application domains. In combination with existing workflow patterns, the time
patterns enable PAIS engineers to choose the process management technology meeting
their requirements best. Moreover, the time patterns may be used as a benchmark for
assessing the degree of support a particular process management technology provides with
respect to the time perspective. In this context, our evaluation of selected approaches
and systems has shown that the support of the time perspective has been very limited
in existing PAISs so far. Similar to workflow patterns, we expect vendors to evaluate
their PAISs with respect to their support of the time patterns as well as to extend them
towards a better support of time-aware processes.

Alexander et al. [1] defined a pattern to be a reusable solution to a commonly occurring
problem. Along this line most pattern catalogs found in literature (cf. Section 3.1.3)
focus on first describing the general problem found in practice and then presenting a
universal solution to it. By comparison, the time patterns (as well as other workflow
patterns [152, 167]) are restricted to the description of a general problem commonly found
in practice, but do not provide a readily available solution. In particular, for several time
patterns (e. g., TP6: Time-based Restrictions, TP10: Periodicity), no generally applicable
solution is known to date. Moreover, available solutions often significantly depend on
their scope of application (e. g., process modeling language, process modeling paradigm).
Note that this neither limits the usefulness nor the relevance of the time patterns.
In particular, the time patterns are still essential for the comprehensive elicitation of
the requirements imposed by real-world business processes as well as for the profound
comparison of PAISs with respect to their ability to deal with the time perspective of a
business process. Moreover, the time patterns serve as a well-founded and generic basis
for the comprehensive integration of the time perspective in future PAIS technology.

Since their introduction, the time patterns have received widespread attention [6, 22, 40,
47, 69, 88, 89, 118, 135, 145, 148, 170]. We expect that the latter will even increase in
future works, and a more widespread use in science and industry will be observed. This
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will be fostered by the definition of a formal semantics for the time patterns as provided
in Section 3.2. Moreover, we expect that time patterns for process perspectives other
than control flow will emerge (e. g., data, organizational, or resource perspective). The
latter are out of the scope of this thesis which focuses on the control flow as the enabling
perspective of PAISs.

Altogether, the time patterns present an excellent starting point for developing advanced
time-support features, including the verification of temporal constraints in time-aware
processes (cf. Section 4.2), escalation management, and advanced scheduling support.
Hence, they will significantly contribute to the wider support of time-aware process in
PAISs.
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3.2 Formal Foundation of Process Time Patterns

The content of this section was published as follows:
(LRW16) A. Lanz, M. Reichert, and B. Weber. Process time patterns: A formal

foundation. Information Systems, 57:28–68, 2016. doi: 10.1016/j.
is.2015.10.002

The original article is contained in Appendix A.2.

Preliminary results as well as additional details on selected aspects have also been
published as a technical report [80].

3.2.1 Problem Description

Our evaluation of existing approaches and tools with respect to their support of the
time patterns (cf. Section 3.1.2) revealed ambiguities regarding the semantics of the time
patterns as described by their informal descriptions. If respective issues are not resolved
through the provision of a precise semantics, time patterns might be interpreted differently.
This would hamper both pattern implementation and pattern-based comparison of existing
PAIS implementations.

To enable a robust and error-free execution of time-aware processes, it becomes necessary
to verify the consistency of the time perspective at both design and run time. As a
prerequisite for verifying the time perspective of a process schema, a precise and formal Precise Formal

Semanticssemantics needs to be provided for each time pattern. In particular, time-aware processes
may contain temporal inconsistencies caused by complex interactions among different
time pattern occurrences, i. e., due to complex interdependencies a process may not
be executable without violating at least one of its temporal constraints. Example 3.3
illustrates some of the processes behind such interactions (adopted from LRW16).

Example 3.3 (Interactions among temporal constraints)
Figure 3.3 depicts a process schema consisting of three activities and two gateways. Each
activity is associated with a minimum and maximum duration (Pattern TP2: Duration).
Furthermore, time lags exist between the end of activity A1 and the start of activity A3,
between the end of A1 and the start of A4, and between the end of A3 and the end of A4
(Pattern TP1: Time Lags between Activities).

At first glance, the process schema seems to be sound. However, when having a closer
look, one realizes that the process schema can never be executed without violating at
least one of its temporal constraints. In particular, A3 may be started the earliest 20
time units after completing A1 and takes at least 30 time units to complete, i. e., A3
completes at least 50 time units after completing A1. In turn, A4 must start the latest 25
time units after completing A1 and takes at most 10 time units to complete. Thus, A4
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Figure 3.3: Interdependencies among temporal constraints (LRW16)

completes at most 35 time units after completing A1. However, this violates the time lag
between A3 and A4. Particularly, it is not possible to complete A3 within 10 time units
after completing A4.

Example 3.3 demonstrates that the use of a time pattern in the context of a process
schema can never be treated in isolation as complex interactions of different time pattern
occurrences may result in hidden effects. Such complex interactions, in turn, make a
formal specification of the semantics of the time patterns almost indispensable. Only
then it becomes possible to develop algorithms for detecting inconsistencies. In turn,
only through the development of such algorithms a robust and error-free execution of
time-aware processes becomes possible.

Any formal semantics for the time patterns needs to specify how the various time patterns
interact with the elements of the control-flow perspective. At the same time, as a pattern
is defined as a reusable solution to a commonly occurring problem, the time patterns
should be applicable to a wide range of application scenarios. Therefore, a formal
pattern description should be independent of a specific process modeling language or
paradigm. Only then time patterns as well as their formal semantics will be widely
accepted. Moreover, this constitutes a requirement to enable PAISs engineers to integrate
the time patterns into a PAIS without need to cope with language-specific issues of two
different languages.

3.2.2 Scientific Contribution

To tackle the issues outlined above, (LRW16) complements previous work on time patterns
(cf. Section 3.1) by providing a precise formal semantics for each pattern. In particular,
these formal semantics contribute to overcome the discussed problems. Moreover, they
foster the integration of the time perspective into PAISs.
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To ground the formal semantics of the time patterns on a solid basis, we apply a design
science approach [53] (cf. Figure 3.4). In a first step, the requirements for specifying
formal pattern semantics are determined. In particular, formal pattern semantics

(R1) should be as generic as possible, while at the same time being as specific as required
to avoid ambiguities,

(R2) must consider all pattern variants,
(R3) needs to precisely define the effects, the respective pattern has on process enactment,
(R4) needs to consider the impact process instance data may have on an occurrence of a

pattern, and
(R5) should be described independent of a particular process modeling language or

paradigm (e. g., imperative vs. declarative).

To identify the semantics of each time pattern a large set of real cases, process schemas
and process descriptions consisting of more than 430 processes is analyzed (cf. LRW16).
Subsequently, for each time pattern the semantics collected from its occurrences in the
data sources are merged to derive the overall semantics of the time pattern.
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Formal Semantics of Time Patterns

To cope with requirements R1, R3, and R5, temporal execution traces (traces for short)Temporal
Execution
Trace are used as basis for formalizing pattern semantics. In particular, a (temporal) execution

trace [162] represents one possible execution of a process schema in terms of all events
that occurred during the execution of the respective process instance together with their
time stamps (cf. Section 2.2). Thus, we obtain an approach being independent of a
particular process modeling language and paradigm; yet, it is closely related to the process
execution semantics. By associating the defined pattern semantics with a process meta
model, the effects a pattern has on process enactment can be derived in a precise and
formal way. Moreover, note that execution traces are a common formalism for describing
and analyzing process schemas and corresponding instances (e. g., [95, 111, 134]).

Formally speaking, a temporal execution trace is defined as follows (LRW16):2

Definition 3.1 (Temporal Execution Trace)
Let PS be the set of all process schemas. Let further E be the set of all events and C be
the total set of absolute time points.

Then: Let ES ⊆ E be the set of all events that may occur during the execution of an
instance I of process schema S ∈ PS.

The occurrence of event e ∈ ES at time point t ∈ C is denoted by

ϕ = (e, t) ∈ ES × C

Moreover,
ΦS ⊆ ES × C

denotes the set of all possible event occurrences during the execution of process schema
S.

Further: QS denotes the set of all temporal execution traces producible on S. A temporal
execution trace σS ∈ QS is defined as ordered set of event occurrences ϕi:

σS = 〈ϕ1, . . . ,ϕn〉 ,ϕi ∈ ΦS , i = 1, . . . ,n,n ∈ N

Finally, function occur : QS × ES 7→ 2ΦS returns all occurrences of event e ∈ ES in trace
σS ∈ QS .

For the sake of brevity, we use notions ϕe and ϕt when referring to event e or time stamp
t of an event occurrence ϕ = (e, t). Moreover, we may omit subscript S if it becomes
clear from the context.

2Note that to avoid unnecessary repetition this synopsis only provides an abridged description of
respective definitions. For more details please refer to the original article.
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Figure 3.5: Events occurring during a process

In a temporal execution trace, each activity instance is represented by the occurrence of
at least two events, i. e., the start and end event of the activity (cf. Figure 3.5). Moreover,
intermediate events may be triggered during the execution of an activity instance. In
turn, a gateway (e. g., XOR-split or AND-join) is represented by a single event, as—in
general—gateways merely serve structuring purposes and, therefore, do not consume
any time during process execution. If a gateway does consume time, without loss of
generality, this may be represented by an activity directly preceding or succeeding the
gateway. Finally, there may be events not bound to an activity or gateway (e. g., external
events).

As a particular challenge, for certain time patterns the iteration of a loop structure needs
to be taken into account when defining pattern semantics, i. e., it must be possible to
determine to which iteration a particular activity instance (or more generally an event
occurrence) belongs. In the context of nested loops, it is not sufficient to solely consider
the repetition count of the activity itself. Rather, it becomes necessary to always consider
the iteration of the inner-most loop with respect to the iteration of any surrounding loop.
Consequently, the notion of (loop) iteration is defined as follows (LRW16):

Definition 3.2 (Iteration)
Let S ∈ PS be a process schema. Then: A loop L is a process fragment (i. e., L ⊆ ES)
with a Loop-Start as entry node and a corresponding Loop-End as exit node. The set of
possible iterations of S is given by IS ⊆ 2(2ES )×N. Accordingly, the iteration of a loop is
defined as ordered set

I = 〈(L0 : nL0), . . . , (Lk : nLk
)〉 ∈ IS .

I uniquely identifies each loop and its current iteration with respect to the iteration of
any surrounding loop. Thereby, L0 is the given process schema and Li (1 ≤ i ≤ k) the
i-th loop structure. In turn, nLi (1 ≤ i ≤ k) designates the iteration count of loop Li
with respect to its directly surrounding loop Li−1.

Function iter : QS × ΦS 7→ IS returns the current iteration of the inner-most loop
surrounding event ϕe in trace σS .
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To illustrate the concepts of temporal execution trace and loop iteration consider Exam-
ple 3.4.

Example 3.4 (Temporal Execution Trace and Iteration)
Consider the process schema depicted in Figure 3.6. An example of a temporal execution
trace on this process schema is as follows:3

σ = 〈(e0, 2), (eA1S , 3), (eA1E , 5), (e2, 6), (eA3S , 9), (eA3E , 12), (e4, 13), (e5, 14),
(eA6S , 19), (eA6E , 22), (e8, 23), (e9, 24), , (eA10S , 27), (eA10E , 29), (e11, 30),
(eA12S , 35), (eA12E , 37), (e13, 38)〉

This trace indicates that the corresponding process instance was started at time 2 (i. e.,
(e0, 2)). At time 3, activity A1 was started (i. e., (eA1S , 3)). In turn, A1 was completed at
time 5 (i. e., (eA1E , 5)); i. e., A1 had a duration of 5− 3 = 2. Next, event e2 occurred at
time 6 followed by the execution of activity A3 from time 9 to 12. After the execution of
e4 and e5 at time 13 and 14, respectively, the upper path was chosen, which is indicated
by the occurrence of start event eA6S related to A6 at time 19. Note that none of the
events of the lower path occurs within this trace as the respective path has been skipped.
After completing A6 events e8, e9, eA10S , eA10E , e11 and eA12S are triggered; i. e., neither
loop L2 nor loop L1 is repeated. Finally after completing A12 at time 37, event e13 is
triggered at time 38 completing the instance.

Another trace (without timestamps) for this process schema may be as follows:

σ = 〈e0, eA1S , eA1E ,︸ ︷︷ ︸
〈(L0:1)〉

e2, eA3S , eA3E ,︸ ︷︷ ︸
〈(L0:1),(L1:1)〉

e4, e5, eA6S , eA6E , e8, e9,︸ ︷︷ ︸
〈(L0:1),(L1:1),(L2:1)〉

e4, e5, eA7S , eA7E , e8, e9,︸ ︷︷ ︸
〈(L0:1),(L1:1),(L2:2)〉

. . .

. . . , eA10S , eA10E , e11,︸ ︷︷ ︸
〈(L0:1),(L1:1)〉

e2, eA3S , eA3E ,︸ ︷︷ ︸
〈(L0:1),(L1:2)〉

e4, e5, eA6S , eA6E , e8, e9,︸ ︷︷ ︸
〈(L0:1),(L1:2),(L2:1)〉

eA10S , eA10E , e11,︸ ︷︷ ︸
〈(L0:1),(L1:2)〉

. . .

. . . , eA12S , eA12E , e13〉︸ ︷︷ ︸
〈(L0:1)〉

In this trace, loop L2 is repeated twice within the first iteration of L1 and once within
the second iteration of L1. This can be seen when considering the value of iter(σ,ϕ)
which is given for each event below the trace. For example, regarding the occurrence of
event eA7S during the 2nd iteration of loop L2 within the 1st iteration of loop L1, we
obtain

iter (σ, (eA7S , ·)) = 〈(L0 : 1), (L1 : 1), (L2 : 2)〉

This is indicated in the last group of the first line of the execution trace.

3Without loss of generality, we use integers starting at 0 for representing absolute time points c ∈ C.
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Figure 3.6: Nested loops and iterations

Armed with these tools it becomes possible to formally define the conditions under which
a temporal execution trace σS ∈ QS is temporally compliant with the occurrence of a
particular time pattern defined on process schema S ∈ PS. In turn, a temporal execution
trace σS is temporally compliant with the set of constraints defined on S if and only if it Temporally

Compliantis temporally compliant with each of the corresponding constraints on S.

To avoid excessive overlapping and to reduce repetitions, in the following, only selected
time pattern semantics are sketched (see LRW16 for details).

We illustrate the definition of time pattern semantics along time pattern TP1: Time Lags
between Activities, which allows restricting the time span between the starting/ending
instants of two activities A and B (cf. Section 3.1.2). Time pattern TP1 has several
design choices that need to be covered by respective pattern semantics (cf. LWR14):

Design Choice D: A time lag may express a minimum or maximum time distance, or
both.

Design Choice E A time lag may represent a start-to-start, start-to-end, end-to-start,
or end-to-end relationship between activities.

Moreover, it is noteworthy that a time lag may not only be specified between directly
succeeding activities, but between two arbitrary activities that may be conjointly executed
in the context of the same process instance. The latter implies that a time lag is trivially
fulfilled if one or both activities are not executed in the context of a particular process
instance, i. e., respective events do not occur within the corresponding trace.

In the context of loops, ambiguities regarding the interpretation of a time lag between
two activities, where one activity resides inside a loop and the other one outside that loop,
may arise. Respective ambiguities have to be resolved by the definition of the pattern
semantics. A close examination of respective cases and the considered data sources has
shown that only one of the possible interpretations is generally meaningful and required
in practice. In particular, a time lag entering a loop (i. e., whose source activity is outside
the loop while the target activity is inside that loop) only applies to the first iteration of
that loop, whilst a time lag exiting a loop only applies to the last iteration of that loop.
In the context of nested iterations this is extended appropriately.
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In general, the semantics of time pattern TP1 may be expressed as follows (LRW16):

Definition 3.3 (Pattern Semantics TP1)
Let C be the total set of absolute time points and D be the set of relative time distances.
Let eX and eY represent the source and target event of the time lag. In particular,
depending on the kind of relationship, the time lag represents (i. e., start-to-start, start-
to-end, end-to-start, or end-to-end), event eX either corresponds to the start or end event
of the source activity. Likewise, eY either corresponds to the start or end event of the
target activity.

Then: A temporal execution trace σ is temporally compliant with an occurrence of the
pattern, iff it satisfies the following condition:

∀ϕ ∈ occur(σ, eX),∀ψ ∈ occur(σ, eY ) :
valid(σ,ϕ,ψ)⇒ compareR(ϕt,ψt, distance(σ, eX , eY ,ψt))

(3.1)

Thereby function occur returns all occurrences of event eX/eY in trace σ. Moreover,
function valid : QS × ΦS × ΦS 7→ Boolean is used to indicate whether a pair of event
occurrences is valid, i. e., whether their respective iterations are consistent with the
pattern:

valid(σ,ϕ,ψ) ≡
(

iter(σ,ϕ) = iter(σ,ψ)
)
∨
(

iter(σ,ϕ) ‖ iter(σ,ψ)
)

(3.2)

This means that the iterations of the two event occurrences are either the same or
adjacent. The latter is represented by the adjacency operation ‖, which is true iff either
the second operand represents the first iteration of an inner loop of the first operand, or
the first operand represents the last iteration of an inner loop of the second operand (cf.
LRW16 for a formal definition).

Function distance : QS × ES × ES × C 7→
[
D
]4, which is used in Formula 3.1, determines

the parameter value of the pattern occurrence identified by events eX ∈ ES and eY ∈ ES
as it is effective in trace σ ∈ QS at time t ∈ C. In particular, the parameter value
(i. e., minimum or maximum distance value) of a time lag may change during process
enactment. Hence, it becomes necessary to determine which of these values shall be valid
for a particular instance of a pattern occurrence.

Finally, whether or not a pair of event occurrences satisfies a time lag depends on the
kind of temporal distance represented by the pattern occurrence (i. e., minimum distance,
maximum distance or interval). This is defined by function compareR : C × C ×

[
D
]
7→

Boolean with5

compareR(ϕt,ψt, d) ≡


ϕt + min(d) ≤ ψt if minimum distance
ψt ≤ ϕt + max(d) if maximum distance
ϕt + min(d) ≤ ψt ≤ ϕt + max(d) if time interval

(3.3)

4We use notation
[
X
]
to indicate the set of intervals over domain X, i. e.,

[
X
]

= {[x1, x2]|x1, x2 ∈
X ∧ x1 ≤ x2}.

5Note that min(d)/max(d) represents the minimum / maximum value of interval d, i. e., min(d) =
min{x|x ∈ d} and max(d) = max{x|x ∈ d}.
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Example 3.5 (Pattern Semantics TP1)
We illustrate the semantics of TP1 along process schema S from Figure 3.7 (LWR14). S
contains a maximum time lag of 20 between the start of A4 and the start of A7. Moreover,
it contains a minimum time lag between the end of A1 and the start of A6. The parameter
value of this time lag is consumed from data element time lag, which, in turn, is first
produced by A1 and may later be modified by A4. Based on process schema S, for
example, traces σ1 and σ2 can be produced.

σ1 =
〈

(e0, 0), (eA1S , 1), (eA1E , 3){distance(σ,eA1E ,eA6S ,t≥3)←[10,∞]}, (e2, 4),

(eA3S , 10), (eA3E , 12), (e5, 13), (eA6S , 14), (eA6E , 15),
(eA7S , 17), (eA7E , 19), (e8, 20)〉

σ2 =
〈

(e0, 0), (eA1S , 2), (eA1E , 5){distance(σ,eA1E ,eA6S ,t≥2)←[8,∞]}, (e2, 6),

(eA4S , 8), (eA4E , 10){distance(σ,eA1E ,eA6S ,t≥10)←[16,∞]}, (e5, 11),

(eA6S , 13), (eA6E , 19), (eA7S , 25), (eA7E , 27), (e8, 28)〉

In this context, (eA1E , 3){distance(σ,eA1E ,eA6S ,t≥3)←[10,∞]} indicates that after the occur-
rence of event eA1E the value of distance(σ, eA1E , eA6S , ·) is changed to [10,∞], i. e.,
∀ t ≥ 3 : distance(σ, eA1E , eA6S , t) = [10,∞] (cf. trace σ1).

Trace σ1 is temporally compliant with the set of temporal constraints defined on S. In
particular, the time lag between A1 and A6 is set to 10 by A1. Accordingly, it is satisfied
as

compareR(ϕteA1E
,ϕteA6S

, distance(σ, eA1S , eA6S ,ϕteA6S
)) ≡

ϕteA1E
+ min(distance(σ, eA1S , eA6S , 14)) = 3 + 10 = 13 ≤ ϕteA6S

= 14

holds. Further the time lag between A4 and A7 is trivially fulfilled, as A4 is not executed.

In turn, trace σ2 is not temporally compliant with the temporal constraints on S. On
one hand the time lag between A4 and A7 is satisfied:

ϕteA4S
+ max(distance(σ, eA4S , eA7S , 25)) = 8 + 20 = 28 ≥ ϕteA7S

= 25

On the other, the time lag between A1 and A6 is violated. In particular, the parameter
value of the time lag is set to 8 by A1. However, later it is updated to 16 by A4. Thus, it
holds,

ϕteA1E
+ max(distance(σ, eA1E , eA6S , 13)) = 5 + 16 = 21 6≤ ϕteA6S

= 13
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Figure 3.7: Illustration of pattern semantics TP1

Note that the semantics of time patterns TP2: Durations, TP3: Time Lags between
Arbitrary Events, and TP9: Cyclic Elements can be defined similarly (using different
functions for valid and distance) as they all restrict the relative time distance between
pairs of events (cf. Pattern Semantics 2–4 in LRW16).

In turn, patterns TP4: Fixed Date Elements and TP7: Validity Period refer to an absolute
point in time. Hence, their formal semantics can be defined by comparing the time of the
occurrence of the respective event with the parameter value of the corresponding pattern
occurrence being effective at that time. Formally, this can be expressed by the following
condition:

∀ϕ ∈ occur(σ, e) : compareA(ϕt, date(σ, e,ϕt)) (3.4)

Depending on the design choices selected for the pattern occurrence

(i) e corresponds to the start or end event of the respective process element (i. e.,
activity or process),

(ii) compareA : C × C → Boolean represents the kind of restriction (i. e., earliest/latest
start; earliest/latest completion), and

(iii) date : QS × ES × C → C represents the parameter value of the pattern occurrence
being effective at time ϕt.

Note that for TP7 the value of date is independent of both the process instance σ and
the time (i. e., date(·, e, ·) ≡ const), while for TP4 this does not apply.

A third group of time patterns is based on repetitive time slots (e. g., based on expressions
like Mo–Fr, 8 am–5 pm). To avoid any restrictions regarding the representation of such a
schedule, we only require that it can be materialized as a set of intervals on the absolute
time points C; i. e., a schedule s is defined to be a possibly infinite set of continuousSchedule
intervals on C:

s ⊂
[
C
]

= {[tmin, tmax]|tmin, tmax ∈ C ∧ tmin ≤ tmax}

Based on this abstract representation, it becomes possible to define the semantics of
time patterns TP5: Schedule Restricted Elements and TP6: Time-based Restrictions (cf.
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Pattern Semantics 7 and 8 in LRW16). Regarding the semantics of TP6, we observed a
subtle difference between the different pattern variants found in the data sources, which
has not been covered by the original design choices. In order to completely cover the
semantics of TP6, therefore, we added a design choice that allows specifying how the
execution time frames of the activities (processes) referred to by the respective pattern
occurrence and the reference time frame shall be compared (cf. LRW16).

Finally, the semantics of TP8: Time-dependent Variability and TP10: Periodicity can be
defined based on the existing semantics of different workflow patterns (e. g., exclusive
choice and deferred choice) and a combination of different time patterns. Note that these
time patterns are still useful and required as they provide an abstract view on complex
situations. Moreover, as discussed in Section 3.1, in general, the periodicity rule of a
Periodicity only becomes known during run time. When using a complex combination
of time and workflow patterns to specify a pattern occurrence, however, it would be
necessary to pre-specify a corresponding process fragment at design time, which is not
possible as the periodicity rule is unknown.

Based on the defined pattern semantics it becomes possible to check whether a given
temporal execution trace is temporally compliant with all temporal constraints defined on
a given process schema. This gives rise to the following definition of temporal consistency
of a process schema (cf. Definition 12 in LRW16).

Definition 3.4 (Temporal Consistency)
A process schema S ∈ PS is consistent with the set of temporal constraints defined
on S, if for each possible execution path (i. e., each possible set of nodes that may be
executed during a single process instance) there exists at least one temporal execution
trace σ ∈ QS being temporally compliant with the set of temporal constraints defined on
S.

In particular, it must be ensured that for each possible path of a process schema (i. e.,
each path that may be selected during process enactment) there exists at least one
temporal execution trace being temporally compliant with all temporal constraints of the
process schema. Otherwise, the time perspective of the process schema is inconsistent as
it contains conflicting temporal constraints, i. e., the process schema contains a path that
cannot be executed without violating at least one of the temporal constraints.

3.2.3 Evaluation and Related Work

As mentioned in Section 3.1.3, considerable work related to the verification of temporal
constraints in processes exists. Respective approaches come along with an either implicit
or explicit semantics of the time pattern variants they support. In particular, in most cases
respective semantics may be derived from the formalism used for verifying the temporal
constraints (e. g., temporal constraint networks [39] or project network techniques [112])
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and the proposed translation procedure from the process schema to the respective
formalism.

Both Bettini et al. [11] and Combi et al. [27, 28] use Simple Temporal Network (STN) [39]
as basic formalism for representing temporal constraints in processes and reasoning about
them. Simply speaking, an STN is a directed graph whose vertices represent time-point
variables (called timepoints) and whose arcs correspond to temporal constraints between
these variables (cf. Section 4.1 for a more detailed discussion of STN). A process schema is
translated into a set of STNs by decomposing it along its XOR-splits, i. e., each resulting
STN corresponds to one possible execution path. In turn, in an STN each node in the
time-aware process schema is represented by two timepoints—expressing the starting and
ending instant of the node—and temporal constraints in the STN are used to represent
precedence relationships (i. e., control edges) and temporal constraints in the process
schema [11, 27]. Compared to Bettini et al., Combi et al. [27] additionally consider
well-nested loops by assuming that each loop is associated either with a minimum and
maximum number of iterations or a maximum duration for completing all loop iterations.
This enables them to transform each loop into a nested set of XOR-blocks. In general,
the semantics of the time pattern inherent to the approaches by Bettini et al. [11] and
Combi et al. [27] is similar to the one presented in (LRW16) (cf. Table 3.3).

The Timed Workflow Graph used by Eder et al. [45] constitutes an extension of the
Critical Path Method [112]. Timed Workflow Graphs are similar to process schemas,
representing each activity by a single node and control flow dependencies (i. e., control
edges) by structural temporal constraints. Additionally, explicit temporal constraints may
be used to represent temporal constraints of the process. Note that from an operational
point of view both structural temporal constraints and explicit temporal constraints
are treated exactly the same. An important difference between the formal semantics
presented by (LRW16) and the one inherent to the approach presented in [45], is that the
latter assumes that activity durations are deterministic (i. e., the same for all instances).
The authors are aware that this represents a limitation of their approach and propose
to use a probabilistic approach based on Program Evaluation and Review Technique
(PERT) [112] to overcome this limitation [45, 114].

Zhuge et al. [175] do not use any specific formalism. Instead they define temporal con-
straints in terms of restrictions of the start and completion times of activities. Moreover,
they do not presuppose any specific process modeling language or paradigm, but describe
process schemas in terms of temporal relationships. Note that this is similar to the
way the semantics presented in (LRW16) is defined. However, there exist significant
differences, for example, in the way the duration of a process (TP2) is defined (cf. Ta-
ble 3.3). In particular, the definition by [175] only considers the minimally and maximally
possible duration of a process, but factors out the actual duration of a process instance.
According to the analyzed the data sources, however, this does not meet the intended
semantics of a process duration (i. e., TP2 variant C[c]), i. e., we are convinced that the
provided definition of the respective pattern semantics meets the intended semantics of
this pattern variant best.
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Pattern Bettini et al.ab Combi et al.b Eder et al.ab Zhuge et al.ab

TP1 (+) (+) (+)/(∗) (+)/◦

TP2 C[a] (+) (+) (∗)/◦ (+)
C[c] (∗) (∗) ◦ –

TP3 (∗) (∗) ◦ ◦

TP4 C[a] (∗) (+)/◦ (∗)/◦ (+)
C[c] ◦ ◦ ◦ ◦

TP5 C[a] ? ? (+)/(∗) ◦
C[c] ◦ ◦ ◦ ◦

TP6 ◦ ◦ ◦ ◦

TP7 C[a] (∗) (∗)/◦ (∗)/◦ (∗)
C[c] ◦ ◦ ◦ ◦

TP8 ◦ ◦ ◦ ◦
TP9 ◦ (∗)/◦ ◦ ◦
TP10 ◦ ? ◦ ◦

(+) Equivalent to a restricted variant of the pattern semantics.
(∗) Not discussed/No implementation provided, but may be implemented with a

semantics equivalent to a restricted variant of the presented pattern semantics.
? Discussed but no implementation is provided.
– Different semantics (cf. [80] for details).
◦ Not considered.

a Does not consider loops.
b Does not consider dynamic changes of the parameter value of a pattern occurrence during run time.

Table 3.3: Assessment of Different Approaches [80]

Table 3.3 provides an overview of related approaches, the time patterns considered by
them and the similarity of respective pattern semantics compared to the ones defined
in (LRW16). In particular, note that only a small subset of the time patterns and their
variants is actually supported by the considered approaches. The latter were selected
based on the systematic literature review we conducted as part of (LWR14), as they
provide the broadest support of the time patterns as well as at least some kind of
semi-formal description of the temporal constraints considered. A more detailed analysis
of respective approaches and a more detailed discussion of the results summarized by
Table 3.3 can be found in [80].

In terms of other workflow patterns, formal semantics have been defined for patterns
covering the control flow perspective [115] as well as process changes patterns [134].
Respective semantics are defined based on pi-calculus [115] and execution traces [134].
However, note that time patterns significantly differ from other workflow patterns, as
interactions between different time patterns may be complex, resulting in hidden effects
(cf. Example 3.3). Hence, for the time patterns the provision of a precise formal semantics
is even more important. Moreover, the resulting ability to discover and analyze such
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effects is indispensable. (LRW16) is the first attempt that provides such precise and
formal semantics for all time patterns.

The presented formalization uses temporal execution traces [162] to define the semantics
of the time patterns in a precise and formal way. Note that there exists a plethora of
other techniques for describing the temporal properties of a system, which could be used
as well. Examples include different kinds of temporal logic [4, 51, 52, 59, 68], timed
Petri nets [10, 13, 19, 41, 117], and timed automata [3, 37, 97]. We chose temporal
execution traces for several reasons. On one hand, they are easy to use, on the other,
they closely resemble the execution semantics of processes, while being independent of a
particular process modeling paradigm (i. e., declarative vs. imperative process modeling).
In particular, an execution trace represents a possible execution of a process schema
fully independent of the way the respective schema has been specified. Moreover, most
PAISs provide an execution log (cf. Section 2.2) comprising the events (and their time
of occurrence) related to the start and completion of activities and indicating process
instance they belong to as well as different additional information (e. g., executing agent).
Such execution log is similar to a temporal execution trace. Amongst others, this makes
it easy to implement techniques for checking conformance [136] of a process instance with
respect to a given process schema and its temporal constraints based on the defined formal
semantics of the time patterns; i. e., answering the question do the log and the process
schema conform with each other [136]—a problem statement common in monitoring and
auditing of business processes.

3.2.4 Discussion and Outlook

In (LRW16), we have formally defined the semantics of the time patterns originally
introduced in (LWR10; LWR14) (cf. Section 3.1). Respective pattern semantics have
been identified by means of an extensive analysis of a large set of industrial cases, process
schemas, and process descriptions. The formal description of the proposed pattern
semantics are expressed independently of a particular process meta model to foster the
use of the time patterns for a wide range of process modeling languages as well as to
ease pattern implementation in existing PAISs.

The elicitation and development of the formal pattern semantics gave us the opportunity
to uncover some aspects that might otherwise have been neglected when using only
an informal pattern description; e. g., regarding the relationship between loops and
Time Lags between Activities (TP1) or the handling of Time-based Restrictions (TP6).
Moreover, the defined formal semantics enable us to answer open issues, e. g., related to
the interactions between the time and control-flow perspective or the interpretation of
certain combinations of process elements. Finally, they constitute a key requirement for
developing techniques that allow us to formally verify the time perspective of processes
at both design and run time.
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Any kind of work trying to formally describe aspects of the real-world always carries
some risks regarding its validity. In particular, the main threats we identified with
respect to this work include inaccuracy in specifying pattern semantics, the identification
procedure of the pattern semantics, and completeness of the patterns and their semantics.
(LRW16) analyzes each of these potential threats and describes how we dealt with them.
Nevertheless, we do not claim to provide the proper semantics for all possible cases. For
example, certain time patterns might have to be interpreted stricter in some scenarios,
whereas they can be considered less restrictive in others. Moreover, the proposed time
pattern semantics constitutes just one possible way of describing the semantics of the time
patterns; i. e., there may be others being appropriate as well. However, our analysis of
other approaches, which implicitly provide a semantics for some of the time patterns [80],
has revealed that respective semantics are similar to the one defined by (LRW16).

A limitation of the presented formal semantics and an avenue for future work arises from
the fact that the formal semantics neither consider design- nor run-time support of time-
aware processes. At design time proper support for designing error-free process schemas
must be provided; i. e., it must be possible to verify the consistency of a time-aware
process schema and to guide PAIS engineers in the design of a consistent time-aware
process schema. In turn, when executing a time-aware process schema, challenging issues
emerge like “How can temporal constraints be monitored and—if necessary—be enforced?”
and “What happens if a temporal constraint can no longer be satisfied?”. Furthermore,
in certain scenarios, activity durations need to be restricted to ensure that a process
instance can be completed without violating any constraint, whereas in other scenarios it
must be ensured that the entire range of the activity duration is available for executing
the activity. Some of these challenges are picked up in the following chapters.
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4
Managing Time-Aware Processes

You may delay, but time will not.

(Benjamin Franklin, 1706–1790)

4.1 Temporal Consistency of Time-Aware Processes

The content of this section was published as follows:
(LRW16) A. Lanz, M. Reichert, and B. Weber. Process time patterns: A formal

foundation. Information Systems, 57:28–68, 2016. doi: 10.1016/j.
is.2015.10.002

The original articles is added in Appendix A.2.

4.1.1 Problem Description

An important aspect of any PAIS is its ability to execute a process schema in a robust
way. As discussed in Section 1, a prerequisite for robust and error-free process execution
is the soundness of the underlying process schema. In the context of time-aware processes,
this presupposes the temporal consistency of the process schemas as well.

Verifying consistency of the time perspective of processes is particularly challenging as
temporal inconsistencies may be caused due to complex interactions among different
temporal constraints (cf. Example 3.3). The latter significantly differentiates the time
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Figure 4.1: Implicit temporal constraints of a time-aware process schema

perspective from other process perspectives. Moreover, respective interactions might
result in hidden effects and implicit temporal constraints which need to be obeyed in
order to guarantee successful execution of respective process instances. Example 4.1
illustrates some of the processes behind such interactions and the impact implicit temporal
constraints might have on process execution.

Example 4.1 (Implicit temporal constraints)
Figure 4.1 depicts a process schema consisting of three activities and two gateways. Each
activity is associated with a minimum and maximum duration. Furthermore, time lags
exist between the end of activity A2 and the end of A5 as well as between the start of A3
and the start of A5.

At first glance, it seems that the execution of activities A2 and A3 may take place
completely independent of each other as there exists no direct (temporal) relationship
between the two. However, when taking a closer look, one realizes that in order to be
able to simultaneously satisfy the time lag between A2 and A5, the duration constraint
for activity A5 as well as the time lag between A3 and A5, it becomes necessary that A3
has to be started 0 to 5 time units after the start of A2 (as indicated by the dashed time
lag between A2 and A3 in Figure 4.1).

If implicit temporal constraints are not obeyed during process run time the violation of
one of the explicit temporal constraints will occur in the further course of the process
instance. Hence, it is important for the PAIS to be aware of such implicit temporal
constraints as well as to monitor and ensure their adherence during run time.

4.1.2 Scientific Contribution

This part of the thesis introduces the ATAPIS framework for supporting time-aware
processes in adaptive PAISs. In a first step, techniques are provided for verifying the
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4.1 Temporal Consistency of Time-Aware Processes

temporal consistency of time-aware process schemas according to the defined pattern
semantics.

To check whether a given time-aware process schema is temporally consistent, ATAPIS
maps it to a Conditional Simple Temporal Network (CSTN) [57, 154].1 On one hand,
CSTN allows us to exploit and reuse provably sound checking algorithms [154] for a well
founded model for representing temporal constraints. On the other hand, CSTN is similar
to the execution traces used for defining pattern semantics. Moreover, CSTN allows
capturing the complex interdependencies between temporal constraints that cannot
be properly captured in process schemas. Hence, they provide a suitable basis for
implementing the time patterns and their semantics.

Formally a CSTN is defined as follows:

Definition 4.1 (Conditional Simple Temporal Network)
A Conditional Simple Temporal Network (CSTN) [57] is a 6-tuple 〈T , C,L,OT ,O,P 〉,
where:

• T is a set of real-valued variables, called timepoints.
• P is a finite set of propositional letters (or propositions).
• L : T → P ∗ is a function assigning a label to each timepoint in T ; a label is
any (possibly empty) conjunction of (positive or negative) letters from P . In the
following we use small Greek letters α,β, . . . to denote arbitrary labels. The empty
label is denoted by �.

• C is a set of labeled simple temporal constraints (constraint in the following);
each constraint cXY ∈ C has the form cXY = 〈[x, y]XY ,β〉, where X,Y ∈ T ,
−∞ ≤ x ≤ y ≤ ∞, and β ∈ P ∗ is a label.

• OT ⊆ T is a set of observation timepoints.
• O : P → OT is a bijection that associates an observation timepoint to each

propositional letter from P .

Finally, a CSTN contains one special timpoint Z ∈ T representing time point zero (i. e.,
Z = 0).

Timepoints represent instantaneous events that may be associated with the start/end
events of activities. A constraint cXY = 〈[x, y]XY ,β〉 expresses that the time span
between timepoints X and Y must be at least x and at most y, i. e., x ≤ Y − X ≤ y.
When reaching an observation timepoint, a decision regarding possible execution paths
is made. Formally speaking, when executing observation timepoint P , the truth-value
of the associated proposition (i. e., O−1(P )) is determined. The label attached to each
timepoint (constraint) indicates possible executions of the CSTN, i. e., a particular

1Note that in later work this has been extended to use more sophisticated models of temporal reasoning
(cf. Section 4.2).
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Figure 4.2: Process modeling elements and their mapping to CSTN (LRW16)

timepoint (constraint) will be only considered if its label is satisfiable in the respective
instance.

Basically, CSTN timepoints are equivalent to events, whereas a timepoint bound to a
specific value is equal to an event occurrence. Moreover, CSTN constraints are specified
as inequalities of the form Y−X ≤ tmax and tmin ≤ Y−X, where X and Y are timepoints
and tmin/tmax correspond to a relative time distance. This is similar to the definition
of relative time distance between events as, for example, defined by the semantics of
TP1 (cf. function compareR in Formula 3.3). Moreover, an absolute point in time can be
represented as the relative time distance between time point zero (i. e., timepoint Z ∈ T )
and the respective timepoint X ∈ T . This mapping results in the same restriction as
expressed by function compareA (cf. Formula 3.4). Altogether, it becomes possible to
map a time-aware process schema to a CSTN preserving the semantics of the respective
time patterns.

When mapping a time-aware process schema to a corresponding CSTN, first of all, the
control flow of the process schema is mapped to the CSTN as illustrated in Figure 4.2.
Note that each control flow element implicitly represents a temporal constraint, e. g., a
control edge is equivalent to a minimum time lag of 0 between its source and target node.

In turn, loop structures cannot be directly mapped to CSTN. Note that at build-time
the actual number of iterations, and thus the number of occurrences of corresponding
events, is unknown. Moreover, each possible event occurrence is unique regarding its
time of occurrence. Thus, no generalization of a loop is possible regarding its temporal
properties. Assuming that for each loop the maximum number of iterations is known,
however, any process schema with well-nested loops can be transformed into a loop-free
one by replacing each loop structure by a sequence of nested XOR blocks containing the
respective number of clones of the original loop body [27, 79]. Moreover, in reality it is
almost always possible to estimate the maximum number of iterations.
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Figure 4.3: Time Patterns and their mapping to CSTN (LRW16)

Next, temporal constraints (i. e., occurrences of the time patterns) are mapped to the
CSTN as depicted in Figure 4.3. Note that certain time patterns cannot be verified at
design time (e. g., Fixed Date Elements (TP4) and Schedule Restricted Elements (TP5); cf.
LWR14). Therefore, at design time they are mapped to an unrestricted CSTN constraint
(i. e., 〈[0,∞]XY ,β〉) in order to prepare the CSTN for execution (cf. Section 4.3). During
run time the value of the CSTN constraint will be fixed as soon as the value of the
respective time pattern becomes known.

A Time-dependent Variability (TP8) referring to the execution time of a node is equivalent
to an XOR-split, whose decision rule is based on the execution time of the corresponding
node, i. e., its mapping corresponds to the one of an XOR-split.

One can verify that the presented mapping indeed preserves the semantics of the respective
time patterns as defined by their formal semantics (cf. LPCR13). We denote the result of
this mapping as the time model of the time-aware process schema. As an example of this Time Model
mapping consider the process schema and the corresponding time model from Figure 4.4.
For a more detailed discussion of the mapping we refer to (LRW16).
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Based on this mapping it becomes possible to verify the temporal consistency of a
time-aware process. In particular, CSTN consistency is defined as follows [154]:

Definition 4.2 (Consistency of a CSTN)
Given a CSTN N = 〈T , C,L,OT ,O,P 〉, a scenario over set P is a function sP : P →
{true, false} that assigns a truth-value to each proposition in P .

A solution for CSTN N under scenario sP corresponds to a complete set of assignments
to all timepoints X ∈ T with sP (L(X)) = true, which satisfies all constraints 〈[x, y]XY ,
β〉 ∈ C for which sP (β) = true holds.

A CSTN N is called weakly consistent iff for each scenario sP at least one solution
exists [154], i. e., a CSTN is weakly consistent iff all of its constraints are satisfiable.

Note that a CSTN scenario is similar to an execution path of a process schema. Moreover,
each solution of a CSTN corresponds to a temporally compliant trace of the process
schema. Therefore, the CSTN corresponding to a time-aware process schema is weakly
consistent, if for each execution path (scenario) of the process schema at least one
temporally compliant temporal execution trace (solution) exists. This results in the
following definition of temporal consistency of a time-aware process schema.

Definition 4.3 (Design-Time Temporal Consistency)
A time-aware process schema is denoted as design time temporally consistent iff the
corresponding time model (i. e., the mapping of the process schema to CSTN) is weakly
consistent.

Checking temporal consistency of a process schema can be based on existing CSTN
algorithms [58, 154], which are known to be sound and complete. Note that these
algorithms can derive all interdependencies between different timepoints of the CSTN;
i. e., they are able to derive all interdependencies between nodes of the process schema.
The resulting minimal network can be used for monitoring an instance of the processMinimal

Network schema during run time (cf. Section 4.3).
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Figure 4.5: The ATAPIS Process Editor

Proof-of-Concept Prototype

The ATAPIS framework has been implemented as a proof-of-concept prototype as part
of the ATAPIS Toolset2 [72]. The ATAPIS Toolset allows specifying process schemas
enriched with temporal constraints (cf. Figure 4.5). In particular, it provides support
for the time patterns most commonly required in practice: Time Lags between two
activities (TP1), Durations (TP2) of activities and processes, Fixed Date Elements (TP4),
Schedule Restricted Elements (TP5), Validity Periods (TP7), Time-Dependent Vari-
ability (TP8) based on the execution time, and Cyclic Elements (TP9). The resulting
time-aware process schemas may then be checked for temporal consistency based on the
defined pattern semantics.

4.1.3 Evaluation and Related Work

The implementation of the time patterns is based on Conditional Simple Temporal
Networks (CSTN) [57]–a network based representation of Conditional Simple Temporal
Problems [154]. The latter represents a special kind of Temporal Constraint Satisfaction
Problem [39]—a well known problem from the artificial intelligence and planning domain.

2The ATAPIS Toolset, some examples and a screencast showing the toolset are available for download
at dbis.info/atapis
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A first sound and complete algorithm for verifying the consistency of CSTN is discussed
in [154]. In turn, Hunsberger et al. [58] present the first sound and complete algorithm
for checking dynamic consistency of CSTN based on constraint propagation. Besides
CSTN there exists a variety of other temporal constraint problems like Simple Temporal
Network with Uncertainty (STNU) [106, 108], Conditional Simple Temporal Network
with Uncertainty (CSTNU) [30, 57], and Conditional Temporal Problem with Preferences
(CTPP) [49]. Some of these could have been used alternatively for implementing the
time patterns (cf. Section 4.2 for details on the use of CSTNU).

As discussed in Section 3.2.3, both Bettini et al. [11] and Combi et al. [27, 28] use
Simple Temporal Network (STN) [39] as basic formalism for representing and reasoning
about temporal constraints in processes. Bettini et al. [11] consider Time Lags between
Activities (TP1), activity Durations (TP2), and Fixed Date Elements (TP4), whereas
Combi et al. [27] also consider Schedule Restricted Elements (TP5). Note that STN is a
simplified variant of CSTN. In particular, it holds that a CSTN N = 〈T , C, ∅, ∅, ∅, ∅〉 is
equivalent to an STN [57]. Consequently, the translation of time-aware process schemas
to STN proposed by Bettini et al. [11] and Combi et al. [27], respectively, is similar to
the one chosen by us. Moreover, the loop transformation proposed by [27] is similar to
the one proposed by (LRW16).

Eder et al. [43, 45, 46] use an extension of the Critical Path Method (CPM) [112]–called
the Timed Workflow Graph (cf. Section 3.2.3). [46] considers Time Lags between Activities
(TP1), activity Durations (TP2), Fixed Date Elements (TP4), and Schedule Restricted
Elements (TP5). Essentially, a Timed Workflow Graph is the same as the process
schema. Each activity has a fixed duration and is augmented by two values for its earliest
and latest completion time. To handle XOR-splits and -joins, the Timed Workflow
Graph is extended in [43] by splitting up the earliest and latest completion time into the
earliest/latest completion of the best/worst case. These four values are calculated for
each activity by using a modified version of the CPM algorithm. In turn, [46] proposes to
unfold a Timed Workflow Graph at each XOR-join by duplicating the remaining Timed
Workflow Graph for each possible path.

Marjanovic et al. [101] define a conceptual model for temporal constraints on a process
schema. When taking the time patterns as benchmark, [101] considers Time Lags between
Activities (TP1), activity and process Durations (TP2), and Fixed Date Elements (TP4).
Further, a set of rules for verifying time-aware process schemas is presented.

Cicirelli et al. [22] present time stream Petri net (TSPN) [41] representations for selected
time pattern variants. For analyzing the resulting network, [22] proposes the use of either a
suitable transformation to timed automata [3] and model checking tools like UPPAAL [87],
or—if respective models become too large—actor-based simulation techniques based on
Parallel Discrete Events Systems [21].

Moreover, Maria et al. [37] and Maggi et al. [96] use timed automata [3], in combination
with model checking techniques like Metric Temporal Logic (MTL) [68], for verifying the
satisfiability of a time-aware process schema. Similarly, other model checking techniques
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like TPTL [4] and ECL [52] may be used (see [51] for a survey on linear-time timed
temporal logics). Finally, David et al. [35] present a framework for the formal verification
of real-time UML statecharts based on timed automata and model checking techniques.

Most of these techniques may be used for verifying the temporal consistency of time-
aware processes with different pros and cons. However, existing approaches (e. g., based
on temporal constraint satisfaction problems [11, 27] and timed automata [37, 96])
only partially cover the time patterns and their variants. We have chosen CSTN
for implementing the time patterns as it is very similar to the temporal execution
traces used for defining the formal pattern semantics and at the same time has lower
computational complexity compared to most other techniques. Moreover, CSTN offer
promising perspectives for supporting the monitoring of time-aware process instances as
well as some advanced time support features (cf. Section 4.3).

4.1.4 Discussion and Outlook

The use case analysis we performed as part of (LWR14) and the definition of the time
pattern semantics in (LRW16) revealed the need for a comprehensive design-time support
of time-aware processes. In particular, to enable a robust and error-free process execution,
soundness of respective process schemas must be ensured. For time-aware processes
this encompasses ensuring the temporal consistency of the process schema. To this
end, the ATAPIS framework presented by (LRW16) provides a comprehensive and
generic framework and corresponding techniques for verifying the temporal consistency
of time-aware process schemas based on the formal semantics of the time patterns. In
particular, we present a suitable transformation of time-aware process schemas to CSTN
that preserves the semantics of the time patterns. Based on this transformation provably
sound and complete checking algorithms for CSTN can be used to verify the temporal
consistency of time-aware process schemas. Moreover, respective CSTN algorithms enable
us to derive implicit temporal constraints between any pair of timepoints of the CSTN.

During run time the CSTN transformation provided by the ATAPIS framework may be
used for scheduling and monitoring corresponding process instances (cf. Section 4.3).
Moreover, the derived implicit temporal constraints may be used by the PAIS to ensure
observance of any explicit temporal constraints as well as to predict possible future
violations of the latter.

Current limitations of the ATAPIS framework concern the use of weak consistency
of CSTN for defining temporal consistency of time-aware processes and the relaxed
treatment of activity durations. In particular, a weakly consistent CSTN might require
a-priori knowledge about the execution paths to be taken in the future to be able to
guarantee the successful completion of a process instance. However, such knowledge
might not be available in practice. Yet, stronger consistency notions of CSTN (e. g.,
dynamic consistency [154]) are incompatible with certain time patterns (e. g., TP8: Time-
dependent Variability). Regarding activities, in turn, the ATAPIS framework currently
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assumes that their actual duration may be restricted by the PAIS. However, in reality
this might not be the case as the duration of activities is uncertain and mostly depends
on the performer of the activity, the actual task to be accomplished, and the environment.
Both challenges are picked up in Section 4.2.
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4.2 Controllability of Time-Aware Processes

The content of this section was published as follows:
LPCR13 A. Lanz, R. Posenato, C. Combi, and M. Reichert. Controllability of

time-aware processes at run time. In On the Move to Meaningful Inter-
net Systems: OTM 2013 Conferences — Proceedings of the 21st Inter-
national Conference on Cooperative Information Systems (CoopIS’13),
number 8185 in Lecture Notes in Computer Science, pages 39–56.
Springer, September 2013. doi: 10.1007/978-3-642-41030-7_4

The original article is added in Appendix A.3.

4.2.1 Problem Description

Regarding the run-time support of time-aware processes it is noteworthy that the duration
of an activity executed in the context of a process instance is usually contingent. Indeed, Contingent

Durationalthough it is possible to specify a duration range for an activity, its actual duration is
subjected to the environment and only becomes known after its completion; i. e., it cannot
be controlled by the PAIS. As an example consider a surgery: Although it is possible to
specify a duration range for such activity (e. g., one to two hours), the effective duration
only becomes known after the surgery has finished as it depends on the complexity of
the procedure as well as any possible minor or major complications that might emerge
during the procedure. This needs to be taken into account when verifying the temporal
consistency3 of at time-aware process schema at design time. In particular, it should be
possible to successfully complete an instance of a process schema for all allowed durations
of its activities, satisfying all temporal constraints. The latter implies that it must be
possible to execute a process instance without ever having to restrict the duration of an
activity to satisfy one of the other temporal constraints. Yet, at the same time activity
durations are usually specified reasonably generous and may thus still be restricted to
some limited extend. Note that, although this is more strict than the semantics of pattern
Duration (TP2) as defined in (LRW16), it does not conflict with respective definitions
as these need to be applicable in all scenarios and, hence, represent the lowest common
denominator of all possible cases.

As additional challenge, temporal consistency needs to be ensured for all possible execution
paths of a process schema (e. g., due to exclusive choices or loops). In particular, each
decision taken at run time may lead to different temporal properties of the remaining
process. This is particularly challenging, as the temporal constraints of one execution
path may affect parts of the process executed prior to the decision which execution path
shall actually be taken (cf. Example 4.2).

3The referenced paper uses the term “controllability” instead of temporal consistency as will be explained
further on.
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Figure 4.6: Conflicting alternative execution paths

Example 4.2 (Conflicting alternative execution paths)
Figure 4.6 depicts a process schema consisting of four activities and two alternative
execution paths. Note that this process schema is temporally consistent according to
Definition 4.3. However, its successful execution requires a-priori knowledge about the
execution path to be taken at XOR-split e3.

First, consider the upper execution path (i. e., the one containing A4). In this case, one
may conclude that, to satisfy the maximum time lag of 10 between activities A1 and A4,
activity A2 may be started no later than 5 after the completion of A1. In particular, if
A2 is started 5 after A1 and take its minimum duration (i. e., 5), A4 may be started the
earliest 10 after A1, which still satisfies the maximum time lag of 10 between A1 and A4.

In turn, considering the lower path, one may conclude, that to satisfy the minimum time
lag of 18 between activities A1 and A5, activity A2 may be started the earliest 10 after
A1. In detail, if A2 is started 10 after completing A1 and takes its maximum duration of
7, then—considering the maximum time lag of 1 between A2 and A5—A5 must be started
the latest 18 after the completion of A1, which still satisfies the minimum time lag of 18
between A1 and A5.

Hence, when starting activity A2 one needs to know which execution path will be taken
in order to ensure that all remaining temporal constraints can be satisfied. Usually,
however, such information is not available prior to the execution of e3.

Thus, at design time it must be ensured than any execution decision made is compatible
with all possible future execution paths, i. e., the decision when to execute a particular
activity cannot rely on any a-priori knowledge about future execution paths.
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4.2.2 Scientific Contribution

(LPCR13) builds upon the ATAPIS framework discussed in Section 4.1. (LPCR13) extends
respective results in two ways: First, a basic model for specifying time-aware process
schemas exhibiting the properties outline above is presented, i. e., the model specifically
considers the contingent, but restrictable nature of activity durations. Second, the
referenced paper presents a mapping of time-aware processes to Conditional Simple
Temporal Network with Uncertainty (CSTNU) [30, 57], which allows checking the dynamic Dynamic

Controllabilitycontrollability of respective process schemas at design time. In the context of CSTNUs,
controllability refers to the ability of executing a network for all allowed durations of its
contingent constraints (i. e., activities) and satisfying all temporal constraints.

Time-Aware Process Schemas

To set a focus, the referenced paper specifically considers the time patterns most relevant
in practice according to our analysis (cf. Section 3.1.2): Time Lags between Activities
(TP1), Durations (TP2), Fixed Date Elements (TP4), and Cyclic Elements (TP9).

In the context of activity durations, a closer analysis of real-world cases reveals another
important property regarding the contingent nature of activity durations. In particular,
many real-world processes turn out to be not temporally consistent if activity durations
are considered to be completely contingent. One of the main reasons for this is that,
although in theory activity durations must not be restricted by the PAIS as respective
durations are decided by the environment, in practice the durations specified for activities
usually represent worst case estimates; i. e., they cover cases with an exceptionally long
duration which only very rarely occur in practice. Moreover, in practice these cases are
usually dealt with on a case-to-case basis. Finally, if necessary, execution times of most
activities may be restricted to some extend.

In order to represent activity durations more universally, therefore, (LPCR13) proposes
to represent them in terms of restrictable time intervals [[MinDC ,MaxDC ] MaxDF ]] Restrictable

Time Interval(1 ≤ MinDC ≤ MaxDC ≤ MaxDF ). In this context, MaxDF represents the flexible
maximum duration of the activity (i. e., the worst case). If necessary, this may be restricted
up to the contingent minimum and maximum duration range [MinDC ,MaxDC ], which,
in any case, must be available for executing the activity.

The remaining temporal constraints considered by this work are defined similarly to what
has been discussed in Section 4.1.2. We do not repeat respective descriptions here.

Controllability of Time-Aware Process Schemas

In order to verify the temporal consistency of a time-aware process schema, considering
the contingent nature of its activities as well as the impact alternative execution paths
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may have, (LPCR13) proposes the use of Conditional Simple Temporal Network with CSTNU
Uncertainty (CSTNU) [30, 57]. This choice has been made for three reasons: (1) it is
preferable to exploit a well founded model of extended temporal constraint representation
(including corresponding algorithms) instead of developing native algorithms solving the
same basic problem, (2) CSTNU is the only model being able to represent and manage
conditional execution paths and contingent durations at the same time, and (3) CSTNU
represents an extension of CSTN used for formally defining time pattern semantics.
Hence, everything that applies for CSTN (cf. Section 4.1.2) applies for CSTNU as well.

Formally, a CSTNU can be defined as follows (cf. LPCR13):

Definition 4.4 (Conditional Simple Temporal Network with Uncertainty)
A Conditional Simple Temporal Network with Uncertainty (CSTNU) [57] is a tuple
〈T , C,L,OT ,O,P ,L〉, where

• 〈T , C,L,OT ,O,P 〉 is a CSTN (cf. Definition 4.1).
• L is a set of contingent links; each contingent link cAC ∈ L has the form
cAC = (A,x, y,C), where A,C ∈ T and 0 < x < y <∞.

• for each (A,x, y,C) ∈ L it holds L(A) = L(C) and 〈[x, y]AC ,L(A)〉 ∈ C.

A contingent link (A,x, y,C) represents an uncontrollable, but bounded temporal interval.Contingent
Link

C is called the contingent timepoint, and A its activation timepoint. A contingent link
can be interpreted as follows: Once A is executed, C is guaranteed to execute such
that C − A ∈ [x, y] holds. However, the particular time at which C occurs cannot be
controlled, but only be observed when it happens.

In [30], Combi et al. present a sound algorithm that allows determining the dynamicDynamic
Controllability controllability of a CSTNU.

Definition 4.5 (Dynamic Controllability of CSTNU)
A CSTNU is called dynamically controllable [57] if it is possible to execute it for any
allowed durations of its contingent links and any possible execution scenario (cf. Defi-
nition 4.2) without violating any of the temporal constraints or requiring any a-priori
knowledge about the execution.

Based on CSTNU, (LPCR13) shows that a time-aware process schema can be mapped
to a corresponding CSTNU such that all temporal features of the process schema are
represented in the CSTNU. In particular, we provide an appropriate mapping of each
process construct to an equivalent CSTNU fragment. Most interestingly, each activity
A with restrictable duration [[xC , yC ] yF ]] corresponds to three timepoints AS , AC , and
AE in the CSTNU. AS represents the start timepoint (i. e., start event) of the activity
and AE its end timepoint (i. e., end event). In turn, AC is an internal timepoint that
is only used for checking controllability of the CSTNU, but is not considered during
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Figure 4.7: An activity with a restrictable duration and its CSTNU translation.
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execution. Respective timepoints are linked by appropriate constraints representing
the given duration of the activity as shown in Figure 4.7.4 In particular, timepoint
AC represents the uncontrollable ending point of A and is bounded by contingent link
(AS ,xC , yC ,AC) with respect to start timepoint AS . In turn, AE is the controllable
end timepoint, bound to AS by the simple temporal constraint 〈[xC , yF ]ASAE

,β〉, which
allows the checking algorithm to consider the flexible maximum duration yF . Finally,
the lower bound of the constraint between AC and AE is set to 0 in order to indicate
that AE has to be executed after AC while the upper bound is set to yF − yC in order to
allow for the flexible maximum duration.5 This mapping fully represents the restrictable
duration range of an activity as previously described.

In turn, the mapping of other process constructs is similar to the one discussed in
Section 4.1.2, and hence not considered here. Note that there are minor differences in the
mapping of the AND-join connector which that been introduced to enforce an earliest
execution strategy of AND-join connectors as applied by most PAIS (cf. Figure 4.8).
However, these differences have no influence on the dynamic controllability of the CSTNU
and, hence, the temporal consistency of the process schema. As an example for this
mapping consider the process schema and the corresponding time model depicted in
Figure 4.8.

Based on the respective CSTNU mapping, we can extend the notion of design-time
temporal consistency (cf. Definition 4.3) to consider contingent activity durations and
alternative execution paths.

4For the sake of consistency, this thesis uses a network-based representation for CSTNU, whilst (LPCR13)
uses a distance-graph-based representation. Note that both representations are fully equivalent.

5Note that the original publication contains a write error, where yF − xC instead of yF − yC is used for
the upper bound of the temporal constraint between AC and AE . When using this erroneous formula,
it allows for more flexibility with respect to the minimum contingent duration range than supposed.
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Figure 4.9: Checking temporal consistency of a process schema using the ATAPIS process
editor

Definition 4.6 (Design-Time Temporal Consistency with Contingent Dura-
tions)
A process schema S with temporal constraints and contingent activity durations is
denoted as design-time temporally consistent iff the corresponding CSTNU is dynamically
controllable.

Proof-of-Concept Prototype

The concepts presented in (LPCR13) have been implemented as a proof-of-concept
prototype as part of the ATAPIS Toolset [72]. This prototype allows creating time-aware
process schemas based on the basic elements defined by (LPCR13). Respective, process
schemas can then be automatically transformed to a corresponding CSTNU and be
checked for dynamic controllability (i. e., temporal consistency). Altogether the prototype
demonstrates the practical feasibility of the proposed transformation and respective
algorithms. Figure 4.9 depicts a screenshot of the ATAPIS process editor showing a
time-aware process schema at the top and its corresponding CSTNU at the bottom.
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4.2.3 Evaluation and Related Work

Bettini et al. [11] consider the contingent nature of process activities as well. In particular,
they introduce the concept of a free schedule for a time-aware process schema: A schedule
is free if it is possible to statically fix the start time of all activities of a process schema
before starting the execution of corresponding process instances, without constraining
the durations of respective activities, and while satisfying all constraints [11]. The
concept of free schedule is close to the one of controllability. In particular, a free schedule
corresponds to a controllable path of the process schema. Note that the opposite is not
necessarily true, as the start times of the activities of a dynamically controllable path
may be dynamically decided during run time.

The concepts of contingent activity durations and controllability have been mainly in-
vestigated in the artificial intelligence and planning area in connection with temporal
constraint networks. The concept of contingent durations was first discussed by Vidal
et al. [163, 164] and the Simple Temporal Problem under Uncertainty (STPU) in combi-
nation with a basic notion of controllability is presented. In turn, Morris et al. [106, 108]
propose an extension of Simple Temporal Network (STN) [39], the Simple Temporal Net-
work with Uncertainty (STNU) to solve the STPU. Subsequently they propose multiple
sound and complete algorithms for checking the dynamic controllability of STNU in
pseudo-polynomial time [105, 107, 108]. Combi et al. [26] were the first group transfer-
ing the concept of controllability to time-aware processes. In particular, [26] provides
inference rules to verify the controllability of sequential and parallel paths of a process
schema—alternative paths are not considered by this work.

Recently, Hunsberger et al. [57] merged CSTN and STNU to Conditional Simple Tem-
poral Network with Uncertainty (CSTNU), supporting both alternative execution paths
and contingent duration constraints. Moreover, they extended the notion of dynamic
controllability in a suitable way. In turn, Combi et al. [30, 31] presented the first sound,
but not complete algorithm for checking dynamic controllability of a CSTNU. Moreover,
Cimatti et al. [23] presented the first sound and complete algorithm for verifying dynamic
controllability of a CSTNU by showing that CSTNU can be translated to Timed Game
Automata [97] and then be verified using model checking tools like UPPAAL-Tiga [9].

(LPCR13) is the first work to apply CSTNU in the context of time-aware processes to
check temporal consistency of the latter. Moreover, it is the only work considering the
contingent, but restrictable nature of process activities and proposing a suitable technique
for checking temporal consistency of corresponding time-aware process schemas.

4.2.4 Discussion and Outlook

(LPCR13) considers fundamental requirements for the comprehensive design-time support
of time-aware processes. First, we define a set of basic elements for modeling time-aware
process schemas, which specifically consider the contingent, but restrictable nature of
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activity durations and allows for a flexible execution of related process instances. Second, a
transformation of time-aware process schemas to CSTNU is presented for checking the
temporal consistency of time-aware process schemas with contingent activity durations
and alternative execution paths at design time.

To the best of our knowledge, (LPCR13) has been the first work to comprehensively
consider contingent activity durations and alternative execution paths in an integrated
way. As limitation of the presented work, to set a focus, only a limited set of time
patterns is considered. However, the results presented in (LRW16) (cf. Section 4.1.2)
show that the approach presented by the referenced paper can be easily extended to
consider a wider range of time patterns as well. Yet, the support of certain time pattern
variants, which might conflict with the notion of dynamic controllability (e. g., TP8: Time-
dependent Variability), still require further investigation. Moreover, a closer analysis of
selected use cases has revealed that in some scenarios (e. g., in the context of modularized
processes [84, 85]) the proposed restrictable activity duration range and its CSTNU
transformation may still be too limited.
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4.3 Executing Time-Aware Processes

The content of this section was published in the following articles:
LPCR13 A. Lanz, R. Posenato, C. Combi, and M. Reichert. Controllability of

time-aware processes at run time. In On the Move to Meaningful Inter-
net Systems: OTM 2013 Conferences — Proceedings of the 21st Inter-
national Conference on Cooperative Information Systems (CoopIS’13),
number 8185 in Lecture Notes in Computer Science, pages 39–56.
Springer, September 2013. doi: 10.1007/978-3-642-41030-7_4

LRW16 A. Lanz, M. Reichert, and B. Weber. Process time patterns: A formal
foundation. Information Systems, 57:28–68, 2016. doi: 10.1016/j.
is.2015.10.002

The original articles are added in Appendices A.2 and A.3.

4.3.1 Problem Description

Ensuring temporal consistency of a time-aware process schema solely at design time is not
sufficient. In particular, during the execution of a process instance, temporal constraints
need to be continuously updated according to the actual durations of already executed
activities as well as the control-flow decisions made during run time. Moreover, not all
temporal constraints may be fully known at design time. For example, the value of a
Fixed Date Element (TP4; e. g., an appointment) only becomes known during run time
and is specific to each process instance. Finally, temporal constraints that cannot be fully
checked at design time (e. g., TP5: Schedule Restricted Elements) can now be verified
based on the actual execution time frames of the process instance and corresponding
activity instances.

Hence, for time-aware processes, it becomes necessary to continuously monitor and
update their temporal constraints during run time and to re-verify temporal consistency
of respective process instances. Particularly, note that any process instance is unique with
respect to its temporal properties (e. g., execution time frames, actual activity durations
etc.).

4.3.2 Scientific Contribution

Temporal consistency of a process schema must be checked both at design and run
time. At design time, such a consistency check allows guaranteeing that the design-time
phase is sound as any process instance may be executed meeting the given temporal
constraints. At run time, the consistency check updates the time model according to the
real durations of already executed activities, to the possible fixed date constraints, and
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to the current execution path. In particular, temporal consistency has to be verified after
the completion of each activity.

To be able to monitor the temporal consistency of a process instance, when creating it, the
time model (i. e., CSTNU transformation) derived at design time is cloned. This instanceInstance Time

Model time model is then updated according to the starting time of the process instance. Next,
all temporal constraints which become known at process creation time are considered
by updating respective constraint(s) in the network. Regarding a Fixed Date Element,
for example, the CSTNU constraint inserted at design time is updated to the actual
value of the pattern occurrence. Moreover, Schedule Restricted Elements are considered
by restricting the corresponding CSTNU constraint such that its bounds lie within the
first and last possible time slot of the respective schedule. Finally, a consistency check
is performed to update any implicit constraints. This determines the time frame for
starting the first activity, which may then be used by the process execution engine.

Note that the ATAPIS framework employs a preemptive strategy for executing and
monitoring activities. In particular, it monitors the start and execution of all activities
to detect and, if possible, prevent constraint violations. In this context, the implicit
temporal constraints, as derived by the CSTNU checking algorithm, are used to discover
future violations of a temporal constraint not directly related to the current activity
(e. g., future deadlines that can no longer be met).

When completing an activity, the CSTNU instance must be updated to the actual
duration of the activity. Moreover, the activity may provide the parameter values for
some other temporal constraints (e. g., the date value of a fixed date element). In turn,
each time an XOR-split is executed, the CSTNU instance must be updated by removing
all nodes and edges belonging to skipped XOR branches. In particular, when executing
an XOR-split the corresponding observation timepoint is also executed, determining the
truth value of the associated propositional letter (cf. Definition 4.1). Therefore, the
execution scenario (cf. Definition 4.2) is updated and all nodes/edges not consistent with
it are removed. Each time the CSTNU instance is updated, a controllability check must
be performed to propagate any changes.

Algorithm 1 shows the pseudo code of the algorithm TimeAwareProcessControllabili-
tyCheck as proposed by (LPCR13). It updates the CSTNU instance as described and
subsequently checks the dynamic controllability of the network. Note that the only
possible reasons for the network becoming uncontrollable in Line 11 is that either the
execution of an activity takes longer than permitted or the date value set for a fixed
date element is not consistent with the CSTNU. In both cases, a time-specific exception
handling (e. g., escalations) should be triggered as the ultimate cause for such error is
out of control of the PAIS.
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Algorithm 1: TimeAwareProcessControllabilityCheck(S, N, e)
input : Process instance S with time model N and the event e which has just occurred
output :Whether or S is temporally consistent

1 if (e == “end of activity” Ai) then
2 di = real duration of Ai;
3 Update all constraints in N involving Ai using di;
4 foreach cij = constraint value known after the execution of Ai do
5 if (cij 6= null) then
6 Update all constraints in N requiring cij ;
7 end
8 end
9 Execute CSTNU consistency check on N ;

10 if (S is not temporally consistent) then
11 Throw an exception;
12 end
13 end
14 if (e == “end of XOR-split” Xi) then
15 di = real duration of Xi;
16 Update all constraints in N involving Xi using di;
17 bi = selected branch;
18 Remove all branches (edges and nodes) 6= bi;
19 Execute CSTNU consistency check on N ;
20 end
21 return S temporally consistent;

Proof-of-Concept Prototype

The concepts presented in (LPCR13; LRW16) haven been implemented as a proof-of-
concept prototype as part of the ATAPIS Toolset [72]. This prototype enables us to
simulate the execution of time-aware process instances and to monitor their temporal
consistency based on the presented algorithm. Figure 4.10 depicts a screenshot of the
ATAPIS client showing a time-aware process schema currently being executed at the
bottom and the currently active activity and its temporal constraints on the left.

4.3.3 Evaluation and Related Work

Most approaches considering temporal constraints for business processes focus on design-
time issues like the modeling and verification of time-aware process schemas [11, 27, 45,
101, 175] (cf. Section 4.1.3 for a more detailed discussion of respective approaches). To the
best of our knowledge, the approach presented by Eder et al. [44] is the only one explicitly
considering run-time aspects of time-aware processes. In particular, [44] suggests a
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Figure 4.10: Simulating the execution of a time-aware process using the ATAPIS client

basic run-time support by calculating “internal deadlines” for each activity based on
the available temporal information. In this context, activity durations correspond to
either the minimum, maximum or most frequent duration of the respective activity
(i. e., they are represented by a single, fixed value). Moreover, the calculation of the
internal deadlines assumes that the value of any Fixed Date Element is known when
creating the process instance; i. e., unlike in (LPCR13; LRW16), setting the particular
date during run time is not considered. Based on the calculated deadlines, each process
instance is associated with one out of three different run-time states—green, yellow, and
red—depending on how big the current threat for missing a deadline looks like for the
respective process instance. The assessment of this threat is done solely based on the
pre-calculated deadlines and some pre-defined threshold values, i. e., re-calculation of the
deadlines during run time is not carried out.

In [55, 56], Hunsberger proposes two algorithms for the efficient execution of dynamically
controllable STNU. Both guarantee that the execution of a dynamically controllable
STNU will complete without violating any of the temporal constraints. However, re-
spective algorithms cannot directly be applied to the execution of time-aware processes
as they assume that each non-contingent timepoint is executed by the system at the
earliest possible time (i. e., as soon as all temporal constraints involving the timepoint
can be satisfied). For time-aware processes this cannot be enforced, as the execution
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time of activities is generally not decided by the PAIS itself, but by its users. Neverthe-
less, respective algorithms provide interesting insights for the further development and
optimization of the execution algorithm proposed by (LPCR13).

Kumar et al. [69] introduce the concept of controlled constraint violations as a way to
successfully complete a process instance that has run into troubles by minimizing the
total penalty resulting from these violations. In this context, they propose an approach
for checking temporal consistency of a time-aware process schema by mapping it to a
general Constraint Satisfaction Problem (CSP) [38] and solving the latter for each possible
execution path using the CSP-solver CPLEX [60]. To allow for controlled violations of
the temporal constraints, the CSP is extended by a relaxation variable for each constraint
determining the amount by which the constraint shall be relaxed. This approach is
similar—although in the opposite sense—to the restrictable time intervals proposed by
(LPCR13).

4.3.4 Discussion and Outlook

To solely verify time-aware process schemas at design time is neither sufficient nor
completely possible. In particular, (LWR14) has shown that certain time patterns cannot
be verified at design time, as they are specific to each process instance. Moreover,
run-time specific information like real activity durations and execution decisions must be
considered to ensure that no constraint is violated during run time.

Therefore, (LPCR13; LRW16) consider fundamental requirements for the run-time
support of time-aware processes. In particular, we demonstrate how CSTNU can be
used for ensuring the temporal consistency of time-aware process instances during run
time. Moreover, an abstract algorithm for checking and monitoring temporal consistency
during run time is presented and its complexity is discussed (cf. LPCR13).

To the best of our knowledge (LPCR13; LRW16) have been the first works to com-
prehensively consider contingent activity durations, alternative execution paths and
run-time support of time-aware process instances. In the future, we expect that the
approach presented by the referenced papers will be used to further investigate run-time
support of time-aware processes. In particular, many open issues remain regarding the
proper support of time-aware process instances in PAIS (e. g., how to enforce temporal
constraints and what shall happen if a temporal constraint can no longer be satisfied).
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Dealing with Changes of Time-Aware

Processes

Lost time is never found again.

(Benjamin Franklin, 1706–1790)

The content of this section was published as follows:
LR14 A. Lanz and M. Reichert. Dealing with changes of time-aware processes. In

Business Process Management — Proceedings of the 12th International
Conference on Business Process Management (BPM’14), volume 8659 of
Lecture Notes in Computer Science, pages 217–233. Springer, September
2014. doi: 10.1007/978-3-319-10172-9_14

The original article is contained in Appendix A.4.

A more detailed discussion of the presented change operations as well as additional change
operations, and the proof of the main theorem of the paper, have been published in a
technical report [70].

5.1 Problem Description

As process execution does not always stick to the plan, processes need to be flexible to
cope with unforeseen events during run time [123]. To meet these challenges adaptive
PAIS have been developed which allow a process instance to be dynamically modified
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during run time using a set of change operations [123, 126, 130]. Respective changeChange
Operation operations abstract from low-level change primitives (e. g., inserting an edge or node)

and ensure that, when being applied to a sound process schema, the modified process
schema will be structurally and behaviorally sound as well [123, 131] (cf. Section 2.3).

Time-aware processes, in turn, need to be even more flexible, as time can neither be
slowed down nor stopped. Therefore, in practice it is common that deadlines have to be
re-scheduled or temporal constraints be dynamically adapted to be able to successfully
complete a process instance that has run into difficulties. Moreover, in certain scenarios
it may become necessary to structurally change a time-aware process instance (e. g., by
moving, deleting or inserting an activity) to cope with unforeseen events or delays during
run time.

While both structural and behavioral soundness in the context of change operations have
been extensively studied in literature [48, 128, 131–134, 156] temporal constraints and
temporal consistency have not been considered in this context so far. When dynamically
modifying a time-aware process instance it must be ensured that the resulting process
instance remains temporally consistent; i. e., it may still be completed without violating
any of its temporal constraints. Hence, for each change operation suitable pre- and
post-conditions must be provided that enable us to evaluate the applicability of a change
operation and to guarantee for the temporal consistency of the changed process instance.
Moreover, it is important that respective change operations and algorithms work as
efficiently as possible in order to not cause any significant delays that may threaten the
successful completion of the process instances. The latter even becomes crucial in the
context of process evolution, where a possibly large set of process instances needs to beProcess

Evolution migrated on-the-fly to a changed process schema [123, 129, 167].

5.2 Scientific Contribution

This part of the thesis extends well established process change operations with temporal
constraints. In particular, (LR14) shows how temporal consistency can be efficiently
ensured in the context of dynamic changes. To this end, it provides pre- and post-
conditions for respective change operations that guarantee for the temporal consistency
of the changed process instance. Subsequently, the referenced paper analysis the effects
respective changes have on the temporal constraints of a process instance. Based on this
analysis, it then provides a means to significantly reduce the complexity when applying
multiple change operations within the same change transaction (e. g., in the context ofChange

Transaction process evolution).
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Preliminaries

As discussed in Section 4.1.2, a time-aware process schema1 is temporally consistent if the
corresponding CSTN is weakly consistent. Moreover, for each weakly consistent CSTN
there exists an equivalent representation being minimal with respect to its temporal
constraints, called the minimal network (cf. Definition 4 in LR14). More formally: Minimal

Network

Definition 5.1 (Minimal Network)
The minimal network of a CSTN N = 〈T , C,L,OT ,O,P 〉 (cf. Definition 4.1) corresponds
to the unique CSTN M = 〈T , C′,L,OT ,O,P 〉 having the same set of solutions as N (cf.
Definition 4.2), where each value allowed by any constraint c ∈ C′ is part of at least one
solution of N .

A minimal network for CSTN N exists iff N is weakly consistent. Moreover, the minimal
network of a CSTN can be determined using most standard algorithms for checking weak
consistency (e. g., [154]). The minimal network provides a restricted set of constraints:
As long as the value of each timepoint is consistent with all constraints referring to it,
we can guarantee that the entire CSTN is weakly consistent. Besides explicit constraints
c ∈ C, we obtain when mapping the process model to the CSTN (cf. Section 4.1.2), the
minimal network contains implicit constraints between any pair of timepoints that may
occur in the same execution path. These implicit constraints represent the effects the
explicit constraints have on the overall CSTN (i. e., they represent interdependencies
between explicit constraints). The implicit constraints are derived from the explicit ones
when determining the minimal network.

As discussed in Section 4.3, when executing a process instance, the minimal network
of the CSTN created at design time is cloned. This instance time model is then kept Instance Time

Modelup-to-date with the actual temporal state of the process instance and is used to monitor
and re-check temporal consistency of the instance (cf. Section 4.3).

Change Operations for Time-Aware Processes

Standard change operations adapting process instances without temporal constraints
have been extensively studied in literature [123, 128, 131, 132, 134]. Based on the
composition of these change operations, it becomes possible to realize more complex
change patterns (e. g., move activity) as well [123, 167]. To ensure the soundness of the
modified process instance and its schema, respective change operations abstract from low-
level change primitives (e. g., adding an edge or node) and additionally define necessary
state-specific pre- and post-conditions. Respective conditions have been extensively

1Note that the referenced paper uses the term process model instead of process schema. In the context
of this work both terms can be used interchangeably.
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Operation Description

Control Flow
InsertSerial(N1, N2, Nnew,

[dmin, dmax])
Inserts node Nnew with duration [dmin, dmax] between directly
succeeding nodes N1 and N2.

InsertPar(N1, N2, Nnew,
[dmin, dmax])

Inserts node Nnew with duration [dmin, dmax] as well as an
AND block surrounding the SESE block defined by N1 and N2.

InsertCond(N1, N2, Nnew,
[dmin, dmax], c)

Inserts node Nnew with duration [dmin, dmax] and condition c
as well as an XOR block between succeeding nodes N1 and N2.

InsertBranch(G1, G2, c) Inserts an empty branch with condition c between XOR-split
G1 and XOR-join G2.

DeleteActivity(N) Deletes activity N.

Temporal Constraints
InsertT imeLag(N1, N2,

typetl, [tmin, tmax])
Inserts a time lag [tmin, tmax] between nodes N1 and N2.
Thereby, typetl ∈ {start-start, start-end, end-start, end-end}
describes whether the time lag is inserted between the start of
the two activities, the start of N1 and the end of N2, the end
of N1 and the start of N2, or the end of the two activities.

InsertFDE(N, typefde) Adds a fixed date element of type typefde ∈ {ES ,LS ,EE ,LE}
to node N.

DeleteT imeLag(N1, N2,
typetl)

Deletes the time lag of type typetl ∈ {start-start, start-end,
end-start, end-end} between nodes N1 and N2.

DeleteFDE(N, typefde) Deletes any fixed date element of type typefde ∈
{ES ,LS ,EE ,LE} from node N.

Table 5.1: Basic change operations (LR14)

studied in literature [131], and thus will not be considered in the following. Instead, we
focus on time-related aspects.

(LR14) extends a set of basic structural change operations with pre- and post-conditions
required for changing time-aware process instances. Moreover, it provides additional
change operations that allow modifying the temporal constraints of a time-aware process
instance (e. g., inserting a Time Lag). Table 5.1 lists the change operations considered
by the referenced paper and the accompanying technical report [70]. Altogether, these
change operations allow changing a time-aware process instance, while guaranteeing the
soundness of the underlying process schema as well as the temporal consistency of the
changed process instance.

Note that any time-related instance-specific data (e. g., execution times of activities) is
maintained by the instance time model corresponding to the process instance. Hence, it
is easy to verify that it is sufficient to only consider the current instance time model when
analyzing the temporal properties of the current and the modified process instance.

To discuss some of the issues faced when defining change operations for time-aware
processes and to highlight some of the results we obtained in (LR14), first consider change
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Figure 5.1: Change operation: InsertCond

operation InsertCond(N1, N2, Nnew, [dmin, dmax], c). It allows inserting a node Nnew (e. g.,
an activity) with duration [dmin, dmax] conditionally between directly succeeding nodes
N1 and N2 as illustrated in Figure 5.1. This change is accomplished by first inserting
XOR-split Gs and XOR-join Gj sequentially between N1 and N2, and then inserting Nnew
conditionally between Gs and Gj. Moreover, the transition condition of the control edge
linking Gs and Nnew is set to c while the one of the control edge linking Gs and Gj is set
to ¬c. The change primitives required to achieve these changes are listed in Part 1 of
Algorithm 2.

From a temporal point of view, it is noteworthy that, when adding XOR-split GS and
respective conditions c/¬c to the process schema, this results in a set of additional
execution paths. In particular, each execution path of the original process schema,
which contains N1 and N2, now corresponds to two execution paths, one with c = false
representing the original execution path and one with c = true representing the new one
(with Nnew being in sequence between N1 and N2). Hence, the temporal properties of any
execution path for which c = false holds remain unaltered. In turn, in any execution path
for which c = true holds, node Nnew is basically inserted in sequence with N1 and N2.

In the latter case, one can observe that the insertion of node Nnew might first and
foremost increase the minimum time distance between N1 and N2 to dmin. By contrast,
the maximum time distance between the two nodes is not affected as the added control
edges do not constrain it. Accordingly, if the minimum duration dmin of the new node
is compliant with any implicit or explicit constraint 〈[cmin, cmax]N1EN2S

,β〉 between the
ending instant of N1 and the starting instant of N2 in the instance time model, the
insertion of the node will not affect the temporal consistency of the process instance. In
more detail, dmin ≤ cmax must hold to preserve the temporal consistency of the process
instance after the change (cf. section Pre in Algorithm 2).

After updating the process schema, the mapping of the new nodes and control edges
must be added to the instance time model as well (cf. 2. in Algorithm 2). In particular,
this adds a new observation timepoint GsE and proposition c to the time model. The
labels of the temporal constraints representing Nnew and the two control edges connecting
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Algorithm 2: InsertCond(N1, N2, Nnew, [dmin, dmax], c)
Pre succ(N1) = N2,

∀〈[cmin, cmax]N1EN2S
,β〉 ∈ C : cmax ≥ dmin

Init β = L(N1E) ∧ L(N2S)
Post // 1.) Update process schema:

RemoveEdge(N1, N2),
AddNode(Gs, [0, 1],XOR), AddNode(Gj, [0, 1],XOR),
AddEdge(N1, Gs), AddEdge(Gs, Gj), AddEdge(Gj, N2),
AddNode(Nnew, [dmin, dmax],Activity), AddEdge(Gs, Nnew), AddEdge(Nnew, Gj),
UpdateCondition(Gs, Nnew, c), UpdateCondition(Gs, Gj,¬c),
// 2.) Add mapping to time model:
AddT imePoint(GsS ,β), AddObservationT imePoint(GsE , c,β),
AddConstraint(GsS ,GsE , [0, 1],β),
AddT imePoint(NnewS ,β), AddT imePoint(NnewE ,βc),
AddConstraint(NnewS ,NnewE , [dmin, dmax],βc),
AddT imePoint(GjS ,β), AddT imePoint(GjE ,β),
AddConstraint(GjS ,GjE , [0, 1],β),
AddConstraint(N1E ,GsS , [0,∞],β), AddConstraint(GjE ,N2S , [0,∞],β),
AddConstraint(NnewE ,GjS , [0,∞],βc), AddConstraint(GsE ,NnewS , [0,∞],βc),
AddConstraint(N1E ,NnewS , [0,∞],βc), AddConstraint(NnewE ,N2S , [0,∞],βc),
AddConstraint(GsE ,GjS , [0,∞],β¬c),
// 3.) Update minimal time model:
∀〈[cmin, cmax]N1EN2S

, γ〉 ∈ C :
AddConstraint(N1E ,GsS , [0, cmax − dmin], γ),
AddConstraint(GsE ,NnewS , [0, cmax − dmin], γc),
AddConstraint(NnewE ,GjS , [0, cmax − dmin], γc),
AddConstraint(GjE ,N2S , [0, cmax − dmin], γ),
AddConstraint(N1E ,NnewS , [0, cmax − dmin], γc),
AddConstraint(NnewE ,N2S , [0, cmax − dmin], γc),
AddConstraint(GsE ,GjS , [cmin, cmax], γ¬c),
UpdateConstraint(N1E ,N2S , [cmin, cmax], γ¬c),
AddConstraint(N1E ,N2S , [max{cmin, dmin}, cmax], γc)

it with Gs and Gj, respectively, are set to βc with β being the conjunction of the labels
of timepoints N1E and N2S . In turn, the label of the constraint corresponding to the
control edge between Gs and Gj is set to β¬c. Moreover, the label of any constraint
〈[cmin, cmax]N1EN2S

, γ〉 between the ending instant of N1 and the starting instant of N2
must be augmented by proposition ¬c resulting in constraint 〈[cmin, cmax]N1EN2S

, γ¬c〉.
Finally, another constraint 〈[max{cmin, dmin}, cmax]N1EN2S

,βc〉 containing proposition c
must be added between the two timepoints. The latter corresponds to the case, where
Nnew is executed between the two nodes (cf. 3. in Algorithm 2). After applying this
operation, the minimality of the adapted minimal time model has to be restored (e. g.,
by executing a consistency check). This must be accomplished before performing any
other change or resuming the execution of the process instance in order to update any
implicit constraints.
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Algorithm 3: DeleteActivity(N)
Pre N has no incoming or outgoing explicit temporal constraint,
Init Np = pred(N), Ns = succ(N),

cmin/cmax is the minimum/maximum distance of the explicit constraint between
Np and Ns if any, or cmin = 0/cmax =∞ if there is no explicit constraint

Post // 1.) Update process schema:
RemoveEdge(Np, N), RemoveEdge(N, Ns), RemoveNode(N), AddEdge(Np, Ns)
// 2.) Recreate minimal time model from updated process schema.

Algorithm 4: InsertTimeLag(N1, N2, typetl, [tmin, tmax])

Pre 〈IS〉 =
{
S typetl = start-*
E typetl = end-* , 〈IT 〉 =

{
S typetl = *-start
E typetl = *-end

(L(N1〈IS〉) ∧ L(N2〈IT 〉)) is satisfiable
∀〈[cmin, cmax]N1〈IS 〉N2〈IT 〉 ,β〉 ∈ C : cmin ≤ tmax ∧ tmin ≤ cmax

Post // 1.) Update process model:
AddT imeLag(N1, N2, 〈IS〉[tmin, tmax]〈IT 〉)
// 2.) Add mapping to time model:
AddConstraint(N1〈IS〉,N2〈IT 〉, [tmin, tmax],L(N1E) ∧ L(N2S))
// 3.) Update minimal time model:
∀〈[cmin, cmax]N1EN2S

,β〉 ∈ C :
UpdateConstraint(N1〈IS〉,N2〈IT 〉, [max{cmin, tmin}, min{cmax, tmax}],β)

For the other insert operations (i. e., InsertSerial, InsertPar, and InsertBranch)
similar considerations apply. Hence, we will not discuss them in detail.

In turn, deleting an activity (i. e., change operation DeleteActivity(n)) is always possible
without jeopardizing temporal consistency as temporal constraints are only removed from
the time model (cf. Algorithm 3). As sole pre-condition, we require that the activity to
be removed has no remaining explicit temporal constraint referring to it (e. g., time lag
or fixed date element). If necessary, these have to be removed in advance using respective
change operations (cf. Table 5.1).

When deleting an activity from the process instance, it is not possible to restore minimality
of the modified instance time model. In particular, it is not possible to determine which
of the values removed from the constraints (when establishing minimality) may now be
re-added. Instead it becomes necessary to recalculate the minimal instance time model
from the original one or from the process schema itself.

In terms of change operations modifying the temporal constraints of a process schema,
operation InsertT imeLag(N1, N2, typetl, [tmin, tmax]) allows adding a time lag [tmin, tmax]
between nodes N1 and N2. The instants the time lag refers to (i. e., start vs. end) are
specified by parameter typetl. In general, adding a time lag is only possible if there exists
at least one execution path containing both nodes (LWR14), i. e., L(N1〈IS〉) ∧ L(N2〈IT 〉)
is satisfiable (cf. Algorithm 4).
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5 Dealing with Changes of Time-Aware Processes

The time model is then adapted by adding the mapping of the respective Time Lag
(i. e., a constraint 〈[tmin, tmax]N1〈IS〉N2〈IT 〉

,L(N1〈IS〉) ∧ L(N2〈IT 〉)〉) between correspond-
ing timepoints. This results in an update of each existing implicit constraint 〈[cmin,
cmax]N1〈IS〉N2〈IT 〉

,β〉. In turn, adding the mapping of the Time Lag is only possible if
the range of the resulting constraint [max{cmin, tmin}, min{cmax, tmax}] still permits at
least one value, i. e., it allows for at least one possible solution. Accordingly, the opera-
tion may be applied if, for any implicit constraint between N1〈IS〉 and N2〈IT 〉 it holds:
cmin ≤ tmax ∧ tmin ≤ cmax. Algorithm 4 details the respective pre- and post-conditions.
After updating the temporal constraints, again minimality of the adapted minimal time
model must be restored.

Finally, the addition of a Fixed Date Element (i. e., operation InsertFDE) can be
managed similarly to the insertion of a time lag. In turn, deleting a Time Lag or
a Fixed Date Element (i. e., operations DeleteT imeLag and DeleteFDE) has similar
pre-conditions as deleting a node (cf. operation DeleteActivity).

Analyzing the Effects of Change Operations

As a particular downside of the change operations discussed by (LR14), the minimality
of the instance time model has to be restored after each change operation to update
any implicit constraint. Only then it becomes possible to ensure that another change
within the same change transaction may still be applied without violating temporal
consistency of the process instance. However, calculating the minimal network of a CSTN
is expensive regarding computation time. To be more precise, its complexity corresponds
to O(n32k) with n being the number of timepoints and k being the number of observation
timepoints in the time model. Consequently, there might be significant delays when
applying multiple change operations to large time-aware process schemas. This issue
becomes even more pressing in the context of process schema evolution [123], when a
potentially large set of process instances shall be dynamically migrated to a new process
schema version.

To alleviate this issue, (LR14) proposes a method to estimate the maximum effect a
particular change has on the minimal time model. Based on this, it becomes possible to
decide whether or not another change operation may be applied without need to restore
minimality of the instance time model first. The respective method is based on the
results of Theorem 5.1 (cf. Theorem 1 in LR14), which shows how the maximum effect
of any restriction of a minimal CSTN can be estimated.
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Theorem 5.1
LetM = 〈T , CM ,L,OT ,O,P 〉 be a minimal CSTN andM∗ = 〈T , CM∗ ,L, OT ,O,P 〉 be
the CSTN derived fromM by replacing constraint cAB = 〈[x, y]AB ,β〉 ∈ CM with the more
restrictive constraint c∗AB = 〈[x+ σ, y− ρ]AB ,β〉; σ, ρ ≥ 0; i. e., C∗M = CM \ cAB ∪ {c∗AB}.
Then: For the minimal network N = 〈T , CN ,L,OT ,O,P 〉 of M∗ the following holds:
for any constraint c′XY = 〈[x′, y′]XY , γ〉 ∈ CN the lower bound is increased by at most
δ = max{σ, ρ} and the upper bound is decreased by at most δ compared to the original
constraint cXY = 〈[x, y]XY , γ〉 ∈ CM . Formally:

∀〈[x, y]XY , γ〉 ∈ CM , 〈[x′, y′]XY , γ〉 ∈ CN : (x ≤ x′ ≤ x+ δ) ∧ (y ≥ y′ ≥ y − δ)

The proof of Theorem 5.1 can be found in [70]. It is based on first showing that a CSTN
can be mapped to a more simple kind of temporal problem, i. e., so called Simple Temporal
Networks (STNs) [39]. Subsequently, the proof argues that the minimal network of an
STN is equivalent to the all-pair-shortest-path distance matrix of the STN. Finally, the
proof shows that changing any constraint in the minimal STN by δ, will reduce any
shortest path in the network by at most δ as well.

To illustrate Theorem 5.1, assume that a change operation restricts a constraint 〈[x, y]XY ,
β〉 in the minimal time model to 〈[x∗, y∗]XY ,β〉 = 〈[x+ ρ, y − σ]XY ,β〉 and afterwards
minimality of the time model is restored. Theorem 5.1 now states that any constraint 〈[u,
v]UV ,α〉 in the original minimal time model is restricted to at most 〈[u′, v′]UV ,α〉 = 〈[u+δ,
v − δ]UV ,α〉 with δ = max{ρ,σ} in the new minimal time model.

Reconsider change operation InsertCond and assume that the instance time model is
adapted as described by Algorithm 2. The next step would be to restore minimality of
this time model. On close consideration one can observe that the only change having
an effect on the resulting minimal time model is the one restricting constraint 〈[cmin,
cmax]N1EN2S

,β〉 between N1E and N2S to 〈[max{cmin, dmin}, cmax]N1EN2S
,βc〉 (see LR14

and [70] for a more detailed discussion). Assume further that the lower bound of the
constraint is increased by δ = dmin − cmin. Theorem 5.1 then implies that the upper and
lower bound of any other constraint in the new minimal time model will be restricted by
at most δ as well. Thus, we are able to approximate the maximum difference between
the new minimal time model and the original one. Similar rules apply to all other change
operations (cf. Table 5.1) adding or restricting a temporal constraint.

From this, we can conclude that when applying another insert operation, it will be
sufficient to verify that any precondition referring to a constraint 〈[x, y]XY ,β〉 of the
minimal time model is satisfied for the respective approximated constraint 〈[x+δ, y−δ]XY ,
β〉 as well. In this case the insert operation may be applied without violating the temporal
consistency of the process instance. In particular, and this constitutes a fundamental
advantage of the results presented by (LR14), we need not restore minimality of the
adapted minimal time model prior to the application of the operation. By contrast, if the
precondition is not met for the approximated constraint, it might still be possible to apply
the change without violating temporal consistency. However, in this case, minimality
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of the modified minimal time model must be first restored before deciding whether the
change may be applied.

By contrast, when removing an explicit constraint from the time model, basically, this
results in the possible relaxation of some implicit constraints. As discussed in the previous
section, it is not possible to restore minimality of a modified time model after relaxing
one of its constraints. This is due to the fact that one cannot easily determine which
other constraints have to be relaxed and to what extend. However, relaxing a constraint
only results in the relaxation of other constraints. Particularly, no existing constraint is
restricted by this change. Thus, it is not necessary to restore minimality of the minimal
time model after each delete operation. Instead it is sufficient to restore its minimality
if the precondition of a subsequent change operations cannot be met. Particularly, in
such a case, it becomes necessary to check whether the change operation indeed violates
temporal consistency of the process instance or the current approximation of the minimal
time model is too strict.

Based on these observations it becomes possible to apply a sequence of change operations
to a process instance within a single transaction (e. g., to insert and/or delete multiple
activities) without need to restore minimality of the minimal time model after each
change. Example 5.1 illustrates this approach.

Example 5.1 (Applying multiple change operations)
Figure 5.2 depicts a process schema and the corresponding minimal time model2 to
which a series of three change operations a©- c© shall be applied. First, X having duration
[4, 9] shall be inserted between A and ANDsplit (Figure 5.2 a©). This is possible without
violating the temporal consistency of the process schema as the minimum duration of X
is lower than the maximum time distance between A and ANDsplit (i. e., 4 ≤ 7). After
performing the change, the value used for approximating the minimal time model becomes
δ = 4− 0 = 4. Next, Y shall be inserted between B and C (Figure 5.2 b©). Again this
is possible since the minimum duration is lower than the approximated maximum time
distance (i. e., 9 ≤ 14 − δ = 10). We can now use the approximated time model to
approximate the time model resulting after this change; i. e., we may simply assume
that δ is increased to δ = 4 + (9 − 7) = 6 after the change. Subsequently, inserting Z
with duration [5, 8] between D and ANDjoin (Figure 5.2 c©) is not possible based on the
approximated minimal time model as the precondition of the respective change operation
cannot be met (i. e., 5 6≤ 10 − δ = 4). Hence, minimality of the minimal time model
must be restored (Figure 5.2 d©). Afterwards, inserting Z becomes possible as for the
new minimal time model the precondition of the operation is met. Finally, minimality
of the last minimal time model must be restored (Figure 5.2 e©) before continuing the
execution of the process instance.

2To improve readability implicit constraints have been omitted from the time model.
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Figure 5.2: Applying multiple change operations to a process schema (LR14)

Proof-of-Concept Prototype

The approach presented by (LR14) was implemented as a proof-of-concept prototype
as part of the ATAPIS Toolset [72]. This prototype allows users to apply the presented
change operations to both process schemas and process instances. The implementation of
the change operations is based on the well-founded set of change operations provided by
the AristaFlow BPM Suite [34], which was used as basis for the ATAPIS Toolset. Overall
the prototype demonstrates the applicability of the approach presented by (LR14). The
prototype is shown in Figure 5.3: at the top, a process model from the healthcare domain
comprising several temporal constraints is shown. At the bottom left, the automatically
generated time model is depicted. At the bottom right, the corresponding minimal time
model is shown. Finally, the right side displays the available set of change operations.
Whether a particular change operation may be applied is decided by checking both
structural and temporal preconditions. When applying the operation to the process
instance all three models are updated simultaneously. Altogether the prototype allows us
to efficiently provide the required flexibility for time-aware processes.
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Figure 5.3: Screenshot of the ATAPIS Toolset with active change operations (LR14)

5.3 Evaluation and Related Work

Dynamic changes of processes without temporal constraints and adaptive PAIS were
extensively studied in the past [18, 48, 121, 122, 124, 125, 130, 131, 156]. A comprehensive
overview of the state of the art in adaptive PAIS and process flexibility is provided by
[123].

Regarding dynamic process instance changes, the soundness of the modified process
instance is crucial [18, 48, 128]. Besides the structural soundness of the underlying
process schema, this encompasses the behavioral soundness of the modified process
instance [18, 123, 130]. How to ensure behavioral soundness when applying a particular
change operation has been studied in [130, 131, 156]. A widespread correctness notion for
behavioral soundness is state compliance [18, 130] (cf. Section 2.3). Note that ensuring
temporal consistency of the modified process schema, as discussed by (LR14), also allows
ensuring state compliance of the time perspective; i. e., it ensures that the temporal
execution trace is reproducible on the modified process schema.

Weber et al. [166] present 18 change patterns and 7 change support features frequently
used for updating process schemas as well as process instances. In turn, [134] formally
defines their semantics and—similar to the work presented by (LR14)—presents suitable
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pre- and post-conditions for each change pattern, which ensure that the resulting process
instance remains structurally and behaviourally sound. In [165], a subset of the change
patterns is used for refactoring process schemas in large process repositories, while
preserving their behaviour.

In the context of process schema evolution challenging issues emerge as well. When
establishing a new process schema version, for example, one has to decide whether already
running process instances shall be migrated to the new process schema or be completed
based on the previous schema version [123]. In this context, Rinderle et al. [129] discuss
how to detect and deal with conflicts that may arise if an already modified process
instance shall be migrated to a new process schema version.

To the best of our knowledge, the work by Sadiq et al. [143] is the only work considering
dynamic changes in the context of time-aware processes. However, [143] only provides a
high level discussion of the different aspects to be considered in this context. In particular,
it proposes the use of a three-phase modification process for process evolution consisting
of the steps definition of the modification, conforming the instances to be migrated to the
modification, and enacting the modification. According to Sadiq et al., the management
of temporal aspects constitutes an integral part of this process [143]. First, during the
definition phase the modified process schema must be checked for temporal consistency.
Then during the conforming phase the process instances to be migrated must brought
into conformity with the new process schema. This includes re-ensuring the temporal
consistency of the process instance. Finally, during the enactment phase the process
instance must be monitored to prevent unforeseen violations of temporal constraints that
may occur during the transition period. This three phase process is also valid for the
migration of process instances when using the time-aware change operations proposed by
(LR14). However, the complexity of the first two phases may be significantly reduced as
the proposed change operations already allow ensuring the temporal consistency of the
process schema and respective instances.

Different aspects related to dynamic changes have been studied in the context of temporal
constraint networks as well. For example, Cesta and Oddi [20] investigate how the
efficiency of the consistency checking of STN can be improved when adding or removing
a temporal constraint to or from a minimal STN. In particular, they show that if a
constraint is added to a minimal STN during the subsequent constraint propagation, each
constraint may be updated at most once, otherwise the modified STN can no longer be
consistent. Moreover, they show how a dependency tree between the temporal constraints
of an STN can be used to decide which of the derived temporal constraints have to be
reevaluated when removing a temporal constraint from the network. Finally, Planken
et al. [113] present a more efficient consistency checking algorithm for STN based on the
incremental insertion of temporal constraints. Both results can probably be extended to
CSTN as well and be used to further increase the efficiency of the time-aware change
operations proposed by (LR14).
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5.4 Discussion and Outlook

In today’s fast-paced world, where small delays and missed deadlines might have severe
consequences, it is crucial for businesses to be able to control the temporal constraints of
their business processes. As process execution does not always stick to the plan, it is
further crucial that businesses are able to flexibly react to deviations in a time-aware
process instance without jeopardizing its other properties, like soundness and temporal
consistency. While soundness has been extensively studied in literature in the context of
dynamic process changes, (LR14) is the first work considering temporal consistency in
this context.

To this end, the referenced paper first defines a set of change operations for time-aware
processes with suitable pre- and post-conditions. The latter ensure that, if a change
operation is applied to a temporally consistent process instance, the changed process
instance remains temporally consistent. Second, the referenced paper analyzes the effects,
respective change operations have on the temporal constraints of the process instance.
Based on the results it proposes a technique for approximating the resulting temporal
properties of the changed process instance. This technique allows us to significantly
reduce the complexity of the time calculations required when applying multiple change
operations in the context of a single transaction.

In the future, we expect that the set of change operations presented by the referenced
paper will be extended to cover more complex change patterns as well. In general, such
change patterns can be realized based on a combination of change operations. However,
dedicated implementations of the change patterns with more specific pre- and post-
conditions might provide better support for respective change patterns. Moreover, we
expect that the presented approach will be further investigated in the context of process
evolution to evolve time-aware processes and migrate large sets of process instances to
a new process schema. In this context, it will be particularly interesting to see how
the algorithms can be further optimized and if clustering techniques can be used for
separating different sets of process instances (e. g., easily migratable vs. questionable
vs. not migratable) in order to further speed up the migration of large sets of process
instances.
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6
Summary and Outlook

All we have to decide is what to
do with the time that is given us.

(Gandalf, Lord of the Rings)

Nowadays, being in control of its business processes is of utmost importance for any
company. Many of these business processes are subject to temporal constraints which
have to be observed during process execution (e. g., due to business rules and regulations
or delivery contracts with business partners). To foster the management, execution,
monitoring, and control of their business processes companies increasingly adopt Process-
Aware Information Systems (PAISs) due to their promising perspectives for improved
process support. Yet, although the proper support of the time perspective is crucial for
many business processes, contemporary PAISs still lack a comprehensive support of the
time perspective. This constitutes a severe limitation for the widespread use of PAISs in
many application domains. Accordingly, the proper support of the time perspective has
been ranked among the key challenges for further development and maturation of this
promising technology [29, 33, 47, 120, 148].

To tackle some of the fundamental challenges emerging in this context this thesis con-
tributes essential concepts and techniques for the wider-range integration of the time
perspective in modern PAISs. Resulting Adaptive Time- and Process-Aware Information
System (ATAPIS) will serve as an ideal environment for the systematic integration and
automation of time-aware business processes.
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In Section 6.1 we first summarize the contributions of this work with respect to time
support in PAISs. Section 6.2 presents additional publications created during the author’s
Ph.D. project and shortly discusses their relationship with the contents of this thesis.
Finally, Section 6.3 concludes the thesis with an outlook on future research challenges we
identified during our research.

6.1 Contribution

This thesis contributes the ATAPIS framework enabling the integration of the timeATAPIS
Framework perspective as an integral part of the process life cycle (cf. Section 1.1) in adaptive

PAISs. The ATAPIS framework enables the comprehensive analysis, description and
formal specification of time-aware business processes by providing a set of well-founded
and universal process time patterns. Moreover, it provides a formal basis and techniques
for verifying the temporal consistency of resulting time-aware process schemas by first
defining a formal semantics for each time pattern and subsequently proposing a technique
for verifying the time perspective of a process schema using the aforementioned formal
semantics. To support process enactment, a theoretical framework as well as an algorithm
for monitoring and ensuring temporal consistency of time-aware processes during run
time are presented. Finally, a set of change operations enabling the dynamic modification
of time-aware process instances in a safe and sound manner is provided.

In summary:

In Section 3.1, a set of 10 process time patterns comprising more than 100 differentTime Pattern
pattern variants is presented. Respective time patterns are based on empirical evidence
and represent temporal concepts commonly occurring in real-world business processes.
The time patterns provide a scientifically grounded, universal set of notions for describing
temporal aspects in business processes. Hence, the time patterns facilitate the comparison
of PAISs regarding their support of the time perspective and foster the informed selection
of appropriate PAISs. Moreover, they may serve as a benchmark for assessing the support
a particular process management technology provides for time-aware processes. The
empirical evidence we gained in case studies, our evaluation of existing approaches, and
the rapid pick up of the time patterns by other researchers have confirmed that the
proposed time patterns are common in practice and are required for properly capturing
the time perspective of business processes in many application domains. Therefore,
they present an excellent and solid foundation for further investigating the support of
time-aware processes in PAISs in a comprehensive way.

To put the integration of the time patterns into PAISs on a sound and solid basis,
Section 3.2 formally defines the semantics of each time pattern and its variants. ToPrecise Formal

Semantics foster the use of the time patterns for a wide range of application scenarios this formal
description of the time pattern semantics is specified in a language-independent manner
based on temporal execution traces. This will facilitate the integration of the time
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patterns in a wide range of process modeling languages and process management tools as
respective implementations do not have to cope with the specifics of another modeling
language. The provision of the formal pattern semantics provides a key requirement
for the development of advanced techniques which enable us to formally verify the time
perspective of a (business) process at both design and run time as well as for properly
supporting the enactment and monitoring of time-aware processes.

The formal semantics of the time patterns provide the foundation for supporting time-
aware processes in PAISs. For this purpose, Section 4.1 proposes a framework for
implementing the time patterns in PAISs, which is subsequently extended and refined in
Section 4.2. The framework and corresponding techniques enable us to check whether a
particular time-aware process schema is temporally consistent according to the defined Temporal

Consistencyformal pattern semantics. Moreover, it allows uncovering complex interdependencies
between different temporal constraints, which otherwise might have gone unnoticed. This
enables us to answer one of the fundamental questions related to the modeling and
execution of time-aware processes, i. e., is it possible to successfully execute an instance
of a process schema without violating any of its temporal constraints. The framework is
subsequently extended to further consider the contingent, but restrictable nature of the
duration of real-world activities as well as issues emerging in the context of alternative
execution paths and run-time support. In particular, we provide a means to ensure that
an instance of a time-aware process schema remains temporally consistent no matter
how the durations of its activities actually turn out to be within their given bounds.
Moreover, we ensure that a process instance my be successfully completed regardless of
which path is chosen during run time and when respective decisions are made.

At process run time actual activity durations become known, the values of some temporal Run Time
constraint (e. g., appointments) are determined, and execution decisions are made. Hence,
checking temporal consistency of time-aware process schemas only at design time is not
sufficient. Therefore, Section 4.3 extends the proposed framework with necessary concepts
and algorithms required for the execution and monitoring of time-aware process instances.
In particular, we present an algorithm that enables flexible consistency checking of
time-aware processes during run time, specifically considering the dynamic nature of
certain temporal constraints. Based on the presented concepts it becomes possible to
ensure that a time-aware process instance is executed without violating any temporal
constraints. If, due to events not controllable by the PAIS, successful completion of a
process instance is no longer possible, respective algorithms ensure that such situations
may be detected as early as possible.

To allow for the necessary flexibility during process execution, Chapter 5 contributes a set
of change operations for dynamically adapting time-aware process instances. Respective Change

Operationschange operations define suitable pre- and post-conditions to ensure that a modified
time-aware process instance remains temporally consistent. Moreover, we present an
approximation-based technique that allows significantly reducing the complexity of the
time calculations required when applying multiple change operations in the context of
a single transaction. This is particularly important in the context of process schema
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evolution, where a potentially large set of process instances may have to be migrated to
a new process schema version on-the-fly.

The ATAPIS framework and respective concepts have been implemented as a proof-of-
concept prototype as part of the ATAPIS Toolset. The latter is based on the AristaFlow
BPM Suite1, a fully fledged process management system that provides advanced process
support features [32, 74, 75, 123]. The ATAPIS Toolset allows specifying process schemas
enriched with temporal constraints (cf. Section 3.1), which may then be checked for
temporal consistency based on the presented framework (cf. Sections 4.1 and 4.2).
Moreover, it can be used to simulate the execution of a time-aware process instance,
including the possibility to check for constraint violations during run time (cf. Section 4.3).
This prototype demonstrates the realizability as well as practical usability of the concepts
presented in this thesis.

Altogether, the introduced concepts, techniques, and algorithms provide a significant
contribution to the development of Adaptive Time- and Process-Aware Information
Systems. Moreover, they will foster the widespread use of PAISs as they enable the usage
of the latter in a broader set of application areas.

6.2 Additional Publications

In addition to the publications directly contributing to this thesis, the author of this
thesis has been involved in number of other publications during his Ph.D. project, which
are related to time and processes.

In [81, 83], we propose an extension of STNU, the Simple Temporal Network with
Partially Shrinkable Uncertainty (STNPSU), which allows for the definition and efficient
management of guarded links. A guarded link represents a generalization of contingent
constraints (cf. Section 4.2). In particular, a guarded link represents an admissible
range of delays between two timepoints, where each bound of the constraint may be
restricted during run time, but not beyond a given threshold. Moreover, we present two
algorithms for checking dynamic controllability of STNPSU and for executing dynamically
controllable STNPSUs in a save way.

In [78], a user friendly visualization of the time perspective of time-aware processes based
on enhanced Gantt charts is presented. Based on this, a method for creating personalized
process schedules using process views [64, 65, 67] is suggested.

A method for generating optimized enactment plans from declarative process schemas
with temporal constraints is suggested in [6]. The generated plans can be used to improve
support of time-aware processes specified in a declarative way by providing users with
personal schedules, predicting execution times of activities, and facilitating early detection
of critical situations.

1www.aristaflow.com
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Based on the results presented in [81, 83], in [84, 85] we present a method for representing
and supporting modularized time-aware processes. In particular, we show how to
derive the duration restriction of a time-aware (sub-)process in such a way that its
temporal properties are completely specified. Moreover, we propose a novel approach
for determining and representing the overall temporal behavior of a process, called
guarded range with contingency. Using this representation, we can specify the possible
durations of a (sub-)process as well as any permissible restriction that may be applied to
it, while still ensuring the temporal consistency of the process. Finally, we show how this
characterization of a process can be utilized when re-using it as a subprocess within a
modularized process.

6.3 Outlook

Time support for PAISs is a wide research area, which can only be partially covered by
one thesis. In particular, this thesis has unveiled several aspects that should be addressed
by further research. Some of them were already mentioned in the discussion part of each
chapter.

• Time Patterns for other process perspectives. The systematic literature review
conducted as part of (LWR14) revealed several temporal constraints being relevant
for other process perspectives. For example, [172, 173] emphasize the need of
validity periods as well as maximum processing times for process data. Moreover,
[104] indicates the need for temporally restricted process changes. Finally, many
compliance rules refer to temporal aspects [94]. Such extended temporal constraints
have been out of the scope of this thesis, which focuses on the basic support of time-
aware processes. Moreover, for some of the extended temporal constraints empirical
evidence is missing on whether they are required outside a specific application
domain and thus represent a “pattern”. Nevertheless, such extended time patterns
should be investigated to provide a holistic support of the time perspective of
business processes in PAISs.

• Tool support for modeling time-aware process schemas. So far, the ATAPIS Toolset
only provides elementary support for modeling time-aware processes. In particular,
domain experts with limited or no process modeling experience might consider
it hard to specify required temporal constraints for a process schema. Hence, a
more sophisticated modeling approach for time-aware processes is required, which
specifically considers the more complex aspects of some of the time patterns (e. g.,
restrictable duration ranges, schedule restricted elements, periodicity). Moreover,
practitioners should be encouraged to use respective tools and feedback given from
them should be used for their further development. This involves the implementation
and evaluation of user studies to provide proper method and tool support.
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• Comprehensive run-time support for time-aware processes. The execution algorithm
discussed in Section 4.3 enables the execution and monitoring of time-aware process
instances in PAISs. However, there are still open issues remaining regarding the
proper support of time-aware processes. For example, efficiency is a crucial aspect
with respect to run-time support in PAISs. Particularly, if hundreds or thousands
of process instances are executed concurrently this becomes increasingly important.
In this context, for example, execution algorithms based on heuristics might proof
beneficial. In particular, the use case analyzes performed as part of (LWR14;
LRW16) revealed that in reality some temporal constraints (e. g., appointments)
are more important and have greater impact on the temporal properties of a
process instance than others. Moreover, some temporal constraints merely represent
business rules or serve planning purposes and could thus be ignored if necessary,
whilst the violation of other constraints will threaten the successful completion of a
process instance altogether. If such information is made available in the process
schema it might be used to provide better and more efficient run-time support for
time-aware processes.

• User integration. User integration should be investigated more extensively; e. g.,
how can users be made aware of the temporal state of their process instances and
how can the observance of temporal constraints be enforced with users. Moreover,
despite all efforts process instances will not always stick to the plan. Therefore,
proper exception handling strategies are required, which help users in handling
temporal constraint violations.

• Modularized time-aware processes. Although, temporal constraints and process
modularity seem to be orthogonal features that may be managed independently,
when having a closer view it turns out that this is not the case. In particular,
in order to support subprocesses in a true modular way, one needs to be able to
represent the overall temporal properties of a time-aware process by a single node
with a duration. However, due to the involved activities with contingent durations
as well as alternative execution paths this is currently not fully possible.
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