
Challenge of Design Data Exchange between
heterogeneous Database Schema
Roland Eckert, EADS Deutschland GmbH, Germany, roland.eckert@eads.com
Günther Specht, University of Ulm, Germany, specht@informatik.uni-ulm.de

Abstract. The development of complex systems becomes increasingly difficult. The diversity
and number of tools necessary to develop such a system is extensive. One solution to
exchange engineering data between these tools is the Standard for Product Data Exchange
(STEP), ISO 10303. It offers domain specific database schema called application protocols.
This paper analyses the problems of the data exchange between tools via an application
protocol. and proposes a Transformation Report, which records individual transformation steps
during the exchange between two different tools. The Transformation Report supports the
understanding of the data exchange process and helps correcting incomplete or incorrect
transformed data.

1. Introduction

The number of available heterogeneous data sources increases daily. Companies exchange
and share information across the country and the world. This has created an increased demand
for automated data translation. The primary problem of data translation is that the user is
unaware of what happens during the data transformation. Only restricted techniques are
available to handle inconsistencies, heterogeneity of data and loss of data quality.
In large projects with several cooperating partners different tools for the same activity are used
by different partners, or even by the same partners in different stages of product development
(for instance, for functional modelling during concept development, versus full product
definition). Information transfer between partners or tools has to be bridged by appropriate data
transformations. The problem, however, is that while data is exported or imported in a target
tool, its structure may be altered so that semantic concepts in the source schema are
represented using the target model’s preferred mechanisms for denoting them. Not all data from
the source finds an adequate representation in the target tool. Some of the data gets lost. Error
detection in the target tool is a difficult task if the delivered data contains special terms,
symbols, formulas, or conventions whose syntactic contributions cannot be established without
a complete understanding of the delivered data. Today, there is no standardized documentation
available about the data that gets lost or becomes altered during data transformation. This
paper presents a Transformation Report that logs the translation of the data from the source to
the target.
A Transformation Report can also be a powerful instrument for improving the data migration
from a legacy system into a state of the art system. The documentation of the data migration
process is also of great importance. If the user has to migrate millions of items, he is not able to
check the whole import results, looking for corrupted or lost items. Specific migration tools often
leave a developer in a situation where 80% of the code had been converted successfully but the
remaining 20% has to be fixed by hand, which is completely ineffective.
The paper is organized as follows. Section 2 describes the problems of the data exchange via a
global schema. Section 3 describes the different steps of a data transformation from the source
to the target. It also introduces the transformation of the data from the source to the target. Next
we describe the specific elements of such a Transformation Report in section 4. In section 5 the
restrictions of the solution are explained. Section 6 summaries the benefits of such a report and
proposes the standardisation of the report by an international body, e.g. the ISO.

specht
 Proc. 13th Conf. Product Data Technology (PDT Europe 2004), 18.-20. Oct. 2004, Stockholm, pp.125-132

2. Challenge of Data Exchange via Neutral Database Schema

There is a lot of previous work on schema matching developed in the context of schema
translation and integration, knowledge representation, machine learning and information
retrieval [Batini, 1986; He, 2003; Rahm, 2001]. This work is relevant for the developer of the
interface, but they offer no documentation of the data transformation process. The user of the
interface does not know what happens with his data during the data transformation from one
digital tool to another.
A standardised database schema as transfer vehicle like AP233 helps to improve the quality of
IS-Gateways (in the paper called interfaces) and, consequently, the interoperability of tools
because a lot of errors in the interface development can be avoided as there is a smaller
number of interfaces to be built. Also, the structure of the interfaces is well prepared and fixed in
such a standard, so that every tool vendor has the same baseline for his development, which
increases the interoperability of the interfaces themselves. There are even more advantages:
The standard enables the long term storage of systems engineering data in tool neutral format,
considering that a lot of systems have a lifespan of 50 years or more. Additionally, engineers
will get the possibility to collect parts of design information from multiple tools so that they can
perform continuous consistency checking of the data. There is the possibility to store data of
different tools in a central data repository which could, for instance, include automatic
consistency checking and other feat ures.
Never the less, subtle and unnoticed transmission errors can lead to expensive errors in
systems development. If the user loses 1% of information or the data is changed in meaning, he
has to check all transferred data. This additional time expenditure reduces dramatically the
worthiness of the received data and the benefit of an automated data exchange. One
fundamental question when dealing with autonomous heterogeneous database systems with
own database schema is the disclosure of semantic [Naiman, 1995; Garia-Salaco 1996],
schematic [Kim, 1991; Krishnamurthy, 1991] and syntactical conflicts (data quality). A conflict is
the consequence of different concepts and database representations in tools as a result of their
independent development by vendors and comes by two (or more) not identical representations
of the same concept.
The same concept can be described in different schemas using different representations. This
generates several types of semantic relationships between these representations. In [Batini,
1986] these relationships are classified as: identical, when the representations are exactly the
same; equivalent, when the representations are not exactly the same, but it is possible to use
either behaviour, or mapping, or transformation equivalences; compatible, when the
representations are neither identical nor equivalent, but the constructs and integrity constraints
are not contradictory; and incompatible, when the representations are contra dictionary. The
equivalent, compatible and incompatible semantic relationships are defined as conflicts.
We identify two types of semantic heterogeneity; Cognitive heterogeneity arises when two data
models have different perceptions of real world facts. Using the same names, i.e. homonyms,
can conceal these differences. Naming heterogeneity refers to different names for identical
concepts of real world facts, also called synonyms.
Other types of conflicts can be classified as follow: Scale, involving the use of different units of
measurement. Structural, when the same facts are described in two schemas using different
elements of the same data model. Representation, when the same data item has different
representations in the schema. Different levels of abstractions , when one schema contains
more information details than the other. Schematic discrepancies , when data in one database
corresponds to metadata in an other.
Data loss during a data transformation occurs, when information (e.g. entities) are mapped from
the source to the target tool [Table 2-1], were no equal or suitable structure is available.
If a pair of schemas (A,B) is considered then a transformation function T can be defined to
capture how a specific concept in schema A shall be represented in schema B:
b=T(a)
with
a={a1, a2,...,am} ∈ Schema A ∨ ∅ ∧
b={b1, b2,...,bn} ∈ Schema B ∨ ∅
A schema may be defined with the intention to be implemented in a particular database system,
in this case it is called data model. An information model or concept model is a schema that is
independent of any particular implementation.

Equality

A class for the mapping functions whose application results in
equivalent semantic in the source and target schema.

baBbAa →∈∃∈∀ ::
A is more expressive than B

?
A class for the mapping function for which for at least one element
exists no representation in the target schema.

baBbAa →∈¬∃∈∃ ::
A is less expressive than B

?
A class for the mapping function for which for some or all elements no
representation exists in the source schema.

baAaBb →∈¬∃∈∃ ::
Aggregator

A class for the mapping function for which for some or all elements are
merged into one representation in the target schema.

)()(::,, 212121 babaBbaaAaAa →∧→∈∃≠∈∃∈∃

Dispatcher

A class for the mapping function for which a single element of the
source schema is split into two ore more representations into the target
schema.

)()(::,, 212121 babaAabbBbBb →∧→∈∃≠∈∃∈∃
Fig. 2.1 : Mapping Classes

During the data transformation also loss of semantic information can occur. There are many
mappings between structures which are syntactically correct and result in the transfer of all of
the data from one structure to another. However, many of these are semantically incorrect and
result in information loss. As an example consider the data transformation from a relational
schema to hierarchical database schema. Or consider a data structure, consisting of a colour
value and a set of (x,y) points used to create a graphics image. Given a data migration system,
the structure could easily be converted to a tabular form with triples of x,y and colour values.
This involves no data loss, but, there is a semantic loss in that the fact that a group of points in
the original form had an identity associated with it by virtue of the shared colour. If one were to
change the colour for one of the points, then they would all change colour. The behaviour can
only guaranteed by surrogate, but not all tools support surrogates. These tools cannot
guarantee the behaviour when the information is stored as x,y, colour triples.
The established approach for data transformation and integration ignores the data processing
before the data integration and looses important information.

For evaluating the presented concept a data exchange between CASE tools Teamwork from
Computer Association and Statemate from I-logic was analysed. Four different data sets were
used:

Data
Instances 3374 5537 5227 8323 9033 14566 5376 8900
Function Instances 36 36 61 61 114 114 62 62
Leaf Function 30 30 51 51 86 86 48 48
Defined Functions 188 161 351 319 670 667 347 347
Element Identifier 431 740 652 1051 957 1736 572 1113

Set 1 Set 2 Set 3 Set 4

The first column describes the data export from Statemate and the second column describes
the data export from Teamwork, after the data from Statemate was imported. The critical
observation is, that function definitions goes lost. Both tools use different concepts for element
identifier. The different number of instances is a result of the different concepts of the interfaces
and the way data is stored in the tools.

3. Data Transformation logged by Transformation Report

The strategy of the suggested Transformation Report and Acknowledgment in this paper is to
log all data processing results as early as possible. At every step were the exported data are
processed a report is derived. This reporting includes also a feedback, the acknowledgment.
The reporting architecture [Fig. 3-1.] is divided into two parts, the ‘transformation report’ (R0,
R1, R2, R2*) and the ‘acknowledgement’ (A1*, A1). The generation of the transformation report
starts at the source and ends at the target tool. The acknowledgement describes which data
were actually imported into the repository.
The transformation process of the data can be divided into a set of processing steps connected
by pathways indicating the flow of information from one processing step to another. The data
source and the data target can be proprietary stored data in an application or tool. Than there is
no Integration Manager. The data can also be stored in a repository defined with a standardised
data model (e.g. STEP ISO 10303-AP233) or a single file, called flat file, formatted in a suitable
format like e.g. ISO 10303-P21 (ASCII), or ISO 10303-P28 (XML) that is e.g. ISO 10303-AP233
conform.

Data Source Data Target

Mapping Target
Data Set

Data Store Repository

Integration
Manager

Transfer
Data Set

A1*A1

R2

Data
Dictionary

Transformation
Report

Acknowledgement

Parsing /
Formating

R2*

Interface

Flat
File

Flat
File

or or

Data
Dictionary

R1R0

Improvement

Improvement

Traditional

Fig. 3.1 : Architecture for gaining the Transformation Report and the Acknowledgement

The exporting of data from the data source starts with the selection of the data set which has to
be exported. The first task is the parsing and formatting of the data into an intermediate
structure ‘Transfer Data Set’. This intermediate structure will probably be based on a predefined
data schema (e.g. application protocol). The next task is to map the structure of the data
schema to the data structure of the destination system. This data set is called ‘Target Data Set’
to signify that it is the same data semantic with different representation. The “Integration
Manager” level selects an integration strategy for every entity. An entity can be completely
ignored, defined as an initial version, or merged with a version already existing in the repository
or can be initialised if it is new.
The first available information for the transformation report is ‘R0’. It contains predefined
configuration information of the data source, the data target, the used interface, and
organisation information. The initial report ‘R0’ is extend by a listing of all entities that were
exported (R1). During the parsing and formatting phase errors, e.g. referential integrity, or
syntax errors are discovered. These phenomena are also listed in the transformation report.
During the mapping phase those entities are separated who are not mapable to the target
schema. Here also semantic errors are discovered and added to the transformation report ‘R2’.
Our technique can even handle different naming conventions for the stored entities. So the
entities are translated from one naming convention to another via the central ‘Data Dictionary’
[Lomax, 1977]. The result of the renaming of the entity identifier is the report ‘R2*’. This report
‘R2*’ together with the ‘Target Data Set’ is presented to the Integration Manager.
Versioning and independent sources lead to different naming conventions for the entities. For
configuration management purposes it is necessary to use an unambiguous identifier for every
entity by every involved tool through the life cycle. A data dictionary could fulfil this task. It is an
organized list of all data elements that are pertinent to all involved systems, with precise,
rigorous definitions so that both the source and target tool have a common understanding of all

inputs, outputs, components of stores. The initiative “Product Life Cycle Support”
(http://www.plcsinc.org/) offers an identification mechanism that could be sufficient.
These identifiers are organized in the “Data Dictionary”.
The receiver of any message sends a feedback information, “Acknowledgement” about the
result of the import process. In case of a successful importing, an acknowledgement message is
send to the sender, in the error case, a message send with information about the problems
detected. The Acknowledgement has to manage the following conditions:
OK The Data file successfully imported
Wrong An error is occurred during import
Wait The data file is waiting to be processed
Pending The data fail is waiting to be processed again
It is possible to use the same structure of the Transformation Report for the Acknowledgement
Report. Because of different naming conventions it is necessary to translate A1* to the original
naming convention via the data dictionary. The only difference is, that there is only the
Acknowledgment Report and no more data is attached. With this report the user can try to fix
possible problems in the source system.

4. Instantiation of a Transformation Report

The Transformation Report is available in different granularity and from different points of time
so the decisions are governed by multiple measures of merit. The used architecture is very
pragmatic with a high usability and feasibility.
In figure 4-1 the format of a transformation report is specified. In the left column the content of
the meta information is listed. The column in the middle is a reference to the figure 3-1
Architecture for gaining a Transformation Report and in the right column there are comments,
describing the use of the described section.

Type of Information Source of Information from [Fig. 3-1] Section
Data Source R0 Repeating Section
Data Target R0 Repeating Section
Interface Type R0 Header
Implementation Method R0
Organisation Sending R0
Organisation Recipient R0
Configuration Element R0
Summary Information R2*

Source Unit of Functions R1 Repeating
Target UoF R1 Section
[%] of mapped Tables R1

Source Tables R1 Repeating
Target Tables R2 R2* Section
[%] of mapped Attributes R2

Source tool entity ID R1
Type of Data R1
Target Tool Entity ID R2 R2* Repeating
Error Type R1 R2 R2* Section

Referenced Files R1 Repeating Definition
Error Type R1 Section Section

Business Errors R1 Repeating
Error Type R1 Section

Known Bugs R1 R2 R2* Repeating
Error Type R1 R2 R2* Section

Semantic errors in Line R2 R2*
Attribute No. R2 R2* Repeating
Error Type R2 R2* Section

Syntax errors in Line R2*
Attribute No. R2* Repeating
Error Type R2* Section

Warnings in Line R1 R2 R2* Repeating
Attribute No. R1 R2 R2* Section
Warning Type R1 R2 R2*

Fig. 4.1 Format Specification of a Transformation Report

4.2 The Header Section

The header contains administration and technical information on the sender and receiver of
data. It describes the used interface, the sending tool, the assumed destination tool and general
configuration information. This information is available before the parsing and formatting
activities starts and is marked with R0. Only the summary information in the header section is
generated, after the whole report is available.
There are two important attributes, which characterise the capability of the implemented
interface: the “Implementation Level” and the “Estimated Data Loss”. We suggest treating both
as attributes to the data section “Interface Type”. The attribute “Implementation Level” is an
indicator for the worthiness of the data. It indicates the maturity of the interface or the test
coverage applied. It is an indicator for the maturity of the interface. This factor seems obscure,
but is useful because in many cases the documentation of the underlying data model of the
source tools is not publicly available. Therefore it is necessary to develop an interface by trial
and error [Eckert, 2003]. Other information contained in this attribute is the coverage of the
mappings that are implemented.
Another quality measurement is the “Estimated Data Loss”. The “Estimated Data Loss”
(Equation 2) compares the source with the target data model. It describes in which level of
detail the target system can interpret the delivered data. It gives an impression how good the
understanding of the whole data in the target tool can maximal be. Every tool uses its own data
modal for storing its data. If the data models are equal, or the source data model is an element
of the target data model it is ideal. With this scale factor it is possible to give a forecast about
the expected minimal data loss.

all

mapped

SE
SE

U =

U Estimated Data Loss
SEall Number of all entity from source
SEmapped Number of map-able entities from source
U=1 If SEall=SEmapped

(1) Estimated Data Loss

The “Implementation Level” and the “Estimated Data Loss” are static values, that are already
available before the data transformation. They are not directly relevant for the data integration
strategy, but they give an indicator about the trustworthiness of the delivered data.

4.3 The Definition Section

Units of Functions (UoF) are a collection of application objects and their relationships that
defines one or more concepts within the application context such that removal of any
component would render the concepts incomplete or ambiguous [ISO, 1994]. A new trend in the
standardisation of data models (e.g. in ISO 10303) is to modularise the so called Application
Protocols in sub data models, that are compatible with other models from other domains. The
modules are like Units of Functions. This cluster is the first indicator for the effective size of data
loss. It indicated which module or UoF has no or a restricted representation in the target data
model.
With this field the data loss can be documented.
Tables: This section gives information on table level about which tables are mapped. With this
field the data loss can be documented.
(Source tool) Entity ID is an identifier. It is a character or group of characters used to identify or
name an item of data and possibly to indicate certain properties of that data (ISO 2382/4). This
section provides detailed information about the transformed data. In this section the cognitive
and the naming heterogeneity can be documented.
With this field the data loss and different levels of abstractions can be documented.
In the Referenced Files sections the files are listed, that were intended to send. This list is
compared with the files that actually were attached.

Business Errors are operating rule/policy that are agreed by the involved organisations and the
transferred data has to comply with, e.g. invalid authority, work authorisation is missing, invalid
area type, authority is already closed, …
Known Bugs, it is very difficult to perform a mapping from a well-known global database schema
to a tool data model if the tool provider hides the proprietary data model. It is also
recommended to reconsider the established mapping during the implementation as new
experience is gained, by e.g. the known bugs sections. This section is during the testing and
development of the interfaces very useful. It improves the quality of the interface especially if it
is necessary to develop it by trial and error [Eckert, 2003].
The likeliest causes for Semantic Errors are that the detailed structure of the definition doesn't
correspond to what is allowed by the specialization in use, or that the definition is inconsistent. It
has to assure, that data sent in an exchange message have the same meaning in the sending
environment as the receiving environment after import.
With this field the semantic Information loss and schematic discrepancies can be documented.
Syntax Errors occur frequently, e.g. if the user have not filled correctly the source database with
data. In literature this error is described as missing “Data Quality”. This section also assures,
that errors within the mapping processor in import or export due to wrong syntax of the data-
files are prevented.
Warnings could be a syntactical change like splitting of a structure into two parts or replacing an
integer into a real one. A structural change of the data is also documented into the warnings like
the transformation of a 3D representation into a 2D representation.
With this field the scale, structural and representation error can be documented.

4.4 Discussion

The limitation of the report is e.g. certain prediction hold (e.g. the sum of expense in each
department is less than or equal to the department budget). The transformation report cannot
control project internal requirements. Also possible problems of different graphical
representation of the design data in different case tools cannot be solved. For example the
graphical representation of the design objects in the tools Statemate and Teamwork differs. In
Statemate the basic symbols are rectangles while in Teamwork basic symbols are circles.
Because of that the proportion of shapes, text, workspace etc. differs. The tools use different
predefined symbols that are unknown in other tools. A critical point in the data models is how
the graphical information is stored, e.g. absolute position information of model objects versus
relative position information. Another solution could be, that the interfaces have to be improved
for the graphical representation topic. If we look at tools for designing printed circuit boards,
they use sophisticated algorithm for improving the graphical representation. The results of this
algorithm are much better than a human being can attain. The third, but unrealistic solution is,
that all tools support the same graphical representation, as suggested in the UML 2.0 or
Systems Modelling Language (SysML, www.sysml.org) initiative. Then all tools support an
agreed set of symbols and it is no longer necessary to define mappings between different
symbols like circles (Teamwork) and rectangular (Statemate).
It is difficult to guarantee that information changed in one tool does not inadvertently reduce the
quality of another tool already stored in the repository or that affected processes or tools. The
transformation report cannot clarify the neighbourhood and side effects of the imported entities
because it has no knowledge about what already exists in the repository. This is information that
is also of interest for an integration strategy but is not available. There are two solutions to
compensate for this side effect so that new integrated data does not pollute the existing data.
The first solution is to copy the whole rules and restrictions from the source tool to the target
tool. In most cases, this task is too complex. The easiest way is to use a neutral data model of
high quality for the source.
Another decision criteria for collecting the data from different tools / databases and integrating
the data on one single repository are the costs for this undertaking. Benefits are reduced
personnel cost due to faster data transfer and reduced costs for manual error handling. On the
other side there are costs for developing such an interface and framework and costs for using
data transfer devices and environments.

4.5 Conclusion

The quality of data exchange can be significantly improved when the results of the individual
steps of the transformation process are well documented. With the transformation report the
user can gain a clear understanding of the data itself and, secondly, properly focused
information to help determine a suitable data integration strategy for use in a repository. In a
sequential file based data exchange between different tools data loss cannot be precluded. This
reduces the benefits of an automated interface dramatically. The data export form one tool to
another tool is processed in several steps. At every step errors can occur, that should be
logged, e.g. semantic errors, syntax errors, hurt business rules. A solution could be a
standardized and machine interpretable transformation or mapping report. The benefits for such
a report are:

• Worthiness and confidence of the delivered data
• Documentation of data loss
• Bill of delivered data
• Minimized error propagation
• History of data
• Constraint violations
• Handshaking function for data integration

The transformation report traces data exchange actions and is a precondition for data
integration strategy to improve quality of exchanged information. The described report is not tool
specific and therefore it is suggested to be a part in the framework of ISO standards, e.g.
“Industrial automation systems and integration” (ISO/TS 18876). The structure of the
transformation report is generic, so it is easy to use the report without any adaptation for all
kinds of data transformations.

Acknowledgement
Special thanks to Dr. Wolfgang Mansel for the support and helpful discussions in connection
with this document.

5. Reference

[Batini, 1986] C. Batini, M. Lenzerini and S. B. Navathe. A Comparative Analysis of
Methodologies for Database Schema Integration, ACM Computing Surveys,
18(4):323-364, 1986.

[Eckert, 2003] R. Eckert, G. Johansson, Experiences from the use and development of ISO
10303-233 Interfaces in the systems Engineering Domain, ICE 2003, June
2003, S. 501-508

[Garia-Salaco
1996]

Garia-Salaco, M., Saltor, F. Castellos, M. Semantic heterogeneity in
multidatabase systems. Object-Oriented Multidatabase Systems: A Solution
for Advanced Applications, chapter 5, p 129-202. Prentice-Hall, 1996

[He, 2003] B. He and K. C.-C. Chang. Statistical Schema Matching across Web Query
Interfaces. In SIGMOD 2003.

[Kim, 1991] Kim, W., Seo, J., Classifying schematic and data heterogeneity in
multidatabase systems. IEEE Computer, 24(12):12-18

[Krishnamurthy,
1991]

Krishnamurthy, R., Litwin, W., Kent, W., Language features for
interoperability of databases with schematic discrepancies. In Proceedings
of the ACM SIGMOD Conference, pages 40-49., 1991

[Lomax, 1977] Lomax, J.D, Data Dictionary Systems. Rochelle Park, N.J.: NCC
Publications, 1977

[Naiman, 1995] Naiman, C.F, Ouskel, A. M., A classification of semantic conflicts in
heterogeneous database systems. J. of Organizational Computing, 5(2):
167-193, 1995

[Rahm, 2001] E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic Schema
Matching, VLDB Journal 10(4):334-350, 2001.

