
Data-driven Design of Engineering Processes with COREPROModeler
∗

Dominic Müller, Manfred Reichert
Information Systems Group,

University of Twente, The Netherlands
{d.mueller, m.u.reichert}@utwente.nl

Joachim Herbst, Florian Poppa
Dept. GR/EPD, DaimlerChrysler AG

Group Research & Advanced Engineering, Germany
{joachim.j.herbst,florian.poppa}@daimlerchrysler.com

Abstract

Enterprises increasingly demand IT support for the co-
ordination of their engineering processes, which often con-
sist of hundreds up to thousands of sub-processes. From a
technical viewpoint, these sub-processes have to be concur-
rently executed and synchronized considering numerous in-
terdependencies. So far, this coordination has mainly been
accomplished manually, which has resulted in errors and
inconsistencies. In order to deal with this problem, we have
to better understand the interdependencies between the sub-
processes to be coordinated. In particular, we can benefit
from the fact that sub-processes are often correlated to the
assembly of a product (represented by a product data struc-
ture). This information can be utilized for the modeling
and execution of so-called data-driven process structures.
In this paper, we present the COREPRO demonstrator that
supports the data-driven modeling of these process struc-
tures. The approach explicitly establishes a close linkage
between product data structures and engineering processes.

1. Introduction

Complex engineering processes, such as the devel-
opment of a car, consist of many interdependent sub-
processes. When realizing IT support for the coordina-
tion of these sub-processes, the challenge is to explicitly
define the dependencies between them. Case studies, we
conducted in the automotive industry, have shown that the
coordination of sub-processes is usually based on the as-
sembly of the product to be developed [2, 7]. According
to [10], we use the notion data-driven process structures
in this context (cf. Fig. 1). We identified numerous sce-
narios for such data-driven process structures. One exam-
ple is the verification process for the electrical system of a
car. This system consists of about 270 interconnected com-
ponents [4]. To verify the functionality of the system, for

∗This work has been funded by DaimlerChrysler AG Group Research

Product Data Structure

Engine

Component
Component

Component

Car Total System

Data-driven Process Structure

...
...

Process Dependencies
Indicated by Data

Relations

Relationship
between Data
and Processes

(Sub-)Processes
Executed on Product

Data Objects

300 m

Navigation
System

Figure 1. Data-driven Process Structure

each component several sub-processes (e.g., dealing with
test preparation, simulation test, and test drive) have to be
executed and synchronized. The synchronization behavior
is determined by sub-process dependencies and their rela-
tionships to product components, such as “prepare all en-
gine components before starting the simulation test for the
engine”. As a consequence, we obtain a close connection
between data and processes as illustrated in Fig. 1. The in-
troduction of complex car features (e.g., driving assistants
that are controlling the engine or the brake system) will fur-
ther increase the number of component relations. They lead
to additional sub-process synchronizations necessary to ver-
ify the functionality of these features. Altogether, a data-
driven sub-process structure may comprise of thousands
of sub-processes and sub-process dependencies in the pre-
sented scenario. Hence, the coordination will become more
and more complex and very error-prone, if done manually
(which is the normal case in current development projects).

IT support for the modeling of data-driven process struc-
tures must meet four requirements. First, it must enable
the description of the (product) data structure, i.e., its ob-
jects and their relations. Second, a concept for associating
sub-processes with each (product data) object has to be de-
fined. Third, the definition of dependencies between sub-
processes for different objects has to be enabled. In partic-
ular, object relations have to be associated with several sub-

1

In: Proc. of WETICE 2007 International Workshops, Agile Cooperative Process-Aware Information Systems (ProGility), pp. 376-378. IEEE Computer Society Press.

Data Structure Object Life Cycle (OLC)

. . .
S1 S2 S3Process

B

S1 S3 S4Process
C

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

Object 7

L
e

v
e

l
1

L
e

v
e

l
2

L
e

v
e

l
3

Life Cycle Coordination Structure (LCS)*

= Ext. State Transition

S1 = State

Object 1 = Object

Process
A

Process
D

S1 S2 S3

S1 S2 S3

S1 S2 S3

S2 S3 S4

S1 S2 S3

S1 S3 S4

S2 S3 S4

= Int. State Transition

= Relation

*Related Processes not Displayed in this Frame for Clarity Reasons

Dependencies
Between OLCs
Defined in LCS

Data Object and
Associated OLC

Figure 2. Overview of our Approach

process dependencies (i.e., a relation may lead to several
sub-process synchronizations). Fourth, it must be possible
to generate an activity-centered process structure based on
the specified information.

Current approaches in literature and practice do not meet
these requirements. Neither activity-centered workflow sys-
tems (e.g., Production Workflow [5]) nor data-centered ap-
proaches (e.g., Case Handling [1]) enable the independent
association of several sub-processes to objects and the uti-
lization of object relations for defining sub-process depen-
dencies. Approaches utilizing product structures for de-
riving process structures (e.g., Product Driven Workflow
Design [9]) do not allow for the detailed specification of
multiple sub-process dependencies based on an object rela-
tion. Even approaches aiming at the support of engineering
processes (e.g., AHEAD [3]) lack mechanisms for mapping
object relations to sub-process dependencies. Currently, the
way to cope with these problems is the manual integration
of all necessary information into one large and inflexible
process (structure). However, that generates high efforts for
its definition, monitoring, and particularly for its mainte-
nance, e.g., when changing the data structure [8].

In this paper, we present the COREPRO demonstra-
tor, which enables the modeling of (product) data-driven
process structures. Related concepts are discussed in Sec-
tion 2. Section 3 gives a short description of our demo.

2. COREPRO Features

The COREPRO project is developing solutions for the
design, execution, and flexible adaptation of data-driven
process structures. The design goals are separated defini-
tion of the different information for data structures and sub-
processes, and creation of the requested data-driven process
from the given information. To realize this, COREPRO fol-
lows the Model Driven Architecture approach (MDA) [6].
In particular, it enables the definition of data structures as
well as their relationships to engineering sub-processes.

In COREPRO, sub-processes can be associated with

(data) objects by defining Object Life Cycles (OLC). While
the data structure describes the relations between objects
(cf. Fig. 2), an OLC specifies possible states of a sin-
gle (product data) object during its lifetime (cf. Fig. 2).
The OLC is a transition system with data states and inter-
nal state transitions. Every state transition has an associ-
ated (sub-)process. A state transition is activated by exe-
cuting its associated (sub-)processes, which is modifying
the object (cf. Fig. 2). A car component, for example,
has several states (e.g., Ready followed by Prepared)
which are changed by executing processes for this com-
ponent (e.g., the Test Preparation sub-process trig-
gers a state transition from Ready to Prepared). De-
pendent on the sub-process result, alternative states may be
activated. Altogether, the OLC defines the association of
sub-processes to a specific object.

However, associating objects and processes by defining
an OLC for every object is only one part of our solution. We
also have to deal with dependencies between sub-processes
associated to different objects. An example for this was
given in Section 1: every engine component must have
reached state Prepared before starting the Simulation
Test sub-process for the whole engine. These dependen-
cies can be defined in the Life Cycle Coordination Struc-
ture (LCS). Therefore, the LCS contains an OLC for every
object and allows for the definition of external state tran-
sitions, which connect states of the included OLCs. In the
LCS in Fig. 2, for example, the states S1 of the OLCs for
the related objects 1 and 2 are connected. Altogether, the
LCS describes possible states of the whole data structure
during its lifetime. While we avoid concurrently activated
states (and thus concurrently executed sub-processes) for
single OLCs, there are concurrently activated states in the
LCS (one per OLC) during runtime.

The LCS constitutes a platform independent model of
the data-driven process. Based on transformation rules
activity-centered data-driven process structure can be gen-
erated, e.g., using Business Process Modeling Notation
(BPMN) or Business Process Execution Language (BPEL).

3. Demo Description

We implemented our proof-of-concept demonstra-
tor using the Eclipse Modeling Framework (EMF).
COREPROModeler supports the graphical modeling of a
data-driven process according to the concepts presented in
Section 2. It comprises editors for the data structure, the ob-
ject life cycle (OLC), and the life cycle coordination struc-
ture (LCS). Additionally, a generator tool for the activity
centered representation of the data-driven process structure
is realized.

For demonstration purposes, we have modeled the exam-
ple presented in Fig. 2, where a hierarchical data structure

2

Process Associated to
External State
Transition

OLC for Every Object
in the Data Structure

OLC for Object 1
with Start State, Data
States and End State

Figure 3. Definition of the Life Cycle Coordination Structure

with ten objects (arranged in three levels) is shown. Every
object has an associated OLC with three data states.

When modeling data-driven processes, we first have to
define the data structure. For this purpose, labeled objects
have to be created and interconnected with the data struc-
ture editor. Afterwards, an OLC can be specified for every
object in order to associate the sub-processes. Therefore,
every state transition can be linked with a premodeled sub-
process in the OLC Editor.

After having modeled an OLC for each object, the user
specifies the runtime behavior for the whole data structure.
The LCS Editor (cf. Fig. 3) provides the modeled OLC
for every object. To express the relations between them, the
OLCs can be interconnected with external state transitions.
They can also be associated with sub-processes realizing the
synchronization (e.g., Process A in Fig. 3).

The activity-centered representation of the data-driven
process structure is then derived by mapping the elements
of the LCS to control flow constructs.

The demonstrator enables the modeling of data-driven
process structures by defining data structures and sub-
process dependencies according to object relations. The
connection between data and processes can be specified
in a life cycle layer defining the runtime behavior for the
whole data structure. By transforming the specified mod-
els, COREPRO enables the generation of a platform depen-
dent process structure. The presented demonstrator is used
for a first proof-of-concept case study in industry, where it
enables the product oriented modeling of car development

processes. We further plan to implement an instantiation
mechanism, which reduces modeling efforts. In particular,
we support defining OLC templates and external state tran-
sitions on model level for object types and relation types.

References

[1] W. Aalst, M. Weske, and D. Grünbauer. Case handling: A
new paradigm for business process support. DKE, 53(2),
2005.

[2] U. Bestfleisch, J. Herbst, and M. Reichert. Requirememts
for the workflow-based support of release management
processes in the automotive sector. In ECEC, 2005.

[3] D. Jäger, A. Schleicher, and B. Westfechtel. AHEAD: A
graph-based system for modeling and managing develop-
ment processes. In AGTIVE, LNCS 1779, 1999.

[4] E. Knippel and A. Schulz. Lessons learned from implement-
ing configuration management within electrical/eletronic
development of an automotive OEM. In INCOSE ’04, 2004.

[5] F. Leymann and D. Roller. Production Workflow: Concepts
and Techniques. Prentice-Hall PTR, 2000.

[6] J. Miller and J. Mukerji. OMG MDA Guide, 2003.
[7] D. Müller, J. Herbst, M. Hammori, and M. Reichert. IT

support for release management processes in the automotive
industry. In BPM’06, LNCS 4102, 2006.

[8] D. Müller, M. Reichert, and J. Herbst. Enabling flexibility
of data-driven process structures. In DPM’06, LNCS 4103,
2006.

[9] H. Reijers, S. Limam, and W. Aalst. Product-based work-
flow design. MIS, 20(1), 2003.

[10] S. Rinderle and M. Reichert. Data-driven process control
and exception handling in process management systems. In
CAiSE’06, LNCS 4001, 2006.

3

