
Ulm University | 89069 Ulm | Germany Faculty of Engineering,
Computer Science and
Psychology
Institute of Databases and
Information Systems

Concept and Implementation
of a Factory Simulation
Bachelor Thesis at Ulm University

Submitted by:
Manuel Göster
manuel.goester@uni-ulm.de

Reviewers:
Prof. Dr. Manfred Reichert

Advisor:
Klaus Kammerer

2017



Revision November 17, 2017

c© 2017 Manuel Göster



Abstract

Current technological trends, such as cyber-physical systems and the industrial internet

of things (IIoT), blur boundaries between software and hardware development. Industrial

software systems control whole production factories by using advanced information tech-

nology approaches. Hence, the development of such systems requires a tight integration

of data and processes between the different software systems, e.g., programmable logic

controllers, production planning systems, or enterprise resource planning software.

This thesis provides the concept and implementation of a factory simulation including

the development of a programmable logic controller (PLC) application based on PLC

programming languages. The PLC application controls the execution of customizable

production processes and generates process data, e.g., sensor data, production logs,

or alarm events, which can be further analyzed, for example, in condition monitoring

applications.
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Glossary

BPMN Business Process Model and Notation. A graphical business process notation..

CAN Controller Area Network. A serial bus system, rated as a fieldbus.

CANopen CAN based communication protocol for automation technology.

CRUD Create, Read, Update, Delete.

EEPROM Electrically Erasable Programmable Read-Only Memory.

EtherCAT Ethernet for Control Automation Technology. An Ethernet-based field bus

system.

FB IEC 61131-3 Function Block. It is a program organization unit having access to

peripheral equipment..

FBD IEC 61131-3 Function Block Diagram. It is a graphical PLC programming lan-

guage..

FRAM Ferroelectric Random Access Memory.

FUN IEC 61131-3 Function. It is a program organization unit having no access to

peripheral equipment..

FUR Furnace. A component of the Fischertechnik factory.

GLV IEC 61131-3 Global Variable List.

GUI Graphical User Interface.

HR High Rack. A component of the Fischertechnik factory.

IC Integrated Circuit.

IDE Integrated Development Environment.

v



Glossary

IEC International Electrotechnical Commission.

IL IEC 61131-3 Instruction List. It is a textual PLC programming language and related

to assembler..

LD IEC 61131-3 Ladder Diagram. It is a graphical PLC programming language..

LED Light Emitting Diodes.

Modbus TCP Modbus Transport Layer Protocol.

Modbus RTU Modbus Remote Terminal Unit.

OPC UA Open Platform Communications Unified Architecture.

PLC Programmable Logic Controller.

POU IEC 61131-3 Program Organization Unit, being part of the PLC application..

PRG IEC 61131-3 Program. It is the most commonly used program organization unit

having access to peripheral equipment and which can be assigned to a task..

Profinet Process Field Network.

RS232 Recommended Standard 232: Standardized serial interface.

SFC IEC 61131-3 Sequential Function Chart. It is a graphical PLC programming

language..

SL Sorting Line. A component of the Fischertechnik factory.

SNMP Simple Network Management Protocol.

SRAM Static Random Access Memory.

ST IEC 61131-3 Structured Text. It is a textual PLC programming language that is

related to standard programming languages..

SVN Subversion system.
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Glossary

TC Task Configuration.

VG Vacuum Gripper. A component of the Fischertechnik factory.

XES eXtensible Event Stream. A unified and extensible methodology for capturing

systems behaviors by means of event logs and event streams.
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1
Introduction

Current technological trends, such as cyber-physical systems and the industrial internet

of things (IIoT), blur boundaries between software development and underlying hard-

ware [1]. Industrial software systems are tightly integrated into factory processes. Hence,

knowledge about machine engineering becomes crucial to computer scientists. Usually,

they do not gain knowledge about processes interacting with real world actuators and

electrical machines. Machine engineering knowledge also barely exists among computer

scientists. To counteract to these trends, a factory simulation is developed to be a

basis for further considerations, as for example process mining and process execution

control. Data is generated by the simulation in order to feed higher layer applications

with it. As for example, a web visualization of process data of the factory can be realized.

Furthermore, it may be used in academic education as a showcase to teach students

about processes being close to machines.

The factory simulation is the first step to merge low and high level software components,

building on the hardware layer. It is a composition of different soft- and hardware

components. Based on a construction kit by Fischertechnik, production processes

are illustrated. A programmable logic controller (PLC) is used to control the factories

actuators and to react to sensor signals.

The goal of this thesis is to define a concept of the factory simulation and to realize it by

connecting a PLC to the Fischertechnik factory that runs a PLC application implementing

the technical processes being defined in the concept. The concept is designed to

integrate the simulation into a greater system architecture concept.

The remainder of this thesis is organized as follows. Chapter 2 introduces the hardware

components of the factory simulation, PLC programming languages, and PLC integrated
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1 Introduction

development environments. Chapter 3 describes the concept of the factory simulation,

including use cases, requirements, the software architecture, and technical processes.

In chapter 4, the proof-of-concept implementation is explained. Chapter 5 illustrates

the conducted code testing, and evaluates the processes and requirement realizations.

Chapter 7 concludes the thesis, and gives an outlook on possible extensions.
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2
Fundamentals

In the following, general concepts and technologies are introduced, which are necessary

for the creation of the factory simulation. At first, the Fischertechnik factory simulation

modules, the (PLC) and further hardware are described. Afterwards, some PLC program-

ming languages are introduced, followed by an overview of the integrated development

environment (IDE) for PLC code.

2.1 Hardware Components

In this section, main hardware components, being used to realize the factory simulation,

are described. The hardware setup includes a Fischertechnik factory construction kit

consisting of four stations which all have certain sensors and actuators, such as light

barriers, switches, motors, compressors, and valves. To control these sensors and

actuators, each station is connected to an I/O-board. The I/O-board is an interface

that translates sensor values and actuator control commands of the controller. The

controller is a PLC. It runs beforehand implemented PLC-applications and consists of

special purpose hardware and a real-time operating system. In order to send signals to

actuators and to receive sensor signals, the PLC has both analog and digital I/O-pins

which can be accessed by the application running on it. Moreover, there are certain

communication interfaces available. For example, a programmer is able to load compiled

applications into the PLCs memory via Ethernet. Applications are typically developed in

special PLC-IDEs, such as Codesys IDE, using certain PLC programming languages.

During the execution of a PLC application, the PLC constantly sends current values of

program variables to the IDE to support debugging (cf., Figure 2.1).

3



2 Fundamentals

IDE PLC

Deploys 
application

Sends current 
values of variables

Sensors & 
Actuators

Sends sensor data

Controls actuators

Figure 2.1: Factory Simulation Component Interaction

2.1.1 Fischertechnik Factory Simulation

The Fischertechnik factory simulation consists of the following stations: a high rack

(HR), vacuum gripper (VG), furnace (FUR) and sorting line (SL) (cf., Figure 2.2). Every

station consists of different actuators, e.g., s-motors, encoder motors, compressors,

pneumatic cylinders, magnetic valves, and LEDs. Each of these actuators run with

24V DC. S-motors and encoder motors can move in both directions. Additionally,

encoder motors send encoding signals during movement. Thereby, three impulses per

rotation of the motor shaft are sent while the encoder motor is rotating. The source of

pneumatic compressed air are compressors which are realized by membrane pumps.

Each compressor can create an overpressure of 0.7 bar. To get depression in order to

suck in a workpiece, the pneumatic cylinders use overpressure, created by compressors,

and magnetic valves. Light barriers are realized with LEDs, that are positioned on

the opposite side of photo-transistors. To be more precise, if the light hits the photo-

transistor, it will transmit electricity. Further sensors, being provided by the Fischertechnik

construction kit, are switches, which are used in many stations to detect the positions of

movable parts, e.g., the vacuum gripper.

The Fischertechnik stations consist of different machines. HR consists of a high rack,

a moveable tower with a cantilever and a conveyor belt. The high rack has nine places

for boxes, which can hold one workpiece each. The three axes movable tower has

one switch per axis, which will be pressed if the tower is in its default position at the

corresponding axis. The tower stores workpieces and takes them out of stock by picking

up boxes, and carrying them to the conveyor belt to put them down. The conveyor belt
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2.1 Hardware Components

Vacuum 
Gripper (VG)

High Rack 
(HR)

Sorting Line 
(SL)

Furnace 
(FUR)

Figure 2.2: Fischertechnik Factory Simulation

can be moved in both directions (forward/backwards) and comprises two light barriers

— one at the beginning, and one at the end of itself. Thus, the position of a box at the

conveyor can always be determined.

The station VG is a vacuum gripper being mounted onto a three-axis tower. In order

to take a workpiece out of stock, the vacuum gripper is moved to the conveyor belt of

the HR. The tower can be rotated both clockwise and counterclockwise for about 300

degrees. Furthermore, it can be moved up and down, as well as forward and backwards.

By using a compressor and a valve, it is possible to create a vacuum to suck in a

workpiece in order to stick it to the gripper. A workpiece can be dropped in place by

opening the valve. Similar to the station HR, VG also has three switches stating the

default position of one axis each, when pressed.

The VG is able to drop workpieces onto a wagon at the station FUR. In order to detect,

if a workpiece rests on the wagon, a light barrier is mounted onto the wagon. The

latter can be driven inside the furnace by a simple motor in order to simulate burning

the workpiece. Beside these machines, FUR consists of a vacuum gripper, which can
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2 Fundamentals

transport a workpiece from the furnace to a rotary desk. A rotary cultivator is placed

there, which simulates milling the workpiece. A pneumatic slider at the end of the station

ejects workpieces to a conveyor belt, which transports the workpiece to the sorting line.

At the end of this conveyor belt, there is a light barrier. For pneumatic functionality, one

compressor, several valves and pneumatic loaders are used.

The fourth station is SL. Its purpose is to determine the color of a workpiece, which

can be either white, red or blue. It is directly connected to FUR by a conveyor belt,

having a light barrier at its beginning, a color sensor in the middle, a light barrier after

the color sensor and three pneumatic sliders at the end, which can eject a workpiece

to three different positions. The light barriers determine the position of a workpiece on

the conveyor. Furthermore, the conveyor comprises a switch, which is pressed after

every step of the conveyor. Similar to station FUR, one compressor, several valves and

pneumatic loaders are installed for pneumatic functionality.

All presented sensors and actuators are controlled by a PLC.

2.1.2 Programmable Logic Controller (PLC)

A programmable logic controller (PLC) is a computer that consists of a processor, mem-

ory and I/O components [2]. The CPU executes an application that alters the output

memory depending on the input signals. Beside that, it includes communication inter-

faces, such as field buses or Ethernet to communicate with PCs or external hardware

modules. Typically, PLCs have a modular structure. Thus, they can be extended after

deployment to comply with changing requirements, e.g., by additional I/O-pins. PLCs are

primarily used in industrial environments where specific tasks have to be executed peri-

odically — typically within a few milliseconds. Special purpose PLCs comprise additional

co-processors to compute complex functions. Often, a PLC is just one component within

an automation system, beside sensors, actuators and other control and feedback control

systems [3]. In contrast to hard-wired relay-controlled systems, PLC controlled systems

are microprocessor-controlled systems that are easily changeable by reprogramming

the application code [4]. Since no rewiring is needed, PLCs are flexible, compact, fast

and cost-effective control systems.
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PLC

OUTIN CPU

Communication interfaces

RAM
FLASH /
EEPROMFRAM

Power supply

ActuatorsSensors

Additional 
PLC 

hardware

Programming 
device

Figure 2.3: PLC Hardware Structure [4]

A PLC consists of the following elements all being typically conducted by a power supply

of 24V DC: CPU, RAM, FRAM, FLASH/EEPROM, I/O- and communication interfaces

(cf., Figure 2.3). The CPU contains a microprocessor and executes application code.

Depending on input signals, the CPU updates outgoing values. The memory units

contain different information. While currently running applications are stored in a volatile

RAM, the operating system and boot applications are stored in non-volatile EEPROM

or FLASH storage. FRAM can persistently store certain user application values, which

will not be deleted if power supply gets disconnected. It also offers the same speed as

SRAM [5]. Input and output interfaces receive signals from sensors and send signals

to actuators. For example, an input device can be a photo-transistor of a light-barrier,

sending a discrete signal whether it is interrupted (no voltage) or not (certain voltage,

typically 24V). The input section (IN) decodes discrete signals into digital signals, being

either zero or one (cf., Figure 2.3). A PLC may have analogue inputs as well, e.g. to

process the signal of a color sensor, which can be a voltage level representing a certain

color. To be more precise, such a sensor sends a voltage proportional to some color.
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2 Fundamentals

The communication interfaces are used for communication with programming devices

or other additional hardware, e.g., another PLC or control system. Communication

interfaces are also used to integrate the PLC into a cyber-physical supervisory system

as a PLC typically is part of an automation system [3].

RAM

CPU

Operating 
system
tasks

Read 
inputs

Execute 
tasks

Write 
outputs

repeat

OUT
image

IN
image

Figure 2.4: PLC Code Execution Cycle (based on [3])

A PLC executes code different to standard PCs: application code is executed in cycles

(cf., Figure 2.4). At each start of a cycle, computing time is reserved for different tasks

to ensure real time execution, e.g., to preserve operating system tasks. Input signals,

being applied to the input interface, are copied to a specific part in RAM. Depending

on the signals, a PLC executes application code sequentially. The whole application is

executed line by line and output signals may be updated, depending on the application.

At the end of every cycle, changed values of output variables are written to the OUT

image (stored in RAM), which is directly pushed to the outgoing interface. After a cycle

is finished, the CPU repeats the steps within the next cycle. One cycle typically takes a

few milliseconds.

Within a cycle, multiple tasks may be executed. Tasks can be executed in three different

modes: cyclic, time-cyclic and event-driven [6]. Cyclic tasks do have the lowest priority

and are most commonly used. A task in this mode is executed every CPU cycle. The

cycle time states how long one cycle takes. This depends on the application and can

vary from cycle to cycle. In contrast, time-cyclic tasks have a mean prioritization and
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are executed periodically, e.g., every minute. If a time-cyclic task is triggered, standard

cyclic tasks are temporarily displaced (cf., Figure 2.5).

Process 
task1

Process task1
Process 

task1
Process task1

Read 
inputs

Write 
outputs

Read 
inputs

Write 
outputs

Read 
inputs

Cycle time

t

Tasks:
task1: cyclic
task2: periodically every minute

Process task2

Cycle time Cycle time

Write 
outputs

task2 gets triggerd by 
one-minute-timer

Figure 2.5: PLC Task Displacement

When a higher prior task has been finished, the CPU continues with processing the prior

displaced task. This behaviour results in a longer cycle time for the cycle in which the

displacement happened. Event-driven tasks have the highest priority and are triggered

by an interrupt. If an interrupt occurs, a lower prior task is displaced by the event-based

task which has been triggered by the interrupt. Which input signals are correctly detected

in a cycle depends on the execution duration of all tasks that are executed in this cycle

(cf., Figure 2.6).

In order to control the factory simulation, a Berghof EtherCAT Compact Controller

ECC2250 PLC is used [7]. It consists of a 800Mhz Arm Cortex-A9 single core CPU,

256MB RAM, 256MB flash storage, and 100kB FRAM at its side. The PLC has multiple

communication interfaces: Ethernet, EtherCAT, CAN, RS232 and supports protocols

such as EtherCAT Master, CANopen Master, Modbus RTU, Modbus TCP, SNMP, OPC

UA, Ethernet/IP and Profinet. Furthermore, the PLC offers 16 digital inputs, 16 digital

outputs, 12 analogue inputs and six analogue outputs. As the amount of digital in- and

outputs is not enough for the number of sensor and actuators of the factory simulation,

9



2 Fundamentals
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Figure 2.6: PLC Task Execution

the PLC is extended by a Berghof EtherCAT Compact I/O ECC-DIO 16/16 I/O-extension.

It comprises 16 in- and output pins which can be used by the PLC alongside its own

I/O-pins. Thereby, the I/O-extension is connected to the PLC via EtherCAT.

2.1.3 Encoder Board

The encoder motors that are used at the stations HR and VG have a maximum speed

of 214 rotations per minute, and send three impulses per rotation of the motor shaft

(10,7 rotations per second). Following, the PLC must not have a longer cycle time than

93ms to correctly capture all impulses. Since the PLC also has to be able to capture

the moment between two impulses, the maximum cycle time is 46,5ms. Additionally, the

factory simulation application runs as a cyclic task, there is no guarantee that a cycle

has been finished within 46,5ms.

Initial tests during implementation revealed a potential undersampling of encoder motor

signals, e.g., resulting in inaccuracies of VGs movements. According to the Nyquist
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2.1 Hardware Components

Figure 2.7: Encoder Board – Components

Shannon sampling theorem, undersampling means the sampling of a signal having a

sample rate that is below the signals Nyquist rate [8]. The Nyquist rate is defined as

twice the upper cutoff frequency of a signal. In order to avoid undersampling, an encoder

board was developed in order to reduce the amount of impulses sent by the encoder

motors. By using this hardware, the PLC is able to detect more impulses correctly.

The board comprises the integrated circuit (IC) 4040, a frequency divider to divide the

amount of impulses sent to the PLC by a factor of four. Thus, the maximum cycle time

without missing an impulse rises to 186ms. By using the encoder board, there is still

no guarantee that the PLC computes every task within this upper bound, but massively

shrinks the amount of not detected impulses, as further tests revealed.

A reduction of the amount of impulses sent by the encoder motors to the PLC results in a

loss of precision. However, this drawback can easily been deferred to, as there is no need

for a higher precision. For example, driving the tower of HR left by one encoder motor

impulse what equates to one third of a rotation of the motor shaft, results in a distance of

0.5mm. By using the encoder board, the maximum resolution is divided by four, resulting

in 2mm maximum precision — enough for the purpose of the factory simulation. Further

tests showed, that a higher impulse division leads to a non acceptable loss in precision.
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2 Fundamentals

2.2 PLC Programming Languages

PLC programming languages are standardized by the International Electrotechnical

Commission (IEC). It published its third version of the standard IEC 61131-3 in 2012.

This document is a guideline for PLC-programming and consists of requirements towards

PLC systems and concepts of PLC programming [9]. This includes the PLC software

model and programming languages, which are introduced in the following.

2.2.1 Software Model

The software model of IEC 61131-3 defines the whole setting of a PLC as a configuration.

A configuration includes all resources, tasks, programs and corresponding data [10].

Figure 2.8 shows the components of the IEC software model. If there are multiple PLCs

within one control system, each PLC will have its own configuration. The access of a

PLC to programs or data of other PLCs is realized by access paths, that define which

software parts are accessible. A PLC can consist of multiple processing units which

are called resources in the IEC 61131-3 standard [9]. A resource executes tasks and

handles access to physical I/O-pins of the PLC. A task has a priority, it is executed either

periodically, cyclic or event-driven, and runs one or more program instances. A program

may include calls of other programs, functions or function blocks. During the execution

of a task, all parts of the assigned program are processed once.

Programs (PRGs), function blocks (FBs) and functions (FUNs) are program organization

units (POUs) which are implemented in one of the five IEC programming languages [3].

A PLC project consists of several POU components. A POU can be compiled by the

compiler independently from other program parts. The three component types differ in

their features and use cases [9]. All physical addresses of I/O-pins have to be declared

in a program, resource or configuration. There is only one name space for the names of

all POUs in a project. Consequently, the name of a POU must be unique. In contrast to

other programming languages, POUs do not have any kind of sub routines.

PLC projects consist of multiple POUs which can be bundled into a reusable library.

Therefore, the hardware independence of written POUs is important. A POU consists of
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Figure 2.8: IEC 61131-3 Software Model [3]

a declaration and a instruction part, framed by a POU type and name (cf., Figure 2.9). If

a function is declared, the data type of its return value has to be declared as well. The

declaration part holds the interface variables and local variables. Each variable has a

name, a data type and a optional initialization value. In addition, its properties are set,

such as battery buffered or I/O pin mapping. The body of a POU holds instructions being

implemented in one of the five programming languages.

There are different types of variables with different access rights which may be used

in programs, function blocks or functions (cf., Table 2.2.1). VAR are local variables,

which can only be accessed inside the POU, in which they are declared. VAR_TEMP

are only locally accessible too, but, in contrast to other variable types, their values

are reset after the POU call has been finished. All other variables are static, they

survive a program call. VAR_INPUT variables are input parameters which will be

set "call-by-value" when the POU is called. They can not be written by the called
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POU

Interface variables,
Local variables

Instructions

FUNCTION_BLOCK name FUNCTION name datatypePROGRAM name

END_FUNCTION_BLOCK END_FUNCTIONEND_PROGRAM

Declaration 
part

Instruction 
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Figure 2.9: Program Organization Unit – Structure [9]

Access rights Allowed to use in
Variable Type External Internal PRG FB FUN
VAR - RW x x x
VAR_TEMP - RW x x -
VAR_INPUT W R x x x
VAR_OUTPUT R RW x x x
VAR_IN_OUT RW RW x x x
VAR_EXTERNAL RW RW x x -
VAR_GLOBAL RW RW x - -
VAR_ACCESS RW RW x - -

Table 2.1: Variable Types, Access Rights and their Use [9]

POU. In contrast, VAR_IN_OUT variables store a pointer, so they implement the "call-

by-reference" principle. VAR_OUTPUT variables are only readable available by the

calling POU in a "return-by-value" manner. VAR_EXTERNAL are needed to access

VAR_GLOBAL of other POUs. Therefore, a variable must have the same declaration in

both POUs. This implies that VAR_GLOBAL variables will be accessible by any POU

if they have declared an appropriate VAR_EXTERNAL. If a communication between

different resources or configurations is necessary, VAR_ACCESS variables are used to

define access paths realizing the required communication.

A PRG is a main program that has access to peripheral equipment, global variables and

access paths. In contrast to function blocks or functions, it is allowed to address physical

14



2.2 PLC Programming Languages

PLC-addresses for I/O activities inside a PRG. Furthermore, a PRG can be assigned to

a task.

FBs can not be assigned to a task. They can be instanced. A function block being

declared in a POU is visible inside the POU and can be made visible for other POUs

when it is declared as a VAR_GLOBAL. Following, other POUs can access the function

block by declaring it in VAR_EXTERNAL. Equally to PRGs, FBs can hold input and

output variables. PRGs and FBs can produce different results dependent on their local

variable values (having the same input signals in multiple cycles), because they are not

deleted after a POU call.

In contrast, FUNs do not hold static variables and produce the same result every cycle

while having the same input signals. In order to achieve this behaviour, values of function

variables are deleted after every function call. This implies that functions do not trigger

side effects. The purpose of functions is to extend the set of operations of a PLC. The

name of a function is globally valid in a project — thus, it can be called by any POU

inside the project. In addition, functions can have multiple input and output variables, but

only one return value.

2.2.2 Textual Languages

Two of the five IEC 61131-3 PLC programming languages are textual languages: in-

struction list (IL) and structured text (ST). IL is related to assembler and embedded

programming, as it consists of simple instructions in each line. IL is often used as an

intermediate language onto the other IEC languages are mapped. ST, on the other

hand, resembles high-level programming languages with its good readable syntax. In

the following, IL and ST are further introduced.

Instruction List (IL)

IL is a line-oriented programming language [9]. Each line consists of one instruction

being constituted of an operator and one or more operands. Optionally, each line can

have one jump label at its beginning, which can be used to jump to this instruction.
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Operands are constants, variables or input parameters of a function. The operator is

an IL-operator or a function name. Comments (* ... *) are allowed at any position

where blanks are allowed. ";" is not allowed at any position. In addition, there is no

column formatting. In IL, there is an accumulator — the "current result" — which is not a

memory area with fixed length, as it is in other assembler languages, but with dynamic

length. The IL-compiler adjusts the accumulator size, dependent on the operands

data type. Figure 2.1 shows an example program written in IL, where two variables

are multiplied and it is checked whether the result is positive or negative. At first, the

variables are declared: in line 2, op1, op2 are declared as integer and are initialized

with the value 10. res is also an integer, but is initialized with 0 in line 3. resPostive

is declared as a boolean in line 4 and if it is true, it states that res is positive. After the

declaration, the actual execution code follows. j1 and j2 are jump labels. The second

column holds operators while the third column consists of operands. op1 is loaded into

the accumulator (LD), multiplied (MUL) with op2 and stored (ST) in res. GT means

"greater than", compares the current result with zero and will store true in the current

result if it is greater than zero, otherwise false. JMPC is a conditional jump that will

be triggered if the accumulator is true. If res is positive, the program pointer jumps to

j2. Here, true is loaded into the accumulator and stored in resPositive. If res is

negative, false will be stored in resPositive.

1 VAR

2 op1 , op2 : INT := 10;

3 res : INT := 0 ;

4 r e s P o s i t i v e : BOOL := FALSE;

5 END_VAR

6 . . .

7 j 1 : LD op1

8 MUL op2

9 ST res

10 GT 0

11 JMPC j 2

12 LD FALSE

13 ST r e s P o s i t i v e

14 JMP j 3

15 j 2 : LD TRUE

16 ST r e s P o s i t i v e

Listing 2.1: IL Code Example
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Structured Text (ST)

Structured text is a textual language declared by the IEC 61131-3 standard. In contrast

to IL, it is a high-level programming language with a corresponding syntax that allows

compact statements, structured clear code and constructs to control the program flow,

such as IF conditions, CASE constructs and loops [9]. This programming comfort

results in a possible drawback of loosing performance, because ST code is on a higher

abstraction level than IL code. ST code consists of instructions that can span multiple

lines. Common to other high-level languages, each instruction is separated from each

other by a semicolon. Single- and multiline comments can be made in the same way as

in IL by using "(*" at the beginning of the comment and "*)" at its end. Unlike IL, ST

has no jump labels. Listing 2.2 shows the same program as listing 2.1, but written in ST

without declaration part (same as in IL).

1 res := op1 ∗ op2 ;

2 IF res > 0 THEN

3 r e s P o s i t i v e := TRUE;

4 ELSE

5 r e s P o s i t i v e := FALSE;

6 END_IF

Listing 2.2: ST Code Example

2.2.3 Graphical Languages

Beside the two presented textual languages, there are three graphical languages: func-

tion block diagram (FBD), ladder diagram (LD) and sequential function chart (SFC).

Function Block Diagram (FBD)

FBD is originated in signal processing [9]. The declaration part, where variables are

declared, is similar to textual languages: it is separated from the instruction part and

can be edited textually or graphically. The instruction part consists of networks which

are built up by rectangles and connections between them. Inputs of the rectangles

can be variables or constants. Furthermore, there are graphical elements to control
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Figure 2.10: FBD Code Example

the execution flow, e.g., jump labels. Listing 2.10 shows an example, written in FBD,

implementing the same logic as the example Listings 2.1 and 2.2.

Ladder Diagram (LD)

LD is originated in electromagnetic relay systems and focuses on boolean algebra [9].

Therefore, this programming language is inappropriate to use for simulating a factory

and will not be introduced here.

Sequential Function Chart (SFC)

SFC is the fifth programming language defined in standard IEC 61131-3. It is used for

structuring complex applications by encapsulating the application in clear, separated

steps. Similar to FBD and LD, SFC consists of one or more networks. Each network

has certain steps which are separated from each other by transitions. Each step

can be implemented in one of the five programming languages. If a step is written

in SFC, it represents a sub-network. Thus, a hierarchical structure can be realized.

If a step is active, the underlying code will be executed cyclically, until the following

transition condition is fulfilled. A transition condition is a boolean expression and can be
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implemented in ST, FBD or LD [9]. In addition to the executable code of a step, there

may be actions belonging to it. Entry actions are executed in the first cycle only, after a

step has become active. In contrast, exit actions are executed once, after the following

transition condition has become true. Standard actions of a step are executed every

cycle, as long as the step is active.

step1

step0

step2

action1
x

x

transition0

transition1

transition2

Entry action

Exit action

Figure 2.11: SFC Network Elements and their Composition

Figure 2.11 shows the basic structure of a SFC network. If the POU is called, it starts

its execution at the start step which is step0 in the example. step0 is executed

cyclically until transition0 gets true. Next, the entry action of step1 is executed

once. Afterwards, step1 and its associated action1 are executed every CPU cycle,

until transition1 gets fulfilled. In this case, the exit action of step1 is executed once,

just before the processor starts the execution of step2. step2 will be finished when

transition2 becomes true. Then, the CPU continues with the execution of step0.

To influence the control flow, there are alternative and parallel branching, as illustrated in

2.12. Alternative branches require an own entry and exit transition. If transition0 is

fulfilled, alternative1 will be executed. If transition1 is fulfilled, alternative2
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alternative1

step0

step2

transition0

transition2

alternative2

transition1

transition3

parallel1

step0

step2

transition0

transition1

parallel2

Alternative branching Parallel branching

transition4 transition2

Figure 2.12: SFC Networks – Alternative and Parallel Branching

will be executed. As opposed to this, when transition0 is fulfilled, parallel branches

parallel1 and parallel2 are simultaneously started.
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2.3 Codesys Integrated Development Environment

The Codesys IDE is a software programming development environment for industrial

programming of control and automation technology [11] (cf., Figure 2.13). It supports

IEC 61131-3 compliant PLCss. The Codesys IDE includes editors and compilers for all

IEC 61131-3 programming languages. It fully supports object-oriented programming,

e.g., inheritance, beside functional programming. Furthermore, there are edit and online

modes: during edit mode, the implementation is written, and during online mode written

code can be executed and debugged on a connected PLC.

Figure 2.13: Codesys IDE – Screenshot

During online mode, the application has been loaded onto the PLC and is running.

The IDE shows live changes of variable values as well as a supervised control flow.
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For debugging, breakpoints can be set. Code can be changed and deployed without

stopping the application.

In edit mode, a range of tools are provided by Codesys to fluently create textual or

graphical POUs. Manufacturer dependent hardware can be easily integrated into a

Codesys project with the help of configuration files. In a project, an I/O-pin layout can

be defined. All Codesys tools can be extended by packages being loaded from the

Codesys Store, for example, a SVN plugin or an integration of the OPC UA protocol [12].

Moreover, boot applications can be created. These applications can be pushed onto the

PLC, so every time it boots up, it automatically starts to run the boot application.
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This Chapter presents the concept of the factory simulation. First, use cases are

described, which have to be supported by the factory simulation. Then, system re-

quirements and the software architecture are declared. The chapter concludes with a

description of technical processes which shall be supported by the factory simulation.

3.1 Use Cases

The main use case of the factory simulation is to simulate the processing of workpieces.

A workpiece is stored in the high rack at the beginning of each process. It has certain

attributes, e.g. color, position, state, and a format that defines how to process a

workpiece. Choosable options are to burn it, to mill it, to check the color, to sort it

depending on its color, to store it back into the high rack or to eject it at the eject station.

There are three modes in which workpieces are processed: single mode, multi mode

and sorting mode.

In single mode, only one workpiece is processed by the Fischertechnik factory at a

stroke. A workpiece is forwarded from station to station while it passes through the

factory. If a station has finished processing the workpiece, it will wait until each station

has finished processing before starting to process a new one. As this is not an efficient

way to process workpieces, a new mode is introduced, solving this lack of efficiency by

parallelization: the multi mode.

In multi mode, multiple workpieces are processed in parallel. Wait states of all stations

are minimized. After a station has finished processing a workpiece, it is immediately
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checked whether the next workpiece can be processed. However, it is not possible

to eliminate all wait states, because a decent amount of dependencies between the

stations exist. Thereby, the workload of each station heavily depends on the order of

workpieces and their formats. The performance advantages of multi mode compared to

single mode are analyzed in section 5.2.

A further use case is to sort workpieces in the high rack. This use case is realized by

the sorting mode. Using this mode, workpieces can be sorted by a set of simple swap

operations. Thereby, each swap operation switches the positions of two workpieces in

high rack. This may be used to bring boxes, holding a workpiece, closer to the conveyor

during idle time of HR while empty boxes are brought farther afield in order to minimize

processing time.

Fischertechnik 
factory 

simulation

Add workpiece to batch job

User

Single modeStart/stop production

Pause/continue production

Add batch job to queue

Multi mode

Sorting mode

Figure 3.1: Factory Simulation – Use Case Diagram

Figure 3.1 shows further use cases, being directly connected to the user of the factory

simulation application. A user of the application is able to start or stop the workpiece

production. The production mode of the factory depends on the workpieces and batch

jobs the user has loaded into the systems queue. More details about the data model

can be found in section 3.3. At each point in time, the user is able to pause the running

factory and to continue the production simulation when paused. In addition to these use

cases, it shall be possible to add workpieces to the process queue during production.
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This includes the possibility to access data structures from outside the PLC, e.g., via

with the OPC UA communication protocol [13].

3.2 Requirements

In this section, requirements towards the factory simulation are presented. They are split

into functional requirements and marginal conditions. First, functional requirements are

depicted, many of them can be assigned to the stations of the factory.

First, at HR it must be possible to store (FR1), to take out of store (FR2), and to sort

(FR3) workpieces. This implies that functions exist to pick up (FR4) a workpiece, to put

down (FR5) a workpiece, to move the tower (FR6) and to move the conveyor belt (FR7).

VG has to able to pick up (FR8) a workpiece at HR and SL, and to put it down (FR9) at

HR, at FUR, and at the eject point. This implies the need of functions which move the

VG tower (FR10) and control the compressor and valve (FR11) of the gripper.

The FUR station needs functions for firing (FR12) and milling (FR13) workpieces. For

realization, functions are required to move (FR14) the wagon, vacuum gripper, rotary

desk, and pneumatic slider. The latter ejects a workpiece to SL.

At station SL, the conveyor belt must be movable in order to transport (FR15) workpieces

through the color checker and to the sorting positions. To check the color (FR16) of

a workpiece, an algorithm to detect the colors by using the color sensor has to be

implemented. The pneumatic sliders have to be used to eject (FR17) the workpieces to

the sorting positions. All these functions must be supported by software components.

Another requirement is that data structures have to be designed in a way that CRUD

operations (FR18) on them are possible via network access, e.g., by using the OPC UA

protocol. This implies that there have to be functions to create, read, update, and delete

certain data structures.

Alongside functional requirements, there are marginal conditions (cf., Table 3.2).
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Marginal condition Description
Robustness The factory simulation application must not react flawed to any

user input or sensor signals. To accomplish this, all input
signals and user inputs should be validated.

Performance Due to the fact that the simulation is fed by fast altering sensor
values, it must be fast enough, to process them in order to
adjust outgoing signals. Besides, the maximum precision of
actuator movements depends on the performance of the
application.

Security It has to be made sure that unauthorized access to the system
is not possible. To secure input signals, being sent by the user
through network, from man in the middle attacks, encryption
and certificates will be necessary.

Privacy As there are no personal information used in the system, the
development will not focus on privacy.

Maintainability Changes should be easily realizable at any time. If something
gets broken, it must be possible to adjust the corresponding
control flow.

Software portability Although the application is written in IEC 61131-3
programming languages, and should imply easy portability, it
depends on the manufacturer implementation of the standard,
whether the application can be easily ported to another target
PLC. Given the PLC of Berghof and the IDE Codesys,
portability between devices of Berghof should be possible.

Availability Being a simulation, the application must not be up and running
at any time. Nevertheless, if multiple people work on the
factory simulation, there always has to be a operational
application, and maintenance tasks should be done quickly, so
everyone can continue his work.

Reliability The system has to withstand unusual scenarios, such as a
temporary blackout. As the application directly interacts with
real-world actuators, which can cause damage to the
Fischertechnik factory, it has to be made sure that, at any
point in time, the application can be stopped by the user.

Table 3.1: Factory Simulation – Marginal Conditions
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3.3 Software Architecture

In the following, the software architecture is presented. It is derived from defined uses

cases, requirements and marginal conditions. The software architecture includes the

systems POU composition with its system operations, technical processes and data

model.

The usage of all five programming languages would cause confusing code. As mentioned

in [9], SFC is suitable for processes that are similar to state machines, being processed

step by step. Since the factory simulation requires such processes, SFC is chosen

to structure the POU composition and their steps (cf., Section 2.2.3). To implement

a certain step or transition, ST is used, because it is the IEC 61131-3 programming

language that is closest to object oriented programming languages. Complex boolean

expressions as well as dynamic flow control are enabler for clear and short code, being

realized by ST (cf., Section 2.2.2).

3.3.1 Program Organization Units

As mentioned in section 2.2.1, POUs are splitted into PRGs, FBs and FUNs. The factory

simulation uses PRGs to structure the control flow and, thus, the PRGs are implemented

in SFC. Inside the SFC steps, being implemented in ST, FBs and FUNs are called.

Figure 3.2 shows all PRGs and their call relation. In each cycle, the PLC starts the

code execution by calling the MAIN PRG. This PRG coordinates the PRG-calls of other

PRGs, based on the information of TC. The PRG calls depend on the ExecutionMode

of the current BatchJob, being processed at this point in time. For example, if there is a

BatchJob running in single mode, MAIN will call the single mode PRGs of each station.

Hence, every POU is responsible for a station in a certain mode. Some PRGs are

supported by FBs and FUNs. In case of HR PRGs, there are nine FBs supporting

them (cf., Figure 3.3). Each FB implements a certain functionality and may depend

on further FBs. For example, HR_PUT_W_ON_CONVEYOR moves the cantilever of the

high rack tower in such a way that the box it holds is put down onto the conveyor

belt. For the movements of the tower, it uses HR_MOVE. This FB implements the tower
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Figure 3.2: Factory Simulation – PRGs Overview

movements in all directions. While HR_MOVE gets the distance it shall move as an input,

HR_MOVE_TO_POS gets a certain position where to go. HR_TAKE_W_FROM_CONVEYOR

does the same steps as HR_PUT_W_ON_CONVEYOR, but visa versa.

HR_TAKE_W and HR_PUT_W realize the same actions as HR_PUT_W_ON_CONVEYOR

and HR_TAKE_W_FROM_CONVEYOR, but at the high rack. HR_GET_W takes a workpiece

out of the high rack and brings it to the conveyor belt. By contrast, HR_STORE_W stores a

workpiece in high rack by picking it up at the conveyor, moving it to the rack and putting it

down there. In order to accomplish this, it makes use of HR_TAKE_W_FROM_CONVEYOR,

HR_MOVE, HR_MOVE_TO_POS and HR_PUT_W. HR_SWITCH_WS is used by

HR_SORTING_MODE only, as it implements the functionality of swapping the positions of

two workpieces inside the high rack.

In Figure 3.4, the PRGs of VG, FUR and SL are shown, alongside their supporting

FBs. While FUR_SINGLE_MODE and SL_SINGLE_MODE do not use any FBs or FUNs,
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Figure 3.3: HR POUs and their Call Relations

FUR_MULTI_MODE uses FUR_BURN, implementing the burning of a workpiece in multi

mode. SL_MULTI_MODE uses the SL_FB, implementing the functionality of SL in multi

mode. VG_SINGLE_MODE and VG_MULTI_MODE call VG_MOVE and VG_MOVE_TO_POS

in order to move the VG tower. Equally to movement FBs of HR, VG_MOVE realizes

movement by a certain distance while VG_MOVE_TO_POS realizes movement to certain

positions, e.g., to the first position of the eject station.

Figure 3.5 shows functions used by MAIN to manipulate data structures, to init the batch

job queue and fill it with batch jobs and workpieces. newBatchJob, newFormat and

newWorkpiece act as a constructor, as it creates an instance of the considered struct.
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Figure 3.4: POUs with Call Relations to VG, FUR and SL
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Figure 3.5: FUNs, used by MAIN

By using addWorkpieceToBatchJob, a workpiece can be added to the workpieces

array of a BatchJob instance. addBatchJobToQueue adds a BatchJob instance

to the batchJobs array of addBatchJobToQueue. If one of these arrays is full, the

appropriate instance is not added.
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3.3.2 Technical Processes

In this section, the process structure inside a component is presented, alongside with

their relations. Therefore, we distinguish between single and multi mode. First, the task

of the task configurator (TC) is explained, as well as its process model, and the process

model of MAIN.
TC_process

TC
 (P

RG
)

start
batch job

set
workpiece

inform MAIN that new
workpiece has been loaded

wait until workpiece has
been processed

load next
workpiece or

batch job

Program stopped

M
AI

N
 (P

RG
)

init batch
jobs

wait until TC has
loaded workpiece

call single
mode
POUs

call multi
mode
POUs

call HR
sorting

mode POU

wait until workpiece has been processed

start TC

Program stopped

Figure 3.6: TC and MAIN – Process Model

TC is the software component which maintains the batch job queue. It loads the next

waiting batch job when the current batch job has been finished. During a running batch

job, TC also loads the next workpiece. If a workpiece has been loaded, HR is allowed to

start processing the workpiece. As shown in Figure 3.6, the execution starts with calling
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the MAIN PRG. It initializes the batch jobs and loads them into the batch job queue.

Afterwards, MAIN calls TC and waits until TC has loaded a workpiece to HR. Dependent

on the production mode of the batch job to which the current workpiece belongs to,

MAIN calls the POUs of the production mode. TC waits until all stations have finished

processing the workpiece. Afterwards, TC loads the next workpiece of the current batch

job to HR or, if it were the last workpiece of the current batch job, TC would load the first

workpiece of the next batch job in queue.

The process, describing the single mode, begins with calling the single mode PRGs by

MAIN when a workpiece has to be processed in single mode (cf., Figure 3.7). HR brings

its actuators to default position, so they are calibrated. Next, a workpiece is taken out of

high rack, is brought to HRs conveyor and VG is informed, that the workpiece is ready

to pick it up. During these actions, VG moved its actuators to default position and then

drove to HR to wait for the workpiece. When the message arrives that the workpiece

is ready for picking it up, VG takes the workpiece and informs HR that it has taken the

workpiece. If the eject option is set in the format of the workpiece and no other option is

set, VG drops the workpiece at the eject point and informs TC that it can load the next

workpiece to HR, as processing the current workpiece has already been finished here.

Otherwise, the workpiece is dropped at FUR by VG. VG moves its tower back to default

position for calibration reasons while FUR is starting processing the workpiece. If the

option of burning the workpiece is set in its format, the workpiece gets burned in the

furnace. Afterwards, the workpiece is moved to the saw and is milled, if the option is

set. Thereafter, the workpiece gets ejected to SL. FUR informs SL about this action.

Then, SL starts processing the workpiece. If no color check is demanded, the workpiece

will be ejected directly at eject point one. Otherwise, the workpieces color is checked

inside the color checker. Depending on the detected color, the workpiece gets ejected

to position one (white), position two (red), position three (blue), or the "trash" (no color

detected). Subsequently, VG is informed that it can pick up the workpiece. Therefore, VG

moves its tower to the appropriate eject position and picks up the workpiece. If ejecting

the workpiece at the eject station is required, VG executes the action and informs TC,

that all stations finished processing the workpiece after that. Otherwise, it drops the

workpiece into a box at HRs conveyor and notifies HR about this step. Finally, HR stores
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Figure 3.7: Single Mode – Process Model

33



3 Concept

the workpiece in the high rack. Now, TC is notified that all stations finished processing

the workpiece.

In multi mode, the PRGs are structured differently (cf., Figure 3.8). If multi mode is

chosen, HR, VG and FUR bring their actuators to their default positions. The HR multi

mode PRG decides on whether it takes a workpiece out of the high rack, or stores a

workpiece in the high rack. The decision making depends on a set of variables and

states (cf., Section 4.3.3). When a workpiece is taken out of high rack, it is waited with

storing the empty box until VG has picked up the workpiece. If a workpiece is moved to

HR, it chooses the other path: it brings a box to its conveyor, waits until VG has dropped

a workpiece into the box, and stores the box in high rack.

VGs multi mode behaviour highly depends on the DECIDE step. Inside this step, the

next action of VG is determined. After this action has been finished, the next step will be

decided. The decision making is addressed in Section 4.3.4. The following actions can

be executed:

• TO_DEFAULT_POS

• FROM_HR_TO_FUR

• TO_SL_TAKE_W

• TO_HR_PUT_W

• TO_HR_TAKE_W

• TO_EJECT

TO_DEFAULT_POS moves back the actuators to their default position.

FROM_HR_TO_FUR moves a workpiece from HR to FUR and drops it there.

TO_SL_TAKE_W drives VGs tower to SL and let him pick up a workpiece. TO_HR_OUT_W

moves the tower of VG to HR in order to drop the workpiece onto the conveyor of HR.

TO_HR_TAKE_W moves the tower of VG to HR in order to pick up a workpiece at the

conveyor of HR. In TO_EJECT, the VG tower is driven to the eject station to drop the

workpiece at one of the three eject positions.

The FUR multi mode PRG coordinates its three machines by calling them in parallel.

Each parallel step implements its appropriate functionality. The SL_MULTI_MODE PRG

34



3.3 Software Architecture
MULTI_MODE optimized

H
R_

M
U

LT
I_

M
O

D
E 

(P
RG

)

HR_MULTI_MODE (PRG)

TO_DEFAULT_POS DECIDE
multi mode

is chosen

GET_W

GET_BOX

STORE_BOX

wait for
VG to

pick up
workpiece

wait for
VG to
bring

workpiece

GET_BOX
Program stopped

VG
_M

U
LT

I_
M

O
D

E 
(P

RG
)

VG_MULTI_MODE (PRG)

TO_DEFAULT_POS

multi mode
is chosen

TO_DEFAULT_POS

FROM_HR_TO_-
FUR

TO_EJECT

TO_HR_TAKE_W

TO_HR_PUT_W

TO_SL_TAKE_W

DECIDE

Program stopped

SL
_M

U
LT

I_
M

O
D

E 
(P

RG
) SL_MULTI_MODE (PRG)

multi mode
is chosen

CALL
SL_FB

workpiece
received

Program stopped

M
AI

N
 (P

RG
)

FU
R_

M
U

LT
I_

M
O

D
E 

(P
RG

)

FUR_MULTI_MODE (PRG)

TO_DEFAULT_POS

multi mode
is chosen

BURNER

SUCCER

SAWProgram stopped
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Figure 3.9: Sorting Mode – Process Model

just calls the SL_FB when it has received a workpiece. The SL_FB implements in about

the same functionality as the SL single mode PRG does.

In sorting mode, only the HR PRG is necessary. As shown in figure 3.9, it has a very

simple structure: after sorting mode has been chosen by MAIN, HRs tower is driven to

its default position. Then, the sorting is executed. The implementation of the sorting is

explained in Section 4.3.3.

3.3.3 Data Model

In the following, the data structures are explained. As shown in 3.10, there is the struct

BatchJobQueue. It implements a ring buffer, holding the batch jobs which are going to

be executed. Therefore, the integer variable nextFreePos states the next free position

in the array batchJobs while amountBatchJobs counts the batch jobs being stored

in the ring buffer. The boolean variable full, which states whether the queue is full or

not. These variables are the basis to implement a waiting queue.

The BatchJob struct includes the array workpieces, holding the workpieces that

are processed in this batch job. However, workpieces is not a ring buffer, but an
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array with fixed length: it can hold up to nine workpieces, because the high rack has

nine positions where workpieces can be stored. Furthermore, the state variable

is a BatchJobState enum and holds information about the current status of the

batch job, such as "waiting for execution" or "started and currently running". More

details about all possible enum values can be found in appendix A.4. Integer variable

batchSize of the BatchJob struct counts the amount of workpieces being stored in

workpieces. Integer variable nextfreeWPos holds the index of the next free position

in workpieces, if workpieces is not full. Integer variable nextNotProcessedIdx

points to the workpiece position in workpieces which will be processed next. Integer

variable amountFinishedW counts the amount of workpieces of this batch job which

have already been processed. Variable mode (an enum of ExecutionMode) defines

the execution mode, i.e., single, multi or sorting mode. In addition, a BatchJob contains

certain timestamp variables in order to track execution.

<<struct>>

BatchJobQueue 

batchJobs: ARRAY OF BatchJob
nextFreePos: INT
amountBatchJobs: INT
full: BOOL

<<struct>>

BatchJob 

workpieces: ARRAY OF workpiece
state: BatchJobState
batchSize: INT
nextFreeWPos: INT
nextNotProcessedIdx: INT
amountFinsihedW: INT
mode: ExecutionMode
timeCreated: DATE_AND_TIME
timeStarted: DATE_AND_TIME
timeFinished: DATE_AND_TIME
pauseDuration: TIME
duration: TIME

<<struct>>

Workpiece 

color: STRING
sortingLinePos: INT
state: W_State
startPos: RackPos
endPos: RackPos
format: Format

<<struct>>

Format 

furEnabled: BOOL
sawEnabled: BOOL
colorCheckEnabled: BOOL
ejectEnabled: BOOL
furDuration: TIME
sawDuration: TIME

<<enum>>

RackPos 

<<enum>>

ExecutionMode 

<<enum>>

BatchJobState 

<<enum>>

W_State 

Figure 3.10: Data Structures – Class Model

A workpiece struct includes the workpieces color, its startPos in high rack, its

endPos in rack (if not ejected) and its position in the sorting line (sortingLinePos).

state is an enum of W_State, giving information about the current position of a
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workpiece, e.g., in the furnace. Each Workpiece points to a format struct, which

holds the execution options of this workpiece. Consequently, it can be indicated whether

the workpiece is burned, milled, color-checked or ejected. Moreover, for burning and

milling, a duration can be defined with furDuration and sawDuration.

<<enum>>

HR_State 
<<enum>>

VG_State 
<<enum>>

TC_State 
<<enum>>

FUR_State 
<<enum>>

SL_State 

Figure 3.11: Enums – Overview

Beside these structs and enums, further enums exist (cf., Figure 3.11). They are used to

show the current station states. This information may be used to visualize the factory

simulation. Enum TC_State is used to control the task configuration. These enums are

not used by the above shown structs, but by the POUs.
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The implementation of the factory simulation is based on the above introduced concept

(cf., Chapter 3). In the following, important parts of the implementation are explained,

including the Codesys project setup, hardware setup, implemented components, compo-

nent functions, component composition, and dependencies between components.

4.1 Setup

The setup description describes software and hardware setup. The software setup

outlines the Codesys project structure and its components, while the hardware setup

deeply explains the hardware composition.

4.1.1 Software Setup

In order to realize the factory simulation, the Codesys Integrated Development Environ-

ment V3.5 SP10 Patch 5 is used, because it supports the Berghof PLC. The application

software is organized in a Codesys project. In order to create a Codesys project for

a Berghof PLC, the Codesys target package of the PLC has to be installed. It is a

Codesys plugin integrating the Berghof PLC. In order to get access the I/O pins of the

PLC, an so called software side "extension slot" has to be added to the project inside

Codesys. The Berghof I/O software component is assigned to this software part. To

be able to communicate with the PLC I/O extension hardware, the EtherCAT master

software module has to be attached to the project. Thereafter, the Berghof ECC IO

16/16P I/O extension software module must be assigned to the EtherCAT master in
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4 Proof-of-Concept Implementation

its settings. In the device communication tab, a gateway has to be chosen and the IP

address of the PLC must be assigned, in order to be able to establish a connection

between the development machine and the PLC. Between all these software packages,

dependencies and possible incompatibility have to be checked.

4.1.2 Hardware Setup

The hardware setup of the factory simulation includes a workstation, e.g., a laptop with

Ethernet interface running the IDE Codesys, and an Ethernet-switch, connecting the

workstation to the PLC (cf., Figure 4.1). The PLC is connected to the PLC-I/O-Extension

by a CAT-5 cable and runs the EtherCAT protocol for communication. Furthermore, a

24V DC power supply is required to provide power to the PLC, PLC-Extension, and

Fischertechnik factory simulation I/O-boards.

Sorting line

Workstation

Switch

Ethernet

I/O
-

E
xte

n
sio

n
Power supply

EtherCAT

PLC

Ethernet

High rack

Vacuum gripper

Furnace

Codesys

Encoder Board

24V

24V

24V

24V

24V

24V

24V
I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O board

I/O board

I/O board

I/O board

Figure 4.1: Factory Simulation Hardware Components

Each Fischertechnik station has a dedicated I/O-board, controlling the actuators of the

station, depending on the signals coming from the PLC. While the I/O-pins of the PLC
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are directly wired to the I/O-Boards of HR and VG, the I/O-boards of FUR and SL are

wired to the I/O-pins of the I/O-extension board. The complete wiring scheme can be

found in appendix B. To organize the wiring, flat ribbon cable are used (cf., Figure 4.2).

Furthermore, an encoder board is connected between some input pins of the PLC and

some output pins of the I/O-boards of HR and VG. The encoder board is necessary

to encode signals of encoder motors in a certain way to make them readable for the

PLC, as described in section 2.1.3. The board uses ICs of type 4040, which are

frequency dividers to divide the frequency of the motor encoder signals by up to 1:128

(cf., Figure 4.3). By using jumpers, the frequency division can be adjusted. In our setup,

the jumpers are placed in the third slot, so the frequency is divided by four.

Figure 4.2: Fischertechnik Factory Simulation with PLC and Wiring

As the ICs require 5V voltage supply, the 24V voltage supply is transferred to 5V by

using a voltage divider. Photocouplers are used to isolate the circuits galvanically. A

encoder board consists of five modules for each of the five encoder motors. The input

signal comes from the encoder motor and is used as the clock of the IC. The IC counts

incoming clock signals and adjusts the outgoing pins 1-8 in the way that they represent
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Figure 4.3: Encoder Board – Circuit Diagram

the amount of counted impulses as a binary value. As the input signal is a 24V signal, a

photocoupler steps down the signal to 5V to be usable by the IC. Similarly, the output

signal must be converted back, hence, an additional photocoupler is used to step up the

5V output signal to 24V.

4.2 Code Structure

The Codesys project is structured like a tree, starting with the PLC device as root node

(cf., Figure 4.4). It is split into PLC logic, extension slots, and the EtherCAT_Master.

The PLC logic consists of the actual application code. One extension slot is used by the

Berghof_IO software module. It implements the access to input and output pins of the

PLC. To be more precise, the addresses of the pins are defined here. For example, the
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4.2 Code Structure

address %IX1.0 points to the first digital input pin. With the help of the EtherCAT_Master

module, communication to the PLC I/O extension is possible by a software module being

assigned to its slot. As a result, the I/O pins of the extension can be used just as the

actual PLC pins by addressing them by using their names which are defined by the

software module ECC_DIO_16_P itself. The PLC, and extension slot, hardware pin

address assignment is listed in appendix B.

 

Figure 4.4: Codesys Project Structure and Data Structures

The application, being located in the PLCs logic directory, consists of written code, task

configurations, a library manager, a visualization manager, and a visualization. The

datastructures directory consists of self-defined structs and enums (cf., Figure 4.4).

Furthermore, there is a global variable list SM necessary for single mode. In the appli-

cation’s root directory, the PRG MAIN is located. This PRG is called by the MainTask,

as it is assigned to this task by the task configuration. Additionally, there is a task that

handles EtherCAT communication, and another task handling visualization. All three
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tasks run in cyclic mode. There are directories for each station of the Fischertechnik

factory, containing all POUs as well as one global variable list of the appropriate station.

Furthermore, there is a directory for TC, consisting of TCs POUs and the global variable

list TC (cf., Figure 4.5).

Figure 4.5: Factory Stations and Task Configurator – File Structure

4.3 Components

In the following, the different software components are explained in detail. Functions

and function blocks of a station are explained first. Afterwards their usage in different

execution modes is illustrated.

4.3.1 MAIN Program POU

The MAIN POU is a PRG which is implemented in SFC. It contains steps, that are

implemented in ST. The first executed step Init initializes some variables. Afterwards,

INIT_BATCH_JOBS is called, because the transition between the steps is always TRUE

(cf., Figure 4.6). INIT_BATCH_JOBS initializes the batch job queue by defining arbi-

trary batch jobs, workpieces, and formats. In every further CPU cycle, the five steps
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TC_BLOCK, HR_BLOCK, VG_BLOCK, FUR_BLOCK and SL_BLOCK are executed in paral-

lel (cf., Figure 4.6). These steps are executed in an infinite loop, because the following

transition is always FALSE.

Figure 4.6: MAIN PRG – Graphical Implementation

TC_Block just consists of one code line, being the program call, i.e., TC_POU(); to

invoke the TC_POU program at every CPU cycle. HR_BLOCK invokes the appropriate

HR program that fits the execution mode of the current batch job, e.g., in single mode.

Therefore, HR_BLOCK calls the HR_SINGLE_MODE program. Analog to this step, there

are steps for VG, FUR and SL as well, realizing the same mechanism by invoking their

appropriate programs.

4.3.2 Task Configuration PRG and GLV

The task configuration program (TC_POU) is implemented in SFC and consists of seven

steps, being implemented in ST. The global variable list (GLV) TC has a reference to the
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enum TC_State (cf., Figure 4.7). Before the process sequence of TC_POU is explained,

the GLV TC and enum TC_State are introduced.

<<glv>>

TC 

mode_active: ExecutionMode
is_plc_running: BOOL
instant_shutdown AT %IX1.7: BOOL
batchJobQueue: BatchJobQueue
currBatchJobIdx: INT := 1
state: TC_State
nullW: Workpiece
nullB: BatchJob

<<enum>>

TC_State 

NULL := 0,
W_LOADED := 1,
WAIT_UNTIL_W_FINISHED := 2,
LOAD_NEXT_W := 3

Figure 4.7: Task Configurator – Global Variable List and State

The GLV TC pools variables that give a global overview over the factory. For example,

the enum mode_active of type ExecutionMode states which ExecutionMode the

factory is currently running in. The boolean variable instant_shutdown is used to

pause the entire factory simulation by a hardware switch. If the switch is activated, all

machines will stop their actions, because all outgoing signals of the PLC will be set

to FALSE. Furthermore, TC provides the batchJobQueue which has been filled with

batch jobs by MAIN. nullW and nullB are objects of type Workpiece and BatchJob

in which no variable is initialized. As there is no NULL value for objects in the PLC

programming languages, pointers of objects can be bend to nullW or nullB to realize

kind of null objects. To be more precise, both structs — Workpiece and BatchJob —

have a state enum variable. This variable can hold the value NULL to indicate that this

object shall be treated as a NULL-object. TC comprises a state which gives information

about which TC steps have been executed yet. The state is used to control the program

flow from outside. For example, if the factory has just been finished with processing

a workpiece in single mode, the next workpiece has to be loaded. Assuming that the

workpiece was stored back to high rack, HR_SINGLE_MODE will alter the state of the

GLV TC to the value LOAD_NEXT_W. As the state is used in the transitions of TC_POU,

it will go on with the step NEXT_W (cf., Figure 4.8).
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Start_BatchJob

fin AND TC.state = TC_State.LOAD_NEXT_W

Init

TRUE

Set_Workpiece

TC.state = TC_State.W_LOADED

Wait_Until_HR_Ready

TC.state = TC_State.WAIT_UNTIL_W_FINISHED

Wait_Until_W_Finsished

TC.state = TC_State.LOAD_NEXT_W

Next_W

fin

fin

Decide_next_W_or_BatchJob

Figure 4.8: TC_POU Process Sequence

The process sequence of TC_POU is implemented as follows. At first, the step Init

initializes the enum state with the value NULL. Next, the step Start_Batch_Job

starts the workpiece processing, by setting the

TC.batchJobQueue.batchJobs[TC.currBatchJobIdx].state to

BatchJobState.STARTED. Depending on the execution mode of the current batch

job, the step Set_Workpiece bends the pointers of the stations GLVs to the ap-

propriate workpiece and batch job which shall be processed. Afterwards, TC_POU

waits until the workpiece has been processed. Step Next_W increments the variable

nextNotProcessedIdx of the current batch job. Step Decide_next_W_or_BatchJob

will do nothing if the current batch job holds a further workpiece. Otherwise, it will set

the TC.currBatchJobIdx to the next batch job in queue.
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4.3.3 High Rack Warehouse

The implementation of the high rack warehouse consists of multiple software components.

There is the GLV HR that defines the variables, referencing the I/O pins of HR, and some

program variables, such as state of type HR_State (cf., Figure 4.9). On the one hand,

the state variable is used to monitor the stations actions, on the other hand, it is used

to control the program flow. Many transitions between steps of HRs PRGs make use of

state. Further important variables are bIdx, wIdx and currW. The variable bIdx is

the index of the batch job in TCs batch job queue, which is currently processed by the

simulation. wIdx is the index of the workpiece in the array workpieces of the current

batch job. The variable currW directly points to the current workpiece object. The

variable any_motor_running is TRUE, if at least one motor or compressor is active.

<<glv>>

HR 

(input pins)
(output pins)
state: HR_State
started_btn_is_pressed: BOOL
any_motor_running: BOOL
decidedToTakeANewW: BOOL
cX: INT
cY: INT
bIdx: INT
wIdx: INT
currW: Workpiece

<<enum>>

HR_State 

NULL := 0,
AT_DEFAULT_POS := 1,
FINISHED_SINGLE_MODE := 2,
AT_CONVEYOR_BOX_FULL := 25,
AT_CONVEYOR_BOX_EMPTY := 26,
WAIT_FOR_VG_TO_BRING_W := 8,
GET_W := 9,
GET_BOX := 10,
STORE_W := 20,
STORE_BOX := 19,
WAIT_FOR_VG_TO_PICK_UP_W := 11,
READY := 12,
FINISHED_SORTING_MODE := 40,
SORTING := 41

Figure 4.9: HR GLV and HR_State Enum

As already illustrated in section 3.3, the high rack concept includes multiple function

blocks that are used by its programs or other function blocks. In the following, the

implementation of these function blocks is explained.

HR_MOVE requires two input parameters, x, the distance HR will go right (negative value)

or left (positive value) and y, the distance HR will go up (negative value) or down (positive
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value). Here, the distance is represented by the amount of impulses that are sent by the

encoder motor. HR.cX and HR.cY are counter variables that save the current position of

the high rack tower in the GLV. At the default position of the tower (tower presses against

the two switches sHorizontal and sVertical), both counters are 0. For example,

the function block gets called with the inputs x:=20 and y:=30. After the function block

has been executed, the tower moved 20 impulses left and 30 impulses down. This is

memorized by updating HR.cX and HR.cY. In case, x is negative, the tower is going to

move right by setting HR.mHorizontalRight to TRUE (cf., Listing 4.1 line 12), as long

as the local counter cX has not reached the value of x (cf., Listing 4.1 line 4). After the

movements on both axis are finished, the local counters cX and cY are reset to 0, while

the global counters represent the new position.

1 / / X AXIS

2 IF x < 0 THEN

3 / / d r i v e r i g h t

4 IF cX = x THEN

5 / / i f counter reached demanded pos i t i on , we ’ re done

6 HR. mHor izonta lRight := FALSE;

7 HR. mHor izon ta lLe f t := FALSE;

8 xFin := TRUE;

9 ELSE

10 xFin := FALSE;

11 IF cX > x THEN

12 HR. mHor izonta lRight := TRUE;

13 IF HR. encHor izonta l AND NOT( xAlreadyCounted ) THEN

14 / / update l o c a l counter

15 cX := cX − 1;

16 / / update g loba l counter

17 HR. cX := HR. cX − 1;

18 xAlreadyCounted := TRUE;

19 ELSIF NOT(HR. encHor izonta l ) THEN

20 xAlreadyCounted := FALSE;

21 END_IF

22 END_IF

23 END_IF

24 ELSE

25 . . .

Listing 4.1: HR_MOVE Function Block – Code Snippet

The FB HR_MOVE_TO_POS is implemented similar to HR_MOVE, but gets a position,

where to go, as an input, represented by pos and upOrDown, which are both enums

of type RackPos. This enum represents certain positions at this station, such as for

example RACK_11 or CONVEYOR. Additionally, there are the two enum values UP and
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DOWN, representing the upper or lower position. A call of the function block looks as

follows:

1 VAR

2 hr_move_to_pos : HR_MOVE_TO_POS;

3 END_VAR

4 . . .

5 hr_move_to_pos ( pos := RackPos .CONVEYOR, upOrDown := RackPos .DOWN) ;

Listing 4.2: HR_MOVE_TO_POS call

This function block call moves the high rack tower to the conveyor to the lower position

where it can pick up a box.

All further function blocks of HR are structured the same way as HR_PUT_W (cf., List-

ing 4.3). There is a CASE construct which chooses one step, depending on the value of

step. If a step is finished, the step gets incremented and the next step will be executed

in the next cycle. If the last step has been executed, the fin flag is set to TRUE and the

step is reset to 1.

1 CASE step OF

2 1: / / forward

3 f i n := FALSE;

4 IF NOT(HR. sCFront ) THEN

5 HR. mCForward := TRUE;

6 ELSE

7 HR. mCForward := FALSE;

8 step := step + 1;

9 END_IF

10 2: / / down

11 hr_move ( x := 0 , y := 16 ) ;

12 stepFin := hr_move . f i n ;

13 IF stepFin THEN

14 step := step + 1;

15 stepFin := FALSE;

16 END_IF

17 3: / / back

18 IF NOT(HR. sCBack ) THEN

19 HR. mCBackward := TRUE;

20 ELSE

21 HR. mCBackward := FALSE;

22 step := step + 1;

23 END_IF

24 4: / / f i n i s h e d

25 f i n := TRUE;

26 step := 1 ;

27 END_CASE

Listing 4.3: HR_PUT_W Function Block – Implementation
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The FB HR_PUT_W drives the cantilever of the tower forward, until the switch HR.sCFront

signalizes TRUE. Thereafter, the tower is moved down by 16 impulses. After this step,

the cantilever is driven back until the switch HR.sCBack signalizes TRUE.

When using function blocks, having the explained structure, it is important to continue

inside the calling program, once fin is TRUE. Otherwise, the function block is executed

again.

Other function blocks of HR are not further explained, as they all follow the same

structure. In the following, the implementations of the different mode PRGs of HR

are explained. HR_SINGLE_MODE consists of ten steps, which are sequentially exe-

cuted, starting with step Init (cf., Figure 4.10). After the default position is reached,

the step HR_CALIBRATE_Y_AXIS is executed. This step resets the y-axis counter

and position of the tower and is needed, because—although the encoder board in-

creases the consistency of encoder motor movements—they are still too inaccurate

after a couple of movements, because the PLC shows detection delays for each im-

pulse. The function blocks are implemented in the way that after a certain amount of

impulses, a movement is finished and the motor is turned off by setting the output bit

to zero. In step HR_SET_TC_STATE, the PRG sets the TC.state to LOAD_NEXT_W

and waits until TC_POU has set the pointers bIdx, wIdx and currW of the GLV HR. The

pointers are loaded once TC.state holds the value TC_State.W_LOADED. Now, HR

can start to take out a workpiece from rack, represented by HR_GETS_W. Afterwards,

HR_SINGLE_MODE is waiting until VG picks up the workpiece and then either waits until

VG brings it back or, if ejectEnabled is TRUE, directly starts to store the box back in

the rack.

The multi mode of HR is implemented as specified in section 3.3.2. Thus, the SFC steps

look like the BPMN process activities. The most complex step of this POU is DECIDE

(cf., appendix A.1). In this step, it is decided which of the two paths will be taken and

when it will be taken. Being in multi mode, this depends on many variables and states.

For example, if a batch job has been processed completely and a new one is loaded, it

depends on the mode of the previous batch job.
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4 Proof-of-Concept Implementation

HR_TO_DEFAULT_POS

HR.state = HR_State.AT_DEFAULT_POS

Init

TRUE

HR_CALIBRATE_Y_AXIS

fin

HR_SET_TC_STATE

fin

HR_WAIT_FOR_TC

TC.state = TC_State.WAIT_UNTIL_W_FINISHED

HR_GETS_W

fin

HR.state = 
HR_State.FINISHED_

SINGLE_MODE

HR_WAIT_FOR_VG_TO_PICK_UP_W

ejectEnabled

HR_WAIT_FOR_VG_TO
_PUT_DOWN_W

HR.state = 
HR_State.AT_CONVEYOR_BOX_FULL 
AND VG.state = VG_State.AT_HR

NOT(ejectEnabled)

HR_CONVEYOR_BACKWARD

fin

HR_STORES_W

Figure 4.10: HR_SINGLE_MODE SFC Process Sequence

In sorting mode, HR uses the function block HR_SWITCH_WS in step SORTING to switch

the position of two workpieces. This mode is implemented as defined in section 3.3.2.

The implementation can be found in appendix A.1.

4.3.4 Vacuum Gripper

The vacuum gripper follows the same code structure as HR. The GLV VG defines vari-

ables to access input and output pins (cf., Figure 4.11). In addition, it holds variables,

such as bIdx, wIdx, and currW. These variables have the same purpose as in HRs im-
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4.3 Components

plementation. Similar to HR, VG has a reference state and an enum of type VG_State

being used to control and monitor the station. VG has two function blocks: VG_MOVE and

VG_MOVE_TO_POS. Still similar to HR, they implement the movements of the tower. Their

implementation resembles the implementation of HR_MOVE and HR_MOVE_TO_POS.

<<glv>>

VG 

(input pins)
(output pins)
state: VG_State;
any_motor_running: BOOL;
storeW: BOOL;
cX: INT;
cY: INT;
cZ: INT;
bIdx: INT;
wIdx: INT;
currW: Workpiece;

Figure 4.11: VG – Global Variable List

VGs implementation of the single mode is not linear as the implementation of HRs

single mode. Instead, there are different possible execution paths (cf., Figure 4.12).

VG_SINGLE_MODE always starts by bringing its tower to the default position, when the

POU gets called for the first time. Next, the tower is moved to the high rack in step

VG_TO_HR. Once it has reached the position (VG.state = VG_State.AT_HR), and a

workpiece is ready to pick up (HR.state = HR_State.AT_CONVEYOR_BOX_FULL),

VG_SINGLE_MODE continues with VG_TAKE_W and picks up the workpiece. At the end

of this step, it has to be decided whether to bring the workpiece to the furnace or to

bring it to the eject station. If only ejectEnabled is set and no other flags are set

in SM.currW.format, VG_SINGLE_MODE will continue with VG_DIRECTLY_EJECT_W

and then jumps back to VG_TO_HR (cf., Listing 4.4). Otherwise, the workpiece is

brought to FUR in VG_TO_FU. Then, the tower is moved back to its default position in

BACK_TO_DEFAULT, and waits until a workpiece is available at SL, in order to pick it up

there in step VG_TO_SL.
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4 Proof-of-Concept Implementation

1 IF SM. currW . format . e jectEnabled AND NOT(SM. currW . format . furEnabled )

2 AND NOT(SM. currW . format . sawEnabled ) AND NOT(SM. currW . format . colorCheckEnabled ) THEN

3 / / d i r e c t l y e j e c t workpiece

4 VG. s ta te := VG_State .FROM_HR_TO_EJECT;

5 ELSE

6 / / b r i ng workpiece to FUR

7 VG. s ta te := VG_State .FROM_HR_TO_FUR;

8 END_IF

Listing 4.4: VG_TAKE_W Step – Decision Logic

At this point, it has to be decided, whether the workpiece is moved back to HR, or whether

it is moved to the eject station. If it is moved to HR, the steps VG_FROM_SL_TO_HR,

VG_DROP_W, and VG_WAIT_UNTIL_BOX_EMPTY are executed sequentially. Other-

wise, the workpiece is ejected at the eject station by the sequential steps VG_YUp,

VG_TO_EJECT_POINT, VG_EJECT and VG_EJECT_W. Independent from which path is

chosen, the PRG finally jumps back to the step VG_TO_HR.

In contrast to VG_SINGLE_MODE, the implementation of VGs multi mode is constructed

differently. First, VGs tower is driven to its default position by the step TO_DEFAULT_POS

when the PRG is called for the first time. Afterwards, the DECIDE step chooses one step

out of the six possible ones: TO_DEFAULT_POS, FROM_HR_TO_FUR, TO_SL_TAKE_W,

TO_HR_PUT_W, TO_HR_TAKE_W and TO_EJECT (cf., Figure 4.13). After the chosen step

has been executed, DECIDE is called again, to determine the step being executed next.

Thereby, VG.state indicates, which step has been chosen by DECIDE. For example, if

FROM_HR_TO_FUR is chosen, DECIDE sets VG.state to

VG_State.TO_FUR_PUT_W. As the transition between DECIDE and FROM_HR_TO_FUR

is VG.state = VG_State.TO_FUR_PUT_W, it fires as the condition has become

TRUE. This implies that FROM_HR_TO_FUR is executed next. Once the step has been fin-

ished, VG.state is set to VG_State.TO_FUR_PUT_W_FINISHED and the transition,

being located after the step, fires. This leads to a jump back to DECIDE (cf., Figure 4.13).
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4.3 Components

VG_TO_DEFAULT_POS

Init

VG_TO_HR

VG_TAKE_W

VG_TO_FU VG_DIRECTLY_EJECT_W

BACK_TO_DEFAULT

VG_WAIT_FOR_SL

VG_TO_SL

VG_FROM_SL_TO_HR VG_YUp

VG_DROP_W

VG_WAIT_UNTIL_BOX_EMPTY

VG_TO_EJECT_POINT

VG_EJECT

VG_EJECT_W

Figure 4.12: VG Single Mode – SFC Process Sequence

TO_DEFAULT_POS

Init

DECIDE

TO_SL_TAKE_W TO_HR_PUT_W TO_HR_TAKE_W TO_EJECTTO_DEFAULT_POS2 FROM_HR_TO_FUR

Figure 4.13: VG Multi Mode – SFC Process Sequence
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4 Proof-of-Concept Implementation

4.3.5 Furnace

The furnace station has the GLV FUR, similar to HR and VG. It consists of I/O-variables

and program variables (cf., Figure 4.14), e.g., bIdx, wIdx and currW for every machine,

being used in multi mode. In addition, state shows the current FUR_State. Similar

to other station, single and multi mode PRGs exist, namely FUR_SINGLE_MODE, and

FUR_MULTI_MODE.

<<glv>>

FUR 

(input pins)
(output pins)
any_motor_running: BOOL;
state: FUR_State;
bIdxBurner: INT;
bIdxSuccer: INT;
bIdxSaw: INT;
wIdxBurner: INT;
wIdxSuccer: INT;
wIdxSaw: INT;
currWBurner: Workpiece;
currWSuccer: Workpiece;
currWSaw: Workpiece;

Figure 4.14: FUR – Global Variable List

FUR_SINGLE_MODE is a PRG, written in SFC, that has a linear process layout with

options for skipping a machine, e.g. skip burning the workpiece. At the beginning of

the POU, all machines are moved to their default position and the station waits until VG

has laid down a workpiece onto the wagon. Afterwards, the step FUR_BURN realizes the

actions of burning a workpiece when SM.currW.format.furEnabled is set. While a

workpiece is in furnace, the vacuum succer is driven towards the wagon in order to pick

up the workpiece after burning. The next five steps, starting with FUR_SUCCER_DOWN

and ending with FUR_SUCCER_UP2, bring the workpiece to the rotating desk, where the

saw is mounted. FUR_SAW will mill the workpiece, if sawEnabled is set. Otherwise,

the execution continues with FUR_TO_CONVEYOR. After this step has been finished,

FUR_SINGLE_MODE jumps back to Init (cf., Figure 4.15).
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4.3 Components

FUR_TO_DEFAULT_POS

Init

FUR_WAIT_FOR_W

FUR_BURN

FUR_SUCCER_DOWN

FUR_SUCCER_UP

FUR_SUCCER_TO_ROTATION_DESK

FUR_SUCCER_DOWN2

FUR_SUCCER_UP2

FUR_SAW

FUR_TO_CONVEYOR

Figure 4.15: FUR Single Mode – SFC Process Sequence
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4 Proof-of-Concept Implementation

In FUR_MULTI_MODE, the actions of furnace, succer, and saw are parallelized. Further-

more, the actions that are needed to simulate the burning of a workpiece are outsourced

into the function block FUR_BURN.

Figure 4.16: FUR Multi Mode PRG – Graphical Implementation

The implementation of the step BURNER is exemplary explained (cf., Listing 4.5). Ev-

ery workpiece has a state that indicates the current status of a workpiece, e.g.,

it current position. As long as FUR.currWBurner.state is W_State.NULL, the

BURNER does nothing. FUR.currWBurner.state is changed by VG once it has

dropped the workpiece onto the wagon. Then, the workpiece gets burned when

FUR.currWBurner.format.furEnabled is set. When finished, the pointers of the

succer are set to the current workpiece of the burner. Afterwards, the pointers of burner

are reset. This implies, that BURNER waits again, until FUR.currWBurner is changed

to a value not equal to W_State.NULL.
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4.3 Components

1 IF FUR. currWBurner . s t a te <> W_State .NULL THEN

2 / / f u r burner got an w

3 IF FUR. currWBurner . format . furEnabled AND NOT( f i nBu rne r ) THEN

4 / / burn

5 fur_burn (w := FUR. currWBurner ) ;

6 f i nBu rne r := fu r_burn . f i n ;

7 ELSE

8 IF FUR. currWSuccer . s t a te = W_State .NULL THEN

9 / / bend po in te r s o f f u r succer to cu r ren t workpiece

10 FUR. bIdxSuccer := FUR. bIdxBurner ;

11 FUR. wIdxSuccer := FUR. wIdxBurner ;

12 FUR. currWSuccer := TC. batchJobQueue . batchJobs [FUR. bIdxSuccer ] . workpieces [FUR. wIdxSuccer ] ;

13 / / rese t own po in te r s

14 FUR. bIdxBurner := 0 ;

15 FUR. wIdxBurner := 0 ;

16 FUR. currWBurner := TC. nullW ;

17 f i nBu rne r := FALSE;

18 END_IF

19 END_IF

20 END_IF

Listing 4.5: FUR_MULTI_MODE PRG – BURNER Step

4.3.6 Sorting Line

The sorting line has the GLV SL. It consists of I/O-pin variables and the program variables

state, bIdx, wIdx, and currW. There are two PRGs, namely SL_SINGLE_MODE and

SL_MULTI_MODE. Both are implemented similarly: they call a SL_FB when they have

received a workpiece. The actual process is implemented in SL_FB. It waits until

a workpiece activates the light barrier located at the beginning of the conveyor belt.

Afterwards, the workpiece gets driven trough the color checker. While going through the

color checker, the color sensor constantly measures the color. Thereby, the minimum of

the analog signals is taken, as it is unique for every color. Then, the workpiece is driven

to one of the three ejecting pneumatic sliders, depending on the determined color, in

order to push the workpiece to one of the three places. E.g., if color white is detected, it

is ejected to the first place.
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4 Proof-of-Concept Implementation

<<glv>>

SL

(input pins)
(output pins)
any_motor_running: BOOL;
state: SL_State;
bIdx: INT;
wIdx: INT;
currW: Workpiece;

Figure 4.17: SL – Global Variable List

4.3.7 User Interface

The user interface implements a button "GO!", and a LED "PLC running" (cf., Figure 4.18).

Without pressing the button, the factory simulation does not start. Once the button has

been pressed, the factory simulation is running and can not be stopped by pressing

the button again. The LED is lighted, when the program is executed by the PLC. A

sophisticated GUI can be implemented outside the PLC application. For example, the

GUI can be implemented as web application retrieving data from the PLC application via

OPC UA.

Figure 4.18: Graphical User Interface – Codesys Representation

4.4 Integration

In the following, the interaction between the components is illustrated.
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Every PLC CPU cycle starts with executing MAIN. Depending on the ExecutionMode

of the BatchJob being located in TC.batchJobQueue at the index

TC.currBatchJobIdx, the appropriate PRGs of the stations are called (still in the

same CPU cycle). If the batch job is executed in single mode, the SM.currW pointer

is bend to the workpiece that is located in the workpieces array of the current batch

job. Now, every single mode PRG has access to the workpiece which is going to be

processed.

If the batch job is executed in multi mode, TC_POU bends the pointers HR.bIdx,

HR.wIdx and HR.currW to the current workpiece. Here, HR.bIdx is set to

TC.currBatchJobIdx, HR.wIdx is set to TC.batchJobQueue.batchJobs[TC.

currBatchJobIdx].nextNotProcessedIdx and HR.currW is set to

TC.batchJobQueue.batchJobs[Hr.bIdx].workpieces[Hr.wIdx. Every time,

a station has given a workpiece to the next station, it also bends the stations pointers

to the current workpiece it has gotten. For example, if VG takes a workpiece from

HR, VG.bIdx is set to HR.bIdx, VG.wIdx is set to HR.wIdx and VG.currW is set to

HR.currW.

Afterwards, the pointers of HR are reset. If a batch job has been finished, and the next

batch job has to be executed in a different mode, it has to be ensured that pointers to

workpieces and batch jobs are not set until all stations have finished processing the last

workpiece.
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Test and Evaluation

During development, the factory simulation has been tested and the requirements has

been evaluated. However, testing of PLC applications is different to classical software

unit and system tests, as the system depends on real world sensors and actuators.

Furthermore, there are many dependencies between software components which may

not be mocked in a way that they represent the real behaviour.

5.1 System Test

A system test consists of test cases, testing the interaction between components of

the system and the systems behaviour in general [14]. Every test case of the factory

simulation system test has access to 16 different formats. As a format consists of

four boolean variables which can be either TRUE or FALSE, there are 16 different

possible combinations. The duration variables are set to five seconds in every format

(cf., Listing C.1).

The first test case covers the single mode (cf., Listing C.2), the second test case covers

the multi mode (cf., Listing C.3) and the third testcase covers the sorting mode (cf.,

Listing C.4). The three test cases consist of 16 workpieces that are separated in two

batch jobs with eight workpieces each. They all passed, because every workpiece has

been processed as expected by the factory simulation.

The fourth test case covers the transitions between batch jobs, having the same or differ-

ent execution modes. It consists of ten batch jobs covering all nine possible transitions
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5 Test and Evaluation

(cf., Listing C.5). For every execution mode, there are three possible transitions (cf.,

Figure 5.1).

SINGLE MUTLI

SORTING

Figure 5.1: Batch Job Execution Mode Transitions

The single mode test case has been processed within 21.20 minutes, whereas the multi

mode test case has been processed within 14.42 minutes. Thus, the multi mode reduced

the processing time by about 33 precent in the manner described.

5.2 Process Evaluation

The implementation is collated with the functional requirements and marginal conditions,

defined in section 3.2.

At HR, it is possible to store (FR1) and to take out (FR2) workpieces, realized by

the function blocks HR_GET_W and HR_STORE_W. Sorting (FR3) workpieces is re-

alized by HR_SORTING_MODE. Therefore, functions exist to pick up (FR4) a work-

piece (HR_TAKE_W and HR_TAKE_W_FROM_CONVEYOR), to put down (FR5) a workpiece

(HR_PUT_W and HR_PUT_W_ON_CONVEYOR) and to move the tower (FR6) (HR_MOVE

and HR_MOVE_TO_POS). To move the conveyor belt (FR7), there is no function block,

as this is realized directly inside the PRGs.
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5.2 Process Evaluation

At VG, picking up a workpiece (FR8) at HR is realized by the steps VG_TAKE_W in

VG_SINGLE_MODE and TO_HR_TAKE_W in VG_MULTI_MODE. Picking up a workpiece

at SL is implemented in the steps VG_TO_SL (single mode) and TO_SL_TAKE_W

(multi mode). To put down (FR9) a workpiece at HR, the step VG_DROP_W is used

in single mode and the step TO_HR_PUT_W is used in multi mode. A workpiece is

dropped at FUR by the step VG_TO_FU in single mode and FROM_HR_TO_FUR in multi

mode. Ejecting a workpiece at the eject station is realized in single mode by the steps

VG_DIRECTLY_EJECT_W if directly ejected, otherwise by VG_TO_EJECT_POINT and

VG_EJECT. In multi mode the step TO_EJECT implements this. All these steps make

use of the function blocks VG_MOVE or VG_MOVE_TO_POS to realize tower movements

(FR10). The valve and compressor do not have specific function blocks controlling them

(FR11). Instead, they are directly controlled by certain step in the different execution

mode programs.

At FUR, firing (FR12) a workpiece is realized by the step FUR_BURN in single mode and

by an eponymous function block in multi mode. Workpieces get milled (FR13) in the

step FUR_SAW in single mode and SAW in multi mode. Movements of machines (FR14)

are realized inside the some steps of the PRGs.

At SL, there all steps that move the conveyor in order to transport the workpiece can

be found in the function block SL_FB (FR15, FR16, FR17). The algorithm to detect the

color of a workpiece is taking the minimum of all measured values and compare it to

stored thresholds.

A further requirement describes the possibility to execute CRUD operations (FR18) on

the internal data structures. The create operation is realized by functions newBatchJob,

newFormat, and newWorkpiece. Operations read and update are supported by the

pointers of the GLVs, pointing to the objects. Thus, the objects can be accessed and

manipulated. Deleting an object is possible by setting pointing to a workpiece or batch

job to values nullW or nullW.

In general, all functional requirements are met. The marginal conditions evaluate as

follows. The robustness of the system is ensured by system tests. However, there is still

a great variety of untested input signal scenarios. The performance of the application
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Functional
Requirement Realized by Type

FR1 HR_GET_W FB
FR2 HR_STORE_W FB
FR3 HR_SORTING_MODE PRG
FR4 HR_TAKE_W; HR_TAKE_W_FROM_CONVEYOR FBs
FR5 HR_PUT_W; HR_PUT_W_ON_CONVEYOR FBs
FR6 HR_MOVE; HR_MOVE_TO_POS FBs
FR7 Different statements in multiple steps SFC steps
FR8 VG_TAKE_W; TO_HR_TAKE_W; SFC steps

VG_TO_SL; TO_SL_TAKE_W
FR9 VG_DROP_W; TO_HR_PUT_W; SFC steps

VG_TO_FU; FROM_HR_TO_FUR;
VG_DIRECTLY_EJECT_W; VG_EJECT
VG_TO_EJECT_POINT; VG_EJECT

FR10 VG_MOVE; VG_MOVE_TO_POS FBs
FR11 Lots of statements in steps of certain PRGs Statements
FR12 FUR_BURN SFC Step & FB
FR13 FUR_SAW; SAW SFC steps
FR14 FUR_SINGLE_MODE, FUR_MULTI_MODE PRGs
FR15 SL_FB FB
FR16 SL_FB FB
FR17 SL_FB FB
FR18 newBatchJob; newFormat; FUNs

newWorkpiece

Table 5.1: Functional Requirements Evaluation

is fast enough to realize the factory simulation. In terms of security, it is possible

to access the PLC, if access to the local area network is given. However, the PLC

can be secured via username and password. The application can be altered at any

time inside Codesys and reloaded to the PLC in a few seconds, which implies great

maintainability. Nevertheless, changes should always be tested. There was no focus on

software portability during implementation, as this constraint is defined by Codesys. The

application should be always up and running and should not to be restarted at any time.

This is possible when adding new batch jobs via network. This functionality is not yet

implemented. The system has to be restarted, if new batch jobs shall be executed. The

system is not as reliable: it interacts with real world actuators, and, thus, must always be

supervised—actuators may create system failures or physical damage.
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6
Related Work

Beside this thesis, lots of scientific approaches exist, covering some aspects of the

industrial internet of things (IIoT) trend. Akin the factory simulation being described in

this thesis, Wien University runs projects dealing with the trend, but with another focus.

They built a miniature Industry 4.0 out of Lego to demonstrate their work on a physical

showcase and to help them demonstrating certain projects. One of this projects is the

project: "Life Cycle Support of Instance-spanning Constraints in flexible Process-Aware

Information Systems" (CRISP) which covers the topic process compliance [15]. Another

smart factory showcase exists at THW Dresden [16]. It consists of an industry 4.0 factory

model, implementing partly automated production processes.

The factory simulation shall be integrated into a manufacturing execution system once.

The project "Adventure" of Wien University implements such a platform. Interconnected

and integrated BPM platforms become important to cover business processes and their

execution [17].

As the factory simulation implements production processes, BPM platforms, supporting

production processes become important. A BPM platform to model and execute process

models within one platform is the Clavii BPM platform [18]. It focuses on end-users

being process model developers as well as executors. A supporting approach is to

create different process views, dependent on the range of tasks the user of a BPM

platform has [19]. The CaPI platform, implementing the context-aware adoption of

process models [20], could make use of the factory simulation context and processes to

control the process flow of the factory.
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7
Summary and Outlook

In this thesis, a factory simulation has been created. It is based on a Fischertechnik

construction kit, and is controlled by a PLC application implementing multiple technical

processes. Thereby, sensors and actuators of the Fischertechnik factory can be con-

trolled by the PLC application. The implemented processes are supported by developed

data structures, storing states of different stations and workpieces. They can be used to

visualize the factories behaviour. In addition, the hard- and software system has been

tested on system level.

The implementation supports different production modes: the single mode processes

one workpiece at a time. In addition, the multi mode is able to handle multiple workpieces

at a time. Furthermore, the sorting mode has been introduced to provide a basis for

sorting algorithm implementations on higher software layers.

Future advancements of the factory simulation can comprise the integration of OPC UA

to provide data to higher software levels, e.g. for visualization, or external batch job

control. The PLC IDE Codesys already provides software components for an OPC UA

server [13]. Another desirable extension is data logging. Therefore, IEEE extensible

event streams (XES) can be used [21]. Moreover, process mining can be realized to

learn from process changes [22] and to discover reference models [23] — based on

the data provided by the OPC UA server [24]. Augmented reality technology, such as

Microsofts Holo Lens could be integrated, to simulate a supporting system for factory

workers having different spectrum of tasks [25, 26].
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A
Source Code

1 / / i f s l p o s i t i o n s f ree or i f not f r ee i f workpiece w i l l not be e jec ted

2 / / AND VG i s not s t o r i n g

3 / / AND HR does not a l ready decided to take a new workpiece

4 / / THEN

5 IF ( ( SL . lbRed AND SL . lbWhi te AND SL . lbB lue ) OR (SL . currW . format . e jectEnabled AND

6 NOT(SL . currW . s ta te = W_State .NULL ) ) ) AND NOT(VG. storeW ) AND NOT( decidedToTakeANewW ) THEN

7 HR. bIdx := 0 ;

8 HR. wIdx := 0 ;

9 HR. currW := TC. nullW ;

10 HR. decidedToTakeANewW := TRUE;

11 VG. storeW := FALSE;

12 ELSIF HR. decidedToTakeANewW THEN

13 / / get new w out o f rack

14 IF TC. s ta te = TC_state .W_LOADED THEN

15 / / se t po in te r s to make sure t h a t they are set

16 Hr . bIdx := TC. currBatchJobIdx ;

17 Hr . wIdx := TC. batchJobQueue . batchJobs [TC. currBatchJobIdx ] . nextNotProcessedIdx ;

18 HR. currW := TC. batchJobQueue . batchJobs [ Hr . bIdx ] . workpieces [ Hr . wIdx ] ;

19 / / workpiece i s loaded , s t a r t p roduc t ion

20 HR. s ta te := HR_State .GET_W;

21 / / s i g n a l i s e t h a t produc t ion s t a r t s

22 TC. s ta te := TC_State . WAIT_UNTIL_W_FINISHED ;

23 ELSE

24 / / no workpiece loaded , load i t now

25 TC. s ta te := TC_State .LOAD_NEXT_W;

26 END_IF

27 ELSE

28 / / get empty box out o f rack

29 / / se t workpiece to get the r i g h t box from rack

30 IF NOT(SL . lbWhi te ) OR NOT(SL . lbRed ) OR NOT(SL . lbB lue ) THEN

31 HR. bIdx := SL . bIdx ;

32 HR. wIdx := SL . wIdx ;

33 HR. currW := SL . currW ;

34 ELSE

35 HR. bIdx := VG. bIdx ;

36 HR. wIdx := VG. wIdx ;

37 HR. currW := VG. currW ;

38 END_IF

39 HR. s t a t e := HR_State .GET_BOX;

40 / / rese t f l a g

41 VG. storeW := FALSE;

42 END_IF

Listing A.1: HR_MULTI_MODE – DECIDE Step
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A Source Code

Figure A.1: HR_SORTING_MODE – SFC Steps

1 IF NOT( f i n ) THEN

2 hr_switch_ws (w1 := TC. batchJobQueue . batchJobs [TC. currBatchJobIdx ] .

3 workpieces [TC. batchJobQueue . batchJobs [TC. currBatchJobIdx ] . nextNotProcessedIdx ] ,

4 w2 := TC. batchJobQueue . batchJobs [TC. currBatchJobIdx ] . workpieces [TC. batchJobQueue .

5 batchJobs [TC. currBatchJobIdx ] . nextNotProcessedIdx + 1 ] ) ;

6 f i n := hr_switch_ws . f i n ;

7 ELSE

8 / / s o r t i n g f i n i s h e d

9 f i n := FALSE;

10 HR. s ta te := HR_State .FINISHED_SORTING_MODE;

11 END_IF

Listing A.2: HR_SORTING_MODE – SORTING Step
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1 IF VG. s t a t e = VG_State .AT_HR THEN

2 / / t h i s can happen i f the batch job before was a s i n g l e mode batch job .

3 / / Then VG i s a l ready AT HR and i s not i n ready s t a t e

4 VG. s t a t e := VG_State .TO_HR_TAKE_W;

5 ELSIF VG. s ta t e = VG_State .READY AND (HR. s ta te = HR_State .GET_W AND HR. currW . s ta te <> W_State .NULL) THEN

6 / / go to HR and take w

7 VG. s t a t e := VG_State .TO_HR_TAKE_W;

8 ELSIF VG. s ta t e = VG_State .READY AND (NOT(SL . lbWhi te ) OR NOT(SL . lbRed ) OR NOT(SL . lbB lue ) )

9 AND SL . currW . s ta te <> W_State .NULL AND (NOT(HR. decidedToTakeANewW ) OR HR. currW . s ta t e = W_State .NULL) THEN

10 / / go to SL and take w

11 / / bend VG po in te r s to workpiece being picked up

12 VG. bIdx := SL . bIdx ;

13 VG. wIdx := SL . wIdx ;

14 VG. currW := TC. batchJobQueue . batchJobs [VG. bIdx ] . workpieces [VG. wIdx ] ;

15 VG. s t a t e := VG_State .TO_SL_TAKE_W;

16 ELSIF VG. s ta t e = VG_State . TO_SL_TAKE_W_FINISHED THEN

17 / / rese t SL po in te r s

18 SL . bIdx := 0 ;

19 SL . wIdx := 0 ;

20 SL . currW := TC. nullW ;

21 / / a t SL , w taken , decide i f going to EJECT or HR

22 IF VG. currW . format . e jectEnabled THEN

23 / / go to e j e c t po i n t and e j e c t w

24 VG. s ta te := VG_State .TO_EJECT;

25 ELSE

26 / / go to HR and put down w

27 VG. s ta te := VG_State .TO_HR_PUT_W;

28 END_IF

29 ELSIF VG. s ta t e = VG_State .TO_HR_TAKE_W_FINISHED THEN

30 / / a t HR, w taken , decide i f going to FUR or EJECT

31 IF VG. currW . format . e jectEnabled AND NOT(VG. currW . format . colorCheckEnabled

32 OR VG. currW . format . furEnabled OR VG. currW . format . sawEnabled ) THEN

33 / / go to e j e c t po i n t and e j e c t w

34 VG. s ta te := VG_State .TO_EJECT;

35 ELSE

36 / / go to FUR and put down w

37 / / but on ly i f FUR−succer i s a t i t s d e f a u l t pos

38 IF FUR. sSuckerPosRa THEN

39 VG. s ta te := VG_State .TO_FUR_PUT_W;

40 END_IF

41 END_IF

42 ELSIF VG. s ta t e = VG_State . TO_EJECT_FINISHED OR VG. s t a te = VG_State .TO_FUR_PUT_W_FINISHED

43 OR VG. s t a t e = VG_State .TO_HR_PUT_W_FINISHED THEN

44 / / e j e c t or p u t t i n g w to FUR f i n i shed , back to d e f a u l t p o s i t i o n f o r c a l i b r a t i n g axes

45 / / l i k e w i s e i f VG put down w at HR

46 VG. s t a t e := VG_State .TO_DEFAULT_POS;

47 ELSIF VG. s ta t e = VG_State .AT_DEFAULT_POS THEN

48 / / s t a t e = ready i f VG i s a t d e f a u l t pos or i f VG put down a w at HR −−> VG i s ready f o r next w

49 VG. s t a t e := VG_state .READY;

50 / / rese t own po in te r s

51 VG. bIdx := 0 ;

52 VG. wIdx := 0 ;

53 VG. currW := TC. nullW ;

54 END_IF

Listing A.3: VG_MULTI_MODE – DECIDE Step
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A Source Code

1 (∗
2 States i n which a BatchJob can be

3 ∗)

4 TYPE BatchJobState :

5 (

6 / / NULL always expresses t h a t the ob jec t has not been i n i t i a l i z e d yet

7 NULL := 0 ,

8

9 / / BatchJob has been i n i t i a l i z e d and i s wa i t i ng to be executed

10 WAITING := 1 ,

11

12 / / BatchJob has been s t a r t e d and i s being executed now

13 STARTED := 2 ,

14

15 / / BatchJob has been paused dur ing execut ion

16 PAUSED := 3 ,

17

18 / / BatchJob has been aborted . This may happen at any t ime

19 ABORTED := 4 ,

20

21 / / BatchJob has been f i n i s h e d

22 FINISHED := 5

23 ) ;

24 END_TYPE

Listing A.4: BatchJobState Enum – Implementation
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B
PLC I/O Pin Mapping

furnace (FUR) Ext.
var name type pin I O

sRaPosSucker IN IX300.0 1
sRaPosConveyorBelt IN IX300.1 2
lbConveyorBelt IN IX300.2 3
sRaPosSaw IN IX300.3 4
sSuckerPosRa IN IX300.4 5
sFurnanceSliderInside IN IX300.5 6
sFurnanceSliderOutside IN IX300.6 7
sSuckerPosFF IN IX300.7 8
lbFurnance IN IX301.0 9
mRaClockwise OUT QX40.0 1
mRaCClockwise OUT QX40.1 2
mConveyorBeltForward OUT QX40.2 3
mSaw OUT QX40.3 4
mFurnanceSliderIn OUT QX40.4 5
mFurnanceSliderOut OUT QX40.5 6
mSuckertoFurnance OUT QX40.6 7
mSuckertoRa OUT QX40.7 8
lightFurnance OUT -
compressor OUT QX41.0 9
valveVacuum OUT QX41.1 10
valveLowering OUT QX41.2 11
valveFurnanceDoor OUT QX41.3 12
valveSlider OUT QX41.4 13

Table B.1: PLC I/O Mapping of Furnace
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B PLC I/O Pin Mapping

high rack (HR) PLC
var name type pin I O

sHorizontal IN IX0.0 1
lbIn IN IX0.1 2
lbOut IN IX0.2 3
sVertical IN IX0.3 4
sCFront IN IX0.4 5
sCBack IN IX0.5 6
mCbForward OUT QX0.0 1
mCbBackward OUT QX0.1 2
mHorizontalLeft OUT QX0.2 3
mHorizontalRight OUT QX0.3 4
mVerticalDown OUT QX0.4 5
mVerticalUp OUT QX0.5 6
mCForward OUT QX0.6 7
mCBackward OUT QX0.7 8

vacuum gripper (VG) PLC
var name type pin I O

sVertical IN IX0.6 7
sHorizontal IN IX0.7 8
sRotation IN IX1.0 9
encVertical IN IX1.3 12
encHorizontal IN IX1.4 13
encRotation IN IX1.5 14
mVerticalUp OUT QX1.0 9
mVerticalDown OUT QX1.1 10
mHorizontalBackward OUT QX1.2 11
mHorizontalForward OUT QX1.3 12
mRotationClockwise OUT QX1.4 13
mRotationCClockwise OUT QX1.5 14
compressor OUT QX1.6 15
valve OUT QX1.7 16

Table B.2: PLC I/O Mapping of High Rack and Vacuum Gripper
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sorting line (SL) Ext.
var name type pin I O

IN IX301.1 10
IN IX301.2 11
IN IX301.3 12
IN ID37 -
IN IX301.5 14
IN IX301.6 15
IN IX301.7 16

OUT QX41.5 14
OUT QX41.6 15
OUT QX41.7 16
OUT QX41.7 16
OUT QX41.7 16
START/STOP switch PLC

var name type pin I O
hwSwitch IN IX1.7 16

Table B.3: PLC I/O Mapping of Sorting Line and Switch
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C
Source Code of Test Cases

1 (∗
2 Def in ing formats

3 newFormat ( furEnabled , sawEnabled , colorCheckEnabled , ejectEnabled , fu rDura t ion , sawDuration )

4 ∗)

5 format1 := newFormat (FALSE, FALSE, FALSE, FALSE, T#5S, T#5S ) ;

6 format2 := newFormat (FALSE, FALSE, FALSE, TRUE, T#5S, T#5S ) ;

7 format3 := newFormat (FALSE, FALSE, TRUE, FALSE, T#5S, T#5S ) ;

8 format4 := newFormat (FALSE, FALSE, TRUE, TRUE, T#5S, T#5S ) ;

9

10 format5 := newFormat (FALSE, TRUE, FALSE, FALSE, T#5S, T#5S ) ;

11 format6 := newFormat (FALSE, TRUE, FALSE, TRUE, T#5S, T#5S ) ;

12 format7 := newFormat (FALSE, TRUE, TRUE, FALSE, T#5S, T#5S ) ;

13 format8 := newFormat (FALSE, TRUE, TRUE, TRUE, T#5S, T#5S ) ;

14

15 format9 := newFormat (TRUE, FALSE, FALSE, FALSE, T#5S, T#5S ) ;

16 format10 := newFormat (TRUE, FALSE, FALSE, TRUE, T#5S, T#5S ) ;

17 format11 := newFormat (TRUE, FALSE, TRUE, FALSE, T#5S, T#5S ) ;

18 format12 := newFormat (TRUE, FALSE, TRUE, TRUE, T#5S, T#5S ) ;

19

20 format13 := newFormat (TRUE, TRUE, FALSE, FALSE, T#5S, T#5S ) ;

21 format14 := newFormat (TRUE, TRUE, FALSE, TRUE, T#5S, T#5S ) ;

22 format15 := newFormat (TRUE, TRUE, TRUE, FALSE, T#5S, T#5S ) ;

23 format16 := newFormat (TRUE, TRUE, TRUE, TRUE, T#5S, T#5S ) ;

Listing C.1: Formats of Workpieces the Testcases depend on
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C Source Code of Test Cases

1 (∗
2 Testcase 1: Test a l l d i f f e r e n t poss ib le formats i n s i n g l e mode

3 ∗)

4 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_11, RackPos .RACK_11, RackPos .RACK_11, format1 ) ;

5 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_12, RackPos .RACK_12, RackPos .RACK_12, format2 ) ;

6 workpieces [ 3 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_13, RackPos .RACK_13, RackPos .RACK_13, format3 ) ;

7 workpieces [ 4 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_21, RackPos .RACK_21, RackPos .RACK_21, format4 ) ;

8 workpieces [ 5 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_22, RackPos .RACK_22, RackPos .RACK_22, format5 ) ;

9 workpieces [ 6 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format6 ) ;

10 workpieces [ 7 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_31, RackPos .RACK_31, RackPos .RACK_31, format7 ) ;

11 workpieces [ 8 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_32, RackPos .RACK_32, RackPos .RACK_32, format8 ) ;

12 addBatchJobToQueue ( newbatchJob (8 , workpieces , ExecutionMode . s i n g l e ) ) ;

13

14 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_11, RackPos .RACK_11, RackPos .RACK_11, format9 ) ;

15 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_12, RackPos .RACK_12, RackPos .RACK_12, format10 ) ;

16 workpieces [ 3 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_13, RackPos .RACK_13, RackPos .RACK_13, format11 ) ;

17 workpieces [ 4 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_21, RackPos .RACK_21, RackPos .RACK_21, format12 ) ;

18 workpieces [ 5 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_22, RackPos .RACK_22, RackPos .RACK_22, format13 ) ;

19 workpieces [ 6 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format14 ) ;

20 workpieces [ 7 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_31, RackPos .RACK_31, RackPos .RACK_31, format15 ) ;

21 workpieces [ 8 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_33, RackPos .RACK_33, RackPos .RACK_33, format16 ) ;

22 addBatchJobToQueue ( newbatchJob (8 , workpieces , ExecutionMode . s i n g l e ) ) ;

Listing C.2: Single Mode Testcase – Implementation

1 (∗
2 Testcase 2: Test a l l d i f f e r e n t poss ib le formats i n m u l t i mode

3 ∗)

4 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_11, RackPos .RACK_11, RackPos .RACK_11, format1 ) ;

5 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_12, RackPos .RACK_12, RackPos .RACK_12, format2 ) ;

6 workpieces [ 3 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_13, RackPos .RACK_13, RackPos .RACK_13, format3 ) ;

7 workpieces [ 4 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_21, RackPos .RACK_21, RackPos .RACK_21, format4 ) ;

8 workpieces [ 5 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_22, RackPos .RACK_22, RackPos .RACK_22, format5 ) ;

9 workpieces [ 6 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format6 ) ;

10 workpieces [ 7 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_31, RackPos .RACK_31, RackPos .RACK_31, format7 ) ;

11 workpieces [ 8 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_32, RackPos .RACK_32, RackPos .RACK_32, format8 ) ;

12 addBatchJobToQueue ( newbatchJob (8 , workpieces , ExecutionMode . m u l t i ) ) ;

13

14 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_11, RackPos .RACK_11, RackPos .RACK_11, format9 ) ;

15 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_12, RackPos .RACK_12, RackPos .RACK_12, format10 ) ;

16 workpieces [ 3 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_13, RackPos .RACK_13, RackPos .RACK_13, format11 ) ;

17 workpieces [ 4 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_21, RackPos .RACK_21, RackPos .RACK_21, format12 ) ;

18 workpieces [ 5 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_22, RackPos .RACK_22, RackPos .RACK_22, format13 ) ;

19 workpieces [ 6 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format14 ) ;

20 workpieces [ 7 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_31, RackPos .RACK_31, RackPos .RACK_31, format15 ) ;

21 workpieces [ 8 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_33, RackPos .RACK_33, RackPos .RACK_33, format16 ) ;

22 addBatchJobToQueue ( newbatchJob (8 , workpieces , ExecutionMode . m u l t i ) ) ;

Listing C.3: Multi Mode Testcase – Implementation
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1 (∗
2 Testcase 3: Test d i f f e r e n t p o s i t i o n s i n s o r t i n g mode

3 ∗)

4 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_11, RackPos .RACK_11, RackPos .RACK_11, format1 ) ;

5 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_12, RackPos .RACK_12, RackPos .RACK_12, format2 ) ;

6 workpieces [ 3 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_13, RackPos .RACK_13, RackPos .RACK_13, format3 ) ;

7 workpieces [ 4 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_21, RackPos .RACK_21, RackPos .RACK_21, format4 ) ;

8 workpieces [ 5 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_22, RackPos .RACK_22, RackPos .RACK_22, format5 ) ;

9 workpieces [ 6 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format6 ) ;

10 workpieces [ 7 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_31, RackPos .RACK_31, RackPos .RACK_31, format7 ) ;

11 workpieces [ 8 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_32, RackPos .RACK_32, RackPos .RACK_32, format8 ) ;

12 addBatchJobToQueue ( newbatchJob (8 , workpieces , ExecutionMode . s o r t i n g ) ) ;

13

14 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_11, RackPos .RACK_11, RackPos .RACK_11, format9 ) ;

15 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_12, RackPos .RACK_12, RackPos .RACK_12, format10 ) ;

16 workpieces [ 3 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_13, RackPos .RACK_13, RackPos .RACK_13, format11 ) ;

17 workpieces [ 4 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_21, RackPos .RACK_21, RackPos .RACK_21, format12 ) ;

18 workpieces [ 5 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_22, RackPos .RACK_22, RackPos .RACK_22, format13 ) ;

19 workpieces [ 6 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format14 ) ;

20 workpieces [ 7 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_31, RackPos .RACK_31, RackPos .RACK_31, format15 ) ;

21 workpieces [ 8 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_33, RackPos .RACK_33, RackPos .RACK_33, format16 ) ;

22 addBatchJobToQueue ( newbatchJob (8 , workpieces , ExecutionMode . s o r t i n g ) ) ;

Listing C.4: Sorting Mode Testcase – Implementation
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C Source Code of Test Cases

1 (∗
2 Testcase 4: Test a l l t r a n s i t i o n s between d i f f e r e n t execut ion modes

3 Test sequence : m u l t i −> m u l t i −> s i n g l e −> s i n g l e −> s o r t i n g −> s o r t i n g

4 −> m u l t i −> s o r t i n g −> s i n g l e −> m u l t i

5 −−−> covers a l l t r a n s i t i o n s

6 As a t e s t format , format15 i s used

7 ∗)

8 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format15 ) ;

9 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_33, RackPos .RACK_33, RackPos .RACK_33, format15 ) ;

10 addBatchJobToQueue ( newbatchJob (2 , workpieces , ExecutionMode . m u l t i ) ) ;

11

12 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format15 ) ;

13 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_33, RackPos .RACK_33, RackPos .RACK_33, format15 ) ;

14 addBatchJobToQueue ( newbatchJob (2 , workpieces , ExecutionMode . m u l t i ) ) ;

15

16 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format15 ) ;

17 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_33, RackPos .RACK_33, RackPos .RACK_33, format15 ) ;

18 addBatchJobToQueue ( newbatchJob (2 , workpieces , ExecutionMode . s i n g l e ) ) ;

19

20 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format15 ) ;

21 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_33, RackPos .RACK_33, RackPos .RACK_33, format15 ) ;

22 addBatchJobToQueue ( newbatchJob (2 , workpieces , ExecutionMode . s i n g l e ) ) ;

23

24 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format15 ) ;

25 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_33, RackPos .RACK_33, RackPos .RACK_33, format15 ) ;

26 addBatchJobToQueue ( newbatchJob (2 , workpieces , ExecutionMode . s o r t i n g ) ) ;

27

28 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format15 ) ;

29 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_33, RackPos .RACK_33, RackPos .RACK_33, format15 ) ;

30 addBatchJobToQueue ( newbatchJob (2 , workpieces , ExecutionMode . s o r t i n g ) ) ;

31

32 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format15 ) ;

33 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_33, RackPos .RACK_33, RackPos .RACK_33, format15 ) ;

34 addBatchJobToQueue ( newbatchJob (2 , workpieces , ExecutionMode . m u l t i ) ) ;

35

36 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format15 ) ;

37 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_33, RackPos .RACK_33, RackPos .RACK_33, format15 ) ;

38 addBatchJobToQueue ( newbatchJob (2 , workpieces , ExecutionMode . s o r t i n g ) ) ;

39

40 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format15 ) ;

41 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_33, RackPos .RACK_33, RackPos .RACK_33, format15 ) ;

42 addBatchJobToQueue ( newbatchJob (2 , workpieces , ExecutionMode . s i n g l e ) ) ;

43

44 workpieces [ 1 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_23, RackPos .RACK_23, RackPos .RACK_23, format15 ) ;

45 workpieces [ 2 ] := newWorkpiece ( ’ unknown ’ , W_State .AT_RACK_33, RackPos .RACK_33, RackPos .RACK_33, format15 ) ;

46 addBatchJobToQueue ( newbatchJob (2 , workpieces , ExecutionMode . m u l t i ) ) ;

Listing C.5: Testcase for testing Transitions between different Execution Modes –

Implementation
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