
Flexible Support of Healthcare Processes

Manfred Reichert and Rüdiger Pryss

Institute of Databases and Information Systems, Ulm University, Germany
manfred.reichert@uni.ulm.de; ruediger.pryss@uni-ulm.de

Abstract. Traditionally, healthcare information systems have focused
on the support of predictable and repetitive clinical processes. Even
though the latter can be often prespecified in formal process models,
process flexibility in terms of dynamic adaptability is indispensable to
cope with exceptions and unforeseen situations. Flexibility is further re-
quired to accommodate the need for evolving healthcare processes and
to properly support healthcare process variability. In addition, process-
aware information systems are increasingly used to support less struc-
tured healthcare processes (i.e., patient treatment processes), which can
be characterized as knowledge-intensive. Healthcare processes of this cat-
egory are neither fully predictable nor repetitive and, therefore, they
cannot be fully prespecified at design time. The partial unpredictability
of these processes, in turn, demands a certain amount of looseness. This
chapter deals with the characteristic flexibility needs of both prespecified
and loosely specified healthcare processes. In addition, it presents funda-
mental flexibility features required to address these flexibility needs as
well as to accommodate them in healthcare practice.

1 Introduction

Traditionally, process-aware information systems (PAIS) have focused on the
support of predictable and repetitive business processes, which can be fully de-
scribed prior to their execution in terms of formal process models [46]. Charac-
teristic examples of healthcare processes falling in this category include organi-
zational procedures in hospitals, like medical order entry and result reporting, as
well as administrative processes. In spite of several success stories on the uptake
of process-aware information systems in healthcare and the growing process-
orientation in this domain, Business Process Management (BPM) technologies
have not been widely adopted in healthcare yet [17, 33].

A major reason for the low use of BPM systems in healthcare has been the
rigidity enforced by them, which inhibits the ability of a hospital to respond to
process changes and exceptional situations in an agile way [25]. When efforts are
taken to improve and automate the flow of healthcare processes, however, it is
of utmost importance not to restrict medical staff [5]. First attempts to change
the function- and data-centric views on patient treatment processes failed when-
ever rigidity came with them. Variations in the course of a disease or treatment
process are inherent to medicine, and to some degree the unforeseen event con-
stitutes a ”normal” phenomenon [22]. Hence, a sufficient degree of flexibility

2

is needed to support dynamic process adaptations in case of such unforeseen
situations. Moreover, PAIS flexibility is required to accommodate the need for
evolving healthcare processes [30], e.g., to integrate new medical devices, imple-
ment new laws, or change clinical guidelines (due to new empirical evidence).
Finally, support for healthcare process variability is needed [29, 2]. For example,
in a particular hospital, different variants of the oder entry process may exist
whose concrete behavior and structure depends on various contextual factors
like the status of the patient, the kind of medical examination ordered, or the
concrete provider of the medical service [18].

For several years, BPM technologies have been increasingly used to support
less structured business processes as well [24]. The latter include patient treat-
ment processes and are often characterized as knowledge-intensive. Processes of
this category feature non-repeatability, i.e., the models of two process instances
(e.g., coordinating the treatment of two different patients) do not fully resemble
one another. Generally, knowledge-intensive processes tend to be unpredictable
as their exact course of action depends on situation-specic parameters [19, 21].
Usually, the values of the latter are unknown a priori and may change during
process execution. Moreover, knowledge-intensive processes can be characterized
as emergent, i.e., knowledge and information gathered during the execution of
the process determines its future course of action. Consequently, respective pro-
cesses cannot be prescribed at a ne-grained level at design time. In addition to
variability, adaptation, and evolution, which are also needed in the context of
predictable processes, they require looseness.

The vast majority of healthcare processes can be characterized by a com-
bination of predictable and unpredictable elements falling in between the two
extremes described above. While procedures for handling single medical orders
or examinations are relatively predictable, complex patient treatment processes
are rather unpredictable and unfold during process execution [17].

This chapter elaborates on advanced BPM concepts enabling process flexi-
bility at the operational level. Emphasis is put on key features enabling process
variability, process adaptation, process evolution, and process looseness. Based
on them process-aware healthcare information systems, being able to flexibly
cope with real-world exceptions, uncertainty and change, can be realized. Section
2 presents the conditions under which a process-aware healthcare information
system needs to operate and illustrates the need for flexible healthcare process
support in this context. Section 3 then discusses and structures the flexibility
needs of both perspecified and loosely specified healthcare processes in detail.
Sections 4 – 7 present concepts and techniques for properly addressing these flex-
ibility needs. Section 8 deals with other approaches fostering process flexibility,
whereas Section 9 concludes and summarizes the chapter.

2 Healthcare Process Characteristics

In the following, an impression of the characteristic properties of hospital working
environments is provided to give an idea under which conditions process-aware

3

healthcare information systems need to operate. On one hand, this real-life de-
scription confirms the high need for process coordination in healthcare, on the
other it emphasizes the non-suitability of rigid approaches when it comes to the
automation of healthcare processes.

In a hospital, the work of clinical staff is burdened by numerous organizational
as well as medical tasks. Medical procedures must be planned, ordered and pre-
pared, appointments be made, and results be obtained and evaluated. Usually,
in the diagnostic and treatment process of a particular patient various, organi-
zationally more or less autonomous units are involved. For a patient treated in
a department of internal medicine, for example, medical tests and procedures
at the laboratory and the radiology department might be required. In addition,
samples or patients themselves have to be transported, physicians from other
units may need to come for medical consultations, and medical reports have to
be written, sent and interpreted. Accordingly, the cooperation between organiza-
tional units as well as the medical staff constitutes a crucial task with repetitive,
but non-trivial character. In this context, healthcare processes of different com-
plexity and duration can be identified. There are organizational procedures like
order entry and result reporting, but also complex and long-running treatment
processes like chemotherapy for in- or outpatients.

Physicians have to decide which interventions are necessary or not–under the
perspective of costs and invasiveness–or which are even dangerous due to possi-
ble side-effects or interactions. Many procedures need preparatory measures of
various complexity. Before a surgery may take place, for example, a patient has
to undergo numerous preliminary examinations, each of them requiring addi-
tional preparations. While some of them are known in advance, others may have
to be scheduled dynamically, depending on the individual patient and her state
of health, i.e., looseness of the overall patient treatment process is a reality.

In general, the tasks of a healthcare process may have to be performed in
certain orders, sometimes with complex temporal constraints to be considered
[16, 15]. After an injection with contrast medium was given to a patient, for ex-
ample, some other tests cannot be performed within a certain period of time. In
contemporary healthcare environments, physicians still have to coordinate the
tasks related to their patients manually, taking into account all the constraints
existing in this context. In this context, changing a schedule is not trivial and re-
quires time-consuming communication. For other procedures, medical staff from
various departments have to collaborate; i.e., coherent series of appointments
have to be arranged and for each activity appropriate information has to be pro-
vided. As a drawback, each organizational unit involved in the treatment process
of a patient concentrates on the function it has to perform. Thus, the process
is subdivided into function- or organization-oriented views, and optimization
stops at the border of the department. For all these reasons several problems
result. First, patients have to wait, because resources (e.g., physicians, rooms or
technical equipment) are not available due to insufficient coordination. Second,
medical procedures cannot be performed as planned, if information is missing,
preparations are omitted, or a preceding procedure is postponed, canceled or

4

requires latency time. Depending procedures might then have to be re-scheduled
resulting in time-consuming phone calls. Third, if urgently needed results are
missing, medical tests or procedures may have to be performed repeatedly caus-
ing unnecessary costs and burdening patients.

For all these reasons, from both the patient and the hospital perspective
undesired effects occur: Hospital stays can take longer than required and costs
or even invasiveness of patient treatment increase. In critical situations, missing
information might lead to late or even wrong decisions. Investigations have shown
that medical personnel is aware of these problems and that healthcare process
support would be highly welcome by medical staff [24]. More and more it is being
understood that the correlation between medicine, organization and information
is high, and that traditional organizational structures and healthcare information
systems only offer sub-optimal support. This even applies more to hospital-wide
and cross-hospital processes in health care networks [6].

The roles of physicians and nurses complicate the situation. Both are respon-
sible for many patients and have to provide an optimal treatment process for each
of them. Medical tasks are critical to patient care and even minor errors might
have disastrous consequences. The working situation is further burdened by fre-
quent context switches. Physicians often work at various sites of a hospital in
different roles. In many cases unforeseen events and emergency situations occur,
patient status changes, or information necessary to react is missing. Addition-
ally, the physician is confronted with a massive load of data to be structured,
intellectually processed, and put into relation to the problems of the individ-
ual patient. Typically, physicians tend to make mistakes (e.g., wrong decisions,
omission errors) under this data overload.

From the perspective of a patient, a concentration on his treatment process is
highly desirable. Similarly, medical staff members wish to treat and help patients
and not to spend their time on administrative tasks. From the perspective of
healthcare providers, the huge potential of the improvement as well as (semi-
)automation of healthcare processes has been identified: length of stay, number
of procedures, and number of complications could be reduced. Hence there is
a growing interest in process orientation and quality management. Medical and
organizational processes are being analyzed, and the role of medical guidelines
describing diagnostic and treatment steps for given diagnoses is emphasized [12,
37, 23].

3 Flexibility Needs for Healthcare Processes

Providing appropriate support for the wide range of processes that can be found
in healthcare environments (cf. Section 2) poses several challenges. Particularly,
flexible process support can be characterized by four major flexibility needs,
namely support for variability, looseness, adaptation, and evolution. In the fol-
lowing, a brief summary of each flexibility need is presented and illustrated by
a healthcare process scenario.

5

3.1 Variability

Process variability is characteristic for the healthcare domain and requires health-
care processes to be handled differently—resulting in different process variants—
depending on the given application context [29, 11]. Typically, process variants
share the same core process whereas the concrete course of action fluctuates from
variant to variant. Variability in the healthcare services provided, for example,
often necessitates support for numerous process variants [11]. Moreover, process
variants might exist due to differences in regulations found in different countries
or healthcare organizations. Process variability might be further introduced due
to different groups of patients, the kind of service provided, peculiarities of the
respective service providers, or temporal differences regarding service delivery
(e.g., daily changes). In general, the parameters causing process variability are
mostly known a priori. Even though the concrete variant can often only be de-
termined during process execution, the course of action for a particular context
is well understood.

Example 1. (Process variants for handling medical examinations). Consider the
four process variants in Figure 1. The variants have several activities (e.g., Order
Medical Examination, Perform Medical Examination, and Create Medical

Report) in common. In Figure 1, these common activities are gray-shaded. How-
ever, the variants also show differences, e.g., in respect to the kind of examination
(i.e., standard vs. emergency medical examination), the way the examination is
handled (e.g., scheduling an examination later by making an appointment with
the examination unit or registering one for the same day), or the need of spe-
cific activities depending on the given application environment (e.g., Prepare
Patient or Transport Patient).

3.2 Adaptation

In general, process adaptation represents the ability of a process-aware informa-
tion system (PAIS) to adapt the process and its structure (i.e., the prespecied
process model) to emerging events. Respective events often lead to situations in
which the PAIS does not adequately reflect the real-world process anymore. As
a consequence, one or several process instances have to be adapted in order to
realign the computerized processes with the real-world ones. Note that it is not
always possible to predict all exceptional situations and the way they shall be
handled during process execution. Even if this had been possible, one would ob-
tain complex and spaghetti-like process models, which are difcult to comprehend
and costly to maintain.

Drivers for adaptation. Process adaptations are triggered by different
drivers. Adaptations might become necessary to cope with special situations
during process execution, which have not been foreseen in the process model,
e.g., situations that occur very rarely. Moreover, exceptions occurring in the real-
world (e.g., an allergic reaction of a patient) or processing errors (e.g., a failed
activity) often require deviations from the standard process.

6

Order Medical
Examination

Arrange
Appointment for
Medical Exam.

Request
Standard Medical

Examination

Inform
Patient

Perform Medical
Examination

Create Medical
Report

Read and
Validate Medical

Report

Transport Patient

Transport Patient
(Return)

Order Medical
Examination

Arrange
Appointment for
Medical Exam.

Request
Standard Medical

Examination

Prepare
Patient

Inform
Patient

Perform Medical
Examination

Create Medical
Report

Read and
Validate Medical

Report

Order Medical
Examination

Register Medical
Examination

Request
Standard Medical

Examination

Prepare
Patient

Inform
Patient

Perform Medical
Examination

Create Medical
Report

Read and
Validate Medical

Report

Transport Patient

Transport Patient
(Return)

Order Medical
Examination

Register
Emergency

Medical Exam.

Request
Emergency Medical

Examination

Perform Medical
Examination

Transport Patient

Send Condensed
Medical Report

Transport Patient
(Return)

Create Medical
Report

Read and
Validate Medical

Report

)d)c)b)a

Process
Variant S1

Process
Variant S2

Process
Variant S4

Process
Variant S3

Fig. 1. Examples of healthcare process variants.

Anticipation of adaptation. Many exceptions can be anticipated and,
therefore, be planned upfront by capturing them in the process model. Gen-
erally, a deviation can only be planned if both the context of its occurrence
and measures to handle it are known beforehand. However, it is hardly possible
to foresee all exceptions that might occur during the execution of a particular
healthcare process. Therefore, support for dealing with unplanned exceptions is
additionally needed.

Example 2. (Examination procedures in a hospital). A simple examination pro-
cedure in a hospital comprises activities like Enter Order, Schedule X-rays,
Inform Patient, Transfer Patient, Perform X-rays, Create Report, and
Validate Report. Even for such a simple process, exceptional situations might
occur, which require deviations from the prespecified process. For example, in
case of an emergency, there is no time to follow the usual procedure. Instead the
patient is immediately examined without making any appointment or preparing
the examination facility. To cope with such situation, it should be possible to
skip one or more activities. In exceptional situations it can further be required
to perform additional (i.e., unplanned) activities for a particular patient (e.g., to
carry out an additional preparation activity for the examination). In addition,

7

changes in appointments, cancelations, and failures in the execution of activities
(e.g., omitted preparations, loss of a sample, or incorrect collection of diagnostic
material) might lead to deviations from the standard process (e.g., by redoing
activities). If an appointment is canceled, for example, the patient treatment
process (including the previously made appointment) will have to be aborted.

In summary, in the medical domain, deviations from the standard procedure
are rather the norm and have to be flexibly addressed by medical staff.

3.3 Evolution

Evolution represents the ability of the process implemented in a PAIS to change
when the corresponding real-world process evolves. As healthcare processes evolve
over time, it is not sufficient to implement them once and then to never touch
the running PAIS again. In order to ensure that real-world healthcare processes
and the PAIS remain aligned, these changes have to be propagated to the PAIS
as well. Typically, such evolutionary changes are planned changes at the process
type level, which are conducted to accommodate evolving needs.

Drivers for process evolution. In healthcare, process evolution is often
driven by changes of medical knowledge, technological changes, and the emer-
gence of new legal constraints. Another driver is organizational learning. All
these drivers are external to the PAIS (cf. Fig. 2). In healthcare, the evolution
of real-world processes can be triggered by emerging medical knowledge (e.g.,
new evidence on the effectiveness of a treatment procedure) or changing patient
behavior. Changes in the technological context might have far reaching effects
on the healthcare processes as well. For example, the increasing popularity of
mobile devices is revolutionizing the way how medical staff is interacting with its
processes and, hence, the way the process shall be designed [24]. Changes might
further be triggered by regulatory adaptations like, for example, the introduction
of new laws or clinical practices. Finally, changes of healthcare processes might
be a result of organizational learning and be triggered by emerging optimization
opportunities or misalignments between real-world healthcare processes and the
ones supported by a PAIS.

In addition to external triggers, changes of the processes implemented in a
PAIS might become necessary due to developments inside the PAIS, i.e., there ex-
ist internal drivers for changes as well [4]. For example, design errors might cause
problems during the execution of process instances in the PAIS (e.g., deadlocks or
missing data). Moreover, technical problems like performance degradation (e.g.,
due to an increasing amount of data) may require changes in the PAIS. Finally,
poor internal quality of process models (e.g., non-intention revealing naming of
activities or redundant process model fragments) might require changes [41].

Extent of evolution. Process evolution may be incremental (i.e., only re-
quiring small changes of the implemented process) as for continuous process
improvements, or be revolutionary (i.e., requiring radical changes) as in the con-
text of process innovation or process reengineering.

8

Process-Aware
Healthcare

Information System

Real-world
Healthcare

Process

Design Errors

Technical Problems
Changing Technological Context

Changing Legal Context

Organizational Learning

Changing Medical Knowledge

represented in

provide feedback to

Poor Model Quality

External Drivers Internal Drivers

Fig. 2. Drivers for process evolution.

Swiftness of evolution. Depending on the kind of evolutionary change,
different requirements regarding the treatment of ongoing process instances exist
[27, 32]. In some scenarios, it is sufcient to apply the changes only to those process
instances that will be newly created and to complete the ongoing ones according
to the old version of the process. This, in turn, would require deferred evolution
and coexistence of different active versions of a process model within the PAIS.
In many practical scenarios, however, evolutionary changes have an effect on
ongoing process instances as well. For example, regulatory changes often have
a retroactive impact and require ongoing process instances, if they have not
progressed too far, to be adapted. Such immediate evolution is mostly relevant
for long-running processes instances, i.e., process instances with a duration up
to several weeks or months (e.g., cyclic chemo treatments).

Visibility of evolution. Evolutionary changes may either be changes of
the observable process behavior or the internal structure of the PAIS. While
changes of the observable behavior are always reflected by the PAIS support of
the real-world processes, changes of the internal structure are kept inside the
PAIS (e.g., to address poor internal process model quality). Adding activities to
a process model (e.g., to add a lab test to a medical procedure for patients being
older than 60) constitutes an example of a change concerning the observable
behavior. A typical change only affecting the internal structure of the PAIS
includes the removal of process model redundancies by extracting common parts
to sub-process models [41].

Example 3. (Introduction of new medical devices). The introduction of new med-
ical imaging devices in a hospital might have implications on the corresponding
examination process. Assume that due to the high acquisition costs for the new
device the hospital decides to use it for examining outpatients as well (in addi-
tion to inpatient examinations). This, in turn, implies changes in the registration
procedure. These changes not only affect new patients, but ongoing examination
processes (i.e., corresponding process instances) as well. In this example, the
evolution is triggered through economic concerns. Furthermore, the change is
immediate, i.e., it affects ongoing examination processes (i.e., process instances)
as well.

9

3.4 Looseness

Patient treatment processes, which are by nature knowledge-intensive, can be
characterized as non-repeatable (i.e., every process instance looks slightly differ-
ent), unpredictable (i.e., the exact course of action is unknown and is situation-
specic), and emergent (i.e., the exact course of action often emerges during pro-
cess execution when more specific information becomes available). For processes
of this category, only their goal is known a priori (e.g., treating the rupture
of a patients cruciate ligament). In turn, the parameters determining the exact
course of action are typically not known a priori or might change during process
execution. As a consequence, such knowledge-intensive processes cannot be fully
prespecified. In addition, it is not possible to establish a set of process variants
for these processes, since the parameters causing differences between process in-
stances are not known a priori (unlike with variability). Instead, processes of
this category require a loose specication.

Example 4. (Patient treatment processes). Patient treatment in a hospital usu-
ally comprises activities related to patient intake, admission, diagnosis, treat-
ment, and discharge. Typically, treatment processes comprise dozens up to hun-
dreds of activities, and they are long-running (i.e., from a few days to several
months). Furthermore, the treatments of two different patients are rarely iden-
tical. Instead the course of action often depends on the specic situation like, for
example, the health status of the patient, allergies and chemical intolerances,
decisions made by the physician, examination results, and clinical indications.
This situation may change during the treatment process, i.e., the course of action
is unpredictable. Moreover, treatment processes typically unfold during their ex-
ecution, i.e., examination results yield information determining how to continue
with the treatment. The overall treatment process thereby emerges through the
arrangement of simple, well-structured processes (e.g., handling medical orders)
often resulting in complex process structures.

4 Process Variability Support

As motivated in Section 3.1 and Example 1, respectively, a key flexibility need
in healthcare environments is to be able to cope with process variability. In gen-
eral, the reuse of a process model in different application context often results
in a large collection of related process model variants (process variants for short)
belonging to the same process family [2]. In particular, the process variants pur-
sue the same or similar business objective and have certain activities (and their
ordering constraints) in common, while at the same time differences due to their
use in different application contexts exist, e.g., certain activities might be only
relevant for some of the process variants or different execution paths that need
to be taken depending on the application environment.

To properly cope with process variability, a modeling approach for explic-
itly capturing variability in process models is needed, i.e., a family of related
process variants shall be represented in a compact, reusable, and maintainable

10

manner. Moreover, it should be possible to configure a process family to an indi-
vidual process variant that fits best to the requirements of the given application
context. This way, established practices and process knowledge of a healthcare
organization can be reused, while still providing it with the flexibility to indi-
vidualize its processes to the respective context. Thereby, the selection of the
most suitable variant in such an application context is denoted as process con-
figuration. For each conguration option (e.g., variation point) it must be decided
which of the available alternatives shall be chosen. After making these choices,
the finally configured process model can be transformed into an executable one
by dropping those parts that are no longer required. The latter step is called in-
dividualization. Both the conguration and the individualization of a configurable
process model constitute design time activities; i.e., they can be accomplished
without need for any run-time knowledge.

Existing approaches providing process variability support split the design
phase into two sub-phases–one during which the process family is designed, i.e.,
a configurable reference process model and its configuration options are specified,
and one in which this configurable reference model is configured and individu-
alized for obtaining specific process variants. A more concrete idea of the two
phases of a behavior-based approach for capturing the behavior of all process
variants in the same artifact (i.e., reference process model) is given in [38]. In
this approach, which is denoted as configurable nodes, a reference process model
merges a multitude of process variants into one congurable model capturing both
the commonalities and the differences of the process variants. In respective ref-
erence process models, variation points are represented in terms of configurable
nodes and execution paths. By conguring these, in turn, the behavior of the
reference process model can be customized to the given application context, i.e.,
a concrete process variant fitting to this context can be derived.

In more detail, in a configurable reference process model, selected activities
and control connectors (i.e. gateways) may be flagged as configurable. Such con-
figurable nodes represent variation points of the reference process model and
can be associated with a number of configuration alternatives. Furthermore,
configuration constraints over the set of configurable nodes may be added to
restrict possible combinations of configuration alternatives. By taking a con-
figurable reference process model as input, and setting each of its configurable
nodes to exactly one of the allowed alternatives, a particular process variant can
be derived.

In principle, any activity or control connector of a reference process model
may be flagged as configurable. In the reference process model depicted in Fig. 3,
for example, the configurable nodes are highlighted with thicker border. This ref-
erence process model describes a family of process variants for managing medical
examinations, i.e., for handling medical orders and reporting related results (see
Fig. 1 for examples of process variants that may be derived from this configurable
model). In detail, the depicted reference process model comprises five config-
urable activities and eight configurable control connectors. Its non-configurable
nodes, in turn, represent the parts common to all process variants. For example,

11

activity Perform Medical Examination denotes such a commonality since it is
not configurable. Hence, this activity is contained in all process variants that
may be configured out of the reference process model.

In detail, a configurable reference process model may comprise the following
configurable elements:

a) Configurable activities. There exist three configuration alternatives for
a configurable activity: included (ON), excluded (OFF), and conditional
(OPT). The first two alternatives allow process engineers to decide at config-
uration time whether or not to keep an activity in the model of the process
variant to be derived. The last alternative allows deferring this decision to
the run-time, i.e., the execution of the activity may be dynamically skipped
by users depending on the instance-specic context.

b) Configurable control connectors. There exist three different kinds of
configurable control connectors: Configurable OR, Configurable XOR, and
Configurable AND. A configurable control connector may only be configured
to a connector being equally or less restrictive, i.e., the derived process model
should be able to produce the same or fewer execution traces compared to
the original reference process model. To be more precise, a Configurable OR
may be configured to a regular OR, or be restricted to an XOR, AND, or
just one outgoing/incoming branch. A Configurable XOR, in turn, may be
set to a regular XOR or to just one outgoing/incoming branch. Finally, a
Configurable AND may only be mapped to a regular AND, i.e., no particular
configuration is allowed.

c) Configuration requirements. Configuration requirements define constraints
over all the configuration alternatives that may be chosen for the configurable
nodes of a reference process model. Only if these constraints are met, the re-
sulting process variant is considered as being valid. Configuration guidelines,
in turn, do not prescribe mandatory constraints, but only serve as a kind of
recommendation guiding users during the configuration. Both configuration
requirements and configuration guidelines can be expressed in terms of sim-
ple predicates. Graphically, they are depicted as post-it notes attached to
one or several configurable nodes.

Example 5. (Configurable reference process model for the handling of medical
examinations). Consider the reference process model in Fig. 3. It covers a family
of process variants for handling medical examinations, including activities deal-
ing with order handling, scheduling, transportation, and reporting. Examples
of process variants that can be configured out of this reference process model
are depicted in Fig. 1. The gray-shaded activities in Fig. 3 reflect the common
parts of the producible process variants; i.e., these activities are contained in
each process variant (see the variant examples in Fig. 1). Process variability, in
turn, is caused by varying factors like the kind of examination involved, the way
examinations are scheduled, or the decision whether patient transportation is
required.

More precisely, emergency and standard medical examinations need to be
distinguished from each other (Requirement 1). For standard medical exami-

12

nations, either an appointment is scheduled or a simple registration is made
(Requirement 2). (The latter means, the examination unit is informed about the
later arrival of the patient, but does not appoint a date for the examination.) For
emergency medical examinations, in turn, a specific registration is needed (Re-
quirement 3). Furthermore, for a standard medical examination, activity Inform

Patient is always required (Requirement 4). Patient transportation, in turn, is
mandatory for emergency medical examinations (Requirement 5), while for stan-
dard medical examinations this depends on other domain facts (Guideline 1). A
condensed medical report has to be sent in the context of emergency medical
examinations to enable quick feedback (Requirement 6). Finally, if the config-
urable activity Transport Patient is switched on, its counterpart (i.e., activity
Transport Patient (Return)) has to be switched on as well (Requirement 7).
Considering all requirements, there exist several activities that may be contained
in some process variants, but which are not required for others (e.g., Prepare
Patient and Inform Patient).

Overall, the configurable reference process model from Fig. 3 comprises 5 con-
figurable activities, 8 configurable connectors, 7 configuration requirements, and
one configuration guideline. As discussed, configuration requirements constrain
the alternatives that may be chosen for the configurable nodes of the reference
process model.

Using such a reference process model, the desired process variants can be
derived by setting the conguration alternatives of its configurable nodes accord-
ingly (cf. Example 6).

Example 6. (Configuring a reference process model). Consider the four process
variants from Fig. 1. The configuration settings needed for deriving the four vari-
ants from the given configurable reference process model (cf. Fig. 3) are depicted
in Fig. 4. For each process variant, its configuration settings comply with the
given configuration requirements, i.e., all four process variants are valid. Note
that, in principle, it is not necessary to explicitly specify a configuration alterna-
tive for all configurable nodes since these settings can be partially derived from
other configuration settings. In Fig. 4, for example, the configuration settings in
gray color do not have to be explicitly specified when exploiting the knowledge
on the configuration requirements defined in Fig. 3.

As alternative to configurable nodes, the Provop approach [29, 11] provides
a structural configuration approach that allows adding, removing or changing
process behavior by adjusting the structure of a configurable process model
accordingly (e.g., by adding or deleting activities).

Independent of the chosen approach, a particular challenge is to ensure that
configured process variants are sound (i.e., correctly executable) and, hence,
can be transformed to executable processes (see [39, 10] for corresponding tech-
niques). Not that, when considering the large number of process variants that
may be configured out of a reference process model, as well as the many syn-
tactical and semantical constraints these process variants have to obey, this

13

Order Medical
Examination

Arrange
Appointment for

Medical Examination

Register Medical
Examination

Prepare
Patient

Inform
Patient

Transport
Patient

Perform Medical
Examination

Create
Medical Report

Read and Validate
Medical Report

SEQ1a SEQ1b

SEQ3a

SEQ3b

SEQ3c

SEQ5a SEQ5b

SEQ7a SEQ7b

1

2

3

4

5

6

7

8

XOR1 = 'SEQ1a' �� XOR3 = 'SEQ3c'

Transport
Patient (Return)

Send Condensed
Medical Report

Requirement 3
XOR1 = 'SEQ1b' ��

�XOR3 = 'SEQ3a' ��XOR3 = 'SEQ3b'�

Requirement 2

Transport Patient = 'ON' ���
Transport Patient (Return) = 'ON'

Requirement 7

XOR1 = 'SEQ1a' ��
Transport Patient = 'ON'

Requirement 5

XOR1 = 'SEQ1b' ��
�OR5 =�'AND' � OR5 =�'SEQ5b'�

Guideline 1

Request
Emergency Medical

Examination

(XOR1 = 'SEQ1a' �� OR7 = 'AND') �
(XOR1 = 'SEQ1b' �� OR7 = 'SEQ7b')

Requirement 6

activity

activity common
to all variants

configurable activity

configurable XOR

configurable OR

configuration re-
quirement/guideline

Request
Standard Medical

Examination

XOR1 = 'SEQ1b' ��
Inform Patient = 'ON'

Requirement 4

Register
Emergency Medical

Examination

XOR1 = 'SEQ1a' ��XOR1 = 'SEQ1b'
Requirement 1

Fig. 3. Example of a configurable reference process model.

constitutes a nontrivial task. Finally, for the above mentioned approaches, high-
level configuration user interfaces for domain experts exist, e.g., questionnaire
models, feature diagrams, and context-based configurators [36, 32, 9].

14

XO
R

1

XO
R

2

XO
R

3

XO
R

4

O
R

5

O
R

6

O
R

7

O
R

8

R
eg

is
te

r E
m

er
ge

nc
y

M
ed

ic
al

 E
xa

m
in

at
io

n

Pr
ep

ar
e

Pa
tie

nt

In
fo

rm
 P

at
ie

nt

Tr
an

sp
or

t P
at

ie
nt

Tr
an

sp
or

t P
at

ie
nt

(R

et
ur

n)

Process variant S1

Process variant S2

Process variant S3

Process variant S4

Settings of Configurable Connectors Settings of Configurable
Activities

SEQ1b

SEQ1b

SEQ1b

SEQ1a

SEQ1b

SEQ1b

SEQ1b

SEQ1a

SEQ3a

SEQ3a

SEQ3b

SEQ3c

SEQ3a

SEQ3a

SEQ3b

SEQ3c

AND

SEQ5b

AND

SEQ5b

AND

SEQ5b

AND

SEQ5b

SEQ7b

SEQ7b

SEQ7b

AND

SEQ7b

SEQ7b

SEQ7b

AND

ON

OFF

OFF

OFF

OFF

ON

ON

ON

OFF

OFF

ON

ON

ON

OFF

ON

ON

ON

OFF

ON

ON

Fig. 4. Examples of configuration settings.

Altogether, enhancing process-aware healthcare information systems with
configurable reference process models as well as the capability to derive sound
process variants from them, will foster the reuse of process knowledge and in-
crease process model quality in large process repositories

5 Process Adaptation Support

As discussed in Section 3.2, in general, it is not possible to anticipate all excep-
tions in a healthcare environment and to capture their handling in a prespecified
process model at design time. Hence, authorized process participants [44] should
be allowed to situationally adapt single process instances running in the PAIS
to cope with the non-anticipated exceptions and to realign the digital process
running in the PAIS with the real-world case; e.g., by inserting, deleting, or mov-
ing activities for one specific process instance. Providing PAIS support for such
instance-specific deviations from a prespecified process model, however, must not
shift the responsibility for ensuring PAIS robustness to end-users. Instead, the
PAIS must provide comprehensive support for the correct, secure, and robust
handling of run-time exceptions through ad-hoc process instance changes.

To cope with unanticipated exceptions, authorized users shall be allowed to
delete activities, to postpone their execution, to bring the execution of activities
forward even though their preconditions have not yet been met, or to add activ-
ities not considered in the process model so far [28]. Generally, such behavioral
changes of a process instance require structural adaptations of the corresponding
process model, which shall solely be applied to that particular process instance.
Examples of structural adaptations include the insertion, deletion, or movement
of activities and process fragments respectively. While movements change activ-
ity positions, and thus the structure of a process model, insertions and deletions
additionally modify the set of activities contained in a process model. In this

15

context, adaptive process management technologies like ADEPT [4, 27, 31] pro-
vide high-level change operations, e.g., to move an activity or an entire process
fragment within a process model. Usually, the change operations abstract from
the concrete process model transformations to be conducted, i.e., instead of
specifying a set of change primitives, the user applies one or more high-level
change operations to realize the desired process model adaptation. ADEPT as-
sociates pre- and post-conditions with the high-level change operations in order
to guarantee model correctness after each adaptation, i.e., to ensure correctness
by construction [4]. A comprehensive set of change patterns, which are useful
for structurally adapting processes models and, hence, process model behavior
can be found in [42].

Example 7. (Structural adaptations of a process model). Figure 5 depicts a sim-
ple example of a structural process model adaptation referring to a very sim-
plied patient treatment process. As illustrated in Fig. 5a, usually, the treatment
process starts with the admission of the patient to the hospital. After having
registered the patient, he is treated by a physician. Finally, an invoice for the
treatment provided is created. Assuming that a particular patient is in a critical
condition, it might become necessary to deviate from the prespecified process
model to handle this exception; the treatment of the patient might have to start
right away, performing the necessary steps for his registration at a later stage.
To capture this behavior in the model of the respective process instance, activity
Treat Patient has to be arranged in parallel with activity Register Patient

(cf. Figure 5b), i.e., the unanticipated exception is handled by restructuring the
model driving the execution of the respective process instance.

Admit
Patient

Register
Patient

Treat
Patient

Create
Invoice

Admit
Patient

Register
Patient

Treat
Patient

a) Process Model S

b) Process Model S’

Move Treat Patient to the position
being in parallel with Register Patient

Create
Invoice

Fig. 5. Example of a structural process adaptation

To correctly deal with ad-hoc changes, process instance states need to be
taken into account as well. Generally, the applicability of a particular ad-hoc
change depends on the state of the respective process instance. Example 8 illus-
trates this.

16

Example 8. (Ad-hoc changes of healthcare process instances). Consider process
model S on the left hand side of Fig. 6a. Assume that S is transformed into
a correct process model S’ by adding two activities (i.e., Test for Allergies

and Deliver Drug) as well as a data dependency between them; i.e., Test for

Allergies writes data object Allergy Record, which is then read by Deliver

Drug. Assume further that this structural model change shall be applied to the
process instances depicted in Fig. 6b and currently being executed according
to process model S. Regarding instance I1 the described change can be applied
without any problem as its execution has not yet entered the change region
(cf. Fig. 6c). Changing instance I2 in an uncontrolled manner, however, would
result in an inconsistent process instance state; i.e., activity Prepare Patient

would be running even though its predecessor, activity Test for Allergies,
would not have been completed. As a consequence, Deliver Drug might be in-
voked accessing data element Allergy Record even though this data element
might not have been previously written. Regarding instance I3, the described
change may be applied. However, when relinking the execution of I3 to S’, ac-
tivity Prepare Patient needs to be disabled and corresponding work items be
withdrawn from user worklists. Additionally, the newly inserted activity Test

for Allergies has to be enabled.

�

a)

b) Process instances on S

Test for
Allergies

Deliver
Drug

Inform
Patient

Prepare
Patient

Examine
Patient

Inform
Patient

Prepare
Patient

Examine
Patient

Inform
Patient

Prepare
Patient

Examine
PatientI3

I2

I1

�

Process model S

 2

Inform
Patient

Test for
Allergies

Prepare
Patient

Deliver
Drug

Examine
Patient

 Allergy
Record

Inform
Patient

Test for
Allergies

Prepare
Patient

Deliver
Drug

Examine
Patient

Allergy
Record

�

c) Process instances on S’

Inform
Patient

Test for
Allergies

Prepare
Patient

Deliver
Drug

Examine
Patient

 Allergy
Record

Inform
Patient

Prepare
Patient

Examine
Patient

Allergy
Record

Process model S’

Change not
applicable to I2!

I1

I3

σ 1 = < start(Inform Patient) >

σ = < start(Inform Patient; complete(Inform Patient);
 start(Prepare Patient) >

σ 3 = < start(Inform Patient); complete(Inform Patient) >
Activity States Completed� Running Enabled

Inform
Patient

Test for
Allergies

Prepare
Patient

Deliver
Drug

Examine
Patient

 Allergy
Record

I2
�

Fig. 6. State-compliant adaptation of process instances.

17

As illustrated by Example 8, structural changes of a process instance require
adaptations of the process instance state (i.e., the states of the corresponding
activities) as well. Generally, the respective state adaptations depend on the ap-
plied process model change (e.g., deleting a process fragment vs. adding one) as
well as on the current state of the process instance. Depending on the position
where an activity is inserted, for example, it might become necessary to imme-
diately enable the inserted activity or to disable other ones before continuing
with the execution of the process instance. By contrast, when changing a not
yet entered region of a process instance, no state adaptations become necessary.

In order to provide advanced user support, end-users should be supported in
reusing knowledge about ad-hoc changes, which were previously applied to other
process instances in a similar problem context. Accordingly, the changes must
be recorded by the PAIS and be annotated with contextual information (e.g.,
reasons of the ad-hoc change). The latter, in turn, is needed to be able to present
knowledge about those previous ad-hoc changes to the user being relevant in the
current exceptional situation. For example, an MRT must not be skipped for
patients in general, but for those having a cardiac pacemaker.

An approach that facilitates ad-hoc changes of process instances during run-
time by supporting the retention and reuse of previously applied instance changes
is presented in [45, 43]. In particular, this approach automates change retrieval
by considering structured information about the current application context;
e.g., the occurred exception and the current state of the process instance to be
adapted. Further, if ad-hoc changes applied in a similar context can be retrieved
in the given exceptional situations, but cannot be reused directly (e.g., in case
the process instance has progressed beyond the point that the ad-hoc change can
be directly applied), user support for adapting the respective change definition
to the situation at hand is provided.

In summary, this section emphasized the need for structurally adapting the
process model of single process instances during run-time in order to cope with
unanticipated exceptions. We discussed fundamental issues that emerge due to
ad hoc changes and showed how they can be addressed by adaptive PAISs. The
section referred to high-level process adaptation patterns for defining ad-hoc
changes at an abstract level (e.g., to move an activity). Additionally, it dis-
cussed the importance of considering the state of process instances as well as
to adapt it when applying ad-hoc changes. In this context, we emphasized that
a particular process instance only then might be dynamically changed, if the
current instance state complies with the resulting process model (i.e. state com-
pliance). We further discussed how users may be supported in reusing knowledge
about previous ad-hoc changes applied in similar exceptional situations.

6 Process Evolution Support

As discussed in Section 3.3, any process-aware information system run in a
healthcare environment should be able to cope with evolutionary process changes.
This section presents fundamental techniques to cope with the evolution of

18

healthcare processes as implemented in a PAIS at a technical level, i.e., to re-
alize respective process changes within the PAIS. The basic assumption is that
the healthcare processes are represented by prespecified process models in the
PAIS, and changes of the real-world healthcare process require the correspond-
ing process models to evolve accordingly at the implementation level. A major
challenge in this context concerns the handling of long-running process instances
that were created based on the old process model, but are now required to com-
ply with a new specication (i.e., a new model version) and, therefore, shall be
migrated to it [30, 35]. As thousands of active process instances might be af-
fected, accomplishing such a migration correctly and efficiently becomes crucial
[34].

6.1 Deferred Process Evolution

When evolving a process model S to a new process model version S′ at the
process type level, the PAIS must properly deal with corresponding process
instances, i.e., process instances that were started and partially executed on S,
but have not been completed yet. The easiest way to properly complete these
running process instances is to continue their execution based on the original
process model S, whereas new process instances may be created and executed
based on the new model version S′—this approach is denoted as deferred process
model evolution in [32]. In particular, it requires support for version control as
well as for the coexistence of process instances belonging to different process
model versions of a particular process type.

6.2 Immediate Process Evolution and Instance Migration

While the coexistence of process instances running on different process model
versions is sufficient to support deferred evolution, long-running process in-
stances often require immediate evolution, i.e., these process instances shall be
migrated on-the-fly to the new process model version if possible. Example 9
illustrates this need.

Example 9. (Need for immediate process model evolution and process instance
migration). Consider a patient treatment process and assume that due to newly
emerging legal requirements patients have to be informed about certain risks
before a specific surgery may take place. Assume further that this change is
also relevant for patients whose treatment process was already started. If the
respective treatment process is supported by a PAIS, stopping all ongoing pro-
cess instances (i.e., treatments), aborting them, and restarting them does not
constitute a viable option. As a large number of treatment processes might be
concurrently running, applying this change manually to the instances of ongo-
ing treatment processes in the PAIS is hardly a realistic option. Instead, PAIS
support is needed to add this new activity to all patient treatment processes for
which this is still feasible, e.g., for which the surgery has not been started or
completed yet.

19

As a particular challenge, immediate process instance migrations have to be
accomplished in a controlled manner, i.e., none of the correctness properties
(e.g., soundness) guaranteed through the verification of a process model at design
time must be violated for any of the migrated process instances. If this cannot
be guaranteed for a particular process instance, it must not be migrated, but
remain running on the old process model version. To meet this goal, it first has
to be ensured that the new process model version S′ is correct; i.e., S′ has to
satisfy the syntactical and structural properties of the process modeling language
(e.g., BPMN 2.0) used, and it further must constitute a sound (i.e., correctly
executable) process model.

The problem here is the same as when applying an ad-hoc change to a sin-
gle process instance at run-time (cf. Section 5); i.e., similar challenges exist as
for ad-hoc changes. In particular, the state of the process instances to be mi-
grated (i.e., their execution traces) must be taken into account when deciding
on whether their execution may be relinked from a process model S to a new
model version S′ (i.e., whether the instances may migrate to S′). A widespread
correctness notion used for deciding about whether or not a particular process
instance may be dynamically migrated to a new process model version S′ is state
compliance—a process instance I is denoted as being state compliant with an
updated process model S′ and can therefore be migrated to it, if the execution
trace of I, which records all execution events related to I, is producible on S′ as
well. Using this correctness notion in the context of process model evolution, it
can be ensured that process instances whose state has progressed too far will not
be migrated to the new process model version S′, i.e., they will remain running
on the original process model version. Furthermore, when migrating a running
process instance to a new process model version its state has to be automatically
adapted. For example, an already enabled activity may have to be disabled when
inserting an activity directly preceding it or a newly added activity may have to
be immediately enabled if the preconditions for its execution are met.

Example 10 illustrates a process model evolution together with the controlled
migration of related process instances. Note that this example is similar to the
healthcare scenario discussed in the context of Example 8.

Example 10. (Controlled process instance migration). Consider the evolution of
process model S to S′ as depicted at the top of Figure 7. Furthermore, consider
the three process instances I1, I2, and I3 now running on S. Only those process
instances (i.e., I1 and I2) are migrated to the new process model S′, which are
state compliant with it: I1 can be migrated to S′ without need for any instance
state adaptation. Furthermore, I2 can be migrated to S′ as well. However, in
this case the newly inserted activity X becomes immediately enabled, whereas
the already enabled activity B becomes disabled. Finally, process instance I3
cannot be migrated to S′, as it is not state compliant with this model. Hence,
I3 remains running on the original process model S.

Note that the controlled evolution of process instances as illustrated in Ex-
ample 10 requires support for the coexistence of process instances running on

20

Immediate Process Model Evolution – Controlled Instance Migration

P M d l S‘P M d l S Process Model S‘

Process Model Evolution

Process Model S

AND-Split1
AND-Join1

A B
D

C

+ + E F A B
D

C

+ + E FX

Y
Insert X between A and B

Insert Y between C and AND-Join1

AND-Split1
AND-Join1

Process Instance I1 on S Process Instance I1 on S’

Migration of state compliant process instances from S to S’

C
C Y

Process Instance I on S Process Instance I on S’

A B
D

C

+ + E F A B
D

+ + E FX

Execution Trace: σ1 = <>

Migration of state compliant
process instances to model S’

(incl. state adaptations)

Process Instance I2 on S

�

Process Instance I2 on S

�
A B

D

C

+ + E F A B
D

C

+ + E FX

Y

Process Instance I3 on S

��
C

I3 is not state compliant with S’; i.e., its
trace σ3 cannot be produced on S‘.

Execution Trace: σ2 = <A>

�
A B

D
+ + E F I3 remains running on the original process

model S!
Execution Trace: σ3 = <A, B>

Fig. 7. Process model evolution and process instance migration

different versions of a particular process model, as well as the use of appropriate
correctness notions for deciding whether or not process instances can be correctly
executed on the new model version.

7 Process Looseness Support

As motivated in Section 3.4, in the healthcare domain, it is not always possible
to fully prespecify the model of a healthcare process in advance, i.e., while parts
of the respective process model are known at design time, others might be un-
certain and can solely be specified during process execution. For example, the
treatment of a particular patient depends on his actual physical data and the
list of symptoms and medical problems reported during process execution. To
cope with this uncertainty, decisions regarding the exact specification of selected
parts of the process model may be deferred to the run-time, i.e., instead of re-
quiring the process model to be fully specified prior to the creation and execution
of corresponding process instances, parts of the model can remain unspecified.
Process participants then may add information regarding the unspecified parts
of the process model during process execution.

This section presents two decision deferral patterns, which can be also applied
to healthcare processes, i.e., Late Selection and Late Modeling & Composition.
As opposed to structural process adaptations (cf. Section 5), whose application
is not restricted a priori to a particular process model part, the decision deferral
patterns define constraints concerning the parts of a process model that may be
changed or expanded. In particular, the application of the patterns has to be

21

anticipated at design time, which is accomplished by defining regions in the pro-
cess model where potential changes may be performed during run-time (decision
deferral patterns are therefore also denoted as patterns for changes in predefined
regions in [42]).

A loosely specified process is therefore defined by a process model, which
is not fully prespecified, but keeps some parts unspecified at design time by
deferring decisions to the run-time. The aforementioned patterns differ in the
degree of freedom provided to the user and the planning approach employed
when concretizing the loosely specified parts of the process model during run-
time. Moreover, the scope of decision deferral (i.e., prespecified parts of the
process model or entire process) has to be considered. Taken together, these
dimensions determine the provided degree of looseness. The considered patterns
are as follows:

Late selection of process fragments. This pattern allows deferring the
selection of the implementation of a particular process activity to the run-time.
At design time, solely a placeholder activity has to be provided. Its concrete
implementation is then selected during run-time among a predefined set of al-
ternative process fragments either based on defined rules or on user decisions (cf.
Fig. 8). However, the selection must be accomplished before the placeholder ac-
tivity is enabled or when it becomes enabled. Finally, the fragment substituting
the placeholder activity may either be an atomic activity or a sub-process.

B

Build-�me

Run-�me
�

+

Repository of Poten�al
Placeholder Implementa�ons

D

C

+ + E F

Process Model S

P Q R

S T
U

P Q R Selected Placeholder
Implementa�on

A B

D

C

+ + E FA

Fragment 1

Fragment 2

+

V

+
Process Instance I1

W
Fragment 3

Fig. 8. Late selection of process fragments

Late modeling & composition of process fragments. This pattern of-
fers more freedom compared to Late Selection. It allows for the on-the-fly mod-
eling of selected parts of the process model at run-time, i.e., at design time, only
a placeholder activity is provided, whose implementation is then provided dur-
ing run-time (cf. Fig. 9). Building blocks that may be used for late modeling &
composition can either be all process fragments from a repository, a constraint-
based subset of the fragments from the repository, or newly defined activities
or process fragments. In this context, constraints may be defined, which have

22

to be considered when modeling or composing an unspecified process part. Fur-
thermore, late modeling can take place upon creation of the process instance,
or when the placeholder activity becomes enabled or a particular state in the
process is reached. Depending on the pattern variant users start late modeling
with an empty template or take a predefined template as a starting point and
adapt it as required.

Build-�me

Run-�me

B
�

+
D

C

+ + E F

Process Model S

T U X Composed
Fragment

A B

D

C

+ + E FA

Repository of Process Fragments

S T U
X Y

P Q R

Fig. 9. Late modeling of process fragments

To give an idea of how decision deferral patterns can be implemented and ap-
plied in a healthcare context, with Worklets [1] we present a concrete approach
realizing the Late Selection pattern. For this, each activity is associated with
a set of sub-process fragments, which may be dynamically extended (i.e., addi-
tional fragments can be added on the fly)(cf. Figure 10). Again, the activities
of a sub-process may be linked with a set of fragments. During run-time choices
are made dynamically out of the set of subprocess fragments when activities
become enabled. The selection of a suitable fragment is made using hierarchi-
cally organized selection rules–called ripple down rules. Users may adjust the
automatic choice by adding selection rules. Once a fragment has been chosen,
the placeholder activity is replaced by it.

Example 11. (Late selection with Worklets). Fig. 10 illustrates the Worklet ap-
proach using a simplified example from the healthcare domain. The prespecified
process model consists of the four activities Admit Patient, Perform Triage,
Treat Patient, and Discharge Patient. Activity Treat Patient is linked
with a set of 7 subprocesses. Depending on the actual physical condition of
the patient and his list of symptoms, a suitable treatment is chosen during run-
time. For this, the ripple down rules are evaluated once activity Treat Patient

becomes enabled. The evaluation of the rules starts with the root node which
always evaluates to true. As the next step, condition Fever = True is evaluated.
If this condition holds subprocess Treat Fever is selected and activity Treat

Patient is replaced by it. Otherwise, the evaluation continues with the next rule
(i.e., condition Wound = True).

23

Perform
Triage

Admit
Patient

Treat
Patient

+

Test
Fever

Treat
Fever

...

Treat Feaver

Treat Abdominal Pain

true
default

true

false

Discharge
Patient

... ...

Treat Wound

...

Treat Labor

... ...

Treat Fracture

Fever = True
Treat Fever

Wound = True
Treat Wound

AbdominalPain = True
Treat Abdominal Pain

false

Fracture = True
Treat Fracture

Pregnant = True
Treat Labor

false true

Rash = True
Treat Rash...

Treat Rash

... ...

Treat High Heart Rate
HeartRate > 190

Treat High Heart Rate

true
Ripple Down Rules

Condition

Conclusion

Casuality Treatment Process Model

R
ep

os
ito

ry
 o

f P
ro

ce
ss

 F
ra

gm
en

ts

false

Fig. 10. Late selection with Worklets (adopted from [1]).

A similar approach like Worklets, which is called Context-aware Process In-
jection (CaPI), is described in [20].

8 Other Process Flexibility Approaches

For many years, the BPM community has recognized that a PAIS needs to be
able to cope with real-world exceptions, uncertainty, and evolving processes [32].
To address the flexibility needs discussed in Section 3, besides the concepts and
techniques presented in the previous sections, a variety of other process support
paradigms, including case handling, constraint-based processes, and data- and
object-centric processes, have been suggested and applied to healthcare scenarios.

8.1 Constraint-based Processes

This sub-section introduces constraint-based approaches to process modeling
and execution, which enable loosely specified processes as well [40, 8]. While
prespecified process models define how things have to be done (i.e., in what
order and under what conditions activities shall be executed), constraint-based
process models focus on what should be done by describing the activities that
may be performed and the constraints prohibiting undesired execution behavior.

Example 12 deals with a simplied medical guideline we adopted from [40].
It describes a constraint-based process of treating a patient admitted to the
emergency room of a hospital suspected of having a fracture (cf. Figure 11).

24

Example 12. (Fracture treatment process). Consider Figure 11. Before any treat-
ment may be chosen, activity Examine Patient has to be performed by a physi-
cian (constraint init). If required, additional medical diagnosis is done by ex-
ecuting activity Perform X-rays. Depending on the presence and type of frac-
ture, four different treatments exist: Prescribe Sling, Prescribe Fixation,
Perform Surgery, and Apply Cast. Except for Apply Cast and Prescribe

Fixation, which are mutually exclusive (constraint not co-existent), the treat-
ments can be applied in any combination and each patient receives at least one
of them (1-of-4 constraint). Activity Perform X-rays is not required if the
specialist diagnoses the absence of a fracture when performing activity Examine

Patient. If activity Perform X-rays is omitted, only the treatment Prescribe
Sling may be applied. All other treatments require Perform X-rays as preced-
ing activity in order to rule out the presence of a fracture, or to decide how to
treat it (constraint precedence). Simple fractures can be treated just by per-
forming activity Apply Cast. For unstable fractures, in turn, activity Prescribe

Fixationmay be preferred over activity Apply Cast. When performing activity
Perform Surgery, the physician is further advised to (optionally) execute ac-
tivity Prescribe Rehabilitation afterwards (optional constraint response).
Moreover, the physician may execute activity Prescribe Medication (e.g., pain
killers or anticoagulants) at any stage of the treatment. Note that activities
Examine Patient and Perform X-rays may be also performed during treat-
ment.

Altogether, the process of treating a fracture comprises the activities Examine
Patient, Perform X-rays, Prescribe Sling, Prescribe Fixation, Perform
Surgery, Apply Cast, Prescribe Rehabilitation, and Prescribe Medication.
Moreover, constraints prohibit undesired execution behavior, e.g.:

1) Activity Examine Patient has to be executed first.
2) Each patient gets at least one out of four treatments (i.e., Prescribe Sling,

Prescribe Fixation, Perform Surgery, or Apply Cast).
3) Activities Apply Cast and Prescribe Fixation are mutually exclusive.
– Perform X-rays is a prerequisite for all treatments except Prescribe Sling.
4) If activity Perform Surgery is performed for a certain patient, the physician

will be advised to execute activity Prescribe Rehabilitation afterwards.

response

Prescribe
Medication

Perform
X-rays

Prescribe
Fixation

Apply
Cast

Perform
Surgery

Prescribe
Rehabilitation

Prescribe
Sling

1 of 4

mutually
exclusive

A A
init

A must be the first
executed ac�vity

B needs to be preceded by A

A and B must not co-
occur

At least n out of m ac�vi-
�es must be executed

If A is executed B should be
executed as well (op�onal)

ac�vity

A B

A B

A B

m-of-n
A B

C ...

Examine
Patient

init

precedence

Fig. 11. Example of a constraint-based process model.

25

Figure 11 depicts the loosely specified process model corresponding to Ex-
ample 12 when using a constraint-based process modeling approach. The boxes
represent activities and the relations between them are different kinds of con-
straints for executing these activities. The depicted model contains mandatory
constraints (solid lines) as well as one optional constraint (dashed line). As op-
posed to fully prespecified process models that describe how things have to be
done, constraint-based process models focus on the logic that governs the inter-
play of actions in the process by describing the activities that can be performed
and those constraints prohibiting undesired behavior.

Note that in more complex cases, the physician in charge may have to choose
from dozens or even hundreds of activities. While some of them may be executed
any number of times and at any point in time during the treatment process, for
others a number of constraints have to be obeyed; e.g., certain activities may
have to be preceded or succeeded by other activities or may even exclude certain
activities. Moreover, depending on the particular patient and his medical prob-
lems, certain activities might be contraindicated and should therefore not be
chosen. The challenge is to provide PAIS support for such knowledge-intensive
processes and to seamlessly integrate the described constraints within the physi-
cians work practice. Generally, the structure of knowledge-intensive processes
strongly depends on user decisions made during process execution; i.e., it dy-
namically evolves.

8.2 Object-centric Processes

The process flexibility approaches presented in the previous sections are activity-
centric, i.e., they focus on the coordinated execution of a set of business func-
tions, represented by atomic process steps (i.e., activities), as well as the control
and data flow between them. Typically, the primary drivers of activity-centric
processes are the events related to activity completions. In turn, business data is
rather ”unknown” to the process engine of an activity-centric PAIS. The latter
only maintains simple data elements needed for control flow routing and for as-
signing values to activity input parameters. In particular, business objects and
their attributes are usually outside the control of an activity-centric PAIS [14].

In healthcare, however, one can also find processes not being activity-centric,
but whose execution is driven by user decisions and patient data [3]. These
processes are usually unstructured or semi-structured, and tend to be knowledge-
intensive. In particular, they can not be straight-jacketed into a set of activities
with prespecified precedence relations (as in the examples presented above). As a
consequence, the activity-centric approaches presented so far do not adequately
support these processes [14]. Moreover, the primary driver for the progress of
a process is not the event related to activity completion, but the availability of
certain values for data objects. When implementing such user- and data-driven
processes in a PAIS, a tight integration of processes, data, and users becomes
necessary [26].

There exists pioneering work targeting at user- and data-driven process man-
agement and enabling such a tight integration. As a first example, the case han-

26

dling paradigm [7] needs to be mentioned. It focuses on the case (e.g., a patient
treatment) and its flexible handling, whereby the progress of a case is determined
by the values of its data objects, i.e., case execution is data-driven.

While case handling is appropriate for supporting simple process scenar-
ios, it does not provide sufficient abstractions to deal with more complex and
inter-dependent cases. Approaches focusing on object-aware processes offer more
promising perspectives in this context; i.e., here the PAIS manages data by means
of object types (e.g., medical report, medical examination) that comprise object
attributes and relations to other object types. Accordingly, a business process co-
ordinates the processing of several business objects of the same or different type
among end-users enabling them to cooperate and communicate with each other.
As shown in [13], object-aware processes provide a high degree of abstraction by
enabling two levels of process granularity: object behavior and object interactions.
Furthermore, object-aware process management supports data-driven process ex-
ecution, exible choice of activity granularities, and integrated access to business
processes and business data. In [13] a framework realizing flexible object-aware
process support based on a tight integration of processes, functions, data, and
users is presented. In particular, the framework provides support for coordinat-
ing the execution of related processes and the interactions of their corresponding
objects. In turn, the application of this framework to sophisticated healthcare
scenarios is presented in [3].

9 Summary

When efforts are taken to improve and automate healthcare processes through
the introduction of a PAIS, it is of utterly importance that this does not lead to
rigidity. Otherwise, the PAIS will not be accepted by clinical staff. Furthermore,
variability in healthcare processes is deeply inherent to the medical domain, and
unforeseen events are to some degree a normal phenomenon in current practice.
PAISs should therefore enable a high degree of flexibility throughout the entire
process life cycle.

To enable the required process flexibility in healthcare environments, several
challenges need to be tackled: First, variability in healthcare processes, which
is known prior to their implementation, should be captured and made known
to the PAIS. Second, authorized process participants should be free to react
in unplanned or exceptional situations by gaining complete initiative and by
deviating from the prespecified process whenever required. Note that in the
healthcare domain the process participants are usually trained to do so and,
hence, enabling ad-hoc deviations from the prespecified process model forms a
key part of process flexibility. In all these scenarios, the PAIS should be easy
to handle, self-explaining, and—most important—its use should be not more
cumbersome and time-consuming than simply handling the unplanned situation
or exception by a telephone call to the right person. Third, process models may
evolve over time due to environmental changes (e.g., process redesign or new
laws). Consequently, a PAIS should support process model evolution and provide

27

appropriate techniques for dealing with already running process instances in this
context. Flexibility features of a PAIS must neither affect its robustness nor the
correct execution of the healthcare processes it implements. Fourth, to support
knowledge-intensive processes, PAISs should enable the loose specification of
process models at design time and their renement during run-time, as well as
data- and user-driven processes in cases where activity-centric approaches do
not fit at all.

Existing approaches for the flexible support of prespecified or loosely specified
processes have been already established in industrial practice for several years.
Hence, they provide a rather high degree of maturity. By contrast, approaches
enabling knowledge-intensive processes constitute cutting-edge research, but will
become more mature and emerge in practical settings in a few years. While
the conceptual and theoretical foundations of the different paradigms are well
understood, there still exist numerous challenges regarding their practical use in
healthcare environments. Amongst others, these challenges include proper end-
user assistance, flexible support of mobile healthcare processes, and flexibility in
cross-organizational processes (e.g., in the context of healthcare networks).

References

1. M. Adams, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der Aalst.
Worklets: A service-oriented implementation of dynamic flexibility in workflows.
In On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and
ODBASE, OTM Confederated International Conferences, CoopIS, DOA, GADA,
and ODBASE 2006, Montpellier, France, October 29 - November 3, 2006. Proceed-
ings, Part I, pages 291–308, 2006.

2. C. Ayora, V. Torres, B. Weber, M. Reichert, and V. Pelechano. VIVACE: A
framework for the systematic evaluation of variability support in process-aware
information systems. Information & Software Technology, 57:248–276, 2015.

3. C. M. Chiao, V. Künzle, and M. Reichert. Object-aware process support
in healthcare information systems: requirements, conceptual framework and
examples. Int’l Journal on Advances in Life Sciences, 5(1 & 2):11–26, July 2013.

4. P. Dadam and M. Reichert. The ADEPT project: a decade of research and
development for robust and flexible process support. Computer Science - R&D,
23(2):81–97, 2009.

5. P. Dadam, M. Reichert, and K. Kuhn. Clinical workflows - the killer application
for process-oriented information systems? In Proc. 4th Int’l Conf. on Business
Information Systems (BIS’00), pages 36–59. Springer, April 2000.

6. W. Fdhila, C. Indiono, S. Rinderle-Ma, and M. Reichert. Dealing with change
in process choreographies: Design and implementation of propagation algorithms.
Information Systems, 49:1–24, 2015.

7. C. W. Günther, M. Reichert, and W. M. P. van der Aalst. Supporting flexible
processes with adaptive workflow and case handling. In 17th IEEE International
Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises,
WETICE 2008, Rome, Italy, June 23-25, 2008, Proceedings, pages 229–234, 2008.

8. C. Haisjackl, I. Barba, S. Zugal, P. Soffer, I. Hadar, M. Reichert, J. Pinggera, and
B. Weber. Understanding declare models: strategies, pitfalls, empirical results.
Software and System Modeling, 15(2):325–352, 2016.

28

9. A. Hallerbach, T. Bauer, and M. Reichert. Context-based configuration of process
variants. In 3rd International Workshop on Technologies for Context-Aware Busi-
ness Process Management (TCoB 2008), pages 31–40, June 2008.

10. A. Hallerbach, T. Bauer, and M. Reichert. Guaranteeing soundness of configurable
process variants in Provop. In 2009 IEEE Conference on Commerce and Enterprise
Computing, CEC 2009, Vienna, Austria, July 20-23, 2009, pages 98–105, 2009.

11. A. Hallerbach, T. Bauer, and M. Reichert. Capturing variability in business process
models: the Provop approach. Journal of Software Maintenance, 22(6-7):519–546,
2010.

12. E. Kilsdonk, L. W. P. Peute, and M. W. M. Jaspers. Factors influencing implemen-
tation success of guideline-based clinical decision support systems: A systematic
review and gaps analysis. Int J Medical Informatics, 98:56–64, 2017.

13. V. Künzle and M. Reichert. Philharmonicflows: towards a framework for object-
aware process management. Journal of Software Maintenance, 23(4):205–244, 2011.

14. V. Künzle, B. Weber, and M. Reichert. Object-aware business processes:
fundamental requirements and their support in existing approaches. International
Journal of Information System Modeling and Design, 2(2):19–46, 2011.

15. A. Lanz, M. Reichert, and B. Weber. Process time patterns: A formal foundation.
Information Systems, 57:38–68, 2016.

16. A. Lanz, B. Weber, and M. Reichert. Time patterns for process-aware information
systems. Requirements Engineering, 19(2):113–141, 2014.

17. R. Lenz and M. Reichert. IT support for healthcare processes - premises, challenges,
perspectives. Data Knowledge Engineering, 61(1):39–58, 2007.

18. C. Li, M. Reichert, and A. Wombacher. Mining business process variants:
challenges, scenarios, algorithms. Data Knowledge Engineering, 70(5):409–434,
2011.

19. N. Mundbrod, F. Beuter, and M. Reichert. Supporting knowledge-intensive
processes through integrated task lifecycle support. In 19th IEEE International
Enterprise Distributed Object Computing Conference, EDOC 2015, Adelaide, Aus-
tralia, September 21-25, 2015, pages 19–28, 2015.

20. N. Mundbrod, G. Grambow, J. Kolb, and M. Reichert. Context-aware process
injection - enhancing process flexibility by late extension of process instances. InOn
the Move to Meaningful Internet Systems: OTM 2015 Conferences - Confederated
International Conferences: CoopIS, ODBASE, and C&TC 2015, Rhodes, Greece,
October 26-30, 2015, Proceedings, pages 127–145, 2015.

21. N. Mundbrod, J. Kolb, and M. Reichert. Towards a system support of collaborative
knowledge work. In Business Process Management Workshops - BPM 2012 Inter-
national Workshops, Tallinn, Estonia, September 3, 2012. Revised Papers, pages
31–42, 2012.

22. M. Peleg, J. Somekh, and D. Dori. A methodology for eliciting and modeling
exceptions. Journal of Biomedical Informatics, 42(4):736–747, 2009.

23. M. Peleg and S. W. Tu. Design patterns for clinical guidelines. Artificial Intelli-
gence in Medicine, 47(1):1–24, 2009.

24. R. Pryss, N. Mundbrod, D. Langer, and M. Reichert. Supporting medical ward
rounds through mobile task and process management. Information Systems E-
Business Management, 13(1):107–146, 2015.

25. M. Reichert. What BPM technology can do for healthcare process support. In
Artificial Intelligence in Medicine - 13th Conference on Artificial Intelligence in
Medicine, AIME 2011, Bled, Slovenia, July 2-6, 2011. Proceedings, pages 2–13,
2011.

29

26. M. Reichert. Process and data: Two sides of the same coin? In On the Move to
Meaningful Internet Systems: OTM 2012, Confederated International Conferences:
CoopIS, DOA-SVI, and ODBASE 2012, Rome, Italy, September 10-14, 2012. Pro-
ceedings, Part I, pages 2–19, 2012.

27. M. Reichert and P. Dadam. Enabling adaptive process-aware information systems
with ADEPT2. In J. Cardoso and W. van der Aalst, editors, Handbook of Research
on Business Process Modeling, pages 173–203. Information Science Reference, Her-
shey, New York, March 2009.

28. M. Reichert, P. Dadam, and T. Bauer. Dealing with forward and backward jumps
in workflow management systems. Software and System Modeling, 2(1):37–58, 2003.

29. M. Reichert, A. Hallerbach, and T. Bauer. Lifecycle management of business
process variants. In J. vom Brocke and M. Rosemann, editors, Handbook on Busi-
ness Process Management 1, Introduction, Methods, and Information Systems, 2nd
Ed., International Handbooks on Information Systems, pages 251–278. Springer,
2015.

30. M. Reichert, S. Rinderle, and P. Dadam. On the common support of workflow type
and instance changes under correctness constraints. In On The Move to Meaningful
Internet Systems 2003: CoopIS, DOA, and ODBASE - OTM Confederated Inter-
national Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy,
November 3-7, 2003, pages 407–425, 2003.

31. M. Reichert, S. Rinderle-Ma, and P. Dadam. Flexibility in process-aware
information systems. Transactions on Petri Nets and Other Models of Concur-
rency, 2:115–135, 2009.

32. M. Reichert and B. Weber. Enabling Flexibility in Process-Aware Information
Systems - Challenges, Methods, Technologies. Springer, 2012.

33. D. Riaño, R. Lenz, and M. Reichert, editors. Knowledge Representation for Health
Care - HEC 2016 International Joint Workshop, KR4HC/ProHealth 2016, Munich,
Germany, September 2, 2016, Revised Selected Papers, volume 10096 of Lecture
Notes in Computer Science. Springer, 2017.

34. S. Rinderle, M. Reichert, and P. Dadam. Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases, 16(1):91–116, 2004.

35. S. Rinderle, M. Reichert, and P. Dadam. On dealing with structural conflicts
between process type and instance changes. In Business Process Management: Sec-
ond International Conference, BPM 2004, Potsdam, Germany, June 17-18, 2004.
Proceedings, pages 274–289, 2004.

36. M. L. Rosa, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede.
Questionnaire-based variability modeling for system configuration. Software and
System Modeling, 8(2):251–274, 2009.

37. E. Shalom, Y. Shahar, and E. Lunenfeld. An architecture for a continuous, user-
driven, and data-driven application of clinical guidelines and its evaluation. Journal
of Biomedical Informatics, 59:130–148, 2016.

38. W. M. P. van der Aalst, A. Dreiling, F. Gottschalk, M. Rosemann, and M. H.
Jansen-Vullers. Configurable process models as a basis for reference modeling. In
Business Process Management Workshops, BPM 2005 International Workshops,
BPI, BPD, ENEI, BPRM, WSCOBPM, BPS, Nancy, France, September 5, 2005,
Revised Selected Papers, pages 512–518, 2005.

39. W. M. P. van der Aalst, N. Lohmann, and M. L. Rosa. Ensuring correctness during
process configuration via partner synthesis. Information Systems, 37(6):574–592,
2012.

30

40. W. M. P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative workflows:
Balancing between flexibility and support. Computer Science - R&D, 23(2):99–
113, 2009.

41. B. Weber, M. Reichert, J. Mendling, and H. A. Reijers. Refactoring large process
model repositories. Computers in Industry, 62(5):467–486, 2011.

42. B. Weber, M. Reichert, and S. Rinderle-Ma. Change patterns and change sup-
port features - enhancing flexibility in process-aware information systems. Data
Knowledge Engineering, 66(3):438–466, 2008.

43. B. Weber, M. Reichert, and W. Wild. Case-base maintenance for CCBR-based
process evolution. In Advances in Case-Based Reasoning, 8th European Conference,
ECCBR 2006, Fethiye, Turkey, September 4-7, 2006, Proceedings, pages 106–120,
2006.

44. B. Weber, M. Reichert, W. Wild, and S. Rinderle. Balancing flexibility and security
in adaptive process management systems. In On the Move to Meaningful Inter-
net Systems 2005: CoopIS, DOA, and ODBASE, OTM Confederated International
Conferences CoopIS, DOA, and ODBASE 2005, Agia Napa, Cyprus, October 31 -
November 4, 2005, Proceedings, Part I, pages 59–76, 2005.

45. B. Weber, S. Rinderle, W. Wild, and M. Reichert. CCBR-driven business process
evolution. In Case-Based Reasoning, Research and Development, 6th International
Conference, on Case-Based Reasoning, ICCBR 2005, Chicago, IL, USA, August
23-26, 2005, Proceedings, pages 610–624, 2005.

46. M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer, 2007.

